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Abstract

Simultaneous Dimensionality Reduction for Extracting Useful Representations of
Large Empirical Multimodal Datasets

By Eslam Abdelaleem

The quest for simplification in physics drives the exploration of concise mathematical
representations for complex systems. This Dissertation focuses on the concept of
dimensionality reduction as a means to obtain low-dimensional descriptions from
high-dimensional data, facilitating comprehension and analysis. We address the
challenges posed by real-world data that defy conventional assumptions, such as the
complex interactions within neural systems or high-dimensional dynamical systems.
Leveraging insights from both theoretical physics and machine learning, this work
unifies diverse dimensionality reduction methods under a comprehensive framework,
the Deep Variational Multivariate Information Bottleneck. This framework enables
the design of tailored reduction algorithms based on specific research questions and
data characteristics. We explore and assert the efficacy of simultaneous dimensionality
reduction approaches over their independent reduction counterparts, demonstrating
their superiority in capturing covariation between multiple modalities, while requiring
less data. We also introduced novel techniques, such as the Deep Variational Symmetric
Information Bottleneck, for general nonlinear simultaneous dimensionality reduction.
We show that the same principle of simultaneous reduction is the key to efficient
and precise estimation of mutual information, a fundamental measure of statistical
dependencies. We show that our new method is able to discover the coordinates of
high dimensional observations of dynamical systems. Through analytical investigations
and empirical validations, we shed light on the intricacies of dimensionality reduction
methods, paving the way for enhanced data analysis across various domains. We
underscore the potential of these methodologies to extract meaningful insights from
complex datasets, driving advancements in fundamental research and applied sciences.
As these methods evolve and find broader applications, they promise to deepen our
understanding of complex systems and inform more effective experimental design and
data analysis strategies.
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information is spread across 32 or more dimensions. Conversely, the

concatenated critic shows robustness, with a noticeable decline in

performance only at KZ ∼ 128 dimensions. . . . . . . . . . . . . . . . 110

4.5 Samples from Noisy MNIST data set [2]. The data set contains

∼ 56k training and ∼ 7k test digit pair, X and Y . In each pair, the

same digit (but its two different instances) are corrupted by scaling /

rotation, X, and by background noise, Y . . . . . . . . . . . . . . . . . 114



4.6 Performance of NN-based methods for MI estimation. An

extension to Fig. 4.1. Where we used a common “staircase” protocol for

exploring the estimation for different MI values. Here MI jumps after

every 2000 steps of training, with every step consisting of a batch of 128

samples. The maximum information is 1 nat in panel (A), and 10 nats in

panels (B) and (C). We sample from correlated Gaussian distributions

with KX = KY = 10 and choose the correlation coefficients that result

in the needed MI. All panels show the true information, estimates

IInfoNCE, IJS [110], INWJ [109], IDV [43], ISMILE (τ = 5, τ = ∞) [136],

IMINE (α = 0.1, α = 0.5, α = 0.9) [17] with a concatenated critic (with

2 hidden layers, each with 256 neurons), and the MI estimate from

the empirical correlation matrix (denoted as Direct calculation). The

correlation estimate uses data from all of the steps preceding the current

one for a given MI value. With just one step, the correlation-based MI

estimate is hard to distinguish from the true MI. For NN methods, we

show their value for an average smoothed over 100 steps. (A) shows

that, when the true MI is small, all methods work well (except JS).

When MI is high, (B), correlation-based estimation still works, while

some NN methods estimates are close to the correct value (MINE

(α = 0.9) and SMILE (τ = ∞)), other methods degrade: DV, MINE

(α = 0.1, α = 0.5) overshoots with an extremely large variance. SMILE

(τ = 5)) overestimates and has a large variance. JS underestimates,

and NWJ underestimates with a large variance, and InfoNCE saturates

at ln 128 nats (logarithm of the batch size). In (C) we add a cubic

nonlinearity to the data (see text). Now correlation-based method, non-

surprisingly, underestimates MI. However, the effect of the nonlinearity

on NN methods is weaker (except on JS which degrades greatly). . . 115



5.1 Individual frames from a physical single pendulum’s motion. The

dataset and more information can be found in [35]. Each image rep-

resents a frame captured during the pendulum’s real motion. The

sampling rate is 60 Hz, and each frame is 28 × 28 pixels, with a total

of 60 frames per experiment. Each experiment has different initial

conditions, with a total of 1200 experiments. The pendulum is of mass

of 1 kg, and a length of 0.5 m. . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Phase space portraits of a physical pendulum for ω vs θ. The left

subplot shows the exact phase space calculated analytically from the

differential equations of a physical pendulum with the same properties

as the pendulum in Fig. 5.1, with different initial conditions, then

wrapped between −π and π. Each trajectory is for a new experiment

with different initial conditions, and the color scheme is arbitrary. The

middle subplot is for the actual physical pendulum with data obtained

from [35] and shown in Fig. 5.1, where the physical quantities θ and ω

are obtained separately from the videos by different analysis, in which

the angles and their derivatives are calculated by tracking the pendulum

using computer vision tools, as described in [35]. The right subplot

shows the same data but in polar coordinates. The yellow star is the

stable fixed point, while the red circle is the unstable one. . . . . . . 123



5.3 Left: Embeddings ZX in 2D colored by θ. The gradient of angles within

the manifold along the “angular” direction is clearly visible, with points

at 0 and 2π connected, indicating a continuous representation. Middle:

Embeddings ZX in 2D colored by ω. A gradient along the “second”

dimension of the manifold is observed, indicating recovery of the angular

velocity ω. Right: The same embeddings, but colored as individual

trajectories. We observe that these embeddings represent the phase

space of the pendulum in polar coordinates, as shown in Fig. 5.2, subject

to an arbitrary rotation in θ and a shift in ω. The embeddings are results

of training a simple implementation of 5.2 with frames of experiments

of single physical pendulum obtained from [35], the I(ZX ;ZY ) term

is trained as part of DVSIB with SMILE (τ = 5) estimator with a

concatenated critic (the networks architecture is described in detail in

SI 5.4.5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



5.4 Left: Embeddings ZX in 3D colored by θ. The gradient of angles within

the manifold along the “angular” direction is visible, with points at

0 and 2π connected, indicating a continuous representation. Middle:

Embeddings ZX in 3D colored by ω. A gradient along the “second”

dimension of the manifold is observed, indicating recovery of the angular

velocity ω, albeit with a twist near the unstable fixed point. Right: The

same embeddings, but colored as individual trajectories. We observe

that these embeddings represent closed trajectories around the stable

fixed point, albeit with an ambiguity near the unstable one. Different

training parameters (different number of neurons and hidden layers in

the critic) could lead to different embeddings, some of which are shown

in the SI Fig. 5.4.5.2. The embeddings are results of training a simple

implementation of Eq. 5.2 with frames of experiments of single physical

pendulum obtained from [35], the I(ZX ;ZY ) term is trained as part of

DVSIB with SMILE (τ = 5) estimator with a concatenated critic (the

networks architecture is described in SI 5.4.5.1). . . . . . . . . . . . . 127
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5.5 Information between embeddings of the past and the future for the

pendulum dataset, I(ZX ;ZY ), during the training. The training curve

evaluates a subset of the frames used during the training (100 experi-

ments out of 1000 used for training, each experiment having 60 frames)

and another subset for the test that was not seen during the training

(100 other experiments with 60 frames each). The training and test

curves are almost on top of each other. We notice fluctuations in

the training that decrease the amount of information severely. These

fluctuations are often observed in the training embeddings, as seen

in Fig. 5.6 for epoch 127, where the embedding changes significantly,

likely indicating an optimizer-related phenomenon (often called loss

spikes1 [169, 165]) that the training encountered. . . . . . . . . . . . 128

5.6 Embeddings of 100 experiments evaluated at specific training epochs.

We observe the evolution of the embeddings from a straight line to

the final structure obtained at the end. Notably, after 100 epochs, the

training becomes relatively stable, as also reflected in Fig. 5.5, with

fluctuations that can cause the embeddings to change within their space,

as shown in epoch 127, for example. . . . . . . . . . . . . . . . . . . . 129

5.7 Embeddings of training experiments evaluated at the 200th training

epoch for different parameters of learning rate for the optimizer, β for

the DVSIB loss, number of hidden layers, and number of neurons in

those hidden layers. We observe different behaviors, suggesting the

need for a careful training. We can see that all of them developed some

form of confined manifold. This manifold is regular in some situations

and irregular in others. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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Chapter 1

Introduction: From Complexity to

Sufficient Simplicity

We, physicists, are in a persistent search for simplification. We aim to describe

complex systems using succinct equations or simplified representations. We are drawn

to the notion that a simple equation, with a limited set of variables or “features”,

can faithfully replicate the behavior of seemingly complicated physical systems. Con-

sider, for instance, the modeling of spin arrangements in a lattice by their collective

magnetization or the characterization of an Avogadro’s number of gas particles using

coarse-grained variables, such as pressure, volume, and temperature, as used in the

ideal gas law. These simplified representations are usually more intuitive, useful

(in the sense that they offer predictions, limits for the interesting cases, etc.), and

analytically tractable (at least we try), albeit underpinned by a series of implicit

assumptions. Assumptions may involve operating within the thermodynamic limit

with an infinite number of homogeneous constituents (as in infinite spin lattices or

different statistical ensembles), or navigating simpler few-body problems (where ‘few’

typically refers to 1 or 2, general three-body problems lack closed-form solutions in

Newtonian mechanics, for example). We note that the complexity of a description
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depends on its representation (the choice of the coordinates), and some coordinates are

considered ‘natural’ because they lead to particularly simple descriptions (for example

solving spherically symmetrical problems in spherical coordinates versus Cartesian co-

ordinates). We often presume the existence of these ‘natural’ coordinates, either based

on the physical observables of the problem or established from first principles, such as

the natural association of pressure and temperature with measurable phenomena in

the ideal gas law. However, the complexity of other real-world problems surpasses

these idealizations. Take, for instance, a dataset obtained from recording the activity

of a population of neurons (the information processing cells in the brain). When we

try to model such systems, we are faced with multiple problems that challenge some

of the common assumptions. For instance, the number of recorded state variables

in these neurons is neither a few (so that we can model each neuron in biophysical

detail), nor do we have an infinite number of uniform features that resemble the

thermodynamic limit. Additionally, we do not have an infinite number of observations

to statistically quantify all interactions of features among themselves. Moreover, the

absence of locality adds more complexity to the situation (in the brain, neurons can

be connected by long axons, so that there are no nearest neighbors interactions as

in the Ising model, for example). Further, basic symmetries assumed in physical

systems are not strictly preserved in the brain — the brain is neither rotationally

nor translationally invariant [51]. In addition, dynamics in the brain, and even in

each neuron, have multiple interacting temporal scales [63, 106]. For example, the

same neuron exhibits ms scale precision during emission neural action potentials [88],

but synaptic plasticity takes minutes, hours, or even years [4, 170, 135]). Simply put,

there are no well-developed theoretical tools to produce succinct, interpretable mathe-

matical descriptions of systems that violate these assumptions, commonly assumed in

theoretical physics approaches. Most methods rely on the intuition of the researcher

to propose a description of the system and then verify if it is useful in predicting the
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outcomes of new experiments. The cycle rarely converges to quantitative agreement

between models and experiments, as we have grown to expect in more traditional areas

of physics. Instead of relying solely on the scientist’s intuition, an alternative approach

is to leverage advances in statistics and machine learning to discover the optimal

low-dimensional descriptions of experimental data for specific scientific questions. This

is achieved through various methods of dimensionality reduction (DR), where one finds

the optimal low-dimensional representations for a specific objective via optimization

over certain classes of possible low-dimensional description space.

Such DR may be interpreted in two different languages, which may seem disparate

in some contexts yet perfectly aligned in others. First is the language of theoretical

physics, in which the Renormalization Group (RG) is the canonical example of

dimensionality reduction [160]. RG is an iterative coarse-graining procedure designed

to derive mathematical descriptions of physics problems characterized by multiple

length scales. Its primary objective is to extract relevant features—and the laws of

their interactions—of a physical system for describing phenomena at large length

scales. For this, RG integrates out degrees of freedom at short length scales recursively,

while keeping track of the effect these removed degrees of freedom have on the

interactions among the ones that remain. Through this process, the relevant operators,

the important features, gain prominence, while irrelevant operators start to have

progressively smaller effects on the system’s physical properties at large scales. Note

that RG in physics is usually applied to models of complex systems, and applications

directly to data are still uncommon [104, 90, 26]. The other language for DR comes

from statistics, machine learning (ML), and computer science, where it is formalized

as minimizing a loss function that promotes a succinct description of data directly.

Here one proceeds as follows. First one postulates a measure of complexity of the

description, which could be counting variables, measuring their variance, entropy, or a

variety of other approaches. Second, one defines a measure of quality of a description
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of data, which is typically some measure of the ability to reconstruct or preserve the

desired data features. Ultimately, most DR methods then are formulated by combining

both measures into a single loss function, with opposite signs, balancing them against

each other. Optimizing the loss function entails finding either the best compression

with a fixed quality, or the highest quality at a fixed compression level.

The earliest statistical algorithm formulated in this language is probably the

Principal Components Analysis (PCA) [75]. It works by finding the rotation matrix

that makes the covariance matrix of the system diagonal. In such a rotated basis, the

new orthogonal features of the system would be arranged in descending order in terms

of their explained variance (that is, their contribution to the quality of reconstruction),

with the hope that only a few of those dimensions (strong compression) would be able

to capture most of the variance of the original system. These preserved dimensions

would then be called the latent features of the system. More recently with the

advances in ML, neural network-based methods, such as autoencoders [68] and their

variational counterparts [87, 66], have become the state of the art in DR. Because of the

neural networks’ ability to approximate any continuous functions, such algorithms can

search for nonlinear latent features that can minimize the loss function and describe

the system better than linear methods, such as PCA. However, the simplicity and

interpretability of PCA still make it a go-to method, even with all the recent advances

in machine learning. Crucially, within the ML language, interpretability (or the lack

of it) of latent features that emerge from nonlinear DR is a significant concern. This

is especially true for neural network-based methods, where interpretability is almost

nonexistent.

The similarity between the two languages is intriguing. Indeed, what the physicists

call relevant operators are in some situations what the statisticians call latent features.

Correspondingly, there’s a body of literature that explores those mappings [103, 26],

which can be exact in some scenarios. The biggest distinctions between the two are:
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(i) largely model-based approach of RG methods vs. data-driven structure of ML

methods, (ii) explicit use of physical symmetries in RG approaches, which is only

now being incorporated into ML methods, and (iii) deep theoretical justification,

understanding, and interpretability of RG and its findings as opposed to ad hoc design

and success and poor interpretability of ML methods. We hope that this dissertation

will make a dent in the last point, providing better theoretical underpinnings behind

some ML-based DR methods.

By obtaining the latent features of the system and operating within this constructed

low-dimensional space, we simplify our description of what initially appears to be

a complex problem with many variables. This may make it easier to adequately

sample and potentially model the system. The assumption that systems have latent

low-dimensional descriptions is pervasive across various natural and social sciences

fields, and applying DR methods to the analyzed data is sometimes the standard first

step in any analysis in these fields. For example, in the analysis of neural activity

[114, 139, 150, 140], behavior [140, 108, 150, 92], complex dynamical systems [40, 35],

or even in seemingly very different fields, such as economics [128, 59, 48, 13] and

systems management [57, 55], the assumption of utilizing a low-dimensional description

for a seemingly high-dimensional system is usually the default choice. Under which

conditions such systems have low dimensional representations is a poorly understood

— and rarely studied — question. This, however, typically does not stand in the way

of DR methods being used, useful, and often successful in these fields. For example, it

is standard to study the activity of an animal brain by first performing some form of

PCA on it to obtain a low-dimensional description of the neural activity [114], and

then to use it to predict some measured behavior (usually, the number of principal

components preserved is of order 10). In some cases, latent variables can be interpreted.

For example, in economics, it is common to assume the existence of common latent

features among the observed prices (certainly an assumption, with weak theoretical
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justification [83]). However, these latent features can then be interpreted as larger

scale market indicators, such as the total market dynamics, inflation, or sector-specific

indicators, etc. [49, 13, 59, 48].

Notably, when one talks about DR—including in the examples above—one typically

reduces the dimensionality of a single large-dimensional set of variables. For example,

in RG approaches, one combines microscopic spins into magnetization or the velocity

of particles into the average velocity of a fluid in a mesoscopic volume. Similarly,

in ML approaches to scientific data, one typically compresses data modalities one

at a time. For example, in experiments on neural control of motor behavior, one

separately finds a low-dimensional description of the neural activity and another

low dimensional description of the behavior. However, while this might be sufficient

to describe the system for some types of questions, it is not always enough. For

example, in the neural control of behavior example, recording the neural activity

without accounting for the resulting behavior makes it challenging to ensure that all

the activity preserved during DR is truly relevant to the observed behavior, or that all

the behavioral sequences identified by the DR are controlled neurally. Indeed, even a

relatively simple organism like the Drosophila melanogaster fruit fly possesses hundreds

of thousands of neurons across various connected brain regions [167] and exhibits

numerous stereotyped behaviors [19], which change depending on the environment.

Consequently, the same neural activity may result in different behaviors, and vice

versa. Some neural activity is just internal signal processing and is not behaviorally

relevant, while some behavior is purely a mechanical response to the environment and

not neurally controlled.

These types of problems, involving dimensionality reduction in more than one set

of qualitatively different variables, which in the ML language are termed multiple

views or modalities, present a unique set of additional advantages and challenges in

a field known as multiview or multimodal learning. Combining multiple sources of
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observations in the analysis enables a more detailed and relevant description of the

system, in the sense that it disentangles dependencies among the sources. In the

example above, one can find patterns of neural activity that predict behavior, as well as

stereotypical behaviors that seem to be neurally controlled. However, with the benefits

of multimodality, where each modality is often high-dimensional in its own right, the

appropriate DR methods must necessarily become more complex, acknowledging the

statistical structure of the data. For a single modality, DR is relatively straightforward:

we need to preserve a quality of the description, while reducing its size. However,

even in the simplest multimodal situation, where we have only two modalities1, it is

not immediately clear how to measure both the quality of the compression and the

strength of the compression during DR. That is, one does not know which statistics of

the two variables one needs to preserve, and the outcome of DR certainly depends

on this choice. One prevalent approach in the literature boils down the multivariate

approach to two univariate ones: one independently reduces the dimensionality of

both modalities and subsequently seeks correlations between the low-dimensional

descriptions. The rationale behind this approach is that, naively, it may require fewer

samples2 and is easier to implement3, with the hope that the most relevant dimensions

1While theoretically (and in some situations, practically [99, 18, 162, 154]) one can consider
more than two modalities (as demonstrated in 3.7.2), there are several limitations associated with
doing so. For example, in the case of two modalities, one estimates covariance matrices, which
have the dimensionality of the first modality times the second modality, and one needs to estimate
elements of such matrix with good accuracy. However, for three modalities, one has to deal with a
three-dimensional covariance tensor. This increases the number of elements needed to be estimated
to guide the DR, and there is typically not enough data to do this well. Additionally, visualizing and
interpreting three-way relationships becomes more challenging. Moreover, in many practical scenarios,
two modalities are sufficient for addressing many relevant questions (cf. 2.3.1 and 2.6.2). Thus, from
now on in this Dissertation, and unless specified otherwise, when we talk about multimodal datasets,
we analyze them by considering two modalities at a time.

2Naively, estimating the variance within each modality might seem simpler than estimating the
covariance between two modalities, suggesting that fewer samples would be required. However, as we
will demonstrate in Chapter 2, this assumption does not always hold true, and there are caveats to
consider for this argument.

3PCA, one of the simplest and most cited (about 6,910,000 papers mention it on Google Scholar
at the time of writing) DR methods representing this approach, is essentially the eigenvalue problem
2.4.1.1, with multiple efficient implementations available in almost any programming language and
statistical software.
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for each modality might also be relevant for the other. In the language of linear

models, reducing the multivariate problem to two single variate ones assumes that

high variance directions within a modality correspond to high covariance directions

across modalities. The validity of this assumption is unclear a priori.

An alternative, albeit less commonly used, approach to multivariate DR problems

is to jointly and simultaneously reduce both modalities to yield joint low-dimensional

descriptions, so that the low-dimensional description of one modality is maximally

informative about the low-dimensional description of the other, and vice versa. In

linear terms, this entails keeping the features that explain the highest covariance

between both modalities, rather than their variances. Some sporadic research suggests

that this approach is more favorable in terms of sample efficiency (requiring smaller

datasets to achieve similar – or even better – accuracy than independently reducing

each modality), and that it provides more concise representations (keeping fewer

dimensions) [130, 36, 61]. Moreover, as we will demonstrate, in certain scenarios,

independent reduction can lead to undesired outcomes by failing to capture the relevant

features between modalities. This discrepancy can be intuitively understood, as there

is no guarantee that maximum variation within one modality contributes to maximum

covariation across them. For example, when recording a moving object of interest

against a fast-changing background using two cameras, reducing the frames of each

camera independently is likely to preserve details about the background more than

preserving details about the object itself.

This Dissertation argues that simultaneous DR (SDR) approaches should

almost always be preferred to independent DR (IDR) methods when the

goal is to identify co-variation between two statistically related modalities.

Such methods require less data and produce more interpretable descriptions than

independent single reduction approaches. Further, they are quite easy to implement

numerically, certainly not qualitatively more difficult than their single modality



9

counterparts. In the three subsequent Chapters of this Dissertation, we provide

quantitative arguments for this assertion by investigating specific important questions

about the design, the practice, and the interpretation of SDR methods on a wide

variety of multimodal datasets. Specifically, we address the following problems :

1. In multimodal setups, how do the outcomes of the DR process depend on using

IDR vs SDR methods? What outcomes (that is, quality and interpretability of

latent descriptions) can we anticipate from each approach? How do standard

methods employing these approaches function? and How can we leverage the

theoretical understanding of the methods to improve the standard of practice?

2. ML research has produced a multitude of DR methods, each differing in as-

sumptions (such as whether the data is linear or not), implementation methods

(linear algebra-based versus neural network-based), and more. This diversity has

obvious advantages, but it also is overwhelming, limiting the ability to study

and select the best of these methods for specific problems. We aspire to unify

these methods within an intuitive yet mathematically tractable and rigorous

framework. Ultimately, we aim to utilize this framework to develop methods

that are not merely black-box solutions, but are tailored to specific research

questions.

3. We want to ascertain the usefulness of such an understanding of simultane-

ous reduction. Among the multitude of ML-based Mutual Information (MI)

estimators (MI being a fundamental measure of statistical dependencies be-

tween two variables), we study the successful ones – in terms of sample size

requirements, consistency, and accuracy. We aim to understand them within

our general framework of dimensionality reduction problem. We note that these

methods effectively use a simultaneous reduction approach, which provides a

low-dimensional description of the data that is maximally informative between



10

the two variables.

In more detail, in Chapter 2, I address the first of the above problems and

investigate the effects of using SDR vs IDR methods in a specific multimodal setup.

We explore how these different methods affect our results, under which conditions the

true latent features can be discovered by different methods, and how this knowledge

can be translated into a better practice. To answer these questions, we focus on an

analytically and numerically tractable generative multimodal system. We employ a

generative linear model with two modalities—each characterized by shared information

between the modalities, self-information relevant for each one independently, and

sample noise. The magnitudes of all of these features can be controlled independently.

We focus on commonly used, powerful linear DR methods for both SDR and IDR. We

explain the specific methods and why they may lead to distinct outcomes. Then we

assess the quality of the low-dimensional representations obtained by applying these

methods to data generated from the linear model, identifying key parameters relevant

to the reduction process. Through the application of different DR methods from

both approaches within this controlled setup, we gain essential insights into the DR

process, shedding light on previously mentioned but poorly understood observations

in the literature. Additionally, we propose a new heuristic to differentiate between

self-information features unique to each modality and shared information features

within multimodal datasets—a crucial step toward enhancing the interpretability

and utility of DR outcomes. This Chapter serves as a motivational step, laying

the groundwork for deeper analyses and methodological advancements explored in

subsequent Chapters. Our aim here is to provide a comprehensive understanding of

DR methods and their implications in tackling realistic, and yet tractable data.

In Chapter 3, I address the second of the above mentioned problems. There

are many DR methods, each differing in assumptions and implementation choices.

Different methods perform differently in distinct situations, but it is unclear how to



11

choose a good method a priori. We systematize them by developing a comprehensive,

mathematically rigorous, yet practical framework for unifying different DR methods,

particularly the state-of-the-art deep variational ones. These methods utilize deep

neural networks and variational approximations to learn robust and precise data

representations, often acting as generative models for synthesizing samples from

learned distributions. Additionally, using the framework, we can design new DR

methods based on the needs of a practitioner: they need to specify what they want to

preserve and how they believe the latent descriptions may depend on the observed

data, and we automatically derive a corresponding DR algorithm and generate its

neural network implementation. The framework is based on an interpretation of

the information bottleneck (IB) principle. IB sets an explicit trade-off between the

strength of compression and the quality of the latent description, both measured

using information-theoretic quantities. More precisely, if we have a variable X that

has some relationship to another variable Y , IB works by compressing X to a new

low-dimensional variable Z that shares the most relation with Y . The quality of the

low-dimensional latent space is measured using the mutual information (MI)4 between

Z and Y , while the strength of the compression is measured by how much information

the latent state preserves about the compressed variable, I(X;Z). Overall, the IB loss

function is L = I(X;Z)−βI(Y ;Z). Here β controls the quality of the compression, so

that the information between X and Y is squeezed through a bottleneck of Z, giving

the name to the method. In our more general framework, we trade off the information

in an encoder graph, representing statistical structures used to derive the compressed

variables (how the data should be encoded in a low-dimensional space), against that

in a decoder graph, representing a generative model, which specifies how we want to

reconstruct the variables of interest the low-dimensional compressed space. We then

4Mutual information between two continuous variables X and Y is a measure of all sta-
tistical dependencies between these two variables. It is defined formally as I(X;Y ) =∫ ∫

p(x, y) log
(

p(x,y)
p(x)p(y)

)
dx dy, where x and y are particular values of the variables X and Y ,

respectively. We discuss MI in depth in Chapters 3, 4.
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approximate probability distributions in these graphs via variational approximations,

which can be learned with the help of neural networks. We named this framework the

Deep Variational Multivariate Information Bottleneck (DVMIB). Crucially, we were

able to retrieve multiple DR methods previously introduced in the literature as special

cases of the framework. Additionally, we were able to improve and generalize some

of these existing methods. Moreover, within this framework, we introduced a novel

method, the Deep Variational Symmetric Information Bottleneck (DVSIB), which is a

specific variant of SDR that allows for simultaneous compression of the two modalities

into distinct latent spaces that are maximally informative about one another. These

latent representations are defined in two distinct spaces, potentially with different

physical units, a quality highly sought in different fields. For example, going back

to the previously mentioned example of neural activity and behavior, DVSIB would

reduce the original high-dimensional neural activity into a low-dimensional one, and

similarly for the behavior, such that the new low-dimensional descriptions are the

ones that are maximally informative, and yet the neural and the behavioral latent

spaces only use the neural activity and the behavioral recordings, respectively, in their

definition. Another example that has been used extensively recently is within the

multiview learning framework, where we learn a joint low-dimensional space from

two (or more) modalities, such as images and their corresponding descriptive text.

