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Abstract 

 

Identification of the Effect of Population Stratification on Association Studies of Rare 

Variants 

 

BY      Yunxuan Jiang 

Human genome research, which aims to find the genetic etiology of the disease, is having a more 

and more profound influence on public health. And rare variants, which both have large effect 

size and can explain a great proportion of heritability, are becoming the focus of current human 

genome research. Although several statistical methods have developed to increase the power of 

detecting rare variants and reduce false positive rate, none of these methods address an important 

issue that often arises in genetic studies: false positives due to population stratification. 

Population stratification is a well-known problem that can substantially cause inflated false 

positive rate and decreased power to detect real association. We simulated several case-control 

studies with different sample size and population structure according to a series of disease 

prevalence for each population (Europea and Africa), and found that population stratification can 

have a significant influence on rare variants studies. The false positive rate increases dramatically 

as sample size increase and population structure become extreme. We applied principal 

component analysis to control for population structure. Our results showed that the principal 

component method performed very well even for highly structured data. The false positive rate 

remained around 0.05 in our simulation. Our results implicates that researchers need to carefully 

match case and control ancestry, in order of avoid false positive caused by population structure in 

rare variants study. If it is inevitable to recruit samples from different population, then researchers 

can correct for it with our easy implemented method. 
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Genomics is playing a more and more important role in public health research. According 

to Center for Disease Control and Prevention (CDC), genetic factors
 
are associated with 

nine of the ten leading causes of death in the United States, including heart disease, 

cancer, diabetes, and Alzheimer disease. There are already examples that pharmaceutical 

research has incorporated genomic findings, and Eric Green, the director of National 

Human Genome Research Institute (NHGRI), expects similar examples to appear in the 

next 5 to 10 years (Hayden, 2009). Genome wide association studies (GWAS), are a 

widely used design to identify susceptible single nucleotide polymorphisms (SNPs) that 

are associated with disease under the assumption that such diseases originate from the 

effects of common variants. During the past few years, GWAS have successfully 

identified a large number of SNPs that have strong associations (p-value smaller than 

5 10
-8

) with several diseases. According to NHGRI, 1212 genome wide associations 

have been identified to have strong association with 210 traits as of December 2010 (for a 

specific list, see (http://www.genome.gov/gwastudies)). These accomplishments are 

especially valuable for complex disease such as type 2 diabetes and schizophrenia.  

 

However, most of these associated SNPs have very small effect sizes (odds ratio between 

1.1-1.5), and the proportion of heritability (proportion of phenotypic variance in a 

population attributable to additive genetic factors) explained by these SNPs is at best 

modest for most traits. For example, type 2 diabetes has 21%-72% heritability while 

current findings can only explain 6% of it (Mathias et al., 2009; Manolio et al., 2009). 

Besides, there is not enough evidence to show that these common variants have a causal 

effect on the disease (Maher, 2008; Cirulli & Goldstein, 2010).  Through a series of 



3 
 

 

review articles, researchers pointed out that common disease might be caused by a series 

of rare variants, each conferring a moderate but highly detectable increase in relative risk 

(Pritchard, 2001; Bodmer & Bonilla, 2008; Schork et al., 2009; Manolio et al., 2009). 

Rare variants have been shown to influence individual risk for autism, epilepsy and 

schizophrenia (Stankiewicz
 
and Lupski, 2010). Furthermore, the odds ratios of rare 

variants are normally above 2, which are significantly higher than the odds ratios reported 

for common variants (Bodmer & Bonilla, 2008). There is also a chance that current 

findings of association between the common variants and the disease are actually caused 

by rare variants found nearby those common variants
 
(Dickson et al., 2010). Recent 

development of cost-effective sequencing technologies, especially next-generation 

sequencing methods, has made direct sequencing of rare variants feasible. 

 

As power to detect an individual rare variant is low (since power generally decreases with 

a decrease in frequency when the sample size and effect size are held constant), many 

statistical methods for rare-variant analysis develop tests that combine information from 

rare variants in a region into a composite variable and then test for association between 

the variable and disease (see the „Literature Review‟ section for more detail on these 

methods).  However, none of these methods address an important issue that often arises 

in genetic studies: false positives due to population stratification.  

 

Population stratification is a well-known problem that can cause inflated false positive 

rates and decreased power to detect real association. Population stratification is a 
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systematic difference in allele frequencies between cases and controls caused by 

sampling of subjects from different populations whose disease prevalence and allele 

frequencies are significantly different from each other. This is because each population 

has a unique social and genetic background; and social or cultural events, such as the 

mating process, will greatly influence the genetic architecture of a population (Cardon, 

2003). Marchini et al. (2004) showed that with the sample size required by genome wide 

association studies, even small fraction of admixture between different populations will 

lead to a greatly inflated type 1 error rate. And the type 1 error rate increases rapidly as 

the sample size grows large or the population structure becomes more extreme. 

 

The problem caused by population stratification cannot be simply solved by using self-

reported race. This is because race is not a comprehensive representation of one‟s 

ancestral make-up. Barholtz-Sloan et al. (2005) examined a case-control study on early 

onset lung cancer and found that ancestry information inferred by genetic markers do not 

exactly match self-reported race. And subjects from different races, such as Caucasian, 

non-Hispanics and African Americans have a significant proportion of ancestry that is 

overlapped. Researchers have developed several methods to correct for population 

structure (Marchini et al., 2004; Pritchard et al., 2000; Price et al., 2006); the basic idea of 

these methods is to infer the information about population structure through a set of 

genetic markers.  
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Although it is clear that population stratification is a severe problem in association 

studies of common variants and although the analysis of rare variants is becoming an 

increasingly hot topic, nothing is known about the effect of population stratification on 

rare variants, which inspired us to investigate this problem. We have two very clear aims 

in this thesis: 1) Examine whether population stratification affects studies of rare variants; 

2) if there exists an effect, we aim to evaluate the effectiveness of existing methods 

(adjustment using principal components) to solve this problem.  
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In this section, we will review current hypotheses about the genetic architecture of 

common disease and justify why we want to focus on rare variants studies. We will 

discuss different methods to identify disease associated alleles and the advantages and 

disadvantages for each of them. We will also review the population stratification problem 

in genetic association studies and available statistical methods to correct for population 

stratification. 

 

2.1 Common vs. Rare Variants  

Current studies have identified many alleles that contribute to several complex diseases, 

most of which have profound public health influence. For example, Hunter et al. have 

identified FGFR2 alleles associated with risk of sporadic postmenopausal breast cancer 

(Hunter et al., 2007); Scott et al. (2007) have identified alleles associated with type 2 

diabetes which is the 6
th

 major cause of death in the US. These findings contribute to 

understanding of the disease etiology, which can further help prevention, diagnosis and 

treatment of disease (Manolio et al., 2009). However, a great proportion of heritability of 

the diseases cannot be explained by current findings, which is a major concern to 

researchers.  

