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Abstract

Assessing Observer Agreement for Categorical Observations

By Jingjing Gao

Assessment of observer agreement is based on the similarity between readings

made on the same subject by different observers, which can broadly mean method-

ologies, devices/instruments, individuals, laboratories etc. Assessing observer agree-

ment is common in fields such as behavioral, physical, medical, health, biological,

psychological and social sciences.

Over the years, multiple unscaled or scaled indices for assessing the agreement

between two or more observers making continuous measurements have been intro-

duced, including the mean squared deviation (MSD) (Lin et al., 2002, 2007), the

coverage probability (CP) (Lin, 2000b; Lin et al., 2002, 2007), the total deviation

index (TDI) (Lin, 2000b; Lin et al., 2002, 2007), the intraclass correlation coefficient

(ICC) (Bartko, 1966, 1974; Shrout and Fleiss, 1979; Eliasziw et al., 1994; Muller and

Buttner, 1994; McGraw and Wong, 1996) and the concordance correlation coefficient

(CCC) (Lin, 1989, 1992, 2000a; Lin et al., 2002, 2007; King and Chinchilli, 2001a,b;

King et al., 2007; Barnhart et al., 2002, 2005, 2007c). The assessment of agreement on

categorical observations is traditionally based on kappa or weighted kappa coefficients

(Cohen, 1960, 1968). Most of the work on assessing agreement between observers with

categorical scaled measurements has been focused on extending kappa coefficients to

different situations (Fleiss, 1971; King and Chinchilli, 2001a); while, relatively little

research has been made on developing a new index for the comparison. However,

kappa statistics have been criticized because they attain implausible values when the

marginal distributions of the observers are skewed and/or unbalanced (Feinstein and

Cicchetti, 1990), and also because they depend on the prevalence of the underly-

ing condition, especially when this prevalence is low (Kraemer, 1979; Thompson and

Walter, 1988). The ICC and CCC were also generalized for evaluating agreement



between observers making categorical measurements. These two coefficients mono-

tonically increase as the between-subject variability increases (Atkinson and Nevill,

1997). Therefore, a high value of ICC or CCC may not reliably imply an acceptable

agreement, but the heterogeneity of the data.

In our opinion, these issues are related (at least to some content) to the fact that

the present coefficients compare the observed agreement to “agreement by chance”,

which is defined as the expected agreement under independence. It is well known

that correlation and agreement are different concepts (Haber and Barnhart, 2006)

and hence both kappa and the ICC/CCC measure a combination of the effects of dis-

agreement and lack of independence. In order to obtain coefficients that measure lack

of agreement alone, Barnhart et al. (2007c); Haber and Barnhart (2008) proposed new

scaled indices called the coefficients of individual agreement (CIAs) for the assessment

of individual observer agreement by comparing the observed disagreement (or discor-

dance) between two observers to the disagreement between replicated observations

made by the same observer on the same subject. In other words, this approach com-

pares the between-observer disagreement to the within-observer disagreement, based

on the notion that the agreement between the two observers is usually not expected to

be greater than the agreement between replicated observations of the same observer,

and hence, a satisfactory agreement is established if these quantities are about equal.

This approach has been developed for continuous observations (Barnhart et al.,

2007c; Haber and Barnhart, 2008). In this research, we extend the new indices to

evaluate agreement between two observers making replicated categorical observations

on the same set of subjects. We consider two situations: (1) a symmetric assessment

of agreement between two observers, and (2) an assessment of the agreement of a

new observer with an imperfect “gold standard”. We propose a simple method for

the estimation of the new agreement coefficients when observers make replicated

readings on each subject. We also develop and compare methods for estimating



standard errors of CIAs for binary, nominal and ordinal data. The reliability of the

estimation method is examined via simulation studies. Data from a study aimed at

determining the validity of diagnosis of breast cancer based on mammograms is used

to illustrate the new concepts and methods.

When the data consist of matched repeated observations measured by the same

observer under different conditions, we propose to fit generalized linear mixed mod-

els and utilize the estimated parameters to quantify the intra- and inter-observer

disagreement probabilities for evaluating agreement between two observers of mea-

surement. The conditions may represent different time points, raters, laboratories,

treatments and so forth. Our approach allows the values of the measured variable and

the magnitude of disagreement to vary across the conditions. The new approach is il-

lustrated via two biomedical studies, one of which was designed to compare observers

of evaluating carotid stenosis, the other one is the mammography data previously

mentioned for comparing the results between treating the outcomes as replicated

measurements and as repeated measurements.



Assessing Observer Agreement for Categorical Observations

By

Jingjing Gao

B.S., Beijing University of Technology, 2002

M.A., State University of New York at Buffalo, 2004

Advisor: Michael J. Haber, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Biostatistics

2010



Acknowledgement

My utmost gratitude goes to my advisor Michael J. Haber for his expertise, kind-

ness, his insightful comments, and for his constantly boundless support throughout

this work. Without his understanding, encouraging and detailed guidance, the present

dissertation would not be completed. His extensive discussions, stimulating sugges-

tions and continual encouragement abundantly helped and motivated me all the time

of this research and in writing of this dissertation.

Moreover, I am deeply grateful to Professor Ying Guo, Professor Robert H. Lyles,

and Professor Huiman X. Barnhart, who serve as my committee members, for their

detailed review, constructive criticism and excellent advice during the preparation

of this dissertation. Their solid knowledge and logical way of thinking have been

invaluable to me.

In addition, I wish to extend my warmest thanks to all those who have helped me

with my work in the Department of Biostatistics and Bioinformatics. I am tempted to

individually thank all of my friends which, from my childhood until graduate school,

have joined me in the discovery of what is life about and how to make the best of

it. However, because the list might be too long and by fear of leaving someone out, I

will simply say thank you very much to you all.

I owe my most sincere gratitude to my parents for their everlasting love and

unconditional support that I have relied on throughout my Ph.D. studies. Without

their encouragement and understanding, it would have been impossible for me to

finish this work. It is to them that I dedicate this work.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Existing Methods for Quantitative Data . . . . . . . . . . . . . . . . 7

1.2.1 Aggregated Approaches with Unscaled Indices . . . . . . . . . 7

1.2.1.1 Mean Squared Deviation . . . . . . . . . . . . . . . . 8

1.2.1.2 Coverage Probability and Total Deviation Index . . . 10

1.2.2 Aggregated Approaches with Scaled Indices . . . . . . . . . . 11

1.2.2.1 Intraclass Correlation Coefficient (ICC) . . . . . . . 12

1.2.2.2 Concordance Correlation Coefficient (CCC) . . . . . 15

1.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Existing Methods for Qualitative Data . . . . . . . . . . . . . . . . . 20

1.3.1 Kappa Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1.1 Two Observers and Two Categories . . . . . . . . . . 21

1.3.1.2 Two Observers and Multiple Nominal Categories . . 22

1.3.1.3 Two Observers and Multiple Ordinal Categories . . . 23

1.3.1.4 Multiple Observers and Two Categories . . . . . . . 25

1.3.1.5 Multiple Observers and Multiple Categories . . . . . 26

1.3.2 ICC for Binary Observations . . . . . . . . . . . . . . . . . . . 27

1.3.3 CCC for Categorical Observations . . . . . . . . . . . . . . . . 30

1.3.4 Limitations of Kappa Statistics . . . . . . . . . . . . . . . . . 31

i



2 Coefficient of Individual Agreement 37

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Definition of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 CIA for Continuous Observations . . . . . . . . . . . . . . . . 40

2.2.2 A General Approach for Two Observers . . . . . . . . . . . . . 42

2.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.4 Extension to More Than Two Observers . . . . . . . . . . . . 44

2.3 Comparison of CIA and CCC for Replicated Quantitative Data . . . 46

3 Assessing Observer Agreement for Studies Involving Binary Obser-

vations 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Definition of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Interpretation and Properties of the CIAs . . . . . . . . . . . 52

3.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3.1 Parametric Approach . . . . . . . . . . . . . . . . . . 53

3.2.3.2 Nonparametric Approach . . . . . . . . . . . . . . . 55

3.2.4 Standard Error . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 A Latent Class Model for Diagnostic Agreement . . . . . . . . . . . . 63

3.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Mammography Data . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1.2 Data Summary . . . . . . . . . . . . . . . . . . . . . 70

3.4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 A Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.2 Data Summary . . . . . . . . . . . . . . . . . . . . . 72

ii



3.4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.2 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6.2 Individual Level . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.2.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.2.2 Covariance . . . . . . . . . . . . . . . . . . . . . . . 85

3.6.3 Mean Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6.4 Variance for CIAs . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.5 Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . 90

3.6.6 Sample Size Calculation Simulation . . . . . . . . . . . . . . . 92

3.6.7 Sample Size Calculation Example . . . . . . . . . . . . . . . . 92

4 Assessing Observer Agreement for Studies Involving Nominal Cat-

egorical Observations 94

4.1 Definition of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.2.1 Parametric Method . . . . . . . . . . . . . . . . . . . 97

4.1.2.2 Non-parametric Method . . . . . . . . . . . . . . . . 98

4.1.3 Standard Error . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1.1 Step 1: Generate Population . . . . . . . . . . . . . . 104

iii



4.3.1.2 Step 2: Calculate True Values . . . . . . . . . . . . . 107

4.3.1.3 Step 3: Select Sample . . . . . . . . . . . . . . . . . 110

4.3.1.4 Step 4: Estimate ψN and ψR . . . . . . . . . . . . . 110

4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Assessing Observer Agreement for Studies Involving Ordinal Cate-

gorical Observations 114

5.1 Definition of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.2.1 Parametric Method . . . . . . . . . . . . . . . . . . . 119

5.1.2.2 Non-parametric Method . . . . . . . . . . . . . . . . 120

5.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Assessing Observer Agreement for Data with Matched Repeated

Measurements 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Extended CIAs for Assessing Observer Agreement for Matched Re-

peated Continuous Measurements . . . . . . . . . . . . . . . . . . . . 133

6.4 Extended CIAs for Assessing Observer Agreement for Matched Re-

peated Binary Measurements . . . . . . . . . . . . . . . . . . . . . . 135

6.4.1 Definition of Coefficients . . . . . . . . . . . . . . . . . . . . . 135

6.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

iv



6.4.3.1 Carotid Stenosis Screening Study . . . . . . . . . . . 140

6.4.3.2 Mammography Study . . . . . . . . . . . . . . . . . 142

6.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.4.1 Simulation Process . . . . . . . . . . . . . . . . . . . 143

6.4.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . 146

7 Summary and Future Research 148

7.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Appendix 157

A.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.3 The moment-generating function for the Binomial distribution . . . . 209

Bibliography 211

v



List of Figures

1.1 κ as a function of the prevalence (θ) for different settings of specificities

1− α and sensitivities 1− β based on Equation (1.24) . . . . . . . . 34

3.1 ψN , ψR, and κ as functions of the prevalence (ω). (a) η1 = 0.9, η0 = 0.2,

θ1 = 0.8, θ0 = 0.3; (b) η1 = 0.9, η0 = 0.2, θ1 = 0.8, θ0 = 0.6; and (c)

η1 = 0.9, η0 = 0.2, θ1 = 0.5, θ0 = 0.6 . . . . . . . . . . . . . . . . . . . 67

A.1 Histograms of estimated ψ̂N from binary simulation – case 2 . . . . . 158

A.2 Q-Q normality plot of estimated ψ̂N from binary simulation – case 2 . 158

A.3 Histograms of estimated ψ̂R from binary simulation – case 2 . . . . . 159

A.4 Q-Q normality plot of estimated ψ̂R from binary simulation – case 2 . 159

A.5 Histograms of estimated ψ̂N from binary simulation – case 4 . . . . . 160

A.6 Q-Q normality plot of estimated ψ̂N from binary simulation – case 4 . 160

A.7 Histograms of estimated ψ̂R from binary simulation – case 4 . . . . . 161

A.8 Q-Q normality plot of estimated ψ̂R from binary simulation – case 4 . 161

A.9 Histograms of estimated ψ̂N from binary simulation – case 6 . . . . . 162

A.10 Q-Q normality plot of estimated ψ̂N from binary simulation – case 6 . 162

A.11 Histograms of estimated ψ̂R from binary simulation – case 6 . . . . . 163

A.12 Q-Q normality plot of estimated ψ̂R from binary simulation – case 6 . 163

vi



List of Tables

1.1 A classic 2×2 table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Interpretation of kappa values . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Joint and marginal probabilities for a m×m table . . . . . . . . . . 23

1.4 A hypothetical example of symmetrical unbalanced data . . . . . . . 35

1.5 A hypothetical example of symmetrical unbalanced data . . . . . . . 35

1.6 A hypothetical example of asymmetrical unbalanced data . . . . . . . 36

3.1 Parametric approach for estimating disagreement functions for Ki =

Li = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Non-parametric approach for estimating disagreement functions for

Ki = Li = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 CIAs as functions of prevalence (ω) . . . . . . . . . . . . . . . . . . . 66

3.4 Diagnostic interpretation from all 10 radiologists and definitive diag-

nosis for Mammogramphy data . . . . . . . . . . . . . . . . . . . . . 70

3.5 Data summary of the content analysis example . . . . . . . . . . . . . 73

3.6 Summary of distribution of the content analysis example . . . . . . . 73

3.7 Binary simulation results – bias and root mean square error (RMSE)

of ψ̂N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Binary simulation results – CP for ψ̂N . . . . . . . . . . . . . . . . . 78

3.9 Binary simulation results – comparison of standard errors of ψ̂N . . . 78

vii



3.10 Binary simulation results – bias and root mean square error (RMSE)

of ψ̂R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.11 Binary simulation results – CP for ψ̂R . . . . . . . . . . . . . . . . . 79

3.12 Binary simulation results – comparison of standard errors of ψ̂R . . . 80

4.1 Estimates of ψN and ψR for nine pairs of radiologists for mammograms

data (treated as nominal observations) . . . . . . . . . . . . . . . . . 103

4.2 Nominal simulation results – bias and RMSE for ψ̂N . . . . . . . . . 111

4.3 Nominal simulation results – CP for ψ̂N . . . . . . . . . . . . . . . . 112

4.4 Nominal simulation results – bias and RMSE for ψ̂R . . . . . . . . . . 112

4.5 Nominal simulation results – CP for ψ̂R . . . . . . . . . . . . . . . . . 113

5.1 Estimates of ψN and ψR for nine pairs of radiologists for mammograms

data (treated as ordinal observations) . . . . . . . . . . . . . . . . . . 125

5.2 Comparisons of ψ̂N and ψ̂R when treated as ordinal (ord.) and as

nominal (nom.) observations for mammograms data . . . . . . . . . 125

5.3 Ordinal simulation results – bias, SE and CP† for ψN . . . . . . . . . 128

5.4 Ordinal simulation results – bias, SE and CP† for ψR . . . . . . . . . 128

6.1 Comparison of estimates of CIAs for matched repeated Stenosis data

between treating the outcomes as continuous and as binary observations141

6.2 Comparison of estimates of CIAs for dichotomized Stenosis data be-

tween treating the outcomes as replicated and as repeated observations 142

6.3 Comparison of estimates of CIAs between treating the outcomes as

replicated and as repeated observations for nine pairs of radiologists . 144

A.1 Proportions of positive ratings, sensitivity and specificity for each ra-

diologist in the mammography study . . . . . . . . . . . . . . . . . . 164

viii



A.2 Estimates of agreement coefficients along with their 95% confidence

intervals (CIs) for nine pairs of radiologists (treated as binary obser-

vations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.3 Estimates of agreement coefficients for all possible pairs of radiologists

(treated as binary observations) . . . . . . . . . . . . . . . . . . . . . 166

A.4 Parameters used to simulate binary data via the model described in

Section 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.5 Binary simulation results of estimates and inference of ψN for case 1 . 168

A.6 Binary simulation results of estimates and inference of ψR for case 1 . 169

A.7 Binary simulation results of estimates and inference of ψN for case 2 . 170

A.8 Binary simulation results of estimates and inference of ψR for case 2 . 170

A.9 Binary simulation results of estimates and inference of ψN for case 3 . 171

A.10 Binary simulation results of estimates and inference of ψR for case 3 . 171

A.11 Binary simulation results of estimates and inference of ψN for case 4 . 172

A.12 Binary simulation results of estimates and inference of ψR for case 4 . 172

A.13 Binary simulation results of estimates and inference of ψN for case 5 . 173

A.14 Binary simulation results of estimates and inference of ψR for case 5 . 173

A.15 Binary simulation results of estimates and inference of ψN for case 6 . 174

A.16 Binary simulation results of estimates and inference of ψR for case 6 . 174

A.17 Comparisons of values of variances and covariance for individual dis-

agreement functions based on results of simulations and derived for-

mulations (3.26), (3.27), (3.28), (3.29), and (3.30) . . . . . . . . . . . 175

A.18 Sample size needed to achieve length of 95% CI for ψ̂N ≤ ε for binary

mammography data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.19 Sample size needed to achieve length of CI for ψ̂R ≤ ε for binary

mammography data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

ix



A.20 Contingency table for categorical mammographic classifications by ra-

diologists A and each of other nine radiologists . . . . . . . . . . . . . 178

A.21 Nominal simulation results of estimates and inference of ψN for poor

agreement scenario with true ψN = 0.1517, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.1, σS = 0.1 . . . . . . . . . . . . . . . 179

A.22 Nominal simulation results of estimates and inference of ψR for poor

agreement scenario with true ψR = 0.1719, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.1, σS = 0.1 . . . . . . . . . . . . . . . 179

A.23 Nominal simulation results of estimates and inference of ψN for moder-

ate agreement scenario with true ψN = 0.5844, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.5, σS = 0.4 . . . . . . . . . . . . . . . 180

A.24 Nominal simulation results of estimates and inference of ψR for moder-

ate agreement scenario with true ψR = 0.6935, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.5, σS = 0.4 . . . . . . . . . . . . . . . 180

A.25 Nominal simulation results of estimates and inference of ψN for good

agreement scenario with true ψN = 0.9406, µU = 0, σU = 1, µV =

0.1, σV = 1, ρUV = 0.9, σR = 0.7, σS = 0.7 . . . . . . . . . . . . . . . 181

A.26 Nominal simulation results of estimates and inference of ψR for good

agreement scenario with true ψR = 0.9539, µU = 0, σU = 1, µV =

0.1, σV = 1, ρUV = 0.9, σR = 0.7, σS = 0.7 . . . . . . . . . . . . . . . 181

A.27 Comparisons of ψ̂N and ψ̂R when treated as ordinal (ord.), nominal

(nom.) and binary (bin.) observations for mammography data . . . . 182

A.28 Ordinal simulation results of estimates and inference of ψN for poor

agreement scenario with true ψN = 0.105, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.1, σS = 0.1 . . . . . . . . . . . . . . . 183

x



A.29 Ordinal simulation results of estimates and inference of ψR for poor

agreement scenario with true ψR = 0.117, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.1, σS = 0.1 . . . . . . . . . . . . . . . 184

A.30 Ordinal simulation results of estimates and inference of ψN for moder-

ate agreement scenario with true ψN = 0.449, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.5, σS = 0.4 . . . . . . . . . . . . . . . 184

A.31 Ordinal simulation results of estimates and inference of ψR for moder-

ate agreement scenario with true ψR = 0.543, µU = 0, σU = 1, µV =

0.5, σV = 1, ρUV = 0.3, σR = 0.5, σS = 0.4 . . . . . . . . . . . . . . . 185

A.32 Ordinal simulation results of estimates and inference of ψN for good

agreement scenario with true ψN = 0.814, µU = 0, σU = 1, µV =

0.1, σV = 1, ρUV = 0.9, σR = 0.5, σS = 0.4 . . . . . . . . . . . . . . . 185

A.33 Ordinal simulation results of estimates and inference of ψR for good

agreement scenario with true ψR = 0.908, µU = 0, σU = 1, µV =

0.1, σV = 1, ρUV = 0.9, σR = 0.5, σS = 0.4 . . . . . . . . . . . . . . . 186

A.34 Comparison of estimates of CIAs for dichotomized Stenosis data be-

tween treating the outcomes as replicated and as repeated observations 187

A.35 Comparison of ψ̂N with different cut-off values for dichotomizing Steno-

sis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.36 Comparison of ψ̂R with different cut-off values for dichotomizing Steno-

sis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.37 Comparison of ψ̂N along with their 95% bootstrap confidence intervals

(CI) for nine pairs of radiologists . . . . . . . . . . . . . . . . . . . . 189

A.38 Comparison of ψ̂R along with their 95% bootstrap confidence intervals

(CI) for nine pairs of radiologists . . . . . . . . . . . . . . . . . . . . 190

A.39 Comparison of estimated G functions for CIAs for nine pairs of radi-

ologists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xi



A.40 Simulation results of estimates and inference of ψN for matched re-

peated binary measurements for case 1 (true value ψN = 0.933) . . . 191

A.41 Simulation results of estimates and inference of ψR for matched re-

peated binary measurements for case 1 (true value ψR = 0.931) . . . . 192

A.42 Simulation results of estimates and inference of ψN for matched re-

peated binary measurements for case 2 (true value ψN = 0.855) . . . 192

A.43 Simulation results of estimates and inference of ψR for matched re-

peated binary measurements for case 2 (true value ψR = 0.674) . . . . 193

A.44 Simulation results of estimates and inference of ψN for matched re-

peated binary measurements for case 3 (true value ψN = 0.676) . . . 193

A.45 Simulation results of estimates and inference of ψR for matched re-

peated binary measurements for case 3 (true value ψR = 0.485) . . . . 194

A.46 Simulation results of estimates and inference of ψN for matched re-

peated binary measurements for case 4 (true value ψN = 0.807) . . . 194

A.47 Simulation results of estimates and inference of ψR for matched re-

peated binary measurements for case 4 (true value ψR = 0.818) . . . . 195

A.48 Simulation results of estimates and inference of ψN for matched re-

peated binary measurements for case 5 (true value ψN = 0.701) . . . 195

A.49 Simulation results of estimates and inference of ψR for matched re-

peated binary measurements for case 5 (true value ψR = 0.634) . . . . 196

A.50 Simulation results of estimates and inference of ψN for matched re-

peated binary measurements for case 6 (true value ψN = 0.573) . . . 196

A.51 Simulation results of estimates and inference of ψR for matched re-

peated binary measurements for case 6 (true value ψR = 0.497) . . . . 197

A.52 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 1 (true value

ψN = 0.933) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xii



A.53 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 2 (true value

ψN = 0.855) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.54 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 3 (true value

ψN = 0.676) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.55 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 4 (true value

ψN = 0.807) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.56 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 5 (true value

ψN = 0.701) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.57 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 6 (true value

ψN = 0.573) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.58 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 1 (true value

ψR = 0.931) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.59 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 2 (true value

ψR = 0.674) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.60 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 3 (true value

ψR = 0.485) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.61 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 4 (true value

ψR = 0.818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xiii



A.62 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 5 (true value

ψR = 0.634) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.63 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 6 (true value

ψR = 0.497) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.64 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 1 (true values

ψN
1 = 0.933 and ψN

2 = 0.912) . . . . . . . . . . . . . . . . . . . . . . . 203

A.65 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 2 (true values

ψN
1 = 0.855 and ψN

2 = 0.829) . . . . . . . . . . . . . . . . . . . . . . . 203

A.66 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 3 (true values

ψN
1 = 0.676 and ψN

2 = 0.650) . . . . . . . . . . . . . . . . . . . . . . . 204

A.67 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 4 (true values

ψN
1 = 0.806 and ψN

2 = 0.814) . . . . . . . . . . . . . . . . . . . . . . . 204

A.68 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 5 (true values

ψN
1 = 0.701 and ψN

2 = 0.737) . . . . . . . . . . . . . . . . . . . . . . . 205

A.69 Comparing simulation results of estimates and inference of ψN between

replicated and repeated binary measurements for case 6 (true values

ψN
1 = 0.573 and ψN

2 = 0.624) . . . . . . . . . . . . . . . . . . . . . . . 205

A.70 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 1 (true values

ψR
1 = 0.931 and ψR

2 = 0.912) . . . . . . . . . . . . . . . . . . . . . . . 206

xiv



A.71 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 2 (true values

ψR
1 = 0.674 and ψR

2 = 0.768) . . . . . . . . . . . . . . . . . . . . . . . 206

A.72 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 3 (true values

ψR
1 = 0.485 and ψR

2 = 0.651) . . . . . . . . . . . . . . . . . . . . . . . 207

A.73 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 4 (true values

ψR
1 = 0.818 and ψR

2 = 0.910) . . . . . . . . . . . . . . . . . . . . . . . 207

A.74 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 5 (true values

ψR
1 = 0.634 and ψR

2 = 0.797) . . . . . . . . . . . . . . . . . . . . . . . 208

A.75 Comparing simulation results of estimates and inference of ψR between

replicated and repeated binary measurements for case 6 (true values

ψR
1 = 0.497 and ψR

2 = 0.698) . . . . . . . . . . . . . . . . . . . . . . . 208

xv



1

Chapter 1

Introduction
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1.1 Background

Accurate and precise measurements constitute an important component of any proper

study design. Ideally, a quantity or trait should be measured without an error. How-

ever, in many cases it is impossible to come up with an exact measurement of the

“true value” of the quantity being measured. For example, a person’s true systolic

blood pressure cannot be assessed unless an invasive method is used. Sometimes, the

“true value” does not even exist. For example, in a study on depression, patients can

be classified as “very depressed”, “somewhat depressed” or “not depressed”. Since

these assessments are subjective, there is no “true value” of the magnitude of depres-

sion. In situations where it is very difficult or impossible to determine the true value,

usually more than one measurement is made on each subject, preferably by more than

one observer, device or measurement method. In these cases, it is very important to

evaluate the agreement between these measurements. In the most ideal situation, two

observers are said to be agreeing with each other only if they could produce identical

results. Also, in intuitive terms, an observer is seen as reliable and accurate when the

measurement is the same as the truth. However, in reality, requiring readings from

different observers to be the same or requiring the measurement to be identical to the

truth is not practical due to unavoidable measurement errors and the fact that the

ground truth might not be available. Therefore, agreement studies aim at quantifying

the “closeness between readings”, which covers both the accuracy assessment and the

precision evaluation.

Evaluating observer agreement is widely of concern in fields such as behavioral,

physical, medical, health, biological, psychological and social sciences. Commonly, it

is of interest that whether an out-of-date measurement can be replaced by a newly

introduced measurement, which is whether the new observer is qualified in produc-

ing the same reliable results as the old one. Or, when two or more observers are

present, the interchangeability among them needs to be investigated. Agreement is a
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concept that aims at establishing the closeness among the readings made by multiple

observers. Here, to minimize the impact of variability across subjects, the datasets

obtained or studies designed have the observers measure the same set of participants.

For instance, the agreement among radiologists who are responsible for provid-

ing interpretations of patients’ mammograph is of serious concern because if a severe

disagreement exists, then the accuracy of diagnoses is in question. Another example

is in a carotid stenosis screening study, of interest is to evaluate whether a newly

innovated noninvasive technology – the magnetic resonance angiography (MRA) (in-

cluding two-dimensional time of flight (MRA-2D) and three-dimensional time of flight

(MRA-3D)) which is a group of technique that is based on MRI to image blood ves-

sels can replace the traditional invasive intra-arterial angiogram (IA) for screening of

carotid artery stenosis.

The focus of this research is to assess the extent of agreement between two or more

observers. We use the term “agreement” as similarity between observations made by

different observers or by the same observer on the same subject. Other terms that are

sometimes mentioned in publications on agreement, such as reliability, reproducibil-

ity, repeatability, etc, will not be discussed here (a detailed review is summarized in

Barnhart et al. (2007b)). Moreover, the term “observers” can broadly mean method-

ologies, devices/instruments, individuals, laboratories etc. To avoid confusion, we

simply use “observer” as a general term throughout this research, indicating a hu-

man observer or any mechanical, electronic or other device used to assess a variable

(quantitative or qualitative) which is measured on each study subject. In addition,

we assume that if any calibration is necessary, it has already been conducted, so that

the calibrated measurements are considered as the final data which are used to assess

agreement. In addition, throughout this research, the observers are treated as “fixed

observers” unless otherwise indicated, i.e., we are interested in comparing a fixed set

of observers as opposed to randomly sampled observers from a large pool of potential
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observers. In this research, we also do not investigate the issues of the missing data

and all the available data are used to evaluate agreement between multiple observers.

Observer agreement is traditionally assessed using either scaled or unscaled agree-

ment measures (Barnhart et al., 2007b). For continuous data, the unscaled agreement

indices include the mean squared deviation (MSD) (Lin et al., 2002, 2007), the cov-

erage probability (CP) (Lin, 2000b; Lin et al., 2002, 2007) and the total deviation

index (TDI) (Lin, 2000b; Lin et al., 2002, 2007). The scaled agreement indices for

continuous measurements include the intraclass correlation coefficient (ICC) (Bartko,

1966, 1974; Shrout and Fleiss, 1979; Eliasziw et al., 1994; Muller and Buttner, 1994;

McGraw and Wong, 1996), the concordance correlation coefficient (CCC) (Lin, 1989,

1992, 2000a; Lin et al., 2002, 2007; King and Chinchilli, 2001a,b; King et al., 2007;

Barnhart et al., 2002, 2005, 2007c), and the coefficient of interobserver variability

(CIV) (Haber et al., 2005). An overview on assessing agreement with continuous

measurements was published by Barnhart et al. (2007b). A brief summary is in-

cluded in Section 1.2.

Agreement between observers making quantitative observations is usually evalu-

ated via the kappa statistic (Cohen, 1960) and the weighted kappa statistic (Cohen,

1968). King and Chinchilli (2001a) proposed a generalized form of CCC to eval-

uate agreement for responses assessed on a categorical scale. The extended CCC

for categorical data and its associated inference are equivalent to the kappa and the

weighted kappa statistics (King and Chinchilli, 2001a; Lin et al., 2007). However,

several researchers showed that the kappa statistics may not perform satisfactorily

under certain situations (Feinstein and Cicchetti, 1990), especially when the marginal

distributions are skewed (Kraemer, 1979). More details are presented in Section 1.3.

Moreover, kappa coefficients serve as a total measure of agreement, which masks

out the cause of disagreement whether it is because of the true difference among

observers or it is due to random errors within one or more of the observers. Therefore,
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if an observed disagreement exists, evaluation of intra-observer and inter-observer

disagreement is crucial in order to explore the sources of disagreement.

In addition, an effective agreement coefficient takes into consideration not only

the variability at observer level but also at individual level. The CCC and the ICC

for quantitative data, which are two most commonly used indices, depend on the

between-subject variability. As illustrated in Atkinson and Nevill (1997), high levels

of ICC and CCC may due to large between-subject variability. And this scenario

could occur even if the readings between two observes do not vary at individual

level. Thus, the CCC and ICC might not be appropriate when the goal is to establish

interchangeability between two observers. A new coefficient measuring the agreement

based on individual equivalence may be a solution. Barnhart et al. (2007a) pointed

out that an ideal interchangeability means individual measurements from different

observers are similar to the replicated measurements within an observer. Moreover,

the within-subject variability can embrace the variability of replicated measurements

on a subject. As a consequence, it is intuitive to develop a new index quantifying

the closeness between the individual difference across observers and the difference of

replicated observations within an observer.

Recently, Barnhart et al. (2007a); Haber and Barnhart (2008) proposed new co-

efficients called the coefficients of individual agreement (CIAs) for assessing observer

agreement in studies involving replicated observations adopting the concept of in-

terchangeability at individual equivalence level. Moreover, to measure the difference

within- or between-observer, the idea of using probability of disagreement is developed

for categorical data. The probability of disagreement between observers is compared

to the probability of disagreement between replicated measurements made by the

same observer.

Two cases are considered: first, a scenario where two observers are treated sym-

metrically or exchangeably; and second, a scenario where a reference observer is
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considered as “gold standard”. The first situation is common when the objective is

to compare two observers with no reference. The latter situation occurs when the

goal is to show equivalence of a new method or device and the existing, yet reliable,

method or device.

The new coefficients (CIAs) are introduced in Chapter 2 and their application to

replicated binary measurements is demonstrated in Chapter 3. In this research, we

also extend this approach to derive coefficients of individual agreement for replicated

categorical measurements as shown in Chapter 4 for nominal scales and Chapter 5

for ordinal scales.

In Chapter 3–5, we extend the idea and concepts of CIA to unmatched replicated

observations. By “replications”, it assumes that the true value of measured variable

does not change across replications and hence we can permutate the observations

within each observer. Often of the time, subjects are measured repeatedly across time

and/or under different conditions, where the true values of the measured variable and

the magnitude of disagreement may vary across conditions over time. In Chapter

6, we present a simple method for assessing agreement between two observers with

repeated binary measurements matched on a factor whose levels are considered as

conditions. We adapt the generalized linear mixed model in order to accommodate

the effects of different conditions on the CIAs.

This dissertation is summarized in Chapter 7, where our future plans are also

revealed.
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1.2 Existing Methods for Quantitative Data

We use the same notations as in Barnhart et al. (2007b). Let Yijk be the kth read-

ing made by observer j on subject i. A general model with random effects for the

observations is used as

Yijk = µij + εijk, i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , K (1.1)

with the following minimal assumptions and notations:

� µij and εijk are independent with means E(µij) = µj and E(εijk) = 0;

� between-subject and within-subject variances are Var(µij) = σ2
Bj and Var(εijk) =

σ2
Wj, respectively;

� the correlations Corr(µij, µij′) = ρµjj′ , Corr(µij, εij′k) = 0, and Corr(εijk, εijk′) =

0 for all j, j′, k, k′.