The goal is to have two encoders (one for each modality) that separately map the

image and text into a shared latent space, allowing it to perform various tasks such

as classification within that space. Additionally, two decoders are trained and used

for tasks such as image retrieval and text-to-image generation. In such a scenario,

the state-of-the-art architecture—Contrastive Language-Image Pre-Training (CLIP)

[125]—is indeed a simultaneous reduction approach. This can be encapsulated (and

potentially improved) within our new method, DVSIB. In our tests, our new method

achieves better results in terms of classification accuracy and succinct low-dimensional
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representations on some test problems. Although real-world applications are mostly

beyond the scope of this dissertation, a discussion of different applications is included

in the chapters, with an application to a real physical system in the Discussion

(Chapter 5). More interestingly, DVSIB verifies the previously developed intuition

that the SDR paradigm is, indeed, more data-efficient than IDR, providing higher

classification accuracy with a lower number of samples.

In Chapter 4, I study the problem of estimating Mutual Information (MI) as an

SDR problem, aiming to provide efficient and precise guidelines for MI estimation

in certain scenarios. MI naturally arises from fundamental principles in various

fields like communication and probability theories to quantify statistical dependencies

between variables. Despite its significance, accurately estimating MI from empirical

data poses severe challenges, leading to the development of multiple estimation

approaches over time, none of which work universally well. Traditional methods, such

as parametric, nearest neighbor, and kernel-based methods, often struggle in high-

dimensional scenarios. Conversely, recent neural network-based approaches have gained

traction for their practicality and ability to handle high-dimensional data. However,

these methods have mostly been tested in non-realistic, toy scenarios with effectively

infinite amounts of data, which is not true of any realistic situation. The ability of these

methods to work at finite sample sizes (i.e., the sample size dependencies of their biases

and variances) is still poorly understood. These neural network methods, although

versatile, lack inherent reporting criteria to warn users when their output should not

be trusted. Since they are neural network-based methods, they are optimized via a

training algorithm to minimize a certain loss function. However, the criteria for when

to stop the optimization have not been established previously. Our analysis addresses

these challenges by studying sample efficiency and providing accurate heuristics for

determining when to terminate the training and whether to trust the output of the

estimators.
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In the last Chapter 5, I discuss promising directions for further inquiry. For

example, we can use a DVSIB-like architecture to extract compact representations of

dynamical systems observed via large-dimensional measurements. In this context, the

two modalities may be the past and the future recordings of the dynamical system

observations, and the low-dimensional descriptions then represent the dynamics of

the coarse-grained description. For instance, consider deriving the laws of motion

of a simple physical pendulum, where observations are movie frames recording its

motion over time. The past then consists of a time window of frames, and the

future could entail subsequent time windows. Then ideally a DR algorithm would

extract the low-dimensional variables that are directly related to the angle and the

angular velocity of the pendulum. Indeed, I show that our method can extract low-

dimensional descriptions of these movies that are these physical quantities! Crucially,

the method works essentially out-of-the-box, with no need to impute a lot of domain-

specific physical knowledge to result in an accurate inference. I discuss the different

relevant parameters for this problem, and its potential effects on the results. Another

avenue worth exploring is uncovering the shared low-dimensional structure between

neural recordings and resultant behavior. We anticipate that these low-dimensional

spaces, to be discovered by our method, would offer improved accuracy in decoding

corresponding behavior, coupled with interpretability and modeling potential owing to

their generative and low-dimensional nature. The body of literature in the neuroscience

domain that considers behavior while reducing neural activity typically compresses

only the recorded neural activity conditioned on the behavior [130, 81, 131], with a

few exceptions that consider both [54]. However, generally, this is not performing

simultaneous reduction. As a result, we end up with a single low-dimensional space for

the neural activity, while the behavior remains untouched (or processed separately),

which is a limitation if the behavior is high-dimensional (such as videos or detailed

motion). In the few exceptions where the behavior is also reduced, the neural activity
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and behavior are mixed together in a shared space, making it unclear how to interpret

such a latent space. Having two distinct latent spaces for the two different domains as

provided by DVSIB opens many interesting avenues worth studying.

Overall, this dissertation presents the work by me and my collaborators in advancing

our understanding of DR methods through the lens of physics and information

theory. By elucidating the differences between independent and simultaneous reduction

techniques, I hope to have provided valuable insights into the underlying principles

that can help in designing better physical models of complex systems. Moreover,

the development of a unified framework has already facilitated the generalization of

existing methods, while paving the way for the creation of novel approaches tailored

to the specific challenges encountered in, but not limited to physics, machine learning,

and life sciences research. Through the application of our methodologies, particularly

in the estimation of mutual information, we have demonstrated their potential efficacy

in extracting meaningful insights from data. This has implications not only for

understanding fundamental physical phenomena, but also for optimizing experimental

design and data analysis techniques in various fields. As we continue to refine and

apply these methods in different research areas, we can expect further advancements

in our understanding of the methods, and also more demonstrations of their utility

for analysis of complex natural and man-made systems.
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Chapter 2

On the Difference Between

Independent and Simultaneous

Dimensionality Reduction

2.1 Summary

1Current experiments frequently produce high-dimensional, multimodal datasets—

such as those combining neural activity and animal behavior or gene expression

and phenotypic profiling—with the goal of extracting useful correlations between

the modalities. Often, the first step in analyzing such datasets is dimensionality

reduction. We explore two primary classes of approaches to dimensionality reduction

(DR): Independent Dimensionality Reduction (IDR) and Simultaneous Dimensionality

Reduction (SDR). In IDR methods, of which Principal Components Analysis is

a paradigmatic example, each modality is compressed independently, striving to

1This chapter presents the paper [3] with the title Simultaneous Dimensionality Reduction: A
Data Efficient Approach for Multimodal Representations Learning. The work was conducted in
collaboration with Ahmed Roman, K. Michael Martini, and Ilya Nemenman. I performed all
simulations, conducted all analyses, and wrote the manuscript. Ilya conceived the model, while
Ahmed and Michael contributed to discussions regarding the procedures and analyses. All authors
reviewed the manuscript.
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retain as much variation within each modality as possible. In contrast, in SDR, one

simultaneously compresses the modalities to maximize the covariation between the

reduced descriptions while paying less attention to how much individual variation

is preserved. Paradigmatic examples include Partial Least Squares and Canonical

Correlations Analysis. Even though these DR methods are a staple of statistics,

their relative accuracy and data set size requirements are poorly understood. We

use a generative linear model to synthesize multimodal data with known variance

and covariance structures to examine these questions. We assess the accuracy of the

reconstruction of the covariance structures as a function of the number of samples,

signal-to-noise ratio, and the number of varying and covarying signals in the data.

Using numerical experiments, we demonstrate that linear SDR methods consistently

outperform linear IDR methods and yield higher-quality, more succinct reduced-

dimensional representations with smaller datasets. Remarkably, regularized CCA can

identify low-dimensional weak covarying structures even when the number of samples

is much smaller than the dimensionality of the data, which is a regime challenging for

all dimensionality reduction methods. Our work corroborates and explains previous

observations in the literature that SDR can be more effective in detecting covariation

patterns in data. These findings strengthen the intuition that SDR should be preferred

to IDR in real-world data analysis when detecting covariation is more important than

preserving variation.

2.2 Introduction

Many modern experiments across various fields generate massive multimodal data sets.

For instance, in neuroscience, it is common to record the activity of a large number of

neurons while simultaneously recording the resulting animal behavior [140, 139, 150, 92].

Other examples include measuring gene expressions of thousands of cells and their
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corresponding phenotypic profiles, or integrating gene expression data from different

experimental platforms, such as RNA-Seq and microarray data [38, 166, 144, 80, 98]. In

economics, important variables such as inflation are often measured using combinations

of macroeconomic indicators as well as indicators belonging to different economic

sectors [59, 13, 49, 128]. In all of these examples, an important goal is to estimate

statistical correlations among the different modalities.

Analyses usually begin with dimensionality reduction (DR) into a smaller and

more interpretable representation of the data. We distinguish two types of DR:

independent (IDR) and simultaneous (SDR) [101]. In the former, each modality is

reduced independently, while aiming to preserve its variation, which we call self signal.

In the latter, the modalities are compressed simultaneously, while maximizing the

covariation (or the shared signal) between the reduced descriptions and paying less

attention to preserving the individual variation. It is not clear if IDR techniques, such

as the Principal Components Analysis (PCA) [75], are well-suited for extracting shared

signals since they may overlook features of the data that happen to be of low variance,

but of high covariance [39, 23]. In particular, poorly sampled weak shared signals,

common in high-dimensional datasets, can exacerbate this issue. SDR techniques, such

as Partial Least Squares (PLS) [161] and Canonical Correlations Analysis (CCA) [76],

are sometimes mentioned as more accurate in detecting weak shared signal [36, 61, 111].

However, the relative accuracy and data set size requirements for detecting the shared

signals in the presence of self signals and noise remain poorly understood for both

classes of methods.

In this study, we aim to assess the strengths and limitations of linear IDR, rep-

resented by PCA, and linear SDR, exemplified by PLS and CCA, in detecting weak

shared signals. For this, we use a generative linear model that captures key features of

relevant examples, including noise, the self signal, and the shared signal components.

Using this model, we analyze the performance of the methods in different conditions.
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Our goal is to assess how well these techniques can (i) extract the relevant shared

signal and (ii) identify the dimensionality of the shared and the self signals from noisy,

undersampled data. We investigate how the signal-to-noise ratios, the dimensionality

of the reduced variables, and the method of computing correlations combine with

the sample size to determine the quality of the DR. We propose best practices for

achieving high-quality reduced representations with small sample sizes using these

linear methods.

2.3 Model

2.3.1 Relations to Previous Work

The extraction of signals from large-dimensional data sets is a challenging task when

the number of observations is comparable to or smaller than the dimensionality of the

data. The undersampling problem introduces spurious correlations that may appear

as signals, but are, in fact, just statistical fluctuations. This poses a challenge for DR

techniques, as they may retain unnecessary dimensions or identify noise dimensions

as true signals. Here, we focus exclusively on linear DR methods. For these, the

Marchenko-Pastur (MP) distribution of eigenvalues of the covariance matrix of pure

noise derived using the Random Matrix Theory (RMT) methods [100] has been used

to introduce a cutoff between noise and true signal in real datasets. However, recent

work [47] has shown that, when observations are a linear combination of uncorrelated

noise and latent low-dimensional self signals, then the self signals alter the distribution

of eigenvalues of the sampling noise, questioning the validity of this naive approach.

Moving beyond a single modality, [25] calculated the singular value spectrum of

cross-correlations between two nominally uncorrelated random signals. However, it

remains unknown whether the linear mixing of self signals and shared signals affects

the spectra of noise, and how all of these components combine to limit the ability to
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detect shared signals between two modalities from data sets of realistic sizes. Filling

in this gap using numerical simulations is the main goal of this work, and analytical

treatment of this problem will be left for the future.

The linear model and linear DR approaches studied here do not capture the

full complexity of real-world data sets and state-of-the-art algorithms. However, if

sampling issues and self signals limit the ability of linear DR methods to extract

shared signals, it would be surprising for nonlinear methods to succeed in similar

scaling regimes on real data. Thus extending the previous work to explicitly study

the effects of linear mixtures of self signals, shared signals, and noise on limitations

of DR methods is likely to endow us with intuition that is useful in more complex

scenarios routinely encountered in different domains of science.

Examples of scenarios with shared and self signals include inference of dynamics

of a system through a latent space [40, 35], where shared signals correspond to

latent factors that are relevant for predicting the future of the system from its past,

while self signals correspond to nonpredictive variation [21]. In economics, shared

and self signals correspond to diverse macroeconomic indicators that are grouped

into correlated distinct categories in structural factor models [48, 59, 128, 13]. In

neuroscience, shared signals can correspond to the latent space, by which neural activity

affects behavior, while self signals encode neural activity that does not manifest in

behavior and behavior that is not controlled by the part of the brain being recorded

from [137, 140, 108, 130, 114, 150, 92].

Interestingly, in the context of the neural control of behavior, it was noticed that

SDR reconstructs the shared neuro-behavioral latent space more efficiently and using

a smaller number of samples than IDR [130]. Similar observations have been made

in more general statistical contexts [36, 61, 111, 153], though the agreement is not

uniform [55, 56, 57]. Because of this, most practical recommendations for detecting

shared signals are heuristic [62], with widely acknowledged, but poorly understood
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limitations and possible resolutions [91]. Our goal is to ground such rules in numerical

simulations and scaling arguments.

2.3.2 Linear Model with Self and Shared Signals

We consider a linear model with noise, mself,X,mself,Y self signals that are relevant

to each modality independently, as well as mshared shared signals that capture the

interrelationships between modalities.2 It results in T observations of two high-

dimensional standardized observables, X and Y :

[
X̃ ∈ RNX

]
= RX︸︷︷︸

Independent white noise

+ UXVX︸ ︷︷ ︸
Self-Signal for X

+ PQX︸ ︷︷ ︸
Shared-Signal

,

[
Ỹ ∈ RNY

]
= RY︸︷︷︸

Independent white noise

+ UY VY︸ ︷︷ ︸
Self-Signal for Y

+ PQY︸ ︷︷ ︸
Shared-Signal

, (2.1)

X = X̃/σX̃ , Y = Ỹ /σỸ . (2.2)

The observations of X and Y are linear combinations of the following: (a) Independent

white noise components RX and RY with variances σ2
RX

and σ2
RY

. (b) Self-signal

components UX and UY residing in lower-dimensional subspaces Rmself,X and Rmself,Y

with variances σ2
UX

and σ2
UY

. (c) Shared-signal components P in a shared lower-

dimensional subspace Rmshared with variance σ2
P . These components are projected

into their respective high-dimensional spaces RNX and RNY using fixed quenched

projection matrices VX , VY , QX , and QY with specified variances σ2
VX

, σ2
VY

, σ2
QX

, and

σ2
QY

, all respectively. Entries in these matrices are drawn from a Gaussian distribution

with a zero mean and the corresponding variances. Further, division by σX̃ and σỸ

standardizes each column of the data matrices by their empirical standard deviations.

2This model is an extension of the model introduced by [47], and its probabilistic form has been
studied by [107]. In its turn, the latter is an extension of work by [89], and [11]. However, within this
model, we focus on the intensive limit, common in RMT [123], where the number of observations
scales as the number of observed variables. This scenario is common in many real-world applications,
and, to our knowledge, a similar extensive treatment to assess different DR methods as a function of
various parameters of the system does not exist.
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The total variance in the matrix X̃ can be calculated as the sum of the variances of its

individual components: σ2
X̃

= σ2
RX

+ mself,X × σ2
UX

σ2
VX

+ mshared × σ2
Pσ

2
QX

. A similar

calculation can be done for the total variance in Ỹ .

We define self and shared signal-to-noise ratios γself,X/Y , γshared,X/Y as the relative

strength of signals compared to background noise per component in each modality.

These definitions allow us to examine how easily self or shared signals in each dimension

can be distinguished from the noise.

γself,X/Y =
σ2
UX/Y

σ2
VX/Y

σ2
RX/Y

, γshared,X/Y =
σ2
Pσ

2
QX/Y

σ2
RX/Y

(2.3)

Our main goal is to evaluate the ability of linear SDR and IDR methods to

reconstruct the shared signal P , while overlooking the effects of the self signals UX/Y

on the statistics of the shared ones.

2.4 Methods

We apply DR techniques to X and Y to obtain their reduced dimensional forms

ZX and ZY , respectively. ZX , ZY are of sizes that can range from T × 1 to T ×NX

and T ×NY , respectively. As an IDR method, we use PCA [75]. As SDR methods,

we apply PLS [161] and CCA [76, 152, 171], including both normal and regularized

versions of the latter. Each of these methods focuses on specific parts of the overall

covariance matrix

CX,Y =

CXX CXY

CY X CY Y

 =

 1
T
X⊤X 1

T
X⊤Y

1
T
Y ⊤X 1

T
Y ⊤Y

 . (2.4)

PCA aims to identify the most significant features that explain the majority of the

variance in CXX and CY Y , independently. PLS, on the other hand, focuses on singular

values and vectors that explain the covariance component CXY . Along the same
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lines, CCA aims to find linear combinations of X and Y that are responsible for

the correlation (CXY /
√
CXXCY Y ) between X and Y . A detailed description of each

method is in the next section 2.4.1.

For every numerical experiment, we generate training and test data sets (Xtrain, Ytrain)

and (Xtest, Ytest) according to Eqs. (2.1-2.2)3. We apply PCA, PLS, CCA, and reg-

ularized CCA (rCCA) to the training to obtain the singular directions WXtrain
and

WYtrain
for each method (see Appendix 2.4.1). We then obtain the projections of the

test data on these singular directions

ZX = XtestWXtrain
,

ZY = YtestWYtrain
. (2.5)

Finally, we evaluate the reconstructed correlations metric RC ′, which measures how

well these singular directions recover the shared signals in the data, corrected by

the expected positive bias due to the sampling noise, see Appendix 2.4.2 for details.

RC ′ = 0 corresponds to no overlap between the true and the recovered shared directions,

and RC ′ = 1 corresponds to perfect recovery.

2.4.1 Linear Dimensionality Reduction Methods

2.4.1.1 Principal Component Analysis - PCA

PCA is a widely used linear IDR method that aims to find the orthogonal principal

directions, such that a few of them explain the largest possible fraction of the variance

within the data. PCA decomposes the covariance matrix of the data matrix X, CXX =

1
T
X⊤X, into its eigenvectors and eigenvalues through singular value decomposition

(SVD). The SVD yields orthogonal directions, represented by the vectors w
(i)
X , that

3We fix σ2
RX/Y

, σ2
VX/Y

, σ2
QX/Y

and allow σ2
UX/Y

, σ2
P to vary when we choose γself,X/Y , γshared,X/Y .

We first generate the fixed projection matrices VX/Y , QX/Y , and we vary RX/Y , UX/Y , P for each
trial.
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capture the most significant variability in the data. In most numerical implementations

[118], these directions are obtained consecutively, one by one, such that the dot product

between any two directions is zero w
(i)
X · w(j)

X = δij . The eigenvectors w
(i)
X are obtained

as the best solution to the optimization problem:

w
∗(i)
X = arg max

w
(i)
X

w
(i)
X

⊤
X(i)⊤X(i)w

(i)
X

w
(i)
X

⊤
w

(i)
X

. (2.6)

Here X(i) is the ith deflated matrix where X(1) is the original matrix, and for

every subsequent i + 1, the matrix is deflated by subtracting the projection of X

on the obtained weights: X(i+1) = X − Σi
s=1Xw(s)w

⊤
(s). The eigenvectors are sorted

in decreasing order according to their corresponding eigenvalues, and the first k

eigenvectors w
(i=1:k)
X are selected to form the projection matrix WX . The obtained

vectors determine the size of the reduced form ZX , where |ZX | = k is the number

of vectors retained from the decomposition of X. The vectors w
(i)
X are then stacked

together to form the projection matrix WX . The low-dimensional representation ZX is

then obtained by multiplying the original data matrix X with this projection matrix,

resulting in the reduced data matrix ZX = XWX . Similar treatment is done for Y in

order to obtain ZY = YWY

One of the main advantages of PCA is its simplicity and efficiency. However, one

of the drawbacks of this method is that it performs DR for X and Y independently,

and one then searches for relations between ZX and ZY by regressing one on the

other. Thus obtained low-dimensional descriptions may capture variance but not the

covariance between the two datasets.

2.4.1.2 Partial Least Squares - PLS

PLS, or Partial Least Squares, performs SDR by finding the shared signals that explain

the maximum covariance between two sets of data [161]. PLS performs the SVD of
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the covariance matrix CXY = 1
T
X⊤Y (or equivalently CY X = 1

T
Y ⊤X). The left and

right singular vectors (w
∗(i)
X , w

∗(i)
Y ) are obtained consecutively pair by pair such that

w
(i)
X · w(j)

Y = δij. They are solutions of the optimization problem:

(w
∗(i)
X , w

∗(i)
Y ) = arg max

w
(i)
X ,w

(i)
Y

w
(i)
X

⊤
X(i)⊤Y (i)w

(i)
Y√

(w
(i)
X

⊤
w

(i)
X )(w

(i)
Y

⊤
w

(i)
Y )

(2.7)

The matrices X(i), Y (i) are deflated in a similar manner to PCA 2.4.1.1. The singular

vectors are sorted in the decreasing order of their corresponding singular values, and

the first k vectors are selected to form the projection matrices (WX ,WY ). The obtained

vectors determine the size of the reduced form (ZX , ZY ), where |ZX | = |ZY | = k is the

number of vectors retained. The vectors (w
(i)
X , w

(i)
Y ) are then stacked together to form

the projection matrices (WX ,WY ) respectively. The low-dimensional representations

(ZX , ZY ) are obtained by projecting the original data matrices (X, Y ) onto these

projection matrices: ZX = XWX , and ZY = YWY .

In summary, PLS performs simultaneous reduction on both datasets, maximizing

the covariance between the reduced representations ZX and ZY . This property makes

PLS a powerful tool for studying the relationships between two datasets and identifying

the underlying factors that explain their joint variability.

2.4.1.3 Canonical Correlation Ananlysis - CCA

2.4.1.3.1 Normal CCA

CCA is another SDR method, which aims to find the directions that explain the

maximum correlation between two datasets [76]. However, unlike PLS, CCA obtains

the shared signals by performing SVD on the correlation matrix CXY√
CXX

√
CY Y

. The

singular vectors (w
∗(i)
X , w

∗(i)
Y ) are obtained consecutively pair by pair such that w

(i)
X ·

w
(j)
Y = δij. CCA enforces the orthogonality of w

(i)
X , w

(i)
Y independently as well, such

that w
(i)
X · w(j)

X = w
(i)
Y · w(j)

Y = δij. The singular vectors are obtained by solving the
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optimization problem:

(w
∗(i)
X , w

∗(i)
Y ) = arg max

w
(i)
X ,w

(i)
Y

w
(i)
X

⊤
X(i)⊤Y (i)w

(i)
Y√

(w
(i)
X

⊤
X(i)⊤X(i)w

(i)
X )(w

(i)
Y

⊤
Y (i)⊤Y (i)w

(i)
Y )

. (2.8)

Like in PLS 2.4.1.2, the matrices X(i), Y (i) are deflated in a similar manner. In

addition, the first k singular vectors (w
∗(i)
X , w

∗(i)
Y ) are stacked together to form the

projection matrices (WX ,WY ), which then are used to obtain the reduced data matrices

ZX = XWX , and ZY = YWY .

One of the key differences between PLS and CCA is that while both perform SDR,

CCA also simultaneously performs IDR implicitly. Indeed, it involves multiplication

of CXY by C
−1/2
XX on the left and C

−1/2
Y Y on the right, which, in turn, requires finding

singular values of the X and the Y data matrices independently.

2.4.1.3.2 Regularized CCA - rCCA

While CCA is a useful method for finding the maximum correlating features between

two sets of data, it does have some limitations. Specfically, in the undersampled regime,

where T ≤ max(NX , NY ), the matrices CXX and CY Y are singular and their inverses

do not exist. Using the pseudoinverse to solve the problem can lead to numerical

instability and sensitivity to noise. Regularized CCA (rCCA) [152, 171] overcomes this

problem by adding a small regularization term to the covariance matrices, allowing

them to be invertible. Specifically, one tales

C̃XX = CXX + cXIX , (2.9)

C̃Y Y = CY Y + cY IY , (2.10)

where C̃XX , C̃Y Y are the new regularized matrices, cX , cY > 0 are small regularization

parameters and IX , IY are identity matrices with sizes NX ×NX , NY ×NY respectively.

This original implementation of rCCA resulted in correlation matrices with di-
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agonals not equal to one. Thus, a better implementation uses a different form of

regularization [171] by adding the regularization parameters cX and cY individually

to the equations as an affine combination (i. e.,
∑n

i ci = 1) as the following:

C̃XX =
1

T
(cX1w

⊤
XX

⊤XwX + cX2w
⊤
XwX) (2.11)

C̃Y Y =
1

T
(cY1w

⊤
Y Y

⊤Y wY + cY2w
⊤
Y wY ). (2.12)

This results in the regularized equations for X and Y to be:

C̃XX = 1
T

(
(1 − cX)w⊤

XX
⊤XwX + cXw

⊤
XwX

)
(2.13)

C̃Y Y = 1
T

(
(1 − cY )w⊤

Y Y
⊤Y wY + cYw

⊤
Y wY

)
, (2.14)

where cX and cY are the regularization parameters, with values between 0 and 1,

resulting in solving the optimization problem:

(w
∗(i)
X , w

∗(i)
Y ) = arg max

w
(i)
X ,w

(i)
Y

w
(i)
X

⊤
X(i)⊤Y (i)w

(i)
Y/(√

(1 − cX)(w
(i)
X

⊤
X(i)⊤X(i)w

(i)
X ) + cX(w

(i)
X

⊤
w

(i)
X ) ·√

(1 − cY )(w
(i)
Y

⊤
Y (i)⊤Y (i)w

(i)
Y ) + cY (w

(i)
Y

⊤
w

(i)
Y )

) (2.15)

Writing the regularization conditions in this form is in fact a convex interpolation

problem between PLS and CCA, which is a more robust solution and does not suffer

from shortening the length of correlations due to the added regularization. As a result,

this implementation of rCCA achieves the best accuracy among all other methods.