 

Current genome wide association study (GWAS) is carried out under the “common 

disease common variants” (CDCV) assumption. The CDCV theory assumes that common 

diseases are caused by alleles that have moderate frequency in the population.   These 

common alleles identified by GWAS mostly have odds ratio between 1.1-1.5, and the 

proportion of heritability (proportion of phenotypic variance in a population attributable 

http://www.sciencemag.org/search?author1=Laura+J.+Scott&sortspec=date&submit=Submit
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to additive genetic factors) that can be explained by these variants is small (Manolio et al., 

2009). Weedon et al. identified 20 common variants in a sample of 30,147 subjects 

associated with human height, which has overall heritability of 90%. However, these 20 

variants can only explain 3% of height variation (Weedon et al., 2008). Since the 

proportion of heritability that can be explained by these variants is so small, it is very 

hard to build any prevention strategies based on these findings. 

 

The common disease rare variants hypothesis (CDRV), as its name suggests, assumes 

that common human disease is attributed to a group of alleles with relatively low 

frequency but high penetrance (the probability of having the disease given that the person 

carries the allele). Each of these alleles acts independently and contributes moderately to 

the variation in disease risk. (Bodmer & Bonilla, 2008). There are several points that 

support the CDRV assumption. First, the odds ratio of rare variants identified in 

association studies is much larger than those of common variants identified in association 

studies. Bodmer & Bonilla (2008) summarized the odds ratios (OR) of 61 rare variants 

and 327 common variants and the results are shown in Figure 1. The authors noted that, 

for common variants, relatively few have OR values above 2, and the mean OR is 1.26; 

for the rare variants, most have OR above 2, and the mean OR is 3.74 (Bodmer & Bonilla, 

2008). 
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Figure 1. Odds Ratio for common vs. rare variants (Bodmer & Bonilla, 2008) 

Second, rare variants are more likely to have causal effects than common variants. 

Genetics can benefit public health by providing more insight into the etiology of a disease. 

In this sense, only variants that have “causal effects” are meaningful findings. Alleles 

identified to be associated with the disease don‟t necessarily mean they will cause the 

disease. A GWAS is performed under the assumption that the identified alleles are in 

close proximity with the actual functional variants which have the causal effect. In theory, 

the effect sizes of these alleles are so small that it is hard to find the actual functional 

variants based on these alleles. In practice, researchers do rarely establish causal relations 

between these common alleles and the disease. Researchers further propose a hypothesis 

that these common alleles might be related to gene expression. However, the intersection 

set of alleles associated with gene expression and alleles associated with disease is almost 

empty (Circulli and Goldstein, 2010). Rare variants, on the contrary, are always identified 

to cause the functional effect themselves. They are expected to change amino acids and 

further influence the protein-protein interaction (Bodmer & Bonilla, 2008). 

Pritchard (2001), supports the CDRV hypothesis from a population-genetics aspect. 

Pritchard pointed out a population-level process, such as random genetic drift, will select 
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against disease related mutations. Common variations are likely to be older and hence 

have been subjected to potential selective forces over time, such that they are likely to 

have less effect on disease risk. However, rare variants are either likely to be new and 

hence have not gone through a long period of negative selection, or are rare because they 

are selected against (Schork et al., 2009). Pritchard (2001) supports his point through 

solid statistical and simulation evidence, his simulation result shows that the allele 

frequencies of variants that influence common disease are unlikely to be moderate as 

assumed in CDCV. 

 

As discussed above, although common variants have contributed a lot to understanding 

the genetic architecture of a disease, they provide limited information about the etiology 

of a disease. Their low penetrance also makes them less likely to benefit public health 

compared to rare variants. Public health practitioners implement prevention strategies, 

such as screening, based on the penetrance. As the penetrances of common variants are so 

small, it is hard to develop convincing strategies based on them. However, the 

penetrances of rare variants are normally large enough to justify preventative screening 

strategies, and thus, have more potential to influence public health (Bodmer & Bonilla, 

2008).    

 

Previous study designs and sequencing technologies limited the development of rare 

variants study. Linkage analyses, which try to identify the gene tha co-segregates with the 

disease, normally can identify alleles with very high effect size, and are helpful for 
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Mendelian disease (disease associated with only one gene, will discuss in detail later). 

GWAS use tagSNPs; although they can detect alleles with small effect size, the minor 

allele frequency needs to be relatively high, at least 5%. So rare variants are in a dilemma, 

since the effect of a single allele is not large enough to be identified through linkage 

analysis and the allele frequency is not common enough to be captured through 

genotyping in a GWAS study. (Figure 2, Manolio et al., 2009). 

 

  Figure 2. Study design for different allele frequency and effect size (odds ratio) (Manolio et al., 2009) 

However, the development of sequencing technology, especially “next generation 

sequencing” has made sequencing rare variants feasible. “Next-generation sequencing” 

technology is economical and fast; it can process millions of sequence reads in parallel 

comparing to only 96 reads by previous technology. The identification of rare variants 

will also be facilitated by the 1000 Genomes project. Instead of genotyping the tagSNPs, 

the 1000 Genomes Project is trying to build a comprehensive catalogue of variants with 

minor allele frequency greater than 1% (some variants with lower frequencies are also 

identified). The project has successfully identified more than 11 million new SNPs in 

initially low-dept coverage of 172 individuals (Manolio et al., 2009).  

2.2 Study Design 
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2.2.1 Linkage Analysis 

In the early stage of genetic research, researchers tried to identify disease genes under 

monogenic „Mendelian disease‟ through linkage analysis. “Linkage” presents when the 

co-segregation of a chromosomal region and the disease appears more than expected by 

chance. Linkage analysis is performed by comparing the likelihood of observing data 

given that the loci are linked to the likelihood of observing data given that the loci are 

unlinked. There are two types of linkage analysis: parametric linkage analysis and non-

parametric linkage analysis. The parametric linkage analysis needs specification of a 

disease model such as frequency of the allele and penetrance. The non-parametric linkage 

analysis does not need any models; it just tests whether the co-segregation deviates from 

independent assortment. Genes identified by linkage analysis are normally quite rare and 

have very large effect size. Linkage analysis can be successful under the condition that 

markers linked with the disease gene segregate with the disease in families. These 

characteristics of linkage analysis give it several limitations. First, it needs to be studied 

within families, which can make the recruitment of research subjects difficult. Also, 

parametric linkage analysis requires the disease gene to be linked with markers and 

correct specification of the penetrance model. More importantly, it is limited to 

„Mendelian disease‟ (disease caused by a single gene with high penetrance), which is not 

a proper assumption for complex disease.  Due to the nature of linkage analysis, it is very 

hard to identify the real variants that cause the complex disease (Altmuller, J., 2001). 

