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Abstract

Patient-Specific Modeling in Cardiac Electrophysiology:

Parameter Estimation and Personalization

By Alessandro Barone

Computational modeling in cardiac electrophysiology (EP) has long played a central role in
the study of physio-pathological dynamics of electrical propagation. One of the most signif-
icant challenges to face is the translation process of numerical (in silico) investigations to
clinical practice. In silico simulations can potentially impact the quality of cardiac arrhyth-
mia therapy, reducing the risk of in vivo testing. However, the clinical use of virtual exper-
iments is hindered by the need of customization of mathematical models to patient-specific
data. The personalization process involves the fine tuning of many model parameters, that
cannot be measured directly, via accurate and efficient data assimilation techniques. This
work is particularly focused on the estimation of cardiac conductivities, crucial parameters
of the Bidomain and Monodomain models – currently the most used mathematical descrip-
tions of cardiac electrical behavior. This Thesis addresses the challenge described above
yielding four main contributions. (1) We perform an extensive and thorough synthetic
and experimental validation of the deterministic variational data assimilation method pro-
posed by Yang and Veneziani in 2015 to retrieve conductivities from potential recordings.
The results demonstrate that the procedure provides accurate space-dependent conductiv-
ity estimates that reproduce most of the observed dynamics. (2) The Proper Generalized
Decomposition (PGD) reduced-order model technique is investigated for the first time in
EP to improve the efficiency of the variational technique. Relying on the off-line/on-line
paradigm and without the need of any preliminary knowledge of the high-fidelity solution,
we show in 2D and 3D settings that the strategy enables nearly real-time estimation pre-
serving reasonable accuracy. (3) With the goal of assessing the robustness of the results, we
propose a statistical formulation of the estimation problem for Monodomain conductivities.
Exploiting the computational convenience of the on-line PGD solution, the methodology
allows a reliable quantification of the uncertainty of two-dimensional estimates. (4) Using a
virtual personalized heart model efficiently reconstructed from high resolution MRI images
and ECG data via a physics-based reduced-order model approach, we perform a prelim-
inary study of the induction of ventricular electrical anomalies with respect to different
conduction properties in view of optimizing arrhythmia treatments in silico.
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1

Chapter 1

Introduction

Electrical malfunctions of the heart are among the most common cardiovascular diseases, the

leading cause of death worldwide [1]. Irregular cardiac rhythms, named cardiac arrhythmias,

can potentially be life-threatening: in particular, arrhythmias occurring in the ventricles

(the heart’s lower chambers) can degenerate into ventricular fibrillation, which is an erratic,

disorganized firing of impulses from the ventricles prohibiting the heart to pump blood thus

leading to collapse and cardiac death. Depending on the kind and severity of rhythm

disorder, the treatment of arrhythmia includes drug therapies, the implantation of artificial

pacemakers and catheter ablation. Taking anti-arrhythmic drugs is a palliative remedy only

controlling abnormal heart rhythm. Moreover, several side effects may occur such as allergic

reactions, chest pain, dizziness and fainting.

Cardiac Resynchronization Therapy (CRT) is one of the procedures to implant a pace-

maker (an example is shown in Fig. 1.1) in the chest to help restore normal heart beat.

Three wires (leads) connected to the device monitor heart rate to detect irregularities and

emit tiny pulses of electricity at certain intervals to resynchronize the heart. CRT has shown

a significant improvement in symptoms, overall quality of life and mortality rate [2,3]. How-

ever, insufficient personalization affects the effectiveness of the therapy. In fact, around 30%

of patients do not respond to this invasive treatment [4] mainly because of lack of patient-

specific tuning of pacing intervals between the electrical stimulations. Furthermore, leads

placement in the heart depends on the cardiac anatomy of the individual.

The goal of catheter ablation is stopping arrhythmias by scarring the portion of tissue
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Figure 1.1: Example of a CRT device with three leads: a right atrial lead (solid black
arrow), a right ventricular lead (dashed black arrow), and a coronary sinus lead (red arrow)
enabling pacing of the left ventricle. The device delivers stimuli to the heart through the
leads following a certain pacing protocol so to correct the rhythm disorder. From Wikimedia
Commons, Author: Gregory Marcus, MD.

that triggers or sustains abnormal electrical signals. Supported by a computerized, three-

dimensional mapping system, the electrophysiologist uses flexible catheters inserted through

a vein and guides them into the heart chambers. Then, the catheters deliver thermal energy

destroying the tissue causing rhythm disturbance. Ablation is less invasive than CRT and

has high success rate (around 90% for ventricular arrhythmias). However, an accurate

detection of the ablation area is crucial for an optimal individualized therapy but still

quite challenging to pursue in clinical setting. In addition, recurrence of irregular rhythm

occurs in at least 20 to 40% of the patients [5, 6]. In general, the impact of individual,

patient-specific factors is largely neglected in current treatments of arrhythmias. Advances

in personalized electrophysiology (EP) are needed for better therapy planning, intervention

guidance and outcome prediction.

Mathematical and numerical modeling in cardiac EP is a mature field of applied and

computational mathematics, supported by an abundant and comprehensive literature [7–10]

(to mention a few). Numerical simulations in electrocardiology are progressively becoming

part of medical research and clinical practice: application to atrial or ventricular arrhyth-

mias [11, 12], improvement of drug therapies [13], CRT [14, 15], catheter ablation [16–18]

have been explored. Multi-scale mathematical frameworks have been developed to simulate

the cardiac electrical function at the whole-organ scale [19–21]. The increasing interest

in computational EP is motivated by the convenience of in silico over in vivo testing. In
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fact, in silico experiments (i.e., numerical simulations of possible scenarios) allow to investi-

gate the pathology as well as the outcome of potential therapies before their actual clinical

implementation, reducing the risk of invasive tests. Furthermore, virtual testing is an ex-

tremely useful resource to design new devices at limited planning costs, as the effectiveness

of different configurations can be predicted before production.

To be of clinical utility, two conditions must be fulfilled:

• EP models must be accurately personalized so to reflect a given patient’s physiology.

• Parameter estimation in EP must be efficient enough to be compatible with clinical

time frames.

The personalization issue involves the fine tuning of the many parameters (e.g., cardiac

tissue conductivities) featured by the relevant equations on patient-specific data. While

tremendous research effort has been devoted to this problem [22–28], a robust and precise

quantification of the parameters that govern the equations associated to EP models still

remains an open challenge, in particular in an experimental setting. A reliable estimation

of these quantities and validation against real data are crucial in view of using computational

models to study and evaluate patient-specific EP in silico, with the potential of optimizing

medical procedures, such as choosing optimal electrode locations and pacing protocol for

CRT or detecting ideal ablation areas.

As for the efficiency issue, developing patient-specific EP models requires immense com-

putational effort limiting the use of mathematical electrocardiology in clinical setting. In

fact, parameter estimation procedures are computationally intensive as many queries of

forward solvers (usually involving partial differential equation (PDE)) with different model

parameters are needed. To capture all the clinically significant features, fine spatial and

temporal resolutions of discretized EP equations are required resulting in heavy compu-

tations. A reasonable trade-off between efficiency and complexity is difficult to achieve

from a modeling perspective as well. The more physiologically detailed the model, the

larger the number of equations and parameters. As for hardware solutions, the increasing

availability of high performance computing resources enables more detailed simulations in

the view of clinical applications [29–32]. The use of graphics processing units (GPUs) has
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also been of interest in EP modeling [33–36], yet parallel implementations are not straight-

forward. Strategies coping with the issue of alleviating computational complexity from a

software viewpoint involve mathematical model reduction techniques based on the defini-

tion of a surrogate for the forward problem which is more affordable to solve. While some

approaches have been investigated with promising results [37–41], particular properties of

EP models such as nonlinearity and wave-front propagation dynamics make the application

of reduced-order modeling in this field problematic. To sum up, an accurate and efficient

personalization is both necessary and challenging to integrate computational EP in the

diagnosis, prognosis and treatments of cardiac arrhythmias.

1.1 Contribution and Thesis Outline

The objective of this Thesis is to contribute to the translation process of computational

cardiac EP to bedside by developing precise and fast parameter estimation procedures with

the goal of better informing clinical decision making. This can be done by means of data

assimilation techniques incorporating experimental data into mathematical models and by

exploring alternative model order reduction approaches aiming to reduce computational

complexity. The quantification of cardiac conductivity, a critical parameter in EP modeling

[42], is the primary concern of this Thesis. We face the estimation problem from four

different perspectives, each one of them privileging either accuracy or efficiency or looking

for a reasonable compromise.

The first approach considers the variational data assimilation procedure presented in

[26], which intends to assimilate data by solving a suitable constrained optimization problem

which consists of the minimization of a functional measuring the misfit between available

patient-specific data and computed solution, using as a constraint the EP model. In this

part of the Thesis, the estimation is pursued by matching the model behavior with the

observed electrical wave propagation. Our contribution is the synthetic validation consid-

ering several realistic experimental settings and, in particular, an extensive and accurate

validation against in vitro measurements. To the best of our knowledge, this is the first time

that such a detailed verification of the reliability of a methodology for cardiac conductivity
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estimation using real data is carried out. We will verify that this procedure is accurate

at the expense of heavy computations. We will resort to parallel computing to contain

computational burden.

The second strategy consists of adopting a Proper Generalized Decomposition (PGD)

technique [43–45] for the reduction of the costs associated with the misfit calculation. This

method relies on a classical off-line-on-line paradigm, where an appropriate basis functions

set is constructed by solving the equations in the parameter space. A special separation-of-

variable technique is used to perform this step efficiently. Then, when one needs to compute

the solution for a different set of parameters (on-line stage), like in the inverse problem

for conductivity estimation, the evaluation follows promptly by the solution of an algebraic

problem. While PGD was already applied in many contexts [46–48], this work represents the

first contribution in cardiac EP. We will see that, with a careful implementation, significant

speed up can be achieved keeping an adequate estimation and reproduction of the physics.

The third method tackles the inversion from a statistical viewpoint [49,50] with the goal

of providing a quantification of the uncertainty. The solution of the inverse problem is a

probability distribution that can be used to obtain not only point but also spread estimates.

This additional information may be helpful to the users for a more comprehensive assessment

of the quality and the robustness of the estimation. This strategy entails more expensive

and sometimes unaffordable calculations than deterministic ones. To limit computational

complexity, some attempts in literature were done using simplified equations [51, 52]. This

part of the chapter serves as the first application of statistical techniques with more accurate

EP models. We will combine it with the PGD method for fast exploration of the solution

distribution in the parameter space.

Finally, the fourth procedure focuses on a physics-based reduced-order modeling ap-

proach considering a simplified description of the electrical dynamics. Following a consol-

idated framework [21, 53, 54], a realistic heart model will be reconstructed from medical

images and individualized EP state will be estimated from electrocardiogram (ECG) data

at near real-time. In this part of the Thesis, the focus is more on efficiency, whereas we

do not expect to accurately reproduce the observed electrical dynamics, but only match

some ECG features informative of the physiological conditions of the patient. Based on
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this personalization, we will then study the induction of cardiac arrhythmias in view of

contributing to a better ablation therapy planning.

The Thesis is organized as follows. We start in Chapter 2 presenting the mathematical

background relevant for this work. First, we quickly describe the anatomy and electrophys-

iology of the heart. We then review the models used in computational cardiac EP for

describing electrical excitation, both at cellular and tissue level.

In Chapter 3, we first recall the inverse problem of the estimation of cardiac con-

ductivities introduced in [26]. After presenting the numerical approximation, we test the

variational data assimilation procedure in several synthetic settings to investigate the sensi-

tivity with respect many practical issues, such as the level noise in the data and the amount

of information. We then perform an extensive and accurate validation against experimental

measurements using canine right ventricles.

In Chapter 4, we present the PGD method for mitigating the computational burden

of the forward solve and in turn of the inverse problem. After a description in a general

setting, we apply the technique to an EP model. We then analyze its reliability in capturing

the physics of the system and we apply it to the optimization problem in a synthetic setting

to gain computational efficiency. We continue by formulating the problem in a Bayesian

framework with the goal of providing a quantification of the uncertainty related to the

estimates. Finally, we present some numerical results with synthetic data.

Chapter 5 deals with the problem of personalization by using a simplified EP model

promoting fast calculation. First, we describe the reconstruction of a virtual heart from clin-

ical images as well as the personalization strategy. We then simulate ventricular tachycardia

to allow in silico experiments of ablation procedures.

Concluding remarks and suggestions for future research directions will be addressed in

Chapter 6.

List of abbreviations For the sake of readability, we add a list of the abbreviations

used in this Thesis. AP (Action Potential), APD (Action Potential Duration), AV (Atrio-

Ventricular), BEM (Boundary Element Method), BDF (Backward Differentiation Formu-

las), BICP (Bidomain Inverse Conductivity Problem), BPM (Beats Per Minute), BZ (Bor-
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der Zone), CL (Cycle Length), CM (Conditional Mean), CMR (Cardiovascular Magnetic

Resonance), CRT (Cardiac Resynchronization Therapy), CV (Conduction Velocity), DI (Di-

astolic Interval), DO (Discretize-then-Optimize), DOF (Degrees of Freedom), EA (Electrical

Axis), ECG (Electrocardiogram), ECS (Extra-Cellular Space), EP (Electro-Physiology),

FEM (Finite Element Method), FK (Fenton-Karma), ICP (Inverse Conductivity Prob-

lem), ICS (Intra-Cellular Space), KKT (Karush-Kuhn-Tucker), LA (Left Atrium), LAT

(Local Activation Time), LBM (Lattice-Boltzmann Method), LV (Left Ventricle), MAP

(Maximum A Posteriori), MCMC (Markov Chain Monte Carlo), MH (Metropolis Hast-

ings), MI (Myocardial Infarction), MICP (Monodomain Inverse Conductivity Problem),

MM (Minimal Model), MRI (Magnetic Resonance Image) MS (Mitchell-Schaeffer), OD

(Optimize-then-Discretize), ODE (Ordinary Differential Equation), PDE (Partial Differen-

tial Equation), PGD (Proper Generalized Decomposition), POD (Proper Orthogonal De-

composition), PPDF (Posterior Probability Distribution Function), RA (Right Atria), RC

(Restitution Curve), RM (Rogers-McCulloch), RV (Right Ventricle), SA (Sino-Atrial), SVD

(Singular Value Decomposition), VA (Ventricular Arrhythmia), VT (Ventricular Tachycar-

dia).

Disclosure The work presented here led to some publications, some already published or

to appear, others submitted or in preparation. Some Chapters are strictly related to these

papers. We mention this circumstance at the beginning of each of those Chapters. However,

we preferred here to organize the stream of the research in a more structured presentation

for the sake of readability.
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Chapter 2

Mathematical Models in Cardiac

Electrophysiology

In this Chapter, we present the mathematical models of cardiac excitation used in this

Thesis. We first provide a short overview of the anatomy and the electrophysiology of

the heart, both at microscopic and macroscopic scales (Section 2.1). Then, we review the

mathematical formulation of the electrical activity at cellular level which in turn allows

us to describe the potential propagation at tissue level (Section 2.2). In particular, we

will consider the Bidomain, Monodomain and graph-based models to test our proposed

methodologies.

2.1 Anatomy and Electrophysiology of the Heart

This Section has the purpose of briefly illustrating the anatomy and the electrical activity

of the heart. In Section 2.1.1, we describe the main components of the heart muscle and its

fundamental role in sustaining proper function of the body. We provide an overview of the

electrical activity at cellular level in Section 2.1.2 and of electrical conductive system of the

heart in Section 2.1.3.
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(a) (b)

Figure 2.1: (a) Sectional anatomy of a healthy human heart (anterior view) showing the
four chambers, the major vessels, the valves and the path of blood flow. The red arrows
show the direction in which oxygenated blood flows from the lungs to the rest of the body.
The blue arrows show the direction in which deoxygenated blood flows from the body to
the lungs. From Wikimedia Commons, source: Blausen Medical Communications, Inc. (b)
Heart musculature. This involved pattern allows the heart to contract more effectively than
a simple linear pattern would. From Wikimedia Commons, source: Anatomy & Physiology,
Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013.

2.1.1 Macroscopic description

The heart is situated between the lungs in the middle of the chest, slightly to the left of

the sternum, and is supported inside a double-layered membrane called the pericardium.

The inner layer of the pericardium is attached to the heart muscle, whereas the outer layer

anchors it to the surrounding walls. The space between the two layers, the pericardial cavity,

contains a supply of lubricating serous fluid and it lets the heart move as it beats.

The heart muscle is called myocardium and it includes the muscle between the outer

surface, the epicardium, and the inner layer, the endocardium. The lower tip of the heart is

called apex and the posterior part is known as the base. The heart is divided by a wall of

muscle, the septum, into left and right halves and it has four major chambers. The upper

thinner walled chambers are called the left atrium (LA) and the right atrium (RA), and

the lower, larger, thicker walled chambers are called the left ventricle (LV) and the right

ventricle (RV). A detailed cross-section of a human heart is shown in Fig. 2.1(a).

Cardiac myocytes are the major constituent of heart muscle. In human ventricular
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tissue, myocytes can be approximated by a cylinder with a length of 80 to 100 µm and a

diameter of 10 to 20 µm [7]. Myocytes are bounded by a lipid membrane, the sarcolemma,

and coupled to other cells by gap junction channels enabling the conduction of the electrical

signal. Myocytes are arranged in fibers and layers of fibers, called sheets, constitute the

myocardium. The sheets feature on average four layers and are surrounded by a matrix

of collagenous connective tissue. This results in a complex muscle pattern (illustrated in

Fig. 2.1(b)), as the fibers swirl and spiral around the chambers of the heart. They wrap

around the atria in figure 8 pattern [55, 56]. Deeper layers also form a figure 8 around

the two ventricles and proceed toward the apex. More superficial layers surround both

ventricles. The fibers turn clockwise from the apex to the base at the epicardium, have

circular geometry in the myocardium, and go counterclockwise close to the endocardium

[57,58].

The right and the left side of the heart work in unison producing a rhythmical heartbeat.

This coordinate contraction provides a continuous circulation of blood to meet the hemato-

logic requirements of all cells of the body. Fig. 2.1(a) depicts a complete blood circulation

throughout the heart. The RA receives deoxygenated blood from the body through veins

called superior and inferior cava. From the RA, the blood travels to the RV. Once the RV

is full, it pumps the blood into the pulmonary artery which leads to the lungs, where the

blood picks up oxygen and offloads carbon dioxide. Newly oxygenated blood travels to the

LA via the pulmonary vein. Then, the LA contracts pushing blood into the LV. The LV is

responsible for pumping this oxygenated blood out to the body via the aorta. The aorta is

the largest blood vessel in the body and carries blood up towards the head, the arms and the

thorax, before arching over and traveling down the vertebral column to carry blood towards

the other abdominal organs and the legs. The LV is the largest and thickest chamber of

the heart since it has to pump blood further around the body and against higher pressure,

compared with the RV. The period during which the atria and the ventricles relax and fill

with blood is called diastole; the period of contraction during which blood is pushed out of

the heart is called systole [7].

The heart has four valves that help ensure that blood only flows in one direction. The

tricuspid valve on the right and the mitral valve on the left regulate blood flow through each
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respective atrium and ventricle pair. The papillary muscles in both the ventricles attach

to the cusps of the tricuspid and mitral valves via tendinous cords and contract to prevent

inversion or prolapse of these valves during contraction. The pulmonary valve lies between

the RV and the pulmonary artery and the aortic valve separates the LV and the aorta.

2.1.2 Electrophysiology of cardiac myocytes

The sarcolemma encapsulates the cardiac muscle cell, separating the inner volume known

as the intracellular space (ICS) to the volume outside, called the extracellular space (ECS).

The sarcolemma is a semipermeable membrane, i.e., it features small pores that allow only

specific ions of a certain size and/or charge to pass through [7]. Since these pores regulate

the ion flow across the membrane, they are often referred to as ion channels. The movement

of ions through the ion channels causes a potential difference between the ICS and ECS

defined as transmembrane potential u (or membrane potential):

u = ui − ue,

where ui is the potential in the intracellular space, the intracellular potential, and ue the

potential in the extracellular space, the extracellular potential.

The ions that play a key role in cardiac electrophysiology are Na+,K+ and Ca2+.

Under resting conditions, the concentration of these ions in the ICS and ECS is substantially

different. These concentration gradients provide the potential energy to drive the formation

of the transmembrane potential. The voltage at which there is no net flow of a particular

ion type across the membrane is called Nernst potential. The Nernst potential Ex for an

ion x can be calculated from the Nernst equation [7]

Ex =
RT

zxF
loge

(
[x]e
[x]i

)
,

where R is the universal gas constant; T the absolute temperature; zx the valence of the ion;

F the Faraday’s constant; [x]i and [x]e the intracellular and the extracellular concentrations

of the ion x. The concentrations at equilibrium give the Nernst potentials of ENa = 70 mV,
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EK = −88 mV and ECa = 128 mV at body temperature (37◦ C) [7,59].

The electrical excitation triggered by the ion fluxes through the ion channels is called

Action Potential (AP). The standard model used to understand the cardiac AP is that of

the ventricular myocyte. It is composed of 5 phases (0-4)1, beginning and ending with phase

4 this numeration (an illustration is given in Fig. 2.2).

• Phase 4: The resting phase. In absence of a stimulus, the cell membrane is in a

polarized state due to a constant outward leak of K+ through the ion channels. The

resting transmembrane potential is around -85 mV [60] which is close to EK , reflecting

the high permeability of the membrane to K+. Na+ and Ca2+ channels are closed in

this state.

• Phase 0: Depolarization. If a sufficiently large stimulus, e.g., a synaptic input

or electrical pacing, is applied to the cardiac cell, the transmembrane potential rises

above a critical value known as threshold potential. At this point, enough Na+ chan-

nels have opened to generate a self-sustaining inward Na+ current. Ca2+ channels

open when the transmembrane potential is greater than -40 mV causing a small but

steady inward flow of Ca2+. The sharp increase of the AP towards zero is called

depolarization. The peak of the transmembrane potential is between 40 mV and 50

mV, which is close to ENa, since the cell membrane is highly permeable to Na+.

• Phase 1: Early repolarization. Na+ channels close at most after 1 or 2 ms because,

simultaneous with activation, a second, slightly slower conformational change in the

channel molecule occurs causing inactivation. The transmembrane potential rapidly

decreases towards zero (repolarization) due to the steady outward current of K+.

• Phase 2: The plateau phase. Ca2+ channels are still open and the inward Ca2+

current hold the transmembrane potential in a depolarized state. There is a near

balance (”plateau”) of charge moving into and out of the cell.

• Phase 3: Repolarization. Ca2+ channels are gradually inactivated and the persis-

tent flow of K+ causes the cell to repolarize returning to the resting state. The cell

1This numeration is commonly used in literature [7].
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Figure 2.2: Typical action potential of a ventricular myocyte. From resting state of phase
4, the AP begins in phase 0 with the voltage becoming more positive due to the inward
Na+ current causing a sharp upstroke. This is followed by a rapid repolarization of the cell
in phase 1. Then, in phase 2, the transmembrane potential remains almost constant due
to a near balance between inward Ca2+ and outward K+ currents. The AP terminates in
phase 3 returning to resting conditions due to K+ leaving the cell and causing a decrease
in the transmembrane pontential.

is prepared for a new cycle of depolarization.

The time interval in which u is greater than a certain threshold (usually anywhere from

70% to 90% recovery from the peak voltage to the resting potential) is commonly denoted

as Action Potential Duration (APD) (see Fig. 2.3(a)). Assuming to apply a sequence of

stimuli with a period called pacing cycle length (CL), the time interval in which the cell rests

is called diastolic interval (DI) and it is given by DI = CL − APD. It has been observed

experimentally that, if the cell is paced with a series a stimuli with decreasingly low CL, this

causes a shortening of the APD. This dependence of APD on CL is typically characterized

as restitution of APD. An example of Restitution Curve (RC) is provided by Fig. 2.3(b).

The use of the restitution curve plays a central role in determining the parameter of the

ionic models described in Section 2.2.1 so to accurately simulate the observed dynamics of

the system.

Electrical impulses can be initiated by a special type of cardiac cell, the pacemaker

cells. Cardiac pacemaker cells have natural automacity, meaning they generate regular
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(a) (b)

Figure 2.3: (a) APD stands for action potential duration; CL is the pacing cycle length;
the diastolic interval DI is DI = CL - APD (b) Example of restitution curve, functional
relationship between APD and CL. Fast pacing (low CL) shortens the APD.

and spontaneous APs. They are mostly found in the sinoatrial (SA) node, but also in

the atrioventricular (AV) node and the Purkinje fibers (see Section 2.1.3 for more details).

The particular AP generated by pacemaker cells (see Fig. 2.4) is very different to that in

non-pacemaker cells, such as ventricular myocyte, as pacemaker cells do not have extended

periods of time when they are quiescent.

2.1.3 Electrophysiology of the heart

To pump blood throughout the body, the muscles of the heart must contract coordinately.

The mechanical activity is regulated by electrical impulses propagated by the electrical

conduction system of the heart, shown in Fig. 2.4.

Spontaneous electrical stimulation begins at the SA node located in the RA. Propagat-

ing through the atria, the signal reaches the AV node. The AV node consists of similar

pacemaker cells as found in the SA node. However, these cells intrinsically generate stimuli

at a slower rate, so they turn to be placed by the excitation coming from the SA node [7].

Conduction at the AV node is much slower giving time for the atria to contract and push

blood into the ventricles before the AP reaches them and make them contract. From the

AV node, the electrical propagation stimulates the bundle of His which runs down the right

side of the septum. After a short distance, this common bundle splits into right and left
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Figure 2.4: Electrical conduction system of the heart, AP waveform of different cardiac
cells and idealized ECG signal. The AP generated in the SA node by pacemaker cells is
propagated through the right atrium to the AV node, along the Bundle of His and through
bundle branches and Purknje fibers for each side of the heart to cause contraction. This
process allows blood to be pumped throughout the body. There are important physiological
differences between pacemaker cells and those that simply conduct it, such as ventricular
myocytes. The main differences lie in the type of ion channels and the mechanism by which
they are activated resulting in different configuration of the AP waveform. AP activity
within the heart can be recorded to produce an electrocardiogram (ECG). This is a series
of upward and downward spikes (labelled P, Q, R, S and T) that represent the depolarization
and repolarization of the AP in the atria and ventricles. The ECG representation is divided
in portions with different colors corresponding to the AP of the type of cells that define the
pattern of the signal. From Wikimedia Commons, source: CardioNetworks.

bundle branches, continuing to subdivide into a complex network of fibers called Purkinje

fibers. The signal is carried along these fibers in the endocardial surface of both ventricles

and within the ventricular myocardium. The fast conduction through the bundle branches

and the Purkinje fibers cause the entire endocardium to be excited almost simultaneously.

These electrical signals are generated rhythmically, which in turn results in the coordinated

rhythmic contraction and relaxation of the heart.

The cardiac electrical activity can be monitored on the body surface with electrocardio-

graphy, a non-invasive medical process that produces an electrocardiogram (ECG). In the

conventional 12-lead ECG, a complete picture of heart’s electrical activity is portrayed by

recording information over a period of time from 12 different perspectives. These 12 views
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are gathered by placing electrodes on the chest, wrists and ankles that detect the small

electrical changes due to depolarization followed by repolarization during heartbeat. Each

lead represents the potential difference between different electrode groups. Fig. 2.4 depicts

a normal idealized ECG signal. The P wave reflects the depolarization of the atria, from

the SA node to the AV node, which usually takes less than 80 ms. Conduction disturbances

in the atria or AV node will cause this wave to be longer. The rapid depolarization of the

ventricles is represented by the QRS complex. It has a much larger amplitude than the

P wave because of the large muscle mass of the ventricles compared to the atria. Atrial

repolarization also occurs but it is masked by the QRS complex. The duration of the QRS

complex is 60 to 100 ms. Any defects in conduction within the Purkinje system or other

parts of the ventricles will be reflected in a prolonged QRS complex. The T wave corre-

sponds to the repolarization of the ventricles, and generally takes longer to complete than

the depolarization. ECG features will be used in Chapter 5 in a patient-specific framework.

This orderly pattern of depolarization gives rise to the characteristic ECG tracing. To

the trained clinician, an ECG conveys a large amount of information about the structure

of the heart and the function of its electrical conduction system. Any deviation from the

normal tracing is potentially pathological and therefore of clinical significance. For example,

an irregular QRS complex without P waves is the hallmark of atrial fibrillation; however,

other findings can be present as well, such as a bundle branch block that alters the shape

of the QRS complexes.

2.2 Modeling Electrical Activity

In this Section, we review the mathematical models used to represent the cardiac excitation

at cellular level (Section 2.2.1) and at tissue level (Section 2.2.2). The models described

here play a central role in this Thesis.

2.2.1 Cell modeling

The action potential (AP), the change in the transmembrane potential over time, is the

result of electrochemical gradients driving the flow of ions across the membrane. This po-
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Figure 2.5: Electric circuit modeling the flow of current across the cell membrane. A
capacitor with capacitance Cm is used to model the charge storage capacity of the cell
membrane, variable resistors are used to model the various types of ion channels embedded
in membrane, and batteries are used to represent the electrochemical potentials established
by differing intra- and extracellular ion concentrations. The current flow through a given
ion channel x depends on the conductance of the channel gx, and the difference between u
and the Nerst potential Ex governs the direction of the current flow.

tential variation can be described using an equivalent electric circuit based on the Hodgkin-

Huxley model of the squid giant axon [61]. The electrical activity of the cell membrane can

be modeled with a capacitor in parallel with a sequence of resistors representing the ion

channels in the membrane, as shown in Fig. 2.5.

For the current flow Ix through the channel of a given ion x, its direction is determined

by the difference between the transmembrane potential u and the Nernst potential Ex, that

is the equilibrium situation for the ion x. If u is equal to Ex, then the inward and outward

flows of ion x are equal. If u is higher or lower than Ex, then there will be a net flow of

x one way or the other across the membrane with the ionic current proportional to the

difference between u and Ex

Ix = gx(u− Ex),

where gx is the conductance of the channel for the ion x (note that the conductance is the

inverse of the resistance, so gx = 1/Rx if Rx is the resistance). Generally, the conductances

are described using non-linear functions because of the complex dependencies on the opening

and closing of the associated channels, transmembrane potential and concentrations of ions.

With the conductances arranged in parallel, the total current Iion flowing through the ion
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channels is given by Iion =
∑

x Ix. Iion is placed in parallel with the current flowing

through the capacitance Cm of the cell membrane yielding the following expression for the

total current Im through the cell membrane over time t

Im = Cm∂tu+ Iion (2.1)

where ∂t denotes the partial derivative with respect to time. The AP from a single isolated

cell (meaning Im = 0) can be reconstructed by solving the ordinary differential equation

(ODE)

∂tu = −Iion + Iapp
Cm

(2.2)

where Iapp represents an external stimulus that may be required to reach its threshold

potential.

A broad range of ionic models have been developed to simulate the transmembrane

currents Iion and other cellular ionic processes generating cardiac AP. These models differ

on the cell types (SA node, AV node, atrial, ventricular, Purkinje fibers models having

different AP waveforms, see Fig. 2.4), and on the level of details and complexity used to

describe the mechanism of the problem (either biophysically-based or simplified phenomeno-

logical models). Biophysically-based models represents the electrical activity of the cell by

accurately modeling sub-cellular features such as specialized compartments and ion trans-

fers through channels, pumps and exchangers. Some of the better known models are the

Beeler-Reuter model of mammalian ventricular cell [62], Luo-Rudy II model of guinea pig

ventricular cells [59], Courtemanche-Ramirez-Nattel (CRN) model of human atrial cells [63],

Ten Tusscher-Noble-Noble-Panfilov of human ventricular cells [64]. A more comprehensive

summary can be found at [7, 65, 66]. These models can be extremely realistic, but they

feature high level of complexity, hence their numerical solutions in large-scale problems

are often computationally demanding. As an alternative, simplified phenomenological ionic

models have been proposed to provide an AP at a minimal computational cost. Typically,

these models were formulated from biophysically-detailed ones considering only the most

contributing sub-cellular processes to the AP. In spite of their computational affordability,
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these approaches still preserve a reasonable level of accuracy. In this work, we will consider

only simplified phenomenological models.

A general form of this class of models reads


Iion =

∑M
i=1 Ixi(u,w)

dtw = g(u,w)

(2.3)

where M is the number of ion species; Ixi the ionic current associated with the ion species

xi; w the vector of J gating variables {wj}Jj=1 that prescribe the dynamics of the various

currents that make up Iion; dt represents the total derivative with respect to time. The

dynamics of the transmembrane potential u is governed by equation (2.2). The gating

variable wj describes the probability that the j-th gate will be open to allow the flow of

ions under different conditions, thus it operates in the range [0,1]. The general form of the

conductance formulation for the ion xi is given by

gxi = ḡxiwj

where ḡxi is the maximal conductance of the cell membrane to ion xi. The time dependence

of the gating variable wj is typically described by an ODE

dtwj = αwj (1− wj)− βwjwj (2.4)

where αwj and βwj are known as rate constants and are in general voltage-dependent.