Also, denote the total variability of observer j as σ2
j = σ2

Bj + σ2
Wj. And denote

ρjj′ = Corr(Yijk, Yij′k′) as the pairwise correlation between one measurement from

observer j and one measurement from observer j′. In general, we have ρjj′ ≤ ρµjj′ .

We use the same approach as Barnhart et al. (2007b) in the review paper by

distinguishing between unscaled or scaled indices of agreement for existing methods

on assessing agreement with continuous measurements.

1.2.1 Aggregated Approaches with Unscaled Indices

The agreement coefficients, which measure the absolute difference of the readings by

observers for the cases when no observer is treated as a reference, are aggregated as

unscaled agreement indices in this section. The unscaled indices mainly include the

mean squared deviation (MSD) (Lin et al., 2002, 2007), the coverage probability (CP)
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(Lin, 2000b; Lin et al., 2002, 2007) and the total deviation index (TDI) (Lin, 2000b;

Lin et al., 2002, 2007).

1.2.1.1 Mean Squared Deviation

The mean squared deviation (MSD) is defined as the expectation of the squared values

of the difference of two readings made by observers (Lin et al., 2002).

For the simplest case when only two observers are involved, each of which produces

continuous observations, the MSD is defined as

MSDjj′ = E(Yij − Yij′)2 = (µj − µj′)2 + (σj − σj′)2 + 2σjσj′(1− ρjj′).

One may also use the alternative or extended forms of MSD such as the square root

of MSD,
√

MSDjj′ , or the mean absolute deviation, E(|Yij − Yij′|).

The MSD was also extended to the case of multiple observers with multiple ob-

servations for each subject, when none of the observers is considered as a reference

(Lin et al., 2007). Consider a two-way mixed model

Yijk = µ+ αi + βj + γij + εijk

with assumptions that αi has mean 0 and variance of σ2
α; γij has mean 0 and variance

of σ2
γ; and εijk has mean 0 and a variance of σ2

ε . The effect of observer βj is considered

a fixed factor with
∑

j βj = 0, and σ2
β =

∑
j

∑
j′(βj − βj′)2/[J(J − 1)].

The total, inter-, and intra-MSD are then defined by Lin et al. (2007) as

MSD
(Lin)
total = 2σ2

β + 2σ2
γ + 2σ2

ε

MSD
(Lin)
inter = 2σ2

β + 2σ2
γ + 2σ2

ε/K

MSD
(Lin)
intra = 2σ2

ε
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A general formulation for MSD for multiple observers without any assumptions

are defined as (Barnhart et al., 2007b)

MSDtotal =

J∑
j=1

J∑
j′=j+1

K∑
k=1

K∑
k′=1

E(Yijk − Yij′k′)2

J(J − 1)K2
,

MSDinter =

J∑
j=1

J∑
j′=j+1

E(µij − µij′)2

J(J − 1)
,

MSDintra =

J∑
j=1

K∑
k=1

K∑
k′=k+1

E(Yijk − Yijk′)2

JK(K − 1)

where µij = E(Yijk).

In addition, MSDj, intra for jth observer as

MSDj, intra =

K∑
k=1

K∑
k′=k+1

E(Yijk − Yijk′)2

K(K − 1)

Haber et al. (2005) showed that

MSDtotal = MSDinter + MSDintra.

Barnhart et al. (2007b) also pointed out that under the two-way mixed model,

MSDtotal reduces to MSD
(Lin)
total and MSDintra reduces to MSD

(Lin)
intra . In addition, MSDinter =

limK→∞ MSD
(Lin)
inter .

To determine whether a satisfactory agreement exists, the MSD in any of the forms

mentioned above should be compared to an upper limit value. If the MSD exceeds

the acceptance maximum, a good agreement hypothesis is rejected. However, using

the MSD alone may not be practical or informative because often of the times, the
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acceptance limit is unknown, unsure or indeterminate, which leads to the judgement

whether a good or poor agreement presents controvertible. On the other hand, the

MSD serves as a qualified function measuring the discordance between two readings

either between two observers or within one observer, which will be revealed in the

next chapter (Chapter 2) on the new agreement coefficient.

1.2.1.2 Coverage Probability and Total Deviation Index

Lin (2000b) considered the proportion of data that is captured within a boundary as

a measure of observer agreement. The proportion and the related boundary can then

form two indices for agreement, coverage probability (CP) and total deviation index

(TDI). The CP is the probability that the absolute difference between two readings

made by two observers is less than a preset boundary d0. On the other hand, if π0

is predetermined as the coverage probability, then the boundary with the probability

of absolute difference less than this boundary is TDI.

For two observers Y1 and Y2, denote Yi1 and Yi2 as the readings of two observers,

the CP and TDI are defined as

CPd0 = Pr(|Yi1 − Yi2| < d0) TDIπ0 = f−1(π0)

where f−1(π0) is the d by solving f(d) = Pr(|Yi1 − Yi2| < d) = π0.

A large CP, or equivalently, a small TDI may indicate a good agreement. CPd0

and TDIπ0 are estimated under the assumption of normality of Di = Yi1 − Yi2. If

Di is normally distributed with mean µD and variance σ2
D, Barnhart et al. (2007b)

provided

CPd0 = Φ

(
d0 − µD

σD

)
− Φ

(
−d0 − µD

σD

)
TDIπ0 = σD

√
χ

2(−1)
1

(
π0,

µ2
D

σ2
D

)
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where Φ(·) is the cumulative distribution function (CDF) of a standard normal dis-

tribution, χ
2(−1)
1 (π0, λ) is the CDF of the inverse of the chi-square distribution χ2

1(π0)

with the non-central parameter λ.

One may estimate CPd0 and TDIπ0 using the sample mean and variance as the

point estimates for µD and σ2
D, i.e.,

ĈPd0 = Φ

(
d0 − µ̂D

σ̂D

)
− Φ

(
−d0 − µ̂D

σ̂D

)
,

T̂DIπ0 = σ̂D

√
χ

2(−1)
1

(
π0,

µ̂2
D

σ̂2
D

)
,

where µ̂D = Y 1 − Y 2 and σ̂2
D = n

n−3
(S2

Y1
+ S2

Y2
− 2SY1Y2).

The inference on CPd0 based on the asymptotic distribution of ln[ĈPd0/(1−ĈPd0)]

is given in Lin et al. (2002). Also, Lin et al. (2002) approximated TDIπ0 with TDI∗π0
=

Q0(µ
2
D + σ2

D) where Q0 = Φ−1(1+π0

2
) with Φ−1(·) as the inverse function of the CDF

for a standard normal distribution. Therefore, the inference on TDIπ0 is based on the

asymptotic properties of 2 ln(TDI∗π0
) = 2 ln(Q0) + 2 ln(µ2

D + σ2
D).

1.2.2 Aggregated Approaches with Scaled Indices

In this section, we review the two most popular approaches for assessing agreement

for continuous measurements, namely, the intraclass correlation coefficient (ICC)

(Bartko, 1966, 1974; Shrout and Fleiss, 1979; Eliasziw et al., 1994; Muller and But-

tner, 1994; McGraw and Wong, 1996), and the concordance correlation coefficient

(CCC) (Lin, 1989, 1992, 2000a; Lin et al., 2002, 2007; King and Chinchilli, 2001a,b;

King et al., 2007; Barnhart et al., 2002, 2005, 2007c). They are aggregated as the

scaled agreement indices.
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1.2.2.1 Intraclass Correlation Coefficient (ICC)

The ICC evaluates the observer agreement by comparing the variability of different

ratings of the same subject with the total variation across all ratings and all subjects

based on a specific ANOVA model. Given distinct ANOVA models (one-way or

two-way ANOVA model) and assumptions (observer fixed or random effect), several

versions of ICCs were developed. We focus on the ones comparing the differences

in variability at subject level and mainly present three versions of ICCs under three

ANOVA models. As in Barnhart et al. (2007b), notations are unified for both cases

when observer is treated as an either fixed or random effect. Each observer j (j =

1, . . . , J) is assumed to have k (k = 1, . . . , K) readings on each subject i (i = 1, . . . , n).

K = 1 means no replications and K ≥ 2 indicates the number of replications for

each observer (Eliasziw et al., 1994). The estimates for the variance components

are derived based on the expected mean sums of squares (MSS) from the specified

ANOVA model. The definitions of the three kinds of ICCs and their corresponding

estimates are shown below:

� ICC1 for one-way ANOVA with random observers (Bartko, 1966; Shrout and

Fleiss, 1979; McGraw and Wong, 1996).

The observations are modeled as

Yijk = µ+ αi + εijk

assuming αi ∼ N(0, σ2
α), εijk ∼ N(0, σ2

ε ), and εijk and αi mutually independent.

Then, the ICC denoted as ICC1 is defined as

ICC1 =
σ2

α

σ2
α + σ2

ε
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ICC1 is estimated by the MSS for the variance components from the one-way

ANOVA model as

ÎCC1 =
MSα −MSε

MSα + (JK − 1)MSε

where the MSS for subject, MSα = JK
n−1

∑n
i=1(Y i·· − Y ···)

2;

and the MSS for error term, MSε = 1
JK(n−1)

∑n
i=1

∑J
j=1

∑K
k=1(Y ijk − Y i··)

2.

� ICC2 for two-way ANOVA with fixed or random observers and with no inter-

action (McGraw and Wong, 1996).

The observations are modeled as

Yijk = µ+ αi + βj + εijk

assuming αi ∼ N(0, σ2
α), εijk ∼ N(0, σ2

ε ), and εijk and αi mutually independent. βj is

an either fixed or random effect, according to the assumption of the randomness of

the observers. If observer is treated as a fixed factor, then σ2
β =

∑J
j=1 β

2
j /(J − 1) is

used under the constraint
∑J

j=1 βj = 0. If observer is considered as a random factor,

it is also assumed that βj ∼ N(0, σ2
β) and αi, βj, εijk are mutually independent.

Then, the ICC denoted as ICC2 is defined as

ICC2 =
σ2

α

σ2
α + σ2

β + σ2
ε

ICC2 is estimated by the MSS for the variance components from the two-way

mixed ANOVA model without subject-observer interaction as

ÎCC2 =
MSα −MSε

MSα + (JK − 1)MSε + J(MSβ −MSε)/n
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where the MSS for subject, MSα = JK
n−1

∑n
i=1(Y i·· − Y ···)

2;

the MSS for observer, MSβ = nK
J−1

∑J
j=1(Y ·j· − Y ···)

2;

and the MSS for error term, MSε = 1
(JK−1)n−J+1

∑n
i=1

∑J
j=1

∑K
k=1(Y ijk−Y i··−Y ·j·+

Y ···)
2.

� ICC3 for two-way ANOVA with fixed or random observers and with interaction

(McGraw and Wong, 1996; Eliasziw et al., 1994).

The observations are modeled as

Yijk = µ+ αi + βj + γij + εijk

where γij represents the interaction term between subject and observer, assuming

αi ∼ N(0, σ2
α), εijk ∼ N(0, σ2

ε ), and εijk and αi mutually independent. βj is an

either fixed or random effect, according to the assumption of the randomness of the

observers. If observer is treated as a fixed factor, then σ2
β =

∑J
j=1 β

2
j /(J − 1) is used

with constraint of
∑J

j=1 βj = 0 and γij ∼ N(0, σ2
γ). If observer is considered as a

random factor, it is assumed that βj ∼ N(0, σ2
β), γij ∼ N(0, σ2

γ) and αi, βj, γij, εijk are

mutually independent.

Then, the ICC denoted as ICC3 is defined as

ICC3 =
σ2

α − σ2
γ/(J − 1)

σ2
α + σ2

β + σ2
γ + σ2

ε

if βj is assumed fixed, or (1.2)

ICC3 =
σ2

α

σ2
α + σ2

β + σ2
γ + σ2

ε

if βj is assumed random. (1.3)

ICC3 is estimated by the MSS for the variance components from the two-way

mixed ANOVA model with subject-observer interaction as

ÎCC3 =
MSα −MSγ

MSα + J(K − 1)MSε + (J − 1)MSγ + J(MSβ −MSγ)/n
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where the MSS for subject, MSα = JK
n−1

∑n
i=1(Y i·· − Y ···)

2;

the MSS for observer, MSβ = nK
J−1

∑J
j=1(Y ·j· − Y ···)

2;

the MSS for interaction, MSγ = K
(J−1)(n−1)

∑n
i=1

∑J
j=1(Y ij· − Y i·· − Y ·j· + Y ···)

2;

and the MSS for error term, MSε = 1
nJ(K−1)

∑n
i=1

∑J
j=1

∑K
k=1(Y ijk − Y ij·)

2.

Under specific different conditions, these three ICCs can be used interchangeably

(Barnhart et al., 2007b). Note that if the σ2
β is omitted from the denominator in

(1.3), then it becomes the ICC for consistency (McGraw and Wong, 1996) relative

to the three ICCs described above as ICC for agreement, as the ICC for consistency

does not contain any expressions that depends on the differences of measurements

made by different observers. The ICC has also been extended for the cases involving

repeated measurements (Vangeneugden et al., 2004; Molenberghs et al., 2007) and

multivariate observer (Konishi et al., 1991).

The drawbacks of using ICCs are primarily caused by the heavy dependence of the

ICC on the numerous ANOVA model assumptions mentioned above such as normality

assumption and homogeneity of variances assumption etc.. Also, as pointed out by

Barnhart et al. (2007b), all ICCs increase as the between-subject variation increases.

It implies that a good agreement based on ICC might be misleading since it may due

to the heterogeneity of the data.

1.2.2.2 Concordance Correlation Coefficient (CCC)

The concordance correlation coefficient (CCC) is another commonly used coefficient

for assessing agreement. The CCC was first introduced by Lin (1989) for the cases

where one reading is made by each of two observers on one subject. Assuming that the

observations are from a bivariate distribution with mean vector (µ1, µ2) and variance-

covariance matrix

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

, the original CCC between two observers Y1 and
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Y2 is proposed as

CCCLin = 1− E(Y2 − Y1)
2

E[(Y2 − Y1)2|ρ = 0]

=
2ρσ1σ2

σ2
1 + σ2

2 + (µ1 − µ2)2

where ρ is the Pearson correlation coefficient between two observers.

The CCC was later developed to the data without replications for multiple ob-

servers (Lin, 1989; King and Chinchilli, 2001a; Lin et al., 2002; Barnhart et al., 2002)

and with replications when none of the observers is considered as the reference (Barn-

hart et al., 2005; Lin et al., 2007). Other extensions include CCC for repeated mea-

sures for two or more observers (King et al., 2007; Quiroz, 2005) and for multivariate

observers (Jason and Olsson, 2001, 2004).

Under the same model (1.1) with the same assumptions and notations, the CCC

for agreement between J observers is called CCCtotal or ρc in Barnhart et al. (2007b)

and is defined as

CCCtotal = ρc = 1−

J−1∑
j=1

J∑
j′=j+1

E(Yijk − Yij′k′)2

J−1∑
j=1

J∑
j′=j+1

EI(Yijk − Yij′k′)2

(1.4)

=

2
J−1∑
j=1

J∑
j′=j+1

σjσj′ρjj′

(J − 1)
J∑

j=1

σ2
j +

J−1∑
j=1

J∑
j′=j+1

(µj − µj′)2

(1.5)

=

2
J−1∑
j=1

J∑
j′=j+1

σBjσBj′ρµjj′

J−1∑
j=1

J∑
j′=j+1

[2σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2 + σ2
Wj + σ2

Wj′ ]

(1.6)

where EI is the conditional expectation given independence of Yijk, Yij′k′ .
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The CCC for agreement between J observers without replications can be estimated

by the equation (1.5) and the method of moment. The CCC for agreement between

J observers with replications can be estimated by both equation (1.5) and (1.6) via

the method of moment (Barnhart et al., 2007b).

Other terms of CCC such as inter-CCC and intra-CCC were summarized in Barn-

hart et al. (2007b). A comparison between the ICC and the CCC was also presented

in the review paper (Barnhart et al., 2007b).

Although the CCC does not substantially depend on the ANOVA assumptions,

the CCC has the similar shortcoming as the ICC that the CCC is also an inflating

function of between-subject variability. A large value of CCC may be affected by un-

expected heterogeneity of population rather indicates a satisfactory agreement among

observers.

1.2.3 Discussion

The existing approaches for assessing agreement between multiple observers with con-

tinuous measurements have been dichotomized as using unscaled or scaled agreement

indices according to Barnhart et al. (2007b). It is important to distinguish between

unscaled and scaled measures of agreement.

An unscaled measure is simply the observed value of a disagreement function.

These methods are useful only when the upper limit is meaningfully predetermined.

One may also use the subject-specific values of the disagreement function to investi-

gate or model the dependence of the disagreement function on the variables that may

be related to the evaluation process, in a way that these covariates may be related to

the characteristics of the study subjects, to the properties of the observers, and/or to

the specific conditions under which the measurements are obtained.

Scaled measures of agreement are coefficients that compare the observed averaged

(over subject) disagreement function to a reference value, to which the observed
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value can be compared in order to obtain a standardized coefficient, so that a value

close to 1 indicates excellent agreement, and a value close to 0 indicates that there

is almost no agreement, and hence visionally demonstrating the closeness of two or

more observers. Historically, agreement between quantitative measurements has been

evaluated via the intraclass correlation coefficient (ICC). The ICC is usually defined

in the context of a one-way or two-way analysis of variance (ANOVA) model, which

assumes interchangeability between the observers. For example, it requires that all the

observers have the same “within” error variance and that all the correlations between

pairs of observers are equal. These assumptions might not be inappropriate when

of interest is to assess the agreement among fixed observers. The CCC is currently

the most commonly used measure of observer agreement. It is often criticized due

to its dependence on the between-subject heterogeneity (Atkinson and Nevill, 1997).

The CCC attains unreasonably high values when there is substantial heterogeneity

despite the fact that this heterogeneity is unrelated to the observer’s ability to perform

accurate and precise measurements (Haber et al., 2005).

Haber and Barnhart (2006) argued that the ICC and the CCC may produce un-

realistic values because they are based on the correction for chance agreement that

is used to standardize the observed value of the disagreement function. Equating

“agreement by chance” with independence is questionable for two reasons: (a) Inde-

pendence and lack of agreement are different concepts. Disagreement is based on the

distances between observations made on the same subject while independence means

that knowing the value assigned to a subject by one observer does not provide any

information regarding the values assigned by other observers. There are situations

where the observations between observers demonstrate a good agreement but the cor-

relation between the observations from the first observer and from the second observer

is poor; and situations of poor agreement but perfect correlation. For example, the

pairs (8,8), (8,9), (9,8), and (9,9) (scaled from 0 to 10) clearly show a good agreement;
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however, the correlation between the first readings and the second readings from the

pairs is zero (the CCC equals to 0, too). Another simple example illustrates the as-

sertion is that the correlation between two sets (X = 1, . . . , 10) and (Y = 11, . . . , 20)

is one, but they certainly do not agree with each other. (b) Even if two observers act

independently of each other, in the sense that they use different methods and are un-

aware of each other’s readings, the measurements are still expected to be statistically

dependent because their measurements depend on the subject’s “true value”, or on

other characteristics of the subject. In other words, expecting two observations made

on the same subject to be statistically independent is not realistic.

Due to these disadvantages, we propose the coefficients of individual agreement

CIAs, which will be introduced in the next chapter (Chapter 2), as an alternative

agreement index to the ICC/CCC. The CIAs are based on the comparison of the

between-observers disagreement to the within-observers disagreement, i.e. to the

disagreement between measurements made by the same observer on the same subject.
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1.3 Existing Methods for Qualitative Data

Cohen’s kappa coefficient and extended coefficients are commonly used to address

agreement between observers making categorial observations. In this section, we

introduce the original kappa coefficient followed by several extended and generalized

forms of kappa, which apply to different cases. We also review the limitations and

disadvantages of using kappa, which motivates us to develop a new coefficient for

agreement.

1.3.1 Kappa Statistics

Cohen (1960) proposed a coefficient called kappa to measure the agreement between

k observers, each of which classifies n subjects into m mutually exclusive categories.

Cohen’s kappa coefficient compares the observed proportion of agreement to the ex-

pected proportion of agreement, assuming that the distributions of the observer’s

responses are independent.

Thus, the idea of Cohen’s kappa basically is

κ =
Observed agreement− Expected (chance) agreement

Total observed (100%)− Expected (chance) agreement

The equation for κ is given by

κ =
p0 − pc

1− pc

(1.7)

where p0 is the observed agreement among two raters, and pc is the expected agree-

ment under independence.

Cohen’s kappa was originally proposed for two observers and two or more nominal

classifications. Cohen (1968) later extended his method to multiple ordinal classifi-

cations. Fleiss (1971) generalized Cohen’s kappa to the situations involving multiple
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observers and multiple categories.

1.3.1.1 Two Observers and Two Categories

In a variety of agreement applications, the observers produce only two possible out-

comes, for example, true or false; yes or no, and hence each outcome can be repre-

sented by a binary indicator valued by 0 or 1. A typical 2×2 table with two observers

and two classifications is shown below.

Table 1.1: A classic 2×2 table
Observer X
1 0 Total

Observer Y
1 n11 n10 n1.

0 n01 n00 n0.

Total n.1 n.0 n

To estimate Cohen’s kappa for two raters with binary outcomes, we use the ob-

served frequencies as shown in Table 1.1 to calculate the probabilities of each observer.

The observed agreement is then

p̂0 =
n11 + n00

n

And the proportion agreement expected by chance is

p̂c =
n1.

n
· n.1

n
+
n0.

n
· n.0

n

As a result,

κ̂ =
p̂0 − p̂c

1− p̂c

A perfect agreement corresponds to κ = 1. And lack of agreement (i.e. purely

random coincidences of observers) corresponds to κ = 0. A negative values of κ would

mean the propensity of an observer to avoid assignments made by another observer.
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Landis and Koch (1977) provided a table for the interpretation of kappa values

(Table 1.2). However, this table was produced mainly based on personal opinions with

no statistical evidence to support it. In fact, it has been noted that these guidelines

may be misleading, as the number of categories and subjects have impact on the

magnitude of the values. As pointed by Sim and Wright (2005), the kappa increases

as the number of categories decreases.

Table 1.2: Interpretation of kappa values
κ Interpretation
< 0 No agreement

0.0 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement
0.81 – 1.00 Almost perfect agreement

Fleiss et al. (1969) provided an estimated asymptotic variance for κ̂, expressed as

V̂ar(κ) =
1

n(1− pc)2

(
2∑

i=1

P̂ii

[
1− (P̂i. + P̂.i)(1− κ̂)

]2
+(1 + κ̂)2

2∑
i6=j

P̂ij(P̂i. + P̂.j)
2 − [κ̂− pc(1− κ̂)]2

)
(1.8)

1.3.1.2 Two Observers and Multiple Nominal Categories

When two raters classify n subjects into m (m > 2) mutually exclusive nominal scales,

denote πij as the joint probability for the cell (i, j) in Table 1.3, where an observation

is classified as category i by observer one and j by observer two. Then, the marginal

probabilities are defined as πi. =
∑

i πij and π.j =
∑

j πij
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Table 1.3: Joint and marginal probabilities for a m×m table
Observer X

1 2 . . . m Total

Observer Y

1 π11 π12 . . . π1m π1.

2 π21 π22 . . . π2m π2.

: : : : :
: : : : :
m πm1 πm2 . . . πmm πm.

Total π.1 π.2 . . . π.m 1

Consequently, the Cohen’s kappa (Cohen, 1960) can be written as

κ =

m∑
i=1

(πii − πi.π.j)

1−
m∑

i=1

πi.π.j

(1.9)

where
∑m

i=1 πii is the probability that two observers agree corresponding to p0 in

Equation (1.7), and
∑m

i=1 πi.π.j is the probability that two observers are expected

to agree by chance alone, which serves as pc in Equation (1.7) and hence should be

subtracted from p0 in the numerator and from 1 in the denominator.

To estimate this kappa for nominal observations, one may substitute πij with the

observed frequencies nij/n in Equation (1.9).

1.3.1.3 Two Observers and Multiple Ordinal Categories

The Cohen’s kappa in Equation (1.9) only deals with nominal scales. Then, Cohen

extended his idea and proposed the weighted kappa statistic (Cohen, 1968), which

provides a measure of agreement between two observers classifying observations into

one of m (m > 2) ordinal categories. The weighted kappa is a generalization of the

kappa statistic to the situations where the categories are weighted by an objective or

subjective function.

Depending on the particular situation to be investigated, a weight wij, 0 ≤ wij ≤ 1
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is assigned to each cell (i, j). The weight wij quantifies the degree of disagreement

between the ith and jth categories. The cells on the diagonal of the table of oc-

currences (Table 1.3) corresponding to identical categorizations by both observers,

receive weights of one, i.e. wii = 1. The cells (i, j) with highly different categories i

and j are given relatively small weights wij; whereas large weights wij are assigned

when the respective classes i and j are not far distant. Therefore, the values of weights

indicate the closeness of two classifications.

The weighted observed proportional agreement between the two raters is obtained

as

p0(w) =
m∑

i=1

m∑
j=1

wijπij

The weighted proportional agreement expected just by chance is given by

pc(w) =
m∑

i=1

m∑
j=1

wijπi.π.j

Then, weighted kappa, which may be interpreted as the chance-corrected weighted

proportional agreement, is

κw =
p0(w) − pc(w)

1− pc(w)

(1.10)

The maximum value for κw is one indicating a complete agreement between two

raters; whereas a value of zero corresponds to no agreement better than chance, and

negative values show worse than chance agreement.

The original Cohen’s kappa is a special case of weighted Cohen’s kappa with

weights wii = 1 and wij = 0, i 6= j.

Note that measures of weighted kappa are meaningful only if the categories are

ordinal and if the weights ascribed to the categories faithfully reflect the reality of the

situation. The weights in this case are determined by the imputed relative distances
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between successive ordinal categories.

1.3.1.4 Multiple Observers and Two Categories

In this section, we consider the cases where the number of observers varies across

subjects. Let ki (ki ≥ 2) denote the number of observers for subject i. Denote yij as

the reading by the jth observer on the ith subject. yij only takes values 0 or 1. Let

yi =
∑ki

j=1 yij be the total number of positive outcomes on the ith subject.

When all the subjects undergo the same number of classifications, i.e. k1 = k2 =

kn = k, Fleiss (1971) proposed to estimate the probabilities in κ as

p̂0 = 1− 2

n

n∑
i=1

yi(k − yi)

k(k − 1)

and

p̂c = 1− 2π̂(1− π̂)

where

π̂ =
1

nk

n∑
i=1

yi

Consequently, κ can be expressed as

κ̂f =
p̂0 − p̂c

1− p̂c

= 1−

n∑
i=1

yi(ki − yi)

nk(k − 1)π̂(1− π̂)
(1.11)

If the number of observers differs for each subject, Fleiss and Cuzick (1979) further
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developed κ̂f as

κ̂f = 1−

n∑
i=1

yi(ki − yi)/ki

n(k − 1)π̂(1− π̂)
(1.12)

where

k =
1

n

n∑
i=1

ki

is the average number of readings per subject, and correspondingly

π̂ =
1

kn

n∑
i=1

yi

1.3.1.5 Multiple Observers and Multiple Categories

In this section, we consider a generalization of the cases with multiple observers

and multiple categories. Fleiss (1971) generalized κ to apply to the scenarios where

n subjects are classified into m (m > 2) mutually exclusive nominal categories by

k (k > 2) different observers. Let yij be the number of observers classifying the

ith (i = 1, . . . , n) subject into the jth (j = 1, . . . ,m) category. The chance-corrected

measure of overall agreement proposed by Fleiss (1971) is given by

κ̂mc =

n∑
i=1

m∑
j=1

y2
ij − nk

[
1 + (k − 1)

m∑
j=1

p2
j

]
nk(k − 1)

[
1−

∑m
j=1 p

2
j

] (1.13)

where

pj =
1

nk

n∑
i=1

yij

is the proportion of all classifications into the jth category.
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Shoukri (2004) showed that for computation purpose, Equation (1.13) can be

written in the form of Equation (1.7). That is

κmc =
p̂0 − p̂c

1− p̂c

where

p̂0 =
n∑

i=1

m∑
j=1

y2
ij − nk

and

p̂c =
m∑

j=1

p2
j

Landis and Koch (1977) also provided a unified formula analogous to Equation

(1.7)

κih =
λih − γih

1− γih

where λih =
∑
· · ·
∑

j whjπij represents the weighted sum of the observed probability

of agreement corresponding to the hth set of weights in the ith sub-population; and

γih =
∑
· · ·
∑

j whjπ
(e)
ij represents the weighted sum of the expected probability of

agreement corresponding to the same situation.

1.3.2 ICC for Binary Observations

Bloch and Kraemer (1989) introduced an alternative index called intraclass correla-

tion coefficient (ICC) for assessing degree of beyond-chance agreement between two

observers based on a binary response. Bloch and Kraemer (1989) assumed that the

responses of the ratings per subject are interchangeable. In other words, in the

population of interest, the ratings for each subject is distributed invariant under all

permutations of the raters. Bloch and Kraemer (1989) derived intraclass kappa as

follows.

Let Yij be the dichotomous reading by the jth observer conditional on the ith
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subject. The ICC is defined as

ρ =
Cov(Yi1, Yi2)√

Var(Yi1)Var(Yi2)
(1.14)

Let Pr(Yij = 1|i) = pi be the probability of positive ratings. Over the population

of subjects, denote E(pi) = P and Var(pi) = σ2
P The probability that two observers

agree for subject i is Pr(Yi1 = 1∩ Yi2 = 1|i) + Pr(Yi1 = 0∩ Yi2 = 0|i) = p2
i + (1− pi)

2

Therefore, the expected probability of agreement over all subject is

p0 = E
[
p2

i + (1− pi)
2
]

= 2E(p2
i )− 2E(pi) + 1

= 2Var(pi) + 2E2(pi)− 2E(pi) + 1

= 2σ2
P + P 2 + (1− P )2 (1.15)

and

pc = P 2 + (1− P )2

Then, substituting p0 and pc in Equation 1.7, the intraclass kappa is defined as

κI =
p0 − pc

1− pc

=
σ2

P

P (1− P )
(1.16)

We now show that κI (1.16) is equivalent to ICC as in Equation (1.14). The

unconditional expectation is

E(Yij) = Ei[E(Yij|i)] = E(pi) = P
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and variance is

Var(Yij) = Var[E(Yij|i)] + E[Var(Yij|i)] = E[pi(1− pi)] + Var(pi)

= E(pi)− E(p2
i ) + E(p2

i )− E2(pi)

= E(pi)− E2(pi) = P (1− P )

Therefore, Cov(Yi1, Yi2) = ρP (1− P )

As a consequence, the unconditional expected probability of agreement is

p0 = E [Pr(Yi1 = 1 ∩ Yi2 = 1) + Pr(Yi1 = 0 ∩ Yi2 = 0)]

= P 2 + ρP (1− P ) + (1− P )2 + ρP (1− P )

= P 2 + (1− P )2 + 2ρP (1− P ) (1.17)

Comparing two equations for p0 (1.15) and (1.17), we conclude that Var(pi) =

σ2
P = ρP (1− P ) As a result, κI (1.16) reduces to

κI =
σ2

P

P (1− P )
=
ρP (1− P )

P (1− P )
= ρ

That is to say, the ICC and intraclass kappa are equivalent under the assumption

that each observer is characterized by the same marginal probability of positive ratings

and two ratings on each subject are interchangeable.

P can be estimated by its maximum likelihood estimate, namely

P̂ =
2n11 + n10 + n01

2n

As a consequence, the estimator for κI is

κ̂I =
4(n11n00)− (n10 − n01)

2

(2n11 + n10 + n01)(2n00 + n10 + n01)
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1.3.3 CCC for Categorical Observations

Again consider the cases where readings Yij (j = 1, 2) are made by two observers on

each subject. The concordance correlation coefficient (CCC) is defined in Lin (1989)

as

ρc = 1− E[(Yi1 − Yi2)
2]

E[(Yi1 − Yi2)2|Yi1, Yi2 are independent]
(1.18)

Assume that the observations (Yi1 Yi2) are independently selected from a bivariate

population with cumulative distribution function (CDF) FY1Y2 . And denote FY1 and

FY2 as the marginal CDFs for Y1 and Y2 respectively. Let g(Y1− Y2) be an integrable

function with respect to FY1Y2 , where g(·) is a convex function of distance. The

expectation E[g(Y1−Y2)] is used to describe the degree of agreement between Y1 and

Y2. The generalized CCC is then written as (King and Chinchilli, 2001a)

ρg =
EFY1

FY2
[g(Y1 − Y2)− g(Y1 + Y2)]− EFY1Y2

[g(Y1 − Y2)− g(Y1 + Y2)]

EFY1
FY2

[g(Y1 − Y2)− g(Y1 + Y2)] + EFY1Y2
[g(2Y1) + g(2Y2)]/2

(1.19)

ρg (1.19) reduces to ρc (1.18) when g(x) = x2

An estimator for ρg (1.19) given by King and Chinchilli (2001a) is

ρ̂g =
1
n

∑
i

∑
j[g(Y1i − Y2j)− g(Y1i + Y2j)]−

∑
i[g(Y1i − Y2i)− g(Y1i + Y2i)]

1
n

∑
i

∑
j[g(Y1i − Y2j)− g(Y1i + Y2j)] +

∑
i[g(2Y1i) + g(2Y2i)]/2

(1.20)

King and Chinchilli (2001a) proposed a generalized form of CCC to evaluate

agreement for responses assessed on a categorical scale by defining the function of

distance in general as

g(x) =

 0 if x = 0

1 if |x| > 0
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Then, ρg (1.19) becomes

ρg =
Pr(Y1 6= Y2|Y1, Y2 are independent)− Pr(Y1 6= Y2|Y1, Y2 are dependent)

Pr(Y1 6= Y2|Y1, Y2 are independent)
(1.21)

Using marginal probabilities, Equation (1.21) can further be expressed as

ρg =

∑
i pii −

∑
i pi·p·i

1−
∑

i pi·p·i
(1.22)

where pii = Pr(Y1 = i, Y2 = i), pi· = Pr(Y1 = i), and p·i = Pr(Y2 = i)

The estimate of (1.22) is given by the observed frequencies as

ρ̂g =
1
n

∑
i6=j ni·n·j −

∑
i6=j nij

1
n

∑
i6=j ni·n·j

(1.23)

It is easy to see that (1.22) is in a form of kappa (1.7) with p0 =
∑

i pii and

pc =
∑

i pi·p·i As a result, Equation (1.8) can be utilized to estimate the asymptotic

variance for (1.22). Therefore, the extended CCC for categorical data and its associ-

ated inference are equivalent to the kappa and the weighted kappa statistics. (King

and Chinchilli, 2001a; Lin et al., 2007).