Although linkage analyses have achieved some success in identifying variants that 

contribute to complex disease, such as type 1 diabetes (Bennett et al., 1994), in most 



13 
 

 

cases mutations identified by linkage analysis can only explain a small fraction of the 

overall heritability of the disease (Altmuller, 2001). 

2.2.2 Association Studies 

As an alternative approach, association studies have been proposed as a powerful means 

of identifying genetic factors contributing to complex disease (Risch & Merikangas, 1996; 

Hirschorn and Daly, 2005), and have demonstrated power by successfully identifying 

alleles associated with many common diseases. For example, Need et al. have identified 

alleles and copy number variants associated with schizophrenia (Need et al., 2009). 

Unlike linkage analysis, association studies aim to find disease-predisposing alleles at the 

population level. They test whether a particular allele, genotype or haplotype will be seen 

more often than expected by chance in a disease subject. The simplest way to do this is to 

compare the frequency of alleles or genotypes of a variant between cases and controls. As 

association studies are not restricted to families, their research subjects are more 

convenient to recruit. More importantly, since association studies use unrelated cases and 

controls, they have more power than linkage analysis to identify disease associated alleles. 

Here we present characteristics of different association study designs as well as the 

advantages and disadvantages of each of them. 

2.2.2.1 Candidate Gene Association Study  

Candidate-gene association studies have identified several genes that are associated with 

common disease. Barroso et al. identified alleles associated with type 2 diabetes through 

their influence on insulin action (Hirschorn and Daly, 2005; Barroso et al., 2003). 

However, candidate gene studies are not as powerful as researchers expected. Only 
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“candidate” genes are examined in the study; however, as discussed above, common 

disease has a complex genetic architecture such that each candidate gene has limited 

effect on the disease. More importantly, candidate-gene association studies are hypothesis 

tests. The hypotheses generally come from previous linkage analysis studies or biological 

inference. The success of candidate-gene association studies is under the premise that 

these hypotheses are the right ones. Even if these hypotheses are right, and the 

hypotheses are broad enough to embrace several genes, their findings can explain a 

limited fraction of heritability.  

2.2.2.2 Genome Wide Association Study  

The completion of the Human Genome Project, the deposition of millions of SNPs into 

public database, rapid improvements in SNP genotype technology and the International 

HapMap Project have made the genome-wide association approach become feasible. A 

genome-wide association study is a hypothesis free test that normally tests 300,000 or 

more markers (SNPs, single-nucleotide polymorphisms) that are spread evenly across the 

genome (Hardy and Singleton, 2009), and looks for variations between individuals with 

and without disease. Unlike candidate-gene association studies, genome wide association 

studies are hypothesis free tests, where no “candidates” were proposed. As a result, we 

can examine a large set of genes with no need to worry about whether we made the right 

assumption about the “candidates” or not. This approach has become more and more 

popular as the genotyping technology improved and the cost of genotyping reduced 

rapidly. In summary, a genome-wide association study is a comprehensive approach to 

identify disease associated alleles, especially when we don‟t have any solid evidence 
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about the “candidate” genes (Hirschhorn and Daly, 2005). Genome-wide association 

studies have been successful; identifying common alleles associated with over 200 traits.  

 

Many study designs are available for association analyses, which can be broadly broken 

down into family-based designs and population-based studies. In this thesis, we focus on 

the population-based case-control study. Case-control design has many favorable 

characteristics in genetic association studies. Cases and controls are easier to enroll than 

family-based subjects, which can save time, energy and expenses. Also, cases and 

controls are not genetically related, which can increase the power to identify disease 

associated alleles. Besides, case-control study is a well-understood study design, due to 

its wide application in epidemiology. Finally, disease-allele frequency, penetrance, and 

population attribute risk can be estimated all through this study design (Cardon and 

Palmer, 2003).   

 

However, like other case-control studies, this type of study design assumes that the 

detected differences in allele frequencies are the real cause of the disease outcome, or 

equivalently, that there are no confounding effects. Unfortunately, this is normally not the 

truth, especially for large scale genome wide association studies. One of the most 

common types of possible confounding is caused by population stratification, which is 

discussed below. 
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2.3 Population Stratification 

Genome-wide association studies identify disease associated alleles by comparing allele 

frequencies between cases and controls. However, some allele frequencies are different 

between cases and control, and have nothing to do with the disease; population 

stratification is one of the major reasons to cause this “spurious association”. Population 

stratification is the differences of allele frequencies between cases and controls caused by 

sampling of subjects from different populations whose disease prevalence and allele 

frequencies are significantly different from each other (Price et al., 2006). It is a major 

cause of spurious differences of allele frequencies between cases and controls. There are 

several reasons that ancestry differences can lead to differences in allele frequencies. 

Each population has their unique genetic and social history. And the social events, such 

as migration, agricultural, and mating practice largely influence the genetic background 

of a population (Cardon and Palmer, 2003).   

The most frequently cited example comes from a study of the association between an 

HLA haplotype and diabetes on a Pima Indian reservation. This study tried to identify the 

association between haplotype Gm3:5,13,14 with reduced risk of non-insulin-dependent 

diabetes mellitus (NIDDM). Only 1% of full heritage American Indian population have 

Gm3:5,13,14, while 66% of Caucasian population have the haplotype. And the 

prevalence of NIDDM in American Indian is 40%, while the prevalence is 15% in 

Caucasian. In this case, both allele frequencies and disease prevalence are different in 

two populations. When the two populations are mixed together, the results show that 

there is an significant association between the haplotype and the reduced risk of NIDDM, 

the odds ratio is 0.27 with 95% CI (0.18, 0.40). However, when the analysis was 
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restricted to full-Papago Indians, this association disappeared. Another example is about 

a study trying to identify the relation between CYP3A4 variant and prostate cancer. 

Although instead of sampling from different populations, this study restricted to African-

Americans, a false positive still occurred. Before correcting for population stratification, 

the result shows a significant relation between the variation and the disease (p-

value=0.0007). However, after using genomic control (discussed in detail later) the 

significant result disappeared; the p-value is 0.254.  

 

Marchini et al. (2004) also identified population stratification‟s effect on large scale 

genetic association studies through simulation. They showed that even small amounts of 

population admixture can undermine an association study and lead to false positive 

results. These adverse effects increase as the sample size grows large (Figure 3). For the 

size of study required for many complex diseases, relatively modest levels of structure 

within a population can have serious consequences. Population structure can also lead to 

missed real associations, so it cannot safely be ignored. 