When wj = 0, the j-th gate is completely shut and no current associated with ion species

xi will flow. When wj = 1, the j-th gate is completely open and current will flow based

on the maximal conductance and the difference between the transmembrane and reversal

potentials. Equation (2.4) can be reshaped as

dtwj =
wj,∞ − wj

τwj

(2.5)
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where

wj,∞ =
αwj

αwj + βwj

τwj =
1

αwj + βwj

.

Here, wj,∞ represents the steady-state behavior of the gate and τwj the time constant

associated with the activation or inactivation processes. In this description, the present

state of the gate is expressed as a deviation from the steady state and the time constants

dictates how long it will take for the gate to return to a steady-state in the absence of

further perturbations. In other words, given an initial state, equation (2.5) describes an

exponential approach to wj,∞ as time approaches infinity.

The simplest of phenomenological models is a polynomial that uses just one variable,

therefore it can be solved easily and used in large-scale simulations. However, this model

does not attempt to represent repolarization as it only tracks the depolarization phase.

Thus, it is unsuitable to simulate reentry, an electrophysiologic mechanism occurring during

repolarization responsible for the majority of clinically important arrhythmias. We will

focus on models that can reproduce a full AP. In particular, we introduce four possible ionic

models, the Rogers-McCulloch (RM) model [67], the Mitchell-Schaeffer (MS) model [68],

the Fenton-Karma (FK) model [69], and the Minimal model (MM) [70].

The specific description of the time evolution of w and the associated nonlinear reaction

function Iion(u,w) are provided according to the level of complexity inherent the specific

model. In fact, RM, MS, FK and MM models are characterized by two, two, three and

four variables respectively, with associated 1, 2, 3, and 3 ionic currents and 6, 5, 12, and 28

constitutive parameters.

The study and parametric characterization of ionic models relies on both local- and

global-in-space/time features. The space and time course of the membrane voltage following

an electrical stimulation, i.e. an elicited AP excitation wave, has been historically linked

to specific measurable subfeatures of the AP wave, i.e. the APD and the Conduction

Velocity (CV) (see [65] for details). In what follows, we will specifically use the restitution

curve (RC), describing the dependence of APD on the pacing cycle length CL to adopt

a convenient set of modeling parameters qualitatively reproducing the observed behavior.
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State-of-the-art fitting genetic algorithms [71] may provide an accurate estimation of those

parameters, but they are not the focus of the present Thesis. We empirically identify a

good-enough approximation of AP shape and restitution curves. Such a choice allows us

to prove the reliability of our estimation procedure also in presence of poor fitting power

or high experimental error. We refer to Section 3.3.1 for more details about the calibration

process. The model parameters are reported in Table 2.1.

The Rogers-McCulloch Model The RM model derives from the FitzHugh-Nagumo

(FHN) one [72, 73], which uses a cubic polynomial to describe the excitation and includes

a gating variable so depolarization and repolarization can be captured. The FHN model

yields only a coarse approximation of a typical cardiac AP, particularly in the plateau and

repolarization phases. A better approximation is given by the RM model [74] which reads

(only one gating variable w = [v])

dtv = η2(u/up − η3v) (2.6)

where Iion(u,w) only consists of one term

Iion(u,w) = Gu(1− u/uth)(1− u/up) + η1uv (2.7)

where u is in unit of mV. When u is greater than the threshold uth, the upstroke of AP

starts and drives the transmembrane potential to the plateau voltage up, otherwise the

transmembrane potential tends to the resting potential u = 0. By the cubic description of

Iion the model captures the most relevant features of an AP, therefore it can be adopted

with adjusted model parameters for patient-specific simulations, when the goal is more like

a qualitative study. RM will be the model of choice to validate our estimation procedure in

a 2D synthetic setting (Chapter 3, Section 3.2.1) and to test the performance of PGD and

its application to Bayesian inversion in Chapter 4.

The Mitchell-Schaeffer Model The MS model is a FitzHugh-Nagumo-like phenomeno-

logical model [66] that qualitatively reproduces cardiac AP dynamics and restitution fea-
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tures. Thanks to its simplicity, the model is numerically efficient. In addition, it is possible

to carry out a comprehensive sensitivity analysis on its parameters; last but not least, it is

possible to derive from the reaction-diffusion model an explicit formula for the restitution

curve [68].

The MS reaction kinetics reads (w = [v]):

dtv = (1− v)/τopen − (v/τclose + (1− v)/τopen)H(u− ugate) (2.8)

where Iion(u,w) is given by the sum of two currents, inward and outward, respectively:

Jin = vu2(1− u)/τin , Jout = u/τout , (2.9)

with u dimensionless and u ∈ [0, 1]; H(·) is the standard Heaviside step function. We

will focus on MS model in Chapter 3 (Section 3.3) to perform experimental validation and

its computational efficiency will be exploit in numerical simulation for clinical applications

(Chapter 5).

The Fenton-Karma Model The FK model is a generalization of the original two-

variable Karma model [75] able to properly approximate time course, restitution properties

and spiral wave dynamics of the cardiac AP excitation wave [69, 76]. Although the model

does not reproduce realistic AP shapes (in particular the spike-and-dome behavior of my-

ocardial cells), it is complex enough to exhibit many of the characteristics of cardiac cells,

but also simple enough that much of its behavior can be understood analytically.

Model equations are (w = [v, w])

dtv = H(uc − u)(1− v)/τ−v (u)−H(u− uc)v/τ+
v

dtw = H(uc − u)(1− w)/τ−w −H(u− uc)w/τ+
w

(2.10)

where Iion(u,w) is given by the sum of three currents, fast inward Jfi, slow outward Jso,
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and slow inward Jsi, respectively:

Jfi = −vH(u− uc)(1− u)(u− uc)/τd

Jso = uH(uc − u)/τo +H(u− uc)/τr

Jsi = −w(1 + tanh(k(u− usic )))/2τsi ,

(2.11)

and the voltage-dependent time constant is

τ−v (u) = H(u− uv)τ−v1 +H(uv − u)τ−v2, (2.12)

with u dimensionless and u ∈ [0, 1]. The sigmoid function 1 + tanh(k(u − usic ) provides

a smooth approximation of the Heaviside step function. We will carry out a comparison

between FK and MS models for the experimental validation in terms of accuracy of the

reconstruction of the optical mapping data in Chapter 3 (Section 3.3).

The Minimal Model The MM model is based on the FK one with the addition of a

fourth variable to adjust the inward current to reproduce the spike-and-dome morphology

for myocardial cells. It provides a description of the human and animal ventricular cells

reproducing in detail experimentally measured characteristics of action potentials. These

characteristics are both at cell and tissue-level including: action potential amplitude and

morphology, upstroke conduction velocity (CV) of the excitation wave, APD and CV resti-

tution curves, spatio-temporal alternans and spiral waves as dynamics fundamental fea-

tures of cardiac arrhythmias [70]. Moreover, it can be fitted to reproduce the dynamics of

other - more complex - physiological models, yet it is computationally more efficient. For

w = [v, w, s], it reads

dtv = (1−H(u− θv))(v∞ − v)/τ−v −H(u− θv)v/τ+
v

dtw = (1−H(u− θw))(w∞ − w)/τ−w −H(u− θw)w/τ+
w

dts = ((1 + tanh(ks(u− us)))/2− s)/τs

(2.13)
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where the three currents are given by

Jfi = −vH(u− θv)(u− θv)(uu − u)/τfi

Jsi = −H(u− θw)ws/τsi

Jso = (u− uo)(1−H(u− θw))/τo +H(u− θw)/τso

(2.14)

and the voltage-dependent time constants are

τ−v = (1−H(u− θ−v ))τ−v1 +H(u− θ−v )τ−v2

τ−w = τ−w1 + (τ−w2 − τ
−
w1)(1 + tanh(k−w (u− u−w)))/2

τ−so = τ−so1 + (τ−so2 − τ
−
so1)(1 + tanh(kso(u− uso)))/2

τs = (1−H(u− θw))τs1 +H(u− θw)τs2

τo = (1−H(u− θo))τo1 +H(u− θo)τo2

v∞ = 1−H(u− θ−v )

w∞ = (1−H(u− θo))(1− u/τw∞) +H(u− θo)w∗∞.

(2.15)

with u dimensionless and u ∈ [0, 1.5]. u can be expressed in unit of mV by the following

scaling umV = 85.7u−84. MM model will be used to perform synthetic validation in Chapter

3 in a 3D setting (Section 3.2.2) and in the case of more realistic physical properties and

2D geometry of canine tissue (Section 3.2.4).

2.2.2 Tissue modeling

When constructing mathematical models for electrical activity in the tissue, one possible

approach would be to describe the domain as a set of separate cells, and couple them together

using mathematical formulations for the known coupling mechanisms. However, using this

strategy would be feasible only for very small samples of tissue because of the prohibitively

large number of cells. Hence, we consider a continuous approximations of the tissue, in the

sense that a quantity is defined as the average over a small but multicellular volume. In this

way, we avoid the difficulties of modeling the discrete nature of the tissue. Following this

approach, the tissue is represented by two domains, the intracellular and the extracellular
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RM parameters

G uth up η1 η2 η3

1.5 Ω−1cm−2 13 mV 100 mV 4.4 Ω−1cm−2 0.012 1

MS parameters

τin τout τclose τopen ugate
0.3 10 69 220 0.13

FK parameters

uc τd τo τr k usic τsi τ+
v τ−w τ+

w τ−v1 τ−v2

0.13 0.1724 12.5 130 10 0.85 127 1.62 80 1020 38.2 38.2

MM parameters

uo uu θv θw θ−v θo τ−v1 τ−w2 k−w u−w
0 1.58 0.3 0.015 0.015 0.006 60 20 65 0.03

τ+
w τfi τo1 τo2 kso uso τs1 τs2 ks us

280 0.11 6 6 2 0.65 2.7342 3 2.0994 0.9087

τsi τ−v2 τ+
v τ−w1 τso1 τso2 τw∞ w∗∞

2.8723 1150 1.4506 70 43 0.2 0.07 0.94

Table 2.1: Ionic models parameters tuned to qualitatively reproduce the time course of the
AP signal and the restitution curves. More details about the tuning process are provided
in Section 3.3.1. Time is in unit of ms.

ones, so that the effects of the potential difference across the membrane can be included.

Both domains are assumed to be continuous, and they both fill the complete volume of the

heart muscle. The justification for viewing the intracellular space as continuous is that the

muscle cells are connected via so-called gap junctions. These are small channels embedded

in the cell membrane, which form direct contact between the internals of two neighboring

cells. Because of the gap junctions, substances such as ions or small molecules may pass

directly from one cell to another, without entering the space between the two cells (the

extracellular domain).

The Bidomain Model This continuum (volume-averaged) approach to describe the tis-

sue leads to the Bidomain Model, considered as the most physiologically founded description

of cardiac excitation at tissue level. It was first proposed in [77] and then applied to cardiac

tissue in [78, 79]. Similarly to what has been done in Section 2.1.2, we define the elec-

trical potentials ui and ue in the intracellular and extracellular spaces respectively which

at each point must be viewed as quantities averaged over a small volume. An important

consequence of these definitions is that every point in the heart muscle is assumed to be
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in both the intracellular and the extracellular domains, and consequently is assigned both

an intracellular and an extracellular potential. Moreover, we can define the transmembrane

potential u at every point in the tissue as u = ui − ue. Other assumptions are [7]

• there is no direct current flow between the intracellular and extracellular domains;

• the current flows between the extracellular and extramyocardial (for example the

torso) spaces through the boundary of the cardiac domain;

• the quasi-static assumption [80] is adopted, i.e., any change over time of electric and

magnetic fields generated inside the body are omitted.

Therefore, the current densities in the two domains are given by

Ji = −σi∇ui

Je = −σe∇ue
(2.16)

where Ji is the intracellular and Je the extracellular current densities; σi and σe the

conductivity tensors in the two domains, in general function of the local spatial coordinates;

∇ the spatial gradient operator. Any current that leaves one of the intra- and extracellular

spaces must across the membrane and flow into the other domain. This means the change

of current density in each domain should be equal in magnitude and opposite in sign.

Furthermore, by the conservation of current densities, the change of current density in each

domain should be equal to the current Im flowing across the membrane. These relations

are expressed as

−∇ · (σe∇ue) = ∇ · (σi∇ui) = βIm (2.17)

where β is the surface-to-volume ratio of the cell membrane; ∇· the divergence operator.

The current flow across the membrane Im can be described as in equation (2.1)

Im = Cm∂tu+ Iion (2.18)
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where the term Iion would be given by a coupled ionic model. Combining the equa-

tions (2.17) and (2.18), we obtain the Bidomain model in the symmetric form as


βCm∂tu = ∇ · (σi∇ui)− βIion(u,w)

−βCm∂tu = ∇ · (σe∇ue) + βIion(u,w)

dtw = g(u,w)

in Q (2.19)

completed by the following boundary and initial conditions


σi∇ui · n = 0, σe∇ue · n = 0 on ∂Q

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω .

(2.20)

Here, Q = Ω × [0, T ]; ∂Q = ∂Ω × [0, T ]; Ω ⊂ Rd (d = 2 or 3) is a bounded domain; [0, T ]

a fixed time interval; x the spatial coordinates; n the outward unit normal vector on the

boundary ∂Ω. The boundary conditions (2.20)1 are of Neumann-type, usually adopted in

the present context [7]. In physical terms, they try to mimic an insulated tissue. From a

mathematical point of view, it is well known that Neumann-type conditions minimize the

sensitivity of arbitrary data on the simulation results [81], though they yield an approxi-

mation of the complex phenomenology. It is possible for an external stimulus current to be

applied to either domain (Isi and Ise) so that

∇ · (σi∇ui) = βIm − Isi

−∇ · (σe∇ue) = βIm + Ise .

The resulting Bidomain model reshaped in a parabolic-elliptic form [7] in terms of the

transmembrane potential u and extracellular potential ue reads


βCm∂tu = ∇ · (σi∇u) +∇ · (σi∇ue)− βIion(u,w) + Isi in Q

−∇ · (σi∇u)−∇ ·
(
(σi + σe)∇ue

)
= Isi − Ise in Q

dtw = g(u,w) in Q

(2.21)
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with boundary and initial conditions


σi∇u · n + σi∇ue · n = 0, σe∇ue · n = 0 on ∂Q

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω .

(2.22)

u is uniquely defined, while ui and ue are determined up to the same additive time-dependent

constant. This common constant is related to the choice of the reference potential and it

is usually selected so that ue has zero average on Ω, i.e.,
∫

Ω ue(x) dx = 0. By applying the

divergence theorem to the elliptic equation (2.21)2, we require the compatibility condition

for the Bidomain system to be solvable:
∫

Ω(Isi − Ise) dx = 0. An extensive well-posedness

analysis for the system of the macroscopic Bidomain model coupled with a microscopic

cellular model can be found in [82,83].

A relevant issue for the purpose of this Thesis is the representation of the conductivity

tensor in the context of a complex orthotropic three-dimensional tissue. We refer to the

cardiac fibers principal directions [7, 84]. In detail, let (al,at,an) be the orthonormal unit

vectors related to the structure of the myocardium with al the longitudinal fiber direction,

at and an the orthogonal directions to the fiber in the sheet and orthogonal to the sheet,

respectively. Accordingly, we can decompose the conductivity tensors as:

σj(x) = σjl(x)ala
T
l + σjt(x)ata

T
t + σjn(x)anaTn ,

where j = i, e and σjl, σjt, σjn denote the longitudinal-, tangential- and normal-to-the-fiber

conductivities, respectively.

In the following, we assume that the tissue can be conveniently described as a transverse

isotropic material (i.e. σjt(x) = σjn(x)) and the tensor simplifies to

σj(x) = σjt(x)I + (σjl(x)− σjt(x))ala
T
l , (2.23)

where I is the d× d identity tensor.

An accurate patient-specific description of the fiber structure and the conductivity ten-

sors is crucial in clinical applications. The fiber orientation can be obtained in vitro using
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histology [57] or imaging technique like diffusion tensor MRI [85–87]. These procedures are

effective ex vivo, but tracking the fiber direction in moving heart is highly complex and

the imaging techniques usually take long acquisition time, which makes a precise repre-

sentation of the myocardium fiber quite challenging. Some in vivo real-time techniques to

map myofiber orientation have been analyzed [88], but further investigation is still needed

in this direction. Numerically, simplified models are used by mapping an analytical map

on idealized geometries to real left ventricles [89, 90]. In this Thesis, we will focus on the

estimation of cardiac conductivities assuming the fiber orientation known a priori.

The Bidomain model yields the most complete description of electrical potential in the

cardiac tissue. However, it is computationally demanding because of the involvement of

different time and space scales. In fact, a normal heartbeat can last on the order of one

second, while the AP dynamics varies abruptly in few milliseconds (see Phase 0 in Fig. 2.2).

Moreover, potential gradients are localized in a small area of few millimeters square, whereas

simulations for clinical applications involve portions of cardiac tissue with sizes of the order

of centimeters. Thus, spatial discretization has to be on the order of a tenth of millimeter.

Therefore, Bidomain simulations with realistic 3D models may feature discrete problems

with more than O(107) that need to be solved for thousands of time steps.

Another drawback of the Bidomain model emerges in its numerical discretization. In

fact, (2.19)1,2 can be written in matrix form as

βCm

 1 −1

−1 1

 ∂

∂t

ui
ue

 =

∇ · (σi∇ui)
∇ · (σe∇ue)

− β
 Iion(u,w)

−Iion(u,w)

 .
The vector of time derivatives is multiplied by a singular matrix, thus the Bidomain system

is said to be degenerate. This leads a severe ill conditioning of the matrix associated with the

fully discrete approximation and so its numerical solution requires significant computational

effort.

The Monodomain Model To reduce the computational complexity related to the Bido-

main solution, a simplified Monodomain Model has been proposed [91, 92]. It relies on the

assumption that the anisotropy of the intracellular and extracellular spaces is the same, i.e.,
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the conductivity in the extracellular space is proportional to the intracellular conductivity

σe = λσi (2.24)

where λ is a scalar, representing the ratio between the conductivity of the intra- and ex-

tracellular spaces. Substituting equation (2.24) into equation (2.21)1,2, we replace the two

equations of the Bidomain model with a single parabolic reaction-diffusion PDE for the

transmembrane potential u

βCm∂tu = ∇ ·
( λ

1 + λ
σi∇u

)
− βIion(u,w) + Iapp.

If we introduce an effective conductivity σ = λ/(1 + λ)σi and Iapp = λ/(λ+ 1)Isi + 1/(λ+

1)Ise, we obtain the Monodomain model of cardiac excitation as


βCm∂tu = ∇ · (σ∇u)− βIion(u,w) + Iapp in Q

dtw = g(u,w) in Q

(2.25)

completed by the boundary and initial conditions


σ∇u · n = 0 on ∂Q

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω .

(2.26)

The conductivity tensor σ is decomposed with respect to the cardiac fibers principal di-

rections as done in equation (2.23). The Monodomain equation (2.25)1 can be reshaped

as

∂tu = ∇ · (D∇u)− Iion(u,w)

Cm
+ Ĩapp (2.27)

where D = σ/(βCm) and Ĩapp = Iapp/(βCm).

The Monodomain model is a significant simplification of the original Bidomain equa-

tions, with advantages both for mathematical analysis and computation [93], and it has

been intensively used in clinical applications. If there is no injection of current into the ex-

tracellular space, descriptions of AP propagation provided by Monodomain and Bidomain
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models are close to each other even under the condition of unequal anisotropy ratio in the

extracellular and intracellular spaces [91]. Moreover, the Monodomain model may serve as

a powerful auxiliary tool to efficiently solve the Bidomain system [90,94,95].

However, the Bidomain assumption of separation of intracellular and extracellular spaces

is necessary to accommodate the injection of current into the extracellular space during

external stimulation and defibrillation [96–98]. During defibrillation, the unequal anisotropy

of the intracellular and extracellular spaces plays an important role in generating virtual

electrodes that are essential for successful defibrillation [99,100].

The Eikonal and Graph-based models A further reduction of the computational

complexity of the simulation of the excitation phase has been achieved by solving simplified

kinematic models, eikonal and graph-based models, describing the motion of the excitation

wavefront, instead of the time dependent voltage propagation. These models are based

on the assumption that the speed of propagation varies more slowly and over much larger

spatial scales than the transmembrane potential. The wavefront motion can be described by

the activation time in the point x defined as the time at which the wavefront passes through

the point x. A governing equation for the activation time is an eikonal equation [66, 101],

a static non-linear PDE explicitly derived from the previous models. On the other hand,

graph-based models [102, 103] represent the cardiac tissue as a connected graph consisting

of spatial nodes connected by edges. Every edge in the graph is assigned a cost, based on

the time it takes the activation wavefront to traverse the corresponding path between two

points in the tissue. Activation is initiated at one or several nodes, corresponding to the

point or points where the tissue is initially stimulated. From there, the activation travels

from node to node along the edges of the graph. At each node, an estimate of its activation

time can be obtained by finding the accumulated cost of all edges traversed in order to reach

it along a specific path. Typically, a very large number of paths can be taken between two

nodes in the graph, so in order to obtain the best estimate of the activation time, the path

with the lowest cost needs to be found.

Since these models only simulate the time at which the excitation wavefront reaches a

given point, they lead to much faster computations, considering also that a coarse spatial
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resolution is sufficient in these simulations. However, one important limitation of eikonal and

graph-based models is that they only describe the time of depolarization disregarding the

state of repolarization and refractoriness of cardiac cells. Those phenomena are very impor-

tant for the simulation of arrhythmias. Some improvements have been proposed to include

periodic arrhythmia [104] and capture the main characteristics of cardiac electrophysiology

propagation (anisotropy, refractory period, repolarization, restitution curve) [52,105]. How-

ever, the Bidomain and Monodomain models are still considered the most appropriate and

sophisticated approaches to study complex pathological conditions such as arrhythmias.

We will extensively use these models throughout this Thesis. In particular, in Chapter

3, the Bidomain model will be considered to perform synthetic validation and numerical

sensitivity analysis of the estimation procedure (Section 3.2.1,3.2.2). Then, we will success-

fully use the Monodomain model as a surrogate to the Bidomain problem in Section 3.2.3.

Due to its computational efficiency and accuracy in reconstructing Bidomain potential, the

Monodomain equations will be then the model of choice to validate our parameter estima-

tion method with optical mapping data in Section 3.3. We will continue focusing on the

Monodomain problem to investigate a reduced-order modeling technique in Chapter 4. Last

but not least, the Monodomain formulation will be used in Chapter 5 for simulating ventric-

ular tachycardia, together with a parameter personalization performed with a graph-based

model.
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Chapter 3

The Inverse Conductivity Problem

and its Validation

As mentioned in Chapter 1, one of the problems in using mathematical models for electro-

physiology in clinics is the patient-specific customization. Specifically, in this Chapter we

are concerned with the estimation of the cardiac conductivities (i.e., the Bidomain tensors

σi and σe in (2.21), and the Monodomain one σ in (2.25)) for a specific individual. Far from

being trivial, this problem has been addressed in pioneering works considering experimental

quantification [106] or other techniques [107–109]. These strategies led to different ranges

of possible values (see Table 3.1) with no common agreement on what the actual values are

or should be used for simulations [110].

Direct computational methods based on multiscale arguments have been explored to

obtain an estimate of cardiac conductivities [112–114], however they depend on empirical

Param ↓ Ref → Clerc [107] Roberts [108] Roberts [109]

σil 1.70 2.80 3.40
σel 6.20 2.20 1.20
σit 0.19 0.26 0.60
σet 2.40 1.30 0.80

σil/σit 8.95 10.77 5.67
σel/σet 2.58 1.69 1.50
σil/σel 0.27 1.27 2.83
σit/σet 0.08 0.20 0.75

Table 3.1: Conductivity values for the Bidomain model proposed in [111] ([mS/cm]).
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values. More recently, variational data assimilation approaches [26, 111, 115] have been

proposed to convert possible transmembrane and extra-cellular potential measures into an

estimation of the conductivities. The mismatch between available data in specific mea-

surement sites and the computed solution is minimized by the choice of the conductivity

tensors, under the constraint of the Bidomain equations. These strategies can lead to viable

procedures also in clinics, as potential on the heart muscle may be measured in vivo too.

However, the variational procedure proposed in [111, 115], based on classical least-square

approach, is computationally intensive and requires analysis, refinement and validation. On

the other hand, the methodology presented in [26] following a derivative-based approach

was proven to be more accurate and robust. The procedure was however tested only in

silico and considering uniform conductivities.

The objective of this Chapter is to extend and throughly validate the approach in [26]

for solving the estimation problem, called Inverse Conductivity Problem (ICP), using ex-

perimental data. In view of the validation with real data, there is however the need of

understanding some practical sensitivity aspects of the method. As a theory of identifia-

bility is missing (i.e., the proof that the map linking the conductivities to the measures is

injective), we need to assess the numerical sensitivity of the algorithm to different experi-

mental designs on both simplified and real geometries. In this Chapter, we test the accuracy

of the conductivity estimate in a number of in silico realistic test cases to inform the exper-

imental procedure for the validation. This task is achieved in the first part of the Chapter

referring to the Bidomain model and the conductivity tensors are assumed uniform in space,

i.e., the tissue is homogeneous. The design of future experiments aiming to validate this

approach, especially on human heart, will strongly rely on these results. For the purpose

of reducing the computational time of parameter estimation, we extend the methodology

to consider the Monodomain model and experimentally explore the possibility of using the

Monodomain formulation as a predictor of the conductivities estimates for the Bidomain

equations. This means that we solve the ICP for the Monodomain model and check how

the solution is informative for the Bidomain conductivities. We will see that estimated

Monodomain conductivity constitutes a good surrogate to Bidomain tensors estimates.

Because of the intrinsic heterogeneity of the cardiac tissue, the assumption of uniform
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conductivities is quite unrealistic. Moreover, in clinically relevant applications, disconti-

nuities in the conductivity fields are expected because of the presence of scars or slow

conducting areas perturbing the normal electrical propagation. Therefore, in the second

part of the Chapter, we consider the more realistic case of spatial dependent conductivity

tensors, i.e., the tissue is heterogeneous. First, we assess the accuracy of the methodology

for the estimation of Monodomain conductivity in a pathological tissue featuring a scar.

Finally, we perform an extensive experimental validation on real canine data.

The Chapter is organized as follows. In Section 3.1, we introduce the ICP and the

variational formulation using both Bidomain and Monodomain models. We then present the

numerical approximation. Section 3.2 analyzes several synthetic settings for a verification

of the procedure in view of real validation. Finally, in Section 3.3, we test the problem with

experimental data of canine ventricles, showing that our numerical solution does actually

provide a reliable estimation of the conductivities also in an experimental setting.

The content of this Chapter is reflected by the two papers [116] and [117]. Although the

content is already published in those two papers, in this Chapter we decided to synthesize

the self-standing presentation there, to make the reading more fluent.

3.1 The Inverse Conductivity Problem

In this Section, the theoretical framework and the numerical approximation of the ICP

for conductivity estimation is presented. We describe the problem using the Bidomain

model following [26] and we extend it to include the Monodomain formulation as well as

spatial-dependent conductivities.

3.1.1 The variational formulation of the ICP

For the sake of generality, we postulate that the conductivity tensors belong to the admis-

sible functional space

Cad = {σ ∈ H1(Ω) : σ(x) ∈ [m̃, M̃ ]2d,∀x ∈ Ω} (3.1)
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where H1(Ω) ≡ (H1(Ω))2d and m̃ and M̃ are positive constants. Notice that, for the

solution of the forward problem, it would suffice assuming the conductivities as bounded

functions (L∞(Ω)) of the space variables (e.g., piecewise constant). The same admissible

space works for the inverse problem when using a regularization based on the values of the

conductivities and not on their (space) derivatives, as done in [26]. However, here we need

additional regularization terms, so we restrict our admissible space to Cad.

Assuming the tissue axially isotropic, the conductivity tensors can be represented as in

equation (2.23). In general, the conductivities are spatial dependent, meaning the tissue is

heterogeneous. In case of homogeneous tissue, the tensors can be characterized by the con-

ductivity parameters σ = (σil, σel, σit, σet) for the Bidomain equations, and σ = (σml, σmt)

for the Monodomain model.

The Bidomain Inverse Conductivity Problem (BICP) [26] aims to find the conduc-

tivity tensors that minimize the mismatch between available potential measures and the

corresponding solution of the Bidomain system. This means that we find the tensors

{σi,σe} ∈ Cad minimizing the misfit functional

J (σi,σe) =
1

2

∫ T

0

∫
Ωobs

[
(u(σi,σe)− umeas)2 + (ue(σi,σe)− ue,meas)2

]
dxdt+R(σi,σe)

(3.2)

subject to the Bidomain equations completed by an appropriate ionic model (2.21). Here,

umeas and ue,meas denote the experimental data measured on the observation domain

Ωobs ⊂ Ω. They can be generated in a synthetic setting, and, more interestingly, obtained

in vitro using voltage optical mapping [97, 118, 119] or in vivo by back-mapping body sur-

face potentials [120,121] possibly by potential reconstruction from electrocardiogram phase

analysis of standard gated SPECT [122]. R denotes a Tikhonov-like regularization term

that reads

R(σi,σe) =
α1

2

(
‖σi − σi,mean‖2 + ‖σe − σe,mean‖2

)
+
α2

2

(
‖∇σi‖2 + ‖∇σe‖2

)
(3.3)

where α1, α2 are regularization coefficients weighting the impact of the regularization on

the minimization procedure; σ·,mean an average of available conductivity values from the
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literature; ‖·‖ the L2-norm. The term weighting ‖∇σ·‖2 controls the smoothness of the

conductivity field in case of heterogeneous tissue, i.e., conductivities are spatial dependent.

This is a minimization problem constrained by a system of partial differential equations

(PDEs), that can be approached in different ways [123–125]. We purse here an approach

based on the Lagrange multipliers. For the sake of generality, we consider the abstract

problem: minimize the functional J (σ) = J (u(σ), σ) under the constraint F (u, σ) = 0.

Following the common terminology, we call u the state variable and σ the control variable.

To find the minimum, we totally differentiate this functional with respect to the control

variable. By a direct application of the chain rule in the differentiation, we can include

the constraint in the minimization process. However, in the present problem the constraint

is implicitly stated as a set of partial differential equations and its explicit introduction

in the minimization process may be troublesome. Therefore, we introduce the Lagrangian

functional L(u, σ, λ) = J (u, σ) − λ∗F (u, σ) where λ is the adjoint variable or Lagrange

multiplier. The star ∗ reminds that the term λ∗F (u, σ) is in general a duality between

the functional space of multipliers and the one of state variables - reducing to a classical

product for classical function minimization problems. Following this approach, the BICP

Lagrangian functional reads

L(u, ue,w,σi,σe, p, q, r) = J (σi,σe)

−
∫ T

0

∫
Ω
q
(
βCm∂tu−∇ · (σi∇u)−∇ · (σi∇ue) + βIion(u,w)− Isi

)
dxdt

−
∫ T

0

∫
Ω
p
(
−∇ · (σi∇u)−∇ ·

(
(σi + σe)∇ue

)
− Isi + Ise

)
dxdt

−
∫ T

0

∫
Ω

r ·
(

dtw− g(u,w)
)
dxdt

(3.4)

where q(x, t), p(x, t) and r(x, t) are the Lagrange multipliers. We denote V = H1(Ω),

H = L2(Ω), U = V/R. The quotient space is used because the solution ue is determined

up to an additive constant (see Section 2.2.2). Then, (u, q) ∈ (L2(0, T ;V ))2, (ue, p) ∈

(L2(0, T ;U))2, (w, r) ∈ (L2(0, T ;H))2g, where g is the number of gating variables of the

ionic model; (Isi, Ise) ∈ (L2(0, T ;V ∗))2, where V ∗ denotes the dual space of V . According

to this approach [123], the solution is obtained by finding the critical points of the functional
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with respect to the state variables, the Lagrange multipliers and the control variables. This

leads to the so called Karush-Kuhn-Tucker (KKT) system. In particular, it is promptly

verified that the (Gateaux) differentials with respect to the Lagrange multipliers gives the

constraint equations F (u, σ) = 0, i.e. the Bidomain problem (2.21) (with the appropriate

ionic model). Setting the partial derivatives ∂uL, ∂ueL and ∂wL equal to zero, we construct

the adjoint equations



−βCm∂tq = ∇ · (σi∇q) +∇ · (σi∇p)− ∂ug · r− β∂uIion(u,w)q

+(u− umeas)χΩobs
in Q

−∇ · (σi∇q)−∇ · ((σi + σe)∇p) = (ue − ue,meas)χΩobs
in Q

dtr = ∂wg · r + β∂wIion(u,w)q in Q

(σi∇p+ σi∇q) · n = 0, σe∇p · n = 0 on ∂Q

q(x, T ) = 0, r(x, T ) = 0 in Ω

(3.5)

where χΩobs
is the indicator function of the observation domain Ωobs. Notice that this

problem is backward in time. Finally, we obtain [26] the so called optimality conditions

DJ
Dσik

=
∂L
∂σik

= −
∫ T

0
akaTk∇(u+ ue) · ∇(p+ q) dt+

∂R
∂σik

= 0

DJ
Dσek

=
∂L
∂σek

= −
∫ T

0
akaTk∇ue · ∇p dt+

∂R
∂σek

= 0

(3.6)

where ak represents the fiber direction and k stands for l, t.