In addition, the CCC is known to depend on between-subject variability which

may result from the fact that it is scaled relative to the maximum disagreement defined

as the expected squared difference under independence (Barnhart et al., 2007c).

1.3.4 Limitations of Kappa Statistics

All the coefficients of agreement previously mentioned are kappa-type measures, and

hence are generally called kappa statistics.

Despite their popularity, there is a wide controversy about the reliability of kappa

statistics to assess observer agreement.

One of the limitations of kappa is that it does not distinguish various types and
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sources of disagreements (Thompson and Walter, 1988).

Moreover, Kraemer (1979) and Thompson and Walter (1988) revealed that not

only the sensitivity and specificity for each observer but also the prevalence of the

characteristic of interest such as the rareness of a disease greatly influence the values

of kappa as demonstrated in Figures 1.1 and 3.1. As revealed in Shoukri (2004), in

the evaluation of diagnostic markers, it is well known that certain tests that appears

to conceive high sensitivity and specificity may on the other hand have low predictive

accuracy when the prevalence of the disease is low. Analogously, two observers who

on the surface greatly agree with each other may nevertheless yield low values of

kappa. Kraemer (1979) confirmed this scenario and unveiled that the prevalence of

the condition may alter the results of kappa despite the constant values of accuracy

for each observer. Thompson and Walter (1988) extended the argument made by

Kraemer (1979) and showed that assuming the independence of the errors of the two

dichotomous categories, κ can be rephrased as an index of validity using sensitivities,

specificities and prevalence, that is

κ =
2θ(1− θ)(1− α1 − β1)(1− α2 − β2)

π1(1− π2) + π2(1− π1)
(1.24)

where

θ = true proportion having the characteristic

1− αi = specificity for ith observer (i = 1, 2)

1− βi = sensitivity for ith observer (i = 1, 2)

πi = θ(1− βi) + (1− θ)αi (i = 1, 2)

Equation (1.24) reveals that κ strongly relies on the true prevalence of the con-

dition being diagnosed. Considering a simple case where both specificities and sen-
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sitivities being high, i.e. 1 − αi = 1 − βi = 0.9 (i = 1, 2) etc., Figure 1.1 shows the

direction of the movement of κ with change in prevalence. Under all four scenarios,

κ acts as a concave function of the prevalence θ. It clearly displays a trend that a

low prevalence results in poor agreement. As shown in Figure 1.1, when the preva-

lence θ is noticeably small, it may be difficult to obtain a large value of kappa since

κ displayed is close to zero. It implies that when a disease is not common among

population, which is usually the case, a high value of kappa might not be achievable.

As a result, since the true sensitivities, specificities and prevalence are unknown in

reality, the heavy dependence of kappa on the prevalence puts the interpretation and

understanding of kappa as a measurement for agreement in a questionable place. The

comparison of two kappa values may be jeopardized if the underlying prevalences for

the situations are far apart. Particularly, it is substantially difficult to attain a high

value of kappa when the disease is considerably rare.

Furthermore, Feinstein and Cicchetti (1990) discussed situations leading to low

values of kappa although the data exhibits good agreement. Feinstein and Cicchetti

(1990) pointed out that paradoxes between high proportion of observed agreement

but low kappa could occur when the distribution of marginal totals is substantially

not balanced or symmetric.

Revisiting Equation (1.7),

κ =
p0 − pc

1− pc

one may notice that if the observed probability of agreement p0 is fixed, the value of

kappa increases as the expected proportion of agreement pc declines.

As explained by Feinstein and Cicchetti (1990), this paradox may happen when

the marginal totals are “highly symmetrically unbalanced”, where “unbalance” means

that the marginal frequencies significantly differ, i.e. n1. far apart from n0. or n.1 far
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Figure 1.1: κ as a function of the prevalence (θ) for different settings of specificities
1− α and sensitivities 1− β based on Equation (1.24)
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apart from n.0 or both as in Table 1.1; while “symmetry” means (n1. > n0. and n.1 >

n.0) or (n1. < n0. and n.1 < n.0).

As an example, consider the 2×2 table with entries n11 = 98, n10 = n01 = 1, and

n00 = 0 (Table 1.4). Here κ = −0.01, despite the fact that the observers agree on

the classification of 98% of the subjects. The reason for the discrepancy between the

observed agreement and kappa shown in the above example and Table 1.4 may due to

the unbalanced distribution of marginals, i.e. n1. = 99 is very different from n0. = 1

or n.1 = 99 is very different from n.0 = 1.

Table 1.4: A hypothetical example of symmetrical unbalanced data
Observer X
1 0 Total

Observer Y
1 98 1 99
0 1 0 1

Total 99 1 100

Another paradox occurs when the symmetrically unbalanced distributed data yield

higher kappa than “asymmetrically unbalanced” distributed data even when the ob-

served agreement is equal or close. Here, “asymmetry” means (n1. > n0. but n.1 <

n.0) or (n1. < n0. but n.1 > n.0). An illustrative example is demonstrated in Tables

1.5 and 1.6.

Table 1.5: A hypothetical example of symmetrical unbalanced data
Observer X
1 0 Total

Observer Y
1 80 10 90
0 10 0 10

Total 90 10 100

The observed proportion of agreement p0 for both cases is 80%. However, κ = 0.61

for the asymmetrical unbalanced marginals (n1. = 58 > n0. = 42 but n.1 = 42 <

n.0 = 58) in Table 1.6 with the chance of agreement pc = 0.4872; while, κ = −0.11 for
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Table 1.6: A hypothetical example of asymmetrical unbalanced data
Observer X
1 0 Total

Observer Y
1 40 18 58
0 2 40 42

Total 42 58 100

the symmetrical unbalanced marginals (n1. = 90 > n0. = 10 and n.1 = 90 > n.0 = 10)

in Table 1.5 with the chance of agreement pc = 0.82. Therefore, even with the

same proportion of observed agreement, kappa for asymmetrical unbalanced data

was greatly larger than that for symmetrical unbalanced data.

In addition, weights are arbitrarily selected to calculate weighted kappa for ordered

categorical observations (Maclure and Willett, 1987).

In summary, the limitations and shortcomings of kappa statistics include that (1)

kappa heavily depends on the prevalence of the characteristic of interest; (2) imbalance

of data could cause a conflictive scenario where kappa indicates poor agreement while

data demonstrate good concordance; (3) asymmetry of data could cause a paradoxical

issue where kappa increases as the marginal distribution departures from symmetry;

(4) for ordinal categorical data, weighted kappa should be used with caution.

In our opinion, these issues are related to the fact that the present coefficients

compare the observed agreement to the expected agreement under independence. It

is well known that correlation and agreement are different concepts (Haber and Barn-

hart, 2006) and hence both kappa and the ICC/CCC measure a combination of the

effects of disagreement and independence. A more detailed discussion on agreement

and correlation is shown in Section 1.2.3. Therefore, one should be concerned when

using kappa coefficients which have been long recognized as a potentially misleading

index, and hence alternative methods might be preferable.
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Chapter 2

Coefficient of Individual

Agreement
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2.1 Motivation

The coefficient of individual agreement (CIA) was first introduced by Barnhart et al.

(2007a); Haber and Barnhart (2008) as an alternative scaled index for assessing agree-

ment, which may be preferable to the ICC/CCC because it does not depend on the

between-subject variability. Instead of deriving a direct index for agreement, the

concept of the compliment of agreement, which is disagreement, was considered. A

strong disagreement certainly indicates a poor agreement, and vice versa. The CIA

is a scaled index in a way that it is based on the idea of the acceptable disagreement.

Furthermore, often of the times, assessing disagreement leads to assessing both

intra-observer and inter-observer disagreement. The reason lies in that assessing

both within- and between-observer disagreement would help in unveiling the causes

of the observed disagreement, where the intra-observer disagreement measures the

“consistency” of readings within an observer; while, the inter-observer disagreement

measures the “consistency” of true differences in readings attributed by observers

(Barnhart et al., 2005). A total measure of agreement, on the other hand, conceals

the sources of disagreement.

Moreover, the acceptable disagreement is based on the idea that the disagreement

between two or more observers is acceptable if the observers can be used interchange-

ably. Moreover, it is common that replicated measurements are conducted for an

observer to ensure accuracy and minimize measurement errors. First, the replica-

tion errors within an observers should be considerably small, especially when this

observer is considered as a “gold standard” or reference. That is to say that the

disagreement between replicated measurements of an observer on the same subject is

acceptable. Then, under satisfactory agreement, the disagreement between readings

of different observers is not expected to exceed the disagreement between replicated

readings of the same observer. In other words, a good agreement implies that re-

placing one observer by another or using the observers interchangeably does not
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substantially increase the within-subject variability. Intuitively, interchangeability is

established when the between-observer (or inter-observer) disagreement is close to

the within-observer (or intra-observer) disagreement. On the other hand, if the dif-

ferences between measurements by different observers are relatively large and hence

these differences exceed the differences of replicated measurements of the same ob-

server, then one can conclude that there is a poor agreement between the observers.

Therefore, the ratio comparing the within-observer disagreement – which is assumed

to be acceptable – to the between-observer disagreement is adopted to measure the

degree of agreement between observers.

In the context of observer agreement, suppose that there are only two observers,

whose measurements are denoted by X and Y . Using the squared difference as the

disagreement function, E(X − Y )2 is a measure of the disagreement between the

observers. Let X and X ′ denote two replicated observations by the first observer,

and let Y and Y ′ denote two replicated observations by the second observer. If the

observers agree with each other, we can expect that E(X−Y )2 will not be much larger

than E(X−X ′)2 and E(Y −Y ′)2. In other words, replacing one observer by the other

does not substantially increase the disagreement. We distinguish two cases: (a) when

one of the observers (X) is known to make accurate and precise measurements, we

compare E(X − Y )2 to E(X − X ′)2. (b) when none of the observers is assumed to

be better than the other, we compare E(X − Y )2 to the mean of E(X − X ′)2 and

E(Y − Y ′)2.

Moreover, the CIA is measured based on individual level. The reason lies in that

the agreement may vary across subjects. A coefficient measured at individual level

diminishes the effect of the between-subject variability. This concept of individual

agreement is similar to the concept of individual bioequivalence in bioequivalence

studies (Anderson and Hauck, 1990; Schall and Luus, 1993; Wang, 1999). Taking

into consideration of the bioequivalence at individual level allows the investigator to



40

compare the intra-individual variances and to determine the switchability of two med-

ications for a given individual. The purpose of an individual bioequivalence study

is to ensure that an individual could suitably be switched from a therapeutically

successful formulation to a different formulation with unchanged efficacy and safety.

Population bioequivalence, however, is not sufficient to guarantee that an individual

patient would be expected to respond similarly to the two formulations. Because of

the advantages of the individual comparison, our approach on assessing agreement is

also constructed from subject level to population level to ensure that the interchange-

ability of two observers remains stable across different individuals.

Nevertheless, as Barnhart et al. (2007a) pointed out, the acceptance of the within-

observer disagreement should be verified before constructing the agreement coefficient

CIA to assure the applicability of CIA. Barnhart et al. (2007a) suggested that the

repeatability of an observer 1.96
√

2σ2
W should be compared to an pre-specified value

within which the difference between two measurements by the same observer should

cover 95% of all the subjects.

In order to establish the within-observer disagreement and compare to the between-

observer disagreement, replicated measurements by observers on the same subject are

necessary for the estimation and inference on CIA.

2.2 Definition of Coefficients

2.2.1 CIA for Continuous Observations

Let Yijk = µij + εijk with the notations and assumptions described as in Section 1.2.

The CIA for J raters making continues observations when neither of the observers

is considered as the reference is defined as (Barnhart et al., 2007a)
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ψN =

J∑
j=1

E(Yijk − Yijk′)2/2

J−1∑
j=1

J∑
j′=j+1

E[(Yijk − Yij′k′)2]/(J − 1)

(where k 6= k′)

=

J−1∑
j=1

J∑
j′=j+1

(σ2
Wj + σ2

Wj′)

J−1∑
j=1

J∑
j′=j+1

[2(1− ρµjj′)σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2 + σ2
Wj + σ2

Wj′ ]

(2.1)

when the J th observer is treated as a reference, the CIA is defined as (Barnhart et al.,

2007a)

ψR =
E(YiJk − YiJk′)2/2

J−1∑
j=1

E[(Yijk − YiJk′)2]/(J − 1)

(where k 6= k′)

=
σ2

WJ

J−1∑
j=1

[2(1− ρµjJ)σBjσBJ + (µj − µJ)2 + (σBj − σBJ)2 + σ2
Wj + σ2

WJ ]

(2.2)

Barnhart et al. (2007a) demonstrated that there are one-to-one mappings between

the ψN and the two previously proposed agreement coefficients by Haber et al. (2005)

and Shao and Zhong (2004).

Haber and Barnhart (2008) also stated that the coefficient ψN can also be inter-
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preted in the context of the simple model Yijk = µij + εijk. They showed that

ψN =

J−1∑
j=1

J∑
j′=j+1

E(Yijk − Yij′k)
2 when µi1 = · · ·µiJ , for every i

J−1∑
j=1

J∑
j′=j+1

E(Yijk − Yij′k)
2

In other words, ψN compares the observed average disagreement among J observers

to the expected average disagreement when there are no systematic differences among

the J observers.

The CIAs ψN and ψR can also be expressed in terms of a two-factor ANOVA

model:

Yijk = µ+ αi + βj + γij + εijk

where αi ∼ N(0, σ2
α), γij ∼ N(0, σ2

γ), εijk ∼ N(0, σ2
εj

) and β1,· · · , βJ are fixed. This

model generalizes the models used in Section 1.2.2.1 to define ICC3 to the scenarios

where observers may have coefficient error variances. Denoting σ2
β =

J∑
j=1

β2
j /(J − 1),

Haber et al. (2005) demonstrated that

ψN =
σ2

ε·
σ2

β + σ2
γ + σ2

ε·

where σ2
ε· =

∑
σ2

εj
/J In the case where observer J is a reference, it can be shown

that

ψR =
σ2

εJ

σ2
β + σ2

γ + σ2
ε·

2.2.2 A General Approach for Two Observers

Haber and Barnhart (2008) proposed a general formulation of CIAs for two observers

using a general disagreement function to quantify the discordance between observer

and within observer disagreements.
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Denote two observers by X and Y , a disagreement function G(X, Y ) must satisfy

� G(X, Y ) ≥ 0,

� G(X, Y ) increases as the disagreement between X and Y (according to a specific

criterion) increases.

Here, G(X, Y ) represents the between-observer disagreement. We denote G(X,X ′)

and G(Y, Y ′) as the disagreements between two replicated observations of X and Y

respectively. The CIAs with a specific disagreement function G are defined as

ψN =
[G(X,X ′) +G(Y, Y ′)]/2

G(X,Y )
(2.3)

when the two observers are in symmetric position with no reference; and

ψR =
G(X,X ′)

G(X, Y )
(2.4)

assuming that the observer X is considered as the reference.

Commonly used disagreement functions include the mean squared difference, G(X, Y ) =

E(X−Y )2 = MSD(X, Y ) (see Section 1.2.1.1), the mean absolute difference, G(X,Y ) =

E|X − Y |, which can be expressed in the same unites as the individual observations.

Other possible choices are the mean relative difference, MRD = E[|X − Y |/X], or

the mean of the Winsorized squared distance (King and Chinchilli, 2001a),

d(x− y) =

 (x− y)2 when |x− y| ≤ a

a2 when |x− y| > a

for a pre-selected positive constant a. The last disagreement function is more robust

to the effects of outliers.
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2.2.3 Estimation

To estimate the CIAs, denoting the numbers of replications for observer X and Y

as K and L, respectively. K and L are allowed to be different. For each subject i,

the estimates for the disagreement functions are denoted as Ĝi(X, Y ), Ĝi(X,X
′) and

Ĝi(Y, Y
′) where

Ĝi(X, Y ) =
1

KL

K∑
k=1

L∑
l=1

G(Xik, Yil)

Ĝi(X,X
′) =

2

K(K − 1)

K−1∑
k=1

K∑
k′=k+1

G(Xik, Xik′)

Ĝi(Y, Y
′) =

2

L(L− 1)

L−1∑
l=1

L∑
l′=l+1

G(Yil, Yil′)

and let Ĝ(X, Y ), Ĝ(X,X ′), Ĝ(Y, Y ′) be means of the Ĝi’s over all subjects. Then,

ψN and ψR are estimated as follows:

ψ̂N =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2

Ĝ(X,Y )
(2.5)

ψ̂R =
Ĝ(X,X ′)

Ĝ(X,Y )
(2.6)

2.2.4 Extension to More Than Two Observers

The concepts and estimations can be easily extended to the cases where there are

J (J > 2) observers, namely, Y1, Y2, · · · , YJ .

The overall between-observer disagreement among all J observers can be defined

as the mean of all possible pairwise between-observer disagreements G(Yj, Y
′
j ). The

overall within-observer disagreement is defined as the average of all J within-observer

disagreements G(Yj, Yj′). When none of the observers is served as a reference, ψN is
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defined as the ratio as

ψN =

1

J

J∑
j=1

G(Yj, Y
′
j )

2

J(J − 1)

J−1∑
j=1

J∑
j′=j+1

G(Yj, Yj′)

(2.7)

When observer J is considered as a reference, ψR is defined as the ratio of the

within-observer disagreement of observer J and the mean of the J − 1 disagreements,

G(Yj, YJ), between the first J − 1 observers and observer J :

ψR =
G(YJ , Y

′
J)

1

J − 1

J−1∑
j=1

G(Yj, YJ)

(2.8)

In Wiener (2009)’s dissertation and Haber et al. (2005), the CIAs for multi-

observer are estimated as follows.

Define

Ti =
1

2

J−1∑
j=1

J∑
j′=j+1

(Yij· − Yij′·)
2

TiR =
1

2

J−1∑
j=1

(Yij· − YiJ ·)
2

and

Uij =
1

Kj − 1

Kj∑
k=1

(Yijk − Yij·)
2

where K1, . . . , KJ are the number of replicates made by each of the J observers, and

a(·) represents the arithmetic mean with respect to the corresponding index. As a
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result, (2.7) and (2.8) can be estimated as

ψ̂N =
U··

T· +
J∑

j=1

(
1− 1

Kj

)
U·j

(2.9)

ψ̂R =
2U·J

T·R +
J∑

j=1

(
1− 1

Kj

)
U·j

(2.10)

Alternatively, for continuous outcomes, the estimates from ANOVA models can

be used to evaluate the CIAs described by Barnhart et al. (2007a).

2.3 Comparison of CIA and CCC for Replicated

Quantitative Data

Barnhart et al. (2007c) compared the CCC and the CIA for quantitative data with

replications when none of the observers is considered as the reference. For a simple

case where two observers are involved and the between-subject variabilities across

two observers are assumed equal, i.e. σ2
B1

= σ2
B2

= σ2
B; and analogous for the within-

subject variabilities, σ2
W1

= σ2
W2

= σ2
W . The two coefficients are both rewritten in

terms of the overall location shift (µ1−µ2), the between- and within-subject variances

(σ2
B and σ2

W ), and the correlation coefficient (ρµ12). When neither of the observers is

a reference, the total CCC and the CIA are restated as

ρc =
2σ2

Bρµ12

(µ1 − µ2)2 + 2(σ2
B + σ2

W )

and

ψN =
2σ2

W

(µ1 − µ2)2 + 2(1− ρµ12)σ
2
B + 2σ2

W

As one can observe from the above two equalities, both coefficients increase as
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the correlation (ρµ12) increases and decrease as the difference of the means (µ1 − µ2)

increases. Due to the difference in the numerators (σ2
B for ρc and σ2

W for ψN), the

CCC amplifies when the between-subject variability (σ2
B) increases and the within-

subject (σ2
W ) variability decreases. However, the CIA declines if the same situation

occurs, where the between-subjects variability (σ2
B) increases and the within-subject

variability (σ2
W ) decreases. Moreover, Barnhart et al. (2007c) revealed that the CCC

is more dependent on the relative magnitude of the between- and within-subject

variabilities, σ2
B/σ

2
W , than the CIA.

In general, the relationship between the CCC and the CIA for continuous obser-

vations can be expressed as (Barnhart et al., 2007c)

ψN = ρc/[(1− ρc)γ]

where γ = 2σB1σB2ρµ12/(σ
2
W1

+ σ2
W2

)

These properties of the CCC and the CIA also apply for the cases where more

than two observers are involved and none of them serves as a reference. Also, when

one of the observers is treated as a “gold standard”, the same conclusion can be drawn

between the CCC and the CIA (Barnhart et al., 2007c).
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Chapter 3

Assessing Observer Agreement for

Studies Involving Binary

Observations
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3.1 Introduction

Agreement between observers classifying subjects according to a binary trait is usually

assessed via Cohen’s kappa coefficient. As demonstrated in Section 1.3, several papers

argued that this coefficient sometimes attains erratic values.

In this Chapter, we apply the CIA to assess agreement for binary observations.

Denoting by X and Y the observations made by two observers, In general, a dis-

agreement function G(X, Y ) has to be defined to quantify the disagreement or the

discordance between two observers on the same subject. We assumed G(X, Y ) ≥ 0

and G(X,X) = 0. In order to obtain a coefficient of agreement so that values close to

1 indicate good agreement, we compare the disagreement between the two observers

to the disagreement between two replicated readings of the same observer. This is

based on the notion that usually we do not expect the agreement between the two ob-

servers to be better than the agreement between replicated observations of the same

observer and hence, we are satisfied if these quantities are about equal.

In Chapter 2, we distinguished between two types coefficients of agreement: in

the symmetrical case, when none of the observers can be considered as a reference

(or “gold standard”), it makes sense to compare the disagreement between X and Y

to the average of the disagreements between two readings of X and the disagreement

between two readings of Y . In this case the proposed coefficient was defined as :

ψN =
[G(X,X ′) +G(Y, Y ′)]/2

G(X, Y )

where G(X,X ′) and G(Y, Y ′) are the values of the disagreement function between

two observations made by the same observer. However, frequently we are interested

in comparing a new observer to an experienced and reliable observer. In this case it

makes sense to consider the experienced observer as a reference (or “gold standard”).

We denote the reference as X and the new observer as Y . (It is assumed that observer
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X may make an error from time to time). The coefficient of agreement with observer

X considered as a reference was defined as

ψR =
G(X,X ′)

G(X, Y )

When X and Y are continuous, the most common disagreement function is the

mean squared deviation (MSD, (Lin et al., 2002)): G(X, Y ) = MSD(X, Y ) = E(X −

Y )2. When X and Y are binary, we have G(X, Y ) = MSD(X, Y ) = E(X − Y )2 =

Pr(X = 1, Y = 0) + Pr(X = 0, Y = 1) = Pr(X 6= Y ) In the next section, we

will use this disagreement function to derive the coefficients ψN and ψR for binary

observations.

There are relatively few works on assessment of agreement among observers mak-

ing replicated binary readings on a set of subjects. Baker et al. (1991) proposed latent

class models for studies of observer agreement with replicated assessments of binary

responses. In his Ph.D. dissertation, Baughman (2000) developed latent models and

generalized kappa statistics for binary data with replicated readings. Kirchner and

Lemke (2002) proposed measures of agreement based on odds ratios for this type of

data.
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3.2 Definition of Coefficients

3.2.1 Definition

To define the coefficients introduced in Section 3.1, we begin at the level of an indi-

vidual study subject. For subject i, i = 1, . . . , N , let Xik be the Ki replicated binary

observations made by observer X, and let Yil be the Li replicated binary observations

made by observer Y . As in Haber and Barnhart (2008), we assume that these are

unmatched replications, i.e., we can permute the replications of one observer without

changing the order of the replications of the other one. We allow the distributions

of X and Y to be heterogeneous across the study subjects. When the observations

made by two observers are binary, the probabilities of observing the outcomes being

one for each subject are given by

πi = Pr(Xik = 1), k = 1, . . . , Ki

λi = Pr(Yil = 1), l = 1, . . . , Li

To obtain the coefficients introduced in Section 3.1, the subject-specific disagree-

ment functions are defined as

Gi(X,Y ) = Pr(Xik 6= Yil|i)

= Pr(Xik = 1, Yil = 0|i) + Pr(Xik = 0, Yil = 1|i)

= πi(1− λi) + (1− πi)λi

= πi + λi − 2πiλi
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Similarly,

Gi(X,X
′) = Pr(Xik 6= Xik′|i)

= 2πi(1− πi)

Gi(Y, Y
′) = Pr(Yil 6= Yil′|i)

= 2λi(1− λi)

The overall disagreement function, G, is the mean of the Gi’s over all the subjects,

defined as

G =
1

N

N∑
i=1

Gi

When none of the observers is considered as a reference, the CIA is defined as

ψN =
[G(X,X ′) +G(Y, Y ′)]/2

G(X,Y )

=

∑
i[πi(1− πi) + λi(1− λi)]∑

i(πi + λi − 2πiλi)
(3.1)

When X is treated as the reference, the CIA is defined as

ψR =
G(X,X ′)

G(X, Y )

=
2
∑

i[πi(1− πi)]∑
i(πi + λi − 2πiλi)

(3.2)

3.2.2 Interpretation and Properties of the CIAs

Both coefficients compare the inter- and intra-observer probabilities of disagreement

or discordance. These coefficients usually range from 0 to 1. Nevertheless, a value

beyond one is plausible. If two observers agree with each other then we would expect

these two disagreement probabilities to be similar. Hence, a value close to 1, which

can be viewed as the “null value”, indicates satisfactory agreement. We believe that
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in order to claim “acceptable” agreement, the coefficient should be at least 0.8. A

value less than 0.8 for ψ indicates that the probability of discordance between the

observers is greater by 25% or more than the probability of discordance between two

readings by the same observer. Very small values of ψ usually result from almost

perfect agreement between the replicated readings of the same observer. The coeffi-

cient ψR will be zero when the reference observer always assigns the same values to

all the replicated readings made on the same subject. Likewise, ψN = 0 when there

is no intra-subject variability for both observers. Using only the point estimates for

justification sometimes might not be ideal especially when lack of sufficient observa-

tions. A more conservative decision rule is that if the lower bound of the confidence

interval for estimated ψ is greater than 0.8, then the observer agreement is considered

as “good”; while, if the upper bound of the confidence interval for estimated ψ is less

than 0.8, then the observer agreement is considered as “poor”.

3.2.3 Estimation

3.2.3.1 Parametric Approach

We denote by π̂i and λ̂i the proportions of the positive readings of Xik’s and Yil’s,

respectively. We estimate the classification probabilities as

π̂i =
Ti

Ki

λ̂i =
Ui

Li

where Ti represents the total number of Xik being one for the subject i; Ui represents

the total number of Yil being one for the subject i.
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The unbiased estimators of the subject-specific disagreement functions are

Ĝi(X,Y ) = π̂i + λ̂i − 2π̂iλ̂i

Ĝi(X,X
′) = 2Kiπ̂i(1− π̂i)/(Ki − 1)

Ĝi(Y, Y
′) = 2Liλ̂i(1− λ̂i)/(Li − 1)

Then, the estimations of the overall G’s are

Ĝ(X, Y ) = Ĝi(X,Y )

Ĝ(X,X ′) = Ĝi(X,X ′)

Ĝ(Y, Y ′) = Ĝi(Y, Y ′)

Using (3.1) and (3.2), we obtain the following estimates of the agreement coeffi-

cients.

When none of the observers is considered as a reference, the CIA is estimated as

ψ̂N =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2

Ĝ(X, Y )

=

∑
i[Kiπ̂i(1− π̂i)/(Ki − 1) + Liλ̂i(1− λ̂i)/(Li − 1)]∑

i(π̂i + λ̂i − 2π̂iλ̂i)
(3.3)

When X is treated as the reference, the CIA is defined as

ψ̂R =
Ĝ(X,X ′)

Ĝ(X, Y )

=
2
∑

i[Kiπ̂i(1− π̂i)/(Ki − 1)]∑
i(π̂i + λ̂i − 2π̂iλ̂i)

(3.4)
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3.2.3.2 Nonparametric Approach

In this section, we prove that using the parametric method to estimate the dis-

agreement functions is equivalent to using a nonparametric method. The approach

demonstrated in the above section (Section 3.2.3.1) is considered as parametric be-

cause it involves estimating the parameters π’s and λ’s in order to obtain estimates

for the disagreement functions and we assume conditional independence of repli-

cations for each observer. The nonparametric approach here means that the dis-

agreement functions can be estimated by directly comparing the outcome responses

from one or both observers without estimating a parameter. For example, if the

replications on X are identical, i.e. Xi1 = Xi2 assuming two replications, then

Ĝi(X,X
′) = 0, the within-observer disagreement for X is none. If two replicates

differ for an observer, i.e., Xi1 6= Xi2 and/or Yi1 6= Yi2, then clearly Ĝi(X,X
′) = 1

and/or Ĝi(Y, Y
′) = 1. Moreover, if both observers X and Y completely agree on a

subject i, i.e. Xi1 = Xi2 = Yi1 = Yi2 assuming two replications for each observer, then

obviously Ĝi(X, Y ) = 0, that is to say the agreement between X and Y is perfect.

It is comparatively complicated to compute Ĝi(X, Y ) when the observations are not

all equal. The proportion of the concordant pairs between one reading from X and

one reading from Y to all possible pairs is the estimated disagreement between two

observers by definition. For example, if Xi1 = 1, Xi2 = 0 and Yi1 = Yi2 = 0, then

there are two concordant pairs: (Xi2, Yi1) and (Xi2, Yi2). The number of total pairwise

combinations between two observers is four. As a result, Ĝi(X,Y ) = 2/4 = 1/2. The

nonparametric approach is not restrained under conditional independence assumption

The equivalence between the parametric and nonparametric estimating methods is

derived as follows.

First, for simplicity, set Ki = Li = 2 for all i. When using the parametric method
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to estimate disagreement functions, we have

πi = Pr(Xik = 1)

λi = Pr(Yil = 1)

Since Xik and Yil only take values 0 or 1 and there are only two replications for each

observer per subject, the consequent estimates for those parameters are

π̂i = 0, 0.5 or 1

λ̂i = 0, 0.5 or 1

As in Section 3.2.3, the disagreement function are estimated as

Ĝi(X, Y ) = π̂i + λ̂i − 2π̂iλ̂i

Ĝi(X,X
′) = 4π̂i(1− π̂i)

Ĝi(Y, Y
′) = 4λ̂i(1− λ̂i)

Therefore, if Xi1 = Xi2 and Yi1 = Yi2, then π̂i = 1 or 0 and λ̂i = 1 or 0,

⇒ Ĝi(X,X
′) = 0 and Ĝi(Y, Y

′) = 0. If Ĝi(X, Y ) 6= 0, then ψ̂N = ψ̂R = 0. If

Ĝi(X, Y ) = 0, then ψ̂N = ψ̂R = 1, it implies π̂i = λ̂i ⇒ Xi1 = Xi2 = Yi1 = Yi2

The below table Table 3.1 summarizes the results for estimated disagreement

functions using parametric approach for the simple case where Ki = Li = 2, ∀i.

Then, using nonparametric method to estimate disagreement functions, the sum-

mary results are listed in Table 3.2.

Therefore, comparing tables 3.1 and 3.2, we conclude that the results are identi-

cal.

Now, we generalize the cases where Xik, k = 1, . . . , Ki and Yil, l = 1, . . . , Li.

Suppose for each i, for observer X, we observe Ti 1’s and (Ki − Ti) 0’s; for observer
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Table 3.1: Parametric approach for estimating disagreement functions forKi = Li = 2

Xi1, Xi2, Yi1, Yi2 π̂i λ̂i Ĝi(X,X
′) Ĝi(Y, Y

′) Ĝi(X, Y )
Xi1 = Xi2 = Yi1 = Yi2 = 0 or 1 0 or 1 0 or 1 0 0 0

Xi1 = Xi2 6= Yi1 = Yi2 0 or 1 0 or 1 0 0 1
Xi1 6= Xi2, Yi1 = Yi2 0.5 0 or 1 1 0 0.5
Xi1 = Xi2, Yi1 6= Yi2 0 or 1 0.5 0 1 0.5
Xi1 6= Xi2, Yi1 6= Yi2 0.5 0.5 1 1 0.5

Table 3.2: Non-parametric approach for estimating disagreement functions for Ki =
Li = 2

Xi1, Xi2, Yi1, Yi2 Ĝi(X,X
′) Ĝi(Y, Y

′) Ĝi(X, Y )
Xi1 = Xi2 = Yi1 = Yi2 = 0 or 1 0 0 0

Xi1 = Xi2 6= Yi1 = Yi2 0 0 1
Xi1 6= Xi2, Yi1 = Yi2 1 0 0.5
Xi1 = Xi2, Yi1 6= Yi2 0 1 0.5
Xi1 6= Xi2, Yi1 6= Yi2 1 1 0.5

Y , there are Ui 1’s and (Li − Ui) 0’s observed.