 

Figure 3. Type 1 error rate for different sample size (Marchini et al. 2004) 
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Researchers have noticed that population stratification can result in a great proportion of 

false positive association. As a result, grant applications and manuscripts are all required 

to show that population stratification issue is carefully taken care of. The concern for 

population stratification caused false positive has lead researchers to change the study 

design from association studies back to the inefficient family-based designs. However, as 

discussed above, these family based studies will cause difficulty in recruiting research 

subjects and, in general, be less powerful in identifying disease associated alleles than 

case-control studies (Cardon & Palmer, 2003). Therefore, there has been substantial work 

in trying to adjust for population stratification in case-control studies.  

2.3.1 Genomic control  

The key idea of genomic control is that, without stratification, the test statistics, Y
2
 (test 

statistics of Armitage‟s trend test) is  distributed with 1 degree of freedom under the 

null hypothesis: Y
2
~ . In the presence of population structure, instead of following a  

distribution, Y
2
 follows a λ   distribution. And the value of λ is related to population 

structure in the sample. Genomic control methods use a series of L anonymous markers 

to estimate the inflation factor, λ. One drawback of this method is that the result is 

sensitive to L, the number of genomic control markers genotyped. Marchini et al. (2004) 

showed that when L is relatively small (<100), and the sample size is large, the correction 

is not effective. In some studies, especially those with large sample size, it probability not 

realistic to genotype as many markers as needed for genomic control method to work. In 

these cases, the genomic control method will not work. Also, when L is large (>500), the 

result is overcorrection and conservative which also lead to reduced power (Marchini et 

al., 2004). Another main issue of the genomic control method is that it assumes that each 
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allele contributes the same to the population structure. However, this is normally not the 

case. Some allele frequencies vary more across different populations than others. So the 

assumption that λ is uniform and constant is not an appropriate assumption for all studies.  

2.3.2 Structure  

This method assumed that the underlying subpopulations could be identified by the allele 

frequencies at each locus, and assigns each individual to different subpopulations based 

on the information told by their allele frequencies. Individuals can be assigned to more 

than one subpopulation if their genotype shows that they are admixed (Pritchard et al., 

2000). However, when more than one subpopulation is assigned, this method will result 

in a huge computational cost, especially when analyzing genome-wide data (Price et al., 

2006).  

2.3.3 Principal component analysis  

Price et al. developed the “Eigenstrat” method to address previous limitations. Their 

software first applied principal component analysis to genotype data to get the 

“components” of the data. Then, they adjusted both genotype and phenotype by the 

“component” underlying the data and computed the test statistics.  Their results show that 

for random SNPs whose allele frequencies do not vary much between cases and controls, 

both genomic control and EIGENSTRAT can correct for inflation of type I error due to 

population stratification. But for highly differentiated SNPs, genomic control could not 

appropriately correct for this inflation, but EIGENSTRAT could. Moreover, for causal 

SNPs, genomic control loses nearly all power while EIGENSTRAT only suffers a partial 

power loss. (Price et al., 2006).  
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2.4 Statistical methods for analyzing rare variants 

Since the power of statistical methods decreases as allele frequency goes down, 

researchers developed several statistical methods to increase the power of rare variants 

studies. The central idea of these methods is to collapse the rare variants in a region 

together into a composite variable, and then test the association between the composite 

variable and the disease. The disadvantages of the collapsing method are that it combines 

the functional and nonfunctional variants together and is not sensitive to misclassification. 

Li and Leal polished this method by developing a “Combined Multivariate and 

Collapsing” (CMC) method. It collapses the rare variants in a region to several composite 

variables according to whether the variant is functional or not, and then does a multiple 

marker test. Their simulation results show that the CMC method has high power to 

identified disease associated rare variants and is sensitive to misclassification (Li and 

Leal, 2008). Madsen and Browning improved this method by giving each collapsed group 

a weight, which is based on the standard deviation of the allele frequency (Madsen and 

Browning, 2009). Price et al. (2009) have provided a method for detecting association of 

multiple variants in protein-coding genes with a quantitative or dichotomous trait. The 

idea of their method is that different genes affect the disease at different allele 

frequencies: some associate with the disease when the allele frequency is high while 

others associate with the disease at a very low frequency. So instead of arbitrarily pooling 

these alleles together, their pooling method has a variable threshold for different genes.  
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Figure 4. Simulation flow chart, using 500 Cases and 500 Controls, number of European 

vs. African=3:2 in cases as example 

Select research 
subjects 

•Randomly select 200 individuals from 10,000 European as cases

•Randomly select 250 individuals from 10,000 European as controls

•Randomly select 300 individuals from 10,000 African as cases

•Randomly select 250 individuals from 10,000 African as controls

Select Research 
Region

•Randomly define a 1000bp long region from 250,000 long haplotype, and extract this region 
from each subject

Data Cleaning

•Calculate the allele frequencies in this region

•Delete common ones/ only keep the rare variants (allele frequency≤0.01) in the dataset

•Collapse the rare variants in this region

Perform Naive 
Association Test

•Fit the data into a logistic regression using model

•Logit(Y)=β0+β1X1ij 

•Here Y=1 if cases, Y= 0 if controls

•X1=1 if rare variants exist in the region, X=0 if no rare variants in the region

Calculate Principal 
Component

•Simulate genotypes at ancestry-informative SNPs

•Calculate variance matrix

•Standardize the variance matrix

•Calculate the singular value decomposition of variance matrix

Correct for 
population 

stratification

•Fit the first two principal components in the logistic regression model

•Logit(Y)=β0+β1X1ij + β2W2ij + β3W3ij 

•Here X2 and X3 are the first two principal components 
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3.1 Simulating population specific haplotype  

The haplotypes for samples from Europe and Africa were simulated through the “COSI” 

package developed by Schaffner et al. (2005). The package was the first one to simulate 

the haplotype data with high resemblance to an empirical population according to wide 

range of criteria. Schaffner‟s simulation package is based on Hudson‟s method of 

building gene genealogies through a coalescent process (Hudson, 2002). The rationale of 

his method is that the genotype sequences of individuals can provide information about 

how closely individuals in a population are related with each other in evolution. Also, by 

building up the genealogy through these sequences we can gain the information about 

their ancestry, such as when they have the most recent common ancestor (MRCA); or if 

they were from different populations, when their ancestor migrated from one to another. 

A genealogy is composed of points that represent individuals and lines between points 

across generations that represent their parent-offspring relationship. There are several 

parameters to consider when building up a genealogy, like the mutation rate and the 

migration rate, as discussed below. Schaffner et al. (2005) took advantage of publicly 

available SNP data (dbSNP and International Hapmap Project) to calibrate these 

parameters and then used these parameters to simulate data, to make the simulated data 

consistent with empirical data on a wide range of measurements.  Here we present the 

basic idea of Hudson‟s method to build up the genealogy and how Schaffner et al. (2005) 

calibrate the parameters through the empirical data. 