In practice, the solution of the KKT system given by (2.21,3.5,3.6) (completed by the

appropriate ionic model) is hard to obtain monolithically, and an iterative approach is

usually pursued. This means that, for a given guess of the control variables {σ(0)
i ,σ

(0)
e } and

setting k = 0, we solve

(i) the Bidomain system with the current guess for the conductivities (notice that the

problem is independent of the Lagrange multiplier), so to compute the state variables

u(k), u
(k)
e , w(k);

(ii) the adjoint problem with the current guess for the conductivities and the state vari-
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ables to obtain the Lagrange multipliers p(k), q(k) and r(k);

(iii) the optimality conditions with u(k), u
(k)
e ,w(k), p(k), q(k) and r(k) to obtain the new

approximation {σ(k+1)
i ,σ

(k+1)
e }, and set k = k + 1.

These iterations end when a convergence test (on the residual of the optimality conditions

in our case) is fulfilled.

In general, the rigorous theoretical analysis of parameter estimation problems is gener-

ally quite difficult and not always conclusive. A theoretical analysis of a control problem

in electrocardiology for the optimal placement of pace-making stimuli has been success-

fully developed [126–128]. Works addressing general functional settings and results are

available [129, 130]. For this particular problem, the existence of a minimizer of the misfit

functional is proved in [26] with the phenomenological Rogers-McCulloch ionic model that

completes the Bidomain system. Uniqueness is still an open problem, though.

Following a similar variational approach, it is possible to introduce the Monodomain

Inverse Conductivity Problem (MICP) and the misfit functional reads

J (σ) =
1

2

∫ T

0

∫
Ωobs

(u(σ)− umeas)2 dxdt+R(σ) (3.7)

subject to the Monodomain equations completed by an appropriate ionic model (2.25) with

R(σ) =
α1

2
‖σ − σmean‖2 +

α2

2
‖∇σ‖2 . (3.8)

For easiness of reading, we do not report the lagrangian functional and the adjoint equations

to solve, based on exactly the same considerations done for the BICP. The optimality

conditions for MICP are

DJ
Dσk

=
∂L
∂σk

= −
∫ T

0
akaTk∇u · ∇q dt+

∂R
∂σk

, with k = l, t. (3.9)

3.1.2 Numerical approximation

The numerical solution of the Bidomain problem is the subject of an abundant literature, as

specific mathematical features of the problem make it challenging [89,90,131–134]. Following
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a quite consolidated strategy [90], we decouple the PDEs system and the ODEs ionic model.

A semi-implicit time discretization based on backward differentiation formulas (BDF) is

used. Let ∆t be the time step, hereafter we use superscript l for those variables at time

t = l∆t. We denote by T the final time and let L = T/∆t, tl = l∆t.

The Bidomain system after time discretization reads



βCm
ᾱ0

∆t
ul+1 = ∇ · (σi∇ul+1) +∇ · (σi∇ul+1

e )− βIion(ũl+1,wl+1) + I l+1
si

+βCm
∑s

i=1

ᾱi
∆t

ul+1−i in Ω

−∇ · (σi∇ul+1)−∇ · ((σi + σe)∇ul+1
e ) = I l+1

si − I l+1
se in Ω

ᾱ0

∆t
wl+1 =

∑s
i=1

ᾱi
∆t

wl+1−i + g(ũl+1,wl+1) in Ω

(σi∇ul+1 + σi∇ul+1
e ) · n = 0, σe∇ul+1

e · n = 0 on ∂Ω

(3.10)

with given initial condition on u0 and w0. Here ᾱi’s are the coefficients of the second order

BDF (ᾱ0 = 3/2, ᾱ1 = 2, ᾱ2 = −1/2). The term ũl+1 in the nonlinear functions Iion(u,w)

and g(u,w) is a second order time extrapolation of ul+1, i.e., ũl+1 = 2ul − ul−1 and in

particular ũ1 = u0.

Similarly, the adjoint equations after time discretization read



βCm
α0

∆t
ql = ∇ · (σi∇pl) +∇ · (σi∇ql) + β∂uIion(ul,wl)q̃l + ∂ug

l · rl

+βCm
∑s

i=1

αi
∆t

ql+i + (ul − ulmeas)χΩobs
in Ω

−∇ · (σi∇ql)−∇ · (σi + σe)∇pl) = (ule − ule,meas)χΩobs
in Ω

α0

∆t
rl+1 =

∑s
i=1

αi
∆t

rl+1−i + β∂wI
l
ionq̃

l + ∂wg · rl in Ω

(σi∇pl ·+σi∇ql) · n = 0, σe∇pl · n = 0 on ∂Ω

(3.11)

with the final condition qL = 0 and rL = 0. q̃l is the second order time extrapolation of ql,

i.e., q̃l = 2ql+1 − ql+2 and in particular q̃L−1 = qL.

As for the space discretization, we consider the finite element method (FEM). Let space

H1
h =

{
span{φj}Mj=1 ⊂ H1

}
be the finite-dimensional subspace of H1 of piecewise linear

functions with dimension M, where {φj}Mj=1 are the generic (Lagrange) basis functions of
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this space. The approximated finite element solutions read

uh(x, t) =
M∑
j=1

uj(t)φj(x), ue,h(x, t) =
M∑
j=1

ue,j(t)φj(x).

For the BICP, we assume uniform conductivity tensors. Let us denote by M the mass

matrix with entries [M]jk =
∫

Ω φkφj dx, and by Sτ the stiffness matrices with entries

[Sτ ]jk =
∫

Ω στ∇φk · ∇φjdx, where τ stands for i, e.

For u = [uj ] and ue = [ue,j ], after discretization in time and then in space, the associated

algebraic Bidomain system reads

A Si

Si Si + Se


ul+1

ul+1
e

 =

bl+1
1

bl+1
2

 (3.12)

where A = βCm
ᾱ0
∆tM + Si and the right hand side writes

bl+1
1 =

[
〈I l+1
si − βIion(ũl+1,wl+1), φj〉L2

]
+ βCmM

s∑
i=1

ᾱi
∆t

ul+1−i,

bl+1
2 =

[
〈I l+1
si − I

l+1
se , φj〉L2

]
.

Similarly, the algebraic form of the adjoint equations reads

A Si

Si Si + Se


ql

pl

 =

dl1

dl2

 (3.13)

and the right hand side

dl1 =
[
〈ql∗ + (ul − ulmeas)χΩobs

, φj〉L2

]
+ βCmM

s∑
i=1

ᾱi
∆t

ql+i,

dl2 =
[
〈(ule − ule,meas)χΩobs

, φj〉L2

]
where ql∗ = −β∂uI lionq̃l − ∂ugl · rl.

Since ue is unique up to a constant, the kernel of the algebraic matrix in (3.12) is
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span{0,1}T . The singular system (3.12) is solved by the GMRES method2 (tol=10−8),

which is a reliable strategy for elliptic problems with homogeneous Neumann boundary

conditions [135]. The reactive dominating term presented after time discretization is stabi-

lized by using a mass lumping technique which intends to alleviate the numerical instabilities

caused by dominating reactive terms following time discretization. It consists of the ap-

proximation of the mass matrix using a diagonal (lumped) matrix. The diagonal entries

are the sums of the elements of each row of the mass matrix. More details can be found

in [136]. Then, we force the average of ue to be zero at each time iteration. As already

pointed out, the efficient solution and preconditioning of the Bidomain equations have been

investigated in many papers [10,89,90,134]. In this work, we resort to a standard ILU right

preconditioner [137] (with level of fill 1) without entering in further detail. The numerical

solution of the Monodomain model is obtained with CG method.

The computation of the optimality conditions (3.6) in the case of uniform conductivities

only involves matrix vector multiplications of stiffness matrices and state and adjoint solu-

tions. On the contrary, the case of heterogeneous tissue requires more attention. We only

consider spatial dependent conductivity tensors in the MICP, so we refer to the optimality

conditions (3.9). Recalling (2.23), the Monodomain conductivity tensor σ(x) is character-

ized by the fields σl(x) and σt(x). The mesh for the approximation of the conductivity fields

is coarser than the one describing the potential propagation. In fact, while the excitation

wave initiates at a cellular level due to the ion fluxes through the cell membrane, the con-

duction varies at a larger scale. Thus, it is sufficient to discretize the conductivity fields on

macro areas of the tissue to capture possible heterogeneities. Furthermore, this choice also

represents a convenient trade-off between effectiveness of the estimation and computational

costs since it limits the number of parameters to estimate allowing the use of standard

optimization algorithms. σl(x) and σt(x) are approximated with P1 finite elements on the

coarse mesh, i.e., σk,h(x) =
∑N

i=1 σ
i
kϕi(x), where k = l, t, N is the number of DOFs of the

2CG method could be used here since the matrix in (3.12) is symmetric semi-definite (one eigenvalue is
zero). However, GMRES is extensively used for solving the Bidomain system within LifeV, the software
considered for the majority of the simulations (see end of the Section). For instance, highly optimization
of the libraries implementing GMRES in LifeV was performed in [90] to solve a non-symmetric system
derived from an alternative Bidomain formulation. GMRES and CG methods for the Bidomain system
generally yield comparable performances in this software. Therefore, we stick with the former for the sake
of implementation.
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coarse mesh and {ϕj}Nj=1 are the generic (Lagrange) basis functions of the finite-dimensional

subspace of H1 of piecewise linear functions with dimension N . Moreover

DJ
Dσk,h(x)

=
N∑
l=1

DJ
Dσlk

ϕl(x)

and DJ /Dσlk, ∀l = 1, · · · , N , can be determined as

〈 N∑
l=1

DJ
Dσlk

ϕl(x), ϕj(x)
〉

= −
∫ T

0

∫
Ω

akaTk∇u · ∇qϕj(x) dxdt+

∫
Ω

∂R
∂σk

ϕj(x) dx.

By definition of 〈·, ·〉,

〈 N∑
l=1

DJ
Dσlk

ϕl(x), ϕj(x)
〉

=

∫
Ω

N∑
l=1

DJ
Dσlk

ϕl(x) · ϕj(x) dx ,

accordingly, we have

DJ
Dσk,h(x)

= Mcoarse
DJ
Dσk

,
DJ
Dσk

=
[DJ
Dσlk

]
, l = 1, . . . , N

where Mcoarse is the mass matrix related to the coarse mesh with entries [Mcoarse]jl =∫
Ω ϕl(x)ϕj(x) dx. Therefore, DJDσk can be computed as the solution of the linear system

Mcoarse
DJ
Dσk

= f,

where

f = [fj ], fj = −
∫ T

0

∫
Ω

akaTk∇u · ∇qϕj(x) dxdt+

∫
Ω

∂R
∂σk

ϕj(x) dx

for j = 1, . . . , N . We compute fj as follows. At time t = l∆t, we have that

−
∫

Ω
akaTk∇u · ∇qϕj(x) dx +

∫
Ω

∂R
∂σk

ϕj(x) dx =

−
∫

Ω
akaTk

M∑
s=1

us(t)∇φs(x) ·
M∑
v=1

qv(t)∇φv(x)ϕj(x) dx +

∫
Ω

∂R
∂σk

ϕj(x) dx =

− qTSjku +

∫
Ω

∂R
∂σk

ϕj(x) dx,

(3.14)
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where

[Sjk]sv =

∫
Ω

akaTk∇φv(x) · ∇φs(x)ϕj(x) dx , k = l, t.

Finally, we sum up all the contributions for each time step to get fj . The time dependence

is included in the coefficients us(t) and qv(t) characterizing the unsteady state and adjoint

solutions.

The update of the conductivities in the algorithm for the solving the KKT system

(2.21,3.5,3.6) is performed by the BFGS method with Armijo line search [138]. Different

stopping criteria were tested for BFGS, either

∥∥∇J (σk)
∥∥

‖∇J (σ0)‖
< 10−6 or

∥∥J k − J k−1
∥∥

‖J 0‖
< 10−6 or

∥∥σk − σk−1
∥∥

‖σk−1‖
< 10−6.

Notice that the Lagrangian multipliers approach is applied to the continuous problem.

This is the so-called Optimize-then-Discretize (OD) approach and it computes the solution

over the entire time interval. The drawback of this approach is the presence of the backward-

in-time adjoint problems, so the iterations required a sequence of forward/backward time

iterations that generally result to be computationally demanding. An alternative approach

is to first discretize (in time, in particular) and then to perform the optimization process

on the sequence of pseudo-stationary time discrete problems. This sort of Discretize-then-

Optimize approach is computationally more efficient, yet it computes a sequence of estimates

at each time step, eventually to be averaged and, in general, sub-optimal for the original

problem [124]. Hybrid strategies consist of introducing macro subdivisions in time by means

of check points, so to work with forward/backward in time problems over smaller intervals

[26]. In this Thesis, we stick to the original OD approach.

Several numerical simulations have been performed considering both uniform and spatial

dependent conductivities in synthetic and experimental settings. In particular, in Section

3.2.1 and 3.2.2, we present numerical results in 2D and 3D settings, respectively, using

the BICP with homogeneous tissue. In the latter case, simulations run both on simplified

(yet realistic for in vitro experiments) and real left ventricle geometries reconstructed from

SPECT images, as a proof of concept in view of clinical applications. The role of the solution
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of the MICP as a predictor of the Bidomain estimate is explored in Section 3.2.3. Then, we

analyze the performance of the estimation procedure in case of heterogeneous tissue and set

up the numerical discretization in view of experimental validation in Section 3.2.4. Finally,

an extensive real validation is presented in Section 3.3.

From the implementation viewpoint, the simulations discussed in Section 3.2.1 have

been performed in the Freefem++ environment [139], whereas, in the rest of the chapter, we

focused on LifeV [140,141], an object oriented C++ parallel finite element library based on

the Trilinos project [142] developed by different groups worldwide. The change of software

was due to the fact that LifeV is more suitable for parallel computing and more efficient than

Freefem++. Therefore, with the increasing computational complexity of the 3D simulations

and the heterogeneous tissue tests, LifeV was the preferred software. While using many

Trilinos packages, the rest of the LifeV code was implemented from scratch.

We also used different hardwares according to the computation time of the simulations.

In particular, the 2D simulations in Section 3.2.1 were performed on a laptop with processor

Intel Core i5-3337U 1.8 GHz, whereas 3D simulations in Section 3.2.2 and 3.2.3 were carried

out using 8 cores on a high performance cluster named Cheetah, equipped with Xeon L5420

2.5 GHz CPUs. Because of heavier computational cost, the synthetic tests in Section 3.2.4

with spatial dependent conductivities were performed using 16 cores on Cheetah and the

experimental validation in Section 3.3 was carried out on Stampede II high performance

cluster of the XSEDE consortium using 96 cores on SKX nodes (Intel Xeon Platinum 8160

Skylake 2.1GHz nominal).

3.2 Synthetic Validation

In this Section, we perform a synthetic validation of the variational data assimilation ap-

proach with the Bidomain equations considering different geometries and potential exper-

imental and realistic settings. In particular, in this first set of simulations, we investigate

the numerical sensitivity of our methodology to the number and the location of the probing

sites that make up Ωobs. Another critical parameter to analyze is the amount of mea-

surement data of ue necessary to ensure a good accuracy of the estimation. In fact, as
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already pointed out in [26], extracellular potential data are necessary for reliable estimates.

However, measuring extracellular potential in experiments is much more troublesome than

transmembrane voltage. We consider the number of observation points for transmembrane

and extracellular potentials independently. We also analyze the performance of the method-

ology using different stimuli conditions. Moreover, the dependence of the reliability of the

estimation to the number of snapshots umeas and ue,meas used to perform the inversion need

to be studied. This can be investigated by testing the inversion over different time intervals

[0, T ]. It is reasonable to expect that the larger the T , the more accurate the estimates are.

Finally, a preliminary synthetic testing useful for real validation is presented.

3.2.1 Sensitivity analysis in 2D

We present 2D test cases aiming to investigate the numerical sensitivity of the algorithm

under different experimental settings, characterized by the number and the location of

the measurement sites and the stimuli conditions. We solved the BICP using Rogers-

McCulloch model (2.6) with u0(x) = 0 mV, w0(x) = 0, β = 1000 cm−1 and Cm = 1

µF/cm2. The domain was a square Ω = [0, 1]× [0, 1] ⊂ R2 of size 1 cm2. A constant fiber

angle was chosen as θ = −48◦. Four stimuli of Isi = Ise = 105µA/cm3 were applied in the

domain at the center of each quarter of the square for a duration of 1 ms. The cardiac

tissue is assumed homogeneous and synthetic data was generated with the conductivity

parameters σexact = (σil, σel, σit, σet) = (2.8, 2.2, 0.26, 1.3) mS/cm from Table 3.1. The

space discretization method for generating the synthetic data was given by quadratic finite

elements on a 250 × 250 grid, the simulation time step was ∆t = 0.005 ms, and synthetic

data was recorded every dtsnap = 1 ms until reaching T = 25 ms. This means we have 25

snapshots of umeas and ue,meas to perform the estimation. The numerical discretization for

the inversion was carried out using linear finite elements on a 50×50 grid and ∆t = 0.05 ms.

In such a way, we prevent any inverse crime since the space for solving the inverse problem

is different from the one generating the data. Moreover, the synthetic data is perturbed at

each time step by adding Gaussian noise with zero mean and standard deviation equal to

pmax |u|, where p is the percentage of noise, and the maximum is taken in both space and

time. We set the regularization coefficient α1 = 0. The terms ‖∇σ·‖2 equal zero because
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(a) t = 2 ms (b) t = 15 ms

Figure 3.1: Propagation of the transmemebrane potential with four stimuli generated by
the Bidomain model (contour line umeas = 50 mV).

of the tissue homogeneity assumption, i.e., the tensors are uniform in space. The synthetic

measure of transmembrane potential is shown in Fig. 3.1. In all the following tests, the

initial guess for BFGS was σ0 = (1, 1, 1, 1) mS/cm.

TEST 1 - Equally spaced measurement sites The positions of the sites were assumed

to be known a prior and equally spaced on a cartesian grid. First of all, we analyze the sen-

sitivity and the accuracy of the estimates varying the percentage of noise p in the synthetic

data up to 15%. The number of sites is equal to 36, arranged into an array over the tissue

domain consisting of 6× 6 sites with spacing of 1.667 mm. Results are shown in Table 3.2.

The method estimates accurately the true values of the conductivities, even when the mea-

surements are highly noisy. Notice that, in this specific case, the value σet is generally the

slowest to converge. Keeping the same level of noise, we compare the estimates varying the

number of sites. We test 4,9,16,25 equally spaced observation points respectively for both

u and ue. Results for p = 5% are listed in Table 3.3. The dashes identify test cases when

convergence fails. Using 16 sites or more yields reliable estimates.

We also test the performance of the method when the sites are not equally spaced, yet

they are localized nearby the stimuli. Clustering the observation points in the areas where

most of the dynamics occurs might improve the accuracy of the estimation procedure. We

keep the total number of sites equal to 36 and vary the percentage of noise p up to 15%. From

Table 3.4, we notice however that the different position of the sites does not significantly
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% noise 0 5 10 15
σil 2.80 2.81 2.82 2.82
σel 2.23 2.22 2.23 2.23
σit 0.22 0.22 0.22 0.22
σet 1.24 1.20 1.20 1.18

Table 3.2: Equally spaced measurement sites, # u sites = # ue sites = 36.

# sites ≤ 9 16 25
σil - 2.93 2.80
σel - 2.32 2.25
σit - 0.23 0.22
σet - 1.30 1.24

Table 3.3: Equally spaced measurement sites, 5% noise.

% noise 0 5 10 15
σil 2.89 2.88 2.88 -
σel 2.24 2.24 2.23 -
σit 0.22 0.22 0.22 -
σet 1.24 1.24 1.23 -

Table 3.4: Unevenly spaced measurement sites, #u sites = #ue sites = 36.

# sites 13 14 15 16 17 18 19 20 23 25
σil 2.68 - - 2.69 2.80 0.88 3.11 3.21 2.78 -
σel 2.16 - - 1.94 2.08 3.56 2.05 1.94 2.00 -
σit 0.19 - - 0.20 0.19 2.72 0.20 0.20 0.20 -
σet 1.17 - - 1.24 1.26 0.86 1.32 1.42 1.27 -

Table 3.5: One stimulus applied in the center of Ω, u, ue random sites localized in the
subdomain [0.3, 0.7] cm× [0.3, 0.7] cm, 5% noise.

Numerical sensitivity results in 2D setting, conductivities measured in mS/cm. σexact =
(2.8, 2.2, 0.26, 1.3) mS/cm.
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(a) Test 2 (b) Test 3 (c) Test 4

Figure 3.2: Estimated conductivities ([mS/cm]) obtained in the 2D tests vs. number of
random sites (up to 25). The dashed lines represent the exact values. (a) Randomly spaced
sites for ue measurements and equally spaced for u measurements (#u sites = 25). (b)
Randomly spaced sites for u and ue measurements. (c) Randomly spaced sites for u and ue
measurements in a subdomain.

improve the accuracy of the estimates. Actually, in case of highly noisy data (p = 15%), the

optimization algorithm fails to converge. Therefore, in view of designing an experiment for

measuring cardiac excitation, recording data at equally spaced observation sites over the

whole domain seems to be a good choice.

TEST 2 - Randomly spaced measurement sites (ue only) Recording extracellular

potential data is troublesome in practice. Therefore, we need to investigate the performance

of the optimization algorithm in case of lack of ue measurements. We vary the number of ue

measurement sites from 2 to 25 while keeping 25 equally spaced sites for u. The locations

of ue sites are the realization of independently and identically distributed (i.i.d.) uniform

random variables defined over the tissue. It is indeed important to evaluate the reliability of

our method in presence of uncertainty on the location of sites since, in experimental setting,

we might not exactly know where the measurement sites are located on the tissue. For each

number of ue sites, the estimated conductivities shown in Fig. 3.2(a) are the sample mean

of the estimated values of multiple runs of the inverse problem with different realizations of

the uniform random variables. We notice that at least 10 ue probing sites are required to

guarantee reasonable accuracy.



50

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

(a) |σil − σil,true|

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

(b) |σit − σit,true|

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

(c) |σel − σel,true|

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

(d) |σet − σet,true|

Figure 3.3: Comparison of the estimation error for Test 2 (blue line) and 3 (red line) in the
2D case.

TEST 3 - Randomly spaced measurement sites (u and ue) Here, we introduce

uncertainty over the measurement sites also for u, still assuming they are i.i.d. distributed

over the domain Ω. The sample means of the estimated parameters for different number of

sites are provided in Fig. 3.2(b). Fig. 3.3 shows a comparison between the error |σ−σtrue|

of Test 2 and 3. Introducing uncertainty in the location of measurement sites for both

transmembrane and extracellular potentials does not prevent a reasonable estimation of

the conductivities. It actually helps the optimization algorithm to reach convergence even

when we use few random sites. Indeed, when we selected the site position a priori, we got

reasonable results only using 16 equally spaced sites or more. This robustness of the method

in presence of noise and uncertainty induced by random sites is a very desirable feature in

view of the validation with in vitro experiments. Indeed, the experimental data as well as
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(a) Samples mean (b) Standard deviation

Figure 3.4: Sample mean and standard deviation ([mS/cm]) for Test 3, # random sites =
5. # samples stands for the number of inverse problems used to compute the sample mean
of the estimates.

the position of the sites on the tissue are usually affected by noise and these results suggest

that the method can work properly anyway.

We also analyze the convergence of the sample mean of the estimates with respect to

the number of inverse problems. Each inversion corresponds to a different realization of the

random variables describing the location of the probing sites. Fig. 3.4 shows the behavior of

the sample mean and the standard deviation of the estimates as the number of realizations

increases for the case of 5 random sites. We considered a maximum of 8 realizations. As

expected, the larger is the number of samples, the better the sample mean matches the

exact values featuring a lower standard deviation. This does not apply to σit that, however,

features a small standard deviation even with a small number of samples.

TEST 4 - Clustered and randomly spaced measurement sites (u and ue) In this

test, we assume u and ue sites i.i.d. randomly distributed on a subset of the domain. More

specifically, the sites were localized only in the bottom left quarter of Ω around the location

of just one of the four stimuli (see Fig. 3.5(a)). As shown in Fig. 3.2(c), the algorithm

provides good results even in this case.

TEST 5 - Clustered and randomly spaced measurement sites (u and ue) with

only one stimulus The results of the Test 4 may suggest that the wavefront propagation

triggered by only one pacing stimulus could be informative enough to detect the right
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(a) (b) t = 2 ms (c) t = 15 ms

Figure 3.5: (a) Random sites are localized in the area delimited by the red square. (b)-(c)
Propagation of the AP in the case of one stimulus in the center of the domain at t = 2 ms
and t = 15 ms, respectively (contour line umeas = 50 mV).

conductivity parameters. Therefore, we tested an experimental setting consisting of pacing

the tissue only in one point, for instance at its center, instead of stimulating in four different

areas as done so far. So, the purpose is investigating whether or not the propagation

dynamics obtained with one stimulus carries enough information to guarantee an accurate

estimation (see Fig. 3.5(b),3.5(c)). This could be extremely beneficial for the feasibility of

the experiments since applying four simultaneous stimuli is challenging in practice.

As assumed before, u and ue measurements sites are taken to be randomly distributed

following an uniform distribution. The difference here is that they are localized just in the

subdomain [0.3, 0.7] cm × [0.3, 0.7] cm where most of the dynamics occurs. By looking at

Table 3.5, we notice that the estimated parameters are inaccurate. For less than 12 sites, no

reasonable estimate is obtained. We conclude that multiple stimuli are required to obtain

a reliable estimation of the conductivities, as data triggered by only one stimulus are not

informative enough.

The optimization procedure does not provide better estimations even when we apply

a sequence of four stimuli in the center of the slab. The propagation dynamics triggered

by multiple stimuli applied in different areas of the tissue seems to be critical to obtain a

more accurate estimation of the conductivities. However, let us recall that the inversion

is performed in the time interval [0,25] ms. Accuracy might be improved by considering a

larger time interval, for instance [0,60] ms, thus including more snapshots in the inversion.

In this way, we have more information about the dynamics of the system which can help
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(a) t = 2 ms (b) t = 15 ms

Figure 3.6: Propagation of the AP with five stimuli applied on the top surface of the slab
(contour line umeas = −20 mV).

to obtain more precise results. In fact, for the case of 20 probing sites, the estimates are

(2.81,2.22,0.24,1.26) mS/cm which, comparing to the corresponding results in Table 3.5, are

in better agreement with the exact values.

3.2.2 Sensitivity analysis in 3D

We present a series of test cases performed on a 3D slab Ω = [0, 5] × [0, 5] × [0, 0.5] ⊂ R3

measured in cm3 with 24272 mesh nodes. We coupled the Bidomain model with Minimal

ionic model (2.13) in the canine version with u0(x) = −84 mV and w0(x) = [1, 1, 0]. In

each simulation, five stimuli of Iapp = 105µA/cm3 were applied with four at the corners

and one at the center of the top surface of the domain (z = 0.5 cm) for a duration of 1 ms

(Fig. 3.6). A constant fiber angle was chosen as θ = −48◦, as done in [26]. Synthetic data

were generated with uniform conductivity parameters σexact = (3.4, 1.2, 0.6, 0.8) mS/cm

from Table 3.1 and the initial guess for the optimization procedure σ0 = (4, 3, 2, 1) mS/cm.

Simulations were ran with T = 30 ms, ∆t = 0.05 ms, tsnap = 1 ms and 5% noise. As

done for 2D tests, we set the regularization parameter α1 equal to 0. In order to limit

computational costs, here the data are generated on the same mesh used for solving the

inverse problem and not finer meshes, and successively mitigated by the addition of noise

to mitigate the impact of the coincidence of the solvers for the direct and inverse solvers,

leading to overoptimistic results. We will consider this aspect when discussing our results.
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# ue sites 4 9 16 25 36 49 64 81 100

σil 4.95 2.74 3.21 2.23 3.34 3.01 3.09 3.08 3.27
σel 0.93 1.26 1.27 1.16 1.19 1.21 1.26 1.16 1.23
σit 1.67 0.72 0.62 0.81 0.57 0.63 0.65 0.63 0.63
σet 0.63 0.74 0.79 0.85 0.86 0.81 0.83 0.78 0.82

Table 3.6: Estimated conductivities ([mS/cm]) with equally spaced measurement sites on a
slab. σexact = (3.4, 1.2, 0.6, 0.8) mS/cm, 5% noise.

TEST 1 - Equally spaced measurement sites Similarly to the 2D tests in Section

3.2.1, u and ue measurement sites are equally spaced on the top surface of the slab. Firstly,

we intend to check the sensitivity of the conductivity estimation to different number of sites.

From Table 3.6, we notice that the optimization procedure provides accurate estimation

with at least 36 measurements. As already done in Test 5 of the previous Section, a way

to refine the estimates is performing the inversion on a larger time interval. Indeed, some

portion of the domain might not be activated by the wave front propagation in the time

range [0, 30] ms considered in these simulations, so the sites falling in those areas do not

contribute to the computation of the misfit. We tested the algorithm with T = 60 ms and

25 equally spaced sites. The estimates are (3.36, 1.21, 0.54, 0.82) mS/cm and, by comparing

with Table 3.6, they better match the exact values of the parameters. However, the higher

accuracy comes along with heavier computational burden, so this strategy does not seem

suitable in case of limited computational resources or measurement data. This approach

will be used in 3.2.4 and 3.3 where accuracy is privileged over computational efficiency.

TEST 2 - Randomly spaced measurement sites (ue) As measuring ue is generally

problematic, we investigate the accuracy of the estimation with different number of ue

measurement sites following an uniform distribution on the top surface of the slab keeping

the (high) number of u measurement sites constant. We consider 100 equally spaced sites

for u measurements on the top surface of the mesh. We vary the total number of random

sites for ue measurements from 5 to 100. The sample mean of the estimated conductivities

is shown in Fig. 3.7(a). In this specific case, the parameter σil is the most sensitive to the

uncertainty on the location of ue sites, but overall the estimates are reliable, especially from

40 sites on.
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(a) Test 2 (b) Test 3

(c) Test 4 (d) Test 5

Figure 3.7: Estimated conductivities ([mS/cm]) obtained in the 3D tests vs. number of
random sites (up to 100). (a) Random sites for ue. (b) Random sites for ue,u. (c) Clustered
random sites for ue,u, one stimulus. (d) Random sites for ue,u, non-simultaneous stimuli.
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Figure 3.8: Standard deviation ([mS/cm]) of Test 3 (3D slab). A general decreasing trend
of the standard deviation can be noticed for all the estimates.

TEST 3 - Randomly spaced measurement sites (u and ue) As done in Test 4 of

Section 3.2.1, we assume also the u measurement sites to follow an uniform distribution on

the top surface of the slab. Fig. 3.7(b) show the results from 5 to 100 sites. The optimization

algorithm still provides accurate estimates even with a relatively low number of estimates.

This confirms the consistency of our method with the solution of the problem, however we

speculate that the coincidence of the discrete solvers for the forward and inverse problems

may lead to overoptimistic results (in spite of the random noise added to the data). Finally,

it is reasonable to expect that the standard deviation decreases as more random sites are

used. This is confirmed by Fig. 3.8 implying that the estimates are more robust as more

sites are considered in the inverse problem.

TEST 4 - Clustered and randomly spaced measurement sites (u and ue) with

one stimulus Similarly to Test 6 in Section 3.2.1, we analyze the performance of the

estimation procedure when only one stimulus is applied in the center of the top surface

of the slab. The location of u and ue sites follow a uniform distribution over the subset

[1, 4] cm×[1, 4] cm of the top surface. The estimations are shown in Fig. 3.7(c) from different

number of random sites. The overall result is less accurate than Test 2 and 3, especially for

the parameter σil. Again, this test confirms the consistency of the numerical solution with

the exact one, probably made overaccurate for the coincidence of the solvers for the forward
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and inverse problems. This is apparent when noting that the results are in this case more

accurate than the ones obtained for the analogous in 2D (Test 5 in the previous Section).