First, using the parametric method to estimate disagreement functions, we have

πi = Pr(Xik = 1)

λi = Pr(Yil = 1)

π̂i = Ti/Ki

λ̂i = Ui/Li

Then, the between- and within-observer disagreement functions are estimated as
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Ĝi(X, Y ) = π̂i + λ̂i − 2π̂iλ̂i

=
Ti

Ki

+
Ui

Li

− 2
Ti

Ki

Ui

Li

=
TiLi +KiUi − 2TiUi

KiLi

=
Ti(Li − Ui) + Ui(Ki − Ti)

KiLi

(3.5)

Ĝi(X,X
′) = 2Kiπ̂i(1− π̂i)/(Ki − 1)

=
2Ti(Ki − Ti)

Ki(Ki − 1)
(3.6)

Ĝi(Y, Y
′) = 2Liλ̂i(1− λ̂i)/(Li − 1)

=
2Ui(Li − Ui)

Li(Li − 1)
(3.7)

Second, turning to apply the nonparametric method to estimate disagreement

functions, the following steps are followed.

Since there are totally Ki Xik’s with Ti 1’s and (Ki − Ti) 0’s, all the pairs of

observing two 1’s or two 0’s have the disagreement function G = 0, i.e., if the two

replicated observations for Xik are the same, then the within-observer disagreement

is zero; the number of pairs consisting of one 1 and one 0 which means the two

replications are different, resulting in the disagreement function G = 1, is Ti(Ki−Ti).

That is to say

Ĝi(X,X
′) =

Ti(Ki − Ti) Ki

2


=

2Ti(Ki − Ti)

Ki(Ki − 1)
(3.8)

Similarly, for observer Y , Ui 1’s and (Li − Ui) 0’s are observed. All the pairs

of both 1’s or both 0’s have the disagreement function G = 0; the number of pairs
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consisting of one 1 and one 0, resulting in G = 1, is Ui(Li − Ui). That is to say

Ĝi(Y, Y
′) =

Ui(Li − Ui) Li

2


=

2Ui(Li − Ui)

Li(Li − 1)
(3.9)

Turning to the disagreement function between X and Y , the number of pairs

consisting of one 1 from X and one 0 from Y , resulting in Ĝi(X, Y ) = 1, is Ti(Li−Ui);

the number of pairs consisting of one 0 from X and one 1 from Y , resulting in

Ĝi(X, Y ) = 1, is Ui(Ki − Ti). That is to say

Ĝi(X, Y ) =
Ti(Li − Ui) + Ui(Ki − Ti)

KiLi

(3.10)

Comparing the equalities (3.6) with (3.8), (3.7) with (3.9), and (3.5) with (3.10),

we reveal that the two approaches are identical. The parametric approach for esti-

mating disagreement is preferred because of its convenience and other characteristics

such as easy to compute.

The equivalence of the parametric and nonparametric approaches of estimating

the individual disagreement functions implies that the assumption of the conditional

independence of replications for each observer can be relaxed. Even when the in-

dependence were violated, the nonparametric approach would not be affected and

would result with the same individual disagreement functions as when the assump-

tion is held, and hence would lead to the unchanged CIAs. Therefore, the use of

parametric approach to evaluate the individual disagreement functions is appropriate

and flexible. And the independence of replications between two observers condition-

ally on a subject might not need to be verified prior to estimating the coefficients for

individual agreements.
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3.2.4 Standard Error

To estimate the standard errors of estimated ψ’s, we redefine

ψ̂N =
[G

(1)
+G

(2)
]/2

G
(3)

and ψ̂R =
G

(1)

G
(3)

where G
(1)

= Ĝ(X,X ′), G
(2)

= Ĝ(Y, Y ′), G
(3)

= Ĝ(X, Y )

We apply the approximation to the variance of a ratio using

V̂ar

(
A

B

)
=

A2

B2

[
V̂ar(A)

A2
+

V̂ar(B)

B2
− 2Ĉov(A,B)

AB

]
(3.11)

It was derived via Delta method.

Suppose  A

B

 ∼ N

µ,
 σ2

A σAB

σAB σ2
B




where σ2
A = Var(A), σ2

B = Var(B) and σAB = Cov(A,B) Then, according to Delta

method, the variance of A over B is approximately

Var

(
A

B

)
≈

(
1

B
− A

B2

) σ2
A σAB

σAB σ2
B


 1

B

− A

B2


=

σ2
A

B2
− 2A

B3
σAB +

A2

B4
σ2

B

=
A2

B2

(
σ2

A

A2
− 2

AB
σAB +

σ2
B

B2

)

For ψ̂N , let A = Numerator = [G
(1)

+G
(2)

]/2 and B = Denominator = G
(3)

. For

ψ̂R, A = G
(1)

, B is the same.

Denote the sample variance a statistic Z by S2(Z) Then for p = 1, 2, 3,

S2(G(p)) =
1

N − 1

N∑
i=1

(Ĝ
(p)
i −G

(p)
)
2

,
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so that

V̂ar(G
(p)

) =
1

N
S2(G(p))

In addition, denote the sample covariance of G(p), G(q) by

C(G(p), G(q)) =
1

N − 1

N∑
i=1

(Ĝ
(p)
i −G

(p)
)(Ĝ

(q)
i −G

(q)
)

for 1 ≤ p < q ≤ 3, so that

Ĉov(G
(p)
, G

(q)
) =

1

N
C(G(p), G(q))

As a result, for ψ̂N :

V̂ar(A) = V̂ar

(
G

(1)
+G

(2)

2

)
=

1

4
V̂ar

(
G

(1)
+G

(2)
)

=
1

4

[
V̂ar

(
G

(1)
)

+ V̂ar
(
G

(2)
)

+ 2Ĉov(G
(1)
, G

(2)
)
]

=
1

4N

[
S2(G(1)) + S2(G(2)) + 2C(G(1), G(2))

]
V̂ar(B) = V̂ar(G

(3)
)

=
1

N
S2(G(3))

Ĉov(A,B) = Ĉov

(
G

(1)
+G

(2)

2
, G

(3)

)
=

1

2

[
Ĉov

(
G

(1)
, G

(3)
)

+ Ĉov
(
G

(2)
, G

(3)
)]

=
1

2N

[
C(G(1), G(3)) + C(G(2), G(3))

]
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Similarly, for ψ̂R:

V̂ar(A) = V̂ar
(
G

(1)
)

=
1

N
S2(G(1))

V̂ar(B) = V̂ar(G
(3)

)

=
1

N
S2(G(3))

Ĉov(A,B) = Ĉov
(
G

(1)
, G

(3)
)

=
1

N
C(G(1), G(3))

Consequently, replacing the corresponding terms in (3.11) and taking the squared

root results in the estimations of the standard errors of estimated ψ’s.

Since the way we calculate the standard errors of CIAs does not involve the as-

sumption that Xik and Yil are independent conditional on each subject, it could be

applied when the conditional independence is violated or difficult to verify.
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3.3 A Latent Class Model for Diagnostic Agree-

ment

In order to shed more light on the new agreement coefficients, we consider the case

of diagnostic agreement.

The latent class model is commonly used in the area of diagnostic agreement. This

model assumes that each subject can be diagnosed as “diseased” or “not diseased”.

The (unobserved) binary true latent illness status of a subject is denoted by T , where

T = 1 for an ill subject and T = 0 for a subject who is not ill. The observers X

and Y try to determine the true illness status of each subject, where a value of 1

indicates “positive” and a value of 0 indicates “negative” with respect to the illness.

The model involves the following five parameters: the prevalence of illness (ω), the

sensitivity of X (η1), the sensitivity of Y (θ1), the specificity of X (1 − η0), and the

specificity of Y (1− θ0), defined as

ω = Pr(T = 1)

η1 = Pr(X = 1|T = 1)

θ1 = Pr(Y = 1|T = 1)

1− η0 = Pr(X = 0|T = 0) ⇒ η0 = Pr(X = 1|T = 0)

1− θ0 = Pr(Y = 0|T = 0) ⇒ θ0 = Pr(Y = 1|T = 0)

This latent class model was introduced by Dawid and Skene (1979). Under this

model, the disagreement functions can be written in terms of the five parameters
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(Haber et al., 2007):

G(X, Y ) = ω(η1 + θ1 − 2η1θ1) + (1− ω)(η0 + θ0 − 2η0θ0)

G(X,X ′) = 2ωη1(1− η1) + 2(1− ω)η0(1− η0)

G(Y, Y ′) = 2ωθ1(1− θ1) + 2(1− ω)θ0(1− θ0)

The first equality is derived as below. The other two can be obtained in an

analogous way.

G(X, Y ) = Pr(X 6= Y )

= Pr(X = 1, Y = 0) + Pr(X = 0, Y = 1)

= Pr(X = 1|T = 1) Pr(Y = 0|T = 1) Pr(T = 1)

+ Pr(X = 1|T = 0) Pr(Y = 0|T = 0) Pr(T = 0)

+ Pr(X = 0|T = 1) Pr(Y = 1|T = 1) Pr(T = 1)

+ Pr(X = 0|T = 0) Pr(Y = 1|T = 0) Pr(T = 0)

= ωη1(1− θ1) + η0(1− ω)(1− θ0) + ω(1− η1)θ + (1− η0)(1− ω)θ0

= ω(η1 + θ1 − 2η1θ1) + (1− ω)(η0 + θ0 − 2η0θ0)

In order to investigate the relationship between the prevalence (ω) and ψ’s, we

rewrite the disagreement functions in terms of ω as

G(X,X ′) = 2[η1(1− η1)− η0(1− η0)]ω + 2η0(1− η0)

G(Y, Y ′) = 2[θ1(1− θ1)− θ0(1− θ0)]ω + 2θ0(1− θ0)

G(X,Y ) = [(η1 + θ1 − 2η1θ1)− (η0 + θ0 − 2η0θ0)]ω + (η0 + θ0 − 2η0θ0)
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As a result, the CIAs become

ψN =
[G(X,X ′) +G(Y, Y ′)]/2

G(X,Y )
(3.12)

=
{[η1(1− η1)− η0(1− η0)] + [θ1(1− θ1)− θ0(1− θ0)]}ω + η0(1− η0) + θ0(1− θ0)

[(η1 + θ1 − 2η1θ1)− (η0 + θ0 − 2η0θ0)]ω + (η0 + θ0 − 2η0θ0)
(3.13)

ψR =
G(X,X ′)

G(X,Y )
(3.14)

=
2[η1(1− η1)− η0(1− η0)]ω + 2η0(1− η0)

[(η1 + θ1 − 2η1θ1)− (η0 + θ0 − 2η0θ0)]ω + (η0 + θ0 − 2η0θ0)
(3.15)

Consider a fixed “gold standard” observer X, and suppose that one is interested

in selecting another observer Y who satisfactorily agrees with X. In this case, ψR is

a decreasing function of G(X, Y ), which can be written as

G(X, Y ) = ω[η1 + (1− 2η1)θ1] + (1− ω)[η0 + (1− 2η0)θ0]

Thus, ψR is a linear function of θ0 and θ1. If the reference observer X is acceptable,

then its sensitivity and specificity should conceive high values. Accordingly, we as-

sume η1 > 0.5 and η0 < 0.5, so that ψR is an increasing function of θ1 and a decreasing

function of θ0. In other words, to maximize agreement, the new observer Y is desired

to have a high sensitivity and specificity regardless of how close the sensitivity and

specificity of Y are to the sensitivity and specificity of X, respectively. Hence, a

new observer who attains a large value of ψR, when compared with a good reference

method, can be expected to possess prominent sensitivity and specificity.

For example, if we fix X to have a high sensitivity (η1 = 0.9) and a high specificity

(η0 = 0.2), then we consider three different settings for Y : (a) high sensitivity (θ1 =

0.8), high specificity (θ0 = 0.3); (b) high sensitivity (θ1 = 0.8), low specificity (θ0 =

0.6); and (c) low sensitivity (θ1 = 0.5), low specificity (θ0 = 0.6). Table 3.3 lists the

consequent ψ’s.

Figure 3.1 displays the new agreement coefficients along with the kappa coefficient
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Table 3.3: CIAs as functions of prevalence (ω)

η1 1− η0 θ1 1− θ0 ψN ψR

0.9 0.8 0.8 0.7 −0.12ω + 0.37
−0.12ω + 0.38

−0.14ω + 0.32
−0.12ω + 0.38

0.8 0.4 −0.15ω + 0.40
−0.30ω + 0.56

−0.14ω + 0.32
−0.30ω + 0.56

0.5 0.4 −0.06ω + 0.40
−0.06ω + 0.56

−0.14ω + 0.32
−0.06ω + 0.56

for various values of the prevalence, sensitivities and specificities. We compare the

same observer X, who has a high sensitivity (0.9) and specificity (0.8), to a potential

observer Y with varying sensitivity and specificity. In Figure 3.1(a), Y has a quite

high sensitivity (0.8) and specificity (0.7). In Figure 3.1(b), Y has a quite high

sensitivity (0.8) but a low specificity (0.4). In Figure 3.1(c), Y has a low sensitivity

(0.5) and specificity (0.4). In all three cases ψN > ψR because θ(1 − θ) < η(1 − η)

for both ill and non-ill subjects. We can see that the agreement between observers

X and Y decreases as the sensitivity and specificity decrease. Note that in Figure

3.1(b), ψN becomes quite large as the prevalence approaches 1. This is explained

by the fact that when the prevalence is high, then the coefficient depends heavily on

the assessments of the ill individuals, and thus it mainly reflects the similarity of the

sensitivities of the observers.

From Figure 3.1, we also notice that the new coefficients are much less affected by

changes in prevalence as compared to κ. Both ψN and ψR distribute on approximate

straight lines under all three situations. For Figure 3.1(a), ψN lies on an almost

horizontal line at 0.97; ψR ranges from 0.69 to 0.84. For Figure 3.1(b), ψN changes

from 0.71 to 0.96; ψR values from 0.57 to 0.69. For Figure 3.1(c), ψN is mostly stable

at 0.70; ψR declines from 0.57 to 0.36. These scenarios imply that these coefficients do

not strongly depend on the values of prevalence. On the other hand, the prevalence

has substantial impact on κ. This is true especially for small values of the prevalence,

which are most common in clinical practice. We observe that the values of κ are near
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Figure 3.1: ψN , ψR, and κ as functions of the prevalence (ω). (a) η1 = 0.9, η0 = 0.2,
θ1 = 0.8, θ0 = 0.3; (b) η1 = 0.9, η0 = 0.2, θ1 = 0.8, θ0 = 0.6; and (c) η1 = 0.9,
η0 = 0.2, θ1 = 0.5, θ0 = 0.6
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zero when the prevalence is very low or very high. In addition, as seen in Figure

3.1(c), the values of κ are even below zero when the sensitivity and specificity are

small for the second observer Y (for more details on the behaviors of κ, see Section

1.3.4). Therefore, Figure 3.1 illustrate one important reason why we prefer the CIAs

over kappa statistics.

However, one should be aware that when using formulas (3.14) and (3.15), it re-

quires that the population prevalence, sensitivity and specificity are accurately mea-

sured which sometimes are not attainable from observed sample data, otherwise the

results might be misleading.
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3.4 An Example

3.4.1 Mammography Data

3.4.1.1 Description

We use data from a mammography study (Elmore et al., 1994) to illustrate the con-

cepts and methods introduced in Section 3.1 and 3.2. The diagnosis of breast cancer

primarily relies on the interpretation of a radiologist on a mammogram. Neverthe-

less, the reliability and variability of the interpretations of the mammograms from the

radiologists remain questionable due to lack of research. In fact, the results could be

substantially different from one radiologist to another, which may leads to problem-

atically opposite diagnoses. Two studies (Elmore et al., 1994; Kopans, 1994) revealed

that the accuracy of mammographic interpretations was in doubt because the range

of the variability among radiologists was surprisingly large. This study was conducted

to determine the validity of diagnosis of breast cancer based on mammograms and to

provide suggestions on the quality of radiologists’ readings.

One hundred and fifty female patients underwent a mammography at the Yale-

New Haven Hospital in 1987. Each of ten radiologists read each patient’s mammo-

gram and classified it into one of four diagnosis categories: (1) normal, (2) abnormal

– probably benign, (3) abnormal – intermediate, or (4) abnormal – suggestive of can-

cer. Four months later the same films were reviewed again, in a random order, by

the same radiologists. In the present analysis, we considered a radiologist’s rating

as “positive” if the mammogram was classified into the fourth category, i.e., abnor-

mal and suggestive of cancer. The rating was considered “negative” if the film was

classified into one of the other three categories. Each of the study participants was

followed up for three years, and then a definitive diagnosis was made. The definitive

diagnosis was breast cancer if it was histopathologically confirmed within the three

years of follow up. The absence of cancer was defined as no suggestions of cancer in



70

the three years of follow-up and no evidence of breast cancer at the final check-up.

We considered this diagnosis as the patient’s “true” breast cancer status. Based on

this criterion, 27 of the 150 patients (18%) had breast cancer.

3.4.1.2 Data Summary

A summary table (Table 3.4) demonstrated the number of patients in each definitive

diagnosis category and the distribution of the undichotomized readings of mammo-

grams from all ten radiologists. 27 patients were confirmed with cancer; while, 123

patients did not present apparent symptoms of breast cancer.

Table 3.4: Diagnostic interpretation from all 10 radiologists and definitive diagnosis
for Mammogramphy data

Diagnostic Interpretation
Cancer Absence of Cancer

(n = 27 (18%)) (n = 123 (82%))
Reading 1 Reading 2 Reading 1 Reading 2

Normal 22 16 507 480
Abnormal, probably benign 28 21 399 351
Abnormal, indeterminate 46 54 234 303
Abnormal, suggestive of cancer 174 179 90 94

Each radiologist’s interpretation was compared to the “true” value to determine

the accuracy of the mammographic diagnoses. And by accuracy, we considered both

the sensitivity and the specificity, where the sensitivity measures the proportion of

true positives which were accurately identified and the specificity measures the pro-

portion of true negatives which were accurately identified. Table A.1 presents each

rater’s proportion of positive ratings as well as the sensitivity and the specificity

based on the patients’ true statuses. These were calculated from the 300 ratings of

each radiologist. A wide range of accuracy was found with the sensitivity being from

33% for radiologist C to 82% for radiologist A and the specificity being from 83% for

radiologist I to 98% for radiologists C and H. The result confirmed the concern on the

reliability and the variability of the interpretations of the mammograms from the ra-

diologists. We then compared the readings from the radiologist with the comparably
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most correct diagnoses to the readings from the other nine radiologists to investigate

the agreement between each two of them.

3.4.1.3 Results

The total of sensitivity and specificity was highest for radiologist A (Table A.1).

Therefore, we decided to illustrate the new coefficients by estimating the agreement

between radiologist A and each of the remaining nine radiologists. Radiologist A was

considered the reference in estimating ψR. The estimates (3.3) and (3.4) and their

95% bootstrap confidence intervals (CIs) are presented in Table A.2. Also shown in

Table A.2 are the 95% confidence intervals based on the estimated CIAs and standard

errors calculated following the approach demonstrated in Section 3.2.4.

Radiologist A, who served as observerX in this example, had the smallest “within–

observer” disagreement, Ĝ(X,X ′) = 0.04. Therefore, the estimate of ψ̂R was always

smaller than the estimated ψ̂N . Radiologists A and I had the largest disagreement

between them among all nine pairs, Ĝ(X, Y ) = 0.14, resulting in the smallest coef-

ficient of individual agreement, ψ̂R = 0.28. Similarly, radiologists A and F had the

smallest discordance between them compared to other eight pairs, Ĝ(X, Y ) = 0.07,

leading to the highest agreement coefficient, ψ̂R = 0.57.

Turning to the case where none of the radiologist was treated as the reference,

radiologists A and F yielded the largest coefficient of individual agreement, ψ̂N = 0.76;

while, radiologists A and C demonstrated the highest disagreement on interpretations

on mammograms with the lowest coefficient of individual agreement, ψ̂N = 0.36.

As we see, none of the nine radiologists (B, C, . . . , J) had an “acceptable” agree-

ment (ψ̂ ≥ 0.80) with radiologist A even when the latter was not considered as the

reference. The conclusion confirmed the suspicion of Elmore et al. (1994) and Kopans

(1994) on the variability of the mammographic interpretations. One radiologist’s di-

agnosis might considerably differ from others. Therefore, further consultation and
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subsequent visits with the same doctor or a different doctor might be a safer way to

confirm the diagnosis of breast cancer.

For comparison, Table A.2 also includes point estimates and 95% bootstrap CI’s

for kappa. Kappa did not substantially differ from ψN in this example.

All other possible pairs of radiologists were also compared. Table A.3 lists the

results.

3.4.2 A Content Analysis

3.4.2.1 Description

We also use a content analysis to illustrate the advantage of using CIAs over kappa

statistics. The objective of the content analysis study was to determine inter-rater

reliability for a content analysis of research article abstract. Content analysis is de-

fined as a systematic, replicable technique for compressing many words of text into

fewer content categories based on explicit rules of coding (Berelson, 1952; Krippen-

dorff, 1980; Weber, 1990). Holsti (1969) offered a broad definition of content analysis

as “any technique for making inferences by objectively and systematically identifying

specified characteristics of messages”.

Two observers used a codebook to assess the abstracts for specific contents. Each

coder assessed the same 49 abstracts twice. They use 0 represent the absence of the

specific type of content assessed by the observer; where 1 indicates the presence of

the specific type of content assessed by the observer. Neither is considered as “gold

standar”.

3.4.2.2 Data Summary

Table 3.5(a) summarizes the distribution for the first evaluation. Table 3.5(b) sum-

marizes the distribution for the second assessment. The combined total distribution
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is summarized in Tables 3.5(c) and 3.6. As we can see that most of the classifications

distributed on the diagonal indicating good agreement.

Table 3.5: Data summary of the content analysis example

(a) Replication 1

X1

0 1 Total

Y1
0 0 6 6
1 1 42 43

Total 1 48 49

(b) Replication 2

X2

0 1 Total

Y2
0 1 0 1
1 0 48 48

Total 1 48 49

(c) Total

X
0 1 Total

Y
0 1 6 7
1 1 90 91

Total 2 96 98

Table 3.6: Summary of distribution of the content analysis example

Coder 1 Coder 2
Replication 1 Replication 2 Replication 1 Replication 2 Count

0 1 1 1 1
1 0 1 0 1
1 1 0 1 6
1 1 1 1 41

3.4.2.3 Results

For replication one, we have κ̂1 = −0.04; for replication two, we have κ̂2 = 1; totally,

κ̂ = 0.20. Turning to our new coefficient when neither of the observers is considered

as the reference, CIA provides ψ̂N = 1.13, with 95% CI = (0.89, 1.36) As a result,

the values of κ̂ indicate poor agreement for replication 1, but perfect agreement for

replication 2 since the values off diagonal are zeros, and again poor agreement overall

due to the fact that this is a case of highly unbalanced data. Comparably, our

new CIA implies satisfactory agreement on the other hand, which confirms with the
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implication of the distribution of the data.

For this application, kappa provided contrary interpretations for the first and

second replication. This is a typical example which illustrates that replications are

necessary to ensure that sufficient information of the distribution of the data is cap-

tured. And once replications are available, the CIAs might be superior to kappa

statistics in the respect of providing meaningful and reliable indication on agreement.
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3.5 Simulations

We conducted a simulation study in order to examine the reliability of the proposed

estimators.

3.5.1 Simulation Process

Data were generated as follows: for each of N subjects, a pair of correlated values

(ui, vi) (i = 1, . . . , N) were generated from a bivariate normal distribution of (U, V )

with E(U) = µU , E(V ) = µV , Var(U) = σ2
U , Var(V ) = σ2

V , Corr(U, V ) = ρUV . We

then defined πi = F (ui), λi = F (vi) , where F (t) = exp(t)/[1 + exp(t)] is the logistic

cumulative distribution function. Finally, we generated conditionally independent

binary observations xi1, . . . , xiK and yi1, . . . , yiL where Pr(Xik = 1) = πi and Pr(Yil =

1) = λi.

The true values of ψN and ψR were calculated using (3.1) and (3.2) as demon-

strated in Section 3.2.1. A sample of size n from the generated population from first

step was randomly selected. The estimates of ψN and ψR were then derived for this

sample. This step was repeated a large number of times. Then, the means of the

simulated ψ̂N and ψ̂R were the estimates of ψN and ψR. The biases which are the

difference between the true values and the estimated values of ψ̂N and ψ̂R were cal-

culated. Moreover, the standard errors of the means along with confidence intervals

were obtained from the simulation results. In addition, the estimated standard errors

of ψ̂N and ψ̂R were calculated following the steps and formulations in 3.2.4. Also, in

each run, after the estimated ψ̂N and ψ̂R and corresponding confidence intervals were

derived, each confidence interval was then examined to check whether the true ψN

and ψR were included within the corresponding confidence interval. The percentage

that the true CIA is contained in its associated 95% CI is considered as the coverage

probability which was also calculated and reported.
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3.5.2 Simulation Set-up

We considered six sets of choices of values for (µU , µV , σ
2
U , σ

2
V , ρUV ), which were

labeled as case 1,. . . , case 6. These six choices and the corresponding true values of

ψN and ψR are listed in Table A.4. For each case, we used three values of the sample

size (N = 50, 100, 200) along with four combinations of the numbers of replications

(K, L) = (3, 3), (2, 2), (3, 1), (2, 1). The coefficient ψN was not estimable when

L = 1. 1000 simulations were conducted for each situation.

3.5.3 Simulation Results

The bias and root mean square errors (RMSE) of the estimates for the first three

cases are summarized in Tables 3.7 for ψ̂N and 3.10 for ψ̂R. The bias and RMSE

of the estimates for all the sets of simulations are presented in Tables A.5, A.7, A.9,

A.11, A.13, A.15 for ψ̂N and A.6, A.8, A.10, A.12, A.14, A.16 for ψ̂R. We can see

that in most cases the bias is nearly noticeable. In general, the bias decreased when

the number of simulations increased, which indicates that most of the bias reflects the

inaccuracy of the simulations. However, it seems that for N = 50, one needs at least

three replications from at least one of the observers to obtain a reliable estimate.

We also compare the standard errors (s.e.) estimated via different ways. The

comparisons for cases is demonstrated below in Tables 3.9 and 3.12. For other cases,

the results are shown in Appendix. The first column contains the s.e. based on the

simulations. The second column contains the s.e. calculated using the formulas in

Section 3.6.4. Since the standard errors obtained from simulations are very close

to the ones that were directly calculated by the formulation, we can say that the

approximation method for standard errors for CIAs is trustworthy. RMSE stands

for root mean squared error, it is the square root of the sum of variance and bias.

Therefore, for an unbiased estimator, the RMSE equals to the standard error, which

is the case shown here.
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The coverage probabilities (CP), which are the proportions of times the true values

were covered by the related confidence intervals, are all close to 95%, which indicates

satisfactory approximation The coverage probabilities for the first three cases are

demonstrated in Tables 3.8 and 3.11. The other results are included in Appendix in

the tables mentioned in the first paragraph of this section. Moreover, if the bootstrap

confidence intervals are used instead, all the coverage probabilities increase to one

for all cases, because the bootstrap confidence intervals are wider than the ones

constructed based on normality.

In addition, the histograms (Figures A.1, A.3, A.5, A.7, A.9, A.11) and Q-Q

plots (Figures A.2, A.4, A.6, A.8, A.10, A.12) demonstrate that the distributions of

the estimated ψ̂N and ψ̂R from the simulations are approximately normal. Hence,

the construction of the confidence intervals using the estimated ψ̂N and ψ̂R from

simulations and estimated standard errors is valid.

Table 3.7: Binary simulation results – bias and root mean square error (RMSE) of
ψ̂N

Case I Case II Case III
ψN = 0.933 ψN = 0.855 ψN = 0.676

N K L Bias RMSE Bias RMSE Bias RMSE

50 3 3 0.007 0.090 0.003 0.092 0.001 0.085
2 2 0.007 0.139 0.002 0.130 0.006 0.114

100 3 3 0.003 0.064 0.003 0.060 0.001 0.057
2 2 0.004 0.097 0.005 0.095 0.005 0.083

200 3 3 0.000 0.046 -0.001 0.044 0.000 0.041
2 2 -0.002 0.071 -0.002 0.066 -0.002 0.058
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Table 3.8: Binary simulation results – CP for ψ̂N

Case I Case II Case III
N K L ψN = 0.933 ψN = 0.855 ψN = 0.676

50 3 3 90.6% 92.1% 93.1%
2 2 87.8% 92.8% 94.1%

100 3 3 91.9% 94.3% 95.4%
2 2 92.3% 93.1% 94.0%

200 3 3 93.6% 94.6% 94.7%
2 2 94.1% 93.8% 93.7%

Table 3.9: Binary simulation results – comparison of standard errors of ψ̂N

Case IV Case VI
ψN = 0.807 ψN = 0.573

N K L Simulation Formula RMSE Simulation Formula RMSE

50 3 3 0.099 0.097 0.098 0.086 0.083 0.083
2 2 0.142 0.137 0.137 0.110 0.109 0.109

100 3 3 0.071 0.070 0.070 0.059 0.059 0.059
2 2 0.103 0.098 0.098 0.080 0.078 0.078

200 3 3 0.051 0.050 0.050 0.042 0.042 0.042
2 2 0.074 0.070 0.070 0.055 0.055 0.055
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Table 3.10: Binary simulation results – bias and root mean square error (RMSE) of
ψ̂R

Case I Case II Case III
ψR = 0.931 ψR = 0.674 ψR = 0.485

N K L Bias RMSE Bias RMSE Bias RMSE

100 3 3 0.002 0.105 0.004 0.086 0.003 0.068
2 2 0.003 0.153 0.006 0.125 0.004 0.097
3 1 0.013 0.134 0.010 0.106 0.006 0.077
2 1 0.011 0.180 0.009 0.141 0.005 0.102

200 3 3 0.001 0.076 0.000 0.063 0.001 0.049
2 2 -0.002 0.112 0.000 0.088 0.000 0.066
3 1 0.009 0.099 0.005 0.074 0.003 0.053
2 1 0.006 0.122 0.014 0.138 0.003 0.068

Table 3.11: Binary simulation results – CP for ψ̂R

Case I Case II Case III
N K L ψR = 0.931 ψR = 0.674 ψR = 0.485

100 3 3 94.8% 95.5% 95.2%
2 2 93.6% 93.7% 93.4%
3 1 94.7% 95.0% 95.2%
2 1 93.4% 93.5% 94.0%

200 3 3 94.6% 94.6% 94.7%
2 2 94.2% 94.1% 94.9%
3 1 93.2% 94.7% 95.6%
2 1 94.8% 94.3% 95.0%
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Table 3.12: Binary simulation results – comparison of standard errors of ψ̂R

Case IV Case VI
ψR = 0.818 ψR = 0.497

N K L Simulation Formula RMSE Simulation Formula RMSE

100 3 3 0.102 0.105 0.105 0.071 0.074 0.074
2 2 0.149 0.143 0.144 0.101 0.097 0.097
3 1 0.123 0.124 0.125 0.076 0.079 0.079
2 1 0.165 0.156 0.156 0.104 0.101 0.101

200 3 3 0.076 0.075 0.075 0.051 0.052 0.052
2 2 0.102 0.101 0.101 0.068 0.068 0.068
3 1 0.088 0.087 0.088 0.055 0.056 0.056
2 1 0.109 0.110 0.110 0.070 0.071 0.071
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3.6 Sample Size Calculation

3.6.1 Introduction

Sample size calculation is essential in agreement studies because it is of interest to

determine the number of subjects and/or the number of replications needed in order

to achieve a desired precision of the estimated CIAs between two known observers

based on a given dataset. The agreement between two measurements is an inherent

property, which does not change with an increase in sample size. On the other hand,

an increment in sample size can reduce the impact of the randomness resulting in a

lowered standard error and hence a narrower confidence interval. Therefore, setting

the width of the confidence interval for the coefficient to be less than a pre-set limit can

help determine the number of observations and the numbers of replications sufficiently

to increase the accuracy of evaluating the coefficient for agreement.