3.1.1 Building the genealogy 

Hudson‟s simulation is processed by first building up the genealogy; and then adding 

mutations and other population events on the genealogy. The simulation is built up by 



24 
 

 

tracing back in time. That, the sampled generation is labeled as generation 0; their parent 

generation is labeled as generation 1; and the population t generations back referred as 

generation t. The population where the n research subjects were sampled from has a size 

N, which is large and constant across the generations. Hudson also assumes N is 

generated by sampling N times with replacement from their parent generation. Since the 

simulation was built by tracing back in time, the first step to build a genealogy tree is to 

calculate how many distinct lineages are there in generation 1.  This is equivalent to 

examining whether two individuals in generation 0 have the same parents or not in 

generation 1. As sample size n is relatively small compared to population size N, the 

probability that three or more individuals have the same parent is very small and will be 

ignored. Hudson defined the probability that two individuals have different parent as 1-

1/N. In analogy, the probability that all n samples have distinct parents in generation 1 is  

P(n)=                        (1) 

This is the probability that there are still n distinct lineages in generation 1. Hudson 

defines the event that two samples have the same parent in previous generation as 

“coalescence”, as shown before, the probability that two of n samples coalesced in the 

previous generation is 1/N. Tracing back in time, we will finally find a point at which the 

coalescent process happens. Hudson defined the time until the first coalescent event 

happens distributed as  

f(t)=   P(n)
t 
[1-P(n)]                       (2) 
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We can tell from this equation that Hudson assumes the time when the first coalescence 

happens is exponentially distributed with mean N/ . After this coalescent event 

happens, there will be n-1 distinct lineages left. Following the same principle, the time 

when the second coalescent event happens is exponentially distributed with mean 

N/ . The process of building up the genealogy ends when there is only one 

genealogy left, or equivalently, we find the common ancestor of all of our samples. 

Hudson summarized the process of building a gene tree through the time T(i), the 

generation when i distinct lineages exists. Measured in the unit of N generations, the T(i) 

is exponentially distributed with mean expected value 1/ . 

E[T(i)]=1/             (3) 

 

3.1.2 Mutation 

In Hudson‟s simulation, the number of mutations that differentiate the offspring from their 

parents follows the Poisson distribution. Under the constant rate mutation model, Hudson 

set the rate of mutation, µ, to be constant across the generations. With this property, 

Hudson calculated S, the number of mutations on the genealogy of the sample, through 

the total length of the genealogy,  

S| Ttot ~ Poisson (µ Ttot)             (4) 

Schaffner et al. set the mutation rate, µ, to be 1.5×  per base pair per generation. 

Under this Poisson model, we derive the expected value of mutations on the genealogy 

E(S), as well as the variance Var(S), in terms of Ttot. 



26 
 

 

E(S)= µE(Ttot)                 (5) 

Var(S)=µE(Ttot)+µ
2
Var(Ttot)            (6) 

 So we can derive the distribution of S once we know the distribution of Ttot which is 

simulated in the first step.  

3.1.3 Adding neutral mutations to the genealogy 

From equation 5, we can calculate the expectation of S from the expectation of Ttot, the 

total length of the genealogy.  Ttot, sum of the lengths of the branches of the genealogy, is 

equal to . Similarly, the expected value of T(i) can be calculated through 

equation 3. With these quantities, Hudson defined the expectation of S, measuring time in 

units of 2N generations as 

E(S)=   = θ              (7) 

where θ=4Nµ. N, the population size, is set to be 100,000 in the “COSI” package 

(Schaffner et al.). resulting in θ=6× . And from equation 6 and 7, var(S) is also easily 

obtained 

Var(S) = θ + θ
2

                (8) 

In order to learn the probability of getting each value of S, Hudson also defined a way to 

calculate the entire distribution of S. He started this simulation from the probability that 

S=0, the event that two sampled alleles are identical, denoted as E(F). The two alleles are 

identical if no mutations occurred since their most recent common ancestor. Hudson 

pointed out that one way to calculate this is to trace the genealogy of these two alleles 
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back, until either the most recent common ancestor (MRCA) event or a mutation event 

happens. In each generation, the probability of MRCA, denoted as , is 1/2N; and the 

probability of a mutation is 2µ.  The probability that S=0 can be calculated as given that 

either MRCA or mutation happens, the  probability that the first event is MRCA event, so 

E(F) can be expressed in following way, 

E(F) =                  (9) 

The complement of F, the probability that the first event is a mutation event, is θ/(1+θ). 

The probability that j mutations happened since the most recent common ancestor is 

P2(j)=( )
j

                  (10) 

Expanding this; Hudson further derived the probability of having j mutations while n 

lineages exists as 

Qn(j)= ( )
j               

(11)
    

 

In order to put the mutations on the entire genealogy, we also need the probability of 

having j mutations while n-1, n-2, n-3,…………1 lineages exist. Hudson defined the 

probability as 

Pn(j)=  Qn(i)      (12) 

The two parameters in this equation are θ and n. As noted before, Schaffner et al. (2005) 

set θ to be 6× , once we specified the sample size n we needed, we can get the entire 

distribution of S.  
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3.1.4 Migration 

In Hudson‟s simulation, migration is also an important way to influence the genetics of 

the population. He supposed that in each generation, the population is composed of a 

fraction m from the other subpopulation, and 1-m from the same population. For our two 

sampled alleles, the probabilities of interest are Ps (θ), the probability that they are from 

the same population; and Pd (θ), the probability that they are from different 

subpopulations. Hudson calculated the two probabilities in the same fashion as he 

calculated the distribution of number of mutations. He expected that there are three 

possible events when we trace back in time: coalescence, mutation, and migration. If the 

first event is coalescence with probability  (M is defined as 4Nm),  the probability 

that the two identical alleles are from the same population is 1. If the first event is 

mutation with probability   , the probability that they are from the same population 

is 0. If the first event is a migration, the probability that they are same is Pd (θ). In this 

way, the probability that the two identical alleles are from the same population is 

Ps (θ) = *1 + *0 + *Pd (θ)          (13) 

If two identical alleles come from different population, then the first event of these two 

alleles must be migration. The probability of migration is (M/n) /( θ+M/n), and the 

probability that they are identical is Ps(θ). As such, Hudson defined Pd (θ) as  

Pd (θ) =  Ps (θ)              (14) 

Solving the previous two equations, we get  
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Ps (θ) =                 (15) 

Pd (θ) =                (16) 

In the “COSI” package, m, is calibrated by the empirical data. In COSI‟s best fit model, 

the rate of migration from African to European is 3.2 10
-5

. 