TEST 5 - Randomly spaced measurement sites (u and ue), non-simultaneous

stimuli This test is similar to Test 3 with the difference that the five stimuli are applied

at different times. Starting from the stimulus in the center of the top surface, each stimulus

is applied every 2 ms. Indeed, in real experimental setting, stimulating the tissue with

multiple impulses at the same time is challenging. Estimations in Fig. 3.7(d) show that

the optimization procedure is reliable. This confirms the previous results obtained in the

2D setting suggesting that applying multiple stimuli in different areas of the domain is the

experimental design providing the most accurate results. Estimation errors of the different

test cases are shown in Fig. 3.9.

A real ventricle simulation To test the impact of real geometries on the performances

of the method, we run simulations on a real left ventricular geometry reconstructed from

SPECT images [90]. We solved the BICP on a mesh with 22470 degrees of freedom. Fig. 3.10

displays a realistic representation of the fiber structure used in the simulation. The fiber

orientation was first obtained on an ellipsoid domain and then properly adopted the real

domain, as already done in [90]. Our concern in these tests is focused on the interplay

between the location of the stimuli and the sites. This study may give us better insights on

how to set an experiments aimed for clinical applications. We analyze the accuracy of the

estimation in two different experimental settings: in the first one, we apply four stimuli on

the whole tissue, whereas in the second one we stimulate only the inner wall of the ventricle

(see Fig. 3.10). In each experimental setting, the measurement sites are picked either on the

whole tissue or only on the inner wall and their locations are assumed to be either equally

or randomly spaced.

Tables 3.7 and 3.8 show that, for each experimental setting, the estimation procedure

yields quite inaccurate results in case of equally spaced observation points. On the other

hand, regardless where the tissue is stimulated, the best estimates are provided in case of

randomly spaced sites placed on the whole tissue.
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Figure 3.9: Comparison of the estimation error for different experimental settings in the 3D
slab.

(a) (b) Outer Wall (c) Inner wall

Figure 3.10: (a) Myocardial fiber orientation used in simulation from two different view-
points. Image from [26]. (b-c) Location of the stimuli on the real left ventricle.
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Sites Equally spaced Randomly spaced

Location whole tissue inner wall whole tissue inner wall

σil 3.94 3.61 3.37 3.51
σel 1.71 2.30 1.13 1.10
σit 0.44 0.46 0.61 0.63
σet 0.61 0.25 0.85 0.94

Table 3.7: Estimates ([mS/cm]) in the case of four stimuli applied on the whole ventricle.

Sites Equally spaced Randomly spaced

Location whole tissue inner wall whole tissue inner wall

σil 3.75 4.01 3.53 3.83
σel 1.38 1.46 1.29 1.76
σit 0.51 0.41 0.65 0.73
σet 0.79 0.46 0.77 0.70

Table 3.8: Estimates ([mS/cm]) in the case of four stimuli applied on the inner wall of the
ventricle.

σexact = (3.4, 1.2, 0.6, 0.8) mS/cm, # sites = 1000, T = 30 ms, ∆t = 0.05 ms, tsnap = 1 ms,
σ0 = (4, 3, 2, 1) mS/cm, 5%noise.

3.2.3 Surrogating the BICP with the MICP

Even with a substantial lack of physiological motivation in the assumption of proportional-

ity between the two conductivity tensors, the Monodomain model is a popular and useful

approximation of the Bidomain problem for the approximation of the transmembrane po-

tential. It has been used for preconditioning the solution of the Bidomain problem [90,94],

or in an adaptive modeling framework [95]. In addition, as previously mentioned, an accu-

rate quantification of the Bidomain conductivities relies on the availability of extracellular

potential, yet difficult to measure in practice. Since the Monodomain equations (2.25) do

not depend on the extracellular potential, an alternative approach might be using the MICP

as a surrogate to the BICP. Another advantage of using MICP is that it can be a practical

workaround for high computational cost related to BICP. In fact, MICP is much cheaper to

solve than the BICP (we experience about 7 times faster when the two problems are solved

on the same computer architecture). Also, reduced order models for MICP have been al-

ready studied [41], providing an even more efficient approach to the classical variational one

used here.

In practice, we test here an approach to reconstruct the Monodomain conductivity



60

Figure 3.11: Possible approaches for the BICP: at the bottom the original formulation of
the BICP, at the top the surrogate approach solving the MICP and eventually extracting
the conductivity tensors for the Bidomain model.

tensor σ with a twofold purpose. On the one hand, we use the estimated Monodomain

conductivity to surrogate an estimate for the Bidomain tensors σe and σi. Then, we test

how close the approximation to the original data set (synthetically generated by a Bidomain

solver) with the estimated tensor σ is. In other terms, we use the estimated tensor of the

Monodomain model as an effective parameter, whose quantification is intended to fit the

data. We combine in this way a physical model with a data-oriented approach. The scheme

is illustrated in Fig. 3.11.

Data obtained under the assumption σe = λσi The Monodomain model is derived

from the Bidomain model by assuming that σi and σe are proportional, i.e., σe = λσi.

By assuming such proportionality to hold and then using the potential u generated by

the Bidomain model as synthetic data for our estimation procedure, we intend to analyze

how close the estimated conductivity reconstructed by MICP is to the exact values of

conductivities used by the Bidomain model. Notice that in this case even using the same

mesh we do not have any inverse crime, as the data are generated by the Bidomain system

and the conductivities are reconstructed by the Monodomain problem.

The synthetic measurements were generated on the slab mesh by the Bidomain model

with (σil, σel, σit, σet) = (3.45, 4.485, 0.575, 0.7475) mS/cm (λ = 1.3). Since σ = λ
λ+1σi, the

exact Monodomain conductivity is σexact = (σl, σt) = (1.95, 0.325) mS/cm. Following Fig.

3.11 (top path), the test was performed with ∆t = 0.025 ms, ∆tsnap = 0.5 ms, 1% of noise.

We referred to the Minimal model for canine ventricular cells. The estimation procedure

starts from σ0 = (1, 1) mS/cm. As assumed in some test cases in 3.2.2, we considered the
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Figure 3.12: Estimation results ([mS/cm]) of MICP as surrogate of BICP vs. number of
random sites (up to 100). (a) Estimated conductivities by the MICP and using the Bidomain
solution u with (σil, σel, σit, σet) = (3.45, 4.485, 0.575, 0.7475) mS/cm as synthetic data. The
Monodomain assumption of proportionality σe = λσi holds (λ = 1.3) and the exact value
for MICP to reconstruct is σexact = (1.95, 0.325) mS/cm. (b) Estimated conductivities
by the MICP and using the Bidomain solution u with (σil, σel, σit, σet) = (3.4, 1.2, 0.6, 0.8)
mS/cm as synthetic data. Here σm denotes the Monodomain conductivity tensor.

# run 1 2 3 4 5 6 7 8 9 10

σl 3.00 1.80 1.77 1.96 1.81 1.94 1.77 1.82 1.83 1.80
σt 1.01 1.02 0.98 0.33 1.42 0.34 1.37 1.37 1.66 1.20

Table 3.9: Sensitivity of MICP to the initial guess σ0 = (3, 1) mS/cm and location of the
measurement sites. σexact = (1.95, 0.325) mS/cm.

position of u measurement sites to follow an i.i.d. uniform distribution defined over the

top surface of the slab. For each number of sites, we ran the MICP 10 times with different

realizations of the measurement locations and computed the average of the estimates as the

final estimation result. Fig. 3.12(a) shows that the conductivity values estimated by the

MICP are significantly accurate.

However, as expected, these results are sensitive to the initial guess σ0. As a matter

of fact, we did not find a clear convergence pattern over 10 runs (see Table 3.9, 100 mea-

surement sites) when testing with another initial guess σ0 = (3, 1) mS/cm. A practical

workaround for the identification of the conductivity can be to run using different initial

guesses and identifying the presence of a pattern (as it happens for σ0 = (1, 1) mS/cm).
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Generic conductivities In this test, we no longer assume proportionality between the

intracellular and extracellular conductivities. Our goal is to check whether an appropriate

estimate of the Monodomain conductivity tensor σ based on our variational procedure

can still lead to an accurate reconstruction of the potential propagation generated by the

Bidomain solver. Notice that, in this case, we do not have an exact value for σ to compare

our results. In fact, the ultimate goal here is to find a representative value for the tensor

σ that, regardless to a precise physical explanation, could reproduce the potential data

reliably. This will be extremely helpful while performing experimental validation.

We computed the Bidomain solution u with (σil, σel, σit, σet) = (3.4, 1.2, 0.6, 0.8) mS/cm

and solved the MICP. As usual, for each number of random sites, the final estimates are

an average of 10 conductivity values reconstructed testing the estimation procedure with

different realizations of the measurement position. We picked σ0 = (1.2, 0.3) mS/cm as the

initial guess for the optimization algorithm. By looking at Fig. 3.12(b), we notice that, from

60 measurement sites on, the estimates converge to the values σ = (0.93, 0.37) mS/cm.

Then, by using such estimated conductivity values in the forward Monodomain problem,

we compared the Monodomain solution u with the Bidomain one. Fig. 3.13 shows that the

reconstruction of the potential by the Monodomain solver gives an excellent matching with

the Bidomain solution. Actually, we expected to retrieve the same AP weveform because

Bidomain and Monodomain solvers are coupled with the same ionic model (Minimal model)

which is responsible of the AP shape. However, it is remarkable that the reconstructed AP

via the Monodomain model does not feature any shift in time with respect to the Bidomain

AP, meaning the solution provided by the MICP reproduces the same wave propagation

velocity of the Bidomain data.

As noticed in the previous test, the estimation depends on the initial guess σ0 as well as

the location of the measurement sites. Table 3.10 shows that, for 100 sites, the reconstructed

conductivities are consistent with the result obtained with σ0 = (1.2, 0.3) mS/cm only for

few runs of the optimization algorithm. Despite few runs in which the method provides

parameters substantially different from σ = (0.93, 0.37) mS/cm, the estimation procedure

reconstructs conductivities close to σ0 in the majority of the runs.

This dependence can be mitigated by introducing a Tikhonov-like regularization term,
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Figure 3.13: Comparison between the reconstructed Monodomain AP u and the Bidomain
solution. The solution of the MICP reproduces the same wave propagation velocity of the
Bidomain data.

# run 1 2 3 4 5 6 7 8 9 10

(a)
σl 1.01 1.00 0.93 1.00 1.00 1.02 1.00 1.00 0.92 1.81
σt 1.00 1.00 0.37 1.00 1.00 1.00 1.00 1.00 0.38 0.51

(b)
σl 1.11 2.01 0.93 1.31 2.00 2.03 2.01 2.01 2.01 2.01
σt 1.66 1.00 0.37 1.21 1.00 1.04 1.00 1.00 1.00 1.00

Table 3.10: (a) σ0 = (1, 1) mS/cm, (b) σ0 = (2, 1) mS/cm. Sensitivity of MICP on the
initial guess σ0 and location of the measurement sites. The rows represent the estimated
conductivity values ([mS/cm]) for each run of MICP picking 100 random sites. Marked
in red are the estimates consistent with σ = (0.93, 0.3) mS/cm obtained originally with
σ0 = (1.2, 0.3) mS/cm.
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# 1 2 3 4 5 6 7 8 9 10

σl 1.74 1.76 1.74 1.33 1.75 1.16 1.75 0.93 0.93 1.76
σt 0.33 0.35 0.33 0.50 0.34 0.33 0.34 0.37 0.37 0.35

J 0.040 0.038 0.033 0.031 0.034 0.004 0.043 0.001 0.001 0.363

Table 3.11: Estimates ([mS/cm]) of MICP using Tikhonov-like regularization (α = 10−4, r =
0.25) and σ0 = (1, 1) mS/cm (J (σ0) = 0.0611). Marked in red are the estimates consistent
with σ = (0.93, 0.37) mS/cm obtained with σ0 = (1.2, 0.3) mS/cm.

for example R(σ)) = α/2 ‖σt/σl − r‖2, where r is a reasonably guessed ratio. From Table

3.11, we notice that the method does not stagnate close to the initial guess anymore, but it

detects different local minima. Among them, σ = (0.93, 0.37) mS/cm, consistent with the

results obtained in the previous test, provides the most accurate estimate since it features

the lowest value of the misfit functional J .

The results lead to two conclusions. Using MICP to surrogate the computation of

the conductivities is beneficial for an estimate of the Bidomain tensors if the simplifying

assumption behind the Monodomain problem is reasonably accurate. In fact, the estimate

of σ is accurate enough to generate a good estimate of the Bidomain tensors. This approach

is sensitive to the initial guess - as expected - and workarounds based on the introduction

of Tikhonov-like regularization terms can be exploited. This aspect will deserve further

investigation.

More in general, the solution of the MICP provides a tensor σ that allows an accurate

reconstruction of the potential. In practice, if one is interested in having a nominal tensor

(regardless of the physical explanation) to be used in the numerical simulations for the

accurate computation of the transmembrane potential, this approach candidates as a viable

solution joining reliability and computational efficiency.

What we have learned so far

1. The accuracy of the BICP depends on extracellular potential measurements which are

troublesome to record experimentally. Therefore, simulations were performed in order

to get more insights on the minimal number of recordings needed to ensure reasonable

accuracy. Numerical results suggest that reliable estimates are obtained with at least

10 ue sites.
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2. Under the condition established in the previous point 1, the estimation procedure is

robust in presence of uncertainty induced by random sites as well as lack of precise

information about the position of observation points. This is an important feature

especially in clinical applications where data is affected by noise.

3. An experimental setting featuring multiple stimulations for initiating the propagation

seems to carry more information about the dynamics of the system than a one point

pacing protocol, thus resulting in a more precise estimation. However, results are

similar in case of data recorded on a larger time window.

4. The estimation of the Monodomain conductivity is a good surrogate of the Bido-

main one. Moreover, using the Monodomain eliminates the problem of extracellular

potential recording, thus it is more feasible in clinical settings.

3.2.4 Moving towards real validation

In view of real validation, we aim to investigate the performances of the estimation pro-

cedure in case of more realistic tissues featuring heterogeneity. In addition, an accurate

identification of the proper numerical discretization necessary for experimental validation is

performed. Henceforth, we restrict our attention to the Monodomain problem. This is due

to the fact that, not only MICP can be regarded as a surrogate of the BICP as seen in the

previous Section, but also its computational convenience with respect to the Bidomain sys-

tem is crucial in clinical applications [93]. We refer to the reshaped Monodomain equation

presented in (2.27) with dimensionless voltage u. For the sake of notation, the conductivity

tensor D = σ/(βCm) is denoted by σ as usual, now measured in cm2/ms.

The methodology is tested on 2D geometries since the optical mapping data used for ex-

perimental validation consist of voltage recordings on a 2D grid. We consider planar waves

of cardiac excitation during regular pacing [119] for which the Bidomain and Monodomain

formulations ensure the same level of accuracy. This propagation dynamics is generated by

applying only one stimulus which, as previously discussed, is not the most suitable exper-

imental design. However, since we collected a large amount of optical data, the inversion

can be tested on a larger time interval. As seen in Test 1 of 3.2.2, this allows us to increase
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the accuracy of the estimation at the expense of computational efficiency. We identified

both hardware and software solutions to cope with the higher computational burden. On

one hand, these simulations were carried out using more cores than the previous tests so to

reduce computation time. On the other hand, the goal is to improve the initial guess of the

optimization algorithm. As for any nonlinear iterative problems, the choice of the initial

guess is critical both for the final solution (in absence of uniqueness of the solution) as well

as the convergence speed. The choice needs to be clearly educated based on the problem

at hand and the experience (or the available literature). Yet, this may be not optimal. For

this reason, we investigate here two different techniques, hereafter denoted as Standard and

Refined, respectively, for deciding an initial guess σ0. In the Standard scheme, we perform

the optimization procedure globally on the time interval [0,T] as previously described in

3.1.2 with an initial guess suggested by the experience (trial and error). In the Refined ap-

proach, the arbitrary/trial and error initial guess σ0 is improved by adopting the following

pre-processing strategy, relying on the time-independence of the conductivities. First, the

full time span [0,T] is divided into shorter time intervals of length dtopt. Then, in each

time slot, we perform the optimization using as initial guess the estimation obtained in

the previous time interval. Obviously, in the first time interval [0, dtopt], the optimization

procedure starts from σ0. Once the last optimization step is performed, the final estimation

is used as initial guess of our estimate in the full time interval [0,T]. The overall Refined

procedure is expected to be more convenient as the last estimate will converge more rapidly

thanks to the new initial guess, that is supposed to be more informed.

Standard vs. refined schemes The computational domain is selected to be a square

[0, 6] cm × [0, 6] cm. The conductivity fields σl(x) and σt(x) are defined on a coarse mesh

(# DOF = 109) whereas the membrane potential is discretized on a finer mesh (# DOF

= 94721). For the easiness of the implementation, the meshes are chosen to be nested,

i.e., the nodes of the coarse mesh are also nodes of the fine one. Synthetic measurements

umeas were generated every dtsnap = 2 ms for a global duration of T = 300 ms. The angle

of the cardiac fibers is θ = −43◦ with respect to the x-axis, such that no symmetry appears

on the squared domain. The observation domain Ωobs, where we collect umeas, consists of
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8000 equally distributed points on the domain, which is comparable with the number of

observation points we can get in optical mapping recordings. To test the two optimization

schemes proposed above, we assume uniform conductivity fields in the domain Ω. Synthetic

data were generated with σl,exact(x) = σt,exact(x) = 6 · 10−3 cm2/ms and Gaussian noise

with zero mean and standard deviation equal to pmax |u|, where p is the percentage of

noise, and the maximum is taken in both space and time, was added at each time step. A

stimulus of intensity Iapp = 0.5 ms−1 is applied at the midpoint of the left edge of the square

for a duration of 2 ms. The initial guess is σl,0(x) = σt,0(x) = 4 ·10−3 cm2/ms and the mean

conductivity values in (3.8) were taken as σl,mean(x) = σt,mean(x) = 5 · 10−3 cm2/ms (see

e.g. [69,76]). To investigate the effect on the solutions of the regularization parameters, we

performed several estimations with different values of α1 and α2 in the range [10−7, 1]. As

well known, this is a critical step in the numerical solution of inverse problems. For large

values, the regularization term (3.8) prevails over the misfit term enforcing the results to be

close to the expected (yet, arbitrary) mean conductivity values σl,mean(x) and σt,mean(x).

On the other hand, the regularization is critical for the convexity of the functional to

minimize and, ultimately, for the convergence of the numerical solver, that may be impaired

by exceedingly small values of the parameters. After some experiments, we chose the values

α1 = 10−5 and α2 = 10−4. As α1 � α2 the arbitrary choice of σl,mean(x) and σt,mean(x)

marginally affects the solution, while gradient regularization results pretty effective for the

convergence. Strategies for an automatic tuning of these parameters still need to be pursued.

For the initial guess, Table 3.12 shows a comparison between the Standard and Refined

algorithms. The Refined scheme outperforms the Standard approach, both in terms of

accuracy and efficiency. As a matter of fact, the estimated conductivities using the Refined

OD approach features lower L2-norm of the error. The use of the informed initial improves

convergence of the optimization procedure reducing computational cost. Therefore, we use

the Refined OD scheme throughout the following numerical tests.

Presence of a Scar We now focus on the estimation of conductivities in a pathological

tissue. In the following test, the cardiac tissue is scarred, that means that a portion of the

tissue has an abnormal value of the conductivities. Detection of anomalies based on a similar
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L2 error σl|σt Exec. time # fwd|bwd

Standard OD 4.4 · 10−2|8.0 · 10−2 31.5 h 85|36

Refined OD 4.6 · 10−3|2.5 · 10−2 21.0 h 28|19

Table 3.12: Comparison between standard and refined OD optimization strategies (dtopt =
10 ms). The refined OD scheme provides a more accurate estimation and is computationally
cheaper than the standard OD approach. # fwd denotes the number of solves of the state
equations, and # bwd represents the number of solves of the adjoint equations.

variational approach to the one advocated here is considered in recent works [143–145]. The

presence of a scar on real patients may trigger pathological patterns in the action potential

propagation. Here, the scar is represented (Fig. 3.14(a)) as a circular region with radius 1.5

cm located at the center of the tissue featuring the anomalous values of conductivities [146].

As shown in Fig. 3.14(b), the optimization procedure is able to detect correctly both the

location of the scar and the conductivity values. The initial guess in Fig. 3.14(c) features a

discontinuity on the tissue and this is a reasonable choice since the presence of a scar can

be visually detected by looking at the data. However, the algorithm has been also tested

starting from uniform conductivities and it provides similar results. The error |u − umeas|

with the respect the dynamics showed in Fig. 3.14(d) at different time steps is shown in

Fig. 3.14(e). The downside of our methodology in this case is that the computational burden

substantially increases due to significant growth of the number of optimization iterations.

The estimation process requires 132 forward solves and 58 backward solves, that means a

huge increment with respect to the uniform case. This reflects on higher computation time,

as it increases from 20 hours of the uniform case to roughly 70 hours.

Canine tissue geometry In view of the validation with experimental data, we test the

accuracy of the estimation procedure considering a realistic 2D geometry of a portion of

a canine ventricular tissue [119]. First of all, we need to assess an accurate resolution

for the fine mesh used for modeling the membrane potential u so that the Conduction

Velocity (CV) of the real wavefront propagation can be accurately reproduced. It is well-

known from the literature that coarse meshes lead to overestimation of the CV [147–149].

Therefore, the mesh must be fine enough to accurately catch the physics of the problem. A

reasonable level of discretization can be identified by looking at the plateau point of the CV
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(e)

Figure 3.14: (a) Pathological tissue with a circular scar in the center featuring lower con-
ductivity ([cm2/ms]); (b) Estimated conductivity fields; (c) Initial guess. (d) Synthetic AP
propagation in presence of the scar. The wavefront slows down in the scar because of lower
conductivity in that region. Green arrow indicates the site of stimulation. (e) |u − umeas|
at different time steps (u is dimensionless).
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Figure 3.15: CV convergence plot at different resolutions h in three aligned points of the
mesh. Any resolution h < 0.03 cm provides a reliable approximation of the physics of the
system.

convergence plot. Such a plot is obtained by estimating the CV in some points of the mesh

at different resolutions h, the maximum diameter of the mesh. Below a certain threshold

on h, the CV remains constant meaning that the mesh is fine enough to reliably describe

the dynamics of the system. Using fine meshes clearly increases the computational costs.

This can be mitigated by resorting to non-conforming finite elements recently discussed in

the literature [150].

From Fig. 3.15, we notice that for any h < 0.03 cm, the CV at three aligned points of

the mesh remains constant, so we argue that h̄ = 0.03 cm is the minimum resolution of the

mesh that guarantees an accurate approximation of the physics of the problem. Following

this rationale, we chose h = 0.028 cm (corresponding to about 120k DOFs) which is a good

trade-off between accuracy of the simulation and computational costs. The number of DOFs

of the coarse mesh for the discretization of the conductivities is 99. Fig. 3.16(a) shows the

cardiac fiber structure that was roughly approximated by looking at anatomy of the tissue.

The stimulus is applied at the top of the domain for a duration of 2 ms. The potential

propagation at different time steps for the case σl,exact(x) = 7 · 10−3 cm2/ms, σt,exact(x) =

2 · 10−3 cm2/ms is shown in Fig. 3.16(b). Gaussian noise with p = 5% was added to the

synthetic data and σl,mean(x) = 6 · 10−3 cm2/ms, σt,mean(x) = 3 · 10−3 cm2/ms.

Several anisotropy ratios are chosen to test the estimation procedure as shown in Ta-
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t = 10 ms t = 20 ms t = 30 ms

(a) (b)

Figure 3.16: (a) Realistic geometry of a portion of a canine ventricular tissue and approxi-
mation of the fiber structure. The segments represent the local cardiac fiber direction and
the colorbar indicates the value of the local fiber angle with respect to the x-axis. Unit is in
radians. (b) Three snapshots of umeas (contour line umeas = 0.75). Green arrow indicates
the site of stimulation where AP is triggered propagating towards the bottom.

(σl,exact, σt,exact) L2 error σl,est|σt,est mean st.dev.

(5.0, 2.0) · 10−3 3.6 · 10−2|2.6 · 10−2 4.8 · 10−3|2.0 · 10−3 3.1 · 10−4|3.9 · 10−5

(6.0, 1.5) · 10−3 3.7 · 10−2|2.3 · 10−2 5.8 · 10−3|1.4 · 10−3 3.1 · 10−4|4.3 · 10−5

(7.0, 2.0) · 10−3 4.6 · 10−2|3.1 · 10−2 6.8 · 10−3|2.1 · 10−3 8.7 · 10−4|5.1 · 10−5

(10.0, 3.0) · 10−3 4.4 · 10−2|3.2 · 10−2 9.8 · 10−3|3.1 · 10−3 7.9 · 10−4|4.4 · 10−5

Table 3.13: L2 relative error, mean and standard deviation of the estimated fields ([cm2/ms])
in different cases for canine ventricular tissue geometry. The optimization procedure pro-
vides a reliable reconstruction of the true conductivity fields. In the last two cases featuring
a faster CV, the accuracy of the estimation depends more significantly on the quality of the
initial guess.

ble 3.13. In each case, the algorithm is able to accurately retrieve the true conductivity

fields. When the CV is slow, meaning low conductivity, the method is robust with respect

to the choice of (σl,0, σt,0). On the other hand, for the cases with faster CV, the initial

guess has to be carefully selected to guarantee a reasonable accuracy. These simulations

were more computationally demanding than the tests on the square domain (approximately

30 hours vs. 20 hours of the square case) because of the finer mesh resolution.

3.3 Experimental Validation

The purpose of this Section is to perform an extensive validation on experimental data.

This is a fundamental step in assessing the actual reliability of the variational procedure

in real problems. In Section 3.3.1, the experimental and numerical settings are described.

An extensive comparison among numerical results from three different electrophysiological
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Figure 3.17: Example of experimental setting that drives our testing methodology. A)
Canine right ventricle (RV) visualized from top and bottom with two optical mapping
cameras. B) RV loaded with voltage dye and illuminated with green light, top arrow
indicates perfusion that keeps the preparation alive, bottom arrow indicates stimulator to
initiate voltage waves. C-D) Examples of a transmembrane wave voltage measured with
optical mapping propagating from the apex to the base of a rabbit heart. E) optical mapping
voltage signal from one pixel.

models and optical data is presented in Section 3.3.2 and 3.3.3.

3.3.1 Experimental and numerical settings

In this Section, we briefly illustrate the experimental protocol used to collect the experi-

mental data and the calibration of the ionic models to deal with canine data.

Fluorescence optical data Fluorescence optical mapping recordings were obtained from

canine right ventricle wedge preparations, according to the experimental protocols approved

by the Institutional Animal Care and Use Committee of the Center for Animal Resources

and Education at Cornell University. We refer to Fig. 3.17 and [97, 119] for details of the

experimental setup. The imaging has a spatial resolution of ∼ 600µm per pixel for a grid

size of ∼ 7×7 cm2 and a temporal resolution of 2 ms. Data filtering and postprocessing were

performed via a custom-built interactive Java program, in particular for removing signal

drift and fluorescence noise, normalizing the signal on a pixel-by-pixel basis, averaging in

time on a 7 frames length, and averaging in space with a two-dimensional weighted Gaussian

function. The resulting analyzed data have been proved to retain tissue local heterogeneities,

amenable for an extensive usage for modeling purposes [151–154]. For estimating space-

dependent cardiac conductivities from action potential data obtained at different pacing

Cycle Length (CL), we tuned the ionic model parameters to fit the restitution of APD (APD-
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RC) introduced in Section 2.1.2. The experimental APD-RC was obtained by applying

multiple electrical stimulations, e.g. 20, at constant pacing with period CL starting from

high values (typically 1000 ms) and decreasing in 50 ms steps until reaching CL = 250 ms,

after which CL was shortened in 10 ms ms decrements until capture was lost or ventricular

fibrillation was induced. At each CL, pacing was applied for at least 1 min before recording

to ensure that steady state was reached, then recordings were made for 5 s, or more, at each

CL. APD was measured at 25% repolarization threshold ensuring a minimum level of basal

noise. The RC is then obtained by plotting APD vs. CL. We recall that a list of acronyms

and abbreviations can be found in Chapter 1.

Choice of the ionic models As we refer to canine experimental data, we need to cal-

ibrate the ionic model accordingly. The Minimal model (MM) used in the synthetic vali-

dation does not fit at best the available experimental data, since the temporal resolution

of the optical mapping camera used for data collection is not fine enough to catch the up-

stroke of the action potential. This results in a much smoother AP shape (see Fig. 3.18(a)).

Therefore, although the MM model provides a realistic simulation of cellular electrical ac-

tivity, we considered the Fenton-Karma (FK) (2.10) and Mitchell-Schaeffer (MS) models

instead (2.8). Even though these models provide a much more simplified approximation of

the physics of the problem, they are expected to provide a better reconstruction of the data

at hand because of the AP shape similarity with optical data.

The model-based restitution curves were calculated performing one dimensional cable

simulations and following a protocol similar to the experimental one. The ionic model

parameters were manually tuned so to minimize the discrepancy between experimental and

the modeled restitution curves. The AP shapes and restitution curves for the FK and

MS ionic models are shown in Fig. 3.18(b), and 3.18(c), respectively. It is worth noting

that, for the single case of experimental data we are considering, the MS model provides

a better fit of the experimental RC than the FK one, especially at high CL, as well as a

more accurate match of the AP shape. On the other hand, FK features a more realistic

wavefront propagation at low CL, as we will see in the following tests. The 2D fine mesh

for approximating u has the maximum diameter h = 0.028 cm, T = 230 ms, dtsnap = 2 ms
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(a) (b) (c)

Figure 3.18: (a) AP shape modeled with the Minimal model. The AP features an upstroke
that is missing in the experimental data. (b) Simulated AP shapes for FK and MS. Red
curve represents the modeled AP and the blue the experimental one. MS provides a better
match than FK especially in the repolarization phase. (c) Experimental APD restitution
curve compared with the modeled ones obtained with MS and FK models.

and Tikhonov-like regularization term (3.8) is disabled (α1 = α2 = 0). The number of

observation points varies among the tests we performed, but it is approximately 8000. It is

worth stressing that, since we were given a large amount of data which was recorded before

the research presented in this Thesis was performed, the sensitivity analysis presented in

Section 3.2.1 and 3.2.2, in particular in the cases of lack of data, will be used to set up

future experiments. As for computation time, depending on the ionic model and the values

of CL, the following tests took on average between 2 and 5 hours, which is significantly less

than the synthetic simulations. This is due to the higher number of cores involved in the

computation as well as the highly optimized libraries and compilers available on the SKX

nodes of Stampede II.

3.3.2 Validation at slow pacing rates

We estimated the conductivities from AP optical mapping measurements recorded at CL=540

ms. Three different resolutions hM = (1, 0.44, 0.25) cm are considered for the coarse mesh.

The goal was determining the minimum resolution in order to capture enough heterogeneity

in the conductivity fields and, in turns, to be able to provide an accurate reconstruction of

the experimental data. For each resolution, conductivity fields are estimated using the FK

model. The initial guess of the optimization algorithm was chosen so that the wavefront

propagation is comparable to the experimental data.
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Figure 3.19: Estimated conductivity fields [(cm2/ms)] at CL = 540 ms: (a) FK model
with three levels of discretization of the coarse mesh; (b) MS model. While there is a huge
difference between the estimations at h = 1 cm and h = 0.44 cm, the results at h = 0.44 and
h = 0.25 cm are qualitatively similar. Therefore, we select the coarse mesh with h = 0.44
cm to perform experimental validation. Moreover, MS and FK models identify similar slow
and fast conducting areas.

As shown in Fig. 3.19(a), the estimation highly depends on the mesh. In particular

a significant discrepancy can be observed between the results obtained with hM = 1 cm

and hM < 1 cm. The conductivity maps look qualitatively similar for hM = 0.44 cm and

hM = 0.25 cm. Henceforth, we used the coarse mesh with hM = 0.44 cm (# DOFs =

512) to limit computational costs. The conductivity fields obtained with the MS model

shown in Fig. 3.19(b) are comparable – though varying over a wider range – to the ones

retrieved with the FK one in Fig. 3.19(a), meaning that the two models are able to detect

both fast and slow conducting regions. In addition, we tested the assumption of anisotropic

conductivities by comparing the results with the reconstruction obtained assuming isotropic

conductivities (σl(x) = σt(x)) (displayed in Fig. 3.20).