In Section 3.2.4, we estimated the standard error of ψ’s by an approximation

formulation. Unfortunately, the formulas could not be used to further investigate the

relationship between the sample size N and the replication numbers K and L. In this

section, a new approach was developed to address this issue and to provide guidance

on sample size selection. The idea was based on the moments of a Binominal random

variable. We started from the individual level.
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3.6.2 Individual Level

3.6.2.1 Variance

For simplicity, assume Ki = K and Li = L for all i. Then, the unbiased estimators

of the subject-specific disagreement functions are

Ĝi(X, Y ) = π̂i + λ̂i − 2π̂iλ̂i (3.16)

Ĝi(X,X
′) = 2Kπ̂i(1− π̂i)/(K − 1) (3.17)

Ĝi(Y, Y
′) = 2Lλ̂i(1− λ̂i)/(L− 1) (3.18)

Denote ui = #(Xik = 1) ∼ BIN(K, πi) and vi = #(Yil = 1) ∼ BIN(L, λi). ui and

vi are independent given subject i. Then, the means and variances are

E(ui) = Kπi

E(vi) = Lλi

Var (ui) = Kπi(1− πi)

Var (vi) = Lλi(1− λi)

The MLEs for the parameters are

π̂i =
ui

K
(3.19)

λ̂i =
vi

L
(3.20)
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As a result, the estimated disagreement functions at individual level are given by

Ĝi(X, Y ) =
ui

K
+
vi

L
− 2

ui

K

vi

L

Ĝi(X,X
′) = 2

ui(K − ui)

K(K − 1)

Ĝi(Y, Y
′) = 2

vi(L− vi)

L(L− 1)

First, calculate the variance for the between-observer individual disagreement

function. We obtain

Var
[
Ĝi(X, Y )

]
=

Var(ui)

K2
+

Var(vi)

L2
+

4Var(uivi)

(KL)2
− 4Cov (ui, uivi)

K2L
− 4Cov (vi, uivi)

KL2
(3.21)

To calculate the right-hand side, we need

Cov (ui, uivi) = E(u2
i vi)− E(ui)E(uivi)

= E(u2
i )E(vi)− E2(ui)E(vi)

= E(vi)Var(ui)

= KLπiλi(1− πi) (3.22)

Cov (vi, uivi) = E(ui)Var(vi)

= KLπiλi(1− λi) (3.23)

Var (uivi) = E(uivi)
2 − [E(uivi)]

2 (3.24)

where

E(uivi) = E(ui)E(vi) = KLπiλi

E(uivi)
2 = E(ui)

2E(vi)
2 =

[
Var(ui) + E2(ui)

] [
Var(vi) + E2(vi)

]
=

[
Kπi(1− πi) +K2π2

i

] [
Lλi(1− λi) + L2λ2

i

]



84

Thus, Equation (3.24) can be written as

Var (uivi) =
{[
Kπi(1− πi) +K2π2

i

] [
Lλi(1− λi) + L2λ2

i

]
−K2L2π2

i λ
2
i

}
= KLπiλi [1 + (K − 1)πi + (L− 1)λi − (K + L− 1)πiλi] (3.25)

Substituting (3.22), (3.23), (3.25) into (3.21), we have

V ar
[
Ĝi(X,Y )

]
=

Kπi(1− πi)

K2
+
Lλi(1− λi)

L2

+
4KLπiλi [1 + (K − 1)πi + (L− 1)λi − (K + L− 1)πiλi]

(KL)2

− 4KLπiλi(1− πi)

K2L
− 4KLπiλi(1− λi)

KL2

=
πi(1− πi)

K
+
λi(1− λi)

L

+
4(1−K − L)πiλi(1− πi)(1− λi)

KL
(3.26)

Next, calculate the variance for the individual within-observer disagreement func-

tion for observer X using the moment-generating function. By expression (A.5) and

(A.6) in the appendix, we obtain

V ar
[
Ĝi(X,X

′)
]

=
4

K2(K − 1)2

[
K2V ar(ui) + Var(u2

i )− 2KCov(ui, u
2
i )
]

=
4

K2(K − 1)2

{
K2Kπi(1− πi)

+Kπi(1− πi) [1 + 2πi(K − 1)[(2K − 3)πi + 3]]

−2KKπi(1− πi)[2(K − 1)πi + 1]}

=
4Kπi(1− πi)

K2(K − 1)2

{
K2 + 1 + 2πi(K − 1)[(2K − 3)πi + 3]

−2K[2(K − 1)πi + 1]}

=
4πi(1− πi)

K(K − 1)
[K − 1− 2(2K − 3)πi(1− πi)] (3.27)

We may replace πi with λi and K with L to obtain the variance for the individual
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within-observer disagreement function for observer Y

Var
[
Ĝi(Y, Y

′)
]

=
4

L2(L− 1)2

[
L2Var(vi) + Var(v2

i )− 2LCov(vi, v
2
i )
]

=
4λi(1− λi)

L(L− 1)
[L− 1− 2(2L− 3)λi(1− λi)] (3.28)

3.6.2.2 Covariance

The covariance of Ĝi(X,X
′) and Ĝi(X, Y ) is given by

Cov
(
Ĝi(X, Y ), Ĝi(X,X

′)
)

= Cov

(
ui

K
+
vi

L
− 2

ui

K

vi

L
,
2ui(K − ui)

K(K − 1)

)
= 2Cov

(
ui

K
+
vi

L
− 2

ui

K

vi

L
,
ui(K − ui)

K(K − 1)

)

where

Cov

(
ui

K
+
vi

L
− 2

ui

K

vi

L
,
ui(K − ui)

K(K − 1)

)
= Cov

(
ui

K
,

ui

K − 1

)
+ Cov

(
ui

K
,− u2

i

K(K − 1)

)
+ Cov

(
vi

L
,

ui

K − 1

)
+ Cov

(
vi

L
,− u2

i

K(K − 1)

)
+ Cov

(
−2uivi

KL
,

ui

K − 1

)
+ Cov

(
−2uivi

KL
,− u2

i

K(K − 1)

)
=

1

K(K − 1)
Var(ui)−

1

K2(K − 1)

[
E(u3

i )− E(ui)E(u2
i )
]
+ 0 + 0

− 2

K(K − 1)L

[
E(u2

i vi)− E(uivi)E(ui)
]

+
2

K2(K − 1)L

[
E(u3

i vi)− E(uivi)E(u2
i )
]
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=
1

K(K − 1)
Var(ui)−

1

K2(K − 1)

[
E(u3

i )− E(u2
i )E(ui)

]
− 2

K(K − 1)L
[E(vi)Var(ui)]

+
2

K2(K − 1)L

{
E(vi)

[
E(u3

i )− E(u2
i )E(ui)

]}
=

1

K(K − 1)
Var(ui)−

2

K(K − 1)L
[E(vi)Var(ui)]

+
2E(vi)− L

K2(K − 1)L

[
E(u3

i )− E(u2
i )E(ui)

]
=

Kπi(1− πi)

K(K − 1)
− 2

K(K − 1)L
[LλiKπi(1− πi)]

+
2Lλi − L

K2(K − 1)L

{
Kπi

[
1 + 3(K − 1)πi + (K − 1)(K − 2)π2

i

]
− Kπi[1 + (K − 1)πi]Kπi}

=
πi(1− πi)(1− 2πi)(1− 2λi)

K

As a result,

Cov
(
Ĝi(X, Y ), Ĝi(X,X

′)
)

=
2πi(1− πi)(1− 2πi)(1− 2λi)

K
(3.29)

Similarly, The covariance of Ĝi(Y, Y
′) and Ĝi(X, Y ) is given by

Cov
(
Ĝi(X, Y ), Ĝi(Y, Y

′)
)

= Cov

(
ui

K
+
vi

L
− 2

ui

K

vi

L
,
2vi(L− vi)

L(L− 1)

)
= 2Cov

(
ui

K
+
vi

L
− 2

ui

K

vi

L
,
vi(L− vi)

L(L− 1)

)
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Cov

(
ui

K
+
vi

L
− 2

ui

K

vi

L
,
vi(L− vi)

L(L− 1)

)
= Cov

(
ui

K
,

vi

L− 1

)
+ Cov

(
ui

K
,− v2

i

L(L− 1)

)
+ Cov

(
vi

L
,

vi

L− 1

)
+ Cov

(
vi

L
,− v2

i

L(L− 1)

)
+ Cov

(
−2uivi

KL
,

vi

L− 1

)
+ Cov

(
−2uivi

KL
,− v2

i

L(L− 1)

)
=

1

L(L− 1)
Var(vi)−

1

L2(L− 1)

[
E(v3

i )− E(vi)E(v2
i )
]

− 2

K(L− 1)L

[
E(uiv

2
i )− E(uivi)E(vi)

]
+

2

K(L− 1)L2

[
E(uiv

3
i )− E(uivi)E(v2

i )
]

=
1

L(L− 1)
Var(vi)−

1

L2(L− 1)

[
E(v3

i )− E(vi)E(v2
i )
]

− 2

K(L− 1)L
[E(ui)Var(vi)]

+
2

K(L− 1)L2

{
E(ui)

[
E(v3

i )− E(v2
i )E(vi)

]}
=

1

K(K − 1)
Var(ui)−

2

K(K − 1)L
[E(vi)Var(ui)]

+
2E(ui)−K

K(L− 1)L2

[
E(v3

i )− E(v2
i )E(vi)

]
=

Lλi(1− λi)

L(L− 1)
− 2

K(L− 1)L
[KπiLλi(1− λi)]

+
2Kπi −K

L2(L− 1)K

{
Lλi

[
1 + 3(L− 1)λi + (L− 1)(L− 2)λ2

i

]
− Lλi[1 + (L− 1)λi]Lλi}

=
λi(1− λi)(1− 2λi)(1− 2πi)

L

As a result,

Cov
(
Ĝi(X, Y ), Ĝi(Y, Y

′)
)

=
2λi(1− λi)(1− 2λi)(1− 2πi)

L
(3.30)
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3.6.3 Mean Level

The estimations of the overall G’s are

Ĝ(X, Y ) = Ĝi(X, Y ) =
1

N

∑
i

Ĝi(X,Y )

Ĝ(X,X ′) = Ĝi(X,X ′) =
1

N

∑
i

Ĝi(X,X
′)

Ĝ(Y, Y ′) = Ĝi(Y, Y ′) =
1

N

∑
i

Ĝi(Y, Y
′)

Assuming independence given subject, the variances of disagreement functions are

given by

Var
(
Ĝ(X, Y )

)
= Var

(
1

N

∑
i

Ĝi(X, Y )

)
=

1

N2

∑
i

Var
(
Ĝi(X,Y )

)
(3.31)

Var
(
Ĝ(X,X ′)

)
= Var

(
1

N

∑
i

Ĝi(X,X
′)

)
=

1

N2

∑
i

Var
(
Ĝi(X,X

′)
)

(3.32)

Var
(
Ĝ(Y, Y ′)

)
= Var

(
1

N

∑
i

Ĝi(Y, Y
′)

)
=

1

N2

∑
i

Var
(
Ĝi(Y, Y

′)
)

(3.33)

And the covariances are

Cov
(
Ĝ(X, Y ), Ĝ(X,X ′)

)
=

1

N2

∑
i

Cov
(
Ĝi(X, Y ), Ĝi(X,X

′)
)

(3.34)

Cov
(
Ĝ(X, Y ), Ĝ(Y, Y ′)

)
=

1

N2

∑
i

Cov
(
Ĝi(X, Y ), Ĝi(Y, Y

′)
)

(3.35)
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3.6.4 Variance for CIAs

The estimations of the CIAs are given by

ψ̂N =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2

Ĝ(X,Y )
(3.36)

ψ̂R =
Ĝ(X,X ′)

Ĝ(X,Y )
(3.37)

For convenience, we denote Ĝ
(1)

= Ĝ(X,X ′); Ĝ
(2)

= Ĝ(Y, Y ′); Ĝ
(3)

= Ĝ(X, Y ).

To evaluate the variances of the estimators (3.36) and (3.37), we utilize the formula

V̂ar

(
A

B

)
=

A2

B2

[
V̂ar(A)

A2
+

V̂ar(B)

B2
− 2Ĉov(A,B)

AB

]
(3.38)

For ψ̂R, A = Ĝ
(1)

and B = Ĝ
(3)

,

V̂ar

(
A

B

)
=

A2

B2

V̂ar(Ĝ
(1)

)

A2
+

V̂ar(Ĝ
(3)

)

B2

−2Ĉov(Ĝ
(1)

, Ĝ
(3)

)

AB

 (3.39)

For ψ̂N , A = [Ĝ
(1)

+ Ĝ
(2)

]/2 and B = Ĝ
(3)

,

V̂ar

(
A

B

)
=

A2

B2

V̂ar([Ĝ
(1)

+ Ĝ
(2)

]/2)

A2
+

V̂ar(Ĝ
(3)

)

B2
− 2Ĉov([Ĝ

(1)

+ Ĝ
(2)

]/2, Ĝ
(3)

)

AB

 .(3.40)

In summary, to calculate the variances of CIAs, we shall follow the following steps:

1. Use the MLEs (3.19) and (3.20) for πi and λi to estimate the variances and co-

variances at individual level Var
[
Ĝi(X, Y )

]
, Var

[
Ĝi(X,X

′)
]
, Var

[
Ĝi(Y, Y

′)
]
,

Cov
(
Ĝi(X, Y ), Ĝi(X,X

′)
)
, Cov

(
Ĝi(X, Y ), Ĝi(Y, Y

′)
)

by (3.26), (3.27), (3.28),
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(3.29), and (3.30).

2. Find the means by (3.31), (3.32), (3.33), (3.34) and (3.35).

3. Calculate the variances for ψ̂R and ψ̂N applying (3.39) and (3.40).

3.6.5 Sample Size Calculation

Recall that

V̂ar
[
Ĝi(X, Y )

]
=

π̂i(1− π̂i)

K
+
λ̂i(1− λ̂i)

L

+
4(1−K − L)π̂iλ̂i(1− π̂i)(1− λ̂i)

KL

V̂ar
[
Ĝi(X,X

′)
]

=
4π̂i(1− π̂i)

K(K − 1)
[K − 1− 2(2K − 3)π̂i(1− π̂i)]

V̂ar
[
Ĝi(Y, Y

′)
]

=
4λ̂i(1− λ̂i)

L(L− 1)

[
L− 1− 2(2L− 3)λ̂i(1− λ̂i)

]
Ĉov

(
Ĝi(X, Y ), Ĝi(X,X

′)
)

=
2π̂i(1− π̂i)(1− 2π̂i)(1− 2λ̂i)

K

Ĉov
(
Ĝi(X, Y ), Ĝi(Y, Y

′)
)

=
2λ̂i(1− λ̂i)(1− 2λ̂i)(1− 2π̂i)

L

At the mean level, we have

V̂ar
[
Ĝ(X, Y )

]
=

1

N2

∑
i

π̂i(1− π̂i)

K
+
λ̂i(1− λ̂i)

L

+
4(1−K − L)π̂iλ̂i(1− π̂i)(1− λ̂i)

KL

V̂ar
[
Ĝ(X,X ′)

]
=

1

N2

∑
i

4π̂i(1− π̂i)

K(K − 1)
[K − 1− 2(2K − 3)π̂i(1− π̂i)]

V̂ar
[
Ĝ(Y, Y ′)

]
=

1

N2

∑
i

4λ̂i(1− λ̂i)

L(L− 1)

[
L− 1− 2(2L− 3)λ̂i(1− λ̂i)

]
Ĉov

(
Ĝ(X, Y ), Ĝ(X,X ′)

)
=

1

N2

∑
i

2π̂i(1− π̂i)(1− 2π̂i)(1− 2λ̂i)

K

Ĉov
(
Ĝ(X, Y ), Ĝ(Y, Y ′)

)
=

1

N2

∑
i

2λ̂i(1− λ̂i)(1− 2λ̂i)(1− 2π̂i)

L
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Taking the average results in

V̂ar
[
Ĝ(X,Y )

]
=

1

N

{
1

K
π̂i(1− π̂i) +

1

L
λ̂i(1− λ̂i)

+
4(1−K − L)

KL
π̂iλ̂i(1− π̂i)(1− λ̂i)

}
V̂ar

[
Ĝ(X,X ′)

]
=

1

N

{
4

K
π̂i(1− π̂i)−

8(2K − 3)

K(K − 1)
π̂2

i (1− π̂i)2

}
V̂ar

[
Ĝ(Y, Y ′)

]
=

1

N

{
4

L
λ̂i(1− λ̂i)−

8(2L− 3)

L(L− 1)
λ̂2

i (1− λ̂i)2

}
Ĉov

(
Ĝ(X,Y ), Ĝ(X,X ′)

)
=

1

N

{
2

K
π̂i(1− π̂i)(1− 2π̂i)(1− 2λ̂i)

}
Ĉov

(
Ĝ(X, Y ), Ĝ(Y, Y ′)

)
=

1

N

{
2

L
λ̂i(1− λ̂i)(1− 2λ̂i)(1− 2π̂i)

}

Consequently, for ψ̂R, where A = Ĝ(X,X ′) and B = Ĝ(X, Y )

V̂ar(ψ̂R) =
A2

B2

{
V̂ar[Ĝ(X,X ′)]

A2
+

V̂ar[Ĝ(X, Y )]

B2
− 2Ĉov[Ĝ(X,X ′), Ĝ(X, Y )]

AB

}

For ψ̂N , where A = [Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2 and B = Ĝ(X, Y )

V̂ar(ψ̂N) =
A2

B2

{
V̂ar[Ĝ(X,X ′)] + V̂ar[Ĝ(Y, Y ′)]

4A2
+

V̂ar[Ĝ(X, Y )]

B2

−Ĉov[Ĝ(X,X ′), Ĝ(X,Y )] + Ĉov[Ĝ(Y, Y ′), Ĝ(X,Y )]

AB

}

Therefore, if setting the length of a 100(1 − α)% CI, which is 2Z1−α/2SE(ψ̂), to

be less than a pre-set value, say ε, then one can estimate the sample size N and the

replication numbers K, L. However, since the three unknowns lie in one inequality,

one could either fix K, L to determine N or consider different combinations of K, L,

and N to select the most appropriate set.
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3.6.6 Sample Size Calculation Simulation

To examine the formulas (3.26), (3.27), (3.28), (3.29), and (3.30), a simulation study

was conducted as follows. For each of the two observers, M items were generated

from a Binomial distribution with the probability of positive ratings π or λ. Then

the disagreement functions at subject level Ĝi(X, Y ), Ĝi(X,X
′) and Ĝi(Y, Y

′) were

calculated as in (3.16), (3.17), and (3.18). We repeated these two steps N times,

resulting in N Ĝi(X, Y ), Ĝi(X,X
′) and Ĝi(Y, Y

′). Then, we compared the variances

of Ĝi(X, Y ), Ĝi(X,X
′), Ĝi(Y, Y

′) and covariances based on the simulation to the

ones obtained from (3.26), (3.27), (3.28), (3.29), and (3.30). The results are shown in

Table A.17. As one can see, the variances and covariances based on simulations are

very close to the ones from the formulations, which implies the validity and accuracy

of the new derived formulas.

3.6.7 Sample Size Calculation Example

We used the mammography data to illustrate the sample size calculations. We fixed

the number of replications for each radiologist, but varied the limit for the length of

a 95% CI to be not greater than 0.1, 0.2, 0.3 and 0.4 respectively. The sample size

was then obtained following the steps in Section 3.6.5. The results for the agreement

between the radiologist A and all other nine radiologists are summarized in Tables

A.18 and A.19. As we see from Table A.18, for example, when comparing radiologists

A and B, in order to achieve the desired precision of the length of 95% CI for ψN not

exceeding 0.01, a minimum of 900 participants should be enrolled in the study, assum-

ing each of the radiologists conduct three replicated examinations on each subject’s

mammograph. This number substantially decreases to 100 if we loose the restriction

that the length of 95% CI for ψN would not exceed 0.03; and further lower to 57 if not

greater than 0.04. It implies that when designing a study, one should be aware that

requiring a good precision may result in a considerably large sample size involved.
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If a prominent precision is still desired but the sample size needs to be kept

practical and reasonable, we suggest to increase the number of replications for one

or both observers. For example, according to our example, if the replications for

radiologists both A and B increase from two (i.e., K = L = 2) to three (i.e., K = L =

3), the sample size requirement to attain the same level of precision (ε = 0.4) declines

half, compared to the case when the number of replications for both observers A and

B is two, i.e., sample size calculated = 124 for K = L = 2 vs. 57 for K = L = 3. The

same trend can be observed from Table A.18 and A.19. It indicates that an increment

in the replication number can magnificently help reduce the high demand in sample

size if a relatively precise estimation is desired.
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Chapter 4

Assessing Observer Agreement for

Studies Involving Nominal

Categorical Observations
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4.1 Definition of Coefficients

Assessing agreement between observers which classify observations into nominal scaled

groups is usually evaluated via kappa as reviewed in Section 1.3.1.2. As pointed out

by Graham and Jackson (1993), the kappa can be seen as a measure of association,

rather agreement. Therefore, its ability to assess agreement for nominal observations

is limited and discontented. In this chapter, we apply the CIA to two observers each

of which makes replicated nominal classifications.

4.1.1 Definition

Suppose two observers X and Y classifying each of N subjects into one of M mu-

tually exclusive and exhaustive unordered categories. Denote the categories as m =

1, . . . ,M . For subject i, i = 1, . . . , N , let Xik be the kth replicated nominal observa-

tions (k = 1, . . . , Ki) made by observer X, and let Yil be the lth replicated nominal

observations (l = 1, . . . , Li) made by observer Y . Define the probabilities of the

category m being observed for subject i as πim and λim for the observers X and Y

respectively, i.e.,

πim = Pr(Xik = m), k = 1, . . . , Ki

λim = Pr(Yil = m), l = 1, . . . , Li

Assuming the conditional independence ofXik and Yil, the subject-specific between-
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observer disagreement function is

Gi(X, Y ) = Pr(Xik 6= Yil|i)

= 1− P [
M⋃

m=1

(Xik = Yil = m)]

= 1−
M∑

m=1

Pr(Xik = m) Pr(Yil = m)

= 1−
M∑

m=1

πimλim

The subject-specific within-observer disagreement function for X is

Gi(X,X
′) = Pr(Xik 6= Xik′|i)

= 1−
M∑

m=1

π2
im

Similarly, the subject-specific within-observer disagreement function for Y is

Gi(Y, Y
′) = Pr(Yil 6= Yil′|i)

= 1−
M∑

m=1

λ2
im

Define

G =
1

N

N∑
i=1

Gi
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As a result,

G(X,X ′) =
1

N

N∑
i=1

Gi(X,X
′)

G(Y, Y ′) =
1

N

N∑
i=1

Gi(Y, Y
′)

G(X, Y ) =
1

N

N∑
i=1

Gi(X, Y )

Then, the CIAs for assessing agreement between two observers with replicated

nominal measurements are defined as

ψR =
G(X,X ′)

G(X, Y )
when X is treated as the reference; (4.1)

ψN =
[G(X,X ′) +G(Y, Y ′)]/2

G(X, Y )
(4.2)

when the observers are in symmetric positions.

4.1.2 Estimation

4.1.2.1 Parametric Method

We first estimate the classification probabilities using the observed frequencies. Let

[Xik = m] represent the total number ofXik being classified into categorym; [Yil = m]

represent the total number of Yil being classified into category m, i.e.,

π̂im =
[Xik = m]

Ki

λ̂im =
[Yil = m]

Li
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Then, the unbiased estimators of the subject-specific disagreement functions are

Ĝi(X, Y ) = 1−
M∑

m=1

π̂imλ̂im

Ĝi(X,X
′) = 1−

M∑
m=1

(Kiπ̂
2
im − π̂im)/(Ki − 1)

Ĝi(Y, Y
′) = 1−

M∑
m=1

(Liλ̂
2
im − λ̂im)/(Li − 1)

As a result, the estimations of the overall G’s are

Ĝ(X, Y ) = Ĝi(X,Y )

Ĝ(X,X ′) = Ĝi(X,X ′)

Ĝ(Y, Y ′) = Ĝi(Y, Y ′)

Substituting the estimated disagreement functions over all subjects in expressions

(4.1) and (4.2) results in the estimates for CIAs for nominal observations.

ψ̂N =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2

Ĝ(X,Y )
(4.3)

ψ̂R =
Ĝ(X,X ′)

Ĝ(X,Y )
(4.4)

4.1.2.2 Non-parametric Method

Or one can estimate the individual disagreement functions by counting the numbers

of unequal pairs among all possible combinations. For each subject, let [Xik 6= Yil]

denote the number of pairs satisfying Xik 6= Yil, [Xik 6= Xik′ ] for the number of

unequal replications for X and [Yil 6= Yil′ ] for the number of unequal replications for
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Y . We have

Ĝi(X, Y ) =
[Xik 6= Yil]

KiLi

Ĝi(X,X
′) =

[Xik 6= Xik′ ]

Ki(Ki − 1)/2

Ĝi(Y, Y
′) =

[Yil 6= Yil′ ]

Li(Li − 1)/2

It can be shown that the parametric and non-parametric approaches in estimating

the subject-specific disagreement functions are equivalent. Either way is appropriate

in obtaining the estimated CIAs for nominal data.

4.1.3 Standard Error

The standard error of estimated ψN is calculated as follows:

Redefine

ψ̂N =
[G

(1)
+G

(2)
]/2

G
(3)

and

ψ̂R =
G

(1)

G
(3)

where G
(1)

= Ĝ(X,X ′), G
(2)

= Ĝ(Y, Y ′), G
(3)

= Ĝ(X, Y ).

Let A =Numerator= [G
(1)

+ G
(2)

]/2 and B =Denominator= G
(3)

. Denote the

sample variance a statistic Z by S2(Z). Then for p = 1, 2, 3,

S2(G(p)) =
1

N − 1

N∑
i=1

(Ĝ
(p)
i −G

(p)
)
2

,

so that

V̂ar(G
(p)

) =
1

N
S2(G(p)).
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In addition, denote the sample covariance of G(p), G(q) by

C(G(p), G(q)) =
1

N − 1

N∑
i=1

(Ĝ
(p)
i −G

(p)
)(Ĝ

(q)
i −G

(q)
)

for 1 ≤ p < q ≤ 3, so that

Ĉov(G
(p)
, G

(q)
) =

1

N
C(G(p), G(q))

We know

V̂ar

(
A

B

)
≈ A2

B2

[
V̂ar(A)

A2
+

V̂ar(B)

B2
− 2Ĉov(A,B)

AB

]

where

V̂ar(A) = V̂ar

(
G

(1)
+G

(2)

2

)
=

1

4
V̂ar

(
G

(1)
+G

(2)
)

=
1

4

[
V̂ar

(
G

(1)
)

+ V̂ar
(
G

(2)
)

+ 2Ĉov(G
(1)
, G

(2)
)
]

=
1

4N

[
S2(G(1)) + S2(G(2)) + 2C(G(1), G(2))

]
V̂ar(B) = V̂ar(G

(3)
)

=
1

N
S2(G(3))

Ĉov(A,B) = Ĉov

(
G

(1)
+G

(2)

2
, G

(3)

)
=

1

2

[
Ĉov

(
G

(1)
, G

(3)
)

+ Ĉov
(
G

(2)
, G

(3)
)]

=
1

2N

[
C(G(1), G(3)) + C(G(2), G(3))

]
Then, one can obtain an approximated standard error of ψ̂N using the sample

variances and covariances. The standard error for ψ̂R can be estimated in a similar
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way.
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4.2 An Example

We apply CIAs for nominal observations to the same mammography data that was

also used to illustrate the concepts of CIAs for binary data in Section 3.4.

The interpretation of a mammogram by a radiologist plays a crucial role in the di-

agnostics of breast cancer. However, the radiologists’ mammographic interpretations

vary resulting in a surprisingly wide range of accuracy among radiologists (Elmore

et al., 1994). The coefficients of agreement are greatly helpful in evaluating the va-

lidity of a radiologist’s diagnosis and in comparing among different radiologists. The

data from this mammography study (Elmore et al., 1994) is ideal to illustrate the

concepts and uses of the CIAs shown in the previous sections.

In 1987, 150 female patients were enrolled in a study at the Yale-New Haven

Hospital to undergo mammograms. The research consisted of two stages and was

blinded to radiologists so that they were not aware of the objective and procedure of

the research. In the first phase of the study, each of ten radiologists independently

examined each patient’s mammographic result and classified it into one of four cat-

egories: (1) normal, (2) abnormal – probably benign, (3) abnormal – intermediate,

or (4) abnormal – suggestive of cancer. Although those four strata are ordinal, we

treated them as nominal for the purpose of demonstration of our new definition of

CIA for nominal data. In the second stage of the study, which was conducted four

months after the first diagnoses, the same ten radiologists reviewed the same films but

in a new random order using the same classification. Therefore, we had replicated

measurements with nominal observations on the same subjects. Each patient was

followed up for three years. At the end of the study, the definite positive diagnosis of

having breast cancer was confirmed based on the histopathology within three years

after the mammography. This was considered as the “true” values of the patients’

breast cancer status. According to this criterion, 27 of the 150 (18%) participants

were diagnosed as breast cancer.
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In Section 3.4, the data were dichotomized and used as binary readings. Here,

we considered the observations as nominal. We also treated the radiologist A as the

reference in estimating ψ̂R because of its highest sensitivity and specificity among all

radiologists (Table A.1). The estimated CIAs ψ̂N and ψ̂R for the pair-wise compar-

isons of the radiologist A and each of other nine radiologists along with their estimated

95% CIs are presented in Table 4.1. The ψ̂N and ψ̂R are comparatively larger than

those obtained when the data was treated as dichotomous (Table A.27). The radiol-

ogists A and E attained the highest value of ψ̂N when neither of them was treated

as a reference. The radiologists A and D were also in acceptable agreement when

no reference is taken into account, since ψ̂N ≈ 0.8. Other than that, no other pairs

demonstrated good agreement, with the radiologists A and C showing the poorest

agreement with ψ̂N ≈ 0.5. Moreover, none of the nine radiologists highly agreed with

the radiologist A when the radiologist A was considered as the reference (ψ̂R < 0.8).

It confirms the findings of the extent of radiologists’ accuracy and variability as in

Elmore et al. (1994).

Table 4.1: Estimates of ψN and ψR for nine pairs of radiologists for mammograms
data (treated as nominal observations)

Radiologists ψ̂N 95% CI‡ ψ̂R 95% CI‡

(A, B) 0.669 (0.559, 0.778) 0.687 (0.539, 0.834)
(A, C) 0.505 (0.419, 0.591) 0.582 (0.456, 0.708)
(A, D) 0.798 (0.688, 0.907) 0.699 (0.557, 0.842)
(A, E) 0.812 (0.693, 0.931) 0.752 (0.598, 0.907)
(A, F) 0.653 (0.548, 0.758) 0.683 (0.536, 0.829)
(A, G) 0.665 (0.558, 0.772) 0.671 (0.524, 0.817)
(A, H) 0.721 (0.614, 0.827) 0.618 (0.483, 0.753)
(A, I) 0.742 (0.625, 0.859) 0.784 (0.626, 0.941)
(A, J) 0.727 (0.619, 0.835) 0.715 (0.570, 0.859)

‡Standard errors based on approach shown in Section 4.1.3
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4.3 Simulations

4.3.1 Simulation Process

4.3.1.1 Step 1: Generate Population

For simplicity, assume the total number of categories is M = 4. First, we generate

correlated bivariate normal random numbers U, V such as

 U

V

 ∼ MVN(µ,W )

with mean vector = µ = (µu, µv) and variance-covariance matrix

W =

 σ2
u σuσvρuv

σuσvρuv σ2
v


We then determine the cut-off points as following. Set π1 = 0.1, π2 = 0.2, π3 = 0.3,

and π4 = 0.4 with the sum being 1. The cut-off points Ci’s are the values satisfying

that

π1 = Pr(U < C1)

π2 = Pr(C1 ≤ U < C2)

π3 = Pr(C2 ≤ U < C3)

π4 = Pr(U ≥ C3)

Since U follows a normal distribution, if we denote the CDF of a standard normal
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distribution as Φ, then C1 = Φ−1(π1)× σu + µu. In fact, it is derived as

π1 = Pr(U < C1)

= Pr

(
U − µu

σu

<
C1 − µu

σu

)
= Φ

(
C1 − µu

σu

)
C1 − µu

σu

= Φ−1(π1)

C1 = Φ−1(π1)× σu + µu

Furthermore, C2 = Φ−1(π1 + π2)× σu + µu. This is because

π2 = Pr(C1 ≤ U < C2)

= Pr(U < C2)− Pr(U < C1)

= Pr(U < C2)− π1

Pr(U < C2) = π1 + π2

C2 = Φ−1(π1 + π2)× σu + µu

Similarly, C3 = Φ−1(π1 + π2 + π3)× σu + µu.

For V , we use the same cut-off points Ci’s. Hence, we calculate the probabilities

as

λ1 = Pr(V < C1)

λ2 = Pr(C1 ≤ V < C2)

λ3 = Pr(C2 ≤ V < C3)

λ4 = Pr(V ≥ C3)

Next, we generate replicated nominal categorical variables for each observer X, Y .
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For simplicity, we assume the numbers of replications are the same for all subjects

for the observer X and Y respectively, i.e., Ki = K, ∀i and Li = L, ∀i. However, we

do not assume that K = L. For the subject i, let U = ui, V = vi. For the observer

X, we obtain K replicated values as follows. For the replication k, we first generate

a random number Rik ∼ N(0, σ2
R). For example, if k = 3, then


R1

R2

R3

 ∼ MVN




0

0

0

 ,


σ2

R 0 0

0 σ2
R 0

0 0 σ2
R




Let rik be the observed value of Rik. Now, we generate nominal categorical observa-

tions for the first observer X.

If ui + rik ≤ C1 ⇒ Xik = 1

C1 < ui + rik ≤ C2 ⇒ Xik = 2

C2 < ui + rik ≤ C3 ⇒ Xik = 3

ui + rik > C3 ⇒ Xik = 4

Similarly, for the observer Y , we generate L replicated values. For the replication

l, we obtain a random number Sil ∼ N(0, σ2
S). Let sil be the observed value of Sil.