 

 3.1.5 Recombination 

In Hudson‟s simulation, the recombination rate is uniformly distributed and is fixed in the 

entire sequence. Schaffner et al. added an additional feature to this: the recombination 

rate can be varied through the region. Schaffner et al.‟s simulation set a new 

recombination rate for every “window”, whose size is pre-specified before simulation; 

this rate follows a gamma distribution. Within each window, there are “hotspots” of 

recombination. The recombination is more frequent around these “hotspots”. The 

intensity of recombination and spacing of these hotspots are also gamma-distributed. 

 

Schaffner et al. set the mutation rate equal to 1.5×10
-8

 before calibration and maintained 

it as a constant. They set Europe split from Africa in 3500 generations ago. In 200 

generation ago, Africa experienced an agricultural event which expanded the population 

size; and Europe agricultural event happened at 350 generations. The population size 

after the agricultural event is set to be constant and equal to 100,000 for both European 

and African. Schaffner et al. (2005) gave initial values to parameters such as migration 



30 
 

 

rate, spacing of recombination hotspots, shape parameters of hotspots, fraction of 

recombination in hotspots; and then calibrated these parameters based on the empirical 

dataset. In iteration, they used these parameters to simulate haplotype data; and then 

calculated the deviation of root-mean-square (RMS) between the simulated data and the 

empirical data. They set the threshold of the deviation to be no more than 1.5 times larger 

than pure sampling deviation of empirical data. The measurements being compared are 1) 

allele frequency distributions, 2) the probability of being an ancestor allele given allele 

frequency, 3) genetic distance 4) linkage disequilibrium and 5) the total distribution of 

heterozygosity. 

 

When simulating haplotype data with COSI package (Schaffner et al., 2005), we use the 

parameters in their “best fit model”. According to Schaffner et al. (2005), the simulated 

results have a high resemblance with empirical population. The root mean square error 

between the simulated value and the empirical value was 1.35, averaging over all 5 

measurements as discussed above. This is the only package so far that can provide 

simulated sequence with high resemblance with empirical data from a wide range of 

criteria. We simulated 10,000 (n=10,000) haplotypes for European and African, assuming 

that the samples were drawn from a 100,000 (N=100,000) large population. In the best fit 

model, the migration rate from African to European is 3.2 10
-5

; the recombination 

hotspot spacing is 8500bp long with a spacing shape parameter equals to 0.35; and 88% 

of the region in hotspots experienced a recombination.  

3.2 Simulating a case-control study           
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In this thesis, the exposures of interest are genotypes in the sequenced region and the 

outcome of interest is disease status. We simulate case-control studies with three different 

sample sizes:  

100 cases/100 controls, 500 cases/500 controls, 1000 cases/1000 controls 

We set the number of European versus African individuals to be 1:1 in controls and hold 

this constant for all studies. However, we set the proportion of European and African 

individuals varied in cases according to their disease prevalence. We simulate across 

cases in four different proportions: 

50% European/50% African, 40% European/60% African, 25% European/75% African, 10% 

European/90% African 

To summarize, we have 12 study designs in total as listed in the following table 

100 Cases/100 Controls 

European: African=1:1 in 

cases  

100 Cases/100 Controls 

European: African=1:1.5 

in cases 

100 Cases/100 Controls 

European: African=1:3 in 

cases 

100 Cases/100 Controls 

European: African=1:9 in 

cases 

500 Cases/500 Controls 

European: African=1:1 in 

cases 

500 Cases/500 Controls 

European: African=1:1.5 

in cases 

500 Cases/500 Controls 

European: African=1:3 in 

cases 

500 Cases/500 Controls 

European: African=1:9 in 

cases 

1000 Cases/ 

1000 Controls 

European: African=1:1 in 

cases 

1000 Cases/ 

1000 Controls 

European: African=1:1.5 

in cases 

1000 Cases/ 

1000 Controls 

European: African=1:3 in 

cases 

1000 Cases/               

1000 Controls 

European: African=1:9 in 

cases 

 

Table 1. Study designs for simulating case-control study 



32 
 

 

For each study design, we randomly select haplotypes for case and control individuals 

from European and African population in the proportions described above and use two 

haplotypes to form a subject‟s genotype.   

3.3 Simulating GWAS data 

Principal component analysis normally needs several thousand SNPs to infer information 

about population stratification; the haplotype generated by COSI (Schaffner et al., 2005) 

is not long enough to fit the requirement. We use the publicly available dataset provided 

by HapMap project to simulate the genome wide data. The HapMap Project genotyped 

over 3.1 million markers and provide allele frequencies for each of them for both 

European and Yoruba population. We screened the markers to leave only those that 

provide information on ancestry. The prune is based on variance inflation factor (VIF) 

using the “Plink” package (Purcell et al., 2007). We set the VIF threshold to be 0.05, and 

35,000 SNPs left after the prune. We generated genome wide data under a binomial 

model for each allele, with the probability of success equals to allele frequencies 

provided by Hapmap project.  

3.4 Methods to Calculate Principal Components  

Z=  

Here we use matrix Z to represent genotype data of our study subjects, containing both 

cases and controls. Each row represents the genotype of the research subject m, and each 

column represents the nth genotype of all m subjects. Zij=0,1,2 according to the genotype 

simulated in the first step. Let V denotes the variance covariance matrix of Z. 
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In this thesis, we use principal components analysis to identify the underlying variability 

within the matrix Z. Principal component analysis is one of the oldest and popular 

methods used in multivariate analysis to identify the variation among the variables. Since 

the data are simulated under the scenario that these SNPs are not associated with the 

disease, the only difference between cases and controls in our simulations is their 

population structure (i.e. they are composed by different proportion of Europeans and 

Africans). In this case, the majority of the variation in Z is caused by population structure. 