Fig. 3.20 shows a comparison between the contours line at u = 0.5 of the experimental

data and the modeled AP propagation using MS and FK models with anisotropic conduc-

tivity and FK model with isotropic conductivity at three snapshots. Regardless of the ionic

model, the reconstruction of experimental data seems accurate both in shape of the wave-

front and its velocity for t = 16 ms and t = 20 ms. As for t = 12 ms, the algorithm coupled

with the FK model overestimates the conductivity in the region near the stimulation point

leading to a higher CV. On the other hand, the MS outperforms FK providing a more
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Figure 3.20: CL = 540 ms, comparison between experimental and modeled contour lines
assuming anisotropic (MS and FK) and isotropic conductivity fields (FK iso.). Green arrow
indicates the site of the stimulation. The lack of anisotropy in the conductivity leads to a
poor reconstruction of the experimental data.

reasonable reconstruction of the wavefront propagation. Moreover, the estimation comes

along with less computational effort since the MS model is much simpler and faster to solve

than FK. Therefore, MS is preferable to FK both in terms of accuracy and reduction of the

computational costs. However, for lower values of CL at which the dynamics of the system

become more challenging to model, we may expect FK to perform better than MS since it

provides a more accurate approximation of the physics of the problem.

Nevertheless, since the measurement errors are higher in proximity of the stimulation

point and the data are more noisy, we will only focus on the modeled AP propagation suffi-

ciently far away from the stimulation area in order to provide a fair comparison between the

estimates. It is also noticeable that the assumption of anisotropic conductivities is crucial

for the accurate reconstruction of the real data. As a matter of fact, assuming isotropic

conductivity leads to poor reconstruction of the experimental data since the CV is overesti-

mated at each snapshots. This might be due to the fact that the isotropic conductivity does

not take into account the effect of the fibers on the propagation of the electrical signal which

however seems to be crucial for an accurate reconstruction of the real AP. Henceforth, we

consider anisotropic conductivities only.
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3.3.3 The role of CL on the estimation

In the following numerical tests we investigate the interplay between the reliability of our

estimation procedure and the value of CL. The conductivity fields are estimated using data

collected at decreasing values of CL retrieved from the experimental APD restitution curve.

For each value of CL, we consider two different strategies for initializing the optimization

algorithm.

The first strategy is using the estimation of σ obtained at the previous CL as an initial

guess for the next inverse problem. We call this a dynamic procedure, as it combines the

experimental observations with a prior knowledge in order to initialize the optimization

algorithm. The second approach, calles static, consists of using the same initial guess

σ0 for all the parameter identifications performed at each value of CL. A uniform isotropic

conductivity field of value 0.01 cm2/ms (used to fit the experimental APD restitution curve)

is chosen as initial guess.

The dynamic approach is expected to outperform the static one because the optimiza-

tion algorithm starts from an initial guess already providing a reliable match of the data.

Moreover, setting realistic initial condition u0(x) for the forward solver is crucial for an

accurate simulation of the electrical propagation, especially at low CL. As a matter of fact,

numerical experiments have shown that pacing of resting cardiac tissue (u0(x) = 0) at low

CL does not trigger AP propagation. Therefore, u0(x) is set following a protocol similar

to the experimental one. The tissue is electrically stimulated twice starting from high CL

(typically 500 ms or higher) and decreasing in 50 ms decrements until reaching 300 ms, after

which the CL is shortened in 20 ms decrements. Once the desired CL is reached, pacing is

applied twice and the final state is stored and used as initial condition for the forward solve

in the estimation process. By following this strategy, the system responds to stimuli even

at low CL and electrical wave propagation is triggered.

Here, we report the results of the estimation for decreasing values of CL = [540, 440,

357, 320, 289, 266, 233] ms. The estimated conductivity fields for different CL values and

strategies using the MS model are shown in Fig. 3.21. Looking at the misfit J with MS

and the dynamic vs the static strategy (see Fig. 3.22), the former provides a more accurate
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Figure 3.21: Dynamic vs Static strategy, estimated conductivity fields with MS model at
different CL values. These results pinpoint how an educated selection of the initial guess is
critical for the reliability of the estimation.
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Figure 3.22: Value of misfit J for the different numerical settings tested. At fast pacing
rates (low CL), both dynamic and static strategies with MS model (red and blue curve,
respectively) lose accuracy as the misfit increases. By using the dynamic approach with FK
model (orange curve), we can provide a better match of the experimental data. However,
the reconstruction of the real AP propagation is still unsatisfactory (see Fig. 3.24). The
dynamic technique with FK model and Tikhonov-like regularization is the best strategy
both in terms of misfit and reconstruction of the data (see Fig. 3.24).

reconstruction of the experimental data and has therefore to be preferred.

However, both the strategies coupled with the MS model perform poorly as CL decreases

resulting in an increase of the misfit. As MS aims to capture only the basic characteristics of

the action potential, we get an overly simplified approximation of the dynamics, especially

at low values of CL. Moreover, since it features only one gating variable, MS is not able to

reliably reproduce the behavior of the system at fast pacing. This results in a underestima-

tion of the conduction velocity. As noticed in Fig. 3.24, at low CL, the potential propagation

is much slower than the real data at low CL. This is further highlighted by Fig. 3.25 which

compares the experimental and modeled APs obtained with the two different procedures

and ionic models in one point on the tissue in the time window [0,250] ms. The delay of the

modeled AP is evident especially in the case CL = 233 ms when using MS model, regardless

of the strategy. Moreover, the peak of the AP markedly decreases at low CL, in particular

in the static procedure, contributing to the increase of the functional J .

More realistic results can be obtained when using the FK model. At high CL, the

estimation features slightly larger misfit than the dynamic strategy with MS model because

of the better reconstruction of the AP shape provided by MS (see Fig. 3.22). However, the
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strategy performs much better at low CL, in particular when CL < 300 ms, as the misfit

functional remains stable. Despite of the improvement of the reconstruction, the results

are still not fully satisfying since the conduction velocity is now overestimated leading to

an increase of the conductivity, especially at low CL (see Fig. 3.26). This is highlighted in

Fig. 3.25 too in which the AP simulated with FK at CL = 233 ms precedes the experimental

data meaning that the wavefront propagation is faster. This disagrees with the physics of the

system because it has been noticed in the experimental setting that the conduction velocity

decreases as CL decreases. We argue that this can be caused by the high experimental

errors nearby the stimulation point due both to the fluorescence noise and the lack of precise

information about the location of the stimulator. Therefore, the estimation procedure might

be more prone to lead to an inaccurate estimation of the conductivity fields, in particular

in the region surrounding the site of the stimulation. To alleviate the negative impact of

measurements errors on the reliability of the reconstruction, the strategy we followed was

to identify with a trial-and-error process a reasonable estimation of the conductivity fields

generating an AP propagation similar to the experimental one in proximity of the pacing

point. The resulted conductivities are then enforced in the area by the stimulation point

by enabling the Tikhonov-like regularization on mean conductivity values shown in (3.8).

We considered the time window [0,8] ms in which the voltage wave is still close to the site

of the stimulation. The contour line u = 0.5 of the experimental data at t=8 ms is shown

in Fig. 3.23(a). Several conductivity fields and anisotropy ratios were tested and we finally

impose σl,mean(x) = 9 · 10−3 cm2/ms, σt,mean(x) = 3 · 10−3 cm2/ms. Fig. 3.23(b) shows the

modeled voltage wave at t=8 ms. The region in which the Tikhonov-like regularization is

imposed is represented by the red region in Fig. 3.23(c). The shape of the area was chosen

to be similar to the curvature of the wavefront of the experimental data. The weight α1

of the Tikhonov-like regularization switches from α1 = 10−2 in the red region to α1 = 0

elsewhere. In such a way, the estimates are enforced to be close to the prescribed mean

value in the area by the site of the stimulation, whereas we disable the regularization in the

rest of the domain so to let the estimation procedure detect the best match with the data.

This strategy yields a more accurate estimation, in particular at low CL, resulting

in lower misfit value (see Fig. 3.22). Moreover, as it can be noticed in Fig. 3.24, the
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(a) (b) (c)

Figure 3.23: (a) Experimental AP at t=8 ms for CL=540 ms (contour line u = 0.5). The
site of the stimulation is indicated by the green arrow; (b) Modeled AP propagation at t=8
ms for σl,mean(x) = 9·10−3 cm2/ms, σt,mean(x) = 3·10−3 cm2/ms (contour line u = 0.5); (c)
The red area surrounding the site of the stimulation is the region in which the Tikhonov-like
regularization on the mean conductivity fields is imposed and α1 = 10−2, whereas α1 = 0
in the rest of the domain.

reconstruction of the data is more reliable in terms of the conduction velocity as well, since

the modeled AP propagation is similar to the experimental one. It is also important noting

from the shape of the contour line that the curvature of the wavefront varies along the tissue

meaning that the procedure is able to detect the heterogeneity of the conductivity. Finally,

the estimations of the conductivity fields reported in Fig. 3.26 are in agreement with the

CV reduction at small CL as observed in the experiments.

3.4 Discussion

The results of our data-assimilation framework combining available measures with accurate

models demonstrate the successful accomplishment of cardiac conductivities estimation. We

performed here an extensive synthetic and experimental validation of the procedure with

experimental data. We considered several scenarios to probe the accuracy and robustness of

our procedure in a synthetic setting. This analysis is necessary to provide guidance on many

practical issues for the design of future experiments. Then, we validated the procedure using

fluorescence optical mapping recordings at different pacings. The results can be summarized

as follows.

1. Extracellular potential data is essential for accurate estimates. However, as we recognize

that the measure of the extracellular potential is much more complicated than the membrane

voltage, we tried to reduce the number of the sites for ue. We assess that the minimal number
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Figure 3.24: Comparison between experimental and modeled contour line u = 0.5 at t = 20
ms for different CL. At low CL, dynamic and static strategies with MS model underestimate
the experimental CV, whereas dynamic approach with FK model simulates faster AP prop-
agation. Enabling the Tikhonov-like regularization term allows us to provide a reasonable
match of the experimental data at low CL.
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CL = 540 ms CL = 440 ms

CL = 357 ms CL = 320 ms

CL = 289 ms CL = 266 ms

CL = 233 ms

Figure 3.25: Comparison between experimental and modeled AP shapes using different
strategies and ionic models. At low CL, the results obtained with MS model clearly diverge
from the real data, both in terms of wavefront propagation and magnitude of the peak of
the AP. FK model coupled with Tikhonov-like regularization in the dynamic framework
gives the most reliable reconstruction of the experimental wavefront propagation.
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Figure 3.26: Dynamic Strategy: estimated conductivity fields with FK vs. FK with
Tikhonov-like regularization. The conductivities estimated in (a) increase at low CL. This
lacks physical foundation because it has been noticed in the experiments that the CV (and
so the conductivity) decreases at low CL. On the other hand, the results obtained in (b)
are more in line with the experimental expectation as the magnitude of the estimated fields
does not increase at low CL.
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of ue sites required is around 10.

2. One of the most important conclusion is that the exact location of the measurement sites

has a marginal role on the quality of the estimation. In fact, also with a random location of

the sites (below a minimal number), we can get accurate estimations. In clinical settings,

as the introduction of leads in the left ventricle is possible, it is not possible to precisely

determine their position, yet these results suggest that this is not potentially detrimental

to the estimate.

3. In general, we notice that beyond a certain number of measure sites, adding more sites

is not beneficial.

4. In case of data recorded on a short time interval, the presence of multiple simultaneous

stimuli is critical to the quality of the estimate, while a single stimulus leads to a significantly

poorer estimate. However, in case of larger amount of data, the experimental setting with

one stimulus leads to accurate estimation as well.

5. The MICP does not require any extracellular measure and seems to be accurate enough

for the transmembrane potential reconstruction. This is an important aspect to consider

for practical purposes. In fact, the results suggest that an accurate reconstruction of the

transmembrane potential in patient-specific settings may be based on the solution of the

MICP, being the conductivity tensor a nominal value assimilated from the data.

6. After a careful selection of the modeling and numerical setting, the method successfully

reproduces most of the dynamics obtained from the experiments providing reasonable es-

timates of conductivity fields that are consistent with the data. The ionic models selected

guarantee a relatively high reliability in spite of the low number of parameters they feature.

However, their choice may be dictated by the CL pacing. While MS works properly over a

wide range of CL pacing, at low frequency, FK performs better.

When modeling the electrophysiology and, specifically, setting up reliable parameter

estimation procedures based on data, we have no silver bullet. The variety of options and

modeling choices is huge and, generally, depends on the specific aims and regimes consid-

ered. The computational costs and the overall effectiveness of our estimation procedure are

significantly affected by these choices, so the identification of the most convenient trade-offs

is generally not easy. Also, it is worth mentioning that setting-up computationally efficient
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methods is still an active research field, and the current scenario will likely change in the

future [90,91,94,150,155–159] (to mention a few contributions).

A reliable and efficient estimation of cardiac conductivity for patient-specific modeling

is turn for using optimization techniques in the therapy of cardiac disorders related to the

potential propagation [126,160–163]. Our ultimate goal, in fact, is the combination of data

assimilation techniques and optimization procedures for improving the clinical activity. An

extensive testing against experimental data is a fundamental step in this perspective to

certify the credibility of the approach.
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Chapter 4

Solution of the MICP Based on

PGD-Model Reduction

Results from Chapter 3 pointed out that the variational procedure entails expensive compu-

tations and costs rapidly grow when the conductivity tensors feature discontinuities such as

in presence of scars. These limitations may hinder its limitation to clinical problems featur-

ing short time frames. We chose a hardware solution to deal with this issue exploiting the

power of high performance clusters through parallel computing. However, parallelization is

not always straightforward and, most importantly, long queue wait times on clusters (some-

times more than 48 hours) compromise the efforts for better performance and efficiency.

Reduced-order modeling techniques have been extensively investigated and developed

in the engineering and mathematical literature (see e.g. [164–167]) as a valid alternative

to improve the efficiency of rigorous identification procedures. In cardiac electrophysiol-

ogy, several reduced-order models (ROMs) have been investigated [37, 39, 41, 168, 169] to

replace the high-fidelity Bidomain/Monodomain models with educated and cheaper surro-

gates. They are constructed as a combination of basis functions generally built based on

a previous knowledge of the solution for a predetermined set of values of the parameters

(called snapshots). For instance, in the Proper Orthogonal Decomposition (POD) consid-

ered in [41], the snapshots are smartly selected based on the concept of domain of influence

in the space of the conductivities, and the surrogate is constructed after a Singular Value
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Decomposition (SVD) of the snapshot matrix. In this Chapter, we explore a ROM pro-

cedure that does not require any a priori knowledge of the solution. The Proper General

Decomposition (PGD) is a a model reduction technique introduced by Chinesta et al. [43],

specifically devised for parametrized differential problems to rapidly evaluate for different

values of the parameters. Even though the PGD still relies on an off-line/on-line paradigm,

this method does not require an initial computation of snapshots.

The idea is to treat the parameters of the problem as independent variables and to

compute the solution over an extended domain, inclusive of the range the parameters are

expected to belong to. As the actual numerical computation must be done on a highly

dimensional domain, in the off-line stage, a special representation is introduced, where the

basis functions representing the solution are factorized for each independent variable (in-

cluding the parameters) or low-dimensional groups of variables. By advocating an iterative

approach for computing the basis functions customized for the problem to solve, the PGD

has been demonstrated to be an effective technique for computing an approximation of the

differential equation in all the expected range of parameters in different fields of applications

(see e.g. [48]). In the on-line phase, at this point, the solution is ready to be promptly eval-

uated for any value of the parameters as well as for any other independent variable. This is

particularly effective in a variational parameter identification procedure, when the solution

for different guesses of the parameters are tested in the iterative minimization process.

The rapid solution of the on-line phase makes affordable the introduction of Uncertainty

Quantification techniques like the ones based on the application of Bayesian theory [49,50].

These strategies can be used for the self-assessment of the quality and robustness of the

parameter estimation. Unlike the deterministic variational approach considered so far, the

solution of the inverse problem in a Bayesian framework is a probability distribution whose

moments are informative of the reliability of the estimates. The downside is that this addi-

tional information implies more demanding calculations. Simplified physical models, such

as the Eikonal model, have been used in literature [51, 52] to reduce computational com-

plexity of statistical approaches at the expense of less accurate description of physiological

and pathological dynamics. The PGD method enables for the first time the use of the more

accurate Monodomain model in this context at reasonable costs.
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In this Chapter, we explore the use of PGD to solve the Monodomain Inverse Con-

ductivity Problem (MICP), both in the deterministic and statistical frameworks. After a

short introduction to PGD in Section 4.1, we introduce the specific technical aspects of the

application of PGD to the solution of the Monodomain problem in Section 4.2. Then, we

assess the accuracy of the reduced model over a number of test cases. In particular, we start

with simple 2D test problems yet on a morphology based previous studies on canine tissues.

Then, we extend to 3D problems including a patient-specific left ventricle. In Section 4.3,

we present and discuss the application of PGD to the solution of MICP. We then introduce

the statistical formulation of the MICP in Section 4.4 presenting numerical results using

the PGD reduction of the Monodomain model and we conclude with a final discussion in

Section 4.5.

The content of the Sections 4.1-4.3 is reflected by the paper [170], whereas the work

presented in 4.4 will be subject of a future publication.

4.1 PGD in a Nutshell

In this Section, we provide a short introduction to the PGD, to recall the basic ideas and

introduce some notation and terminology. For a more complete introduction, the reader is

referred to [43].

In what follows, Ω ⊂ Rd is the physical space domain, where the dimension d here will

be 2 or 3. We denote by V a Hilbert space, generally a subspace of the Sobolev space

H1(Ω). With q ∈ Rδ we denote a vector of parameters the problem we consider depends

on. Let us focus for the moment on a generic parametrized elliptic problem in the weak

form: find u(x)

aq(u, v) = F (v), ∀v ∈ V, (4.1)

where F : V → R is a linear continuous functional, and the form aq : V × V → R for

any given admissible value of the parameters q is bilinear, continuous and coercive. More

precisely, we assume that the parameter qi for i = 1, . . . δ ranges in an admissible interval

Si, so that the admissible set for the parameters is the hyper-cube S ≡ S1 × S2 . . . × Sδ.

As our problem is actually the identification of the parameters, we regard the solution u as
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a function of x ∈ Rd and q ∈ Rδ. Specifically, we assume that u ∈ V × L2(S). The space

V ×L2(S) will be denoted by W . The extended weak formulation, including the parameters

as independent variables, is obtained by integrating (4.1) over S as

A(w, v) ≡
∫
S

aq(u, v)dq, F(v) ≡
∫
S

F (v)dq.

The d+ δ-dimensional problem reads: find u ∈W s.t.

A(u, v) = F(v), ∀v ∈W. (4.2)

Notice that, with a little abuse of notation, we keep denoting the unknown and the test

functions with the same symbols u, v, although now their dependence on the parameters q

is explicitly outlined by their belonging to W .

As the number of dimensions of the problem is now increased, the numerical solution

(e.g., with a generic Galerkin approach) may be problematic. We therefore proceed under

the assumption of separability, that is typically postulated in unsteady problems to separate

the space to the time dependence of the solution (semi-discretization). This means that

the numerical solution is regarded as the linear combination of factors breaking up the

dependence of the solution on the different independent variables into the product of low-

dimensional sets of basis functions. Consequently, the numerical approximation of the

problem takes the form

um(x, q) =
m∑
k=1

uxk (x)
δ∏
l=1

ulk(ql), (4.3)

where the functions uxk (x) ∈ Vh ⊂ V account for the x-dependency of the solution and the

functions ulk(ql) ∈ W l ⊂ L2(Sl) for l = 1, 2, . . . δ carry the dependence on the parameters.

Correspondingly, the space Wm will denote the space of functions in the form (4.3), i.e.

Wm =

{
wm(x; q) =

m∑
k=1

wxk (x)
δ∏
l=1

wlk(ql),

with wxk ∈ Vh, wlk ∈W l (for any l = 1, . . . , δ), x ∈ Ω, q ∈ S
}
.

(4.4)
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From now on, the dimension of Vh will be denoted by Nx
h and similarly N l ≡dim(W l).

Differently from a regular Galerkin approach, the basis functions are not selected a-priori

(e.g., piecewise polynomials or Gaussian polynomials). Conversely, the computation of

these functions is the result of a progressive construction customized on the problem to solve,

performed in an iterative procedure that takes advantage of their factorized nature. In more

details, the computation of the solution in this form is based on two steps: (i) a “greedy”

weighted residual step to enrich the approximation um−1 ∈ Wm−1 to um ∈ Wm by adding

the new contribution (or mode) δmu ≡ uxm(x)
δ∏
l=1

ulm(ql); (ii) a factorized computation of the

mth term δmu based on a fixed-point iteration method called Alternating-Direction Strategy

(ADS).

As for (i), we aim to find the new mode δmu by solving the weighted residual problem

A(δmu+ um−1, vm) = F(vm), ∀vm ∈Wm, (4.5)

where um−1 ∈ Wm−1 is the available approximation (at the beginning typically one sets

u0 = 0). The progressive addition of new terms stops when the solution does not change

significantly. Technically, this leads to the (external) convergence criterion

‖um‖
‖u1‖

≤ tole, (4.6)

where the tolerance is user-defined and the norm can be selected in different ways (e.g.

L2(Ω × S)). The rationale is that the new modes are adding a progressively less relevant

contribution to the solution (as it happens, for instance, with the terms of a Sturm-Liouville

Eigenfunction expansion), so that the left hand side of (4.6) does actually reduce when m

increases.

As for (ii), we perform the computation of δmu in (4.5) by solving iteratively the com-

ponent depending on each variable (or set of independent variables) independently, in a

fixed-point frame (ADS). Introducing the fixed-point iterative index j ≥ 1, let us assume

to have a guess δm,j−1u = uxm,j−1(x)
δ∏
l=1

ulm,j−1(ql). We start computing the contribution
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uxm,j(x) by solving the d−dimensional problem

A(uxm,j

δ∏
l=1

ulm,j−1, vm) = F(vm)−A(um−1, vm), (4.7)

where vm = vxm
δ∏
l=1

ulm,j−1 and the problem is solved for any vxm ∈ Vh. Successively, we solve

the dependence on the parameters qr, r = 1, 2, . . . , δ by solving the 1D problems

A(uxm,ju
r
m,j

r−1∏
l=1

ulm,j

δ∏
l=r+1

ulm,j−1, vm) = F(vm)−A(um−1, vm), (4.8)

where this time vm = uxm,jv
r
m

r−1∏
l=1

ulm,j
l∏

l=r+1

ulm,j−1 and the computation runs for any vrm ∈

W r. By solving this problem for r = 1, 2, . . . , δ, we complete the computation of δm,ju.

Finally, by iterating this sequence of problems over j, the convergence to a stationary

limit clearly leads to a fixed point that we select to be the m − th contribution to the

solution. A natural stopping criterion for the (internal) iterative loop reads therefore

‖δm,ju− δm,j−1u‖
‖δm,j−1u‖

≤ toli. (4.9)

Once this criterion is fulfilled, the computation of δmu is completed and um = δmu+um−1

is available. All the steps involved in (4.7,4.8) can be written in an algebraic form that we

do not report here for the sake of brevity. The PGD algorithm described here is summarized

in Algorithm 1. Implementation details of this method in our specific problem are deferred

to Section 4.2.2.

What is described in Algorithm 1 is actually what we define the off-line phase of the

method, aiming at a reduction of the problem on a relatively small number of customized

basis functions. The interest of the present paper in PGD is however motivated by the fact

that after this phase, the solution is available not only on each space point but also over

the entire admissible set of parameters S. In the variational data assimilation procedure

investigated in Chapter 3, we need to iteratively estimate the solution of our original problem

for different values of the parameters, so to minimize the mismatch from the observations.
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Algorithm 1 PGD algorithm

1: Define S;
2: Select a (finite element) basis function set for Vh;
3: Precompute all the components of A(·, ·) independent of external iteration index k
4: Set the tolerances tole and toli;
5: Set the modal index m← 0;
6: Set a maximum enrichment index mmax; set a maximum fixed point iterations jmax;
7: Set the initial guess u0;
8: while External loop criterion (4.6) is not fulfilled and m ≤ mmax do
9: m← m+ 1;

10: Set the fixed point index j ← 0;
11: Set the initial guess δm,0u;
12: while Internal loop criterion (4.9) is not fulfilled and j ≤ jmax do
13: j ← j + 1;
14: Solve (4.7);
15: for all r = 1, . . . , δ do
16: Solve (4.8);
17: end for
18: end while
19: um = um−1 + ux,jm

∏
l u

l,p
m ;

20: end while

Once the PGD solution is available, the on-line cost of approximating u for different values

of the parameters is trivially the cost of assembling the solution um =
m∑
k=1

uxk (x)
δ∏
l=1

ulk(ql).

The cost of this step is minimal, and this makes the PGD particularly interesting in our

case. At this time we do not have theoretical results on the convergence of the loops involved

in the off-line phase. The ultimate goal of this work is assessing the reliability of the off-line

model reduction and verifying its computational competitiveness in solving our parameter

estimation/data assimilation problem.

4.2 PGD Model Reduction of the Monodomain Problem

In this Section, we apply the PGD approach to obtain a surrogate of the Monodomain

model (2.25), with the Monodomain equation reshaped as (2.27). We focus on the simple

phenomenological Rogers-McCulloch (RM) model (2.6). As our goal is to assess a method-

ological procedure, so we defer the extension to more complex models such as Mitchell-

Schaeffer (2.8) and Fenton-Karma (2.10) to future works. To avoid ambiguity and conflicts

with the notation used in the previous Section, the gating variable v characterizing the
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RM model is hereafter denoted as w. Moreover, the conductivity tensor D = σ/(βCm) is

denoted by σ as usual.

4.2.1 Formulation of the reduced model

To solve the Monodomain system coupled with MS model adopting the PGD reduction,

we preliminary perform a semi-discretization in time of the problem, as previously done in

Section 3.1.2 for the numerical approximation of Bidomain/Monodomain models. This is

not necessary, as the time variable could be considered as the other variables of the problem

(space and conductivities). However, we preferred to eliminate the time dependence by a

traditional finite difference discretization, so to rely on extensive evidence of the effectiveness

of the approach. We recall that, with this approach, we decouple the PDE equation and

the ODE ionic model. By defining a time step ∆t > 0, the time interval [0, T ] is uniformly

divided in N subintervals (tn, tn+1), with t0 = 0, tN = T and tn+1 = tn + ∆t = (n+ 1)∆t,

for any n = 0, . . . , N . This strategy consists of a semi-implicit approach that automatically

linearizes the problem at each time step. Thus, using a first order discretization in time in

the Monodomain equations (2.25), at each time step tn+1, for (un, wn) available, we solve

the problems (recall that RM model features a single gating variable)


wn+1 = ∆tg(un, wn+1) + wn

un+1 −∆t∇ · (σ∇un+1) = ∆tIn+1
app −∆tIion(un, wn+1) + un

in Ω, (4.10)

completed by the boundary conditions (2.26)2.

The first (algebraic) equation explicitly reads

wn+1 =
η2∆t

(1 + ∆tη2η3)up
un +

wn

1 + ∆tη2η3
. (4.11)

In the second (differential) equation, the ionic term reads

Iion(un, wn+1) = Gun −G
(

1

up
+

1

uth

)
(un)2 +

G

uputh
(un)3 − η1u

nwn+1, (4.12)

where the parameter values are listed in Table 2.1.



95

At each step, we apply the PGD model reduction to (4.10)2. For V = H1(Ω), the weak

formulation for problem (4.10)2 reads

a(un+1, v) = F (v) ∀v ∈ V, (4.13)

with

a(un+1, v) =

∫
Ω

∆tσ∇un+1 · ∇v dΩ +

∫
Ω

un+1v dΩ, (4.14)

F (v) =

∫
Ω

(∆t In+1
app −∆t Iion(un, wn+1) + un)v dΩ. (4.15)

To apply the PGD approach, we introduce the spaceW ≡ H1(Ω)×L2(Sl)×L2(St), where

Sl,t are the admissible ranges for σl and σt, respectively. Then, the extended variational

formulation reads like in (4.2) with

A(u, v) =

∫
Sl

∫
St

a(u, v) dσl dσt, F(v) =

∫
Sl

∫
St
F (v) dσl dσt. (4.16)

Again, we keep using the same symbols u and v even if now these functions are regarded as

elements of W , to highlight their dependence on σl and σt.

To perform the model reduction, let Wm be the space

Wm =

{
wm(x;σl, σt) =

m∑
k=1

wxk (x)wσlk (σl)w
σt
k (σt);

with wxk ∈ Vh, w
σl
k ∈W

σl
h , w

σt
k ∈W

σt
h , ∀k = 1, . . . ,m

}
,

(4.17)

with Vh, W σl
h and W σt

h discrete subspaces of V , L2(Sl) and L2(St), respectively. The PGD

solution is defined then as

un+1(x;σl, σt) ≈
m∑
k=1

un+1,x
k (x)un+1,σl

k (σl)u
n+1,σt
k (σt). (4.18)

The different contributions of the sum are computed up to the fulfillment of the criterion

(4.6), while each additional term un+1,x
k (x)un+1,σl

k (σl)u
n+1,σt
k (σt) is computed by the ADS

strategy, breaking the solution into an iterative fixed-point solver, alternatively solving for
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x, σl and σt, as described in Section 4.1.

In the specific case of (4.10)2, we can factorize the extended bilinear form and lin-

ear functional as follows. Let us write generically u(x, σl, σt) = ux(x)ul(σl)u
t(σt) and

v(x, σl, σt) = vx(x)vl(σl)v
t(σt). Then, we can write

A(u, v) =
10∑
j=1

axj (ux, vx)alj(u
l, vl)atj(u

t, vt), (4.19)

where the bilinear factors axj , a
l
j , a

t
j are reported in Table 4.1. Notice that in the table (·, ·)

stands for the regular L2 product.

To factorize the linear functional F(v), we give a reduced order representation of the

terms wn+1 and un as

un =

Nu∑
k=1

un,xk un,σlk un,σtk , wn+1 =

Nw∑
k=1

wn+1,x
k wn+1,σl

k wn+1,σt
k . (4.20)

Here, for the easiness of reading, we did not set the dimensions Nu and Nw as functions of

the time index n, however, in general, they can change from one step to the other. Then,

bearing in mind (4.11,4.12), it is possible to verify that

F(v) =

NF∑
j=1

Fxj (vx)F lj(v
l)F tj (v

t), (4.21)

where

NF = 1 + 2Nu + 2

(
Nu

1

)
+ 3

(
Nu

2

)
+

(
Nu

3

)
+NuNw

= 1 + 4Nu +
3

2
Nu(Nu − 1) +

1

6
Nu(Nu − 1)(Nu − 2) +NuNw.

(4.22)

In fact, by direct computation, one function is required by Iapp and Nu functions for the last

component in (4.15). Then, regarding the ionic term Iion, the linear term in un requires Nu

functions, the quadratic one requires
(
Nu

1

)
+
(
Nu

2

)
functions, the cubic one

(
Nu

1

)
+2
(
Nu

2

)
+
(
Nu

3

)
functions and the mixed multiplicative term uw in the RM model NuNw functions. The

functionals Fxj , F
l
j , F

t
j are reported in the Table 4.2.

Exploiting these factorizations, the three ADS steps at the generic fixed point iteration
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10∑
j=1

axj (uxm,r, v
x)alj(u

l
m,r−1, u

l
m,r−1)atj(u

t
m,r−1, u

t
m,r−1) =

NF∑
j=1

Fxj (vx)F lj(u
l
m,r−1)F tj (u

t
m,r−1)−

10∑
j=1

m−1∑
k=1

axj (uxk , v
x)alj(u

l
k, u

l
m,r−1)atj(u

t
k, u

t
m,r−1)

10∑
j=1

axj (uxm,r, u
x
m,r)a

l
j(u

l
m,r, v

l)atj(u
t
m,r−1, u

t
m,r−1) =

NF∑
j=1

Fxj (uxm,r)F
l
j(v

l)F tj (u
t
m,r−1)−

10∑
j=1

m−1∑
k=1

axj (uxk , u
x
m,r)a

l
j(u

l
k, v

l)atj(u
t
k, u

t
m,r−1)

10∑
j=1

axj (uxm,r, u
x
m,r)a

l
j(u

l
m,r, u

l
m,r)a

t
j (u

t
m,r, v

t) =

NF∑
j=1

Fxj (uxm,r)F
l
j(u

l
m,r)F

t
j (v

t)−
10∑
j=1

m−1∑
k=1

axj (uxk , u
x
m,r)a

l
j(u

l
k, u

l
m,r)a

t
j (u

t
k, v

t)

(4.23)

We outlined with a different font the factor being solved at each step. For easiness of

reading, we do not report the factorization terms related to the case d = 2 as they can be

computed in a similar fashion.