2.4.2 Assessing Success and Sampling Noise Treatment

To assess the success of DR, we calculated the ratio between the total correlation

between ZXtest and ZYtest , defined as in Eq. (2.5), and the total correlation between X
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and Y , which we input into the model. Specifically, we take the total correlation as

the Frobenius norm of the correlation matrix, ||A||F =
√∑

i σ
2
i (A), where σ(A) are

the singular values of the matrix A. Therefore, the metric of the quality of the DR is

RC =
||Corr(ZXtest , ZYtest)||F

||Corr(P, P )||F
=

||Corr(ZXtest , ZYtest)||F
mshared

, (2.16)

where Corr stands for the correlation matrix between its arguments, and we use

||Corr(P, P )||F = mshared as the total shared correlation that one needs to recover.

Statistical fluctuations aside, RC should vary between zero (bad reconstruction of the

shared variables) and one (perfect reconstruction).
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Figure 2.1: The resulting correlations are averages of all the points in the phasespace,
then averaged over 10 different realizations of the matrices. The error bars are for two
standard deviations around the mean

In many real-world applications, the number of available samples, T , is often

limited compared to the dimensionality of the data, NX and NY . This undersampling

can introduce spurious correlations. We are not aware of analytical results to calculate

the effects of the sampling noise on estimating singular values in the model in Eq. (2.1)
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[28]. Thus, to estimate the effect of the sampling noise, we adopt an empirical approach.

Specifically, we generate two random matrices, ZXrandom
and ZYrandom

, of sizes T × |ZX |

and T × |ZY |, respectively. We then calculate the correlation between these matrices,

denoted as RC0, for multiple such trials using the metric in Eq. (2.16). For random

ZXrandom
and ZYrandom

, RC should be zero. However, Fig. 2.1 shows that, especially for

large dimensionalities of the compressed variables and small T , the sampling noise

results in a significant spurious RC0 > 0, which may even be larger than 1! Crucially,

RC0 does not fluctuate around its mean across trials, so that the sampling bias is

narrowly distributed.

To compensate for this sampling bias, we subtract it from the reconstruction

quality metric,

RC ′ = RC −RC0. (2.17)

It is this RC ′ that we plot in all Figures in this chapter as the ultimate metric

of the reconstruction quality. While subtracting the bias is not the most rigorous

mathematically, it provides a practical approach for reducing the effects of the sampling

noise.

2.4.3 Implementation

We used Python and the scikit-learn [118] library for performing PCA, PLS, and

CCA, while the cca-zoo [33] library was used for rCCA. For PCA, SVD was performed

with default parameters. For PLS, the PLS Canonical method was used with the

NIPALS algorithm. For both PLS and CCA, the tolerance was set to 10−4 with a

maximum convergence limit of 5000 iterations. For rCCA, regularization parameters

were set as c1 = c2 = 0.1. All other parameters not explicitly here were set to their

default values.

All figures shown in this chapter were averaged over 10 independent realizations

scikit-learn
cca-zoo
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of RX , RY , UX , UY , P , while fixing the projection matrices VX , VY , QX , QY . We then

performed an additional round of averaging everything over 10 realizations of the

projection matrices themselves. The simulations were parallelized and run on Amazon

Web Services (AWS) servers of instance types ml.c5.2xlarge.

2.5 Results

2.5.1 Results of the Linear Model

We perform numerical experiments to explore the undersampled regime, T ≲ NX , NY .

We use T = {100, 300, 1000, 3000} samples, NX = NY = 1000. We explore the case of

one shared signal only, mshared = 1 and we mask this shared signal by a varying number

of self signals and noise. We vary the number of retained dimensions, (|ZX |, |ZY |),

and explore how many of them are needed to recover the shared signal in the noise

and the self signal background with different SNR.

For brevity, we explore two cases: (1) One self-signal in X and Y in addition

to the shared signal (mself = 1); (2) many self-signals in X and Y . For both cases,

we calculate the quality of reconstruction as the function of the shared and the self

SNR, γshared and γself. In all figures, we show RC ′ for severely undersampled (first row,

T = 300) and relatively well sampled (second row, T = 3000) regimes. We also show

the value of RC0, the bias that we removed from our reconstruction quality metric,

for completeness, see section 2.4.2 for details.

ml.c5.2xlarge
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2.5.2 One self-signal in Xnd Y n addition to the shared signal

(mself = 1)

2.5.2.1 Keeping 1 dimension after reduction (|ZX/Y | = 1)

Figure 2.2 shows that, in Case 1, when one dimension is retained in DR of X and

Y , PCA populates the compressed variable with the largest variance signals and

hence struggles to retain the shared signal when γself > γshared, regardless of the

number of samples. However, both PLS and rCCA excel in achieving nearly perfect

reconstructions. When T ≪ NX , straightforward CCA cannot be applied (see 2.4.1.3-

2.4.1.3.2), but it too achieves a perfect reconstruction when T > NX .

RC′

0.0

0.2

0.4

0.6

0.8

1.0
RC0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

01
01

Adding 1 self-signal, keeping one dimension after reduction

T
 =

 1
00

T
 =

 3
00

T
 =

 1
00

0
T

 =
 3

00
0

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A1
PCA

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A2

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B1
PLS

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C1
CCA

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D1
rCCA

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E1
Noise

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E4

Figure 2.2: Performance of PCA, PLS, CCA, rCCA, and noise in recovery of the
shared signal for |ZX | = |ZY | = 1 = mself. PCA struggles to detect shared signals
when they are weaker than the self signals. PLS and rCCA demonstrate nearly perfect
reconstruction. CCA displays no reconstruction in the undersampled regime T ≪ NX ,
and it is nearly perfect for large T .
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2.5.2.2 Keeping 2 dimensions after reduction (|ZX/Y | = 2)

In Fig. 2.3, we allow two dimensions in the reduced variables. For PCA, we expect

this to be sufficient to preserve both the self and the shared signals. Indeed, PCA now

works for all γs and T s, although with a slightly reduced accuracy for large shared

signals compared to Fig. 2.2. PLS and rCCA continue to deliver highly accurate

reconstructions. So does the CCA for T > NX . Spurious correlations, as measured by

RC0 grow slightly with the increasing dimensionality of ZX , ZY compared to Fig. 2.2.

This is expected since more projections must now be inferred from the same amount

of data.
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Figure 2.3: Same as Fig. 2.2, but for |ZX | = |ZY | = 2 = mself + mshared. Now there
are enough compressed variables for PCA to detect the shared signal. Other methods
perform similarly to Fig. 2.2, albeit the noise is larger.
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2.5.3 Many self-signal in Xnd Y n addition to the shared signal

(mself = 30)

2.5.3.1 Keeping 1 dimension after reduction (|ZX/Y | = 1)

We now turn to mself ≫ mshared. We use mshared = 1, mself = 30 for concreteness.

We expect that the performance of SDR methods will degrade weakly, as they are

designed to be less sensitive to the masking effects of the self signals. In contrast, we

expect IDR to be more easily confused by the many strong self-signals, degrading

the performance. Indeed, Fig. 2.4 shows that PCA now faces challenges in detecting

shared signals, even when the self signals are weaker than in Fig. 2.2. Increasing T

improves its performance only slightly. Somewhat surprisingly, PLS performance also

degrades, with improvements at T ≫ NX . CCA again displays no reconstruction

when T ≪ NX , switching to near perfect reconstruction at large T . Crucially, rCCA

again shines, maintaining its strong performance, consistently demonstrating nearly

perfect reconstruction.

2.5.3.2 Keeping 30 dimensions after reduction (|ZX/Y | = 30)

Since one retained dimension is not sufficient for PCA to represent the shared signal

when γshared ≲ γself , we increase the dimensionality of reduced variables |ZX | = |ZY | =

mself ≫ mshared), cf. Fig. 2.5. PCA now detects shared signals even when they are

weaker than the self-signals, γshared < γself , but at a cost of the reconstruction accuracy

plateauing significantly below 1. In other words, when self and shared signals are

comparable, they mix, allowing for partial reconstruction. However, even at T ≫ NX ,

PCA cannot break into the phase diagram’s lower right corner. Other methods perform

similarly, reconstructing shared signals over the same or wider ranges of sampling and

the SNR ratios than in Fig. 2.4. For all of them, the improvement comes at the cost of

the decreased asymptotic performance. The most distinct feature of this regime is the
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Figure 2.4: Reconstruction results for mself = 30, mshared = 1, and |ZX | = |ZY | = 1.
PCA struggles to detect any shared signals when they are even comparable to the self
ones. PLS performance also degrades. CCA displays its usual impotence at small T .
Finally, rCCA demonstrates nearly perfect reconstruction for all parameter values.
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dramatic effect of noise, where 30-dimensional compressed variables can accumulate

enough sampling fluctuations to recover correlations that are supposedly nearly twice

as high as the data actually has.
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Figure 2.5: DR performance for |ZX | = |ZY | = mself > mshared). PCA now detects
shared signals even when they are weaker than the self signals. However, the quality
of reconstruction is significantly lower than in Fig. 2.3. PLS detects signals in a
larger part of the phase space, but also with a significant reduction in quality, which
improves with sampling. CCA has its usual problem for T ≪ NX , and, like PLS, it
has a significantly lower reconstruction quality than in the regime in Fig. 2.4. rCCA
is able to detect the signal in the whole phase space, but again with worse quality.
Finally, spurious correlations are high, though they decrease with better sampling.

2.5.3.3 Keeping 31 dimensions after reduction (|ZX/Y | = 31)

Figure 2.6 now explores a regime when the dimensionality of the compressed variables

is enough to store both the self and the shared interactions at the same time, |ZX | =

|ZY | = mself + mshared = 31. With just one more dimension than Fig. 2.5, PCA
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abruptly transitions to being able to recover shared signals for all SNRs, albeit still

saturating at a far from perfect performance at large T . PLS, CCA, rCCA, and noise

show behavior remain similar to Fig. 2.5.
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Figure 2.6: PCA, PLS, CCA, rCCA, and noise results when 31 dimensions are kept
after reduction (|ZX | = |ZY | = mself + mshared). PCA now can detect more shared
signals when they are weaker than the self signals (A1), however, with a significantly
lower quality compared to figure 2.3, but suddenly explores the whole phase space,
still with lower accuracy than Case 1. PLS, CCA, rCCA, and noise show similar
behavior to figure 2.5.

2.5.4 Key Parameters and Testing Technique for Dimension-

ality of Self and Shared Signals

Our analysis suggests that there are three relevant factors that determine the ability

of DR to reconstruct shared signals. The first is the strength of the shared and the
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self signals compared to each other and to noise. For brevity, in the following analysis,

we fix γself and define the ratio γ̃ = γshared/γself to represent this effect. The second

factor affecting the performance is the ratio between the number of shared and self

signals, denoted by m̃ = mshared/mself. The third factor is the number of samples per

dimension of the reduced variable, denoted by q̃ = T/|Z|.

In Fig. 2.7, we illustrate how these parameters influence the performance of DR,

RC ′. Each subplot varies q̃, while holding T constant and changing |ZX |. We compare

the results of PCA (representing IDR) and rCCA (representing SDR). Each curve is

averaged over 10 trials, with error bars indicating 1 standard deviation around the

mean, using algorithmic parameters as described in section 2.4.3.

We see that the relative strength of signals, as represented by γ̃, plays a significant

role in determining which method performs better. If the shared signals are larger

(bottom) both approaches work. However, for weak shared signals (top), SDR is

generally more effective. Further, the ratio between the number of shared and self

signals, m̃, also plays an important role. When m̃ is large (left), IDR is more likely to

detect the shared signal before the self signals, and it approaches the performance

of SDR. However, when m̃ is small, IDR is more likely to capture the self signals

before moving on to the shared signals, degrading performance (right). Finally, not

surprisingly, the number of samples per dimension of the compressed variables, q̃, is

also critical to the success. If q̃ is small, the signal is drowned in the sampling noise,

and adding more retained dimensions hurts the DR process. This expresses itself as

a peak for SDR performance around |ZX | = mshared. For IDR, the peak is around

|ZX | = mself + mshared, thus requiring more data to achieve performance similar to

SDR.

We observe that the performance of rCCA (SDR) is almost independent of changing

m̃ or γ̃, indicating that it focuses on shared dimensions even if the latter is masked

by self signals. The algorithm crucially depends on q̃, where adding more dimensions
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(decreasing q̃) than needed hurts the reduction. This is because, for a fixed number

of samples, the reconstruction of each dimension then gets worse. In contrast, for

PCA (IDR), the performance depends on all three relevant parameters, q̃, m̃, and γ̃.

At some parameter combinations, the performance of IDR in reconstructing shared

signals approaches SDR. However, in all cases, SDR never performs worse than IDR

on this task.
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Figure 2.7: Performance of PCA (IDR) and rCCA (SDR) for different values of
the relevant parameters of the model: the number of samples per dimension of the
compressed variable (q̃), the strength of shared signals relative to the self ones (γ̃),
and the ratio of the number of shared to self signal components (m̃), while fixing the
number of samples (T = 1000) and the number of shared dimensions (mshared = 10).
Note that decreasing q̃ (left to right) corresponds to increasing the dimension of the
latent space |ZX | at a fixed number of samples T .
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2.5.5 Beyond Linear Models - Noisy MNIST

2.5.5.1 The Dataset
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Figure 2.8: Dataset containing paired MNIST digit samples sharing only the same
identity (shared signal). The first row (X) shows MNIST digits randomly subjected
to scaling, (0.5 − 1.5), and rotation with an angle of (0 − π/2), while the second row
(Y ) shows MNIST digits with an added background Perlin noise (self signals). In the
bottom row, histograms of self correlations for the X and Y datasets (left and middle,
respectively) illustrate a wide range of correlations, while the histogram of the cross
correlation between X and Y (right) demonstrates a smaller range.

To analyze linear DR methods on nonlinear data, we followed the same procedure

as in Fig. 2.7 for a dataset inspired by the noisy MNIST dataset [94, 157, 158, 2]. This

dataset has two distinct views of data, each of dimensionality 28× 28 pixels, examples

of which are shown in Fig. 2.8. The first view is an image of the digit subjected

to a random rotation within an angle uniformly sampled between 0 and π
2
, along

with scaling by a factor uniformly distributed between 0.5 and 1.5. The second view

consists of another image with the same digit identity with an additional background

layer of Perlin noise [120], with the noise factor uniformly distributed between 0 and

1. Both views are normalized to an intensity range of [0, 1), then flattened to form an

array of 784 dimensions.

To cast this dataset into our language, we shuffled the images within labels,

retaining the shared label identity (that is the shared signal), but we still have the
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view-specific details (which is the self signal). This resulted in a total dataset size of

∼ 56k images for training and ∼ 7k images for testing. The correlation histogram of

X (or Y ) with itself shows a relatively wide spectrum when compared to the cross

correlation between X and Y , highlighting that the self signal is stronger, and can lead

to different DR methods overseeing the shared one. The complexity of the tasks makes

it sufficiently challenging, serving as a good benchmark for evaluating the performance

of the different DR techniques.

2.5.5.2 Results

Figure 2.9 shows the performance of PCA, PLS, CCA, and rCCA applied to the

modified Noisy MNIST dataset for varying sampling scenarios. The three panels

are evaluated for different sample sizes (1000, 10, 000, and ∼ 56, 000 samples), from

undersampled to the full dataset.

In each scenario, the training samples are used for the DR methods. Subsequently,

the learned projection matrices onto the singular directions are used to transform a

separate test dataset of around 7, 000 samples into low-dimensional spaces, yielding
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Figure 2.9: Performance of PCA, PLS, CCA, rCCA applied to the modified Noisy
MNIST dataset across varying sampling scenarios. Each panel represents different
sample sizes (1000, 10, 000, and approximately 56, 000 samples). The x-axis denotes
the inverse of the number of samples per retained dimensions (1/q̃), while the y-
axis represents the total corrected correlation between the obtained low-dimensional
representations ZX and ZY .
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ZX and ZY . The correlation between these transformed spaces is computed using the

Frobenius norm of the correlation matrix. As before, we then subtracted from it the

correlation value obtained from a random matrix of the same size. This difference is

then plotted against 1/q̃, which is the measure of how many dimensions are retained

at each sampling ratio.

In the undersampled scenario (1000 samples), rCCA and PLS demonstrate an

early detection (in terms of the number of kept dimensions after reduction) of shared

signals, whereas PCA initially lags behind. As the number of dimensions increases,

all methods exhibit a decline in correlation due to increased noise as we have fewer

samples per dimension. CCA does not work in this scenario, since covariance matrices

are degenerate.

Upon increasing the sample size (10, 000 samples), a similar pattern emerges

initially, where all methods experience an increase in total correlation till a certain

number of kept dimensions is reached, then a decline when adding more dimensions.

The decline is because one needs to estimate more singular vectors from the same

number of samples. However, beyond a certain number of singular vectors, an increase

in correlation is observed. This is because the number of vectors is now sufficient

to learn both the shared and the self signals. We observe that rCCA maintains

superior performance, while PCA reaches peak correlation at a higher number of kept

dimensions, providing a rough estimation of the number of true self and shared signals.

With the full dataset (approximately 56,000 samples), a similar trend is seen. Yet

CCA’s performance approaches that of rCCA.

Notably, the consistent superiority of Simultaneous Dimensionality Reduction

(SDR) over Independent Dimensionality Reduction (IDR) is reaffirmed, emphasizing

its effectiveness in detecting shared signals even in nonlinear datasets.
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2.6 Discussions

2.6.1 Extensions and Generalizations

We used a generative linear model which captures multiple desired features of multi-

modal data with shared and non-shared signals. The model focused only on data with

two measured modalities. However, while not a part of this study, the model can be

readily extended to accommodate more than two modalities (e. g., Xi = Ri+UiVi+PQi

for i = 1, ..., n, where n represents the number of modalities). Then, methods such

as Tensor CCA, which can handle more than two modalities [99], can be used to get

insight into DR on such data.

2.6.2 Explaining Observations in the Literature

We analyzed different DR methods on data from this model in different parameter

regimes. Linear SDR methods were clearly superior to their IDR counterparts for

detecting shared signals. We observed similar results on a nonlinear dataset as well.

We thus make a strong practical suggestion that, whenever the goal is to reconstruct

a low dimensional representation of covariation between two components of the data,

IDR methods (PCA) should always be avoided in favor of SDR. Of the examined SDR

approaches, rCCA is a clear winner in all parameter regimes and should always be

preferred. These findings explain the results of, for example, [130] and others that

SDR can recover joint neuro-behavioral latent spaces with fewer latent dimensions and

using fewer samples than IDR methods. Further, our observation that SDR is always

superior to IDR in the context of our model corroborates the theoretical findings of

[101], who proved a similar result in the context of discrete data and a different SDR

algorithm, namely the Symmetric Information Bottleneck [50]. [153] made similar

conclusions using conditional covariance matrices for the reduction in the context of

classification. More recent work of [2] showed similar results using deep variational
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methods. Collectively, these diverse investigations, linear and nonlinear, theoretical,

computational, and empirical, provide strong evidence that generic (not just linear)

SDR methods are likely to be more efficient in extracting covariation than their IDR

analogs.

2.6.3 Is SDR strictly effective in low sampling situations?

Our study answers an open question in the literature surrounding the effectiveness

of SDR techniques. Specifically, there has been debate about whether PLS, an SDR

method, is effective at low sampling [36, 61, 55, 56]. Our results show that SDR is

not necessarily effective in the undersampled regime. It works well when the number

of samples per retained dimension is high (even if the number of samples per observed

dimension is low), but only when the dimensionality of the reduced description is

matched to the actual dimensionality of the shared signals.

2.6.4 Diagnostic Test for number of latent signals

In addition to the previous, our results can be used as a diagnostic test to determine

the number of shared versus self signals in data. As demonstrated in Fig. 2.7, total

correlations between ZX and ZY obtained by applying PCA and rCCA increase

monotonically as the dimensionality of Zs increases, until this dimensionality becomes

larger than the signal dimensionality. For PCA, the signal dimensionality is equal to

the sum of the number of the shared and the self signals, mshared + mself. For rCCA,

it is only the number of the shared signal. Thus increasing the dimensionality of

the compressed variables and tracking the performance of rCCA and PCA until they

diverge can be used to identify the number of self signals in the data, provided that

the data, indeed, has a low-dimensional latent structure. This approach can be a

valuable tool in various applications, where the characterization of shared and self

signals in complex systems can provide insights into their structure and function.
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2.6.5 Limitations, and Future Work

2.6.5.1 Linearity of the model

While this work has provided useful insight, the assumptions made here may not fully

capture the complexity of real-world data. Specifically, our data is generated by a

linear model with random Gaussian features. It is unlikely that real data have this

exact structure. Therefore, there is a need for further exploration of the advantages

and limitations of linear DR methods on data that have a low-dimensional, but

nonlinear shared structure. This can be done using more complex nonlinear generative

models, such as nonlinearly transforming the data generated by Eq. (2.1-2.2), or

random feature two-layered neural network models [126]. Alternatively, analyzing the

model, Eq. (2.1) using various theoretical techniques [23, 153, 123] is likely to offer

even more insights into its properties. Collectively, these diverse approaches would

aid our understanding of different DR methods under diverse conditions.

2.6.5.2 Linearity of the methods

A different possible future research direction is to explore the performance of nonlinear

DR methods on data from generative models with a latent low-dimensional nonlinear

structure. Autoencoders and their variational extensions are a natural extension of

IDR to learn nonlinear reduced dimensional representations [68, 87, 66]. Meanwhile,

Deep CCA and its variational extensions [7, 157, 32, 158] should be explored as a

nonlinear version of SDR. Both of these types of methods can potentially capture

more complex relationships between the modalities and improve the quality of the

reduced representations, and while recent work suggests that [2], it is not clear if the

SDR class of methods is always more efficient than the IDR one.
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2.6.5.3 Linearity of the metric

Our analysis also depends on the choice of metric used to quantify the performance of

DR, and different choices should also be explored. For example, to capture nonlinear

correlations, mutual information can be utilized to quantify the relationships between

the reduced representations.

2.6.6 Conclusion

In conclusion, we highlight a general principle that, when searching for a shared

signal between different modalities of data, SDR methods are preferable to IDR

methods. Additionally, the differences in performance between the two classes of

methods can tell us a lot about the underlying structure of the data. Finally, for

a limited number of samples, naive approaches, such as increasing the number of

compressed dimensions indefinitely to overcome the masking of shared signals by self

signals are infeasible. Thus, the use of SDR methods becomes even more essential

in such cases, and despite the aforementioned limitations, we believe that our work

provides a compelling addition to the body of knowledge that SDR outperforms IDR

in detecting shared signals quite generally.

2.7 Limitations, and Future Work

While this work has provided useful insight, the assumptions made here may not fully

capture the complexity of real-world data. Specifically, our data is generated by a

linear model with random Gaussian features. It is unlikely that real data have this

exact structure. Therefore, there is a need for further exploration of the advantages and

limitations of linear DR methods on data that have a low-dimensional, but nonlinear

shared structure. This can be done using more complex nonlinear generative models,

such as nonlinearly transforming the data generated by Eq. (2.1-2.2), or random
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feature two-layered neural network models [126].

A different possible future research direction is to explore the performance of

nonlinear DR methods on data from generative models with a latent low-dimensional

nonlinear structure. Autoencoders and their variational extensions are a natural

extension of IDR to learn nonlinear reduced dimensional representations [68, 87, 66].

Meanwhile, Deep CCA and its variational extensions [7, 157, 32, 158] should be

explored as a nonlinear version of SDR. Both of these types of methods can potentially

capture more complex relationships between the modalities and improve the quality of

the reduced representations, and it is not clear if the SDR class of methods is always

more efficient than the IDR one.

Further, our analysis depends on the choice of metric used to quantify the perfor-

mance of DR, and different choices should also be explored. For example, to capture

nonlinear correlations, mutual information can be utilized to quantify the relationships

between the reduced representations.

Despite the aforementioned limitations, we believe that our work provides a

compelling addition to the body of knowledge that SDR outperforms IDR in detecting

shared signals quite generally.
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Chapter 3

Deep Variational Multivariate

Information Bottleneck Framework

3.1 Summary

1Variational dimensionality reduction methods are known for their high accuracy,

generative abilities, and robustness. We introduce a framework to unify many existing

variational methods and design new ones. The framework is based on an interpretation

of the multivariate information bottleneck, in which an encoder graph, specifying

what information to compress, is traded-off against a decoder graph, specifying a

generative model. Using this framework, we rederive existing dimensionality reduction

methods including the deep variational information bottleneck and variational auto-

encoders. The framework naturally introduces a trade-off parameter extending the

deep variational CCA (DVCCA) family of algorithms to beta-DVCCA. We derive

a new method, the deep variational symmetric informational bottleneck (DVSIB),

1This chapter presents the paper [2] with the title Deep Variational Multivariate Information
Bottleneck – A Framework for Variational Losses. This work was conducted in collaboration with K.
Michael Martini and Ilya Nemenman. Michael and I contributed equally to all the analytics, coding,
result production, and manuscript writing. All authors contributed to conceiving the framework and
reviewed the manuscript.
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which simultaneously compresses two variables to preserve information between their

compressed representations. We implement these algorithms and evaluate their ability

to produce shared low dimensional latent spaces on Noisy MNIST dataset. We show

that algorithms that are better matched to the structure of the data (in our case,

beta-DVCCA and DVSIB) produce better latent spaces as measured by classification

accuracy, dimensionality of the latent variables, and sample efficiency. We believe

that this framework can be used to unify other multi-view representation learning

algorithms and to derive and implement novel problem-specific loss functions.

3.2 Introduction

Large dimensional multi-modal datasets are abundant in multimedia systems utilized

for language modeling [163, 168, 127, 129, 60, 155, 65], neural control of behavior

studies [139, 150, 92, 114], multi-omics approaches in systems biology [37, 166, 144,

80, 97], and many other domains. Such data come with the curse of dimensionality,

making it hard to learn the relevant statistical correlations from samples. The problem

is made even harder by the data often containing information that is irrelevant to the

specific questions one asks. To tackle these challenges, a myriad of dimensionality

reduction (DR) methods have emerged. By preserving certain aspects of the data

while discarding the remainder, DR can decrease the complexity of the problem, yield

clearer insights, and provide a foundation for more refined modeling approaches.

DR techniques span linear methods like Principal Component Analysis (PCA) [75],

Partial Least Squares (PLS) [161], Canonical Correlations Analysis (CCA) [76], and

regularized CCA [152, 171], as well as nonlinear approaches, including Autoencoders

(AE) [68], Deep CCA [7], Deep Canonical Correlated AE [157], Correlational Neural

Networks [32], Deep Generalized CCA [18], and Deep Tensor CCA [162]. Of particular

interest to us are variational methods, such as Variational Autoencoders (VAE)
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[87], beta-VAE [66], Joint Multimodal VAE (JMVAE) [143], Deep Variational CCA

(DVCCA) [158], Deep Variational Information Bottleneck (DVIB) [5], Variational

Mixture-of-experts AE [134], and Multiview Information Bottleneck [46]. These DR

methods use deep neural networks and variational approximations to learn robust

and accurate representations of the data, while, at the same time, often serving as

generative models for creating samples from the learned distributions.