Our goal is to investigate whether principal component analysis has enough power to 

identify the variation caused by population structure. In this case we can avoid the 

inflated type 1 error rate by including principal components in our model. The basic idea 

of principal component analysis is to summarize the variation of the data as a sequence of 

uncorrelated “components”. These components are linear combinations of the variables 

in the original dataset. In our Z matrix, we define each of n column as zi, where i=1,2,,,,n. 

zi contains the information of the ith SNPs for all m subjects. So the first component is 

calculated as  

w1=a11z1+a12z2+………..+a1nzn   (17) 

denoted as w1=a1  Z. These components are ordered by their ability to summarize the 

variation of X. So, the first component, w1, will account for as much as possible of the 

variation in the original data; the second component, w2, will account for as much as 

possible of the remaining variation and similar fashion for other components. The 

calculation of ais are under the restriction that  

ai‟ai=1 
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and  

ai‟ aj=0 

where i j, and i,j<n. The challenge is how to obtain ai. Note that the variance of y1 can 

be expressed as  

Var(w1)=Var( )= Va1 

Then, a1 is the engienvector corresponding to the largest eigenvalue of V, a2 corresponds 

to the second largest eigenvalue of V, and so on. So the process of calculating principal 

components is equivalent to calculating the eigenvector of the variance covariance matrix 

V. In this thesis, we use singular value decomposition (SVD) to get the principal 

components. The singular value decomposition method decomposes the matrix V as  

V= W  

and the left singular vector W, is a m×m matrix containing the eigenvector of VV
T
. So 

the columns of W are ais. Singular value decomposition method requires the matrix V to 

be standardized. So after we get the variance covariance matrix V, we first subtract the 

column mean from each column, and divide each column by its standard deviation. Now 

V is an m×n dimensional matrix, with each column mean equal to 0 and each column 

variance equal to 1. As there are only two populations in the dataset, we only need the 

first two components, i.e. the first two columns of W, denoted as W1,W2. 

3.5 Testing for Association Between Rare Variants and Disease 
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The outcome of interest in this study is disease/non-disease, which is a binary variable. 

We use logistic regression to summarize characteristics of this response variable. Logistic 

regression is the most important model for categorical data and is widely used in genetics 

studies. We model the the probability of subject j having the disease Yj as a function of 

the genotypes in the sequenced region. We model 

Logit(Yj)=Log ( )=β0+β1X1j      (18) 

 where X1j is a composite variable that collapse the SNPs in this region (1000bp long) 

together, so that if there are rare variants (rare variants are defined as alleles with minor 

allele frequency smaller than 0.01) in this region, regardless of how many, then X1j=1, 

otherwise X1j=0. 

 

When we include principal components to adjust for population stratification, we model 

the outcome as: 

Logit(Y)=Log ( )=β0+β1X1j + β2W2j + β3W3j (19) 

Here, W2 and W3 are the first two principal components. In both models, we define X as 

a binary variable for genotype. Under models (18) and (19), if the p-value for β1 is 

smaller than 0.05, then the variants are considered to be significantly associated with the 

disease. However, we generate the data based on the assumption that the variation 

doesn‟t cause the disease, a p-value smaller than 0.05 is actually a false positive. We do 

each simulation 5000 times, and count how many times we observe a false positive result. 
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As discussed above, with the large sample sizes needed for association studies, even a 

mild mixture of subpopulations can lead to a substantially inflated false positive rate. 

Here we present results to answer two questions regarding population stratification‟s 

effect on association studies involving rare variants: 1) whether or not population 

structure can lead to inflated false positive rate in studies of rare variants, and 2) whether 

principal components analysis, a widely used correction method for common variants, is 

powerful enough to correct for population structure in rare variants studies.   

 

4.1 Simulated study 

Our simulated case-control studies were carried out in two steps under the null hypothesis 

of no genetic effect on disease status. We first used the COSI package (see Methods) to 

generate the genotype data at 25,000 SNPs for 10,000 Europeans and 10,000 Africans. 

Then we randomly assigned the individuals in European and African population to case 

or control groups according to disease prevalence in each subpopulation. When 

simulating sequencing data with the “COSI” package, we used the parameters in their 

“best fit model”. According to Schaffner et al., the simulated results highly resemble data 

from an empirical population. The root mean square error between the simulated value 

and the empirical value was 1.35, averaging over all measurements (see Methods for 

details). This is the only package so far that can provide simulated sequence with high 

similarity to empirical data based on a wide range of criteria. 

 

4.2 False positive rate 
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We first simulated the study of 500 cases and 500 controls (second row of table 2), with 

60 percent of cases and 50 percent of controls from the African population, and 40 

percent of cases and 50 percent of controls from the European population. For each time 

of simulation, we randomly selected a region of 1000bp long and collapsed the rare 

variants in the region (see Methods for details) into a single composite exposure variable. 

Then we fit the exposure variable and outcome variable into a logistic regression model, 

and calculated how many times the correlation coefficient of the exposure variable had a 

p-value smaller than 0.05. Again, the study was simulated under the assumption of no 

genetic effects on the disease status, so any p-value smaller than 0.05 was considered as 

false positive. After 5000 simulations, the false positive rate was 0.0632 (95% 

Confidence Interval 0.0565, 0.0699). This result shows that population stratification can 

lead to inflated false positive rate in the studies of rare variants.  

 

As a comparison; we also simulated a study free of stratification (50 percent of cases and 

50 percent of controls drawn from the African population, and the same for the European 

population). The false positive rate was 0.047 (95% CI 0.0411, 0.0529), which means 

that correctly matching the population structure in cases and controls for a rare variants 

study can avoid inflated false positive rates. To study the stratification issue under a more 

extreme case, we then simulated the study with the ratio of Africans versus Europeans 

equal to 3:1 in cases and 1:1 in controls. The false positive rate rises up to 0.174 (95%CI 

0.163, 0.185) in this case. Finally, the false positive rate was 0.352 (95%CI 0.339, 0.365) 

when we simulated 90 percent of cases from African and 10 percent of cases from 

European, but 50 percent from each population for controls. In these cases, population 
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stratification caused a highly inflated false positive rate that increased as the population 

structure became more extreme. At the sample size of 500 cases and 500 controls, even a 

small fraction of structure can have a large effect.   

 

We also simulated the study with 100 caes/100 controls and 1000 cases/1000 controls. If 

we read Table 2 by column, it is clear that the false positive rate increases as sample size 

increases. When the sample size is small (100 cases/100 controls) the population 

stratification will not be a problem until the ratio of African: European cases reaches 3:1 

(first row, third column of Table 1). But when the sample size is large, even a small 

fraction of population structure cannot be safely ignored (third row, second column of 

Table 2).  This is because the false positive rate is actually the power to detect the real 

difference between cases and controls, which is population structure. It is reasonable that 

as the population size increases, or population structure becomes more different between 

cases and controls, the power increases.  

 

In some situations, when recruiting the sample, researchers know the races of the subjects. 

We next performed simulations to see whether adding race as a covariate could 

adequately solve the inflated false positive rate problem. We defined a covariate X2, and 

if the individual was from the African population, X2=1; if the individual was from the 

European population then X2=0. We simulated the study under the same sample size and 

disease prevalence as before, and the results of 5000 simulations are shown in Table 3. 

We can tell that by adding an indicator variable of race in the logistic regression model, 

we can adequately control for population structure and reduce the false positive rate to an 
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acceptable level. This suggests that, if researchers are able to record research subjects‟ 

race in practice, they can then use it as a covariate when calculating odds ratios with 

logistic regression models.  