4.2.2 Implementation details

The spaces Vh, W σl
h and W σt

h are discretized using piecewise linear finite elements. At each

time step, the initial guess at the beginning of the external loop is ux0 = ul0 = ut0 = 0,

whereas the new m − th contributions determined in the ADS iterations are initially set

to uxm,0 = ulm,0 = utm,0 = 1. As for the tolerance values tole and toli in Algorithm 1,

we will focus on different values to investigate their impact on the performance of the

PGD technique. The linear systems following the discretization of the three ADS steps

in (4.23) are solved using CG method with a standard ILU right preconditioner [137].

While this strategy is appropriate to solve the first ADS step (4.23)1 that may feature

large linear systems originated from the discretization of the physical space, the remaining

steps (4.23)(2,3) concern the parametric space, thus they may require the solution of smaller

linear systems. Direct solvers are better suited in such cases as they may be more efficient

depending on the software used. The optimization of this part of the implementation will

be object of future work. Simulations were carried out in serial on a workstation equipped

with Intel 6-Core i7-7800X CPU 3.50GHz and 64 GB of RAM. The code was implemented
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Table 4.1: Factorization of the PGD increased bilinear form (4.16). Lines for j = 1, . . . , 9
refer to the first term of (4.14), the last line, corresponding to j = 10, refers to the second
component of (4.14).

j axj (ux, vx) aσlj (ul, vl) aσtj (ut, vt)

1 ∆t(cos2(θ)∂xu
x, ∂xv

x) (σlu
l, vl) (ut, vt)

2 ∆t(sin2 θ∂xu
x, ∂xv

x) (ul, vl) (σtut, vt)
3 ∆t(cos θ sin θ∂yu

x, ∂xv
x) (σlu

l, vl) (ut, vt)
4 −∆t(cos θ sin θ∂yu

x, ∂xv
x) (ul, vl) (σtut, vt)

5 ∆t(cos θ sin θ∂xu
x, ∂yv

x) (σlu
l, vl) (ut, vt)

6 −∆t(cos θ sin θ∂xu
x, ∂yv

x) (ul, vl) (σtut, vt)
7 ∆t(sin2 θ∂yu

x, ∂yv
x) (σlu

l, vl) (ut, vt)
8 ∆t(cos2 θ∂yu

x, ∂yv
x) (ul, vl) (σtut, vt)

9 ∆t(∂zu
x, ∂zv

x) (σlu
l, vl) (ut, vt)

10 (ux, vx) (ul, vl) (ut, vt)

Table 4.2: Factorization of the PGD increased linear functional (4.21). The first column
indicates the number of components for any row. As for the indexes, k, r, s = 1, . . . , Nu and
j = 1, . . . , Nw.

Fxj (vx) F lj(v
l) F tj (v

t)

1 ∆t(In+1
app , v

x) (1, vl) (1, vt)

Nu (un,xk , vx) (un,σlk , vl) (un,σtk , vt)

Nu −∆tG(un,xk , vx) (un,lk , vl) (un,tk , vt)

Nu ∆tG( 1
Vp

+ 1
Vth

)((un,xk )2, vx) ((un,lk )2, vl) ((un,tk )2, vt)(
Nu

2

)
2∆tG( 1

Vp
+ 1

Vth
)(un,xk un,xr , vx) (un,lk un,lr , vl) (un,tk un,tr , vl) r > k

Nu −∆t G
VpVth

((un,xk )3, vx) ((un,lk )3, vl) ((un,tk )3, vt)

2
(
Nu

2

)
−3∆t G

VpVth
, ((un,xk )2un,xj , vx) ((un,lk )2un,ls , vl) ((un,tk )2un,ts , vt) s 6= k(

Nu

3

)
−6∆t G

VpVth
, (un,xk un,xs un,xi , vx) (un,lk un,ls un,li , vl) (un,tk un,ts un,ti , vt) i > s > k

NuNw ∆tη1(un,xk wn+1,x
j , vx) (un,lk wn+1,l

j , vl) (un,tk wn+1,σt
j , vt)
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in LifeV [140, 141], an object oriented C++ parallel finite element library based on the

Trilinos project [142] developed by different groups worldwide.

4.2.3 Numerical results for the reduction of the forward problem

Here we investigate the performance of the PGD technique to reduce the Monodomain

model in terms of accuracy of the solution and computational efficiency. We focus on the

canine tissue geometry introduced in Section 3.2.4 in 2D and 3D settings and the real

ventricle already considered in Section 3.2.2.

2D canine tissue geometry We test the accuracy of the PGD technique applied to the

Monodomain model using the 2D canine geometry. The tissue is assumed homogeneous,

so the conductivity fields are identified by the two-dimensional vector σ = (σl, σt). The

parameters belong to separate intervals σl ∈ [ml,Ml] and σt ∈ [mt,Mt], with Mt < ml. In

fact, it is observed that electrical conduction along the length of myocytes is faster than

transverse direction [171, 172], thus σl should be greater than σt. ∆l and ∆t denote the

interval lengths, i.e. ∆l = Ml − ml and ∆t = Mt − mt. The cardiac fiber structure is

shown in Fig. 3.16(a). One stimulus of Iapp = 250 mV/ms is applied at the top of the

domain for a duration of 2 ms. The space discretization method for u is given by linear

finite elements on a 2D mesh with 22747 DOFs and the simulation time step is ∆t = 0.2

ms until T = 30 ms. The conductivity parameters are assumed to belong to admissible

space Cad = [0.06, 0.09] cm2/ms× [0.01, 0.04] cm2/ms (∆l = ∆t = 0.03 cm2/ms.) discretized

with 250×250 DOFs. The bounds were manually tuned so to reproduce realistic wavefront

propagation velocities observed in in vitro experiments (such as those in Section 3.3). u is

measured in mV and we set u0(x) = 0 mV, w0(x) = 0.

In the following numerical tests, we investigate the interplay between the tolerance tole

(associated to the number of modes) and the reliability of PGD. In fact, the lower the

tolerance, the more accurate the PGD solution. However, this entails higher computational

costs in the off-line phase as more modes are required to converge. We compare the full finite

element (FE) Monodomain solution, the reference solution, with the PGD approximation

varying tolerances, tole=(10−4, 10−5, 10−6), and conductivity values. The tolerance of the
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2D canine tissue

Exe. time ↓ \tole → 10−4 10−5 10−6 FE

Off-line [h] 0.9 4.6 30.5 /

On-line [s] 0.1 0.15 0.2 15

3D canine tissue

Exe. time ↓ \tole → 10−4 10−5 FE

Off-line [h] 8 41 /

On-line [s] 0.6 0.75 330

Real ventricle

Exe. time ↓ \tole → 10−4 10−5 10−6 FE

Off-line [h] 0.8 4.1 32 /

On-line [s] 0.1 0.15 0.2 60

Table 4.3: Off-line/on-line costs in terms of CPU time of the PGD approach for each test.
After the off-line stage, whose complexity depends on the tolerance of the enrichment step,
the evaluation of the PGD solution in the on-line phase is tremendously fast leading to a
remarkable computational gain compared with the FE solution. The on-line execution times
reported in the tables are approximated as they slightly vary according to the parameter
values.

ADS fixed point iterations toli is 10−2.

Fig. 4.1(a) shows the number of modes at each time step. We notice that more modes

are needed as the excitable wave travels through the tissue and the dynamics become more

involved. Then they start decreasing at around t=22 ms as the wavefront propagation

terminates. As expected, the number of modes needed for convergence increase with lower

tolerance values. Consequently, it results in heavier computational burden of the off-line

phase, as highlighted in Table 4.3. However, the computation of the PGD solution in the

on-line phase is remarkably inexpensive. In this case, evaluating the PGD approximation

at a given couple of parameters (σl, σt) only takes at most 0.2 s depending on the tolerance

in contrast with 15 s of the corresponding FE solution, thus reducing the computation time

of two orders of magnitude. The easy evaluation of the PGD solution is extremely helpful

to set up a fast solver for the inverse problem, as we will see in Section 4.3.

In terms of accuracy, the quality of the PGD solution depends on the CV which,

in this case, is mostly determined by the parameter σt. Fig. 4.1(b) displays the per-

centage L2 relative error between FE and PGD solutions obtained with tole=10−4 for

σt = (0.01, 0.02, 0.03, 0.035, 0.04) cm2/ms, ordered from lowest to highest CV (σl = 0.09

cm2/ms). Regardless of the wavefront velocity, the discrepancy between FE and PGD ap-
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proximation is minimal after the excitation terminates. On the other hand, during the

potential propagation, we notice that the error increases at faster CVs, reaching almost

40% for σt = 0.04 cm2/ms. The accuracy of the PGD solution improves for slow CV. For

instance, for σt = 0.01, 0.02 cm2/ms, the error is always below 10%. Therefore, we postulate

that the PGD basis is informative enough to reproduce slow excitation waves, yet it needs

further enrichment to accurately capture faster wavefront propagation. This is confirmed

in Fig. 4.1(c) which compares the errors reducing the tolerance. We analyze three different

anisotropy ratios r = 2, 4 and 6 – as typical for the cardiac tissue [7] – corresponding to

σ = (0.07, 0.035) cm2/ms, (0.08, 0.02) cm2/ms and (0.084,0.014) cm2/ms, respectively. The

case r = 2 features the highest CV as σt = 0.035 cm2/ms, whereas the cases r = 4, 6 result

in slower propagation. The approximation is overall inaccurate at the initial stages of the

propagation because of the lack of regularity of the stimulus function Iapp that abruptly

goes to zero after 2 ms. Then, for the high CV case r = 2, the maximum of the error de-

creases from roughly 20% for tole=10−4 to approximately 10% and 3% for tole=10−5, 10−6,

respectively. Therefore, enriching the PGD basis is necessary to ensure reasonable accuracy

in case of high CV. For low CV cases r = 4, 6, the approximation slightly improves in case

of richer PGD basis. However, setting tole=10−4 already guarantees a good approximation

as the error is below 10%. In this particular numerical experiment, the accuracy of the

PGD approximation does not seem to be sensitive on the value of the anisotropy ratio r.

A comparison between FE and PGD transmembrane potentials varying tolerance values

and anisotropy ratios tested is provided in Fig. 4.2. The snapshots are related to the time

step featuring the highest error. For the high CV case r = 2 in (a), the PGD solution

with tole=10−4 features a slower wavefront propagation than the FE one, thus CV is un-

derestimated. In the other two tests, the propagation velocity is slightly overestimated for

tole=10−4, though the approximation is reasonably accurate. As already mentioned, lower-

ing the tolerance improves the accuracy. This is evident by looking at the PGD solution for

tole=10−6 that is qualitatively similar to the FE one. However, we remind that the off-line

phase for constructing the PGD basis is more computationally demanding. Therefore, set-

ting tole=10−5 seems to be the most convenient trade-off between accuracy and efficiency.



102

(a) (b)

r = 2, σ = (0.07, 0.035) r = 4, σ = (0.08, 0.02) r = 6, σ = (0.084, 0.014)

(c)

Figure 4.1: (a) PGD modes for different tolerances. The number of modes increases lowering
the tolerances and resulting in heavier off-line phase (b) Percentage L2 relative error between
FE and PGD solutions for different conductivity values (ordered from high to slow CV and
measured in [cm2/ms]), tole=10−4. The error drops as the CV decreases meaning that
lower tolerance is needed for high CV cases. (c) Percentage L2 relative error between FE
and PGD solutions for different tolerances and anisotropy ratios. Error plots are displayed
from high to slow CV. The approximation generally improves by enriching the PGD basis,
especially in the case r = 2 for which the reduction of the error is more visible.
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(a)

(b)

(c)

FE solution PGD tole=10−4 PGD tole=10−5 PGD tole=10−6

Figure 4.2: Comparison between FE and PGD solutions for different anisotropy ratios. The
green arrow in row (a) indicates the stimulation site. (a) r = 2, σ = (0.07, 0.035) cm2/ms,
t = 17 ms. (b) r = 4, σ = (0.08, 0.02) cm2/ms, t = 22 ms. (c) r = 6, σ = (0.084, 0.014)
cm2/ms, t = 25 ms. In the test r = 2, using tole=10−4 results in underestimating the CV
of the FE solution, whereas the solution gets more accurate reducing the tolerance. In the
other cases, the approximation is overall good even for tole=10−4.
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Since the choice tole=10−4 is the most promising in terms of computational efficiency, we

explore possible ways to improve the quality of the resulting PGD approximation in case of

high CV. In particular, three strategies are investigated: (a) refining the discretization of the

admissible space Cad; (b) lowering the tolerance for the inner fixed point iterations toli; (c)

narrowing the admissible interval for σt since the CV mostly depends on it. For strategy (a),

Cad is discretized with 500×500 DOFs instead of 250×250 of the previous tests. Regarding

strategy (b), we test the accuracy of the PGD solution decreasing the tolerance toli from

10−2 to 10−4. The percentage L2 relative error of the approximation obtained with strategies

(a) and (b) is reported in Fig. 4.3(a) for σ = (0.07, 0.035) cm2/ms. Both the approaches

perform poorly as they do not result in lower approximation error. In fact, adopting strategy

(a), the error is similar to the previous test with coarser discretization of Cad. Following

approach (b), the error slightly decreases in the initial stages of the wave propagation but

then the error curve overlaps with the one of the previous numerical experiment. These

methods not only do not improve the PGD approximation with tole=10−4, but they entail

higher computational complexity: the finer discretization increases the costs of strategy

(a), and approach (b) involves more iterations to reach convergence. On the other hand,

method (c) successfully reduces the error. In Fig. 4.3(b), we analyze the performance of

PGD with ∆t = 0.01, 0.02 cm2/ms and compare it to the previous results obtained with

∆t = 0.03 cm2/ms. ∆l is fixed at 0.03 cm2/ms. Narrower ∆t yields an improvement of

the PGD approximation, with ∆t = 0.01 cm2/ms leading to the most accurate results.

This is reasonable since restricting the admissible interval for σt implies less uncertainty on

its value and fewer scenarios to predict. Therefore, the more knowledge and information

we have on the parameter values, the better the approximation becomes. Moreover, it

is also beneficial to efficiency as fewer modes are needed for convergence alleviating the

computational demand of the off-line phase.

3D canine tissue geometry In the following experiments, the quality of the PGD ap-

proximation of the Monodomain model is assessed in a 3D framework. First, we consider a

3D canine tissue geometry obtained by extruding the 2D domain previously used along the

z-axis. The resulting mesh is 0.5 cm thick and discretized with 136482 DOFs. The cardiac
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(a) (b)

Figure 4.3: Possible improvements of PGD approximation with tole=10−4 in case of high
CV (σ = (0.07, 0.035) cm2/ms). (a) Percentage L2 relative error for adopting two different
strategies: increasing the number of DOFs for the discretization of Cad vs. lowering the
tolerances of the inner fixed point iteration section. These approaches are not effective as
the error does not improve with respect to the previous tests. (b) Percentage L2 relative
error and number of modes when narrowing the admissible interval for σt (we keep ∆l = 0.03
cm2/ms). Limiting the space where to seek the parameter σt results in lower error, especially
for the case ∆t = 0.01 cm2/ms (error reduced from roughly 20% to 3%), as well as fewer
modes to reach convergence.

fiber structure on the top surface of the mesh is the same of the 2D case and then it is

extruded along the z-axis as well. We consider the most general admissible space for the

conductivity parameters Cad = [0.06, 0.09] cm2/ms × [0.01, 0.04] cm2/ms, discretized with

250× 250 DOFs. As done in the 2D tests, we analyze the anisotropy ratios r = 2, 4 and 6

corresponding to σ = (0.07, 0.035) cm2/ms, (0.08, 0.02) cm2/ms and (0.084,0.014) cm2/ms,

respectively. Because of the finer resolution of the mesh, the off-line phase is more oner-

ous than the 2D case: Table 4.3 shows that it takes 8 and 41 hours for tole=10−4, 10−5,

respectively. The case tole=10−6 was not explored because it is computationally unafford-

able. As for the on-line phase, adopting the PGD technique is extremely convenient since

the evaluation of the reduced solution requires at most 0.7 s as opposed to 330 s for FE

approximation.

As shown in Fig. 4.4, the errors varying tolerances and conductivity values are similar

to the 2D ones reported in Fig. 4.1(c). For tole=10−4, the case r = 2 corresponding to high

CV features higher error than the other ones. Decreasing the tolerance to 10−5 qualitatively

improves the solution. A comparison between FE and PGD transmembrane potentials for

different tolerances and conductivities is carries out in Fig. 4.5. As already noted in the
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r = 2,σ = (0.07, 0.035) r = 4,σ = (0.08, 0.02) r = 6,σ = (0.084, 0.014)

Figure 4.4: Percentage L2 relative error for different tolerances and conductivity values
([cm2/ms]) for the 3D canine geometry. Similarly to the 2D canine tests, there is a general
improvement of the PGD approximation in case of reduction of the tolerance.

2D experiments, in the high CV case r = 2, the PGD solution obtained with tole=10−4

underestimates the CV yielding a poor approximation of the FE solution. In the cases

r = 2, 4, although the CV is slightly overestimated, the PGD solution is closer to the FE

one. Overall, the PGD approximation improves for tole=10−5 providing a better match of

the wavefront propagation of the FE solution. Similarly the 2D case, the anisotropy ratio

r does not have a significant impact on the accuracy of the PGD approach.

Real ventricle Here we test the performance of the PGD approach on the real left ven-

tricular mesh introduced in Section 3.2.2. We recall that the mesh has 22470 DOFs and the

fiber structure used is shown in Fig. 3.10. The conductivity values are the same as the previ-

ous tests. In this case, the resulting CVs are similar, whereas the influence of the anisotropy

ratio r on the wavefront curvature is more evident. As the spatial discretization is coarser

than the 3D canine geometry, we also included tole=10−6 in our analysis. As reported in

Table 4.3, the off-line phase needs 0.8, 4.1 and 32 hours for tole=(10−4, 10−5, 10−6), respec-

tively. On the other hand, we underline that the on-line phase is extremely inexpensive as

it requires at most 0.2 s as opposed to 60 s of the FE simulation.

The error between FE and PGD solution varying tolerances and conductivities is dis-

played in Fig. 4.6. Unlike the previous tests, the three anisotropy ratios tested show similar

error for tole=10−4, with a loss of accuracy for r = 4, 6 in comparison to the canine tis-

sue tests. However, the approximation is overall reliable as the error is around 10%. The
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(a)

(b)

(c)

FE solution PGD tole = 10−4 PGD tole = 10−5

Figure 4.5: Comparison between FE and PGD solutions for different anisotropy ratios for
canine geometry in 3D. The green arrow in row (a) indicates the stimulation site. (a)
r = 2, σ = (0.07, 0.035) cm2/ms, t = 17 ms. (b) r = 4, σ = (0.08, 0.02) cm2/ms, t = 22
ms. (c) r = 6, σ = (0.084, 0.014) cm2/ms, t = 25 ms. The discrepancy between FE and
PGD solution is evident in row (a) for tole=10−4 as the CV is underestimated whereas the
approximation is better in the other cases.
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r = 2,σ = (0.07, 0.035) r = 4,σ = (0.08, 0.02) r = 6,σ = (0.084, 0.014)

Figure 4.6: Percentage L2 relative error for different tolerances and conductivity values
([cm2/ms]) for the real ventricular geometry. The improvement of the PGD approach at
lower tolerances is less evident in this case than the previous tests. The PGD solution is
more sensitive to the anisotropy ratio r. In particular, for r = 6, the approximation worsens
if more PGD modes are used.

negative impact of the discontinuity of Iapp on the accuracy of the PGD technique is more

evident in these experiments as the error at the initial stages of the simulation is around

30%. The reliability of the approximation does not benefit from lower tolerance values.

Only the case r = 2 presents a reduction of the error, although less significant than the

tests with canine geometry. For r = 4, the PGD solution with lower tolerance values is more

accurate after t = 15 ms and the error drops only for few percentage points. Enriching the

PGD basis does not improve the approximation in the case r = 6. On the contrary, the

solution obtained with tole=10−4 better matches the FE one. Therefore, we speculate that

in this particular test case the anisotropy ratio r plays a central role in the reliability of

the PGD approach. Fig. 4.7 compares FE and PGD approximations. The improvement

obtained with lower tolerance values is visible in row (a) as the PGD solution for tole=10−6

is more qualitatively similar to the FE simulation than the other ones. On the contrary,

the cases r = 4, 6 do not profit from a richer PGD basis as the approximation for tole=10−4

looks closer to the FE solution.

4.3 Solving the PGD-MICP

In this section, we use the PGD transmembrane potential as a surrogate of the Monodomain

solution to solve the MICP (3.7) for estimating cardiac conductivities. This means that
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(a)

(b)

(c)

FE solution PGD tole = 10−4 PGD tole = 10−5 PGD tole = 10−6

Figure 4.7: Comparison between FE and PGD solutions for different anisotropy ratios with
the 3D ventricular geometry at t = 20 ms. The stimulation point is located at the inner wall
of the ventricle, thus it is not visible from this visual perspective. (a) r = 2, σ = (0.07, 0.035)
cm2/ms. (b) r = 4, σ = (0.08, 0.02) cm2/ms. (c) r = 6, σ = (0.084, 0.014) cm2/ms. r = 2
is the only case in which more accuracy as the tolerance is reduced.
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the misfit functional J is computed via the parametric PGD solution. The inversion is

performed in a synthetic setting generating data in a finer spatial discretization and then

adding at each time step Gaussian noise with zero mean and standard deviation equal to

pmax |u|, where p is the percentage of noise, and the maximum is taken in both space and

time. Synthetic measurements were recorded every dtsnap = 2 ms for a global duration

of T = 30 ms, so 15 voltage recordings are used to calculate J . The observation domain

Ωobs consists of 8000 equally distributed points on the domain, similarly to Section 3.2.4.

Tikhonov regularization is not considered in these tests. The minimization of the misfit

functional J is performed in MATLAB R©using the sequential quadratic programming (SQP)

algorithm [138], implemented by the fmincon routine. The search is constrained to the

admissible parametric space [ml,Ml] × [mt,Mt]. We set σ0 = (0.06, 0.025) cm2/ms as

initial guess. We evaluate the performance of the PGD method to solve the MICP varying

tolerances and conductivity values – r = 2, 4 and 6 corresponding to σ = (0.07, 0.035)

cm2/ms, (0.08, 0.02) cm2/ms and (0.084,0.014) cm2/ms, respectively. Computing the PGD

solution is even faster when solving the MICP because we only need to evaluate the misfit

in a subset of observation points and for 15 time steps.

2D canine tissue geometry Considering the 2D canine mesh used in the previous sec-

tion, we expect to get a more precise estimation for r = 4 since the PGD approximation

is more accurate than the other conductivity couples (as already seen in Fig. 4.1(c)). The

reliability of the estimation is assessed by looking in particular at the value of σt since it

controls the CV.

Table 4.5 reports the results varying tolerances, conductivities and percentage of noise

p. Regardless of the tolerance level and the value of p, the best estimates are obtained

for σexact = (0.08, 0.02) cm2/ms, as expected. The recovery of the parameter σt is par-

ticularly precise, meaning that we can reliably reconstruct the true propagation dynamics

with a comparable CV. On the other hand, more variability affects σl estimates. This is

in accordance with the results of Section 4.2.3, where we noticed that the PGD solution

depends more on the parameter σt, which controls the CV, and less sensitive to the value

of σl. As for the other conductivity couples, the estimation obtained with the tole=10−4 is
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less precise, especially for the high CV case r = 2, consistent with the fact that the PGD

error is higher in this case, as shown in Fig. 4.1(c). An overall improvement of the results

is visible with lower tolerance values. For tole=10−6, the estimates are accurate and robust

with respect to the presence of noise in the data.

In view of better estimation in the case of high CV, we test the PGD approach to solve

to MICP using narrower admissible ranges for σt with length ∆t = 0.01 and 0.02 cm2/ms.

We recall this strategy was used in the previous section to reduce the error of the PGD

approximation (see Fig. 4.3). Table 4.6 shows more precise reconstruction using ∆t = 0.01

cm2/ms both for tole=10−4 and 10−5. This agrees with the results shown in Fig. 4.3 in

which, for ∆t = 0.01 cm2/ms, the PGD method is able to capture fast propagating excitable

waves. Regarding ∆t = 0.02 cm2/ms, a similar improvement is visible for tole=10−5,

whereas this strategy is not as effective for tole=10−4.

As discussed previously, the great advantage of the PGD approximation is based on

the extremely fast evaluation of the reduced solution in the on-line phase, making the

inversion particularly inexpensive. In fact, solving the MICP using the PGD approximation

of the transmembrane potential only takes at most 30 s in this test, according to Table 4.4.

Furthermore, even in case of less accurate results such as the ones for tole=10−4, the PGD

estimates may be helpful to speed up the solution of the MICP using the FE method. As a

matter of fact, the PGD conductivities can be used as initial guess to accelerate convergence.

This has been tested in the case of σexact = (0.07, 0.035) cm2/ms and tole=10−4. Solving

the MICP with FE approximation starting from the PGD estimates σ0 = (0.0657, 0.0328)

cm2/ms requires 527 s to reach convergence with estimation σ = (0.07, 0.0349) cm2/ms

in contrast with 3293 s needed starting from σ0 = (0.06, 0.025) cm2/ms, which leads to a

similar estimate σ = (0.0702, 0.0360) cm2/ms.

3D canine tissue geometry The MICP with PGD technique has been tested with the

canine geometry in 3D as well. We recall we have not considered the case tole=10−6 because

the off-line phase would be too expensive. As the PGD approximation of the transmembrane

propagation in 3D yields similar results to the 2D case (as shown in Section 4.2.3), we

expect results qualitatively comparable to the ones obtained in the 2D framework. This
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tole ↓ \test → 2D tissue 3D tissue Real ventricle

10−4 22 154 32
10−5 25 180 36
10−6 30 / 40

Table 4.4: Execution times [s] of reduced MICP based on the PGD approach for each test
varying tolerance values of the enrichment step. Adopting the PGD technique allows quick
estimates in less than a minute for the 2D tissue case and real ventricle or few minutes for
the 3D tissue geometry. On the other hand, using FE approximation to solve MICP would
require hours of computations. These are average values as times may vary depending on
the realization of noise random variable and initial guess of the optimization procedure.

is confirmed in Table 4.7 as we notice better results for σexact = (0.08, 0.02) cm2/ms with

high precision for the parameter σt and a general improvement of the recovery decreasing

the tolerance to 10−5. We again highlight the huge computational saving related to the

reduced MICP. In fact, despite the large number of DOFs of the 3D mesh (roughly 135K),

the solution of the inverse problem only takes at most 180 s, as reported in Table 4.4.

Real ventricle Finally, we analyze the estimation in the real left ventricular test case.

As previously discussed, the PGD approximation applied to this geometry is more sensitive

to the anisotropy ratio r and features higher error (see Fig. 4.6), therefore the precision of

the inversion may be affected. From Table 4.8, we note that using the PGD basis obtained

with tole=10−4 leads to acceptable results only in the case σexact = (0.07, 0.035) cm2/ms,

whereas in the other tests the estimates, especially for σl, poorly represent the true values.

The estimates become more accurate as the tolerance decreases. They reasonably match

the exact conductivities in the case σexact = (0.07, 0.035) cm2/ms and σexact = (0.08, 0.02)

cm2/ms, whereas the estimation of σl for σexact = (0.084, 0.014) cm2/ms still lacks accuracy

even for tole=10−6. This agrees with the error pattern shown in Fig. 4.6, in which, for this

particular parameter values, the discrepancy between FE and PGD solutions increases when

reducing the tolerance. Table 4.4 shows that the convenience of solving the MICP with PGD

approach is remarkable in these tests as well since results are obtained in at most 40 s.
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p = 1%

tole ↓ \σexact · 102 → r = 2 r = 4 r = 6
(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.57,3.28) (8.11,1.93) (8.98,1.29)
10−5 (6.93,3.96) (7.71,1.96) (8.57,1.34)
10−6 (6.90,3.56) (7.80,1.96) (8.22,1.35)

p = 5%

(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.56,3.27) (7.91,1.93) (8.97,1.31)
10−5 (6.95,3.96) (7.76,1.95) (8.78,1.35)
10−6 (6.83,3.56) (7.84,1.97) (8.31,1.35)

p = 10%

(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.55,3.24) (8.05,1.93) (8.98,1.30)
10−5 (6.96,3.97) (7.73,1.95) (8.44,1.36)
10−6 (6.82,3.56) (7.91,1.96) (8.26,1.35)

Table 4.5: The most accurate results are obtained for σ = (0.08, 0.02) as the PGD approx-
imation is close to the FE solution. The estimates improve by reducing the tolerance in
agreement with the error pattern seen in Fig. 4.1(c). Results are robust w.r.t the percentage
of noise p.

tole = 10−4

∆t ↓ \p → 1% 5% 10%

0.03 (6.57,3.28) (6.56,3.27) (6.55,3.24)
0.02 (7.85,3.71) (7.86,3.73) (7.84,3.71)
0.01 (6.91,3.33) (6.90,3.32) (6.91,3.35)

tole = 10−5

∆t ↓ \p → 1% 5% 10%

0.03 (6.93,3.96) (6.95,3.96) (6.96,3.97)
0.02 (6.40,3.66) (6.39,3.66) (6.40,3.65)
0.01 (6.80,3.35) (6.75,3.35) (6.82,3.34)

Table 4.6: As an attempt to improve the estimation obtained for the high CV case σexact =
(0.07, 0.035), we restrict the admissible domain ∆t for σt. Improvement is visible for ∆t =
0.01 cm2/ms whereas reducing the admissible interval to ∆t = 0.02 cm2/ms is only effective
for tole=10−5. Results are robust w.r.t the percentage of noise p.

Estimation results of MICP using the PGD approximation as a surrogate of the Mon-
odomain simulation for the 2D canine geometry. Conductivity values are magnified by a
factor of 100 and measured in cm2/ms.
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p = 1%

tole ↓ \σexact · 102 → r = 2 r = 4 r = 6
(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.78,3.21) (8.07,1.98) (8.98,1.32)
10−5 (6.97,3.98) (7.82,1.99) (8.38,1.37)

p = 5%

(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.90,3.20) (8.11,1.97) (8.96,1.31)
10−5 (6.98,4.00) (8.56,1.99) (8.38,1.39)

p = 10%

(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.81,3.25) (8.13,1.96) (9.00,1.32)
10−5 (6.97,4.00) (7.92,1.99) (8.45,1.39)

Table 4.7: 3D canine geometry. Similarly to the 2D results, the case r = 4 features higher
precision. The accuracy generally improves following a reduction of the tolerance.

p = 1%

tole ↓ \σexact · 102 → r = 2 r = 4 r = 6
(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.53,3.46) (8.98,1.56) (7.10,1.22)
10−5 (6.79,3.77) (7.40,1.88) (7.40,1.31)
10−6 (6.75,3.62) (7.57,2.06) (7.70,1.45)

p = 5%

(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.54,3.45) (9.00,1.57) (7.20,1.21)
10−5 (6.81,3.78) (7.36,1.88) (7.46,1.20)
10−6 (6.78,3.62) (7.56,2.06) (7.71,1.43)

p = 10%

(7.00,3.50) (8.00,2.00) (8.40,1.40)

10−4 (6.55,3.45) (8.90,1.56) (7.21,1.21)
10−5 (6.80,3.77) (7.31,1.94) (7.41,1.27)
10−6 (6.79,3.60) (7.58,2.06) (7.69,1.46)

Table 4.8: Real ventricle. Estimation improves as tolerance reduces, expect for σexact =
(0.084, 0.14) in which the results for σl are still inaccurate even for low tolerance.

Estimation results of MICP using PGD approximation as a surrogate of the Monodomain
simulation in 3D setting. Conductivity values are magnified by a factor of 100 and measured
in cm2/ms.
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4.4 PGD for MICP in a Bayesian Framework

Thus far, the problem of estimating cardiac conductivities was considered in a determin-

istic framework, i.e., we aimed to obtain a specific value for the conductivities, i.e., point

estimates. In this section, we recast the inverse problem in the form of statistical quest of

information. Besides providing point estimates, statistical inversion theory aims to assess

the uncertainty about the variables based on the knowledge of the measurement process as

well as the parameters of interest that are available prior to the measurement [49, 50, 173].

We adopt the Bayesian point of view [174]: any quantity that is not known exactly is re-

garded as a random variable. Even if we consider the conductivity an existing deterministic

physical quantity that could, in principle, be measured, the lack of information about it

justifies modeling it as a random variable. Thus, the randomness describes our degree of

knowledge concerning its realization. The solution of the inverse problem is the posterior

probability distribution that can be used to obtain estimates together with a systematic

assessment of reliability and uncertainty of the unknown through the moments of the dis-

tribution. From the practical point of view, the adoption of a Bayesian perspective may be

computationally demanding, as we will see. As a matter of fact, it requires many samples,

i.e., evaluations of the solution for different values of the parameters. For this reason, in

view of the encouraging results of the previous Section, the PGD can be an ideal frame to

make the Bayesian perspective a viable one.

In Section 4.4.1, the formulation of the inverse problem in a Bayesian setting is presented.