There are many theoretical derivations and justifications for variational DR methods

[87, 66, 143, 158, 84, 124, 5, 14, 96, 156, 154, 45, 79, 78]. This diversity of derivations,

while enabling adaptability, often leaves researchers with no principled ways for

choosing a method for a particular application, for designing new methods with

distinct assumptions, or for comparing methods to each other.

Here, we introduce the Deep Variational Multivariate Information Bottleneck

(DVMIB) framework, offering a unified mathematical foundation for many variational

DR methods. Our framework is grounded in the multivariate information bottleneck

loss function [147, 50]. This loss, amenable to approximation through upper and

lower variational bounds, provides a system for implementing diverse DR variants

using deep neural networks. We demonstrate the framework’s efficacy by deriving

the loss functions of many existing variational DR methods starting from the same

principles. Furthermore, our framework naturally allows the adjustment of trade-off

parameters, leading to generalizations of these existing methods. For instance, we

generalize DVCCA to β-DVCCA. The framework further allows us to introduce and

implement in software novel DR methods. We view the DVMIB framework, with its

uniform information bottleneck language, conceptual clarity of translating statistical

dependencies in data via graphical models of encoder and decoder structures into

variational losses, the ability to unify existing approaches, and easy adaptability to

new scenarios as one of the main contributions of our work.

Beyond its unifying role, our framework offers a principled approach for deriving



50

problem-specific loss functions using domain-specific knowledge. Thus, we anticipate

its application for multi-view representation learning across diverse fields. To illustrate

this, we use the framework to derive a novel dimensionality reduction method, the

Deep Variational Symmetric Information Bottleneck (DVSIB), which compresses two

random variables into two distinct latent variables that are maximally informative

about one another. This new method produces better representations of classic

datasets than previous approaches. The introduction of DVSIB is another major

contribution of our work.

In summary, this chapter makes the following contributions to the field:

1. Introduction of the Variational Multivariate Information Bottleneck

Framework: We provide both intuitive and mathematical insights into this

framework, establishing a robust foundation for further exploration.

2. Rederivation and Generalization of Existing Methods within a Com-

mon Framework: We demonstrate the versatility of our framework by system-

atically rederiving and generalizing various existing methods from the literature,

showcasing the framework’s ability to unify diverse approaches.

3. Design of a Novel Method — Deep Variational Symmetric Information

Bottleneck (DVSIB): Employing our framework, we introduce DVSIB as a

new method, contributing to the growing repertoire of techniques in variational

dimensionality reduction. The method constructs high-accuracy latent spaces

from substantially fewer samples than comparable approaches.

The chapter is structured as follows. First, we introduce the underlying math-

ematics and the implementation of the DVMIB framework. We then explain how

to use the framework to generate new DR methods. In Tbl. 3.1, we present several

known and newly derived variational methods, illustrating how easily they can be

derived within the framework. As a proof of concept, we then benchmark simple
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computational implementations of methods in Tbl. 3.1 against the Noisy MNIST

dataset. Appendices present detailed treatment of all terms in variational losses in

our framework, discussion of multi-view generalizations, and more details —including

visualizations— of the performance of many methods on the Noisy MNIST.

3.3 Multivariate Information Bottleneck Frame-

work

We represent DR problems similar to the Multivariate Information Bottleneck (MIB)

of Friedman et al. [50], which is a generalization of the more traditional Informa-

tion Bottleneck algorithm [147] to multiple variables. The reduced representation

is achieved as a trade-off between two Bayesian networks. Bayesian networks are

directed acyclic graphs that provide a factorization of the joint probability distribu-

tion, P (X1, X2, X3, .., XN) =
∏N

i=1 P (Xi|PaGXi
), where PaGXi

is the set of parents of

Xi in graph G. The multiinformation [142] of a Bayesian network is defined as the

Kullback-Leibler divergence between the joint probability distribution and the product

of the marginals, and it serves as a measure of the total correlations among the variables,

I(X1, X2, X3, ..., XN ) = DKL(P (X1, X2, X3, ..., XN )∥P (X1)P (X2)P (X3)...P (XN )). For

a Bayesian network, the multiinformation reduces to the sum of all the local informa-

tions I(X1, X2, ..XN) =
∑N

i=1 I(Xi;PaGXi
) [50].

The first of the Bayesian networks is an encoder (compression) graph, which models

how compressed (reduced, latent) variables are obtained from the observations. The

second network is a decoder graph, which specifies a generative model for the data from

the compressed variables, i.e., it is an alternate factorization of the distribution. In

MIB, the information of the encoder graph is minimized, ensuring strong compression

(corresponding to the approximate posterior). The information of the decoder graph

is maximized, promoting the most accurate model of the data (corresponding to
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maximizing the log-likelihood). As in IB [147], the trade-off between the compression

and reconstruction is controlled by a trade-off parameter β:

L = Iencoder − βIdecoder. (3.1)

In this work, our key contribution is in writing an explicit variational loss for

typical information terms found in both the encoder and the decoder graphs. All terms

in the decoder graph use samples of the compressed variables as determined from

the encoder graph. If there are two terms that correspond to the same information

in Eq. (3.1), one from each of the graphs, they do not cancel each other since they

correspond to two different variational expressions. For pedagogical clarity, we do this

by first analyzing the Symmetric Information Bottleneck (SIB), a special case of MIB.

We derive the bounds for three types of information terms in SIB, which we then use

as building blocks for all other variational MIB methods in subsequent Sections.

3.3.1 Deep Variational Symmetric Information Bottleneck

The Deep Variational Symmetric Information Bottleneck (DVSIB) simultaneously

reduces a pair of datasets X and Y into two separate lower dimensional compressed

versions ZX and ZY . These compressions are done at the same time to ensure that

the latent spaces are maximally informative about each other. The joint compression

is known to decrease dataset size requirements compared to individual ones [101].

Having distinct latent spaces for each modality usually helps with interpretability. For

example, X could be the neural activity of thousands of neurons, and Y could be the

recordings of joint angles of the animal. Rather than one latent space representing

both, separate latent spaces for the neural activity and the joint angles are sought. By

maximizing compression as well as I(ZX , ZY ), one constructs the latent spaces that

capture only the neural activity pertinent to joint movement and only the movement
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that is correlated with the neural activity (cf. [114]). Many other applications could

benefit from a similar DR approach.

Gencoder

X Y

ZX ZY

X

Gdecoder

Y

ZX ZY

Figure 3.1: The encoder and de-
coder graphs for DVSIB.

In Fig. 3.1, we define two Bayesian networks

for DVSIB, Gencoder and Gdecoder. Gencoder encodes

the compression of X to ZX and Y to ZY . It

corresponds to the factorization p(x, y, zx, zy) =

p(x, y)p(zx|x)p(zy|y) and the resultant Iencoder =

IE(X;Y )+IE(X;ZX)+IE(Y ;ZY ). The IE(X, Y )

term does not depend on the compressed variables,

does not affect the optimization problem, and

hence is discarded in what follows. Gdecoder represents a generative model for X

and Y given the compressed latent variables ZX and ZY . It corresponds to the

factorization p(x, y, zx, zy) = p(zx)p(zy|zx)p(x|zx)p(y|zy) and the resultant Idecoder =

ID(ZX ;ZY ) + ID(X;ZX) + ID(Y ;ZY ). Combing the informations from both graphs

and using Eq. (3.1), we find the SIB loss:

LSIB = IE(X;ZX) + IE(Y ;ZY ) − β
(
ID(ZX ;ZY ) + ID(X;ZX) + ID(Y ;ZY )

)
. (3.2)

Note that information in the encoder terms is minimized, and information in the

decoder terms is maximized. Thus, while it is tempting to simplify Eq. (3.2) by

canceling IE(X;ZX) and ID(X;ZX), this would be a mistake. Indeed, these terms

come from different factorizations: the encoder corresponds to learning p(zx|x), and

the decoder to p(x|zx).

While the DVSIB loss may appear similar to previous models, such as MultiView

Information Bottleneck (MVIB) [46] and Barlow Twins [164], it is distinct both

conceptually and in practice. For example, MVIB aims to generate latent variables

that are as similar to each other as possible, sharing the same domain. DVSIB,
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however, endeavors to produce distinct latent representations, which could potentially

have different units or dimensions, while maximizing mutual information between

them. Barlow Twins architecture on the other hand appears to have two latent

subspaces while in fact they are one latent subspace that is being optimized by a

regular information bottleneck.

We now follow a procedure and notation similar to Alemi et al. [5] and construct

variational bounds on all IE and ID terms. Terms without leaf nodes, i. e., ID(ZX , ZY ),

require new approaches.

3.3.2 Variational Bounds on DVSIB Encoder Terms

The information IE(ZX ;X) corresponds to compressing the random variable X to

ZX . Since this is an encoder term, it needs to be minimized in Eq. (3.2). Thus,

we seek a variational bound IE(ZX ;X) ≤ ĨE(ZX ;X), where ĨE is the variational

version of IE, which can be implemented using a deep neural network. We find

ĨE by using the positivity of the Kullback–Leibler divergence. We make r(zx)

be a variational approximation to p(zx). Then DKL(p(zx)∥r(zx)) ≥ 0, so that

−
∫
dzxp(zx) ln(p(zx)) ≤ −

∫
dzxp(zx) ln(r(zx)). Thus, −

∫
dxdzxp(zx, x) ln(p(zx)) ≤

−
∫
dxdzxp(zx, x) ln(r(zx)). We then add

∫
dxdzxp(zx, x) ln(p(zx|x)) to both sides and

find:

IE(ZX ;X) =

∫
dxdzxp(zx, x) ln

(
p(zx|x)

p(zx)

)
≤
∫

dxdzxp(zx, x) ln

(
p(zx|x)

r(zx)

)
≡ ĨE(ZX ;X). (3.3)



55

We further simplify the variational loss by approximating p(x) ≈ 1
N

∑N
i=1 δ(x− xi), so

that:

ĨE(ZX ;X) ≈ 1

N

N∑
i=1

∫
dzxp(zx|xi) ln

(
p(zx|xi)

r(zx)

)
=

1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx)).

(3.4)

The term IE(Y ;ZY ) can be treated in an analogous manner, resulting in:

ĨE(ZY ;Y ) ≈ 1

N

N∑
i=1

DKL(p(zy|yi)∥r(zy)). (3.5)

3.3.3 Variational Bounds on DVSIB Decoder Terms

The term ID(X;Z) corresponds to a decoder of X from the compressed variable ZX .

It is maximized in Eq. (3.2). Thus, we seek its variational version ĨD, such that

ID ≥ ĨD. Here, q(x|zx) will serve as a variational approximation to p(x|zx). We

use the positivity of the Kullback-Leibler divergence, DKL(p(x|zx)∥q(x|zx)) ≥ 0, to find∫
dx p(x|zx) ln(p(x|zx)) ≥

∫
dx p(x|zx) ln(q(x|zx)). This gives

∫
dzxdx p(x, zx) ln(p(x|zx))

≥
∫
dzxdx p(x, zx) ln(q(x|zx)). We add the entropy of X to both sides to arrive at the

variational bound:

ID(X;ZX) =

∫
dzxdx p(x, zx) ln

p(x|zx)

p(x)

≥
∫

dzxdxp(x, zx) ln
q(x|zx)

p(x)
≡ ĨD(X;ZX). (3.6)

We further simplify ĨD by replacing p(x) by samples, p(x) ≈ 1
N

∑N
i δ(x− xi) and

using the p(zx|x) that we learned previously from the encoder:

ĨD(X;ZX) ≈ H(X) +
1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(xi|zx)). (3.7)

Here H(X) does not depend on p(zx|x) and, therefore, can be dropped from the loss.
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The variational version of ID(Y ;ZY ) is obtained analogously:

ĨD(Y ;ZY ) ≈ H(Y ) +
1

N

N∑
i=1

∫
dzxp(zy|yi) ln(q(yi|zy)). (3.8)

3.3.4 Variational Bounds on Decoder Terms not on a Leaf -

MINE

The variational bound above cannot be applied to the information terms that

do not contain leaves in Gdecoder. For SIB, this corresponds to the ID(ZX , ZY )

term. This information is maximized. To find a variational bound such that

ID(ZX , ZY ) ≥ ĨD(ZX , ZY ), we use the MINE mutual information estimator [17],

which samples both ZX and ZY from their respective variational encoders. Other

mutual information estimators, such as IInfoNCE [121], can be used as long as they are

differentiable2. Other estimators might be better suited for different problems, but for

our current application, IMINE was sufficient. We variationally approximate p(zx, zy) as

p(zx)p(zy)e
T (zx,zy)/Znorm, where Znorm =

∫
dzxdzyp(zx)p(zy)e

T (zx,zy) is the normaliza-

tion factor. Here T (zx, zy) is parameterized by a neural network that takes in samples of

the latent spaces zx and zy and returns a single number. We again use the positivity of

the Kullback-Leibler divergence, DKL(p(zx, zy)∥p(zx)p(zy)e
T (zx,zy)/Znorm) ≥ 0, which

implies
∫
dzxdzyp(zx, zy) ln(p(zx, zy)) ≥

∫
dzxdzyp(zx, zy) ln p(zx)p(zy)e

T (zx,zy)

Znorm
. Subtract-

ing
∫
dzxdzyp(zx, zy) ln(p(zx)p(zy)) from both sides, we find:

ID(ZX ;ZY ) ≥
∫

dzxdzyp(zx, zy) ln
eT (zx,zy)

Znorm

≡ ĨDMINE(ZX ;ZY ). (3.9)

2Further details and discussions for different estimators are presented in Chapter 4.
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3.3.5 Parameterizing the Distributions and the Reparameter-

ization Trick

H(X), H(Y ), and I(X, Y ) do not depend on p(zx|x) and p(zy|y) and are dropped

from the loss. Further, we can use any ansatz for the variational distributions we

introduced. We choose parametric probability distribution families and learn the

nearest distribution in these families consistent with the data. We assume p(zx|x)

is a normal distribution with mean µZX
(x) and a diagonal variance ΣZX

(x). We

learn the mean and the log variance as neural networks. We also assume that q(x|zx)

is normal with a mean µX(zx) and a unit variance. In principle, we could also

learn the variance for this distribution, but practically we did not find the need

for that, and the approach works well as is. Finally, we assume that r(zx) is a

standard normal distribution. We use the reparameterization trick to produce samples

of zxi,j = zxj
(xi) = µ(xi) +

√
ΣZX

(xi)ηj from p(zx|xi), where ηj is drawn from a

standard normal distribution [87]. We choose the same types of distributions for the

corresponding zy terms.

To sample from p(zx, zy) we use p(zx, zy) =
∫
dxdy p(zx, zy, x, y) =

∫
dxdy p(zx|x)p(zy|y)×

p(x, y) ≈ 1
N

∑N
i=1 p(zx|xi)p(zy|yi) = 1

NM2

∑N
i=1(
∑M

j=1 δ(zx − zxi,j))(
∑M

j=1 δ(zy − zyi,j)),

where zxi,j ∈ p(zx|xi) and zyi,j ∈ p(zy|yi), and M is the number of new samples

being generated. To sample from p(zx)p(zy), we generate samples from p(zx, zy) and

scramble the generated entries zx and zy, destroying all correlations. With this, the
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components of the loss function become

ĨE(X;ZX) ≈ 1

2N

N∑
i=1

[
Tr(ΣZX

(xi)) + ||µ⃗ZX
(xi)||2 − kZX

− ln det(ΣZX
(xi))

]
,

(3.10)

ĨD(X;ZX) ≈ 1

MN

N,M∑
i,j=1

−1

2
||(xi − µX(zxi,j))||2, (3.11)

ĨDMINE(ZX ;ZY ) ≈ 1

M2N

N,M,M∑
i,jx,jy=1

[
T (zxi,jx , zyi,jy) − lnZnorm

]
, (3.12)

where Znorm = Ezx∼p(zx),zy∼p(zy)[e
T (zx,zy)], kZX

is the dimension of ZX , and the corre-

sponding terms for Y are similar. Combining these terms results in the variational

loss for DVSIB:

LDVSIB = ĨE(X;ZX) + ĨE(Y ;ZY ) − β
(
ĨDMINE(ZX ;ZY ) + ĨD(X;ZX) + ĨD(Y ;ZY )

)
.

(3.13)

3.4 Deriving Other DR Methods

The variational bounds used in DVSIB can be used to implement loss functions that

correspond to other encoder-decoder graph pairs and hence to other DR algorithms.

The simplest is the beta variational auto-encoder. Here Gencoder consists of one term:

X compressed into ZX . Similarly Gdecoder consists of one term: X decoded from ZX

(see Table 3.1). Using this simple set of Bayesian networks, we find the variational

loss:

Lbeta-VAE = ĨE(X;ZX) − βĨD(X;ZX). (3.14)

Both terms in Eq. (3.14) are the same as Eqs. (3.10, 3.11) and can be approximated

and implemented by neural networks.

Similarly, we can re-derive the DVCCA family of losses [158]. Here Gencoder is X
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Table 3.1: Method descriptions, variational losses, and the Bayesian Network graphs
for each DR method derived in our framework. See Appendix 3.7.1 for details. For
methods where we can reduce either X or Y , only X graphs/loss are shown

Method Description Gencoder Gdecoder

beta-VAE [87, 66]: Two independent Variational Au-
toencoder (VAE) models trained, one for each view, X
and Y .
LVAE = ĨE(X;ZX) − βĨD(X;ZX)

X

ZX

X

ZX

DVIB [5]: Two bottleneck models trained, one for each
view, X and Y , using the other view as the supervising
signal.
LDVIB = ĨE(X;ZX) − βĨD(Y ;ZX)

X Y

ZX

X Y

ZX

beta-DVCCA: Similar to DVIB [5], but with recon-
struction of both views. Two models trained, compress-
ing either X or Y , while reconstructing both X and Y .
LDVCCA = ĨE(X;ZX) − β(ĨD(Y ;ZX) + ĨD(X;ZX))
DVCCA [158]: β-DVCCA with β = 1.

X Y

ZX

X Y

ZX

beta-joint-DVCCA: A single model trained using a
concatenated variable [X, Y ], learning one latent repre-
sentation Z.
LjDVCCA = ĨE((X, Y );Z) − β(ĨD(Y ;Z) + ĨD(X;Z))
joint-DVCCA [158]: β-jDVCCA with β = 1.

X

Z

Y X

Z

Y

beta-DVCCA-private: Two models trained, com-
pressing either X or Y , while reconstructing both X
and Y , and simultaneously learning private information
WX and WY

LDVCCA-p = ĨE(X;Z) + ĨE(X;WX) + ĨE(Y ;WY ) −
β(ĨD(X; (WX , Z)) + ĨD(Y ; (WY , Z)))
DVCCA-private [158]: β-DVCCA-p with β = 1.

X

Z

Y

WX WY

X

Z

Y

WX WY

beta-joint-DVCCA-private: A single model
trained using a concatenated variable [X, Y ], learn-
ing one latent representation Z, and simultane-
ously learning private information WX and WY .
LjDVCCA-p = ĨE((X, Y );Z)+ĨE(X;WX)+ĨE(Y ;WY )−
β(ĨD(X; (WX , Z)) + ĨD(Y ; (WY , Z)))
joint-DVCCA-private[158]: β-jDVCCA-p with β =
1.

X

Z

Y

WX WY

X

Z

Y

WX WY

DVSIB: A symmetric model trained, producing ZX

and ZY .
LDVSIB = ĨE(X;ZX) + ĨE(Y ;ZY )

−β
(
ĨDMINE(ZX ;ZY ) + ĨD(X;ZX) + ĨD(Y ;ZY )

)
X Y

ZX ZY

X Y

ZX ZY

DVSIB-private: A symmetric model trained, produc-
ing ZX and ZY , while simultaneously learning private
information WX and WY .
LDVSIBp = ĨE(X;WX) + ĨE(X;ZX)+
ĨE(Y ;ZY ) + ĨE(Y ;WY )−
β
(
ĨDMINE(ZX ;ZY ) + ĨD(X; (ZX ,WX)) + ĨD(Y ; (ZY ,WY ))

)
X Y

ZX ZY

WX WY WX

X Y

ZX ZY

WY
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compressed into ZX . Gdecoder reconstructs both X and Y from the same compressed

latent space ZX . In fact, our loss function is more general than the DVCCA loss and

has an additional compression-reconstruction trade-off parameter β. We call this more

general loss β-DVCCA, and the original DVCCA emerges when β = 1:

LDVCCA = ĨE(X;ZX) − β(ĨD(Y ;ZX) + ĨD(X;ZX)). (3.15)

Using the same library of terms as we found in DVSIB, Eqs. (3.10, 3.11), we find:

LDVCCA ≈ 1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx))

− β

(
1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(yi|zx)) +

1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(xi|zx))

)
. (3.16)

This is similar to the loss function of the deep variational CCA [158], but now it has a

trade-off parameter β. It trades off the compression into ZX against the reconstruction

of X and Y from the compressed variable ZX .

Table 3.1 shows how our framework reproduces and generalizes other DR losses

(see Appendix 3.7.1). Our framework naturally extends beyond two variables as well

(see Appendix 3.7.2).

3.5 Results

To test our methods, we created a dataset inspired by the noisy MNIST dataset

[94, 157, 158], consisting of two distinct views of data, both with dimensions of

28 × 28 pixels, cf. Fig. 3.2. The first view comprises the original image randomly

rotated by an angle uniformly sampled between 0 and π
2

and scaled by a factor

uniformly distributed between 0.5 and 1.5. The second view consists of the original

image with an added background Perlin noise [120] with the noise factor uniformly
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Figure 3.2: Dataset consisting of pairs of digits drawn from MNIST that share an
identity. Top row, X: MNIST digits randomly scaled (0.5−1.5) and rotated (0−π/2).
Bottom row, Y : MNIST digits with a background Perlin noise. t-SNE of X and Y
datasets (left and middle) shows poor separation by digit, and there is a wide range
of correlation between X and Y (right).

distributed between 0 and 1. Both image intensities are scaled to the range of [0, 1).

The dataset was shuffled within labels, retaining only the shared label identity between

two images, while disregarding the view-specific details, i.e., the random rotation

and scaling for X, and the correlated background noise for Y . The dataset, totaling

70, 000 images, was partitioned into training (80%), testing (10%), and validation

(10%) subsets. Visualization via t-SNE [67] plots of the original dataset suggest poor

separation by digit, and the two digit views have diverse correlations, making this a

sufficiently hard problem.

The DR methods we evaluated include all methods from Tbl. 3.1. PCA and

CCA [75, 76] served as a baseline for linear dimensionality reduction. Multi-view

Information Bottleneck [46] was included for a specific comparison with DVSIB (see

Appendix 3.7.3). We emphasize that none of the algorithms were given labeled data.

They had to infer compressed latent representations that presumably should cluster

into ten different digits based simply on the fact that images come in pairs, and the
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(unknown) digit label is the only information that relates the two images.

Each method was trained for 100 epochs using fully connected neural networks

with layer sizes (input dim, 1024, 1024, (kZ , kZ)), where kZ is the latent dimension size,

employing ReLU activations for the hidden layers. The input dimension (input dim)

was either the size of X (784) or the size of the concatenated [X, Y ] (1568). The

last two layers of size kZ represented the means and log(variance) learned. For the

decoders, we employed regular decoders, fully connected neural networks with layer

sizes (kZ , 1024, 1024, output dim), using ReLU activations for the hidden layers and

sigmoid activation for the output layer. Again, the output dimension (output dim)

could either be the size of X (784) or the size of the concatenated [X, Y ] (1568).

The latent dimension (kZ) could be kZX
or kZY

for regular decoders, or kZX
+ kWX

or kZY
+ kWY

for decoders with private information. Additionally, another decoder

denoted as decoder MINE, based on the MINE estimator for estimating I(ZX , ZY ),

was used in DVSIB and DVSIB with private information. The decoder MINE is a

fully connected neural network with layer sizes (kZX
+ kZY

, 1024, 1024, 1) and ReLU

activations for the hidden layers. Optimization was conducted using the ADAM

optimizer with default parameters.

To evaluate the methods, we trained them on the training portions of X and Y

without exposure to the true labels. Subsequently, we utilized the trained encoders to

compute Ztrain, Ztest, and Zvalidation on the respective datasets. To assess the quality

of the learned representations, we revealed the labels of Ztrain and trained a linear

SVM classifier with Ztrain and labelstrain. Fine-tuning of the classifier was performed

to identify the optimal SVM slack parameter (C value), maximizing accuracy on Ztest.

This best classifier was then used to predict Zvalidation, yielding the reported accuracy.

We also conducted classification experiments using fully connected neural networks,

with detailed results available in the Appendix 3.7.4. For both SVM and the fully

connected network, we find the baseline accuracy on the original training data and
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Table 3.2: Maximum accuracy from a linear SVM and the optimal kZ and β for
variational DR methods reported on the Y (above the line) and the joint [X, Y ] (below
the line) datasets. († fixed values)

Method Acc. % kZbest 95% kZ range βbest 95% βrange Cbest

Baseline 90.8 784† - - - 0.1
PCA 90.5 256 [64,256*] - - 1
CCA 85.7 256 [32,256*] - - 10
β-VAE 96.3 256 [64,256*] 32 [2,1024*] 10
DVIB 90.4 256 [16,256*] 512 [8,1024*] 0.003
DVCCA 89.6 128 [16,256*] 1† - 31.623
β-DVCCA 95.4 256 [64,256*] 16 [2,1024*] 10
DVCCA-p 92.1 16 [16,256*] 1† - 0.316
β-DVCCA-p 95.5 16 [4,256*] 1024 [1,1024*] 0.316
MVIB 97.7 8 [4,64] 1024 [128,1024*] 0.01
DVSIB 97.8 256 [8,256*] 128 [2,1024*] 3.162
DVSIB-p 97.8 256 [8,256*] 32 [2,1024*] 10
jBaseline 91.9 1568† - - - 0.003
jDVCCA 92.5 256 [64,265*] 1† - 10
β-jDVCCA 96.7 256 [16,265*] 256 [1,1024*] 1
jDVCCA-p 92.5 64 [32,265*] 1† - 10
β-jDVCCA-p 92.7 256 [4,265*] 2 [1,1024*] 10

labels (Xtrain, labelstrain) and (Ytrain, labelstrain), fine-tuning with the test datasets, and

reporting the results of the validation datasets. Using Linear SVM enables us to assess

the linear separability of the clusters of ZX and ZY obtained through the DR methods.