 

4.3 Correcting for population stratification using principal components 

Because genome-wide data is necessary to control for population structure with principal 

component analysis, we simulated based on publicly available HapMap data to infer 

principal components. There are total 403,0562 SNPs in both European and African 

population in the HapMap dataset. We used PLINK to prune the data by deleting SNPs 

that are in high linkage disequilibrium with each other. We used the VIF (Variance 

Inflation Factor) as a threshold by setting the r
2 

to be less than 0.5, and had 35,000 SNPs 

left after pruning. We use allele frequencies of these SNPs to generate genome wide data. 

We assume each SNP of our simulated data is binomial distributed with probability of 

success equals to allele frequency of that SNP provided by Hapmap. We then used the 

singular value decomposition method to get the principal components and included the 

first two components as covariates in the logistic regression model. We simulated the 

study under the same scenario as before; the results are shown in Table 4. We can see that 

in a study with 500 cases/500 controls, principal component analysis performs very well. 

It still behaves well even when the study has a large sample size and the population 

structure is extreme (right corner of Table 4). Although it is somewhat conservative in a 

smaller study with 100 cases/100 controls, the overall performance is very good and the 

false positive rate is around 0.05. This result suggests that principal component analysis 

is adequate to correct for population stratification in a rare variants association study. 
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50%African  vs. 

50%European  

in cases 

60%African vs. 

40%European  

in cases 

75%African vs. 

25%European  

in cases 

90%African vs. 

10% European  

in cases 

100case/100control 

0.0308 

(0.0260,0.0356) 

0.0384 

(0.0331,0.437) 

0.0694 

(0.0624,0.764) 

0.150 

(0.140,0.159) 

500case/500control 

0.0470  

(0.0411,0.0529) 

0.0632 

(0.0565,0.0699) 

0.174              

(0.163, 0.185) 

0.352           

(0.339, 0.365) 

1000case/1000control 

0.0612 

(0.0546,0.0678) 

0.0920 

(0.0839,0.100) 

0.242 

(0.230,0.254) 

0.464 

(0.450,0.478) 

 

Table 2. Type 1 Error Rate before Correction 

 

 

 

 

 

50%African  vs. 

50%European  

in cases 

60%African vs. 

40%European  

in cases 

75%African vs. 

25%European  

in cases 

90%African vs. 

10% European  

in cases 

100case/100control 

0.0328 

(0.0279,0.0377) 

0.0320 

(0.0271,0.0369) 

0.0332 

(0.0282,0.0382) 

0.0350 

(0.0299,0.0401) 

500case/500control 

0.0500  

(0.0439,0.0560) 

0.0556 

(0.492,0.619) 

0.0506 

(0.445,0.0567) 

0.0466 

(0.0408,0.0524) 

1000case/1000control 

0.0518 

(0.0457,0.0579) 

0.0508 

(0.0447,0.0569) 

0.0440 

(0.0383,0.0497) 

0.0480 

(0.0421,0.0539) 

 

Table 3. Type 1 Error Rate Corrected by Self-Reported Race 
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50%African  vs. 

50%European  

in cases 

60%African vs. 

40%European  

in cases 

75%African vs. 

25%European  

in cases 

90%African vs. 

10% European  

in cases 

100case/100control 

0.0346 

(0.0295,0.0397) 

0.0330 

(0.0280,0.0379) 

0.0336 

(0.0286,0.0386) 

0.0346 

(0.0295,0.0397) 

500case/500control 

0.0490 

(0.0430,0.0549) 

0.0470 

(0.0411,0.0529) 

0.0539 

(0.0477,0.0602) 

0.0544 

(0.0481,0.0607) 

1000case/1000control 

0.0626 

(0.0559,0.0693) 

0.0694 

(0.0624,0.0764) 

0.0486 

(0.0426,0.0546) 

0.0608 

(0.0542,0.0674) 

 

Table 4. Type 1 Error Rate Corrected by Principal Components 
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Chapter V Conclusions, Implications, and 

Recommendations 
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Human genome research, which aims to find the genetic etiology of the disease, is having 

a more and more profound influence on public health. The focus of recent genetic 

association studies is shifting from common variants to rare variants. Compared to 

common variants, rare variants can have much larger effect sizes, and can explain a larger 

percentage of heritability of the disease.  Because of this, rare variant studies are 

meaningful for public health and can provide more valid background when making 

prevention strategies. As rare variants data have their own characteristics, statistical 

methods used for analyzing common variants may not be exactly suitable for rare 

variants. As such, developing statistical methods both powerful enough to identify real 

associations and conservative enough to avoid false positive are urgently needed for rare 

variants studies. Previous researchers have successfully developed statistical methods to 

meet the challenges of rare variants data. Although these methods improved the power, 

they all ignore a major cause of false positives---population stratification.  

 

Population stratification is a widely known cause of false positives in common variants 

studies. If population structure is not adequately addressed, genetic variants identified by 

the study with population structure are very likely not genuinely associated with the 

disease.  Prevention strategies, such as screening based on these “superficially” disease 

associated variants instead of real causal ones is a waste of both money and time. In this 

thesis, we examined the extent of inflated false positive rate under a variety of 

population-specific disease prevalences and sample sizes. We also applied the principal 

component method to see whether it can correct for population structure.  



45 
 

 

We simulated the study with different sample size and population structure according to a 

series of disease prevalence for each population, and found that population stratification 

can have a significant influence on rare variants studies. The false positive rate increases 

dramatically as sample size increase and population structure become extreme. When 

sample size reaches 1000 cases/1000 controls, even a small fraction of mixture will lead 

to highly inflated false positive rate. Current genome wide studies normally recruit 

several thousand subjects, which means researchers need to carefully match case and 

control ancestry, in order of avoid false positive caused by population structure.  

 

For large scale studies, it may not be practical to recruit subjects from a single population, 

so we investigated correction for population structure in a rare variants association study. 

We applied principal component analysis to control for population structure. We inferred 

the first two principal components of the data, and added them as covariates in a logistic 

regression model. Our results showed that the principal component method performed 

very well even for highly structured data. The false positive rate remained around 0.05 in 

our simulation. These results suggest that researchers can use this method to correct for 

population structure in association studies involving collapsing of rare variants. 

One minor disadvantage of the principal components method is that it needs several 

thousand SNPs to infer the components. This characteristic makes it unsuitable for 

studies that only genotype a few markers. Further methodological research should 

investigate methods that do not depend on the availability of a number of SNPs.  As the 

development of sequencing technology makes detection of rare variants become more 
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accurate and cost effective, with the help of powerful statistical methods, we can expect 

rare variants will contribute more in understanding disease etiology. 
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