We then briefly introduce a class of algorithms, MCMC methods, used to explore the

posterior distribution in Section 4.4.2. Lastly, in Section 4.4.4, the Bayesian estimation of

conductivities is performed following the PGD approach.

4.4.1 Bayesian estimation

Let us first consider a Bayesian inverse problem in a general abstract setting. We denote

random variables by capital letters and their realizations by lowercase letters. Different

from the approach we have used so far that only produces point estimates, the final result

of Bayesian estimation is the conditional distribution function of unknown variables on the
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data, which is also called the posterior probability density function (PPDF). The PPDF can

be computed by Bayes’ formula:

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)
(4.24)

where X and Y denote the unknown random variable (scalar or vector) and the related data

or measurements (vector), respectively. pX|Y (x|y) is the PPDF; pY |X(y|x) is the likelihood

function and the marginal distribution pX(x) is called the prior distribution. The likelihood

function contains the forward model used in the classical deterministic inversion technique

as well as information about the noise and other measurement and modeling uncertainties.

The prior distribution reflects the knowledge of the unknowns, before the data Y is collected.

As normalizing constant, pY (y) is not needed in the exploration of the posterior space in

(4.24). Therefore, the PPDF can be evaluated as follows:

pX|Y (x|y) ∝ pY |X(y|x)pX(x). (4.25)

It is obvious that the physical quantities of interest are fixed instead of fluctuating. The

rationale in modeling them as random variables is that uncertainty exists in our knowledge

of these parameters since they are all derived from noisy data.

In view of formulating the MICP in a Bayesian setting, let us consider the Monodomain

model reshaped in the form (2.27) (u measured in mV) coupled with the Rogers-McCulloch

model (2.6). This model was chosen for its computational convenience and because it allows

us to use the PGD approximation (see Section 4.2.3). Again, for the sake of notation, the

conductivity tensor D = σ/(βCm) is denoted by σ as usual. The computation domain

is assumed homogeneous, meaning the conductivity tensor can be identified by the vector

of two parameters σ = (σl, σt). As in the case of classical inverse problems, the recon-

struction of the unknown conductivity tensor is made possible by the measurement of the

transmembrane potential at distinct points within Ω × [0, T ]. Let U denote the directly

observable random variable describing voltage and E the random vector of measurement

noise. The components of the vector E are usually assumed as independent identically dis-
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tributed (i.i.d.) Gaussian distributions with zero mean and variance ν2 (standard deviation

ν). With an abuse of notation, we still use the symbol σ to indicate the random conductiv-

ity tensor as well as its realization. σ and E are mutually independent. We omit subscripts

in the probability density functions for the sake of notation. A realization of U , umeas, is the

actual observed voltage data, i.e., umeas = [u
(1)
meas,1, . . . , u

(1)
meas,N , . . . , u

(M)
meas,1, . . . , u

(M)
meas,N ]T ,

where

u
(j)
meas,i = u(σ,xi, tj) + e

where i = 1, . . . , N, j = 1, . . . ,M (tM = T ); N and M are the number of observation sites

and available recordings, respectively; e is a scalar realization of the random measurement

noise; u the transmembrane voltage.

The voltage dynamics can be described using the following relationship

U = F (σ) + E (4.26)

where F represents the solution of the Monodomain model (2.27) that computes the trans-

membrane potential with given conductivity values σ. We assume that the numerical errors

induced by F are much less in magnitude than the measurement errors which is reasonable

for an appropriate choice of space and time discretization. If we select a value for σ, the as-

sumption of mutual independence between σ and E guarantees that the probability density

of E, pnoise(e), does not vary conditionally to σ. Therefore, we deduce that U conditioned

on σ is distributed like E, the probability density being translated by F (σ), that is, the

likelihood can be written as

p(U |σ) = pnoise(E) = pnoise(U − F (σ)) =
1

(2π)n/2νn
exp
{
−(U − F (σ))T (U − F (σ))

2ν2

}
(4.27)

where n is the total number of measurements. As for the prior distribution of the unknown

conductivity, ppr(σ), the only information we have before collecting data is that σ belongs

to an admissible space Cad = [ml,Ml]× [mt,Mt]. Therefore, any possible conductivity value

has equally probability. This is translated in modeling the conductivity tensor as a random

variable following a uniform distribution, σ ∈ U([ml,Ml]× [mt,Mt]). We also assume that
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σl and σl are mutually independent, so σl ∼ U(ml,Ml) and σt ∼ U(mt,Mt).

With the above likelihood and prior distribution models, the PPDF can be evaluated as

p(σ|U) ∝ p(U |σ)ppr(σ) ∝ exp
{
−(U − F (σ))T (U − F (σ))

2ν2

}
, σ ∈ Cad. (4.28)

Once the PPDF is known, a complete probabilistic specification of the unknowns under all

uncertainties is enabled [175]. Various point estimators can be defined such as the Maximum

A Posteriori (MAP) estimator

σMAP = arg max
σ∈Cad

p(σ|U) (4.29)

and the Conditional Mean (CM) estimator

σCM = E(σ|U) =

∫
Cad
σp(σ|U) dσ. (4.30)

These estimates are the Bayesian counterpart of the deterministic solutions. More specif-

ically, the computation of the MAP estimate is an optimization problem similar to the

one we have solved so far while the CM estimate is obtained with numerical integration.

Estimates of spread can be also computed, such as the conditional covariance

Γ(σ|U) =

∫
Cad

(σ − E(σ|U))(σ − E(σ|U))T p(σ|U) dσ. (4.31)

In our case, point estimates are vectors of two components and spread estimates are 2× 2

matrices which can be summarized by the standard deviation of each component and their

correlation coefficient.

4.4.2 Exploration by sampling

An analytical computation of point and spread estimates is generally unachievable. In the

case that integration is over a low-dimensional space, estimates can be computed by means

of common quadrature methods. A problem with these techniques is that they require a

relatively good knowledge of the support of the probability distribution, which is usually
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part of the information that we are actually looking for. This creates problems in our case,

as we will discuss in Section 4.4.4. Moreover, in case we want to estimate a large number of

parameters, the use of numerical quadrature rule is impractical. In fact, if the dimension r

of the parameter space is large, then an m−point rule for each direction would require mr

integration points, exceeding the computational capacity of most computers.

An alternative strategy is resorting to sampling methods [176]. Let us assume one has

an ensemble of independent samples from a target posterior distribution p(x|y) ((4.28) in

our case). We write x(k), k = 1, . . . , Ns ∼ p(x|y), where Ns is the number of samples from

the posterior distribution. Then, the mean of any function f(x) of x can be approximated

by the sample average

E(f(x)|y) =

∫
f(x)p(x|y) dx ≈ 1

Ns

Ns∑
k=1

f(x(k)). (4.32)

The law of large numbers guarantees that the variance of the sample average behaves

like ∝ N−1
s . For example, for the CM estimate, we would set f(x) = x and for the

posterior covariance f(x) = (x − E(x|y))(x − E(x|y))T . The MAP estimate would be

obtained as follows xMAP = arg maxx(k) p(x
(k)). Due to the slow polynomial convergence,

a large ensemble of independent samples needs to be drawn from the distribution to ensure

reliable results.

Moreover, the posterior probability that the j − th component of x belongs to a certain

interval [a, b] can be obtained as

P (xj ∈ [a, b]) ≈ # samples with xj ∈ [a, b]

Ns
. (4.33)

The key problem is how to draw samples from the posterior distribution. The most impor-

tant methods for the generation of samples from an arbitrary probability distribution are

the Markov Chain Monte Carlo (MCMC) methods. These algorithms generate samples x(i)

while exploring the state space X (the primary unknowns) using a Markov chain mecha-

nism [50, 177, 178]. The advantage of using MCMC is that one can draw samples even if

it is only possible to evaluate the target distribution up to a normalizing constant. The
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Metropolis-Hastings (MH) algorithm is the most basic form of all MCMC methods [177].

For a target distribution p(x), the MH algorithm draws a candidate x(∗) from a proposal

distribution q(x(∗)|x(i)) (easy to sample from) at each iteration, where x(i) is the sam-

ple at the previous iteration. The chain moves to the next state x(∗) with an acceptance

probability A defined as A(x(∗)|x(i)) = min
{

1,
p(x(∗))q(x(i)|x(∗))

p(x(i))q(x(∗)|x(i))

}
. The MH method is

summarized in Algorithm 2. By its construction, the MH algorithm guarantees that the

Algorithm 2 MH algorithm

1: Define the proposal distribution q(·|·) and set Ns;
2: Initialize x(0) and set i← 0;
3: Compute p(x(0));
4: while i < Ns do
5: Sample x(∗) ∼ q(x(∗)|x(i));
6: Compute p(x(∗));

7: Compute the acceptance ratio A = A(x(∗)|x(i)) = min
{

1,
p(x(∗))q(x(i)|x(∗))

p(x(i))q(x(∗)|x(i))

}
;

8: Sample u ∼ U(0, 1);
9: if u < A then

10: Accept and set x(i+1) = x(∗), p(x(i+1)) = p(x(∗)), i← i+ 1;
11: Store x(i);
12: else
13: Reject;
14: end if
15: end while

chain converges to the target distribution p(x) for any proposal distribution [50]. How-

ever, careful design of the proposal will accelerate the convergence speed. In the case of

symmetric proposal q(x(∗)|x(i)) = q(x(i)|x(∗)), the acceptance probability A simplifies to

A(x(∗)|x(i)) = min
{

1,
p(x(∗))

p(x(i))

}
. From here, it is clear that moves going towards higher

probability are accepted immediately and samples that take us to lower probabilities are

sometimes accepted.

The Gibbs sampler is also a widely used MCMC algorithm. The approach followed in

this method is to update a single component of X each time using the full conditional as

the proposal distribution. More details can be found in [50,179]. In this Thesis, we will use

MH algorithm. We again underline that in statistical inversion one needs to draw many

samples from the target distribution, so, in MH method, the evaluation of the posterior in

step 6 of Algorithm 2, which involves a forward solve, must be efficient in order to limit
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computational complexity. To this end, the PGD explored in the previous Sections can be

a valid technique for fast Monodomain solutions.

4.4.3 Practical implementation of the MH algorithm

In this Section, we test the MH algorithm to explore the PPDF (4.28) with the purpose of

providing point and spread estimates of the conductivity σ conditioned on the transmem-

brane potential data. Several practical issues need to be addressed. First, the evaluation

of the likelihood function depends on the numerical approximation of the voltage dynam-

ics. Referring to the 3D canine geometry considered in Section 4.2.3, it is clear that using

full FE solution is computationally overwhelming as one single sample in MH algorithm

would require 330 s. For this reason, we resort to the PGD approximation because of its

extremely fast evaluation of the solution (in this case at most 0.2 s). Moreover, it is not

simple to decide when the MCMC sample is large enough to cover the target distribution.

Many samples are required to ensure a reasonable accuracy of the results since Monte Carlo

integration has a slow rate of convergence. This is solved by looking at the results varying

the number of samples Ns and picking the value for which we get steady estimates.

Other important and difficult issues affecting the quality of the sampling strategy are

the following:

1. The choice of the proposal distribution q(y|x) is crucial for performance of the MH

method. A common choice in literature is using a symmetric random walk sampler [50,173]

q(y|x) =
1√

2πγ2
exp
(
− 1

2γ2
‖y − x‖2

)
, γ > 0. (4.34)

In other words, we assume that the random step from x to y is distributed as white noise

W = Y −X ∼ N (0, γ2I). The value of γ controls the random step length and in turns the

acceptance ratio A of the MH algorithm. It is troublesome to detect a reasonable value of

γ: if it is too small, the new proposals are accepted frequently, but the chain explores the

density too slowly. When γ is increased, we ensure a better coverage of the space, but A

gets smaller meaning that more samples are rejected. An acceptance ratio around 30% is

considered optimal in literature [173]. However, we chose to follow a different strategy: we
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generate a small ensemble of samples using the proposal (4.34) with a certain value of γ; we

calculate the empirical covariance matrix C of this sample; we continue the MH algorithm

using the proposal distribution

q(y|x) ∼ N (y − x,C). (4.35)

The motivation behind this is that the covariance matrix C carries information about the

shape of the distribution, therefore the proposal covers the support of the density more

effectively than the standard random sampler. With this approach, we are able to increase

the acceptance ratio to at least 60% in all the tests we will discuss, thus avoiding the

practical difficulty of tuning γ.

2. Another practical issue when sampling with MCMC algorithm is the dependence

of the Markov chain from the initial state. Usually, it might take some samples before

the chain starts representing the actual probability density. The initial stage of the chain,

usually referred to as burn-in of the sample, has nothing to do with the target distribution

and it is normal procedure in MCMC sampling to disregard the beginning of the sample

to avoid that the burn-in affects the estimates that are subsequently calculated from the

samples.

3. Since the sample is a realization of a Markov chain, complete independence of the

sample points cannot be expected: every draw depends at least on the previous element in

the chain. The autocorrelation of a signal is a useful to quantify the independence of the

realizations [50]. Let x1, . . . , xN be samples (in our case, each sample is a two-dimensional

vector of conductivities) from a Markov chain. The lag k autocorrelation of the i − th

component (i = 1, 2 in our case) can be defined as

ρi(k) =

∑Ns−k
j=1 (xj − x̄)i(xj+k − x̄)i∑Ns

j=1(xj − x̄)2
i

(4.36)

where x̄ is the sample average. The value k at which ρi(k) ≈ 0 tells us the period after which

the sample points can be considered insignificantly correlated for the i−th component. It is

reasonable to expect that the dependence of the draws decreases when k increases. The rate
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of decay of the autocorrelation to zero is crucial for the efficiency of MCMC algorithms: if

the decay is too slow, then many draws has to be disregarded to ensure independence. The

rate of decay can be improved by properly tuning the step length γ of the proposal (4.34).

In fact, the larger γ, the faster the Markov chain mixes and the faster the dependence decays

in successive iterations. However, in this case, sampling from the target distribution would

be more challenging as many samples points would be rejected. Using the proposal (4.35)

is a great solution to this problem as well because the better coverage of the posterior space

provided by the alternative proposal guarantees a reasonable mixing of the chain.

In practice, after burn-in removal, we compute the lag k autocorrelation for the com-

ponents of σ, σl and σt, then we pick k so that ρσl(k) and ρσt(k) are close to zero and

eventually an independent set of samples is formed by taking only every k − th sample

points. Fig. 4.8(a) and Fig. 4.8(b) show an example of burn-in phase and lag k autocorrela-

tion of the parameters σl and σt. For the parameter σt, it is evident that the chain depends

on the initial state of the MH method, therefore the first 400 samples are disregarded. As

for the Fig. 4.8(b), we note that as k gets larger, ρ(k) decreases, as expected. In this case,

we pick k = 5 since the autocorrelation is close to zero. It is not preferable to choose k too

large since this would imply a huge waste of samples and so higher computational cost of

the sampling algorithm.

4. The actual computations are performed in the log-domain, i.e., in the MH algorithm,

the new proposal y moving from x is accepted if log u < log p(y) − log p(x). In this way,

we avoid numerical problems with underflow or overflow in the computation of the ratio of

p(y) and p(x).

5. Finally, the PPDF (4.28) does not have full support as σ ∈ Cad, but the proposal

distribution (4.35) does. Therefore, it is possible that a new move y from the sample x

may not belong to Cad, so it should be immediately rejected without even computing p(y).

A solution might be to keep sampling y until we have y ∈ Cad, and then evaluate A to

decide whether or not to accept it. As reasonable as this idea may at first seem, the MH

algorithm needs to be adjusted to reflect this approach. In fact, by repeatedly sampling

from the proposal until we obtain a feasible value, we are implicitly sampling from a different

proposal distribution, which is still the proposal distribution q(x|y), but truncated at zero
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(a) (b)

Figure 4.8: (a) Burn-in phase is visible especially for σt. To eliminate the impact of the
initial state, we disregard the first 400 samples. (b) Lag k autocorrelation for the two
conductivity parameters. When ρ(k) is close to 0, we take every k − th sample to form an
independent ensemble of realizations.

outside Cad. This proposal distribution is totally reasonable so we can use it provided that

we use the correct MH acceptance ratio. The truncated proposal has the same density

as the normal proposal, but the integral of its probability density function does not equal

1 because of the truncated support. Therefore, we need to adjust it with a normalizing

constant. Explicitly, we have that the truncated proposal is

q̃(y|x) =
q(y|x)

Φ(x)
, y ∈ Cad (4.37)

where q(y|x) is from (4.35) and Φ(x) is the cumulative distribution function (CDF) of a

standard bivariate normal. In this way, the integral of the new proposal equals 1. Therefore,

the correct MH acceptance ratio A is

A(x(∗)|x(i)) = min
{

1,
p(x(∗))q(x(i)|x(∗))Φ(x(∗))

p(x(i))q(x(∗)|x(i)Φ(x(i))

}
= min

{
1,
p(x(∗))Φ(x(∗))

p(x(i))Φ(x(i))

}
(4.38)

where we see that the normalizing constants do not cancel out.



125

4.4.4 Solution of the reduced bayesian MICP

We analyze the performance of MH algorithm on the 3D test case of canine tissue studied in

Section 4.3 using the PGD basis obtained with tole=10−5. We consider the same synthetic

measurements and conductivity values used in Table 4.7 so to compare deterministic and

Bayesian estimates. The percentage of noise p = 1, 5, 10% corresponds to the standard

deviation ν = 1, 5, 10 mV, respectively. Ns = 20000 samples – after burn-in removal

and subsampling – generated by MH algorithm are used to compute the estimates. This

is a sufficient amount of samples to ensure the convergence of Monte Carlo integration.

We emphasize again that the PGD approximation is remarkably convenient for estimating

parameters in a Bayesian framework. In fact, generating the ensemble of samples took at

most 3 hours in the following tests. This would be unachievable using FEM solution.

Fig. 4.9 shows the posterior densities varying the standard deviation ν of the noise

and the conductivity values. This helps the visualization of the uncertainty related to the

point estimates and the support of the posterior distribution in the parameter space. The

confidence in the reliability of the point estimates depends on the width of the support of

the posterior density along the σl and σt-directions. It is clear that if the support is wide,

then we need to be more careful in evaluating the reliability of point estimates. We note

from Fig. 4.9 that, regarding the parameter σt, the posterior density of the case r = 2 has a

wider support than the other two ones, meaning that the point estimates for r = 2 feature

more uncertainty. This is consistent with the results obtained in the Section 4.2.3 showing

that the PGD approximation error for r = 2 is less accurate. Therefore, less precision

affects our confidence in the reliability of the point estimates. As for σl, the support of the

densities span a much wider interval. This agrees too with the previous results since we

have noticed that the PGD solution in this test case is less sensitive to the parameter σl

which causes more variability in the estimation. Furthermore, the support of the posteriors

enlarges as the standard deviation ν increases, negatively affecting our confidence in the

points estimates.

Point and spread estimates are presented in Table 4.9. For the sake of readability, we

report the deterministic results σdet shown in Table 4.7 as well. We expect σMAP and σdet
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ν = 1 ν = 5 ν = 10

Figure 4.9: Samples of MH algorithm varying noise standard deviation ν ([mV]) and con-
ductivity values (r = 2, 4 and 6 corresponding to σ = (0.07, 0.035) cm2/ms, (0.08, 0.02)
cm2/ms and (0.084,0.014) cm2/ms, respectively). Samples are colored in blue. In general,
the higher the variance, the sparser the samples. σl features higher uncertainty, especially
for r = 2, whereas, we can be more confident about the quality of the estimates of σt, in
particular in the case r = 4 and 6.

to be comparable since they are solutions of similar optimization problems. The estimation

are similar for ν = 1 because the posterior densities are less sparse and so the peak of

the distribution is easier to find. On the other hand, increasing the noise, the MAP and

deterministic estimations of σl diverge whereas, for σt, they match in the cases r = 4

and 6. This is consistent with the fact that the variability featuring σl is much higher

than σt for r = 4 and 6 and consequently there could be many local minima along the

σl-direction in which the deterministic inversion could stall depending on the initial guess.

For the same reason, the estimation of σt for r = 2 are not consistent. The MAP and CM

estimates may not necessarily coincide because the PPDF (4.28) is not purely Gaussian,

but a truncated Gaussian. Therefore, the density could have one tail heavier than the

other resulting in a shifting of the mean and so a mismatch with the distribution peak.

The difference between MAP and CM estimate is more visible for the parameter σl since it

features higher uncertainty.

The key feature of Bayesian inversion is the quantification of the uncertainty, that can

be performed by computing standard deviations as well as correlation of the estimates.

From Table 4.9, we notice that the standard deviation of the samples of σl is always higher

than σt, in particular for r = 4 and 6, in agreement with the fact that, in this specific test
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case, the PGD approach is less sensitive to the value of σl. As for the correlation, which

measures the degree to which the parameters are linearly related, it is always small enough

to conclude that there is no linear relationship between the two unknown quantities σl and

σt of the PGD solution.

Intervals of a given credibility with respect to single components of σ are also of interest.

By looking at one component at the time, we can provide intervals Ik(p), k = l, t, containing

p% of the mass of the marginal density of σl or σt. Equal-tailed intervals Ik(90) are reported

in Table 4.10. The narrower the intervals, the more robust and reliable the estimates are.

We note that, consistently with the results shown in Table 4.9, credible intervals related to

σt are narrower than the ones corresponding to σl because of the lower standard deviations.

Therefore, we rely more on the estimates of σt than the ones of σl. Notice that the intervals

for σt in the case ν = 10 – corresponding to highly noisy data – and r = 4, 6 are still

reasonably tight meaning that the estimates are still reliable in that case.

Remark As pointed out earlier, point and spread estimates may be computed via numer-

ical quadrature rules. An important information to efficiently use this strategy regards a

good a-priori knowledge of the support of the target distribution. This is not critical in the

case r = 2 because the posteriors varying ν have wide supports in both σl and σt-directions.

Therefore, using quadrature rules to compute point and spread estimates is the most con-

venient strategy in this case. However, this approach is unfeasible in the cases r = 4 and

6 because of the extremely tiny support along the σt-direction, in particular for ν = 1 (see

Fig. 4.9). Standard MATLAB R©routines fail to compute the estimates in reasonable time.

Thus, the MH algorithm is the preferred method.

4.5 Discussion

The high computational costs of standard variational data assimilation procedure analyzed

in Chapter 3 motivates the investigation of accurate and efficient model reduction tech-

niques. In the specific field of electrophysiology, consolidated model reduction techniques

such as the POD may suffer from a non optimal selection of the snapshots. In this Chapter,
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r,σexact ν σdet σMAP σCM std(σ|U) corr(σl, σt)

2,(7.00,3.50)
1 (6.97,3.98) (6.95,3.94) (6.99,3.86) (0.31,0.09) -0.015
5 (6.98,4.00) (7.15,3.79) (7.45,3.68) (0.81,0.20) -0.011
10 (6.97,4.00) (7.45,3.62) (7.58,3.59) (0.81,0.26) -0.013

4,(8.00,2.00)
1 (7.82,1.99) (7.85,1.99) (8.14,2.00) (0.45,0.01) 0.003
5 (8.56,1.99) (8.10,1.99) (7.75,2.00) (0.75,0.06) -0.018
10 (7.92,1.99) (8.15,1.99) (7.63,1.97) (0.80,0.12) -0.030

6,(8.40,1.40)
1 (8.38,1.37) (8.41,1.39) (8.32,1.39) (0.41,0.007) -0.015
5 (8.38,1.39) (8.20,1.39) (7.77,1.39) (0.75,0.030) -0.025
10 (8.45,1.39) (8.05,1.40) (7.64,1.40) (0.80,0.070) -0.019

Table 4.9: Point and spread estimates varying noise variance ν and conductivity values.
σdet denotes the deterministic estimates reported in Table 4.7. Point estimates obtained
with the Bayesian approach are σMAP and σCM . We recall that σl and σt are the first and
second component of the conductivity vector, respectively. There is a progressive loss of
accuracy in the estimation of σl as the data gets noisier. σt is less precise for r = 2 because
the PGD approximation features higher error in this case. Standard deviation increases with
the noise, affecting our confidence in the quality of the estimation. Conductivity values and
standard deviations are magnified by a factor of 100 and measured in cm2/ms.

r,σexact ν Il(90) It(90)

2,(7.00,3.50)
1 (6.51,7.51) (3.68,3.99)
5 (6.23,8.82) (3.34,3.97)
10 (6.22,8.83) (3.14,3.95)

4,(8.00,2.00)
1 (7.42,8.88) (1.98,2.01)
5 (6.43,8.86) (1.90,2.09)
10 (6.27,8.85) (1.82,2.21)

6,(8.40,1.40)
1 (7.60,8.92) (1.38,1.40)
5 (6.43,8.87) (1.34,1.45)
10 (6.27,8.85) (1.28,1.52)

Table 4.10: Equal-tailed intervals Ik(90), k = l, t representing intervals in which 90% of the
marginal densities of σl and σt falls. Estimates of σt are much more robust then the ones of
σl because the credible intervals are narrower, in particular for r = 4 and 6. Conductivity
values are magnified by a factor of 100 and measured in cm2/ms.
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for the first time we use a snapshot-free model order reduction such as the PGD, thus cir-

cumventing one of the drawbacks of the POD. All the results pinpoint that, in spite of an

off-line stage that may be quite demanding in terms of CPU time, the PGD dramatically

reduces the parameter identification to nearly real-time computations on common compu-

tational architectures. Moreover, the fast on-line evaluation of the PGD solution paves the

way to the statistical interpretation of the MICP following Bayesian theory. In fact, the use

of the reduced Monodomain model allows to rapidly explore the posterior distribution and,

adopting the MH algorithm, it is possible to generate large ensembles of i.i.d. samples that

can be used to quantify the reliability of the conductivity estimates. The PGD technique is

a formidable tool to achieve fast sampling, otherwise unaffordable with high-fidelity models.

These preliminary results encourage further work for the extension of the methodology

to the clinical practice. We list some of the possible developments: (1) The cost of the

off-line phase can be dumped if it could be recycled on different geometries. This calls for

the construction of a PGD library of off-line solutions on a reference geometry that could

be eventually mapped to a real patient-specific morphology. While this may slow down

the on-line phase, the overall benefit for a larger pool of patients and eventually the clini-

cal applications is potentially high. (2) The extension to more complex and realistic ionic

models than the RM model (and eventually the Bidomain model) needs to be pursued in

view of clinical applications. However, this is a not trivial task, as the modeling of the ionic

terms requires a specific development of the factorization of the increased linear functional

F . (3) As already pointed out in Chapter 3, the assumption of homogeneous tissue may be

quite unrealistic. Therefore, research effort will be devoted to the formulation of the PGD

technique including heterogeneity. This means that more conductivity parameters would be

considered as independent variables, increasing the dimensions of the hypercube S. There-

fore, the ADS inner loop in Algorithm 1 may result in overwhelmingly heavy computations

in high-dimensional cases. A reasonable trade-off may be considering the conductivity as a

piecewise constant field varying over few macro-regions of the cardiac tissue. For instance,

these regions might follow the segmentation of the myocardium proposed by the American

Heart Association in [180], consisting of 17 portions on which conduction properties may

significantly change. (4) The previous point is interesting also in view of the statistical
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inversion. In fact, it would enable Uncertainty Quantification based on Bayesian theory for

spatial dependent conductivity. However, more sophisticated sampling techniques need to

be adopted in this case. In fact, the MH algorithm often results in high rejection rates in

case of high dimensional distributions, thus the exploration of the posterior would be too

slow impeding sufficient sampling with reasonable time frames.
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Chapter 5

Ventricular Tachycardia Induction

in Personalized Heart

This Thesis is intended to contribute to the improvement of treatments for cardiac arrhyth-

mias using computational modeling. In this Chapter, we pursue this goal by providing a

personalized electrophysiological heart model useful for planning support and guidance of

catheter ablation therapy (see Chapter 1) for Ventricular Tachycardia (VT). VT is a type

of arrhythmia caused by abnormal electrical activity in the lower chambers of the heart, the

ventricles (see Section 2.1 for more details about the cardiac anatomy). Irregular electrical

signals cause the heart to beat faster than normal, usually 100 or more beats a minute, out

of sync with the upper chambers, the atria. The uncoordinated contraction of the cardiac

muscle prevents the chambers from filling properly resulting in a lack of blood supply in

the body. Brief or non-sustained VT may not have consequences, or, if it lasts for much

longer, it may manifest with palpitations, dizziness or even loss of consciousness. On the

other hand, sustained or more serious episodes of VT may lead to life-threatening conditions

such as ventricular fibrillation occurring when the ventricles contract in a very rapid and

uncoordinated manner. Ventricular fibrillation may cause sudden cardiac arrest and lead

to death if not treated immediately.

VT is more likely to occur in patients with established heart disease such as coronary

heart disease, which results from the obstruction of a coronary artery causing ischemia, i.e.,
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the interruption of blood supply to the myocardium. This condition can cause irreversible

tissue damage, known as myocardial infarction (MI). In patients who survive MI, the my-

ocardium heals and dead cardiomyocytes are slowly replaced by collagen leading to the

formation of a scar with a dense collagenous core surrounded by a thin layer of surviving

myocardium, known as the infarct border zone (BZ). The BZ features a complex and altered

electroanatomic structure [181, 182] with corridors of viable myocites scattered among the

scarred tissue causing a discontinuous and anisotropic slow conduction. These channels,

referred to as conducting channels [183], have been associated with higher arrhythmogenic

risk since they promote the development of re-entry [184], a continuous circulating propaga-

tion in which an impulse re-enters and repetitively excites a region of the heart (see Fig. 5.1

for more details). Re-entrant circuits are well-known to be responsible of the majority of

VTs encountered clinically [185–188]. Therefore, the elimination of conducting channels is

critical to prevent inducibility of ventricular arrhythmias (VA). Conducting channels may

be detected via contrast-enhanced cardiovascular magnetic resonance (CMR) imaging [189]

and constitute the target for ablation [190].

However, the evaluation and the prediction of the outcome of ablation procedures with

different target areas is quite challenging in clinical studies. Personalized computer models

are a promising strategy to assess the efficacy of different ablation strategies. Recently,

computational electrocardiology has been successfully used in clinical practice, for instance

to predict VA risk in patients with chronic MI [12] and to study the effect of scar morphology

on VA initiation [191]. Moreover, it is a valuable tool to predict VA inducibility and

circuit morphology [192] and to investigate the effect of different representations of the

BZ on VA [193]. This Chapter aims to reconstruct a personalized virtual heart and then

studying VT inducibility with respect to different electrophysiological properties of the BZ.

In particular, we investigate the stability of VT induction varying the conductivity of the

BZ as well as the area originating the arrhythmia. VT induction is an important milestone

in the investigation of ablation procedures in silico, in view of personalized therapy and

proactive intervention. Moreover, this work is also meant to provide insights on electrical

abnormalities promoting arrhythmias and better understand the mechanism of VT.

As usual, the personalization is done by retrieving patient-specific cardiac conductivi-
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ties. However, here we consider a different formulation of the inverse conductivity problem

(ICP). The reason is twofold: first, we privilege a fast and efficient estimation of an indi-

vidualized heart model in a time frame comparable to the clinical ones. This can be done

by following a physics-based reduced-order modeling approach focusing on graph-based EP

models (introduced in Section 2.2.2) instead of the more expensive Monodomain or Bido-

main equations. The use of simplified models forces us to modify the estimation problem.

Second, transmembrane and extracellular potential data used for misfit evaluation in Chap-

ter 3 and 4 are challenging to measure in vivo, whereas electrocardiogram (ECG) (refer

to Section 2.1.3) is a practical, non-invasive and quick medical process conveying a large

amount of information about the patient’s conditions. Therefore, the optimization problem

is reformulated so that the virtual heart reproduces relevant patient-specific ECG features.

The content of this Chapter is part of a project developed during a summer internship

in 2018 at Siemens Corporation Research, Princeton, NJ, in the Image-Guided Therapy

research group led by Tommaso Mansi. It will contribute to a future publication3. A detailed

overview of the workflow generating a personalized anatomical and electrical cardiac model

is given in Section 5.1, and ventricular tachycardia simulation is the topic of Section 5.2.

We will conclude in Section 5.3 with a final discussion.

The software used during the project was already implemented by researchers in the

group and object of several publications [21, 24, 25, 54, 194] (to mention a few). The con-

tribution of the internship was bug fixing and optimizing software design (mainly of the

code regarding Section 5.1.2) in the first place, then the work focused on performing the

simulations presented in Section 5.2.