While neural networks excel at uncovering nonlinear relationships that could result in

higher classification accuracy, the comparison with a linear SVM establishes a level

playing field. It ensures a fair comparison among different methods and is independent

of the success of the classifier used for comparison in detecting nonlinear features in

the data, which might have been missed by the DR methods. Here, we focus on the

results of the Y datasets (MNIST with correlated noise background); results for X

are in the Appendix 3.7.4. A parameter sweep was performed to identify optimal kZ

values, ranging from 21 to 28 dimensions on log2 scale, as well as optimal β values,

ranging from 2−5 to 210. For methods with private information, kWX
and kWY

were
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Figure 3.3: Top: t-SNE plot of the latent space ZY of DVSIB colored by the identity
of digits. Top Right: Classification accuracy of an SVM trained on DVSIB’s ZY latent
space. The accuracy was evaluated for DVSIB with a parameter sweep of the trade-off
parameter β = 2−5, ..., 210 and the latent dimension kZ = 21, ..., 28. The max accuracy
was 97.8% for β = 128 and kZ = 256. Bottom: Example digits generated by sampling
from the DVSIB decoder, X and Y branches.

varied from 21 to 26. The highest accuracy is reported in Tbl. 3.2, along with the

optimal parameters used to obtain this accuracy. Additionally, for every method we

find the range of β and the dimensionality kZ of the latent variable ZY that gives 95%

of the method’s maximum accuracy. If the range includes the limits of the parameter,

this is indicated by an asterisk.

Figure 3.3 shows a t-SNE plot of DVSIB’s latent space, ZY , colored by the identity

of digits. The resulting latent space has 10 clusters, each corresponding to one

digit. The clusters are well separated and interpretable. Further, DVSIB’s ZY latent

space provides the best classification of digits using a linear method such as an SVM

showing the latent space is linearly separable. DVSIB maximum classification accuracy

obtained for the linear SVM is 97.8%. Crucially, DVSIB maintains accuracy of at

least 92.9% (95% of 97.8%) for β ∈ [2, 1024∗] and kZ ∈ [8, 256∗]. This accuracy is high
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compared to other methods and has a large range of hyperparameters that maintain

its ability to correctly capture information about the identity of the shared digit.

DVSIB is a generative method, we have provided sample generated digits from the

decoders that were trained from the model graph.
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Figure 3.4: The best SVM classification accuracy curves for each method. Here DVSIB
and DVSIB-private obtained the best accuracy and, together with β-DVCCA-private,
they had the best accuracy for low latent dimensional spaces.

In Fig. 3.4, we show the highest SVM classification accuracy curves for each method.

DVSIB and DVSIB-private tie for the best classification accuracy for Y . Together

with β-DVCCA-private they have the highest accuracy for all dimensions of the latent

space, kZ . In theory, only one dimension should be needed to capture the identity

of a digit, but our datasets also contain information about the rotation and scale for

X and the strength of the background noise for Y . Y should then need at least two

latent dimensions to be reconstructed and X should need at least three. Since DVSIB,
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Figure 3.5: Classification accuracy (A) of DVSIB has a better sample size (n) dependent
scaling. Main: a log-log plot of 100%−A vs 1/n. Slope for fitted lines are 0.345±0.007
for DVSIB, and 0.196±0.013 for β-VAE, corresponding to a faster increase of accuracy
of DVSIB with n. Inset: same data, but plotted as A vs n.

DVSIB-private, and β-DVCCA-private performed with the best accuracy starting

with the smallest kZ , we conclude that methods with the encoder-decoder graphs

that more closely match the structure of the data produce higher accuracy with lower

dimensional latent spaces.

Next, in Fig. 3.5, we compare the sample training efficiency of DVSIB and β-VAE

by training new instances of these methods on a geometrically increasing number of

samples n = [256, 339, 451, . . . ,∼ 42k,∼ 56k], consisting of 20 subsamples of the full

training data (X, Y ) to get (Xtrainn , Ytrainn), where each larger subsample includes the

previous one. Each method was trained for 60 epochs, and we used β = 1024 (as

defined by the DVMIB framework). Further, all reported results are with the latent

space size kZ = 64. We explored other numbers of training epochs and latent space

dimensions (see Appendix 3.7.5.1), but did not observe qualitative differences. We
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follow the same procedure as outlined earlier, using the 20 trained encoders for each

method to compute Ztrainn , Ztest, and Zvalidation for the training, test, and validation

datasets. As before, we then train and evaluate the classification accuracy of SVMs for

the ZY representation learned by each method. Fig. 3.5, inset, shows the classification

accuracy of each method as a function of the number of samples used in training.

Again, CCA and PCA serve as linear methods baselines. PCA is able to capture the

linear correlations in the dataset consistently, even at low sample sizes. However, it is

unable to capture the nonlinearities of the data, and its accuracy does not improve

with the sample size. Because of the iterative nature of the implementation of the

PCA algorithm [117], it is able to capture some linear correlations in a relatively low

number of dimensions, which are sufficiently sampled even with small-sized datasets.

Thus the accuracy of PCA barely depends on the training set size. CCA, on the

other hand, does not work in the under-sampled regime (see [3] for discussion of

this). DVSIB performs uniformly better, at all training set sizes, than the β-VAE.

Furthermore, DVSIB improves its quality faster, with a different sample size scaling.

Specifically, DVSIB and β-VAE accuracy (A, measured in percent) appears to follow

the scaling form A = 100 − c/nm, where c is a constant, and the scaling exponent

m = 0.345±0.007 for DVSIB, and 0.196±0.013 for β-VAE. We illustrate this scaling in

Fig. 3.5 by plotting a log-log plot of 100−A vs 1/n and observing a linear relationship.

3.6 Conclusion

We developed an MIB-based framework for deriving variational loss functions for

DR applications. We demonstrated the use of this framework by developing a novel

variational method, DVSIB. DVSIB compresses the variables X and Y into latent

variables ZX and ZY respectively, while maximizing the information between ZX and

ZY . The method generates two distinct latent spaces—a feature highly sought after in
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various applications—but it accomplishes this with superior data efficiency, compared

to other methods. The example of DVSIB demonstrates the process of deriving

variational bounds for terms present in all examined DR methods. A comprehensive

library of typical terms is included in Appendix 3.7.1 for reference, which can be used

to derive additional DR methods. Further, we (re)-derive several DR methods, as

outlined in Table 3.1. These include well-known techniques such as β-VAE, DVIB,

DVCCA, and DVCCA-private. MIB naturally introduces a trade-off parameter into

the DVCCA family of methods, resulting in what we term the β-DVCCA DR methods,

of which DVCCA is a special case. We implement this new family of methods and

show that it produces better latent spaces than DVCCA at β = 1, cf. Tbl. 3.2.

We observe that methods that more closely match the structure of dependencies

in the data can give better latent spaces as measured by the dimensionality of the

latent space and the accuracy of reconstruction (see Figure 3.4). This makes DVSIB,

DVSIB-private, and β-DVCCA-private perform the best. DVSIB and DVSIB-private

both have separate latent spaces for X and Y . The private methods allow us to learn

additional aspects about X and Y that are not important for the shared digit label,

but allow reconstruction of the rotation and scale for X and the background noise of

Y . We also found that DVSIB can make more efficient use of data when producing

latent spaces as compared to β-VAEs and linear methods.

Our framework may be extended beyond variational approaches. For instance,

in the deterministic limit of VAE, autoencoders can be retrieved by defining the

encoder/decoder graphs as nonlinear neural networks z = f(x) and x = g(z). Addi-

tionally, linear methods like CCA can be viewed as special cases of the information

bottleneck [34] and hence must follow from our approach. Similarly, by using special-

ized encoder and decoder neural networks, e.g., convolutional ones, our framework

can implement symmetries and other constraints into the DR process. Overall, the

framework serves as a versatile and customizable toolkit, capable of encompassing a
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wide spectrum of dimensionality reduction methods. With the provided tools and

code [1] , we aim to facilitate the adaptation of the approach to diverse problems.

3.7 Supplementary Information

3.7.1 Deriving and Designing Variational Losses

In the next two subsections, we provide a library of typical terms found in encoder

graphs, Appendix 3.7.1.1, and decoder graphs, Appendix3.7.1.2. In Appendix 3.7.1.3,

we provide examples of combining these terms to produce variational losses correspond-

ing to beta-VAE, DVIB, beta-DVCCA, beta-DVCCA-joint, beta-DVCCA-private,

DVSIB, and DVSIB-private.

3.7.1.1 Encoder Graph Components

We expand Sec. 3.3.2 and present a range of common components found in encoder

graphs across various DR methods, cf. Fig. (3.6).

a.

X

ZX

b.

X

WX ZX

c.

X

Z

Y

d.

X Y

Figure 3.6: Encoder graph components.

a. This graph corresponds to compressing the random variable X to ZX . Variational

bounds for encoders of this type were derived in the main text in Sec. 3.3.2 and
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correspond to the loss:

ĨE(X;ZX) =
1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx))

≈ 1

2N

N∑
i=1

[
Tr(ΣZX

(xi)) + ||µ⃗ZX
(xi)||2 − kZX

− ln det(ΣZX
(xi))

]
.

(3.17)

b. This type of encoder graph is similar to the first, but now with two outputs, ZX

and WX . This corresponds to making two encoders, one for ZX and one for WX ,

ĨE(ZX ;X) + ĨE(WX ;X), where

ĨE(ZX ;X) ≈ 1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx)), (3.18)

ĨE(WX ;X) ≈ 1

N

N∑
i=1

DKL(p(wx|xi)∥r(wx)). (3.19)

c. This type of encoder consists of compressing X and Y into a single variable Z. It

corresponds to the information loss IE(Z; (X, Y )). This again has a similar encoder

structure to type (a), but X is replaced by a joint variable (X, Y ). For this loss,

we find a variational version:

ĨE(Z; (X, Y )) ≈ 1

N

N∑
i=1

DKL(p(z|xi, yi)∥r(xi, yi)). (3.20)

d. This final type of an encoder term corresponds to information IE(X, Y ), which is

constant with respect to our minimization. In practice, we drop terms of this type.

3.7.1.2 Decoder Graph Components

In this section, we elaborate on the decoder graphs that happen in our considered DR

methods, cf. Fig. (3.7).
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a.

X

ZX

b.

X

WX ZX

c.

X

Z

Y

d.

ZX ZY

Figure 3.7: Decoder graph components.

All decoder graphs sample from their methods’ corresponding encoder graph.

a. In this decoder graph, we decode X from the compressed variable ZX . Variational

bounds for decoders of this type were derived in the main text, Sec. 3.3.3, and they

correspond to the loss:

ĨD(X;ZX) = H(X) +
1

N

N∑
i=1

∫
dzxp(zx|xi) ln q(xi|zx)

≈ H(X) +
1

MN

N,M∑
i,j=1

−1

2
||(xi − µX(zxi,j))||2, (3.21)

where H(X) can be dropped from the loss since it doesn’t change in optimization.

b. This type of decoder term is similar to that in part (a), but X is decoded from two

variables simultaneously. The corresponding loss term is ID(X; (ZX ,WX)). We

find a variational loss by replacing ZX in part (a) by (ZX ,WX):

ĨD(X; (ZX ,WX)) ≈ H(X) +
1

N

N∑
i=1

∫
dzxdwxp(zx, wx|xi) ln(q(xi|zx, wx)), (3.22)

where, again, the entropy of X can be dropped.

c. This decoder term can be obtained by adding two decoders of type (a) together.
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In this case, the loss term is ID(X;Z) + ID(Y ;Z):

ĨD(X;Z) + ĨD(Y ;Z) ≈ H(X) + H(Y )

+
1

N

N∑
i=1

∫
dzp(z|xi) ln(q(xi|z)) +

1

N

N∑
i=1

∫
dzp(z|yi) ln(q(yi|z)), (3.23)

and the entropy terms can be dropped, again.

d. Decoders of this type were discussed in the main text in Sec. 3.3.4. They correspond

to the information between latent variables ZX and ZY . We use the MINE estimator

to find variational bounds for such terms:

ĨDMINE(ZX ;ZY ) =

∫
dzxdzyp(zx, zy) ln

eT (zx,zy)

Znorm

≈ 1

NM2

N,M,M∑
i,jx,jy=1

[
T (zxi,jx , zyi,jy) − lnZnorm

]
.

(3.24)

3.7.1.3 Detailed Method Implementations

For completeness, we provide detailed implementations of methods outlined in Tbl. 3.1.

3.7.1.3.1 Beta Variational Auto-Encoder

Gencoder

X

ZX

Gdecoder

X

ZX

Figure 3.8: Encoder and decoder graphs for the beta-variational auto-encoder method

A variational autoencoder [87, 66] compresses X into a latent variable ZX and then

reconstructs X from the latent variable, cf. Fig. (3.9). The overall loss is a trade-off
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between the compression IE(X;ZX) and the reconstruction ID(X;ZX):

IE(X;ZX) − βID(X;ZX) ≤ ĨE(X;ZX) − βĨD(X;ZX)

≲
1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx)) − β

(
H(X) +

1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(xi|zx))

)
.

(3.25)

H(X) is a constant with respect to the minimization, and it can be omitted from the

loss. Similar to the main text, DVSIB case, we make ansatzes for forms of each of

the variational distributions. We choose parametric distribution families and learn

the nearest distribution in these families consistent with the data. Specifically, we

assume p(zx|x) is a normal distribution with mean µZX
(X) and variance ΣZX

(X). We

learn the mean and the log-variance as neural networks. We also assume that q(x|zx)

is normal with a mean µX(zx) and a unit variance. Finally, we assume that r(zx) is

drawn from a standard normal distribution. We then use the re-parameterization trick

to produce samples of zxj
(x) = µ(x) +

√
ΣZX

(x)ηj from p(zx|x), where η is drawn

from a standard normal distribution. Overall, this gives:

LVAE =
1

2N

N∑
i=1

[
Tr(ΣZX

(xi)) + µ⃗ZX
(xi)

T µ⃗ZX
(xi) − kZX

− ln det(ΣZX
(xi))

]
− β

(
1

MN

N∑
i=1

M∑
j=1

−1

2
(xi − µX(zxj

))T (xi − µX(zxj
))

)
. (3.26)

This is the same loss as for a beta auto-encoder. However, following the convention in

the Information Bottleneck literature [147, 50], our β is the inverse of the one typically

used for beta auto-encoders. A small β in our case results in a stronger compression,

while a large β results in a better reconstruction.

3.7.1.3.2 Deep Variational Information Bottleneck
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Gencoder

X Y

ZX

Gdecoder

X Y

ZX

Figure 3.9: Encoder and decoder graphs for the Deep Variational Information Bottle-
neck.

Just as in the beta auto-encoder, we immediately write down the loss function for

the information bottleneck. Here, the encoder graph compresses X into ZX , while the

decoder tries to maximize the information between the compressed variable and the

relevant variable Y , cf. Fig. (3.9). The resulting loss function is:

LIB = IE(X;Y ) + IE(X;ZX) − βID(Y ;ZX). (3.27)

Here the information between X and Y does not depend on p(zx|x) and can dropped

in the optimization.

Thus the Deep Variational Information Bottleneck [5] becomes :

LDVIB ≈ 1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx))−β

(
1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(yi|zx))

)
, (3.28)

where we dropped H(Y ) since it doesn’t change in the optimization.

As we have been doing before, we choose to parameterize all these distributions

by Gaussians and their means and their log variances are learned by neural networks.

Specifically, we parameterize p(zx|x) = N(µzx(x),Σzx), r(zx) = N(0, I), and q(y|zx) =

N(µY , I). Again we can use the reparameterization trick and sample from p(zx|xi) by

zxj
(x) = µ(x) +

√
Σzx(x)ηj where η is drawn from a standard normal distribution.
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3.7.1.3.3 Beta Deep Variational CCA

beta-DVCCA, cf. Fig. 3.10, is similar to the traditional information bottleneck, but

Gencoder

X Y

ZX

Gdecoder

X Y

ZX

Figure 3.10: Encoder and decoder graphs for beta Deep Variational CCA.

now X and Y are both used as relevance variables:

LDVCCA = ĨE(X;Y ) + ĨE(X;ZX) − β(ĨD(Y ;ZX) + ĨD(X;ZX)) (3.29)

Using the same library of terms as before, we find:

LDVCCA ≈ 1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx))

− β

(
1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(yi|zx)) +

1

N

N∑
i=1

∫
dzxp(zx|xi) ln(q(xi|zx))

)
. (3.30)

This is similar to the loss function of the deep variational CCA [158], but now it has a

trade-off parameter β. It trades off the compression into Z against the reconstruction

of X and Y from the compressed variable Z.

3.7.1.3.4 Beta joint-Deep Variational CCA

Joint deep variational CCA [158], cf. Fig. 3.11, compresses (X, Y ) into one Z and

then reconstructs the individual terms X and Y ,

LDVCCA = IE(X;Y ) + IE((X, Y );Z) − β(ID(Y ;Z) + ID(X;Z)). (3.31)
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Gencoder

X

Z

Y

Gdecoder

X

Z

Y

Figure 3.11: Encoder and decoder graphs for beta joint-Deep Variational CCA.

Using the terms we derived, the loss function is:

LDVCCA ≈ 1

N

N∑
i=1

DKL(p(z|xi, yi)∥r(z))

− β

(
1

N

N∑
i=1

∫
dzp(z|xi) ln(q(yi|z)) +

1

N

N∑
i=1

∫
dzp(z|xi) ln(q(xi|z))

)
. (3.32)

The information between X and Y does not change under the minimization and can

be dropped.

3.7.1.3.5 Beta joint-Deep Variational CCA-private

Gencoder

X

Z

Y

WX WY

Gdecoder

X

Z

Y

WX WY

Figure 3.12: Encoder and decoder graphs for beta Deep Variational CCA-private

This is a generalization of the Deep Variational CCA [158] to include private

information, cf. Fig. 3.12. Here X is encoded into a shared latent variable Z and a

private latent variable WX . Similarly Y is encoded into the same shared variable and

a different private latent variable WY . X is reconstructed from Z and WX , and Y is

reconstructed from Z and WY . In the joint version (X, Y ) are compressed jointly in
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Z similar to the previous joint methods. What follows is the loss X version of beta

Deep Variational CCA-private.

LDVCCAp = IE(X;Y ) + IE((X, Y );Z) + IE(X;WX) + IE(Y ;WY )

− β(ID(X; (WX , Z)) + ID(Y ; (WY , Z))). (3.33)

After the usual variational manipulations, this becomes:

LDVCCAp ≈ 1

N

N∑
i=1

DKL(p(z|xi)∥r(z)) +
1

N

N∑
i=1

DKL(p(wx|xi)∥r(wx))

+
1

N

N∑
i=1

DKL(p(wy|yi)∥r(wy)) − β

(
1

N

N∑
i=1

∫
dzdwxp(wx|xi)p(z|xi) ln(q(yi|z, wx))

+
1

N

N∑
i=1

∫
dzdwyp(wy|yi)p(z|xi) ln(q(xi|z, wy))

)
. (3.34)

3.7.1.3.6 Deep Variational Symmetric Information Bottleneck

This has been analyzed in detail in the main text, Sec. 3.3.1, and will not be repeated

here.

3.7.1.3.7 Deep Variational Symmetric Information Bottleneck-private

Gencoder

X Y

ZX ZY

WX WY WX

X

Gdecoder

Y

ZX ZY

WY

Figure 3.13: Encoder and decoder graphs for DVSIB-private.

This is a generalization of the Deep Variational Symmetric Information Bottleneck

to include private information. Here X is encoded into a shared latent variable ZX
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and a private latent variable WX . Similarly, Y is encoded into its own shared ZY

variable and a private latent variable WY . X is reconstructed from ZX and WX , and

Y is reconstructed from ZY and WY . ZX and ZY are constructed to be maximally

informative about each another. This results in

LDVSIBp = IE(X;WX) + IE(X;ZX) + IE(Y ;ZY ) + IE(Y ;WY )

− β
(
ID(ZX ;ZY ) + ID(X; (ZX ,WX)) + ID(Y ; (ZY ,WY ))

)
. (3.35)

After the usual variational manipulations, this becomes (see also main text):

LDVSIBp ≈ 1

N

N∑
i=1

DKL(p(zx|xi)∥r(zx)) +
1

N

N∑
i=1

DKL(p(zy|xi)∥r(zy))

+
1

N

N∑
i=1

DKL(p(wx|xi)∥r(wx)) +
1

N

N∑
i=1

DKL(p(wy|yi)∥r(wy))

− β

(∫
dzxdzyp(zx, zy) ln

eT (zx,zy)

Znorm

+
1

N

N∑
i=1

∫
dzydwyp(wy|yi)p(zy|yi) ln(q(yi|zy, wy))

+
1

N

N∑
i=1

∫
dzxdwxp(wx|xi)p(zx|xi) ln(q(xi|zx, wx))

)
, (3.36)

where

Znorm =

∫
dzxdzyp(zx)p(zy)e

T (zx,zy). (3.37)

3.7.2 Multi-variable Losses (More than 2 Views / Variables)

It is possible to rederive several multi-variable losses that have appeared in the

literature within our framework.

3.7.2.1 Multi-view Total Correlation Auto-encoder

Here we demonstrate several graphs for multi-variable losses. This first example

consists of a structure, where all the views X1, X2, and X3 are compressed into the
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Gencoder

X1 X2 X3

Z

Gdecoder

X1 X2 X3

Z

Figure 3.14: Encoder and decoder graphs for a multi-view auto-encoder.

same latent variable Z. The corresponding decoder produces reconstructed views

from the same latent variable Z. This is known in the literature as a multi-view

auto-encoder.

LMVAE = ĨE((X1, X2, X3);Z) − β(ĨD(X1;Z) + ĨD(X2;Z) + ĨD(X3;Z)). (3.38)

Using the same library of terms as before, we find:

LMVAE ≈ 1

N

N∑
i=1

DKL(p(z|x1i, x2i, x3i)∥r(z))

−β

(
1

N

N∑
i=1

∫
dzp(z|x1i, x2i, x3i) ln(q(x1i|z)) +

1

N

N∑
i=1

∫
dzp(z|x1i, x2i, x3i) ln(q(x2i|z))

+
1

N

N∑
i=1

∫
dzp(z|x1i, x2i, x3i) ln(q(x3i|z))

)
. (3.39)

3.7.2.2 Deep Variational Multimodal Information Bottlenecks

Gencoder

X1 X2 X3

Z1 Z2 Z3

Z

Gdecoder

X1 X2 X3

Z1 Z2 Z3

Z

Figure 3.15: Encoder and decoder graphs for Multimodal Information Bottleneck.
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This example consists of a structure where all the views X1, X2, and X3 are

compressed into separate latent views Z1, Z2, and Z3 and one global shared latent

variable Z. This structure is analogous to DVCCA-private, but it extends to three

variables rather than two. It appears in the literature with slightly different variations.

In the decoder graph, X1 is reconstructed from both Z and Z1, X2 is reconstructed

from both Z and Z2, and X3 is reconstructed from both Z and Z3.

LDVAE = ĨE((X1, X2, X3);Z) + ĨE(X1;Z1) + ĨE(X2;Z2) + ĨE(X3;Z3)

− β(ĨD(X1; (Z,Z1)) + ĨD(X2; (Z,Z2)) + ĨD(X3; (Z,Z3))) (3.40)

Using the same library of terms as before, we find:

LDVAE ≈ 1

N

N∑
i=1

DKL(p(z|x1i, x2i, x3i)∥r(z)) +
3∑

j=1

1

N

N∑
i=1

DKL(p(zj|xj i)∥rj(z))

− β

(
1

N

N∑
i=1

∫
dzdz1dz2dz3p(z|x1i, x2i, x3i)p(z1|x1i)p(z2|x2i)p(z3|x3i) ln(q(x1i|z, z1))

+
1

N

N∑
i=1

∫
dzdz1dz2dz3p(z|x1i, x2i, x3i)p(z1|x1i)p(z2|x2i)p(z3|x3i) ln(q(x2i|z, z2))

+
1

N

N∑
i=1

∫
dzdz1dz2dz3p(z|x1i, x2i, x3i)p(z1|x1i)p(z2|x2i)p(z3|x3i) ln(q(x3i|z, z3))

)
.

(3.41)

3.7.2.3 Discussion

There exist many other structures that have been explored in the multi-view represen-

tation learning literature, including conditional VIB [134, 82], which is formulated in

terms of conditional information. These types of structures are beyond the current

scope of our framework. However, they could be represented by an encoder mapping

from all independent views Xν to Z, subtracted from another encoder mapping from

the joint view X⃗ to Z. Coupled with this would be a decoder mapping from Z to the
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independent views Xν (or the joint view X⃗, analogous to the Joint-DVCCA). Similarly,

one can use our framework to represent other multi-view approaches, or their approxi-

mations [96, 154, 82]. This underscores the breadth of methods seeking to address

specific questions by exploring known or assumed statistical dependencies within data,

and also the generality of our approach, which can re-derive these methods.

3.7.3 Multi-view Information Bottleneck

The multiview information bottleneck (MVIB) [46] attempts to remove redundant

information between views (v1, v2). This is achieved with the following losses:

L1 = I(z1; v1|v2) − λ1I(v2; z1), (3.42)

L2 = I(z2; v2|v1) − λ1I(v1; z2). (3.43)

These losses are equivalent to two deep variational information bottlenecks performed

in parallel. Within our framework, the same algorithm emerges with the encoder graph

that compresses v1 into z1 and v2 into z2, while the decoder graph would reconstruct

v2 from z1 and v1 from z2.

[46] combines these two losses while enforcing the condition that z1 and z2 are the

same. They bounded the combined loss function to obtain:

LMVIB = DSKL(P (z1|v1)||P (z2|v2)) − βI(z1, z2), (3.44)

with z1 and z2 being the same latent space in this approximation. Here DSKL is

the symmetrized KL divergence, vi corresponds to the two different views, and zi

corresponds to their two latent, compressed representation. (Here we changed the

parameter β to be in front of I(z1, z2), to be consistent with the definition of β we

use elsewhere in this work.) While this loss looks similar to the DVSIB loss, it is
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conceptually different. It attempts to produce latent variables that are as similar to

one another as possible (ideally, z1 = z2). In contrast, DVSIB attempts to produce

different latent variables that could, in theory, have different units, dimensionalities,

and domains, while still being as informative about each other as possible. For example,

in the noisy MNIST, ZX contains information about the labels, the angles, and the

scale of images (all needed for reconstructing X) and no information about the noise

structure. At the same time, ZY contains information about the labels and the noise

factor only (both needed to reconstruct Y ). See Appendix 3.7.4.4 for 2-d latent spaces

colored by these variables, illustrating the difference between ZX and ZY in DVSIB.