Then, the replicated value Yil is generated by

if vi + sil ≤ C1 ⇒ Yil = 1

C1 < vi + sil ≤ C2 ⇒ Yil = 2

C2 < vi + sil ≤ C3 ⇒ Yil = 3

vi + sil > C3 ⇒ Yil = 4
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4.3.1.2 Step 2: Calculate True Values

To calculate the true values of ψN and ψR, for each subject i, we calculate

πi1 = Pr(ui + rik ≤ C1|ui)

πi2 = Pr(C1 < ui + rik ≤ C2|ui)

πi3 = Pr(C2 < ui + rik ≤ C3|ui)

πi4 = Pr(ui + rik > C3|ui)

Similarly,

λi1 = Pr(vi + sil ≤ C1|vi)

λi2 = Pr(C1 < vi + sil ≤ C2|vi)

λi3 = Pr(C2 < vi + sil ≤ C3|vi)

λi4 = Pr(vi + sil > C3|vi)

We have had Ui ∼ N(µu, σ
2
u) and Rik ∼ N(0, σ2

R). We assume that Ui and Rik are

independent, then the distribution of the sum is given by Ui +Rik ∼ N(µu, σ
2
u + σ2

R)

Therefore,

πi1 = Pr(ui + rik ≤ C1|ui)

= Pr(rik ≤ C1 − ui)

= Pr

(
rik

σR

≤ C1 − ui

σR

)
= Φ

(
C1 − ui

σR

)
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Moreover,

πi2 = Pr(C1 < ui + rik ≤ C2|ui)

= Pr(ui + rik ≤ C2|ui)− Pr(ui + rik ≤ C1|ui)

= Pr(rik ≤ C2 − ui)− Pr(rik ≤ C1 − ui)

= Φ

(
C2 − ui

σR

)
− Φ

(
C1 − ui

σR

)
πi3 = Pr(C2 < ui + rik ≤ C3|ui)

= Pr(ui + rik ≤ C3|ui)− Pr(ui + rik ≤ C2|ui)

= Pr(rik ≤ C3 − ui)− Pr(rik ≤ C2 − ui)

= Φ

(
C3 − ui

σR

)
− Φ

(
C2 − ui

σR

)
πi4 = Pr(ui + rik > C3|ui))

= 1− Pr(ui + rik ≤ C3|ui))

= 1− Pr(rik ≤ C3 − ui))

= 1− Φ

(
C3 − ui

σR

)
or, πi4 = 1− πi1 − πi2 − πi3

For Yi, Vi ∼ N(µv, σ
2
v), Sil ∼ N(0, σ2

S). Again, assuming independence results in

Vi + Sil ∼ N(µv, σ
2
v + σ2

S).

λi1 = Pr(vi + sil ≤ C1|vi)

= Pr(sil ≤ C1 − vi)

= Pr

(
sil

σS

≤ C1 − vi

σS

)
= Φ

(
C1 − vi

σS

)
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Moreover,

λi2 = Pr(C1 < vi + sil ≤ C2|vi)

= Pr(vi + sil ≤ C2|vi)− Pr(vi + sil ≤ C1|vi)

= Pr(sil ≤ C2 − vi)− Pr(sil ≤ C1 − vi)

= Φ

(
C2 − vi

σS

)
− Φ

(
C1 − vi

σS

)
λi3 = Pr(C2 < vi + sil ≤ C3|vi)

= Pr(vi + sil ≤ C3|vi)− Pr(vi + sil ≤ C2|vi)

= Pr(sil ≤ C3 − vi)− Pr(sil ≤ C2 − vi)

= Φ

(
C3 − vi

σS

)
− Φ

(
C2 − vi

σS

)
λi4 = Pr(vi + sil > C3|vi))

= 1− Pr(vi + sil ≤ C3|vi))

= 1− Pr(sil ≤ C3 − vi))

= 1− Φ

(
C3 − vi

σS

)
or, λi4 = 1− λi1 − λi2 − λi3

As a result, the subject specific true disagreement functions are calculated as

Gi(X,Y ) = 1−
M∑

m=1

πimλim

Gi(X,X
′) = 1−

M∑
m=1

π2
im

Gi(Y, Y
′) = 1−

M∑
m=1

λ2
im

Consequently, the true values for CIAs are evaluated as in the expressions (4.1)

and (4.2).
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4.3.1.3 Step 3: Select Sample

We select a sample of size n from the generated population from step one. For each

subject i (i = 1, . . . , n) in the sample, the kth replication Rik (k = 1, . . . , K) and the

lth replication Sil (l = 1, . . . , L) are generated for the observers X and Y . Then, Xik

and Yil are determined as shown in the first step. The estimations of ψN and ψR are

derived for this sample as in equations (4.3) and (4.4).

4.3.1.4 Step 4: Estimate ψN and ψR

Step 3 is repeated many times. Then, the means of the simulated ψ̂N and ψ̂R are the

estimated ψ̂N and ψ̂R. Then, the bias which is the difference between the true values

and the estimated values of ψN and ψR are calculated. Furthermore, the standard

errors of estimated CIAs are assessed via two ways – one based on simulations; the

other calculated via the method shown in Section 4.1.3. Consequently, two sets

of confidence intervals corresponding to these two types of standard errors are also

obtained and compared.

4.3.2 Simulation Results

Simulations were performed to evaluate the proposed estimation method for CIAs for

nominal categorical data for sample size of n = 50, 100, and 200 and the number

of replications for the two observers (K,L) = (3, 3), (2, 2), (3, 1), and (2, 1). Three

scenarios which resulted in CIAs ≈ 0.2, 0.6, and 0.9 respectively were set up to test

the performance of proposed CIAs under the situations of poor, moderate and good

agreements. For each combination of different sample size, the number of replications

and setting, 1000 simulations were conducted. Moreover, the standard errors of the

means along with confidence intervals were obtained from the simulation results and

from the formulations as in Section 4.1.3. Besides bias, standard errors and confidence

intervals, we also calculated the coverage probabilities by using the proportion of times
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when the true values were contained in the simulated confidence intervals.

The bias and root mean square errors (RMSE) of the estimates for the first three

cases are summarized in Tables 4.2 for ψ̂N and 4.4 for ψ̂R. The results of bias and

RMSE of the estimates for all the sets of simulations for ψ̂N are shown in Tables

A.21, A.23, and A.25. For ψ̂R, the results are shown in Tables A.22, A.24, and A.26.

As one can see, the biases are considerably small with small standard errors. The

standard errors estimated following the formulas in Section 4.1.3 are greater than the

ones based on simulations in most cases, especially for the scenarios of moderate and

good agreement, which results in wider confidence intervals. Also, the standard errors

decrease as the sample size increases. The coverage probability increases as the desired

agreement increases. For the situation of unsatisfactory agreement, the coverage

probabilities range from 90% to 96%. For the situation of satisfactory agreement,

all the coverage probabilities are above 95%. The coverage probabilities for selected

cases for demonstration purpose are in Tables 4.3 and 4.5. The other results are

included in Appendix in the tables mentioned earlier in this paragraph.

Table 4.2: Nominal simulation results – bias and RMSE for ψ̂N

Good Moderate Poor
ψN = 0.941 ψN = 0.584 ψN = 0.152

N K L Bias RMSE Bias RMSE Bias RMSE

50 3 3 -0.029 0.071 0.004 0.063 0.001 0.040
2 2 -0.011 0.096 0.018 0.088 0.003 0.050

100 3 3 0.008 0.043 0.018 0.047 0.004 0.029
2 2 -0.039 0.078 -0.020 0.062 -0.011 0.035

200 3 3 -0.006 0.030 0.001 0.031 -0.002 0.020
2 2 0.011 0.048 0.020 0.046 0.003 0.025
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Table 4.3: Nominal simulation results – CP for ψ̂N

Good Moderate Poor
N K L ψN = 0.941 ψN = 0.584 ψN = 0.152

50 3 3 96.3% 96.0% 92.9%
2 2 97.7% 96.0% 93.1%

100 3 3 96.9% 94.6% 96.1%
2 2 95.4% 96.2% 91.2%

200 3 3 96.4% 96.5% 94.6%
2 2 98.1% 94.3% 95.3%

Table 4.4: Nominal simulation results – bias and RMSE for ψ̂R

Good Moderate Poor
ψR = 0.954 ψR = 0.694 ψR = 0.172

N K L Bias RMSE Bias RMSE Bias RMSE

100 3 3 -0.013 0.060 0.004 0.060 -0.001 0.041
2 2 -0.052 0.106 -0.025 0.086 -0.014 0.051
3 1 0.014 0.072 0.010 0.064 -0.001 0.041
2 1 -0.003 0.102 -0.017 0.087 -0.014 0.051

200 3 3 -0.015 0.044 -0.007 0.043 -0.006 0.029
2 2 -0.003 0.064 0.014 0.060 -0.001 0.036
3 1 0.024 0.056 -0.000 0.045 -0.005 0.029
2 1 0.035 0.079 0.017 0.063 -0.001 0.036
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Table 4.5: Nominal simulation results – CP for ψ̂R

Good Moderate Poor
N K L ψR = 0.954 ψR = 0.694 ψR = 0.172

100 3 3 97.4% 95.9% 94.9%
2 2 95.2% 96.5% 89.6%
3 1 96.7% 95.8% 95.0%
2 1 96.7% 96.2% 89.8%

200 3 3 97.7% 96.4% 93.2%
2 2 98.5% 96.0% 94.6%
3 1 95.2% 96.9% 93.4%
2 1 95.4% 96.8% 94.3%



114

Chapter 5

Assessing Observer Agreement for

Studies Involving Ordinal

Categorical Observations
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5.1 Definition of Coefficients

To derive the CIAs for ordinal data, we assume that every reading by either observer

can be classified into one of M categories. Supposing now that these categories are

ordinal, the CIAs for ordinal observations can be defined in two ways. The investigator

may assign scores to the different categories, such as from 1 for “strongly agree”

to 5 for “strongly disagree”, and then estimate the quantitative CIA where these

scores are considered as the actual measurements. The Weighted Kappa statistic for

assessing observer agreement for ordinal data as reviewed in Section 1.3.1.3 is based

on this concept. The disadvantage of this approach is that this coefficient depends

on the assignment of scores to the ordered categories, which is usually arbitrary.

We therefore propose a method that does not require attaching scores to categories.

This method is based on the dichotomizations of the M categories such that the

mth dichotomization compares the first m and the last M − m categories, where

m = 1, . . . ,M − 1. For the mth dichotomization, we use the disagreement function

that we used for binary observations, namely the probability that two observations

on the same subject disagree, in the sense that one of them falls into one of the first

m categories and the other falls into one of the last M−m categories. In other words,

we define a separate subject-specific disagreement function for each m = 1, . . . ,M−1

as follows.

5.1.1 Definition

Suppose two observers X and Y classifying each of N subjects into one of M mutually

exclusive ordered categories. Denote the categories as m = 1, . . . ,M . For subject i,

i = 1, . . . , N , let Xik be the kth (k = 1, . . . , Ki) replicated ordinal observation made

by observer X, and let Yil be the lth (l = 1, . . . , Li) replicated ordinal observation

made by observer Y . Define the probabilities of the category j being observed for
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subject i as πij and λij for the observers X and Y respectively, i.e.,

πij = Pr(Xik = j), k = 1, . . . , Ki

λij = Pr(Yil = j), l = 1, . . . , Li

For observations made by different observers, the mth disagreement function (m =

1, . . . ,M − 1) is

Gim(X, Y ) = Pr(Xik ≤ m ∩ Yil > m) + Pr(Xik > m ∩ Yil ≤ m)

where

Pr(Xik ≤ m) =
m∑

j=1

Pr(Xik = j)

=
m∑

j=1

πij

Pr(Yil ≤ m) =
m∑

j=1

Pr(Yil = j)

=
m∑

j=1

λij

Pr(Xik > m) = 1−
m∑

j=1

πij

Pr(Yil > m) = 1−
m∑

j=1

λij
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Consequently, assuming conditional independence, we obtain

Gim(X, Y ) = Pr(Xik ≤ m) Pr(Yil > m) + Pr(Xik > m) Pr(Yil ≤ m)

=
m∑

j=1

πij

(
1−

m∑
j=1

λij

)
+

(
1−

m∑
j=1

πij

)
m∑

j=1

λij

=
m∑

j=1

πij +
m∑

j=1

λij − 2
m∑

j=1

πij

m∑
j=1

λij (5.1)

For the replicated observations (k, k′) made by the first observer X, we define

Gim(X,X ′) = Pr(Xik ≤ m ∩Xik′ > m) + Pr(Xik > m ∩Xik′ ≤ m)

Then,

Gim(X,X ′) = Pr(Xik ≤ m) Pr(Xik′ > m) + Pr(Xik > m) Pr(Xik′ ≤ m)

= 2
m∑

j=1

πij

(
1−

m∑
j=1

πij

)
(5.2)

Similarly, for the replicated observations (l, l′) made by the other observer Y ,

Gim(Y, Y ′) = Pr(Yil ≤ m) Pr(Yil′ > m) + Pr(Yil > m) Pr(Yil′ ≤ m)

= 2
m∑

j=1

λij

(
1−

m∑
j=1

λij

)
(5.3)

The overall subject-specific disagreement functions are then defined as the mean

over the M − 1 dichotomizations:
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Gi(X, Y ) =
1

M − 1

M−1∑
m=1

Gim(X, Y ) (5.4)

Gi(X,X
′) =

1

M − 1

M−1∑
m=1

Gim(X,X ′) (5.5)

Gi(Y, Y
′) =

1

M − 1

M−1∑
m=1

Gim(Y, Y ′) (5.6)

Let

G =
1

N

N∑
i=1

Gi

So that,

G(X,X ′) =
1

N

N∑
i=1

Gi(X,X
′)

G(Y, Y ′) =
1

N

N∑
i=1

Gi(Y, Y
′)

G(X, Y ) =
1

N

N∑
i=1

Gi(X, Y )

As a result, analogously to the binary and nominal cases, the CIA when neither of

the observers is considered as the reference observer and the CIA when the observer

X is treated as the reference observer are

ψN =
[G(X,X ′) +G(Y, Y ′)]/2

G(X,Y )
(5.7)

ψR =
G(X,X ′)

G(X,Y )
(5.8)
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5.1.2 Estimation

5.1.2.1 Parametric Method

The unbiased estimates for (5.1), (5.2) and (5.3) are derived using the MLEs for πij

and λij as

Ĝim(X, Y ) =
m∑

j=1

π̂ij +
m∑

j=1

λ̂ij − 2
m∑

j=1

π̂ij

m∑
j=1

λ̂ij (5.9)

Ĝim(X,X ′) =
2Ki

Ki − 1

 m∑
j=1

π̂ij −

(
m∑

j=1

π̂ij

)2
 (5.10)

Ĝim(Y, Y ′) =
2Li

Li − 1

 m∑
j=1

λ̂ij −

(
m∑

j=1

λ̂ij

)2
 (5.11)

The overall estimated subject-specific disagreement functions Ĝi are then esti-

mated by averaging each of the Ĝim over m.

Ĝi(X, Y ) =
1

M − 1

M−1∑
m=1

Ĝim(X, Y ) (5.12)

Ĝi(X,X
′) =

1

M − 1

M−1∑
m=1

Ĝim(X,X ′) (5.13)

Ĝi(Y, Y
′) =

1

M − 1

M−1∑
m=1

Ĝim(Y, Y ′) (5.14)

As before, the estimated sample disagreement functions Ĝ are the means of the

subject-specific estimated disagreement functions and the coefficients ψN or ψR are

estimated as ratios of the estimated sample disagreement functions as demonstrated

in the formulas (5.7) and (5.8).
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ψ̂N =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2

Ĝ(X,Y )
(5.15)

ψ̂R =
Ĝ(X,X ′)

Ĝ(X,Y )
(5.16)

5.1.2.2 Non-parametric Method

To avoid assuming conditional independence of Xik and Yil and estimate the subject-

specific disagreement functions for the mth dichotomization, we estimate each of the

probabilities as the proportion of pairwise observations satisfying the corresponding

condition:

Ĝim(X,Y ) =
[(Xik, Yil) : (Xik ≤ m ∩ Yil > m) ∪ (Xik > m ∩ Yil ≤ m)]

KiLi

and

Ĝim(X,X ′) =
[(Xik, Xik′) : (Xik ≤ m ∩Xik′ > m) ∪ (Xik > m ∩Xik′ ≤ m)]

Ki(Ki − 1)/2

where [ ] represent the number of pairs. Ĝim(Y, Y ′) is estimated in an analogous way.

Similar to Section 3.2.3.2, we now show that the parametric approach and non-

parametric approach are equivalent in estimating the individual disagreement func-

tions.

Let Wist represent the total number of pairs that Xik = s and Yil = t, i.e. Wist =
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[Xik = s, Yil = t] where “[,]” means the number of pairs. Then

[(Xik ≤ m) ∩ (Yil > m)] =
∑

s≤m,t>m

[Xik = s, Yil = t]

=
m∑

s=1

M∑
t=m+1

Wist

[(Xik > m) ∩ (Yil ≤ m)] =
∑

s>m,t≤m

[Xik = s, Yil = t]

=
M∑

s=m+1

m∑
t=1

Wist

As a result, the inter-observer subject-specific disagreement function using the non-

parametric approach can be expressed as

Ĝim(X, Y ) =
[(Xik, Yil) : (Xik ≤ m ∩ Yil > m) ∪ (Xik > m ∩ Yil ≤ m)]

KiLi

=
1

KiLi

(
m∑

s=1

M∑
t=m+1

Wist +
M∑

s=m+1

m∑
t=1

Wist

)
(5.17)

Furthermore, we can write the sums (5.17) as

Ĝim(X, Y ) =
1

KiLi

[(
m∑

s=1

M∑
t=1

Wist −
m∑

s=1

m∑
t=1

Wist

)
+

(
M∑

s=1

m∑
t=1

Wist −
m∑

s=1

m∑
t=1

Wist

)]

=
1

KiLi

(
m∑

s=1

M∑
t=1

Wist +
M∑

s=1

m∑
t=1

Wist − 2
m∑

s=1

m∑
t=1

Wist

)
(5.18)

Now, let the number of Xik = s and Yil = t be Sis and Tit respectively, i.e.,

Sis = [Xik = s] and Tit = [Yil = t]. Note that
∑M

s=1 Sis = Ki,
∑M

t=1 Tit = Li

and Wist = Sis × Tit. Consequently, the inter-observer subject-specific disagreement
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function via the parametric approach (5.9) can be expressed as

Ĝim(X, Y ) =
m∑

j=1

π̂ij +
m∑

j=1

λ̂ij − 2
m∑

j=1

π̂ij

m∑
j=1

λ̂ij

=

∑m
j=1[Xik = j]

Ki

+

∑m
j=1[Yil = j]

Li

− 2

(∑m
j=1[Xik = j]

)(∑m
j=1[Yil = j]

)
KiLi

=
1

KiLi

[
Li

m∑
j=1

Sij +Ki

m∑
j=1

Tij − 2
m∑

j=1

Sij

m∑
j=1

Tij

]

=
1

KiLi

[
M∑
t=1

Tit

m∑
j=1

Sij +
M∑

s=1

Sis

m∑
j=1

Tij − 2
m∑

j=1

Sij

m∑
j=1

Tij

]

=
1

KiLi

[
m∑

s=1

M∑
t=1

(SisTit) +
M∑

s=1

m∑
t=1

(SisTit)− 2
m∑

s=1

m∑
t=1

(SisTit)

]

=
1

KiLi

[
m∑

s=1

M∑
t=1

Wist +
M∑

s=1

m∑
t=1

Wist − 2
m∑

s=1

m∑
t=1

Wist

]
(5.19)

Therefore, (5.17)=(5.18)=(5.19). Analogously, the similar equalities hold for Ĝim(X,X ′)

and Ĝim(Y, Y ′). That is to say, the assumption of the conditional independence is

not necessary and hence either of the estimating methods can be used to evaluate the

individual disagreement between observations from two or one observers.
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5.2 An Example

Again, we use the mammography data as described in Section 4.2 to illustrate the

CIAs for ordinal observations. In the original data, the radiologists’ mammographic

interpretations were classified into one of four ordered categories: (1) normal, (2) ab-

normal – probably benign, (3) abnormal – intermediate, or (4) abnormal – suggestive

of cancer. The categories were ordered by the severity of the illness.

The radiologist A was again treated as the reference in estimating ψR because

of its highest sensitivity and specificity among all radiologists (Table A.1). The

contingency tables showing the distribution of the classified diagnoses for radiologist

A and each of the other nine radiologists are in Table A.20. The estimated CIAs

ψ̂N and ψ̂R for the pair-wise comparisons between the radiologist A and each of

other nine radiologists as well as their estimated 95% CIs are summarized in Table

5.1. When none of the radiologists was treated as the gold standard, the radiologists

A and D showed the greatest agreement with the highest value of ψ̂N being 0.79.

While, the radiologists A and D, A and I also agreed at some acceptable level given

that ψ̂N ≈ 0.8. Other than that, no other pairs demonstrated good agreement, with

the radiologists A and C showing the poorest agreement with ψ̂N ≈ 0.5. Moreover,

when the radiologist A was considered as the reference, ψ̂R ranged from 0.52 to 0.77.

None of the nine radiologists highly agreed with the radiologist A (ψ̂R < 0.8). The

results imply that there is evidence that the variation among radiologists should not

be neglected. Hence, the diagnoses should not be taken as granted and the accuracy of

the mammographic interpretations should always be questioned prior to undergoing

any consequent therapies or other further actions.

We also compared the results from the cases where the outcomes were treated

as ordinal observations to the cases where the outcomes were treated as nominal

observations. The comparisons are shown in Table 5.2. In most of the cases, the

estimated CIAs when treating the data as ordinal observations are slightly smaller
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than the estimated CIAs when treating the data as nominal observations, though

sometimes are the opposite. We pick the two cases (A and C) and (A and I) where

the difference in ψN are the highest to take a closer look at the distribution (Table

A.20). One should recall that when developing a measure for agreement, for nominal

observations, no weights are put for two inconsecutive categories. But for ordinal

observations, disagreements are weighted by the distance of the categories. And an

agreement coefficient should reflect this distinction. That is to say, we should focus

on the cells that are on the most off-diagonal. Between the radiologists A and C, the

radiologist C seems to be more conservative and hesitated to classify patients into

late stages of breast cancer. Therefore, it is not surprising that the CIAs are lower

for the ordinal cases in this sense. Meanwhile, the radiologists A and I appear to be

more concordant on the diagnoses. Consequently, it is not unexpected that the CIAs

are similar between treating the outcomes as nominal and as ordinal.

Similarly, we also compared the results to the binary scenario as shown in Table

A.27. The CIAs are overall smaller for the binary case. The reason may lie in

that for this particular study, the radiologists tended to reach more consensus when

classifying the severity of the breast cancer into early stages, but appeared to hold

different opinions when diagnosing the patients as in advanced stage of breast cancer.



125

Table 5.1: Estimates of ψN and ψR for nine pairs of radiologists for mammograms
data (treated as ordinal observations)

Radiologists ψ̂N 95% CI‡ ψ̂R 95% CI‡

(A, B) 0.671 (0.553, 0.788) 0.667 (0.516, 0.818)
(A, C) 0.466 (0.381, 0.551) 0.524 (0.402, 0.645)
(A, D) 0.790 (0.672, 0.907) 0.655 (0.510, 0.799)
(A, E) 0.783 (0.662, 0.904) 0.713 (0.556, 0.870)
(A, F) 0.674 (0.562, 0.787) 0.643 (0.498, 0.788)
(A, G) 0.650 (0.539, 0.762) 0.663 (0.511, 0.815)
(A, H) 0.734 (0.621, 0.847) 0.584 (0.449, 0.718)
(A, I) 0.766 (0.639, 0.894) 0.766 (0.600, 0.933)
(A, J) 0.696 (0.586, 0.806) 0.668 (0.522, 0.814)

‡Standard errors based on approach shown in Section 4.1.3

Table 5.2: Comparisons of ψ̂N and ψ̂R when treated as ordinal (ord.) and as nominal
(nom.) observations for mammograms data

Radiologists
ψ̂N S.E. of ψ̂N ψ̂R S.E. of ψ̂R

Ord. Nom. Ord. Nom. Ord. Nom. Ord. Nom.

(A, B) 0.671 0.669 0.060 0.056 0.667 0.687 0.077 0.075
(A, C) 0.466 0.505 0.043 0.044 0.524 0.582 0.062 0.064
(A, D) 0.790 0.798 0.060 0.056 0.655 0.699 0.074 0.073
(A, E) 0.783 0.812 0.062 0.061 0.713 0.752 0.080 0.079
(A, F) 0.674 0.653 0.058 0.054 0.643 0.683 0.074 0.075
(A, G) 0.650 0.665 0.057 0.055 0.663 0.671 0.078 0.075
(A, H) 0.734 0.721 0.058 0.054 0.584 0.618 0.069 0.069
(A, I) 0.766 0.742 0.065 0.060 0.766 0.784 0.085 0.080
(A, J) 0.696 0.727 0.056 0.055 0.668 0.715 0.075 0.074
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5.3 Simulations

5.3.1 Simulation Process

We first generate an ordinal dataset as our population via the same way as we gen-

erated nominal data as shown in Section 4.3.1. The simulation settings are the same

as applied for nominal simulations. Using the generated πi and λi, we compare the

first m and the last M −m categories (m = 1, . . . ,M − 1) and calculate Gim(X, Y ),

Gim(X,X ′) and Gim(Y, Y ′) based on the equations (5.1), (5.2) and (5.3). Then,

the overall subject-specific disagreement functions are the mean over the M − 1 di-

chotomizations, which are expressed in the equations (5.4), (5.5) and (5.6). As a

result, taking the average of these individual disagreement functions over all subjects

leads to the true CIAs.

Next, we randomly select samples with sample size being 50, 100, or 200 and

replication numbers as (3, 3), (2, 2), (3, 1), and (2, 1) from the generated population.

The CIAs for replicated ordinal data are estimated as described in Section 5.1.2. The

unbiased estimates for Gim(X, Y ), Gim(X,X ′) and Gim(Y, Y ′) are the functions of

the MLEs for πi and λi along with the replication numbers Ki and Li as derived in

the expressions (5.9), (5.10) and (5.11). Then, for each subject, the overall estimated

individual disagreement functions are evaluated by the formulations (5.12), (5.13)

and (5.14). Finally, the CIAs for ordinal simulated data when no reference is consid-

ered and when X is treated as the reference are the ratios of these mean estimated

individual disagreement functions, as in the formulas (5.15) and (5.16):

ψ̂N =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]/2

Ĝ(X,Y )

ψ̂R =
Ĝ(X,X ′)

Ĝ(X,Y )

We output biases, standard errors using both the simulations and the approxima-
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tion method as in Section 4.1.3, corresponding 95% confidence intervals along with

coverage probabilities.

5.3.2 Simulation Results

Based on our simulations for estimating ψN (Tables: 5.3, A.28, A.30, and A.32),

in most cases, the biases are nearly noticeable. In general, when the number of

simulations increases, the bias deceases, which indicates that part of the bias may

reflect the system errors from simulations.

Tables A.28, A.30, and A.32 compare the standard errors estimated via different

ways. The sixth column contains the standard errors based on the simulations. The

seventh column contains the standard errors estimated using the formula as in Section

4.1.3. Since the standard errors obtained from simulations are very close to the ones

that were directly evaluated by the formulation, it implies that the approximation

method for standard error for CIAs is trustworthy.

All of the coverage probabilities shown here are above 90% and most of them are

close to 95%, indicating reliable estimation.

Similarly for ψR, the simulations demonstrate small biases (Tables: 5.4, A.29,

A.31, and A.33). The standard errors based on simulations are similar to those calcu-

lated by the formulation; moreover, the RMSE are close to SE implying unbiasedness.

Also, good coverage means satisfactory approximation.
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Table 5.3: Ordinal simulation results – bias, SE and CP† for ψN

Good Moderate Poor
ψN = 0.814 ψN = 0.449 ψN = 0.105

N K L Bias SE CP Bias SE CP Bias SE CP

50 3 3 0.011 0.078 95.4% 0.005 0.061 95.4% 0.001 0.029 93.5%
2 2 0.007 0.107 96.7% 0.019 0.077 97.1% 0.005 0.037 93.9%

100 3 3 0.018 0.053 95.1% 0.012 0.043 97.3% 0.004 0.021 94.8%
2 2 0.042 0.076 93.6% 0.021 0.051 92.5% 0.005 0.025 92.8%

200 3 3 0.001 0.038 97.2% 0.001 0.030 96.3% 0.000 0.015 95.6%
2 2 0.015 0.054 97.6% 0.017 0.038 96.7% 0.002 0.018 95.7%

†Coverage probability

Table 5.4: Ordinal simulation results – bias, SE and CP† for ψR

Good Moderate Poor
ψR = 0.908 ψR = 0.543 ψR = 0.117

N K L Bias SE CP Bias SE CP Bias SE CP
50 3 3 0.034 0.107 96.5% 0.031 0.083 95.6% 0.005 0.041 93.7%

2 2 0.032 0.146 96.6% 0.011 0.106 97.6% 0.003 0.051 92.2%
3 1 0.058 0.123 94.9% 0.039 0.088 96.2% 0.005 0.042 94.1%
2 1 0.044 0.155 95.6% 0.012 0.109 97.0% 0.003 0.052 92.3%

100 3 3 0.008 0.073 97.1% 0.003 0.057 97.4% 0.004 0.029 94.8%
2 2 0.043 0.105 95.5% 0.023 0.072 94.3% 0.005 0.035 92.2%
3 1 0.007 0.087 96.9% 0.005 0.060 98.0% 0.005 0.030 95.0%
2 1 0.046 0.112 95.2% 0.024 0.073 94.2% 0.005 0.035 92.0%

200 3 3 0.016 0.052 97.1% 0.007 0.041 96.6% 0.003 0.020 95.2%
2 2 0.008 0.074 98.1% 0.002 0.052 98.6% 0.002 0.025 95.2%
3 1 0.011 0.062 97.8% 0.006 0.043 96.8% 0.003 0.020 94.8%
2 1 0.007 0.081 97.7% 0.002 0.054 98.6% 0.002 0.025 94.7%
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Chapter 6

Assessing Observer Agreement for

Data with Matched Repeated

Measurements
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6.1 Introduction

In the previous chapters, we estimated the CIAs from data with unmatched replica-

tions which are measured under the “same” condition. And by the “same” condition,

we assume that nothing changes other than the time of measurements taken. In other

words, we could independently permute the replications from observer X and those

from observer Y without affecting the estimates. Frequently, the number of readings

made by each observer on each subject is fixed and these readings correspond to

the levels of an additional factor whose levels will be referred to as “conditions”. In

this case, the agreement studies may be designed such that multiple matched obser-

vations with two (or more) observers are conducted on each subject under specific

“conditions” where the subjects’ true values may change across conditions. These

observations are then considered as matched repeated measurements.

In this chapter, we extend the concepts and ideas of the CIAs for assessing ob-

server agreement in the data consisting of matched repeated observations made with

the same observer under different conditions. These conditions may correspond to

different time points, laboratories, devices, treatments and so forth. Our approach

allows the values of the measured variables and the magnitude of disagreement to

vary across the conditions.

We assume that all the measurements are made on the same interval scale, hence

we can evaluate the extent of agreement between observers via the differences between

measurements made on the same subject with different observers. In addition, we

assume that a subject’s true value may change across the levels of the variables corre-

sponding to the conditions, and that the magnitude of agreement between observers

may vary across conditions. We are interested in (a) assessing condition-specific agree-

ment between observers, (b) investigating the effect of the condition on the magnitude

of agreement between observers, and (c) obtaining an overall measure of the extent of

agreement if the agreement between observers remains unchanged across conditions.
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We assume that the magnitude of agreement is measured by the mean squared

deviation (MSD), defined as before as the mean of the squared difference between

two readings made on the same subject under the same condition. For quantitative

measurements, we could assume that the readings follow specific linear mixed models.

Similarly, for qualitative measurements, we could assume that the readings follow

specific generalized linear mixed models. Then, the parameter and variance estimates

from the mixed models can be adapted to calculate the between- and within-observer

MSDs and hence form new CIAs under this situation.

A motivating example is a study designed to compare imaging methods for as-

sessing carotid stenosis (Barnhart and Williamson, 2001), in which the same three

raters used each of the imaging methods to determine the percent of carotid stenosis

of each patient. Here, the three raters correspond to three “conditions” under which

measurements have been made. In this carotid stenosis example, the main interest

is in comparing three imaging methods when used by the same rater. We do not

investigate the agreement between the raters in this example. We also dichotomize

the outcomes when considering the measurements as on categorical scales. For com-

parison purpose, we also apply the new method to the mammograph data.

We use the terms “methods” and “conditions” broadly here. For example, in

the carotid stenosis study we considered the imaging methods as “methods” and the

human raters as “conditions” because we were interested is the agreement between

the imaging methods based on readings by the same rater. Alternatively, we could

treat the raters as “methods” and the imaging methods as “conditions” and assess

the agreement between raters when they used the same imaging method.

Furthermore, we distinguish “replicated” measurements and “repeated” measure-

ments as for “replicated” measurements, the true values of agreement coefficients are

assumed to be the same for replications; while, for “repeated” measurements, the true

values of agreement coefficients can change under different conditions. Consequen-
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tially, an inevitable shortcoming of the proposed estimation approach mentioned in

previous chapters is that it requires at least two readings made by the same observer

on the same subject in order to evaluate intra-observer disagreement since the true

values do not depend on replications. Unfortunately, often of the time, replicated

measurements are not available due to logistic concerns. As a result, the CIAs with

replicated measurements might not be applicable. This major disadvantage limits the

use of CIAs. To overcome it, we propose to treat the observations by the different

observers as pairs for each subject, and then fitting generalized linear mixed models

can help in estimating the inter- and intra-observer disagreement probabilities.