5.1 Patient-Specific Computational Model of the Heart

In this Section, we provide an overview of the pipeline (Fig. 5.2) generating the personal-

ized heart model, from the clinical data to multi-scale, multi-physics prototype. Cardiac

anatomy (Section 5.1.1) and electrophysiology (Section 5.1.2) are modeled based on imag-

ing and 12-lead ECG data. We recall from Section 2.1.3 that ECG allows monitoring the

3The project concerned CRT (see Chapter 1) simulations as well, but unfortunately this part cannot be
disclosed for intellectual property constraints yet.
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Figure 5.1: Example of scar-related re-entry. Left panel: Activation wavefronts approach
the scarred area. Viable myocites form channels between areas of scar tissue, denoted by
the gray islands. One single black block represents bidirectional blocks entirely stopping
electrical conduction, and black and red blocks denote damaged but viable myocites where
conduction is allowed only in one direction. Central panel: Wavefront x propagates inside
the channel, wavefront y is blocked and reflected backwards, and wavefront z bifurcates
because of the presence of the scar island with one wave propagating through the channel
and merging with the wavefront x. Right panel: the wavefront propagating through the
channel passes through the unidirectional block and re-excites the tissue triggering a re-
entrant circuit.

electrical activity of the heart, with each lead representing the potential difference between

different electrode groups. In particular, we focus on the lead I, computing the difference

between left and right arms, and lead II, calculating the difference between left leg and right

arm.

5.1.1 Cardiac anatomical model

A detailed model of the bi-ventricular myocardium is generated using the framework pro-

posed in [21,53,54]. Heart morphology is automatically segmented using a machine-learning

approach from cine Magnetic Resonance Images (MRI) (first panel in Fig. 5.2). In brief,

the Marginal Space Learning framework and Probabilistic Boosting Trees [53] find the

heart position, rotation and scale in the image following an algorithm trained from a large

database of cine MRI. Myocardium contours are recognized through a boundary detector

procedure learned from the database as well. Then, the algorithm fits a mean heart shape

model whose contours are finally deformed according to the boundary detectors to match

the myocardium boundaries. Once the model is detected, it is tracked over time using a

symmetric image registration algorithm [195]. The whole process is supervised by an ex-
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Figure 5.2: General workflow of the personalization procedure leading to patient-specific
representation of the electrophysiological state of the heart. EP personalization step is
explained in more details in Fig. 5.6. Data courtesy of Dr. Halperin, JHU.

pert that can intervene interactively if needed. Next, to form a closed surface mesh of the

bi-ventricular myocardium, the segmented triangulations of the epicardium and endocardia

are fused together. The final anatomical model includes five domains: (1) the left and (2)

right ventricular septum, mimicking the His bundle (introduced in Section 2.1.3) and serves

as initialization zone of the excitation wave; (3) the left and (4) right endocardia, with

layers simulating the Purkinje system of fast electrical conductivity; the (5) myocardium

featuring slower conductivity.

A model of myocardium fiber architecture is obtained following a rule-based strat-

egy [196, 197]. In this study, left ventricle (LV) elevation angles vary linearly across the

myocardium from -70◦ on the epicardium to 70◦ on the endocardium, whereas right ven-

tricle (RV) elevation angles vary from -80◦ to 80◦. Finally, a volumetric mesh defining

the computational domain for solving the electrophysiology equations is generated (second

panel in Fig. 5.2).

Then, a patient-specific torso model (third panel in Fig. 5.2) is obtained as follows [23].

First, the contours of the torso are outlined using cMRI images acquired in axial, sagittal

and coronal views, and visualized together with the heart model. Second, a manual affine
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registration of an atlas of torso geometry to the contours is performed. ECG leads are

finally placed at their clinical locations on the personalized torso model. For the sake of

simplicity, electrode positions are chosen to coincide with manually selected torso mesh

vertex positions.

5.1.2 Electrophysiology personalization

Here, we first describe the computational tools used in this work for simulating electrophys-

iology (EP). Then, the personalization procedure is outlined.

Graph-based EP model A graph-based EP model (a general description can be found

in Section 2.2.2), termed GraphEP, is used to describe the local activation times (LATs) at

each point of the patient-specific volumetric mesh. We recall that the LAT in the point x

denotes the time at which the wavefront (also called depolarization wave) passes through the

point x. GraphEP works as follows [21,194]: the cardiac tissue is represented as a connected

graph consisting of spatial nodes connected by edges (see Fig. 5.3(a)). A generalized weight

wij is associated to the edge connecting to mesh points pi and pj and corresponds to

the time needed to the action potential (AP) to travel from pi to pj . wij takes into

account the different tissue types where the points are located, the local anisotropy and the

fiber orientation. The generalized weight is calculated as wij = lij/cij , where lij ([mm])

incorporates local anisotropy information depending on the fiber structure. It is computed

as lij =
√

(eTijDeij), eij = pi−pj , D is the anisotropy tensor defined as D = (1−r)fijfTij+rI,

fij is the fiber direction along the edge and r the anisotropy ratio (r = 0.3). cij is the CV in

mm/s along the edge approximated linearly from the CVs ci and cj . However, in this work,

the CV is not defined point-wise, but we assume it only varies in three of the five anatomical

regions described in the Section 5.1.1: two thin, 3mm-thick sub-endocardial layers located

in the LV and RV (regions (3) and (4)), imitating fast conduction of the Purkinje system,

denoted by cLV and cRV respectively, and the rest of the myocardium (region (5)) with

a slower CV denoted by cmyo [23]. As previously mentioned, the activation of electrical

signal occurs in the LV and RV septum, meaning that we set the LATs equal zero on these

mesh regions. Using this approach, a full EP activation map described by the LATs at
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(a) (b)

Figure 5.3: (a) In GraphEP model, the mesh is represented as a connected graph consisting
in spatial nodes connected by edges. In the zoom, red nodes denotes points already acti-
vated, and blue nodes are still in resting state, thus the excitation wave propagates from red
to blue points. For instance, the electrical wave travels from pi to pj through the edge with
weight wij , which takes into account the local anisotropy, fiber orientation (represented by
the colored field overlapped to the cardiac mesh) and conduction velocity. (b) 7-connectivity
topology of the cubic grid used in LBM-EP. The blue node x is the central one and it is
connected to 6 neighbors.

each point of the mesh is calculated using a Dijkstra shortest-path algorithm adapted to

the EP case [54, 102]. Since GraphEP only describes local activation times instead of time

dependent electrical propagation, computing the solution is very fast, thus it is well suited

for real-time EP simulations.

Monodomain model solved with Lattice-Boltzmann method As mentioned in Sec-

tion 2.2.2, GraphEP is not an appropriate choice to model cardiac arrhythmias because

it disregards the state of repolarization of the AP and the refractoriness of cardiac cells

which play a central role in arrhythmogenesis. While it has become possible to simulate

wave re-entry phenomena with graph-based/Eikonal models [52], capturing other complex

pathological conditions such as arrhythmias is more challenging. Here, the Monodomain

model (2.25) coupled with Mitchell and Schaeffer (MS) model (2.8) is used to simulate

electrical disorders such as VT. The MS model is popular in clinical applications because it

captures pathological situations, such as arrhythmias and wave re-entry [11, 198], with low

computational cost. Moreover, contrary to more complex ionic models, MS features param-

eters (see Section 2.1.2) with physiological meaning: τclose regulates the duration of AP and

(τopen, τin, τout) control the diastolic interval and the restitution curve. These parameters

are kept to their standard values [68] in the whole computational domain, expect τclose in
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the BZ, since its altered electrical property is usually reflected in longer AP duration.

As we have seen throughout this Thesis, especially in Chapter 3, the numerical approxi-

mation of models in electrocardiology can be computationally too demanding and standard

approaches such as finite element method are not suitable for real-time clinical setups and in-

tervention guidance. Another limitation is the requirement of high-quality/high-resolution

volume meshes, which can be difficult to obtain from patient-specific anatomies. In re-

cent years, the Lattice-Boltzmann Method (LBM) [199, 200] has developed as a powerful

technique for accurate simulation of a large class of partial-differential equations. In partic-

ular, it has been successfully applied to pattern-forming reaction-diffusion equations [201].

Some of the key strengths of this method are, i) local nature of the computational algo-

rithm, which provides very high scalability on modern parallel computing architectures, ii)

second-order accuracy in space, and iii) simplicity of implementation on a uniform Cartesian

grid. Motivated by the recent breakthrough in LBM, a novel framework called LBM-EP has

been developed for efficiently solving the Monodomain model at near real-time (≈ 3 s per

heartbeat) and it is especially tailored for patient-specific simulations [198]. In short, the

myocardium is mapped onto a Cartesian cubic grid with isotropic spacing and represented

as a level-set. The grid has a 7-connectivity topology (6 connections and a central posi-

tion, see Fig. 5.3(b)) . The fundamental variable of LBM-EP is the vector of distribution

functions f(x) = {fi(x)}i=1,...,7, where fi(x) represents the probability of finding a particle

traveling along the edge ei of node x. The computation of f(x) is composed of two consec-

utive steps: the collision phase, computing intermediate post-collision states f∗i , and the

streaming phase, propagating the distribution functions along their corresponding edges:

f∗i = fi −Aij(fj − ωju) + δtωi(Iion(u, v) + Iapp),

fi(x + ei, t+ δt) = f∗i (x, t).

(5.1)

The collision matrix A = (Aij), i, j = 1, . . . , 7 relaxes the distribution function fi toward the

local value of the potential u and takes into account the anisotropic fiber-related diffusion,

represented by the conductivity values estimated through the personalization step. The

weighting factors ωi are utilized to emphasize the center position. v, the gating variable
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(a) Physiological ECG signal (b) Abnormal ECG signal in-
dicating VT

Figure 5.4: By looking at the ECG signal, electrical malfunction of the heart can be
promptly detected.

of MS model (2.8), is updated at every node of the grid using a forward Euler scheme.

Eventually, the transmembrane potential u(x, t) is defined as the sum of the distribution

functions u(x, t) =
∑

i fi(x, t). We refer to [198] for further details.

Computation of torso potentials and ECG signals Once heart potentials are com-

puted, they can be propagated through the body so to approximate the potential distribu-

tion on the torso and in turn produce a body surface ECG. The rationale is that the ECG

signal has a central role in clinical practice to diagnose rhythm disorders, so it is an effective

tool to check whether or not a VT has been induced on the cardiac muscle. Furthermore, it

is a non-invasive and painless test with quick results. A comparison between normal ECG

and ECG detecting VT is carried out in Fig. 5.4. To compute torso potentials, current ap-

proaches use both Finite Element (FEM) and Boundary Element (BEM) methods. While

the former intrinsically takes into account anisotropy in the thoracic cavity [202–204], the

latter assumes constant isotropic conductivity throughout the entire torso [7,205,206]. Since

many of the different tissue types that together form the passive torso volume conductor are

commonly modeled as isotropic, BEM is the preferred solution method. Moreover, it has

been shown that decoupling the computation of cardiac electrophysiology and body surface

potentials does not significantly modify ECG data [207].

Torso potential is modeled through a three-step procedure. First, it is necessary to

estimate cardiac extracellular potentials ue at the epicardium from u. To this end, the

elliptic formulation [208] is used assuming a constant diffusion anisotropy ratio λ. Following
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this approach, the extracellular potential ue is expressed as

ue(x, t) =
λ

1 + λ

1

|Ω|

∫
Ω

(u(y, t)− u(x, t)) dy (5.2)

where Ω denotes the entire myocardium domain. Second, tri-linear interpolation is used to

map ue from the Cartesian grid used for LBM-EP method back to the epicardial surface

mesh. Finally, the extracellullar potential is projected from the epicardium to the torso

via the BEM method. This method allows to compute a transfer matrix depending on the

geometry and mapping the heart potentials to torso potentials. The computation is very

fast since it only involves one matrix-vector multiplication. We refer to [23,206] for a more

comprehensive analysis of the procedure. Once the torso potentials are computed, 12-lead

ECG signals are obtained by computing the potential difference between lead nodes.

EP personalization Using the computational tools introduced in the previous para-

graphs, here we thoroughly describe the EP personalization step (fourth panel in Fig. 5.2).

As anticipated in the introduction of the Chapter, estimation is performed by using cheaper

computational models, such as GraphEP. The rationale is that the reduction of computa-

tional complexity enables a prompt estimation of a virtual patient-specific heart. The

personalized EP model reproduces some significant ECG properties: in particular, we focus

on two significant ECG features, the duration of the QRS complex (QRSd) and the elec-

trical axis (EA) of the heart (see Fig. 5.5). QRSd represents the total time the electrical

depolarization wave requires to propagate throughout the entire myocardium. If the QRSd

is longer than 120 ms, it suggests disruption of the heart’s conduction system that might

trigger arrhythmia such as VT. On the other hand, EA is an angle measured in degrees

reflecting the average direction of depolarization wavefront in the coronal plane (Fig. 5.5(b)

shows the coordinate system). It is suited to detect imbalances between left and right ven-

tricular wave conduction. Normal EA is from −30◦ to 90◦, whereas abnormal values suggest

a change in the physical shape and orientation of the heart or a defect in its conduction

system that causes the ventricles to depolarize in an abnormal way. Both parameters can

be easily measured from patients’ ECG waves.
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We refer to Fig. 5.6 for a visualization of the procedure. After initialization, the param-

eters are estimated via an alternated scheme. First, in step 1 of Fig. 5.6, myocardium CV

cmyo is estimated by minimizing the mismatch between simulated and measured QRSd in

the ECG signal in the lead I. Assuming one full heart cycle, the QRSd can be approximated

directly from LATs as QRSd=maxx LATs(x)−minx LATs(x). LV and RV sub-endocardial

CVs, cLV and cRV , are fixed at this point. Next, in step 2 of Fig. 5.6, cLV and cRV are

estimated to match the measured electrical axis angle EA. We use the estimate of cmyo com-

puted at the previous step. Since EA can only be computed from ECG traces, we calculate

ECG signals from LATs as follows. Given LATs and a user-defined AP duration (APD),

controlled by τclose of MS model, one can infer when a cell starts to depolarize (LAT) and

how long it stays in this condition (APD). From this information, heart potentials can be

reconstructed. Then, they are projected to the torso using BEM so to calculate torso po-

tentials and in turn ECG signals. At this point, according to [23], EA is calculated from

the ECG waves in the Einthoven leads I and II: EA=arctan[(2hII − hI)/(
√

3hI)], where

the hi’s are the sum of the R and S peak amplitudes (minimum and maximum) in the

respective leads during the QRS complex (see Fig. 5.5(a)). The estimation is performed by

a gradient-free optimization method, the NEWUOA algorithm [209]. These iterations end

when a convergence test (step 3 in Fig. 5.6) is fulfilled. In details, the test checks whether

the absolute values of the difference between consecutive updates of the CVs are below a

certain threshold, i.e., |ck+1
i − cki | < tol, where i refers to any of the three regions LV, RV

and myocardium. If convergence is not reached, the iterations restart from step 1, otherwise

the final estimates {cLV , cRV , cmyo} are obtained.

Then, a transition from GraphEP to Monodomain model is needed to study VT. This

is achieved by mapping the estimated CVs to conductivity values (step 4 in Fig. 5.6). The

conversion is made through the empirical formula σi = αc2
i , where the factor α is manually

tuned for each patient to still match the QRSd, ci denotes the CVs in any of the three regions

LV, RV and myocardium and σi the corresponding conductivity. Once the conductivities

{σLV , σRV , σmyo} are obtained, VT induction studies can be performed. LBM-EP is used

to efficiently simulate electrical propagation in the heart. Finally, torso potentials are

computed via BEM method (fifth panel in Fig. 5.2) allowing the approximation of ECG
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(a) (b)

Figure 5.5: (a) As described in Section 2.1.3, QRS complex duration (QRSd) is the length
of the QRS complex reflecting the depolarization of the ventricles. The sum of R and S
peak amplitudes, R+S, is used to approximate the electrical axis of the heart. Image from
Wikimedia Commons, source: Compendium for interpretation of ECG at Uppsala Institu-
tion for Clinical Physiology. Year 2010. (b) Electrical axis (EA) of the heart represents the
direction of the excitation wave during ventricular contraction. Normal EA is between -30◦

and 90◦, whereas abnormal values are a symptom of electrical malfunction. Image from
Wikimedia Commons, Author: Npatchett.

signals (sixth panel in Fig. 5.2).

5.2 VT Induction

In view of clinical applications, we now focus on the simulation of ventricular tachycardia

(VT) in personalized computational heart model. The induction of VT is essential to test

different virtual ablation procedures, with a great predictive power to assess the effectiveness

of the therapy beforehand and to support the decision making process. In particular, VT

triggered by scar-related re-entry are investigated. As mentioned in the introduction of the

Chapter, arrhythmogenic risk is higher in the border zone (BZ) of the scar because of the

presence of slow conducting channels that may facilitate the creation of re-entrant circuits

(Fig. 5.1). In this Section, virtual experiments are performed to analyze the sustainability of

VT induction with respect to variations of CV in the BZ. The conductive properties of the

BZ play a key role in arrhythmogenesis. In fact, re-entry waves generating VT may die out

after a short period of time if conduction in the BZ is not slow enough. The numerical setup

of the simulations is discussed in Section 5.2.1, and the results are showed in Section 5.2.2.
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Figure 5.6: Detailed workflow of the personalization EP procedure. CVs in the LV, RV and
myocardium are estimated so to match patient-specific ECG data, in particular QRSd and
EA. Then, following an empirical formula, conductivity values for Monodomain simulations
are computed. More details in the EP personalization paragraph.

5.2.1 Numerical setup

For this work, we refer to an experimental study in which in vivo experiments were con-

ducted to induce VT in a pig heart and then different ablation therapies were tested to stop

the arrhythmia. Portions of the myocardium were scarred using radio-frequency ablation

before collecting the data so to facilitate electrical disorders. ECG signals were recorded at

natural pacing before inducing VT: the measured QRSd was 78 ms (in the lead I) and EA

was 0◦.

Before performing virtual VT experiments, the personalization step was performed. As

described in Section 5.1.2, we focus on estimating the parameters (cLV , cRV , cmyo), with

cLV and cRV denoting the conduction velocity (CV) in the fast Purkinje system in the LV

and RV, and cmyo representing the slower propagation in the myocardium. This stage was

carried out as follows:

• The pig heart morphology was segmented using high resolution MRI images such

as the one in Fig. 5.7(a). The virtual heart consists of LV and RV endocardium,

epicardium and septum as well as scar and BZ (Fig. 5.7(b)). This task is performed

once.

• We assume no conduction in the scar region and reduced CV cBZ in the BZ.

• For each value of cBZ we want to investigate, we perform the EP personalization step

to compute (cLV , cRV , cmyo) keeping cBZ fixed. Of course, these estimates vary with
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cBZ .

• The parameter τclose of MS model controlling AP duration is manually increased in

the BZ to reflect electrical anomalies.

Once personalization is achieved, VT studies are performed. In order to induce VT, besides

natural pacing coming from the sinoatrial node (as explained in Section 2.1.3), additional

stimulation is applied nearby the BZ. The rationale is that, as explained in the Introduction

of the Chapter, the BZ features slow conducting channels or particular shapes that may

promote re-entrant circuits. Locating the artificial pacing in this area of the myocardium

may trigger re-entry and thus VT. This stimulation has faster frequency than the natural

heart beats since this facilitates electrical disruption. The pacing protocol is chosen so to

match intra-operatory data. In particular, starting from t=0.5 s, the tissue is paced six

times every 0.45 s, then the pacing period decreases in 0.05 s steps until reaching 0.2 s. One

stimulus is applied at each decreasing step for a total of 11 stimuli. A visualization of the

pacing protocol is displayed in Fig. 5.7(c). The pacing site depends on the morphology of

the BZ.

5.2.2 Detecting VT with ECG signals

In this Section, preliminary results about VT simulations on the virtual heart are showed.

The CVs cBZ = (0, 10, 50) mm/s in the BZ are analyzed. For each value of cBZ , we

personalize the heart model by estimating (cLV , cRV , cmyo) from ECG features: in all the

cases tested, we obtained 200 mm/s < cmyo < 400 mm/s and 2000 mm/s < cLV , cRV <

4000 mm/s. On a standard desktop machine, the EP personalization step takes around

one minute. Then, the estimated CVs are converted in conductivity values following the

empirical procedure described in Section 5.1.2, allowing the use of LBM-EP to compute

electrical propagation. The excitation wave is simulated for 40 s and its computation

requires around 120 s. The natural heart rate is 80 beats per minute (BPM), which is

physiological since normal heart rates are between 60 and 100 BPM. Besides natural pacing,

stimuli for inducing VT are applied following the procedure described in Section 5.2.1. The

pacing site is visualized in Fig. 5.9 by the yellow dot. We notice that the stimulation point
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(a) (b)

(c)

Figure 5.7: (a) Examples of high resolution MRI image used to segment the anatomical
model. Scar and BZ portions are visible and highlighted in red and blue colors, respectively
(b) Visualization of LV and RV endocardium, scar and BZ. (c) Pacing protocol for VT
induction. Besides natural pacing from the sinoatrial node, stimuli are applied close to the
BZ over a certain period of time so to trigger VT.
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is situated in a particular area of the myocardium in which healthy tissue is surrounded

by the BZ with low conductivity. As previously mentioned, electrical anomalies are usually

recognized by examining ECG signals. Thus, after simulating excitation with LBM-EP, we

compute ECG signals to monitor the electrical behavior of the heart.

Fig. 5.8(a) reports the simulated ECG signal in lead I varying cBZ for BPM=80. The

results show that sustained VT is induced only for cBZ = 10 mm/s as the ECG wave does

not show the normal physiological features meaning that electrical malfunction is occurring.

In the other cases, disruption of the electrical conduction is visible at the beginning, but

then the natural pacing of the heart is restored after few beats generating a standard ECG

signal. Failing of VT induction for cBZ = 0 mm/s may be a bit counterintuitive at first.

However, this result is reasonable because, with no conduction, the BZ would behave like

a simple scar, thus perturbation of the excitation caused by slow conduction in the BZ

which promotes arrhythmias [184] would not occur. On the other hand, cBZ = 50 mm/s

generates a case of non-sustained VT, in which the malfunction is evident for a short period

of time, but then proper electrical functioning is automatically restored. This means that

the BZ does not interfere with the physiological propagation enough to cause persistent

VT. Furthermore, we analyze the impact of the frequency of the natural stimulation on VT

induction. Fig. 5.8(b) shows the results with faster natural pacing BPM=90. The ECG

traces are similar to the ones obtained for BPM=80, thus it seems that the onset of VT does

not depend on this parameter. Actually, for cBZ = 50 mm/s, the disturbance disappears

immediately after the stimulation in the BZ terminates, meaning that the higher heart rate

helps ceasing any electrical disturbance.

Another aspect influencing VT induction is the position of the pacing stimulus. In the

following experiment, we test a different stimulation point, visualized by the red dot in Fig.

5.9. The area was chosen because of its particular shape and the presence of little islands

of BZ in healthy tissue which may perturb the normal electrical activity. Fig. 5.9 shows

a comparison of the ECG waves obtained varying the pacing site (yellow and red dots)

keeping cBZ = 10 mm/s and BPM=80. The results confirm the fact that the initiation of

VT strongly depends on the pacing location and in turn on the morphology of the BZ. In

fact, we note that, while VT is induced in the case of pacing in the yellow point, stimulation
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(a) BPM = 80

(b) BPM = 90

Figure 5.8: Computed ECG signals in lead I varying BZ conduction velocity cBZ ([mm/s])
and pacing in the yellow dot displayed in Fig.5.9. BPM stands for beats per minute. The
x-axis of the ECG signal is time, whereas the y-axis is the voltage measured in mV. VT is
induced only in the case cBZ = 10 mm/s regardless of the value of BPM. Arrhythmia does
not initiate in the other cases: for cBZ = 0 mm/s, BZ behaves like a normal scar so there
is no slow conduction promoting electrical malfunction; on the other hand, for cBZ = 50
mm/s, the BZ does not interfere enough to trigger VT.
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Figure 5.9: Results for different pacing location. The BZ is the blue region in the LV
endocardium, visualized in green. The scar (red area in Fig. 5.7) is not present here.
BPM=80 and cBZ = 10 mm/s. We note that changing the pacing point influence the onset
of VT as stimulating in the red point only provoke a non-sustained VT. This confirms that
arrhythmogenesis depends on the anatomical properties of the scarred area, in particular
on the morphology of the BZ.

in the red dot only triggers a non-sustained VT as the electrical disruption is visible in the

ECG only in the first heartbeats, but then it vanishes in favor of normal pacing.

5.3 Discussion

This Chapter presents a preliminary study aiming to investigate the dynamics of VT and

paves the way for virtual ablation procedures useful for support and therapy planning. A

robust framework [21, 53, 54] is used to estimate a personalized model of heart function

covering cardiac and torso anatomy and electrophysiology from cMRI images and 12-lead

ECG data. We resort to GraphEP and LBM-EP methods which are especially tailored for

efficient parameter estimation and simulations at near real-time. The virtual heart is used

to study the influence of different conduction properties of the BZ as well as the dependence

of the pacing site on the onset of VT. Results highlight that the CV in the BZ, which plays

a key role in arrhythmogenesis, is required to be much slower (around 10 mm/s) than the

myocardium and the Purkinje system (one and two orders of magnitude larger, respectively)

so to originate sustained VT. Furthermore, the BZ morphology also has an impact on the
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generation of arrhythmias.

Several assumptions were made in the model used in this study, which can be a limita-

tion. First, the CV only changes in five regions of the domain. Including heterogeneity of

the tissue might allow more accurate ECG computation since the heart muscle may present

areas which are not scars but may feature different conduction properties. Work in this

direction has been done in [194], in which estimation of point-wise CV was performed from

local activation mappings of the myocardium. Then, the torso potentials and so the ECG

signals were computed under the assumption of homogeneous tissue between the heart and

the body surface, with one electrical conductivity [23]. While this simplification can have

an impact on the shape of the ECG trace, numerical studies have shown that global param-

eters such as QRSd are minimally dependent on tissue heterogeneity and therefore justify

our approach [207].

More work needs to be done in this frame, in particular the evaluation of more cases

varying CVs in the BZ and stimulation sites as well as the study of the sensitivity with

respect to the pacing protocol. Then, virtual ablation procedures need to be tested and

validated against the postoperative ablation data retrieved from the pig experiment. Despite

the contour-based registration, torso geometry was based on an atlas and does not entirely

reflect patient-specific anatomy. Future work could thus improve the anatomical model

by incorporating more imaging data from the heart to the body surface. In addition, the

framework could be extended by using an electromechanical model of the heart [197] to

cope with the influence of cardiac motion on the ECG. Finally, more complex biophysical

Bidomain models and integration of atrial geometry could potentially increase the predictive

power of the framework and are subject to future work. Reduced-order modeling could also

be investigated to cope with the increase of computational complexity related to Bidomain

simulations.
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Chapter 6

Conclusion and Outlook

Advances in mathematical electrocardiology have made possible the use of numerical sim-

ulations in medical research and clinical practice. Computational modeling can potentially

play a pivotal role in therapy planning, intervention guidance and device optimization.

However, to make simulations clinically useful, an accurate and efficient parameter estima-

tion is critical to customize models to patient-specific settings. We address this challenge

focusing on data assimilation and reduced-order modeling techniques for the quantification

of cardiac conductivities from medical data. The original contributions of this Thesis are

the following:

1. In Chapter 3, we verify the accuracy and robustness of the variational data assimilation

approach proposed in [26] using the Bidomain model with respect to noise and amount of

information considering several in silico realistic settings in view of real validation.

2. After checking the effectiveness of the variational estimation of Monodomain conductivity

as a surrogate of the Bidomain one, we extensively validate the methodology with optical

mapping recordings of potential for the first time in this field. We show that we can

successfully reproduce most of observed electrical dynamics providing reasonable estimates

of conductivity fields that are consistent with the data.

3. In Chapter 4, we test the PGD technique [43] applied to the Monodomain model as a

way to improve efficiency of forward and inverse simulations. After a careful calibration of

the offline phase, we reduce the computational costs of the forward solve by two order of

magnitudes. We then exploit the fast evaluation of the PGD solution to solve the Inverse
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Conductivity Problem with very low computational effort.

4. We introduce for the first time the formulation of the inversion in a Bayesian frame-

work [50] in view of quantifying the uncertainty of the estimates. This serves as the first

application of such a technique to more accurate models such as the Monodomain one. We

use the PGD approach for affordable sampling from the posterior distribution and efficiently

obtain point and spread two-dimensional estimates in synthetic tests.

5. In Chapter 5, we reconstruct a personalized virtual heart model from medical im-

ages [21, 24] and ECG data to reproduce patient-specific electrophysiology. We focus on

a simplified model to achieve this task in near real-time. Our contribution is the analysis

of the induction of ventricular tachycardia with respect to different conduction properties

in view of optimizing ablation therapy in silico.

Several directions for future work are worth exploring. The variational data assimilation

procedure may be extended to include the estimation of other quantities beyond conduc-

tivities. The ionic-model parameters, dependent on the local natural heterogeneities of the

cardiac tissue, as well as the fiber orientation, that in this Thesis we tuned empirically,

may be estimated within a unified variational framework [111], even if this is currently too

demanding from the computational point of view for a real application requiring the adop-

tion of more involved physiological models. Moreover, we intend to include the modeling

of electrical properties of the border zone (BZ) around a scar. Our methodology, combined

with the analysis done in Chapter 5, might be helpful to further investigate and better

understand the potential role of BZ in arrhythmogenesis [193,210]. Moreover, the tuning of

the parameters and the initial guess for the optimization algorithm is, at this stage, mostly

empirical, even if we presented some approaches that improve the performances by a smart

preprocessing of the arbitrary initial guess of the conductivities. Strategies for an automatic

tuning of these parameters are an interesting practical follow-up.

Another important direction that would be worth investigating is to extend the proposed

methodology to synchronous endocardial and epicardial recordings, e.g. the one provided

in [119], such to estimate the intramural conductivity and ionic parameters, eventually, that

is, at present, not measurable from state-of-the-art experimental techniques. Similarly, es-

timation and assimilation of conductivity along repetitive fast pacing stimulations are fore-
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seen of great potential for complex spatio-temporal alternans predictions based on statistical

correlation measures [211]. On the same direction, the methodology can be applied to the

cellular scale by using fluorescence optical data of calcium imaging [212, 213] focusing on

estimating QT syndrome related parameters [214]. In a multiphysics generalization of the

present approach, it is also interesting to estimate temperature-dependent parameters, such

as gating time constants [151,215], or dispersive modeling approaches [154,157,216,217] in

which additional diffusivity parameters necessitate a rigorous experimental-based estima-

tion. We also intend to combine the parameter estimation with the Hybridomain model,

i.e., the adaptive modeling tool introduced in [94, 95] where the Bidomain model is turned

on only when needed based on the indications of an a posteriori model estimator. The Hy-

brid Inverse Conductivity Problem (HICP) may provide a different, appropriate trade-off

between reliability of the estimates and computational efficiency.

Another important follow-up of this Thesis is to apply the PGD technique to the case

of spatial dependent conductivities and to other ionic models such as Fenton-Karma and

Mitchell-Schaeffer. This would enable the application of the strategy to the inversion in

experimental settings analogous to the ones discussed in Chapter 3. A comparison in

terms of accuracy and the efficiency of the estimation would be interesting to carry out.

Furthermore, we note that the offline phase can be quite expensive for low tolerance in the

enrichment step. The computational complexity related to these cases may be reduced via

parallelization of the code. We suggest the implementation in a shared memory system

as opposed to a distributed one so to avoid queue wait times. This would allow the use

of more accurate PGD solutions at limited costs. The application of PGD to the spatial

dependent case would be beneficial to the Bayesian inversion enabling the quantification of

the uncertainty in more realistic cases as well. This would require the investigation of more

sophisticated MCMC methods as well as a careful prior modeling to guarantee reliability

and computational efficiency. Finally, the LBM-EP method [198] used in Chapter 5 may

be applied to the Monodomain Inverse Conductivity Problem (MICP) as an alternative

to the finite element approximation to perform extremely fast estimation, also considering

larger time frames which include multiple heart beats. However, the implementation would

require special attention as a proper map to Cartesian grid is required as well as a level-set
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representation of realistic geometries.

In conclusion, accurate and efficient customization of mathematical models of heart

electrical disorders addressed in this work will be the key for their implementation into

clinical practice. Quantitative adaption of such models to patient-specific data is required

in order to test their realism and predictive power of therapy outcomes. In the long run, the

use of personalized simulations in electrocardiology may greatly improve anti-arrhythmia

treatments, such as CRT and catheter ablation. From preoperative data, several possible

scenarios may be predicted and throughly analyzed to elaborate the best therapy plan

for the patient, avoiding risky invasive tests. Patient-specific modeling may be extremely

useful in biomedical research as well, in particular to optimize medical device design and

development. Thorough in silico testing may provide profound, cost-efficient and painfree

assessment of the effectiveness of pacemaker settings in the patient. The promising results

presented in this Thesis give confidence that our parameter estimation and personalization

techniques could be used in computational medicine to translate models to clinical care

aiming to improve patient health.
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