Further, in practice, the implementation of MVIB uses the same encoder for both

views of the data; this is equivalent to encoding different views using the same function

and then trying to force the output to be as close as possible to each other, in contrast

to DVSIB.

We evaluate MVIB on the noisy MNIST dataset and include it in Table 3.2. The

performance is similar to that of DVSIB, but slightly worse.

Moreover, MVIB appears to be highly sensitive to parameters and training condi-

tions. Despite employing identical initial conditions and parameters used for training

other methods, the approach often experienced collapses during training, resulting

in infinities. Interestingly enough, in instances where training persisted for a limited

set of parameters (usually low kZ and high β), MVIB generated good latent spaces,

evidenced by their relatively high classification accuracy.

3.7.4 Additional MNIST Results

In this section, we present supplementary results derived from the methods in Tbl 3.1.
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3.7.4.1 Additional Results Tables for the Best Parameters

We report classification accuracy using SVM on data X, and using neural networks

on both X and Y .

Table 3.3: Maximum accuracy from a linear SVM and the optimal kZ and β for
variational DR methods on the X dataset. († fixed values)

Method Acc. % kZbest 95% kZrange βbest 95% βrange Cbest

Baseline 57.8 784† - - - 0.01
PCA 58.0 256 [32,265*] - - 0.1
CCA 54.4 256 [8,265*] - - 0.032
β-VAE 84.4 256 [128,265*] 4 [2,8] 10
DVIB 87.3 128 [4,265*] 512 [8,1024*] 0.032
DVCCA 86.1 256 [64,265*] 1† - 31.623
β-DVCCA 88.9 256 [128,265*] 4 [1,128] 10
DVCCA-private 85.3 128 [32,265*] 1† - 31.623
β-DVCCA-private 85.3 128 [32,265*] 1 [1,8] 31.623
MVIB 93.8 8 [8,16] 128 [128,1024*] 0.01
DVSIB 92.9 256 [64,265*] 256 [4,1024*] 1
DVSIB-private 92.6 256 [32,265*] 128 [8,1024*] 3.162



84

Table 3.4: Maximum accuracy from a feed forward neural network and the optimal kZ
and β for variational DR methods on the Y and the joined [X, Y ] datasets. († fixed
values)

Method Acc. % kZbest 95% kZrange βbest 95% βrange

Baseline 92.8 784† - - -
PCA 97.6 128 [16,256*] - -
CCA 90.2 256 [32,256*] - -
β-VAE 98.4 64 [8,256*] 64 [2,1024*]
DVIB 90.4 128 [8,256*] 1024 [8,1024*]
DVCCA 91.3 16 [4,256*] 1† -
β-DVCCA 97.5 128 [8,256*] 512 [2,1024*]
DVCCA-private 93.8 16 [2,256*] 1† -
β-DVCCA-private 97.5 256 [2,256*] 32 [1,1024*]
MVIB 97.5 16 [8,16] 256 [128,1024*]
DVSIB 98.3 256 [4,256*] 32 [2,1024*]
DVSIB-private 98.3 256 [4,256*] 32 [2,1024*]
Baseline-joint 97.7 1568† - - -
joint-DVCCA 93.7 256 [8,256*] 1† -
β-joint-DVCCA 98.9 64 [8,256*] 512 [2,1024*]
joint-DVCCA-private 93.5 16 [4,256*] 1† -
β-joint-DVCCA-private 95.6 32 [4,256*] 512 [1,1024*]

3.7.4.2 t-SNE Embeddings at Best Parameters

Figures 3.16 and 3.17 display 2d t-SNE embeddings for variables ZX and ZY generated

by various considered DR methods.

3.7.4.3 DVSIB-private Reconstructions for Best Parameters

Figure 3.18 shows the t-SNE embeddings of the private latent variables constructed

by DVSIB-private, colored by the digit label. To the extent that the labels do not

cluster, private latent variables do not preserve the label information shared between

X and Y .
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Table 3.5: Maximum accuracy from a neural network the optimal kZ and β for
variational DR methods on the X dataset. († fixed values)

Method Acc. % kZbest 95% kZrange βbest 95% βrange

Baseline 92.8 784† - - -
PCA 91.9 64 [32,256*] - -
CCA 72.6 256 [256,256*] - -
β-VAE 93.3 256 [16,256*] 256 [2,1024*]
DVIB 87.5 4 [2,256*] 1024 [4,1024*]
DVCCA 87.5 128 [8,256*] 1† -
β-DVCCA 92.2 64 [8,256*] 32 [2,1024*]
DVCCA-private 88.2 8 [8,256*] 1† -
β-DVCCA-private 90.7 256 [4,256*] 8 [1,1024*]
MVIB 93.6 8 [8,16] 256 [128,1024*]
DVSIB 93.9 128 [8,256*] 16 [2,1024*]
DVSIB-private 92.8 32 [8,256*] 256 [4,1024*]

Figure 3.16: t-SNE X

3.7.4.4 Additional Results at 2 Latent Dimensions

We now demonstrate how different DR methods behave when the compressed variables

are restricted to have not more than 2 dimensions, cf. Figs. 3.19, 3.20.
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Figure 3.17: t-SNE Y

3.7.5 DVSIB-private Reconstructions at 2 Latent Dimensions

Figure 3.21 shows the reconstructions of the private latent variables constructed by

DVSIB-private, colored by the digit label, rotations, scales, and noise factors for X

(up), and Y (bottom). Private latent variables at 2 latent dimensions preserve a little

about the label information shared between X and Y , but clearly preserve the scale

information for X, even at only 2 latent dimensions.

3.7.5.1 Testing Training Efficiency

We tested an SVM’s classification accuracy for distinguishing digits based on latent

subspaces created by DVSIB, β-VAE, CCA, and PCA trained using different amounts

of samples. Figure 3.5 in the main text shows the results for 60 epochs of training

with latent spaces of dimension kZX
= kZY

= 64. The DVSIB and β-VAE were trained

with β = 1024. Figure 3.22 shows the SVM’s classification accuracy for a range of

latent dimensions (from right to left): kZX
= kZY

= 2, 16, 64, 256. Additionally, it

shows the results for different amounts of training time for the encoders ranging from

20 epochs (top row) to 100 epochs (bottom row). As explained in the main text, we

plot a log-log graph of 100−A versus 1/n. Plotted in this way, high accuracy appears

at the bottom, and large sample sizes are at the left of the plots. DVSIB, β-VAE, and

CCA often appear linear when plotted this way, implying that they follow the form

A = 100− c/nm. Steeper slopes m on these plots correspond to a faster increase in the
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Figure 3.18: Private embeddings of DVSIB-private colored by labels, rotations, scales,
and noise factors for X (up), and Y (middle). Reconstructions of the digits using both
shared and private information (bottom) show that the private information allows to
produce different backgrounds, scalings, and rotations.

accuracy with the sample size. This parameter sweep shows that the tested methods

have not had time to fully converge at low epoch numbers. Additionally, increasing

the number of latent dimensions helps the SVMs untangle the non-linearities present

in the data and improves the corresponding classifiers.
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Figure 3.19: Clustering of embeddings when restricting kZX
to two for DVSIB, DVSIB-

private, and β-DVCCA, results on the X dataset.

Figure 3.20: Clustering of embeddings when restricting kZY
to two for DVSIB, DVSIB-

private, and β-DVCCA, results on the Y dataset.
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Figure 3.21: Private embeddings of DVSIB-private colored by labels, rotations, scales,
and noise factors for X (top), and Y (bottom).
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Chapter 4

Efficient Estimation of Mutual

Information in Very Large

Dimensional Data

4.1 Summary

1Mutual information (MI) is a measure of statistical dependencies between two variables.

It is a common tool in data analysis in many fields [85, 145, 138, 132, 149, 44]. Thus,

accurate estimators of MI from empirical data are needed. However, such estimation

is a hard problem, and there are provably no estimators that are universally good

for finite datasets [8, 115, 73]. Commonly used estimators perform poorly on high

dimensional data, which is a staple of modern experiments. Recently, a series of

promising machine learning based MI estimation methods have been introduced.

However, it remains unknown how their performance depends on the data set size

and on the structure of nonlinearities in the data, as well as on hyperparameters of

1This section is based on an ongoing work with K. Michael Martini and Ilya Nemenman. The
development of the idea for this chapter was a collaborative effort among all three authors. The code
was written by K. Michael Martini and myself. The figures presented in this chapter are produced by
myself. The text was jointly written by all authors.
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the estimators, such as the dimensionality of the space used by the neural networks

to embed the data and on the duration of training. There are also no accepted tests

to signal when the estimators should or should not be trusted. In this Chapter, we

systematically explore the dependence of MI estimators on properties of the data

sets and on their hyperparameters. We propose and verify a protocol for accurate

estimation of MI, with explicit checks for reliability and consistency of the estimators.

We show that one can estimate MI reliably from data sets where the number of

samples is of the order of the number of dimensions in the data, provided that the

statistical dependencies in data can be summarized accurately via embedding in a low

dimensional space. This opens opportunities for the use of machine learning based

methods for estimating MI from real world datasets.

4.2 Introduction

Mutual information (MI) is a measure of statistical dependence between two variables

[133]. It is a fundamental quantity in many different disciplines. It captures both linear

and nonlinear associations, is reparameterization invariant, and is zero iff the variables

are statistically independent. These and other qualities make it a tool of choice for

data analysis applications in diverse fields [145, 112]. An even wider application of MI

as a statistical analysis tool is hampered by the well known difficulty of estimating it

from data. Indeed, for continuous variables X and Y , MI, measured in nats, is

I(X;Y ) =

∫
dx dy p(x, y) ln

p(x, y)

p(x)p(y)
, (4.1)

where x and y are specific values of the variables, p(·) are the probability density

functions of their arguments, and the integration is over the domain of the variables

(for discrete X and Y , the integrals are replaced by sums, and probability densities

by probabilities). Because MI is a nonlinear function of p, an unbiased estimate of
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p plugged into Eq. (4.1) results in a biased estimate of I. For typical situations,

the bias of estimators is a bigger problem than the variance. This was noticed soon

after MI was introduced [105], and many attempts have been made to design MI

estimators that would correct this bias. We now know that, even for discrete variables,

no estimator can be unbiased universally, for all underlying distributions, until the

number of samples per possible outcome is large [115]. For continuous variables, the

situation is even worse, since MI is reparameterization invariant, and so must be its

estimators, while learning in a reparameterization covariant way is impossible [73].

Nonetheless, significant advances have been made in the field of MI estimation.

For continuous variables, which is the focus of this work, the most commonly used

estimator is by Kraskov et al. [93], and its later modifications [72]. These use the

statistics of distances between neighboring data points to estimate the inhomogeneity

of p and hence its MI. While no guarantees of convergence of any estimator to the true

value can be made, a common heuristic has been developed [141]. It involves applying

the estimator to a subset of the total data, varying the subset size, and verifying

that the estimator does not drift statistically significantly as the subset increases

towards the full data, thus signifying the absence of the sample-size dependent bias

[138, 72]. Empirically, estimating MI using these approaches is only practical when

the dimensionality of both X and Y is, at most, of order 10 [93, 71].

As the number of applications of MI has increased, and the progress of traditional

methods has stalled, the need for better methods for estimating MI is now higher

than ever. A promising development has been the use of neural networks (NN)

methods to estimate MI via first estimating the deviation of p(x, y) from the product

of its marginals using NNs applied to the sampling data [15, 16, 109, 43, 122, 136].

Nominally, these methods can work even for very large dimensional data. However, in

practice, they suffer from multiple drawbacks. First, most of these methods have been

tested only on synthetic data with simple multivariate dependence structures and
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essentially infinite number of samples. Hence their ability to estimate MI in real world

scenarios is unknown. Second, since universally good MI estimation for continuous

variables is impossible, it is essential for any estimator to have internal consistency

checks, which would signal to the user whether the output can or cannot be trusted.

Such checks are either at their early stage of development or have not been developed

for the NN estimators at all [41, 136]. Finally, NN estimators depend on a number

of hyperparameters, such as criteria for stopping the training. How to choose these

parameters to get an unbiased, low-variance estimate remains unknown.

In this work, we systematically study NN-based MI estimators. We apply them to

synthetic and real world datasets to illustrate their strengths and limitations. We start

with multivariate Gaussian data, which is the traditional testing setup. Some methods

fail even for these simple cases, especially if the dimensionality of data increases,

suggesting that they cannot be trusted for nonlinear, real-world datasets. We observe

that the successful methods overcome the curse of dimensionality in MI estimation

by first explicitly constructing a low-dimensional embedding of the data and then

estimating MI in this lower-dimensional embedding space. We develop a protocol for

choosing optimal hyperparameters for NN estimators and for checking if an estimator

is biased. We show that systematically treating NN estimators as a dimensionality

reduction problem addresses many challenges inherent in existing approaches. Overall,

we show that this approach can estimate MI when the number of samples is as small

as of the same order as the number of dimensions in the variables X and Y (not

exponential in them!), provided an efficient low-dimensional representation of data

can be constructed. Further, it is easy to check if the output of the estimator can be

trusted.
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4.3 Background and Previous Work

4.3.1 Estimation of Mutual Information

Estimating MI from finite data is a challenge, as discussed above. The magnitude of

the problem can be understood from a simple argument. Suppose that we estimate

MI for continuous variables, with each of the components of the variables bounded

in a range A. Suppose further that the distribution p(x, y) is smooth, so that the

linear size of its smallest feature is a. Then the MI will be estimated well when the

number of samples is N ≫ (A/a)K , where K is the joint dimensionality of X and Y ,

K = KX + KY . Even for smooth probability distributions, where A/a is only slightly

larger than 1, one needs N ∼ exp(K) samples to estimate MI accurately—the usual

curse of dimensionality. Not knowing the parameterization, in which p is smooth, or

having unbounded variables makes the problem even harder. While the community

has developed many MI estimation methods for continuous variables, none have been

able to break this curse and work with dimensions larger than K ∼ 10 [93] (see [72],

which has pushed this limit). In contrast, most modern data are high-dimensional:

for example, images have thousands of pixels, or one can record activity of thousands

of neurons.

This inability of traditional methods to deal with the curse of dimensionality gave

rise to NN based approaches. Deep NNs can capture complex nonlinear dependencies

in large-dimensional data, sometimes from surprisingly few samples [95]. In the

context of MI estimation, the class of so called variational deep learning methods

has proven to be the most useful [15, 16, 109, 43]. The basic idea is simple: we

have no access to either the joint probability distribution p(x, y) or the marginals

p(x), p(y), and we only have samples from them. However, we can transform the

problem of estimating MI, that is, of evaluating the integral in Eq. (4.1), into a

problem of evaluating what’s known as the critic and the normalization. For example,
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for the MINE estimator of MI [17], we write p(x, y) = p(x)p(y)eT (x,y)/Znorm. Here

T (x, y) is the critic, parameterized by a neural network that takes in samples of x

and y and returns a single number T (x, y). And Znorm =
∫
dx dy p(x)p(y)eT (x,y) is

the normalization. While one cannot guarantee that p(x, y) with approximate critic

and normalization will normalize properly, one optimizes this approximation over all

models implementable by a NN — hence the variational nature of the approach. With

the estimates of T and Znorm available, the integral in Eq. (4.1) is then evaluated by

Monte Carlo sampling.

Other NN methods for MI estimation change the way of parameterizing the

normalization factor (such as NWJ [109], Improved MINE [122], clipped MINE –

SMILE [136], etc.) Some change the training protocol, such as by reformulating the

problem as a contrastive learning problem (e. g., InfoNCE [151]).

4.3.2 Overview of NN information estimators

Here we briefly introduce NN-based MI estimation methods analyzed in this work. A

more holistic review can be found in Refs. [122, 136].

MINE & SMILE [17, 136] both use the above mentioned critic factorization of

p(x, y) resulting in the estimator:

IMINE(X, Y ) ≥ EP [T (x, y)] − log
[
EQ

(
eT (x,y)

)]
, (4.2)

where the first expectation is over the empirical joint probability density, and the

second over the product of the empirical marginals. This Monte Carlo sampling leads

to biased gradients, which is typically mitigated via a weighted running average over

batches [17].

However, the MINE estimator can have a large variance. To solve this problem,

the SMILE estimator clips the joint to marginal density ratio between e−τ and eτ ,
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where τ is some parameter:

ISMILE(X, Y ) ≥ EP [T (x, y)] − log
[
EQ

(
clip(eT (x,y), e−τ , eτ )

)]
. (4.3)

Smaller τ decreases the variance, but at a cost of a larger bias. At τ → ∞, SMILE

reduces to MINE. In what follows, we use τ = 5.

InfoNCE [151] uses NNs to estimate the conditional distribution p(y|x) as a

function of x and y, which is the critic T (y, x). The resulting estimate is

IInfoNCE(X;Y ) ≥ EP

[
n∑
i

log
T (yi, xi)

1
K

∑n
j=1 T (yi, xj)

]
, (4.4)

where the expectation is over the empirical joint distribution, and n is the batch size.

This is a form of contrastive predictive coding. The estimator is more biased than the

others considered here but also has less variance. The largest MI value InfoNCE can

output is the logarithm of the batch size used for training [122, 136].

Different critics. We consider two types of critics, separable [12] and concate-

nated [69], which correspond to different factorizations of the critic function T (x, y).

Separable critics are of the form T (x, y) = g(x) · h(y), where the functions g and

h are implemented via NN embedding into a space of reduced dimension k, i. e.

g : X → Rk, and h : Y → Rk. Concatenated critics use a single NN that takes in

the concatenated x and y and produces one output per pair, i. e. T : X × Y → R.

A third combined type of critic, often called a bilinear critic [151, 64, 146], is of the

form T (x, y) = f(g(x), h(y)). Similar to the separable critic, the functions g and h

are implemented via neural network embeddings into a space of reduced dimension k.

This is further passed to another concatenated layer(s), similar to the concatenated

critic, which produces one output per pair, i.e., T : X × Y → R.

The choice of critic is important [148, 58]. For example, the separable critic allows

for changing the number of embedding dimensions k for both X and Y , which plays a
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significant role. If k is smaller than the intrinsic, latent dimensionality of KX for X (or

KY forY ), it is likely that the estimator will not capture the full amount of information

between the variables. On the other hand, if k is very large, it could lead to what we

call “information washout”, where a small amount of information is distributed among

many dimensions, making it indistinguishable from statistical noise in all of them, and

hence increasing the variance of the estimator dramatically. Additionally, we will show

later that the saturation of information for intermediate values of k signals the success

of the estimator in capturing the mutual information. Another potentially important

aspect in choosing a separable vs. a concatenated critic is that the former allows the

estimator a better chance of capturing the information when variables X and Y have

drastically different internal structures (e. g., different entropies), without variability

in one variable drowning that in the other, as could happen for the latter. On the

other hand, the concatenated critic is more general, allowing for broader relations

between the embeddings. For example, in a concatenated critic, the first dimension of

X can be mixed with the second dimension of Y , while, in the separable critic, the

first dimension of g(x) interacts only with the first dimension of h(y). However, this

mixing comes at the cost of not being able to change the internal dimensionality of

the embedding, an important test as we will discuss. Bilinear critics could address

this issue by having two separate spaces before allowing them to mix.

Overall, the choice of the critic depends on the question one is asking and a priori

knowledge about the structure of the data set in question. In this work, we do not

aim at a comprehensive evaluation of different critics, and hence focus only on the

two basic critics, the separable and the concatenated ones. Similarly, our goal is not a

comprehensive comparative analysis of different NN estimators. Thus, even though we

explored many NN estimators, including NWJ [109], Jensen-Shannon [110], Donsker

and Varadhan [43], and TUBA [16], we focus on SMILE and InfoNCE, relegating

others to SI. We make this choice since (i) these estimators provide examples of high
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variance/low bias (SMILE) and high bias / low variance (InfoNCE); (ii) none of the

other estimators performed uniformly better than these two; and (iii) some of the

other methods fail additivity and other consistency checks that MI estimators must

obey [136].

4.3.3 Problems of NN mutual information estimators

While NN methods for MI estimation have become popular, the community has not yet

addressed serious concerns about them: NN methods are rarely tested on real-world

(non-Gaussian) data with only a finite number of samples available.

To be able to compare the estimates to a known correct answer, a typical (and

sometimes the only) test bed is data drawn from relatively low-dimensional (KX , KY ∼

10) Gaussian distributions, where the true MI can be calculated analytically. However,

such tests are woefully insufficient. First, simpler, traditional methods [93, 72] would

be sufficient for K ∼ 10, for either Gaussian or non-Gaussian data. Testing must

involve large dimensional data, K ≳ 100, where traditional methods start failing. Yet,

only a few NN methods have been systematically tested in this regime.

Further, for Gaussian data, MI and X − Y correlation matrices are related via

analytical expressions. Such correlation-based MI estimation sets a natural benchmark

for optimal MI estimation (correlation matrices can be estimated accurately when

K/N ≪ 1 [24]). If a correlation-based approach works, but NN methods do not, the

latter are incapable of optimally utilizing the data. This would make it exceedingly

unlikely that NN methods would be able to produce good MI estimates for more

complicated, non-Gaussian data at similar sampling ratios. As we show below, most NN

methods perform worse—sometimes much worse—than correlation-based estimation,

so that sweeping generalizations about their accuracy are hardly warranted.

Finally, NN based MI estimators are typically validated using effectively infinite

data [122, 136]. While unlimited data during training is useful for establishing
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asymptotic consistency of methods, it removes overfitting, unrealistically enhancing

the methods’ performance. As mentioned above, MI estimators suffer from sample

size dependent biases. Thus, success with infinite data does not guarantee success on

real-world, finite size datasets. In practice, one often has N ∼ K. This renders tests

conducted in an infinite data regime not very useful. We will show that it is possible

to produce unbiased MI estimators even for some of these severely undersampled,

high dimensional cases, provided the data can be accurately embedded into a low

dimensional space.

4.3.4 MI Estimation as a DR problem

As argued in Sec. 4.3.1, the accuracy of estimators depends on the dimensionality

of the data. Thus, to increase the accuracy, a natural approach is to reduce the

dimensionality of X and Y to low dimensional descriptions ZX and ZY , respectively,

and then estimate I(ZX ;ZY ) as a proxy for I(X;Y ). By the data processing inequality

[133], I(ZX ;ZY ) − I(X;Y ) ≡ ∆I ≤ 0, save for possible statistical fluctuations. How

tight this probabilistic bound is depends on the quality of the dimensionality reduction

(DR). Compressing X and Y independently may result in keeping the variation in

each of the variables, but not the covariation, resulting in large |∆I|. The analysis in

the preceding Chapters of this dissertation suggests that, to avoid this problem, one

needs to compress the variables simultaneously [101, 3], while maximizing I(ZX ;ZY ),

and hence decreasing |∆I|.

While, to our knowledge, this has not been emphasized in the literature previously,

the critics in the NN based estimators reviewed in Sec. 4.3.2, indeed, internally perform

SDR for the data X and Y . This is the easiest to see in a separable critic, for which one

trains two networks to perform the following reductions: ZX = g(X) and ZY = h(Y ).

The critic then is T (X, Y ) = g(X) · h(Y ) = ZX · ZY , which is a specific choice that

effectively enforces orthogonality of the embeddings: the ith component of g is allowed
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to have information only with the ith component of h. This approach is similar

to other SDR methods we considered in the previous Chapters of this Dissertation,

and, specifically, the Deep Variational Symmetric Information Bottleneck (DVSIB)

[2]. The key difference is that DVSIB uses variational probabilistic encoders, rather

than deterministic, feedforward networks as used in the separable critic. Additionally,

DVSIB includes two reconstruction decoder networks, X = X(ZX) and Y = Y (ZY ),

which are not present in the MI estimator (though see Chapter 5 for discussion of the

removal of the reconstruction from the DVSIB architecture).

The analogy with SDR for the concatenated critic is less clear. However, even here,

the NN still maps the combined vector {X, Y } into a lower-dimensional vector space

Z simultaneously, from which then the critic is evaluated in the output layer of the

NN. This approach is a deterministic analog of another SDR method, the Joint Deep

Variational Canonical Correlations Analysis (DVCCA) [2, 158]. A clearer analogy

can be observed with the bilinear critic, where two networks are used to compress X

and Y , but they are jointly combined into one variable Z. This can be viewed as a

deterministic mapping similar to the original Deep Variational Canonical Correlation

Analysis (DVCCA) [158].

4.4 Results

We start with the case of infinite training data, which is the common way of testing

NN-based MI estimation algorithms. Starting with low-dimensional, Gaussian data

and progressing to high-dimensional, nonlinear data, we already observe some of the

pitfalls of NN methods. We then show that none of the available algorithms can naively

be trusted for the real-world-like, high dimensional regime with limited data. We then

propose to use a more careful implementation of the NN based estimators to explicitly

change the dimensionality of the low-dimensional embedding space, in which we are
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maximizing MI between the embeddings of X and Y . With additional self-consistency

checks, this solves the problem of estimating MI from large-dimensional, undersampled

data.

4.4.1 Infinite Data

4.4.1.1 Low-dimensional data

A typical test case for NN based MI estimation uses samples of X and Y from

correlated Gaussian distributions with KX , KY = 5 . . . 20 dimensions. Typically, there

are no correlations among components of X or Y , but each Xi is correlated with

Yi with a correlation coefficient ρ. A new batch of data, O(102 . . . 103) samples, is

generated at each training step, typically for O(103 . . . 104) steps, resulting in an

unrealistic number of samples (typically N ∼ O(106)). This might seem like a small

dataset for modern machine learning tasks. However, for many physical and biological

applications, obtaining a dataset of such a size is prohibitively hard. Consequently,

K/N → 0, and many methods can perform well in these tests (although not all do).