6.2 Notations

We denote the measurements with the two observers by Y1 and Y2. Let G(Y1, Y2)

denote the inter-observer disagreement. The disagreement between the observers

under condition h can be quantified by the mean squared deviation (MSD), defined

as Gh(Y1, Y2) = MSDh(Y1, Y2) = E[(Y1 − Y2)
2|h], where the expectation is over all

the study subjects given a certain condition. Particularly, for binary observations,

it reduces to Gh(Y1, Y2) = MSDh(Y1, Y2) = E[(Y1 − Y2)
2|h] = Pr(Y1 6= Y2|h). Also,

let Gh(Yj, Y
′
j ) indicate the disagreement between two replicated observations of Yj

(j = 1, 2) under the same condition h. To measure the intra-observer disagreement

Gh(Yj, Y
′
j ), we use the mean squared deviation between two (hypothetical) replicated

observations made with observer j (j = 1, 2) under the same condition h (h =

1, . . . , H), i.e., Gh(Yj, Y
′
j ) = MSDh(Yj, Y

′
j ) = E[(Yj − Y ′

j )
2|h]. For binary data, it

equals to Pr(Yj 6= Y ′
j |h).
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6.3 Extended CIAs for Assessing Observer Agree-

ment for Matched Repeated Continuous Mea-

surements

In this section, we summarize the findings in Haber et al. (2010) as the qualitative

scenario, which will be introduced in the next section, is an extension of quantitative

scenario. We assume that the observed variable is continuous and that the true value

of this variable on a given subject may change from one condition to another.

Since the data considered here do not include replicated observations, Yj and Y ′
j ,

made with same method on the same subject under the same condition, we cannot

apply the approach proposed by Barnhart et al. (2007c); Haber and Barnhart (2008)

where the replication variances for estimation of MSDh(Yj, Y
′
j ) were used. Instead,

we propose to estimate MSD from linear mixed models.

Let Yijh be the observation made on the ith subject with the jth observer under

the hth condition. To estimate Ĝih(Y1, Y2), we consider subject as a random factor;

while, observer and condition are fixed factors. We construct a mixed ANOVA model

as

Yijh = µ+ αi + βj + γh + (αβ)ij + (αγ)ih + (βγ)jh + εijh (6.1)

The α’s are the subjects’ random effects while the β’s and γ’s are the fixed effects

of the observers and the conditions, respectively. We assume that the random main

effects, interactions and errors are independent and normally distributed with mean

0 and Var(αi) = σ2
α, Var[(αβ)ij] = σ2

αβ, Var[(αγ)ih] = σ2
αγ, and Var(εijh) = σ2

ε .

Regarding the fixed effects, we make the common assumption that the sum of the

coefficients over every index is zero, i.e.,
∑

j βj =
∑

h γh =
∑

j(βγ)jh =
∑

h(βγ)jh =

0.
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It is important to note that this model allows the measurements Yijh for the same

subject-method combination (i, j) to vary across the h conditions. If we consider two

(hypothetical) replicated observations, Yj and Y ′
j , that could be made by method j

on the same subject under the same condition, then

MSD(Yj, Y
′
j ) = E(Yijh − Y ′

ijh)
2

= 2σ2
ε

as we assume that E(Yj) = E(Y ′
j ) and Var(Yj) = Var(Y ′

j ) = σ2
ε . Consequently, since

we assume homogeneity of the error terms across observer, it leads to MSD(Y1, Y
′
1) =

MSD(Y2, Y
′
2) resulting in [MSD(Y1, Y

′
1) + MSD(Y2, Y

′
2)]/2 = MSD(Yj, Y

′
j ). That is to

say, for matched repeated continuous measurements, we don’t distinguish ψN
h and

ψR
h since the numerator takes the same form. We use ψh representing the CIAs for

matched repeated continuous measurements.

From the above model, it is evident that the disagreement between the two ob-

servers may depend on the condition. The MSDh(Y1, Y2) for the hth condition can be

obtained from the parameters of the model as follows

MSDh(Y1, Y2) = E(Yi1h − Yi2h)
2

= E {[µ+ αi + β1 + γh + (αβ)i1 + (αγ)ih + (βγ)1h + εi1h]

−[µ+ αi + β2 + γh + (αβ)i2 + (αγ)ih + (βγ)2h + εi2h]}2

= E {(β1 − β2) + [(αβ)i1 − (αβ)i2]

+[(βγ)1h − (βγ)2h] + (εi1h − εi2h)}2

= (β1 − β2) + [(βγ)1h − (βγ)2h]
2 + 2σ2

αβ + 2σ2
ε
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As a result, the CIAs for continuous observations under the hth condition as

ψh =
MSD(Yj, Y

′
j )

MSDh(Y1, Y2)
(6.2)

=
2σ2

ε

(β1 − β2) + [(βγ)1h − (βγ)2h]
2 + 2σ2

αβ + 2σ2
ε

(6.3)

One can then calculate the CIAs by the estimated parameters and variances from

fitting the mixed model.

6.4 Extended CIAs for Assessing Observer Agree-

ment for Matched Repeated Binary Measure-

ments

In this section, we extend the concepts and methods of the CIAs for evaluating

agreement between observers when the measured variables are dichotomous and the

data consist of matched repeated observations made with the same observer under

different conditions.

6.4.1 Definition of Coefficients

We consider the cases where each of N subjects is evaluated by multiple observers

under the same H conditions, where the condition is a categorial factor.

Consider replicated observations Yj and Y ′
j made by observer j on the same subject

i under the same condition h, then the individual within-observer disagreement can
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be obtained as

Gih(Yj, Y
′
j ) = E[(Yijh − Y ′

ijh)
2|i, j, h]

= Pr(Yijh 6= Y ′
ijh|i, j, h)

= Pr(Yijh = 1|i, j, h) Pr(Yijh = 0|i, j, h) + Pr(Yijh = 0|i, j, h) Pr(Yijh = 1|i, j, h)

= 2τijh(1− τijh) (6.4)

where τijh = Pr(Yijh = 1|i, j, h) for (i = 1, . . . , N ; j = 1, 2; h = 1, . . . , H), i.e. the

probability of the outcome being one for subject i under condition h for a specific

observer j.

The individual between-observer disagreement for the hth condition can be written

as

Gih(Y1, Y2) = Pr(Yi1h 6= Yi2h|i, h)

= Pr(Yi1h = 1|i, h) Pr(Yi2h = 0|i, h) + Pr(Yi1h = 0|i, h) Pr(Yi2h = 1|i, h)

= τi1h + τi2h − 2τi1hτi2h (6.5)

as τi1h = Pr(Yi1h = 1|i, h) and τi2h = Pr(Yi2h = 1|i, h) for (i = 1, . . . , N ; h =

1, . . . , H).

Denote

Gh(Yj, Y
′
j ) =

1

N

N∑
i=1

Gih(Yj, Y
′
j ) (j = 1, 2) (6.6)

Gh(Y1, Y2) =
1

N

N∑
i=1

Gih(Y1, Y2) (6.7)

Then, the CIAs under hth condition are as following
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When two observers are in symmetric positions with no reference, then

ψN
h =

[Gh(Y1, Y
′
1) +Gh(Y2, Y

′
2)]/2

Gh(Y1, Y2)
(6.8)

=

∑N
i=1[τi1h(1− τi1h) + τi2h(1− τi2h)]∑N

i=1(τi1h + τi2h − 2τi1hτi2h)
(6.9)

When one of the two observers, say Y1, is considered as the reference, then

ψR
h =

Gh(Y1, Y
′
1)

Gh(Y1, Y2)
(6.10)

=
2
∑N

i=1[τijh(1− τijh)]∑N
i=1(τi1h + τi2h − 2τi1hτi2h)

(6.11)

Unlike the definition of CIAs in the continuous case as described in Section 6.3,

we again adapt the concept of individual disagreement instead of an overall disagree-

ment for the inter- and intra-observer variabilities, which is advantageous in terms of

avoiding the assumption on the homogeneity of the variance over the two observers.

6.4.2 Estimation

Often of the time, for data containing matched repeated measurements, replicated

observations under each condition are not available, we propose to estimate the indi-

vidual disagreement probabilities from fitted generalized linear mixed models.

Let Yijh be the observation made on the ith subject with the jth observer under

the hth condition. To estimate Gih(Y1, Y2), we consider subject as a random factor;

while, observer and condition are fixed factors. We construct a generalized linear

mixed model

ηijh = µ+ αi + βj + γh (6.12)

where ηijh is the linear predictor under some link function – the logit function for
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binary observations, i.e. logit(τijh) = ηijh (i = 1, . . . , N – subject; j = 1, 2 – observer;

h = 1, . . . , H – condition); and µ is a constant; βj, γh are fixed effects; αi is an

independent normal random variable with expectation zero and variance σ2
α.

For linear mixed models, the likelihood function has a closed form. Consequently,

efficient computational algorithms have been proposed for maximum likelihood and

restricted maximum likelihood estimations. However, in the case of generalized linear

mixed models, the likelihood function usually cannot be expressed as in a closed form

which causes problems in estimating parameters. To solve the issue, different like-

lihood approximation approaches have been developed (Pinheiro and Chao, 2006).

Varying degrees of accuracy and computational complexity were found after compar-

isons (Pinheiro and Chao, 2006). Among them, the Adaptive Gaussian Quadrature

(AGQ) (Pinheiro and Bates, 1995) appeared to produce less biased estimates and

reduce computational complexity in approximating the likelihood. Therefore, we use

the maximum likelihood estimation with AGQ to estimate the unknown parameters

in order to provide high accuracy in approximation.

The formula (6.5) can be estimated as

Ĝih(Y1, Y2) = τ̂i1h + τ̂i2h − 2τ̂i1hτ̂i2h

=
exp(µ̂+ α̂i + β̂1 + γ̂h)

1 + exp(µ̂+ α̂i + β̂1 + γ̂h)
+

exp(µ̂+ α̂i + β̂2 + γ̂h)

1 + exp(µ̂+ α̂i + β̂2 + γ̂h)

−2
exp(µ̂+ α̂i + β̂1 + γ̂h)

1 + exp(µ̂+ α̂i + β̂1 + γ̂h)
× exp(µ̂+ α̂i + β̂2 + γ̂h)

1 + exp(µ̂+ α̂i + β̂2 + γ̂h)

To estimate MSDh(Y1, Y
′
1) and MSDh(Y2, Y

′
2), we fit two additional models sepa-

rately

ηi1h = µ1 + α1i + γ1h (6.13)

ηi2h = µ2 + α2i + γ2h (6.14)



139

where logit(τi1h) = ηi1h and logit(τi2h) = ηi2h; subject is a random factor and condition

is a fixed factor; moreover, α1i and α2i are independent normal with zero expectations

respectively.

We do not initially include interaction terms in the models (6.12), (6.13) and

(6.14) due to the concern of common convergence issue in generalized linear mixed

models with limited number of subjects. The robustness of the presented estimating

approach if the models being fitted are misspecified will be investigated in the future.

As a result, the G’s in the formula (6.4) can be estimated as

Ĝih(Y1, Y
′
1) = 2

exp(µ̂1 + α̂1i + γ̂1h)

[1 + exp(µ̂1 + α̂1i + γ̂1h)]2
(6.15)

Ĝih(Y2, Y
′
2) = 2

exp(µ̂2 + α̂2i + γ̂2h)

[2 + exp(µ̂2 + α̂2i + γ̂2h)]2
(6.16)

Consequently, when two observers are in symmetric positions with no reference,

then

ψ̂N
h =

[Ĝh(Y1, Y
′
1) + Ĝh(Y2, Y

′
2)]/2

Ĝh(Y1, Y2)
(6.17)

Similarly, when the first observer is considered as the reference, then

ψ̂R
h =

Ĝh(Y1, Y
′
1)

Ĝh(Y1, Y2)
(6.18)

Confidence intervals for the estimated coefficients can be computed using the

nonparametric bootstrap approach.

6.4.3 Examples

We now illustrate the method via two biomedical studies.
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6.4.3.1 Carotid Stenosis Screening Study

We first analyze the data from a carotid stenosis screening study (Barnhart and

Williamson, 2001). The goal of the study was to compare a newly innovated non-

invasive technology – magnetic resonance angiography (MRA) which is a group of

technique based on MRI to image blood vessels – to the existing invasive tech-

nique – intra-arterial angiogram (IA) – for screening of carotid artery stenosis. Two

MRA methods were considered: two-dimensional time of flight (MRA-2D) and three-

dimensional time of flight (MRA-3D). Percent stenosis was measured in both the left

and right carotid artery of each subject. We use here only the data from the left ar-

teries. Three raters determined the percent of carotid stenosis using all three imaging

methods (MRA-2D, MRA-3D, and IA). Thus, a total of nine observations were made

on each study subject. Our analysis is based on the 55 study subjects for whom all 9

readings were available. The range of the carotid stenosis readings is 0 up to 100%.

Barnhart et al. (2007c) used this data to estimate the CIAs between each two

of the three methods where the raters were considered as independent replications.

Here, we re-estimate the coefficients under the more realistic assumption that each

rater has her/his own effect on the observed measurements. In other words, the

underlying true values of carotid stenosis percentage may vary by raters and here we

take into consideration the impact on outcomes brought by raters. Thus, we consider

the raters as “conditions”.

We first use the continuous percent of carotid stenosis as the matched repeated

outcomes and follow the method described in Section 6.3 to estimate the CIAs sepa-

rately for three raters. Then, we use 50% as the cut-off point for classifying the percent

of carotid stenosis into low or high groups and apply the estimating approach as in

Section 6.4.2 to evaluate the agreement among three methods for different raters. The

comparison of the estimates of CIAs between using the original continuous outcomes

and using dichotomized outcomes demonstrates that the latter case provides larger
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CIAs (Table 6.1). This is not surprising since in this dataset, the dichotomization

results in information loss and hence leads to higher agreement between observers.

Generally, this might not be always true, the outcomes certainly depend on the chosen

cut-off value. Other choices of threshold that were used to dichotomize the percentage

of stenosis have also been investigated. The results are present in Tables A.35 and

A.36.

Table 6.1: Comparison of estimates of CIAs for matched repeated Stenosis data
between treating the outcomes as continuous and as binary observations

Method 1 Method 2 Rater
ψ̂N 95% CI

Continuous Binary Continuous Binary

IA MRA–2D
1 0.547 0.662 (0.373, 0.722) (0.387, 0.924)
2 0.555 0.711 (0.383, 0.727) (0.458, 0.962)
3 0.588 0.618 (0.435, 0.741) (0.364, 0.858)

IA MRA–3D
1 0.415 0.653 (0.265, 0.565) (0.422, 0.862)
2 0.432 0.639 (0.284, 0.580) (0.396, 0.844)
3 0.441 0.619 (0.303, 0.580) (0.401, 0.815)

MRA–2D MRA–3D
1 0.861 0.842 (0.692, 1.000) (0.611, 0.990)
2 0.866 0.882 (0.707, 1.000) (0.645, 1.000)
3 0.815 0.843 (0.640, 0.989) (0.601, 1.000)

We also compare the estimated CIAs between the scenarios when treating the

outcomes as replicated measurements and when treating the outcomes as repeated

measurements. If treating the outcomes as replicated measurements, it means that

the difference of agreement coefficients across raters is ignored. In contrast, if treating

the outcomes as repeated measurements across raters, we take into consideration the

effect of the raters on the agreement coefficients. The comparison is summarized in

Table 6.2. The ψ̂N ’s for the case where the dichotomous percentage of stenosis was

considered as replicated measurement are lower than the ones for the case where the

dichotomous percentage of stenosis was considered as repeated measurement.

Based on Tables 6.1 and 6.2, the rater-specific estimates of the CIAs for the left
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Table 6.2: Comparison of estimates of CIAs for dichotomized Stenosis data between
treating the outcomes as replicated and as repeated observations

Method 1 Method 2 Rater
ψ̂N 95% CI

Replicated Repeated Replicated Repeated

IA MRA–2D
1

0.600
0.662

(0.359, 0.841)
(0.387, 0.924)

2 0.711 (0.458, 0.962)
3 0.618 (0.364, 0.858)

IA MRA–3D
1

0.605
0.653

(0.414, 0.796)
(0.422, 0.862)

2 0.639 (0.396, 0.844)
3 0.619 (0.401, 0.815)

MRA–2D MRA–3D
1

0.807
0.842

(0.613, 1.000)
(0.611, 0.990)

2 0.882 (0.645, 1.000)
3 0.843 (0.601, 1.000)

artery data indicate that the agreement between the IA method and each of two MRA

methods across different raters, which was the focus of the original study, is poor since

all values of estimated CIAs are below 0.8 for both continuous and binary cases. In

contrast, the two MRA methods seem to be more in accordance with each other under

all conditions given that the estimates of CIAs are higher than 0.8 regardless the form

of the outcomes.

6.4.3.2 Mammography Study

We also apply the new approach to estimate the CIAs for the same dataset that was

used in Section 3.4. Recall that 150 female participants were enrolled in this mam-

mography study, where ten radiologists provided their diagnosis classifications on the

same set of patients’ mammograph during patients’ initial visit and after four months.

Unless a patient’s mammograph was classified as “abnormal – suggestive of cancer”,

the result was categorized as negative. In Section 3.4, we treated the two sequential

screenings as replicated measurements assuming that the true value of a radiologist’s

diagnosis on the same patient’s mammograph did not change for the two situations.
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The same radiologist presumingly would provide the same result on the same mammo-

graph regardless of the time elapsed. However, because the re-examinations occurred

after four months following the initial screening of mammograph, the two evaluations

by the ten radiologists can be considered as repeated measurements over time instead

of replicated measurements. That is to say, the true value of a radiologist’s diagnosis

could vary under the two “conditions”. We compare the results between treating the

outcomes as replicated measurements and treating them as repeated measurements.

As shown in Table 6.3, the estimated ψ̂N values are very similar between the

cases when treating the observations as replicated measurements and as repeated

measurements. Nevertheless, the ψ̂N ’s tend to be higher when the observations were

considered as replicated measurements than as repeated measurements. For treat-

ing the radiologist A as the reference, most of the ψ̂R’s for the replicated case lie

in the middle of the two ψ̂R’s under the two conditions of the repeated case. When

comparing the estimated disagreement functions (Table A.39), it appears that both

the within-observer disagreements Ĝ(X,X ′) and Ĝ(Y, Y ′) and the between-observer

disagreement Ĝ(X, Y ) for replicated measurements are larger than the corresponding

ones for repeated measurements with difference ranging from 0.001 to 0.026. In addi-

tion, when treating the outcomes as replicated observations, the bootstrap confidence

intervals for the estimated CIAs appear to be narrower than those when treating the

outcomes as repeated observations (Tables A.37 and A.38). The conclusions remain

the same that there exists considerable variation on the diagnoses of breast cancer

based on mammography among different radiologists.

6.4.4 Simulations

6.4.4.1 Simulation Process

For comparison purpose, we use the same settings as described in Section 3.5 (see

Table A.4). For simplicity, we here only consider two observers, X and Y , and
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Table 6.3: Comparison of estimates of CIAs between treating the outcomes as repli-
cated and as repeated observations for nine pairs of radiologists

Radiologists Replication
ψ̂N ψ̂R

Replicated Repeated Replicated Repeated

(A, B)
1

0.645
0.584

0.387
0.346

2 0.619 0.424

(A, C)
1

0.357
0.269

0.286
0.233

2 0.301 0.295

(A, D)
1

0.697
0.690

0.364
0.328

2 0.669 0.397

(A, E)
1

0.643
0.619

0.429
0.392

2 0.707 0.502

(A, F)
1

0.762
0.624

0.571
0.530

2 0.711 0.582

(A, G)
1

0.541
0.563

0.324
0.294

2 0.569 0.360

(A, H)
1

0.486
0.400

0.324
0.279

2 0.439 0.350

(A, I)
1

0.738
0.761

0.286
0.229

2 0.787 0.270

(A, J)
1

0.619
0.661

0.286
0.250

2 0.697 0.314

two conditions, H = 2. We also adapt the same approach in generating replicated

binary observations (Section 3.5.1) but treat the generated outcomes as repeated

binary observations. Basically, we use the inverse probability method for generating

binary random variables. We start with a pair of pseudo-random variables (U, V )

generated from a bivariate normal distribution with a given mean vector and variance-

covariance matrix (see Table A.4). Then, we define τi1h = F (ui) and τi2h = F (vi),

where F (t) = exp(t)/[1 + exp(t)]. To generate dichotomous random variables Xih

that is 1 with probability τi1h = Pr(Xih = 1|i, h) and Yih that is 1 with probability

τi2h = Pr(Yih = 1|i, h), the inverse probability integral transform algorithm is: first,

a random number wi is generated from a uniform distribution in the interval (0, 1);
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then if wi ≤ τi1h, then set Xih = 1; else, set Xih = 0; similarly, if wi ≤ τi2h, then

set Yih = 1; else, set Yih = 0. The advantage of using the inverse probability method

instead of generating binary-valued observations from a presumably true model is

that it avoids the assumption on the true model and hence minimizes the impact of

a misspecified model on the results.

We first obtain the true values of τi1h = Pr(Xih = 1|i, h) and τi2h = Pr(Yih = 1|i, h)

and generate the population. Consequently, we calculate the true values of ψN
h and ψR

h

based on the formulas (6.9) and (6.11). Then, a random sample with size n is selected

from the population. Generalized linear mixed models are fitted to estimate the intra-

and inter-observer disagreement probabilities following the approach demonstrated in

Section 6.4.2. ψN
h and ψR

h are estimated based on the expressions (6.17) and (6.18).

The differences between the mean of 1000 estimated ψN
h (ψR

h ) and the true values of

ψN
h (ψR

h ) are considered as the bias. The standard error and corresponding confidence

interval are evaluated via Bootstrap approach. In addition, we repeat the simulations

500 times to obtain the coverage probability, which is calculated as the percentage of

the times when the Bootstrap confidence intervals contain the true value of ψh.

We consider two scenarios. First, we set CIAs to be equal for both conditions.

Then, the generated data can be seen as observations with replicates. We compare the

estimated CIAs between treating the data as replicated observations and as repeated

observations. Secondly, we allow the true values of CIAs differ across two conditions

by adding a small valued ε which is near one to each ui and vi for the second condition.

As a result, the τi12 and τi22 will be different from τi11 and τi21 respectively resulting in

varying CIAs for the two conditions. Thus, the generated data should be considered

as repeated measurements. Consequently, we again compare the estimated CIAs

between treating the data as replicated observations and as repeated observations.
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6.4.4.2 Simulation Results

For the first scenario where the true CIAs are fixed at both conditions under the six

settings, the tables A.40, A.41, A.42, A.43, A.44, A.45, A.46, A.47, A.48, A.49, A.50,

A.51 show the simulation results.

The comparisons between treating the randomly generated observations as repli-

cated measurements with K = L = 2 and as repeated measurements with H = 2 are

listed in the tables A.52, A.53, A.54, A.55, A.56, A.57 for ψ̂N , and A.58, A.59, A.60,

A.61, A.62, A.63 for ψ̂R. Overall, the biases from the cases where the simulated data

were treated as repeated measurements are substantially larger than the ones from

the cases when treating the outcomes as replicated measurements. Nevertheless, the

standard errors are slightly smaller for repeated measurements scenario when estimat-

ing ψN ; however, it is the opposite case when estimating ψR, i.e. the standard errors

from repeated measurements are slightly higher than those from replicated measure-

ments. Moreover, the coverage probabilities based on the simulations of replicated

observations appear to be more stable and consistent mostly ranging between 92%

and 96% across different simulation set-ups. In contrast, the coverage probabilities

calculated as percentage of times that the simulated bootstrap confidence intervals

contain the true values of CIAs for repeated observations could descend below 90%

even with a sample size of 200. In addition, the computational complexity for fit-

ting generalized linear mixed models is more intensive accompanied with substantial

longer time consumed than fitting simple linear models.

For the second scenario when letting the true CIAs vary across two conditions, the

tables A.64, A.70, A.65, A.71, A.66, A.72, A.67, A.73, A.68, A.74, A.69, A.75 display

the comparisons on the simulation results. The cases when treating the generated

data as repeated observations overall yield less biased CIAs with smaller standard

errors and better coverage probabilities.

Based on our simulation studies, it seems that the performance of the two es-
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timation approaches depends on the true underlying structure of the data. If the

data consist of true replicated measurements where the true value of CIAs remains

unchanged across different conditions, then it is better treating the data that way

and accordingly applying the estimation method for replicated observations. On the

other hand, if the data consist of true repeated measurements where the true values

of CIAs differ under different conditions, the estimation method via fitting general-

ized linear mixed model seems to be a wiser choice. However, in reality, most of the

time, the truth is unknown and not measurable. We would suggest to first investi-

gate the settings under different conditions to check whether specific circumstances,

conditions, or objects vary, then draw the assumption on the conditions. The bottom

line is that even when the structure of the data is wrongly specified, the estimated

CIAs would still be capable of providing the measure of agreement pointing at the

correct direction and adequately indicating whether a good or poor agreement exists.

According to our simulation studies for assessing observer agreement for matched

repeated binary measurements, it seems that the adequate number of subjects is

recommended to be at least 50, preferably over 100, if there are two conditions, in

order to assure accuracy and precision of the estimation.

Concerning the instability of fitting generalized linear mixed models, therefore,

when designing an agreement study, if measurements are possibly replicable, we sug-

gest to have replicated observations by each observer on every subject and then apply

the estimating method as described in Chapter 3 to assess the observer agreement,

which requires substantially smaller sample size to reach desired power and compu-

tational efficiency.
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Chapter 7

Summary and Future Research
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7.1 Summary and Discussion

When two observers are asked to classify each subject into M categories, the results

can be summarized in a M ×M contingency table. When the categories are binary

or nominal, the extent of agreement between the observers is frequently assessed

via Cohen’s kappa (Cohen, 1960). This coefficient is obtained by comparing the

observed agreement, defined as the sum of the frequencies on the main diagonal of

the table to the expectation of the same statistic under “chance agreement”, which

is defined as independence between the observers. For ordinal classifications, the

weighted kappa is commonly used by assigning weights according to the distance

between different categories (Cohen, 1968). The ICC and CCC are also extended for

assessing agreement between observers with categorical measurements, each of which

has been shown to be equivalent to the kappa coefficients under certain situations.

Critics of these coefficients argue that in some situation kappa attains unreason-

able values. Feinstein and Cicchetti (1990) identified two such situations: (i) the

marginal distributions of the two observers are highly asymmetrically unbalanced,

and (ii) there exists a large discrepancy between the marginal distributions. Fur-

thermore, because of the heavy dependence of kappa on the prevalence of a condition

being diagnosed, a high value of kappa is nearly unachievable for a rare disease with a

low prevalence. Moreover, the ICC and CCC heavily depend on the between-subjects

variability, and hence should be interpreted with caution unless the homogeneity of

the population of interest is established. In addition, the between-subject variability

is usually not related to the measurement evaluation process but merely used because

of convenience for the purpose of comparison.

In our opinion, the erratic behaviors of kappa statistics and CCC result in part

from the inappropriate interpretation of chance agreement as independence. There-

fore, we advocate the use of the coefficient of individual agreement (CIA) as an alter-

native agreement index to kappa and the ICC/CCC (Barnhart et al., 2007c; Haber
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and Barnhart, 2008). The CIAs are based on the comparison of the probability of

disagreement between two observers to the probability of disagreement between repli-

cated observations made by a single observer. The rational for this approach, which

is commonly used in individual bioequivalence studies, lies in that when two or more

observers can be used interchangeably, then we can expect the variability of observa-

tions made by different observers to be similar to the variability of observations made

by the same observer. We propose separate CIAs for the cases of comparing two or

several observers without the presence of a reference and for comparing one or several

new observers to an established “gold standard”.

Most of the concepts and methods in this dissertation focus on individual agree-

ment. We first evaluate disagreement at the subject level and then use the means

over subjects to obtain an overall measure of disagreement. We also advocate the use

of an appropriate disagreement function applied as a measure of disagreement at the

individual level.

We extend the concepts and methods of CIA to assess agreement between two ob-

servers, each of which produces replicated either binary or categorical observations.

We also present a unified approach on estimating the standard error. The estimation

method we proposed produces reliable estimates for coefficients of individual agree-

ment and are robust in most cases even for a sample size of 50 and two replications

for each observer according to the simulation studies. In addition, our new estimators

are not sensitive to departures from equal or balanced marginal distributions of the

observers.

Another important feature of the proposed research is minimal assumptions. To

the extent possible, we avoid making any assumptions regarding the distributions of

the variables representing the measurements of the observers and avoid making any

assumptions on models. We also avoid other assumptions that are frequently made

in observer agreement studies. For example, many existing methods are based on
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ANOVA models, which assume that the observers have the same “within” (error)

variance and that all the pairwise correlations between observers are equal. Most

of our proposed methods are based on the simple model Yijk = µij + εijk, with

Var(εijk) = σ2
εj . This model allows the error variance to be observer-specific and

does not impose any structure on the correlations between the observers. When we

use a generalized mixed linear model, such as in Chapter 6, we fit a separate model

for each observer and for the readings of pairs of observers.

When neither of the observers is considered as the reference, we use the average

of the two intra-observer disagreements. It can be seen as a special case of weighted

CIAs with equal weights for two observers. Other choices of weights for intra-observer

disagreements are also possible. Moreover, when developing CIAs for categorical

observations, we take the simple average over the M − 1 disagreement measures Gim,

m = 1, . . . ,M − 1. Under some circumstances, one might lean to focus on comparing

particular two or more categories. In that case, one might assign weights to the

disagreement functions that assess observer disagreement for these categories. The

behaviors of weighted CIAs and CIAs with weighted disagreement measures need to

be further investigated.

One common issue in analyzing categorical data is how to deal with zero counts. In

a contingency table, an empty cell could mean two possibilities. One is that positive

outcomes are not observed in the sample because an event is rare in the population

and hence limited observations are not sufficient to pick up the occurrences. It is

called “sampling zeros”. The other case is called “structural zeros” since the positive

outcomes are totally not observable and hence the probability of occurrences is zero

regardless of the sample size. In this research, we treat all zero counts as “sampling

zeros” and do not implement any adjustments. In the case that “structural zeros”

are suspected, the disagreement functions constituted by probabilities of occurrences

should be accordingly modified.
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One of the key concepts in the CIA is the use of the variability between readings

of the same observer on the same subject as a reference for assessing the disagreement

between different observers. Serving as a “reference” means that the variation of the

replicated readings provided by this observer on the same subject is reasonably small.

In other words, the reference observer should be capable of repeating itself. Therefore,

before estimating CIAs, one should first assure that the within-observer variability of

the reference observer is acceptably small. Otherwise, the within-observer disagree-

ment, i.e. G(X,X ′), might dominate the numerator leading to an overestimated ψ.

Barnhart et al. (2007b) suggested to compute the repeatability coefficient (Bland and

Altman, 1999), and check whether it is less than or equal to an acceptable value

within which the difference between two readings by the same observer should lie

for 95% of the subjects. In addition, CIAs are not applicable for comparing a new

method with a gold standard which can be measured without any error, such as an

automated computing algorithm which will produce exactly the same outcome given

the same inputs under the unchanged settings.

The limitations of CIAs include: (1) they require at least two readings for each

observer. (2) They are increasing functions of the disagreement between observations

made on the same subject by the same observer. (3) Although CIAs are scaled

agreement indices, the magnitude of values could exceed one, which still indicates

good agreement. (4) The decision-making criterion (CIA ≥ 0.8 = good agreement) is

chosen based on experience, which is similar to the case where 5% is selected as the

cut-off point for p-value.

With regard to the first issue, which is the major drawback of applying CIAs,

if replicated observations are not available or the observations are from a longitu-

dinal study, we have proposed to fit generalized linear mixed models and use the

estimated parameters from the fitted models to approximate the individual disagree-

ment probabilities and hence to assess CIAs. By doing so, we allow the true values of
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the measured variables and the magnitude of disagreement to change across different

conditions. However, this approach is more computational intense and less efficient.

Also, the adequate number of subjects dramatically escalates in order to achieve high

accuracy and precision. Therefore, if replications by the same observer on the same

subject are possible, we recommend to utilize the replicated observations for a less

biased estimator with narrower confidence interval.

For the second issue, the dependence of the CIAs on the within-subject observer

disagreement would not be thought as a problem as long as the observed within dis-

agreement is considered “acceptable”. From a practical point of view, if an observer’s

within-observer disagreement is not accountable, then this observer should not be

taken into consideration to replace another observer at first place.

Turning to the third issue, the bottom line is that CIAs provide the same di-

rection as the implication of data, in contrast to kappa statistics which sometimes

lead to opposite conclusion where data demonstrate good concordance but the kappa

suggests unsatisfactory agreement. Also, a value of one is considered as “acceptable

agreement” rather than “perfect agreement”, which implies that a value being greater

than one is not impossible.

Last but not the least, one sometimes has a reference value for the disagreement

function that can be used as a yardstick, so that any disagreement less than the

reference value can be considered as “acceptable agreement”. Some unscaled measures

introduced in Section 1.2 might be helpful in this sense.

7.2 Future Work

Our approach is versatile, in the sense that the principle is simple and hence it can

be easily extended to various data structures and more complicated cases.

For example, one can extend the coefficients to situations involving more than
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two observers. When there are more than two measurement methods, the overall

coefficients of individual agreement can be obtained from the pairwise MSD’s as

demonstrated in Barnhart et al. (2007c).

Furthermore, in most observer agreement studies, the observers are considered

as a fixed effect, hence the findings apply only to the observers that are actually

presented in the study. Nevertheless, in some studies, the observers can be seen as a

random sample from a large pool of observers, so that the results can be generalized

beyond that particular study. Accordingly, CIAs can be derived for studies involving

representative observers by fitting generalized linear mixed models with observers as

a random factor for both quantitative and categorical observations.