The performance is shown in Fig. 4.1A,B for SMILE and InfoNCE. (This Figure is

similar to standard figures shown in [17, 136], for example). Both methods work

well for small MI values, though SMILE exhibits a large variance, suggesting that

averaging MI estimates over multiple steps of training is essential. At larger MI,

SMILE starts developing a bias, but InfoNCE completely saturates at ln(batch size),

Fig. 4.1B, confirming that it cannot be trusted in this regime. Additional results for

other methods can be found in the SI (Fig. 4.6)

This relative success of NN methods should come as no surprise. As shown

in Fig. 4.1A,B, for jointly Gaussian data, we can calculate MI from the empirical

correlation matrix of X and Y , I = 1
2

ln |C|
|CXX | |CY Y | , where C is the joint correlation

matrix, and CXX and CY Y are the marginal correlation matrices (numerically, one

needs to carefully remove directions with zero correlations before computing the
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Figure 4.1: MI estimation for low-dimensional distributions. We use a common
“staircase” protocol for exploring the estimation for different MI values. Here MI
jumps after every 2000 steps of training, with every step consisting of a batch of 128
samples. The maximum information is 1 nat in panel (A), and 10 nats in panels (B)
and (C). We sample from correlated Gaussian distributions with KX = KY = 10 and
choose the correlation coefficients that result in the needed MI. All panels show the
true information, estimates IInfoNCE, ISMILE (τ = 5) with a concatenated critic (with
2 hidden layers, each with 256 neurons), and the MI estimate from the empirical
correlation matrix (denoted as Direct calculation). The correlation estimate uses
data from all of the steps preceding the current one for a given MI value. With just
one step, the correlation-based MI estimate is hard to distinguish from the true MI.
For NN methods, we show their value within each training step (thin lines) and an
average smoothed over 100 steps (thick lines). (A) shows that, when the true MI is
small, all methods work well. When MI is high, (B), correlation-based estimation still
works, while NN methods degrade: SMILE overestimates and has a large variance, and
InfoNCE saturates at ln 128 nats (logarithm of the batch size). In (C) we add a cubic
nonlinearity to the data (see text). Now correlation-based method, non-surprisingly,
underestimates MI. However, the effect of the nonlinearity on NN methods is weaker.

determinants). The error of MI estimation based on the correlations is ∼ K/N [24],

and it is empirically negligible compared to the bias and the variance of NN methods,

Fig. 4.1A,B, especially for large MI. While the correlation-based MI is the optimal

benchmark, which NNs cannot hope to match, the relatively large discrepancy between

the optimum and the NN estimators is a red flag: large variance and bias for these

simple data suggest that outputs of NN-based estimators on more complex datasets

should be suspect.

Cubic nonlinearity. To test how MI estimation methods behave on nonlinear

data, we reparameterize the data with an injective continuous nonlinear transformation.
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Figure 4.2: MI estimation for high-dimensional data. (A) rCCA was applied to
the 100 dimensional X and Y , each consisting of 10 copies of data from Fig. 4.1B, to
produce the reduced descriptions ZX and ZY . I(ZX ;ZY ) estimated via the correlation
matrix is plotted. As the dimensionality of the reduced space, kZ becomes larger than
10 (the number of independent X and Y ), it is possible to represent all correlations in
the ZX , ZY space, and the MI reaches the correct value. (B) Similar analysis for the
random features model, produced from 10 independent X ′ and Y ′. As the number of
linear embedding dimensions increases past 10, there is no obvious saturation, and
the MI keeps growing since additional dimensions allow to focus on different parts
of the nonlinear relations among the variables. (C) InfoNCE and SMILE with a
concatenated critic (with 2 hidden layers, each with 256 neurons) on a random features
model, with a staircase increase in MI values, as in Fig. 4.1. Here both X ′ and Y ′ are
100 dimensional. Compared to Fig. 4.1C, bias of SMILE nearly disappeared, likely
because nonlinearities are weaker, and because SMILE can now use the overcomplete
data to estimate correlations more precisely. Additionally, we show the results of
evaluating both methods on a fresh batch of test data, not used in training. The test
and the training curves nearly overlap—in this effectively infinite data regime, there
is no overfitting.

Specifically, we keep X unchanged and set Y → Y 3. While the mutual information

remains constant under this transformation, the linear correlation changes. This results

in the failure of simple linear methods, Fig. 4.1C, underscoring the need for nonlinear

NN approaches. At the same time, NN methods degrade only a little compared to

Gaussian data: both SMILE and InfoNCE have similar variances and somewhat larger

biases compared to the Gaussian case, Fig. 4.1B.

4.4.1.2 High dimensional data

Oversampling. Typical modern experiments have K ≫ 1, with K ∼ N . However,
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the data often can be approximated well with low-dimensional models [47, 10, 159,

137, 114, 108, 70]. How NN based estimators perform for such high dimensional, but

intrinsically simpler data is unknown. We start exploring this with a simple case:

starting with 10-dimensional X ′ and Y ′, as in Sec. 4.4.1.1, we replicate the variables

ten times each into X and Y , respectively, so that KX = KY = 100. Note that

I(X;Y ) = I(X ′;Y ′). A standard approach for high dimensional data is to perform

DR on X, Y and then to estimate the correlation matrix and MI I(ZX ;ZY ) in the

reduced space. For retaining shared information between datasets, Simultaneous DR,

such as regularized CCA (rCCA)2 [76, 152, 171, 3] can be used. Figure 4.2 shows that,

indeed rCCA applied to these data results in accurate MI estimation.

Random features model. We generate nonlinear, yet low-dimensional data

using teacher NNs. Specifically, we take the 10-dimensional data from Sec. 4.4.1.1,

pass them through a NN with one fully connected hidden layer with 1024 neurons and

a sigmoidal nonlinearity, which then eventually outputs a K = 100 dimensional X ′ and

Y ′. Synaptic weights and biases of this teacher NN are initialized with default Pytorch

initialization. rCCA, predictably, fails on these data (Fig. 4.2B): as we increase the

number of embedding dimensions kZ , the reduced variables focus on different parts of

the joint probability distribution p(x, y), overestimating MI. In contrast, both SMILE

and InfoNCE estimate MI well, Fig. 4.2C, even better than in Fig. 4.1C, presumably

because the large K allows many ways to detect all statistical structures. As always,

for large MI, InfoNCE saturates. Finally, Fig. 4.2C, compares MI values on training

and new, test data—in this effectively infinite data regime, there is no overtraining

2Regularized canonical correlation analysis (rCCA) is a technique that finds linear combinations
of two sets of variables that are maximally correlated (cf. Sec 2.4.1.3.2). We fit an rCCA model
from [33] to the equivalent training samples (batch size x number of steps per correlation value in
the staircase setup) of data, specifying that the model should yield kZ dimensions. This allows us
to calculate the correlation matrix in the reduced space. When calculating the correlation, it is
important to be cautious, especially if kZ > KZ (KZ being the true latent dimensionality of X and
Y ), as we might have dimensions that contribute very minimally to the correlation. If we calculate
the determinant of the correlation matrix as a product of its singular values, these small correlations
can lead to numerical instabilities. Therefore, we employ a threshold (typically 10−6 ∼ 10−10) to
disregard any contribution from singular values below this threshold.
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and no difference between the two.

4.4.2 Finite data

Figure 4.2 shows that NN methods can estimate MI reliably even for some high-

dimensional distributions with nonlinear dependencies. However, Fig. 4.1 illustrates

that NN methods do not utilize the available data optimally. Since estimating MI is

a hard problem precisely because datasets are finite, it is crucial to understand how

the estimator performance depends on the amount and the structure of the data. We

explore this on a real and a synthetic dataset, with an even larger dimensionality of X

and Y , KX = KY = 784, and by varying the amount of data N available for training

(N ∼ O(105)).

Noisy MNIST. We use the Noisy MNIST dataset, introduced in Ref. [2] as an

adaptation of Refs. [94, 157, 158]. These data comprise two distinct views of data,

X and Y , each of dimensionality 28 × 28 = 784 pixels, as shown in SI Fig. 4.5. The

first view is an image of a digit from the standard MNIST dataset, subjected to a

random rotation by an angle uniformly sampled between 0 and π
2
, and to a scaling

by a factor uniformly distributed between 0.5 and 1.5. The second view consists of

another image with the same digit identity (but different instance) with an additional

background layer of Perlin noise [120], with the noise factor uniformly distributed

between 0 and 1. Both views are normalized to an intensity range of [0, 1) and then

flattened to form an array of KX = KY = 784 dimensions. The dataset comprises a

total of 55996 ∼ 56k images for training and ∼ 7k images for testing. Overall, the

only correlations between the two views are via the digit class, and all ten digits

are represented nearly uniformly, so that I(X;Y ) ≈ ln 10. Further, correlations are

strongly nonlinear and dimensionality is high, so that the dataset is a natural testbed

for MI estimation. A typical training and testing curves for InfoNCE with separable

and concatenated critics are shown in Fig. 4.3. Panel A in Fig 4.3 shows that MI
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Figure 4.3: MI estimation with limited data. (A) Training and test curves for
InfoNCE evaluated on a Noisy MNIST dataset as a function of training time, measured
in epochs. The blue and orange curves represent a concatenated critic (with 4 hidden
layers, each with 1024 neurons), while the green and red curves represent a separable
critic (also with 4 hidden layers, each with 1024 neurons, and an embedding dimension
of size 16). The vertical dotted orange and red lines indicate the points where the
test information is maximized for each critic, and the corresponding training value is
used as the heuristic value for the best estimate of information. The horizontal dotted
line represents the theoretical value of the information, ln(10), and the horizontal
dashed line represents the maximum value that InfoNCE can achieve, ln(batchsize).
(B) We use maximum test information heuristic to estimate MI as a function of
sample size with the InfoNCE estimator with different critics. The concatenated critic
is shown with blue circles, while the separable critic, which varies by the number
of embedding dimensions, is shown with squares in different colors. (C) Same as
(B), but for the SMILE estimator (τ = 5). In both (B) and (C), it the information
increases with the number of samples N used for training, reaching the true value
at large N . Additionally, the number of embedding dimensions has minimal effect
beyond 4, suggesting that at least four dimensions are necessary to capture all the
information between X and Y . We show means and standard deviations for all
estimators, calculated from five independent trials for each data point.
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estimates on training and test data diverge during training, well before the estimates

reach true MI value, indicating overfitting. Thus, it is important to stop the training

early. We do this by reporting the training value which is obtained when MI estimate

on the test data peaks, which we denote as the max test heuristic3.

Panels B and C show the mean MI values, averaged over five trials, based on the

maximum test heuristic evaluated at different numbers of training samples for InfoNCE

and SMILE, respectively. Both critics used for the estimators are built with 4 hidden

layers, each containing 1024 neurons. Additionally, the separable critic, which allows

for varying the embedding dimension, is tested from embedding dimension of 1 up to

256, for both X and Y . Apart from the significant fluctuations observed when the

separable critic embedding is restricted to only one dimension or when trained on a very

small number of samples, we observe an increase in MI closer towards the true value

with more training samples, which is expected. Notably, we observe that varying the

size of the embedding for the separable critic results in a saturation of MI after kZ = 4.

This indicates that kZ ≥ 4 is necessary to capture all the information between X and

Y in this specific dataset. When the embedding dimension, kZ , is too small to capture

the underlying data structure, MI is underestimated by all methods. When kZ ≥ 4,

and for as large as kZ = 256, information estimates are accurate, as long as N ≫ K.

Note that since ln(10) is smaller than the logarithm of the batch size, InfoNCE and

SMILE would work well, though InfoNCE has a smaller variance, as expected. This

observation can be used as a consistency check for the estimators: changing the

dimensionality of the embedding space should eventually lead to saturation, reflecting

the intrinsic dimensionality of the data, and observing this is one evidence of accuracy

3One might also think of other heuristics. For example, we can consider a zero test heuristic, in
which we choose to report the train value that corresponds to the zero test value. This means that
we have no information left between X and Y and essentially cannot trust any train value beyond
this point. This approach might be useful for downstream tasks where we want to stop our training
once we have captured all possible information. However, we observe that this is not a good heuristic
for accurately estimating the information, as it is likely to result in overfitting. We have also found
this to be true empirically.
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of the estimation. Performing this check via adjusting the embedding size is a key

advantage of using a separable critic, and aligning the dimensionality of the embedding

method with the dimensionality of the data is important for successfully capturing all

relevant shared information [3].

Large dimensional Gaussians with varying number of signal dimensions.

The above results demonstrate the success of the estimators in accurately capturing

the MI in nonlinear higher-dimensional spaces, for a relatively high number of samples4.

We can also see that changing the number of embedding dimensions for the separable

critic can be a valuable tool in detecting the intrinsic dimensionality of the system.

However, it is not yet clear why these methods work in the first place, given that we

are using few samples, O(104 − 105), for O(103) dimensions. We hypothesize that

the reason for the success is that NN MI estimators perform SDR (in two distinct

spaces, as for the separable critic, or in one joint space, as for the concatenated

critic). We demonstrate that existence of an accurate low-dimensional representation

of data is essential for MI estimation by NN methods to work in Fig. 4.4. For

this, we generate two Gaussian variables X and Y with 784 dimensions each and a

fixed amount of information I(X;Y ) = log 10 nats, to mimic the MNIST dataset.

However, this amount of information is distributed among a different number of

correlated components in different examples, KZ = 20, 21, . . . , 29. The correlation in

each component is chosen such that the total amount of information sums to the

same desired I(X;Y ). We test this setup at a relatively high number of samples,

N = 105, to eliminate the effects of finite sampling and verify whether the estimators

can find the same amount of information if distributed among more or fewer intrinsic

latent dimensions. Similar to Fig. 4.3, we evaluate the estimators with concatenated

4It is hard to clearly conclude in this example if the estimators are unbiased, as we ran out of
samples. However, if we are to generate more samples, we should expect asymptotic behavior as N
increases.
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Figure 4.4: Large Dimensional Gaussian with Varying Number of Signal
Dimensions. The theoretical value of information, log(10), is shown as a dotted
line, and log the batch size, log(128), is shown as a dashed line. The plots show
the performance of InfoNCE and SMILE (τ = 5) estimators in capturing MI in
high-dimensional Gaussian data. We generated two Gaussian variables X and Y ,
each with 784 dimensions, and a fixed amount of information I(X;Y ) = log 10 nats,
distributed among a varying number of correlated components KZ = 20, 21, . . . , 29

on the x-axis. For each setup, we evaluated the estimators using both concatenated
and separable critics. The concatenated critic (blue circles) uses a single embedding
space, while the separable critic (squares) uses embeddings of different fixed sizes
kZ = 1, 10, 32, 256 and a matched size corresponding to the true dimensionality of
the data. The plots demonstrate that the InfoNCE estimator effectively captures MI
when the information is distributed across fewer than 10 dimensions for the separable
critic. However, its performance deteriorates when the information is spread across
32 or more dimensions. Conversely, the concatenated critic shows robustness, with a
noticeable decline in performance only at KZ ∼ 128 dimensions.
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critics, fixed-size embeddings for separable critics kZ = 1, 10, 32, 256, and also when

matching the embedding size of the critic with the true dimensionality of the data

(denoted as Matched, kZ = KZ). We see that, indeed, for a separable critic, the

estimators capture MI effectively if it is distributed in KZ < 10. However, when the

information is distributed among 32 dimensions or more, the estimators fail for various

embedding sizes. Surprisingly, the concatenated critic starts failing similarly only

around KZ ∼ 128. We suspect that this is because the concatenated critic freely mixes

the different components of the variables, without imposing a dot product structure

in the latent space, as separable critics do, allowing the critic to have more freedom in

capturing small amounts of information distributed among a relatively high number

of correlated dimensions.

4.5 Discussion and MI Estimation Guidelines

4.5.1 Guidelines for MI estimation from high-dimensional

data

The analysis above leads to suggesting the following practical guidelines for estimating

MI from high-dimensional data. This is adapted from Ref. [72], using the procedures

developed there to test for the self-consistency of the estimators, and hence possible

bias.

1. Use rCCA; evaluate MI based on the correlation matrix in kZ-dimensional

embedding space; evaluate IEST(kZ). If saturation is observed at high kZ , report

the value. If not, then the data is nonlinear; proceed to the next item.

2. Partition the data into training/test sets (90%/10%). Use a NN estimator of

choice for IEST. If the amount of information is expected to be low (less than

ln(batchsize), using InfoNCE is preferred. If not, SMILE is usually a good
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option, but pay attention to the variance. Stop training at maximum of MI on

test data.

3. Vary kZ and the amount of data analyzed, which can be achieved by subsampling

(without replacements, see [72]) from the full dataset. Perform multiple training

runs for each (kZ , N) pair, varying the subsample and the random seed for

training and estimate the standard deviation over the runs, σI(kZ , N).

4. Choose k̂Z in the range where IEST(kZ) is stable within σI (sufficient expressivity,

but no undersampling).

5. If IEST is stable over kZ and N , report IEST(k̂Z , N) as the MI estimate. Otherwise,

no reliable MI estimate has been found.

4.5.2 Discussion

MI is a difficult quantity to estimate, but it is an important quantity to estimate

well. New NN estimators are a promising direction, addressing different regimes of

the bias/variance tradeoff for the estimation, which were unaccessible with previous

methods. However, MI estimation is a hard problem for finite data, and nonlinear

data (otherwise use linear methods!), and these estimators have not been tested for

these cases. Here we showed that all standard NN based neural estimators fail when

the dimensionality of data increases, well within the range of today’s experimental

datasets. We have shown how one can view the estimators as an SDR technique,

reducing the dimensionality of the data and then estimating MI with NN estimators

in the reduced space. We have also provided heuristics for verifying whether the

estimators’ output can be trusted. For this, one needs to verify the stability of the

output to the hyperparameter (the number of embedding dimensions) and to the

amount of data (via varying the number of training samples), at least when the size

of the training subsample and the full sample are not drastically different.
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Finally, we made the first steps towards explaining how MI estimation—which is

provably hard—can be reliable for large-dimensional data, even with relatively small

sample sizes. We argue that reliable estimation is only possible when the data admits a

low-dimensional latent structure. This is also supported by the argument in Ref. [101]

that fluctuations in estimation of mutual information scale in proportion to the size

of the latent space, and not the observable space, though this analysis was done for

discrete variables only. We hope that additional tests will support this hypothesis,

conclusively proving that it is possible to reliably estimate MI in the undersampled

regime K > N , as long as the true latent dimensionality of the data is KZ ≪ N .

4.6 Supplemental Information

4.6.1 Neural networks architecture and Technical details

The estimators’ implementation is adapted from Ref. [136]. The critics are implemented

using Multi-Layer Perceptrons (MLPs) with either 2 or 4 hidden layers (in addition

to the input and output layers), ReLU activations, and Xavier uniform initialization

[53]. For the separable critic, two networks are trained separately but simultaneously

for X and Y , with input dimensionalities KX and KY , and output dimensionality kZ .

For the concatenated critic, a single network is trained with an input dimensionality

of KX + KY and an output dimensionality of 1. The estimators are trained using the

Adam optimizer [86] with a learning rate of 5×10−4. The estimators’ implementations

are done in PyTorch [116] and trained on various GPUs. The rCCA models are trained

using the library in Ref. [33], where the regularization c factor is fine-tuned to produce

the highest test value, and the corresponding train value is reported. Parameters not

explicitly mentioned are set to their defaults.
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4.6.2 Supplemental figures

Figure 4.5: Samples from Noisy MNIST data set [2]. The data set contains
∼ 56k training and ∼ 7k test digit pair, X and Y . In each pair, the same digit (but
its two different instances) are corrupted by scaling / rotation, X, and by background
noise, Y .
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Figure 4.6: Performance of NN-based methods for MI estimation. An extension
to Fig. 4.1. Where we used a common “staircase” protocol for exploring the estimation
for different MI values. Here MI jumps after every 2000 steps of training, with every
step consisting of a batch of 128 samples. The maximum information is 1 nat in
panel (A), and 10 nats in panels (B) and (C). We sample from correlated Gaussian
distributions with KX = KY = 10 and choose the correlation coefficients that result
in the needed MI. All panels show the true information, estimates IInfoNCE, IJS [110],
INWJ [109], IDV [43], ISMILE (τ = 5, τ = ∞) [136], IMINE (α = 0.1, α = 0.5, α = 0.9)
[17] with a concatenated critic (with 2 hidden layers, each with 256 neurons), and the
MI estimate from the empirical correlation matrix (denoted as Direct calculation).
The correlation estimate uses data from all of the steps preceding the current one for
a given MI value. With just one step, the correlation-based MI estimate is hard to
distinguish from the true MI. For NN methods, we show their value for an average
smoothed over 100 steps. (A) shows that, when the true MI is small, all methods
work well (except JS). When MI is high, (B), correlation-based estimation still works,
while some NN methods estimates are close to the correct value (MINE (α = 0.9) and
SMILE (τ = ∞)), other methods degrade: DV, MINE (α = 0.1, α = 0.5) overshoots
with an extremely large variance. SMILE (τ = 5)) overestimates and has a large
variance. JS underestimates, and NWJ underestimates with a large variance, and
InfoNCE saturates at ln 128 nats (logarithm of the batch size). In (C) we add a cubic
nonlinearity to the data (see text). Now correlation-based method, non-surprisingly,
underestimates MI. However, the effect of the nonlinearity on NN methods is weaker
(except on JS which degrades greatly).
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Chapter 5

Discussions

Here I aim to summarize the findings of the Dissertation, emphasizing the key insights

from each of the preceding Chapters and to outline potential avenues for future

research.

The main message of the Dissertation is as follows: In modern scientific data anal-

ysis, we often encounter high-dimensional and possibly multimodal datasets, where

the number of samples is of the same order of magnitude as the number of dimen-

sions. For such data, the goal is to find an interpretable, modelable low-dimensional

representation via application of DR methods. The Dissertation demonstrated that

DR is not merely a data preprocessing step, not requiring much thinking. Instead,

the structure and the usefulness of the constructed low-dimensional representations

of data depend on the DR method used. Thus one should carefully consider which

DR method to employ, ensuring that it aligns with the structure of the data and the

question we are addressing. For instance, if we seek a low-dimensional representation

of a multimodal dataset that captures shared information between modalities (i. e.,

covariation), then Simultaneous DR methods will require less data and will produce

more useful representations. Even simpler, if the underlying structure of a dataset

suggests linearity, linear methods suffice to obtain comprehensive low-dimensional
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descriptions that capture all relevant information. Additionally, in this Dissertation,

I showed that many DR methods can be systematized within a single generalized

framework, the Deep Variational Multivariate Information Bottleneck (DVMIB), which

facilitates the translation of dependency graphs for data compression and reconstruc-

tion into practical methodology. Furthermore, the development of the new method

within this framework, Deep Variational Symmetric Information Bottleneck (DVSIB),

holds promise as a valuable tool across various fields. Additionally, the Dissertation

demonstrated that low-dimensional representation of data helps in the estimation of

important statistics of the data. For example, we showed that we can reliably estimate

Mutual Information (MI) in large K-dimensional datasets from only N ∼ K samples

if the data, indeed, has a good low-dimensional latent approximation. This is a major

improvement in the field of MI estimation, where, until recently, one expected to need

exponentially large datasets to estimate information in high dimensional data.

The Dissertation opens new venues for subsequent research. Some of these venues

are already being explored, showing promising results. As one of such examples,

below I illustrate the utility of DVSIB on a simple, but exciting problem: discovering

canonical coordinates for a dynamical system from experimental data. Namely, we will

use time lapses of images of a physical pendulum to derive the angle and the angular

velocity as the two dynamical variables for this system. Secondly, I discuss the utility

of DVSIB-like methods in the field of neuroscience, and how they could be a valuable

tool in understanding various brain-brain, brain-behavior, and behavior-behavior

interactions. With our approaches, we can obtain low-dimensional representations

that capture the most covariation between different modalities, allowing for better

modeling and understanding of underlying phenomena.

Below I summarize the findings of each Chapter and how they relate to each other.

Then I follow up with a deeper discussion of potential future research directions.
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5.1 On Linear DR Methods

In Chapter 2, I presented several key findings regarding linear dimensionality reduction

methods and the implications of using different methods for different scenarios. Firstly,

I argued that the simple linear model that we studied can capture many realistic

features of experimental datasets, along with its flexibility to accommodate more

than two modalities of data. We established the superiority of SDR methods over

IDR methods when the objective is to capture covariation between modalities rather

than mere variation. Supported by empirical evidence and theoretical insights, we

strongly advocated for the practical preference for SDR methods, particularly rCCA,

in identifying shared signals across different data modalities. This assertion was

further reinforced by our exploration of a nonlinear dataset, the noisy MNIST, and

corroborated by various sources from the literature, collectively emphasizing the

efficiency of SDR methods in extracting covariation. We also addressed the efficacy

of SDR techniques in low sampling situations, underscoring the need to align the

dimensionality of reduced descriptions with the actual dimensionality of the shared

signals. Moreover, we introduced a diagnostic test for differentiating between shared

and self signals in data, providing practitioners with a valuable tool for characterizing

complex datasets. In summary, Chapter 2 supports what I believe to be a fundamental,

albeit often overlooked, principle of data science: SDR methods outperform IDR

methods in detecting shared signals. The Chapter also connects to the secondary

theme of the entire Dissertation: in data analysis applications, it is important to

match the analysis methods to the underlying structure of the data. Despite certain

mentioned limitations, such as linearity of the methods (discussed in Chapter 3),

and linearity of the metric (discussed in Chapter 4), by focusing on a linear mixing

system, Chapter 2 provides an important intuition, which can be extended to nonlinear

dimensionality reduction techniques and many practical applications.
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5.2 On DVMIB

In Chapter 3, we introduced a new framework based on MIB principles for deriv-

ing variational loss functions tailored for different DR applications. Through this

framework, we developed a novel variational method called DVSIB, which compresses

variables X and Y into latent variables ZX and ZY respectively, while maximizing the

mutual information between ZX and ZY . Notably, DVSIB produces two distinct latent

spaces, a feature highly desirable in various applications, while achieving superior

data efficiency compared to existing methods in terms of classification accuracy. By

illustrating the derivation process of variational bounds for terms common to all

examined DR methods, we offer a comprehensive library of typical terms in Ap-

pendix 3.7.1, which can serve as a reference for deriving additional DR techniques.

Moreover, we (re)-derived several prominent DR methods, including β-VAE, DVIB,

DVCCA, etc., showcasing the versatility and applicability of our framework. Through

implementation and evaluation, we demonstrated that methods aligning more closely

with the structure of dependencies in the underlying data tend to yield more useful

latent spaces, as evidenced by dimensionality and reconstruction accuracy metrics.

Notably, SDR methods like DVSIB and DVSIB-private emerged as top performers,

offering separate latent spaces for X and Y and enabling the capture of additional

information beyond shared labels with a sample efficiency better than in competing

methods. This quality – being more sample efficient [61, 55, 56, 130] – previously

mentioned in the literature with no clear understanding and conflicting arguments

[57] is now confirmed and understood better. Furthermore, our framework extends

beyond variational approaches, allowing for the implementation of deterministic mod-

els, such as autoencoders. By leveraging specialized encoder and decoder networks,

our framework can accommodate various constraints and symmetries, thus potentially

serving as a versatile toolkit for a wide range of DR methods. With the availability

of tools and code [1], I aim to facilitate the adoption of this approach across diverse



120

problem domains.

5.3 On Efficient Estimation of Mutual Information

Chapter 4 investigated the estimation of mutual information within the lens of SDR

approaches discussed in Chapters 2 and 3. The MI estimation is challenging, with no

universally good estimators for finite data sets, necessitating the use of assumptions.

Traditional methods in the literature are limited in their application to modern

experimental data, as they cannot effectively handle high dimensionality (they work

well up to O(10) dimensions, whereas many modern experimental setups generate

data with O(103) dimensions or more). Neural Networks (NN) based methods were

introduced to mitigate such issues, and they offer promising results. However, the

literature lacks rigorous testing and evaluation of NN based estimation methods.

For instance, ML methods are typically tested on low-dimensional Gaussian data

with effectively infinite samples, a scenario that eliminates overfitting but does not

reflect real-world research problems with limited samples and high dimensionality.

Nevertheless, we demonstrated that, if the data are truly linear, simple estimation

based on empirical correlation matrices suffices; otherwise, more complicated methods

are necessary. Specifically, in nonlinear cases, appropriate nonlinear methods are

required. If the data is linearly embedded in a high-dimensional space, suitable DR

methods (like rCCA, as shown in Chapter 2) can embed it into a lower-dimensional

space, where MI can be estimated, again, based on empirical correlation matrices.

However, selecting the number of latent dimensions is crucial in this case to avoid

overfitting. In cases where the data is linear but embedded nonlinearly (e. g., with a

frozen neural network), even the best linear DR methods, such as rCCA, are insufficient,

as determining the correct dimensionality becomes challenging. Already existing ML

methods are suitable for effectively infinite data scenarios without overfitting concerns.
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However, for more realistic finite data scenarios, addressing overfitting and when to

stop training, is necessary. We viewed existing ML methods as SDR approaches,

which simultaneously embed large-dimensional data into smaller dimensional latent

spaces, where NN based methods can be used to estimate MI with high accuracy. We

developed various consistency checks and heuristics to determine the reliability of the

results. This Chapter aimed to demystify such methods and provide a practical guide

for their usage in realistic scenarios. It also highlights the utility of SDR approaches

in general. As it turns out, successful MI estimators could be viewed as SDR methods

as well.

5.4 On Discovering Coordinates of Dynamics

1So far, previous Chapters, largely revolved around static datasets, where the rela-

tionship between modalities is captured within each (X, Y ) pair. We have not yet

considered dynamics, which is where many interesting physics problems lie. In fact,

dynamical data can be cast in a manner consistent with our multiview setup. For

example, consider a dynamical system, where X represents the current observations

and Y denotes the future ones [40]. In this context, past and future could be sym-

metrically defined as a fixed number of past and future snapshots of the system state

[35]. Or, similar to a predictive information definition [22, 20], we can define the

future as consisting of an infinite number of snapshots (in practice, it suffices to use

a large number, larger than the autocorrelation time), and the past would then be

described by a long sequence of snapshots of the system state. Here then the shared

representation between the past and the future is some generalized coordinates of the

system’s dynamics.

1This section is in part based on an ongoing work with K. Michael Martini and Ilya Nemenman.
The development of the idea was a collaborative effort among all three authors. The code was written
by K. Michael Martini and Myself. The figures presented in this section are produced by myself. The
text was written by myself and jointly revised by all authors.
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5.4.1 The Setup

To illustrate this, let us take a simple physical pendulum as shown in Fig. 5.1. Its

Figure 5.1: Individual frames from a physical single pendulum’s motion. The dataset
and more information can be found in [35]. Each image represents a frame captured
during the pendulum’s real motion. The sampling rate is 60 Hz, and each frame is
28×28 pixels, with a total of 60 frames per experiment. Each experiment has different
initial conditions, with a total of 1200 experiments. The pendulum is of mass of 1 kg,
and a length of 0.5 m.

dynamics are perfectly described by the angle and angular velocity at any given time

t. The phase portrait of ω vs θ is shown in Fig. 5.22. The left subplot shows the

exact phase space calculated analytically from the differential equations of a physical

pendulum with the same properties as the pendulum in Fig. 5.1, with different starting

conditions and centered at zero to be between −π and π. The middle subplot is for

the actual physical pendulum with data obtained from [35]. The right subplot shows

the same data but in polar coordinates, which will become relevant later. The phase

space of a pendulum is equivalent to an infinite cylinder due to the periodic nature

of the angle θ and the unbounded nature of the angular velocity ω. θ wraps around

to form the circumference of the cylinder, while ω extends along its length. One can

project the cylinder onto a plane using polar coordinates theta and r as follows:

θ → θ

ω + offset (or: offset − ω) → r, (5.1)

with the offset larger than the maximum angular velocity in the experiments, so that

the radius r is positive. The offset arises from compressing the negative range of ω

2The direction arrows are suppressed for clarity, in this figure and the subsequent figures as well.
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into a small region, creating a hole in the polar plot. Additionally, the system has two

fixed points: a stable fixed point at (θ, ω) = (0, 0), where trajectories are periodic, and

an unstable fixed point at (θ, ω) = (π, 0) (or (−π, 0)), where trajectories diverge. A

proper embedding from any algorithm should reflect these topological characteristics:

the hole due to the cylindrical structure of the phase space, one stable fixed point,

and one unstable fixed point.

Figure 5.2: Phase space portraits of a physical pendulum for ω vs θ. The left subplot
shows the exact phase space calculated analytically from the differential equations
of a physical pendulum with the same properties as the pendulum in Fig. 5.1, with
different initial conditions, then wrapped between −π and π. Each trajectory is for
a new experiment with different initial conditions, and the color scheme is arbitrary.
The middle subplot is for the actual physical pendulum with data obtained from [35]
and shown in Fig. 5.1, where the physical quantities θ and ω are obtained separately
from the videos by different analysis, in which the angles and their derivatives are
calculated by tracking the pendulum using computer vision tools, as described in [35].
The right subplot shows the same data but in polar coordinates. The yellow star is
the stable fixed point, while the red circle is the unstable one.

5.4.2 DVSIB For Dynamics

Using insights from previous chapters, we leverage a DVSIB-like structure to compress

the movie data in the hope to discover generalized coordinates of the physical pendulum.

In this setup, we choose X to be two consecutive “past” frames at time steps t

and t + 1, while Y then represents the “future” with frames at time steps t + 2

and t + 3. Our goal is to embed these data into ZX and ZY , maximizing the
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mutual information between the latter. We expect the low-dimensional embeddings

to represent interpretable generalized coordinates for this system. Since we do not

explicitly need the reconstruction of the movie images from the latent variables in this

task, we can turn off the reconstruction term 3. Additionally, we want to impose time

translation symmetry in our reduction process, in the sense that the algorithm learns

we go from observables (the frames formed into X and Y ) to the latent variables (ZX

and ZY ) in the same way. Thus we employ the same encoder network for both the

past and the future frames, as it forces the past encoder to learn the same compression

that the future encoder does (i.e, p(ZX |X) = p(ZY |Y )). The resultant loss function is:

L = IE(X;ZX) + IE(Y ;ZY ) − βID(ZX ;ZY ), (5.2)

where IE(X;ZX) and IE(Y ;ZY ) are approximated with the same neural network.

5.4.3 Preliminary Results

Figure 5.3 illustrates the preliminary results obtained from the training (additional

details about the architecture of the networks and training procedure are in the

SI 5.4.5.1). To illustrate that the method learned the underlying physics, we directly

input the past and future frames into our model, and we require our model to give us

two dimensional ZX and two dimensional ZY (when we are designing the networks,

we choose the size of the low dimensional spaces –among other parameters–, 3d

embeddings are shown next in Fig. 5.4).Then we plot the resulting embeddings ZX (or

ZY ), colored by the values of various quantities, which we know to be important in this

3Reconstruction adds complexity in terms of compute and data. This is because we are learning
distributions in the form of p(X|Z), which has the dimensionality of X. Unless needed for generative
tasks, or to stabilize compressed variables and avoid representation collapse, reconstruction should be
minimized or turned off. Representation collapse occurs when ZX and ZY become the same variable,
or independent of the data. This phenomenon, leading to multiple independent trivial solutions, is
discussed in [101]. The washout problem (the degradation of information as it propagates through
the layers of a neural network) is also mentioned in [35] as a known issue in various ML algorithms.
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problem. Specifically, we know that the two key variables governing this system are

the angle θ and the angular velocity ω. The values of θ and ω are obtained separately

through another procedure described in the paper, from which we obtained the datasets

[35]. The embeddings we obtain are nonlinear manifolds in two dimensions.

Interestingly, our embeddings successfully capture the dynamically relevant vari-

ables within this 2D space as shown in Fig. 5.3. When we color the embeddings ZX

(and similarly for ZY , due to the symmetric compression, ZY is the same as ZX shifted

by two frames) based on θ (left), a clear gradient of angles becomes evident within

our manifold along the “angular” direction. Moreover, the points at 0 and 2π in the

angle space are connected, indicating a continuous representation. Additionally, when

we color the embeddings by ω (middle), we observe a gradient along the “second”

dimension of the manifold, revealing that along this second nonlinear embedding, we

recover the angular velocity ω. More importantly, when we color the embeddings as

individual trajectories (right), we recover a topologically correct phase space of ω vs θ

in polar coordinates, which was suggested from the coloring by θ or ω individually

that θ is encoded in the angular direction, and ω is encoded in the radial one. The

resemblance between the topology of the results in Fig. 5.3 and the polar represen-

tation of the true phase space in Fig. 5.2 is evident. We recover the hole due to the

parametrization of ω in the radial direction, the two fixed points in the right place,

and the nearly circular trajectories near the stable fixed points. The model, indeed,

learned that the relevant features between the frames of the past and the future are

generalized coordinates that resembles the true θ and ω of the pendulum.

Even if we increase the dimensionality of ZX and ZY as in Figure 5.4, the model

continues to learn a deformed 2D manifold (as shown in the last subplot). This is

shown in the continuity of the angular direction, the gradient in the radial direction,

the fixed points in the phase space, and the hole in it –albeit not as clear as in the

2d situation, probably due to suboptimal training. These observations indicate that
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Figure 5.3: Left: Embeddings ZX in 2D colored by θ. The gradient of angles within
the manifold along the “angular” direction is clearly visible, with points at 0 and 2π
connected, indicating a continuous representation. Middle: Embeddings ZX in 2D
colored by ω. A gradient along the “second” dimension of the manifold is observed,
indicating recovery of the angular velocity ω. Right: The same embeddings, but
colored as individual trajectories. We observe that these embeddings represent the
phase space of the pendulum in polar coordinates, as shown in Fig. 5.2, subject to
an arbitrary rotation in θ and a shift in ω. The embeddings are results of training a
simple implementation of 5.2 with frames of experiments of single physical pendulum
obtained from [35], the I(ZX ;ZY ) term is trained as part of DVSIB with SMILE
(τ = 5) estimator with a concatenated critic (the networks architecture is described in
detail in SI 5.4.5.1).

although the system is observed in high dimensionality, its latent variables are 2d,

even when allowed to occupy 3d. While one may have expected this knowing the

second-order nature of Newton’s laws and the fact that we only used 2 movie frames

to define both the past and the future, the dimensionality of the data is ∼ 103, so the

fact that the DVSIB for dynamics architecture detects the 2d structure is nontrivial.

It’s important to note that our approach is an “out-of-the-box” application of

the method, and we do not impose constraints on the embeddings. And while we

could end up with a twist or a collapse in our embeddings (as shown in 3d in Fig. 5.4,

and while other training parameters could lead to the same behaviour in 2d as well–

not shown), the ‘twists’ in the manifold appear to be points of ambiguity near the

unstable fixed points (as we do not see that along the θ direction), where the model is

unable to resolve the changes from positive to negative ω. Nevertheless, even with

this twist, Figure 5.4 still showcases a clear separation of the relevant dynamical



127

Figure 5.4: Left: Embeddings ZX in 3D colored by θ. The gradient of angles within the
manifold along the “angular” direction is visible, with points at 0 and 2π connected,
indicating a continuous representation. Middle: Embeddings ZX in 3D colored by
ω. A gradient along the “second” dimension of the manifold is observed, indicating
recovery of the angular velocity ω, albeit with a twist near the unstable fixed point.
Right: The same embeddings, but colored as individual trajectories. We observe that
these embeddings represent closed trajectories around the stable fixed point, albeit
with an ambiguity near the unstable one. Different training parameters (different
number of neurons and hidden layers in the critic) could lead to different embeddings,
some of which are shown in the SI Fig. 5.4.5.2. The embeddings are results of training
a simple implementation of Eq. 5.2 with frames of experiments of single physical
pendulum obtained from [35], the I(ZX ;ZY ) term is trained as part of DVSIB with
SMILE (τ = 5) estimator with a concatenated critic (the networks architecture is
described in SI 5.4.5.1).

variables that the model has learned directly from the experimental videos, without

any preprocessing or further embedding. A possible second step would be learning

the dynamics, symbolically, in this low dimensional space, characterized by a handful

of dimensions rather than the apparent high dimensionality of the videos. There are

multiple methods in the literature one can use for learning such differential equations

[27, 42, 31].

5.4.4 Additional Questions and Remarks

While the preliminary results for using DVSIB for dynamics are promising, indicating

that we can recover the system’s latent variables directly from observations with

minimal additional constraints, there are still relevant questions that need further
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exploration.
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Figure 5.5: Information between embeddings of the past and the future for the
pendulum dataset, I(ZX ;ZY ), during the training. The training curve evaluates a
subset of the frames used during the training (100 experiments out of 1000 used for
training, each experiment having 60 frames) and another subset for the test that
was not seen during the training (100 other experiments with 60 frames each). The
training and test curves are almost on top of each other. We notice fluctuations in
the training that decrease the amount of information severely. These fluctuations are
often observed in the training embeddings, as seen in Fig. 5.6 for epoch 127, where the
embedding changes significantly, likely indicating an optimizer-related phenomenon
(often called loss spikes4 [169, 165]) that the training encountered.

When to stop training? As discussed in Chapter 4, the MI estimators (SMILE

with τ = 5 in this case) can overfit during training, and we have to make sure that

we are reporting the true information, not just an arbitrary number produced by the

model during its training. However, when we examine the training curves to obtain the

embeddings in Fig. 5.4, for example, we notice that the model does not overfit. This is

evident from the curves of I(ZX ;ZY ) for the train and test datasets in Fig. 5.5 being

4Loss spikes are an abrupt increase –or decrease in the case of MI– in the loss function value,
typically occurring due to the network encountering regions in the loss landscape with sharp gradients
or suboptimal local minima. These spikes often arise from instabilities in the optimization process,
where the training dynamics momentarily lead the model into unfavorable regions, causing the loss
to increase before stabilizing again as the model continues to learn and adapt.
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Epoch 10 Epoch 20 Epoch 30 Epoch 100

Epoch 121 Epoch 122 Epoch 123 Epoch 200

Figure 5.6: Embeddings of 100 experiments evaluated at specific training epochs. We
observe the evolution of the embeddings from a straight line to the final structure
obtained at the end. Notably, after 100 epochs, the training becomes relatively stable,
as also reflected in Fig. 5.5, with fluctuations that can cause the embeddings to change
within their space, as shown in epoch 127, for example.

on top of each other5, which could be attributed to the simplicity of the image we are

trying to compress—it is one body on a static background that moves slightly between

each frame and the subsequent one. However, we observe fluctuations in the training

curves that could be attributed to getting stuck in local minima, as seen in Fig. 5.6,

where the embeddings at epoch 127 moved in space. Thus, additional investigation

is required to explore these fluctuations, and whether a gentler optimization with a

smaller (or adaptive) learning rate, for example, would alleviate this issue. We think

that the approach to choose the stopping condition for this problem is by considering

some metric of consistency and saturation of the training curves. For example, [131]

considers the correlations between different embeddings (for different experiments, for

example) as a sign of good training, which could be useful in this problem as well.

5At some points during the training, the test curve is slightly higher than the training curve,
which is primarily due to the finite data set size used in evaluation, which produces fluctuations.
During training, the model uses mini-batches of 128 frames each. However, the evaluation of MI is
performed on 100 experiments, each with 60 frames, resulting in 6000 frames for both training and
testing to be loaded onto the GPU simultaneously. This creates a significant computational overhead.
While it is possible to increase this number to increase the accuracy, it would require considerably
larger computational resources than we have at our disposal.
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The interpretation of mutual information: MI calculated between the past

and future embeddings of the system could be a good proxy for the success of the

system in recovering the relevant variables. In this problem, an analytical calculation

of the MI between the sets of frames in the past and the future would provide a

theoretical bound to check if the model actually learned the underlying dynamics.

There are known aspects of this problem from physics or experiments, such as the

sampling rate (i. e., the time between frames; if this time interval approaches zero,

becoming truly continuous, the mutual information should become infinite), as well as

the length and weight of the pendulum, and the governing equations of its motion.

However, it is not straightforward to calculate the MI between multiple frames of the

past and the future, which will require further work. While analytically calculating

the MI might not be possible for scenarios where we do not know the answer ahead of

time, it would be beneficial in establishing benchmark problems to assert the utility

of DVSIB for inferring dynamics (or identifying its shortcomings). Establishing the

utility of MI as a measure of goodness of the training would be valuable not only

for the general training of DVSIB for dynamics, but also for addressing additional

questions as the following.

How many frames to use for X (and Y )? The previous results (Figs 5.3, 5.4)

were obtained for two frames for both the past and the future, X and Y . Since we

know that the dynamics of the pendulum are captured within the variable θ and

its first derivative, θ̇ = ω, and the derivative is calculated from two time points, we

should expect that increasing the number of frames would not increase the MI by

much if the finite difference between two time points is a good approximation for the

derivative. Thus, we would expect to see a saturation in the measurement of MI with

the addition of more frames. We should be able to see such saturation in our data,

but we leave this analysis for future work.

How many dimensions for ZX (and ZY )? We have already explored the
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cases for 2D and 3D low-dimensional embeddings in Figs. 5.3 and 5.4. We observed

that 2D is sufficient to replicate the true phase space of the pendulum. In 3D, the

embeddings exhibited similar topological features to the 2D case, though with a twist

in the embeddings. With more careful training, it might be possible to achieve a clear

2D embedding within the 3D space as well. This is because we have, in theory, only

two latent variables θ and ω. Thus, adding more possible dimensions would not add

more dynamical variables, and we should expect a saturation in the measurement of

MI with the addition of more dimensions. However, the extra dimensions might allow

different parameterizations for the latent variables. We leave the exploration of the

interplay between the extra embedding dimensions, the ease of training, and detecting

more useful parameterization of the latent space to future work.

Finally: By customizing DVSIB to match the structure of the problem and to

consider explicitly the time translation symmetry, the method was able to learn the

proper coordinates for the underlying dynamics directly from observations (movies)

without preprocessing or ad hoc assumptions. While this approach is still under

development, we believe that its potential for use in many future applications is vast.

5.4.5 Supplementary Information

5.4.5.1 Neural networks architecture used for dynamical inference

The loss function Eq. (5.2) is implemented as follows:

• IE(X;ZX) is implemented as a fully connected feed-forward neural network.

The network has an input layer of 1568 neurons (each frame is 28x28 pixels,

and we have two frames flattened and stacked together), two hidden layers with

1024 neurons each, and two nodes in the output layer that correspond to the

means and variances of a gaussian distribution that we learned. Each node is of

the size of the dimensionality of ZX , which is 2 for Fig. 5.3 and 3 for Fig. 5.4.
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IE(Y ;ZY ) is implemented in a similar manner.

• The MI estimator network is a concatenated critic that takes both ZX and

ZY embeddings, stacks them together, and then passes them through a fully

connected feed-forward neural network with one hidden layer of 32 neurons and

an output layer of size 1. The outputs for different inputs in the final layer are

calculated based on the SMILE approximation to MI (cf. Chapter 4).

• All layers in all networks are initialized with Xavier Uniform initialization6 [53].

• The networks are trained with the ADAM optimizer [86] with a learning rate of

5 × 10−5, and β = 256.

5.4.5.2 Additional embeddings at different parameters

The embeddings change as the parameters (β, number of hidden layers in the MI critic,

number of neurons in these layers, learning rate, etc.) change. The following plots

show different embeddings after training for 200 epochs and using the trained encoders

to obtain the embeddings of all the training experiments in 3d space. Alternative

embeddings evaluated for other parameter values are shown in Fig. 5.7.

5.5 On Neural Activity and Behaviour

Understanding the mutual interplay between neural activity and behavior is the Holy

Grail for deciphering brain-body interactions. Recent technological advancements

enable simultaneous recordings of activity from tens of thousands of individual neurons

across various brain regions with exceptional temporal and spatial precision [140, 139,

6Xavier uniform initialization is a method used to initialize the weights of neural networks
by drawing them from a uniform distribution. The weights are sampled from a range of
[−
√
6/(nin + nout),

√
6/(nin + nout)], where nin and nout represent the number of input and output

units, respectively. This initialization helps to maintain the variance of activations and gradients
across layers, allowing for stable and efficient training.
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lr = 1× 10−5, β= 256
 hidden layers = 1, neurons = 32

lr = 1× 10−4, β= 1024
 hidden layers = 2, neurons = 32

lr = 1× 10−5, β= 256
 hidden layers = 1, neurons = 32

lr = 1× 10−5, β= 1024
 hidden layers = 3, neurons = 128

Figure 5.7: Embeddings of training experiments evaluated at the 200th training epoch
for different parameters of learning rate for the optimizer, β for the DVSIB loss,
number of hidden layers, and number of neurons in those hidden layers. We observe
different behaviors, suggesting the need for a careful training. We can see that all of
them developed some form of confined manifold. This manifold is regular in some
situations and irregular in others.

150]. Simultaneously, there is a growing effort in theoretical research to develop

decoders capable of translating neural signals into behavior [137, 114, 70, 108, 92, 113].

These decoders often reveal that a low-dimensional representation of neural data is

sufficient for decoding behavior, shedding light on how the brain integrates signals

from different regions to execute specific tasks. This alignment with low-dimensional

representations suggests the existence of population variables within neural activity

that correspond to behavior [119, 52, 159]. Besides facilitating data interpretation,

these representations may lay the groundwork for theoretical frameworks describing

the underlying dynamics of both neural activity and resulting behavior, which directly

impact how we understand different diseases and how to mitigate their effects with

prosthetic devices [10, 77], or drugs [29, 74, 9].

However, despite considerable progress, a comprehensive theoretical framework

describing the relationship between neural activity and behavior across diverse ex-

perimental conditions remains elusive. Different DR methods are at the core of the

ongoing research. Traditional DR methods are tailored to specific problem classes,

primarily focusing on reducing variability in neural activity without considering its

covariation with behavior. We have shown in synthetic and real world examples

that such approaches may overlook dimensions significant for describing covariation,
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rendering them unsuitable for this purpose.

A more effective approach to address this covariation is by considering the neural

activity and behavior simultaneously. There are few examples in the neuroscience

literature that consider behavior while reducing neural activity. Such methods typically

compress only the recorded neural activity conditioned on the behavior or presented

stimuli [130, 81, 131]. In the language of Chapter 3, and with X being the recorded

neural activity and Y being the resultant observed behavior, we are dealing within

an Information Bottleneck framework, compressing X to Z, while Z is maximally

informative about Y . Such an approach might be useful if we are considering a

low-dimensional behavior Y . This could be, for example, a left-right motion on a

treadmill or a mechanical arm that can be moved in only a few directions [131, 108].

However, once the behavior or stimulus is high-dimensional, (for example, recorded

videos of motion or a high-dimensional visual stimulus), a reduction of the behavior Y

is needed as well. Such a reduction is usually done separately, by means of extracting

useful information based on prior knowledge. For example, [102] extracts and tracks

joint positions when considering recorded motion as the behavior. Similarly, [30]

extracts important features from videos often used as visual stimuli. However, such

separate independent reduction makes us question the validity of the approach, as it

might overlook relevant features of covariation due to their low variation (and vice

versa).

However, there are a few exceptions that compress both the behavior and neural

activity simultaneously during the reduction. For example, the method in Ref. [54],

which can also be cast in Chapter 3 language as Deep Variational CCA with private

information, compresses both. In such a setup, X, the neural activity is reduced to a

shared part, Z, and a private part WX , and both Z and WX are important to recover

the full behavior X. Similarly, Y is reduced to the shared part Z, and a private part

WY . Then, Z is the relevant mixed space of both that can be used for further study.
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However, while this last example is performing simultaneous reduction, it produces

three spaces, one for each of the two modalities that is relevant to them uniquely, and

a shared one with mixed units that is relevant for both, making it unclear how to

measure and interpret the embeddings as neural activity and/or behaviour in such a

mixed latent space. DVSIB, on the other hand, is the first method (to our knowledge)

that allows for two distinct latent spaces for the two different modalities X and Y ,

with different properties, yet maximally informative. The new avenues opened by

such approaches are interesting and worth studying. For instance, DVSIB and related

techniques could be used as supervised dimensionality reduction instead of regular

methods like PCA which most practitioners use. Or it can be used to align recorded

activity in one part of the brain with other parts of the brain. In this case, a perfect

alignment should correspond to maximum mutual information.

5.6 Final Thoughts

In this Dissertation, I aimed to clarify the concept of dimensionality reduction,

illustrating that a specific method chosen for it matters a lot more than a mere

preprocessing step before data modeling. I explored the overarching principle that, to

address a data-driven research question effectively using DR methods, we must align

the structure of our methodology with the essence of the inquiry.

DR requires careful method selection and an understanding of expected outcomes.

Our results show that, when we want to find the shared information among multiple

data sources, simultaneous DR is the preferred approach. We provided extensive

discussions, designed novel tools, introduced new heuristics and consistency checks to

support this methodology. Personally, I find a great appeal in the idea of obtaining

low-dimensional descriptions of complex systems, recognizing that the underlying

simplicity often lies within the apparent complexity. I envision this Dissertation as a
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step towards providing tools and insights for physicists engaged in the timeless pursuit

of uncovering simplicity amidst complexity. While many physicists are rightfully

fascinated by the maxim that “more is different,” [6] perhaps we can similarly embrace

the idea that more can also be simple.
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Learning robust representations via multi-view information bottleneck. In 8th

International Conference on Learning Representations. OpenReview. net, 2020.

[46] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata.
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