Also, observer agreement studies frequently involve measurements of more than

one variables by each observer. For example, when evaluating a patient’s health

status, several physicians determine a patient’s weight, systolic and diastolic blood

pressure, heart rate, etc. Likewise, many tests used in psychology and psychiatry

consist of several experiments. In addition, measurements of the same underlying

quantity may be obtained under different conditions or at different time points. In

these cases, it is of interest to obtain a summary measure of agreement between

observers aggregating over the multiple variables.

Throughout this research, the measure of observer agreement does not adjust for

other potential risk factors except observers and conditions, but serve as an overall

agreement measure. Sometimes, the observer agreement is suspected to be affected

by distinct levels of a factor. Also, there might exist covariates that influence the

outcomes provided by the observers. For instance, the level of agreement between

magnetic resonance imaging (MRI) and ultrasound may depend on the status of the

cancer stage which is classified based on the tumor’s size and other symptoms. The

cancer stage is an important factor that should be taken into consideration because

it is likely to have impact on physicians’ judgements in a way that they tend to agree
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more on early or late stages but not so on stages in between (Shoukri, 2004). In the

mammograph study example, if a radiologist notices that a patient has family his-

tory of breast cancer or the patient is aged over 50 or both, he might subconsciously

incline to classify the mammographic result as abnormal because of the well-known

fact that elder patients with family history are at high risk of having breast cancer.

That is to say, when evaluating the strength of agreement controlling for confounders

or concerning about homogeneity of agreement coefficients across mutually exclusive

subgroups, it is necessary and essential to account for observer-specific as well as

subject-specific characteristics. Inspired by Barnhart and Williamson (2001), we can

also model CIAs via generalized estimating equations (GEE) approach to accom-

modate covariate adjustment or detect risk factors that are statistically significantly

associated with CIAs. These models can be used to evaluate the effects of covari-

ates related to subjects, observers or measurement conditions on the magnitude of

disagreement between two or more observers.

When extending CIA for replicated ordinal categorical observations as in Section

5.1.1, we dichotomized the ordered categories, which means we treated each category

equally. Sometimes, a certain category is more important that one may assign weights

accordingly when separating the ordinal categories.

Through our simulation studies, we found that when the number of replications

increase, the biases substantially decrease. It might imply that when designing an

agreement study, the investigator may consider to include more replicates rather than

to recruit a large number of subjects in order not only to lower the cost but also to

gain accuracy and efficiency. We have investigated the sample size calculation and

the impact of the number of replications for the data involving replicated binary

observations. The detailed statistical methods, agreement study design and guide-

lines on the power consideration and sample size calculation on both the number of

replications and the number of subjects for categorical data are also of high interest
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because it would serve as a supportive evidence to demonstrating the importance

of involving replicated measurements and hence to promoting the use of CIAs for

broader applications and implements.

In a brief summary, we present a new unified approach to define, model, estimate

and draw inferences in observer agreement studies involving categorical observations.

For data with replications, we proposed new coefficients that can be used as sum-

mary measures of agreement. For data without replications, we developed models for

studying patterns of agreement across subjects, observers and measurement condi-

tions. Our approach is simple, flexible, easy to implement and usually requires only

minimal assumptions.

To promote the use of our new coefficients CIAs, we have written a SAS Macro

and a R program to estimate CIAs along with their standard errors and confidence

intervals. These programs can be obtained upon request. A detailed description of

the SAS Macro and R program and applications can be found in the paper Pan et al.

(2010).
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Appendix
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A.1 Figures

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.1: Histograms of estimated ψ̂N from binary simulation – case 2

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.2: Q-Q normality plot of estimated ψ̂N from binary simulation – case 2
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(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.3: Histograms of estimated ψ̂R from binary simulation – case 2

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.4: Q-Q normality plot of estimated ψ̂R from binary simulation – case 2
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(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.5: Histograms of estimated ψ̂N from binary simulation – case 4

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.6: Q-Q normality plot of estimated ψ̂N from binary simulation – case 4
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(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.7: Histograms of estimated ψ̂R from binary simulation – case 4

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.8: Q-Q normality plot of estimated ψ̂R from binary simulation – case 4
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(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.9: Histograms of estimated ψ̂N from binary simulation – case 6

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.10: Q-Q normality plot of estimated ψ̂N from binary simulation – case 6
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(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.11: Histograms of estimated ψ̂R from binary simulation – case 6

(a) N = 50,K = 3, L = 3 (b) N = 50,K = 2, L = 2 (c) N = 100,K = 3, L = 3

(d) N = 100,K = 2, L = 2 (e) N = 200,K = 3, L = 3 (f) N = 200,K = 2, L = 2

Figure A.12: Q-Q normality plot of estimated ψ̂R from binary simulation – case 6
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A.2 Tables

Table A.1: Proportions of positive ratings, sensitivity and specificity for each radiol-
ogist in the mammography study

Radiologist Proportion rated positive Sensitivity Specificity

A 0.208 0.815 0.927
B 0.120 0.630 0.967
C 0.077 0.333 0.980
D 0.223 0.778 0.898
E 0.180 0.704 0.935
F 0.160 0.722 0.963
G 0.177 0.574 0.911
H 0.107 0.500 0.980
I 0.280 0.796 0.833
J 0.240 0.685 0.858
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Table A.3: Estimates of agreement coefficients for all possible pairs of radiologists
(treated as binary observations)

Radiologists Ĝ(X,X ′) Ĝ(Y, Y ′) Ĝ(X,Y ) ψ̂N ψ̂R κ
(A, B) 0.040 0.093 0.103 0.645 0.387 0.642
(A, C) 0.040 0.060 0.120 0.357 0.286 0.444
(A, D) 0.040 0.113 0.110 0.697 0.364 0.674
(A, E) 0.040 0.080 0.093 0.643 0.429 0.701
(A, F) 0.040 0.067 0.070 0.762 0.571 0.767
(A, G) 0.040 0.100 0.127 0.553 0.316 0.592
(A, H) 0.040 0.080 0.123 0.486 0.324 0.542
(A, I) 0.040 0.173 0.123 0.744 0.279 0.614
(A, J) 0.040 0.133 0.120 0.619 0.286 0.597
(B, C) 0.093 0.060 0.120 0.639 0.778 0.385
(B, D) 0.093 0.113 0.130 0.795 0.718 0.568
(B, E) 0.093 0.080 0.100 0.867 0.933 0.629
(B, F) 0.093 0.067 0.083 0.960 1.120 0.673
(B, G) 0.093 0.100 0.127 0.763 0.737 0.526
(B, H) 0.093 0.080 0.080 1.083 1.167 0.631
(B, I) 0.093 0.173 0.183 0.727 0.509 0.463
(B, J) 0.093 0.133 0.163 0.694 0.571 0.478
(C, D) 0.060 0.113 0.163 0.531 0.367 0.385
(C, E) 0.060 0.080 0.127 0.553 0.474 0.447
(C, F) 0.060 0.067 0.103 0.613 0.581 0.513
(C, G) 0.060 0.100 0.123 0.558 0.419 0.366
(C, H) 0.060 0.080 0.090 0.778 0.667 0.461
(C, I) 0.060 0.173 0.223 0.522 0.269 0.288
(C, J) 0.060 0.133 0.197 0.492 0.305 0.297
(D, E) 0.113 0.080 0.117 0.829 0.971 0.639
(D, F) 0.113 0.067 0.100 0.900 1.133 0.679
(D, G) 0.113 0.100 0.163 0.653 0.694 0.491
(D, H) 0.113 0.080 0.120 0.690 0.810 0.504
(D, I) 0.113 0.173 0.157 0.915 0.723 0.586
(D, J) 0.113 0.133 0.170 0.725 0.667 0.523
(E, F) 0.080 0.067 0.073 1.000 1.091 0.740
(E, G) 0.080 0.100 0.123 0.730 0.649 0.579
(E, H) 0.080 0.080 0.110 0.727 0.727 0.557
(E, I) 0.080 0.173 0.153 0.826 0.522 0.573
(E, J) 0.080 0.133 0.150 0.711 0.533 0.550
(F, G) 0.067 0.100 0.110 0.758 0.606 0.607
(F, H) 0.067 0.080 0.087 0.846 0.769 0.627
(F, I) 0.067 0.173 0.123 0.837 0.465 0.591
(F, J) 0.067 0.133 0.120 0.714 0.476 0.567
(G, H) 0.100 0.080 0.117 0.771 0.857 0.525
(G, I) 0.100 0.173 0.157 0.872 0.638 0.562
(G, J) 0.100 0.133 0.150 0.778 0.667 0.548
(H, I) 0.080 0.173 0.190 0.667 0.421 0.419
(H, J) 0.080 0.133 0.170 0.627 0.471 0.425
(I, J) 0.173 0.133 0.153 1.000 1.130 0.602
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Table A.4: Parameters used to simulate binary data via the model described in Section
3.5

Case µU µV σU σV ρUV ψN ψR

1 -2 -2 1 1 0.5 0.933 0.931
2 -2 -1 1 1 0.5 0.855 0.674
3 -2 0 1 1 0.5 0.676 0.485
4 -2 -2 1 2 0.5 0.807 0.818
5 -2 -1 1 2 0.5 0.701 0.634
6 -2 0 1 2 0.5 0.573 0.497
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Table A.5: Binary simulation results of estimates and inference of ψN for case 1

N K L ψ̂N Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.939 0.007 0.090 (0.757, 1.109) 0.085 (0.773, 1.106) 0.085 90.6%
2 2 0.940 0.007 0.139 (0.661, 1.204) 0.130 (0.685, 1.194) 0.130 87.8%

100 3 3 0.935 0.003 0.064 (0.807, 1.058) 0.062 (0.814, 1.057) 0.062 91.9%
2 2 0.937 0.004 0.097 (0.742, 1.123) 0.095 (0.750, 1.124) 0.095 92.3%

200 3 3 0.933 0.000 0.046 (0.843, 1.022) 0.044 (0.846, 1.020) 0.044 93.6%
2 2 0.931 -0.002 0.071 (0.794, 1.071) 0.069 (0.796, 1.065) 0.069 94.1%

aEmpirical standard error
b95% Wald-type confidence interval based on ψ̂ and Empirical SD
cMean of estimated standard errors calculated from formulas in Section 3.6.4
d95% Wald-type confidence interval based on ψ̂G and SEc

eRoot mean square error
fCoverage probability
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Table A.6: Binary simulation results of estimates and inference of ψR for case 1

N K L ψ̂R Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.933 0.001 0.128 (0.642, 1.221) 0.151 (0.637, 1.228) 0.151 93.6%
2 2 0.934 0.003 0.209 (0.521, 1.342) 0.213 (0.516, 1.352) 0.213 94.0%
3 1 0.955 0.023 0.196 (0.547, 1.316) 0.192 (0.578, 1.331) 0.193 93.7%
2 1 0.955 0.023 0.251 (0.440, 1.423) 0.242 (0.480, 1.429) 0.243 92.4%

100 3 3 0.934 0.002 0.105 (0.725, 1.138) 0.107 (0.724, 1.123) 0.107 94.8%
2 2 0.935 0.003 0.153 (0.631, 1.232) 0.152 (0.637, 1.233) 0.152 93.6%
3 1 0.945 0.013 0.134 (0.670, 1.193) 0.136 (0.678, 1.211) 0.137 94.7%
2 1 0.942 0.011 0.179 (0.580, 1.283) 0.171 (0.606, 1.278) 0.172 93.4%

200 3 3 0.933 0.001 0.076 (0.782, 1.081) 0.076 (0.784, 1.081) 0.076 94.6%
2 2 0.930 -0.002 0.112 (0.713, 1.150) 0.108 (0.719, 1.121) 0.108 94.2%
3 1 0.940 0.009 0.099 (0.738, 1.125) 0.096 (0.751, 1.129) 0.097 93.2%
2 1 0.937 0.006 0.122 (0.692, 1.171) 0.121 (0.700, 1.175) 0.121 94.8%
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Table A.7: Binary simulation results of estimates and inference of ψN for case 2

N K L ψ̂N Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.858 0.003 0.092 (0.675, 1.035) 0.086 (0.690, 1.027) 0.086 92.1%
2 2 0.857 0.002 0.130 (0.601, 1.109) 0.126 (0.610, 1.104) 0.126 92.8%

100 3 3 0.859 0.003 0.060 (0.737, 0.973) 0.062 (0.737, 0.980) 0.062 94.3%
2 2 0.861 0.005 0.095 (0.670, 1.040) 0.091 (0.682, 1.039) 0.091 93.1%

200 3 3 0.854 -0.001 0.044 (0.768, 0.942) 0.044 (0.768, 0.941) 0.044 94.6%
2 2 0.853 -0.002 0.066 (0.725, 0.985) 0.065 (0.726, 0.980) 0.065 93.8%

Table A.8: Binary simulation results of estimates and inference of ψR for case 2

N K L ψ̂R Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.676 0.002 0.125 (0.428, 0.919) 0.126 (0.430, 0.922) 0.126 93.6%
2 2 0.675 0.001 0.167 (0.347, 1.001) 0.171 (0.339, 1.010) 0.171 94.1%
3 1 0.690 0.017 0.152 (0.376, 0.972) 0.151 (0.395, 0.985) 0.151 93.5%
2 1 0.688 0.014 0.193 (0.295, 1.052) 0.188 (0.319, 1.057) 0.189 93.3%

100 3 3 0.678 0.004 0.086 (0.505, 0.842) 0.089 (0.503, 0.853) 0.089 95.5%
2 2 0.680 0.006 0.125 (0.429, 0.919) 0.122 (0.441, 0.919) 0.122 93.7%
3 1 0.684 0.010 0.105 (0.467, 0.880) 0.106 (0.476, 0.892) 0.106 95.0%
2 1 0.682 0.009 0.121 (0.398, 0.949) 0.133 (0.422, 0.942) 0.133 93.5%

200 3 3 0.674 0.000 0.063 (0.550, 0.797) 0.063 (0.550, 0.798) 0.063 94.6%
2 2 0.674 0.000 0.088 (0.501, 0.846) 0.086 (0.505, 0.842) 0.086 94.1%
3 1 0.679 0.005 0.074 (0.529, 0.819) 0.074 (0.533, 0.825) 0.075 94.7%
2 1 0.679 0.005 0.094 (0.490, 0.857) 0.094 (0.495, 0.862) 0.094 94.3%
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Table A.9: Binary simulation results of estimates and inference of ψN for case 3

N K L ψ̂N Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.677 0.001 0.085 (0.509, 0.843) 0.081 (0.517, 0.837) 0.081 93.1%
2 2 0.682 0.006 0.114 (0.453, 0.899) 0.112 (0.462 ,0.902) 0.113 94.1%

100 3 3 0.677 0.001 0.057 (0.565, 0.787) 0.058 (0.563, 0.791) 0.058 95.4%
2 2 0.681 0.005 0.083 (0.514, 0.838) 0.080 (0.524 ,0.838) 0.080 94.0%

200 3 3 0.676 0.000 0.041 (0.596, 0.756) 0.041 (0.595, 0.757) 0.041 94.7%
2 2 0.674 -0.002 0.058 (0.562, 0.790) 0.057 (0.563, 0.785) 0.057 93.7%

Table A.10: Binary simulation results of estimates and inference of ψR for case 3

N K L ψ̂R Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.489 0.003 0.098 (0.293, 0.677) 0.100 (0.293, 0.684) 0.100 94.1%
2 2 0.488 0.003 0.131 (0.228, 0.742) 0.132 (0.229, 0.748) 0.132 94.0%
3 1 0.494 0.009 0.113 (0.264, 0.707) 0.111 (0.277, 0.711) 0.111 94.3%
2 1 0.493 0.008 0.121 (0.209, 0.762) 0.120 (0.219, 0.767) 0.120 93.3%

100 3 3 0.488 0.003 0.068 (0.352, 0.619) 0.071 (0.350, 0.626) 0.071 95.2%
2 2 0.489 0.004 0.097 (0.295, 0.676) 0.094 (0.305, 0.673) 0.094 93.4%
3 1 0.492 0.006 0.077 (0.335, 0.636) 0.078 (0.339, 0.644) 0.078 95.2%
2 1 0.491 0.005 0.102 (0.286, 0.685) 0.099 (0.297, 0.684) 0.099 94.0%

200 3 3 0.486 0.001 0.049 (0.389, 0.582) 0.050 (0.389, 0.584) 0.050 94.7%
2 2 0.486 0.000 0.066 (0.355, 0.615) 0.066 (0.356, 0.615) 0.066 94.9%
3 1 0.488 0.003 0.053 (0.382, 0.589) 0.055 (0.381, 0.595) 0.055 95.6%
2 1 0.488 0.003 0.068 (0.352, 0.619) 0.070 (0.352, 0.625) 0.070 95.0%
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Table A.11: Binary simulation results of estimates and inference of ψN for case 4

N K L ψ̂N Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.812 0.005 0.099 (0.612, 1.001) 0.097 (0.621, 1.003) 0.098 91.7%
2 2 0.816 0.010 0.122 (0.528, 1.085) 0.137 (0.549, 1.084) 0.137 92.0%

100 3 3 0.811 0.004 0.071 (0.668, 0.945) 0.070 (0.674, 0.948) 0.070 93.6%
2 2 0.812 0.006 0.103 (0.605, 1.008) 0.098 (0.620, 1.005) 0.098 92.6%

200 3 3 0.806 -0.001 0.051 (0.707, 0.906) 0.050 (0.707, 0.904) 0.050 94.6%
2 2 0.805 -0.001 0.074 (0.662, 0.951) 0.070 (0.668, 0.943) 0.070 93.9%

Table A.12: Binary simulation results of estimates and inference of ψR for case 4

N K L ψ̂R Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.822 0.003 0.126 (0.532, 1.104) 0.128 (0.532, 1.111) 0.128 93.4%
2 2 0.820 0.002 0.195 (0.436, 1.200) 0.201 (0.426, 1.215) 0.201 94.8%
3 1 0.833 0.014 0.174 (0.477, 1.159) 0.174 (0.491 ,1.175) 0.175 94.3%
2 1 0.830 0.012 0.221 (0.386 ,1.251) 0.220 (0.400, 1.261) 0.220 94.0%

100 3 3 0.823 0.005 0.102 (0.618, 1.018) 0.105 (0.617, 1.029) 0.105 95.5%
2 2 0.826 0.007 0.129 (0.526, 1.110) 0.123 (0.544, 1.107) 0.124 93.7%
3 1 0.832 0.014 0.123 (0.577, 1.060) 0.124 (0.589, 1.075) 0.125 93.9%
2 1 0.831 0.012 0.165 (0.495, 1.121) 0.156 (0.525, 1.136) 0.156 94.0%

200 3 3 0.819 0.001 0.076 (0.670, 0.967) 0.075 (0.673, 0.965) 0.075 93.7%
2 2 0.818 0.000 0.102 (0.617 ,1.019) 0.101 (0.619, 1.016) 0.101 94.7%
3 1 0.825 0.007 0.088 (0.645, 0.991) 0.087 (0.654, 0.996) 0.088 93.8%
2 1 0.824 0.005 0.109 (0.604, 1.032) 0.110 (0.608, 1.039) 0.110 96.0%
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Table A.13: Binary simulation results of estimates and inference of ψN for case 5

N K L ψ̂N Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.706 0.004 0.098 (0.508, 0.894) 0.093 (0.523, 0.888) 0.093 91.4%
2 2 0.707 0.006 0.128 (0.451, 0.952) 0.125 (0.462, 0.952) 0.125 93.8%

100 3 3 0.704 0.003 0.067 (0.569, 0.833) 0.067 (0.573, 0.834) 0.067 93.6%
2 2 0.707 0.006 0.094 (0.517, 0.885) 0.090 (0.531, 0.883) 0.090 92.6%

200 3 3 0.701 0.000 0.047 (0.609, 0.794) 0.047 (0.608, 0.794) 0.047 94.5%
2 2 0.700 -0.002 0.066 (0.573, 0.830) 0.064 (0.575, 0.824) 0.064 93.6%

Table A.14: Binary simulation results of estimates and inference of ψR for case 5

N K L ψ̂R Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.638 0.004 0.123 (0.392, 0.876) 0.125 (0.393, 0.884) 0.125 93.3%
2 2 0.635 0.001 0.162 (0.316, 0.952) 0.167 (0.309 ,0.962) 0.167 93.9%
3 1 0.645 0.011 0.123 (0.353, 0.915) 0.121 (0.368, 0.921) 0.121 94.5%
2 1 0.643 0.009 0.178 (0.285, 0.983) 0.178 (0.294 ,0.991) 0.178 94.5%

100 3 3 0.637 0.003 0.086 (0.465, 0.803) 0.089 (0.463, 0.811) 0.089 95.1%
2 2 0.640 0.006 0.123 (0.392, 0.876) 0.119 (0.407, 0.873) 0.119 94.3%
3 1 0.642 0.008 0.098 (0.441, 0.827) 0. (0.447, 0.837) 0. 95.9%
2 1 0.641 0.007 0.130 (0.380, 0.888) 0.126 (0.395, 0.888) 0.126 93.4%

200 3 3 0.636 0.002 0.063 (0.511, 0.757) 0.063 (0.512 ,0.759) 0.063 94.6%
2 2 0.635 0.001 0.084 (0.469, 0.799) 0.084 (0.471, 0.798) 0.084 95.2%
3 1 0.639 0.005 0.070 (0.497 ,0.771) 0.070 (0.501, 0.776) 0.070 94.9%
2 1 0.638 0.004 0.088 (0.461 ,0.807) 0.089 (0.464, 0.812) 0.089 95.5%
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Table A.15: Binary simulation results of estimates and inference of ψN for case 6

N K L ψ̂N Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.575 0.001 0.086 (0.405, 0.741) 0.083 (0.412, 0.737) 0.083 93.1%
2 2 0.578 0.005 0.110 (0.357, 0.789) 0.109 (0.365, 0.791) 0.109 93.8%

100 3 3 0.575 0.002 0.059 (0.458, 0.688) 0.059 (0.460, 0.691) 0.059 93.8%
2 2 0.579 0.006 0.080 (0.417, 0.730) 0.078 (0.427, 0.732) 0.078 94.7%

200 3 3 0.573 0.000 0.042 (0.491, 0.655) 0.042 (0.492, 0.655) 0.042 95.2%
2 2 0.573 0.000 0.055 (0.465, 0.681) 0.055 (0.466, 0.680) 0.055 94.9%

Table A.16: Binary simulation results of estimates and inference of ψR for case 6

N K L ψ̂R Bias SEa CIb SEc CId RMSEe CPf

50 3 3 0.500 0.003 0.104 (0.294, 0.700) 0.104 (0.297, 0.703) 0.104 94.0%
2 2 0.500 0.003 0.136 (0.231, 0.763) 0.137 (0.232, 0.768) 0.137 93.8%
3 1 0.501 0.004 0.112 (0.278, 0.715) 0.112 (0.282 ,0.720) 0.112 94.6%
2 1 0.502 0.005 0.124 (0.215 ,0.778) 0.122 (0.224, 0.781) 0.122 93.4%

100 3 3 0.500 0.003 0.071 (0.357, 0.637) 0.074 (0.356, 0.645) 0.074 95.5%
2 2 0.501 0.005 0.101 (0.299, 0.695) 0.097 (0.311, 0.692) 0.097 93.1%
3 1 0.502 0.006 0.076 (0.347, 0.647) 0.079 (0.347 ,0.658) 0.079 95.6%
2 1 0.502 0.005 0.104 (0.293, 0.700) 0.101 (0.304 ,0.699) 0.101 93.4%

200 3 3 0.498 0.001 0.051 (0.397, 0.597) 0.052 (0.396 ,0.600) 0.052 95.5%
2 2 0.498 0.001 0.068 (0.364 ,0.629) 0.068 (0.364 ,0.632) 0.068 95.5%
3 1 0.500 0.004 0.055 (0.388, 0.605) 0.056 (0.391, 0.610) 0.056 94.9%
2 1 0.500 0.003 0.070 (0.360, 0.634) 0.071 (0.361, 0.639) 0.071 94.9%
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Table A.17: Comparisons of values of variances and covariance for individual dis-
agreement functions based on results of simulations and derived formulations (3.26),
(3.27), (3.28), (3.29), and (3.30)

Number of
Simulations

Variance/Covariance Based on simulations Based on formulas

1000 V̂ar
[
Ĝi(X,X

′)
]

0.1067 0.1036

V̂ar
[
Ĝi(Y, Y

′)
]

0.0334 0.0292

V̂ar
[
Ĝi(X, Y )

]
0.0534 0.0480

Ĉov
(
Ĝ(X,Y ), Ĝ(X,X ′)

)
0.0126 0.0112

Ĉov
(
Ĝ(X, Y ), Ĝ(Y, Y ′)

)
0.0136 0.0096

10000 V̂ar
[
Ĝi(X,X

′)
]

0.1037 0.1036

V̂ar
[
Ĝi(Y, Y

′)
]

0.0288 0.0292

V̂ar
[
Ĝi(X, Y )

]
0.0481 0.0480

Ĉov
(
Ĝ(X,Y ), Ĝ(X,X ′)

)
0.0123 0.0112

Ĉov
(
Ĝ(X, Y ), Ĝ(Y, Y ′)

)
0.0112 0.0096

100000 V̂ar
[
Ĝi(X,X

′)
]

0.1036 0.1036

V̂ar
[
Ĝi(Y, Y

′)
]

0.0292 0.0292

V̂ar
[
Ĝi(X, Y )

]
0.0483 0.0480

Ĉov
(
Ĝ(X,Y ), Ĝ(X,X ′)

)
0.0115 0.0112

Ĉov
(
Ĝ(X, Y ), Ĝ(Y, Y ′)

)
0.0099 0.0096
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Table A.18: Sample size needed to achieve length of 95% CI for ψ̂N ≤ ε for binary
mammography data

Radiologist 1 Radiologist 2 ψ̂N K L ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

A B 0.65
2 2 1973 494 220 124
3 3 899 225 100 57

A C 0.36
2 2 856 214 96 54
3 3 309 78 35 20

A D 0.70
2 2 2246 562 250 141
3 3 1080 270 120 68

A E 0.64
2 2 2235 559 249 140
3 3 1035 259 115 65

A F 0.76
2 2 4374 1094 486 274
3 3 2147 537 239 135

A G 0.55
2 2 1314 329 146 83
3 3 594 149 66 38

A H 0.49
2 2 1157 290 129 73
3 3 470 118 53 30

A I 0.74
2 2 1947 487 217 122
3 3 954 239 106 60

A J 0.62
2 2 1426 357 159 90
3 3 662 166 74 42
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Table A.19: Sample size needed to achieve length of CI for ψ̂R ≤ ε for binary mam-
mography data

Radiologist 1 Radiologist 2 ψ̂R K L ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

A B 0.39

2 1 1943 486 216 122
2 2 1973 494 220 124
3 1 947 237 106 60
3 3 899 225 100 57

A C 0.29

2 1 902 226 101 57
2 2 856 214 96 54
3 1 368 100 41 23
3 3 309 78 35 20

A D 0.36

2 1 1774 444 198 111
2 2 2246 562 250 141
3 1 900 225 100 57
3 3 1080 270 120 68

A E 0.43

2 1 2466 617 274 155
2 2 2235 559 249 140
3 1 1236 309 138 78
3 3 1035 259 115 65

A F 0.57

2 1 5184 1296 576 324
2 2 4374 1094 486 274
3 1 2923 731 325 183
3 3 2147 537 239 135

A G 0.32

2 1 1229 308 137 77
2 2 1314 329 146 83
3 1 574 144 64 36
3 3 594 149 66 38

A H 0.32

2 1 1259 315 140 79
2 2 1157 290 129 73
3 1 567 142 63 36
3 3 470 118 53 30

A I 0.28

2 1 1001 251 112 63
2 2 1947 487 217 122
3 1 493 124 100 31
3 3 954 239 106 60

A J 0.29

2 1 1008 252 112 63
2 2 1426 357 159 90
3 1 475 119 53 30
3 3 662 166 74 42
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Table A.20: Contingency table for categorical mammographic classifications by radi-
ologists A and each of other nine radiologists

(a) A and B

B
Frequency 0 1 2 3 Total

A

0 39 4 3 0 46
1 61 42 28 4 135
2 21 24 9 2 56
3 4 5 17 36 62

Total 125 75 57 42 299

(b) A and C

C
Frequency 0 1 2 3 Total

A

0 42 3 1 0 46
1 95 32 8 0 135
2 34 14 7 1 56
3 11 14 15 22 62

Total 182 63 31 23 299

(c) A and D

D
Frequency 0 1 2 3 Total

A

0 28 10 8 0 46
1 33 47 46 9 135
2 15 15 17 9 56
3 4 2 7 49 62

Total 80 74 78 67 299

(d) A and E

E
Frequency 0 1 2 3 Total

A

0 30 12 2 2 46
1 54 56 20 5 135
2 21 14 18 3 56
3 4 2 12 44 62

Total 109 84 52 54 299

(e) A and F

F
Frequency 0 1 2 3 Total

A

0 42 1 3 0 46
1 65 21 48 1 135
2 23 4 27 2 56
3 0 2 15 45 62

Total 130 28 93 48 299

(f) A and G

G
Frequency 0 1 2 3 Total

A

0 28 11 7 0 46
1 41 38 48 8 135
2 11 16 23 6 56
3 4 3 17 38 62

Total 84 68 95 52 299

(g) A and H

H
Frequency 0 1 2 3 Total

A

0 32 10 4 0 46
1 59 36 37 2 134
2 24 11 19 2 56
3 5 7 22 28 62

Total 120 64 82 32 298

(h) A and I

I
Frequency 0 1 2 3 Total

A

0 18 26 1 1 46
1 30 72 16 17 135
2 6 27 8 15 56
3 2 4 6 50 62

Total 56 129 31 83 299

(i) A and J

J
Frequency 0 1 2 3 Total

A

0 31 13 1 1 46
1 43 53 28 11 135
2 14 9 18 15 56
3 5 2 10 45 62

Total 93 77 57 72 299
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Table A.21: Nominal simulation results of estimates and inference of ψN for poor
agreement scenario with true ψN = 0.1517, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.1, σS = 0.1

N K L ψ̂N Bias SEa CIb SEc′
CId RMSEe CPf

50 3 3 0.1522 0.0005 0.042 (0.070, 0.234) 0.040 (0.074, 0.230) 0.040 92.9%
2 2 0.1550 0.0032 0.051 (0.052, 0.251) 0.050 (0.057, 0.253) 0.050 93.1%

100 3 3 0.1557 0.0040 0.027 (0.099, 0.205) 0.029 (0.100, 0.212) 0.029 96.1%
2 2 0.1210 -0.0107 0.033 (0.087, 0.216) 0.034 (0.075, 0.207) 0.035 91.2%

200 3 3 0.1502 -0.0015 0.019 (0.115, 0.189) 0.020 (0.111, 0.189) 0.020 94.6%
2 2 0.1549 0.0032 0.025 (0.104, 0.200) 0.025 (0.106, 0.204) 0.025 95.3%

aEmpirical standard error
b95% Wald-type confidence interval based on ψ̂ and Empirical SD
c′

Mean of estimated standard errors calculated from formulas in Section 4.1.3
d95% Wald-type confidence interval based on ψ̂ and SEc′

eRoot mean square error
fCoverage probability

Table A.22: Nominal simulation results of estimates and inference of ψR for poor
agreement scenario with true ψR = 0.1719, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.1, σS = 0.1

N K L ψ̂R Bias SEa CIb SEc′
CId RMSEe CPf

50 3 3 0.1784 0.0066 0.060 (0.054, 0.290) 0.059 (0.064, 0.293) 0.059 93.7%
2 2 0.1704 -0.0015 0.072 (0.031, 0.312) 0.072 (0.030, 0.311) 0.072 90.6%
3 1 0.1789 0.0070 0.060 (0.053, 0.290) 0.059 (0.063, 0.294) 0.059 93.3%
2 1 0.1708 -0.0010 0.072 (0.031, 0.313) 0.072 (0.029, 0.312) 0.072 90.8%

100 3 3 0.1706 -0.0012 0.040 (0.094, 0.250) 0.041 (0.091, 0.250) 0.041 94.9%
2 2 0.1576 -0.0143 0.048 (0.077, 0.267) 0.049 (0.061, 0.254) 0.051 89.6%
3 1 0.1712 -0.0006 0.040 (0.093, 0.251) 0.041 (0.091, 0.252) 0.041 95.0%
2 1 0.1580 -0.0139 0.048 (0.077, 0.267) 0.049 (0.061, 0.255) 0.051 89.8%

200 3 3 0.1662 -0.0057 0.028 (0.117, 0.227) 0.029 (0.110, 0.222) 0.029 93.2%
2 2 0.1711 -0.0007 0.036 (0.102, 0.242) 0.036 (0.100, 0.242) 0.036 94.6%
3 1 0.1664 -0.0054 0.028 (0.116, 0.228) 0.029 (0.110, 0.223) 0.029 93.4%
2 1 0.1713 -0.0006 0.036 (0.101, 0.242) 0.036 (0.100, 0.242) 0.036 94.3%
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Table A.23: Nominal simulation results of estimates and inference of ψN for moderate
agreement scenario with true ψN = 0.5844, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.5, σS = 0.4

N K L ψ̂N Bias SEa CIb SEc′
CId RMSEe CPf

50 3 3 0.5882 0.0039 0.059 (0.469, 0.700) 0.063 (0.465, 0.712) 0.063 96.0%
2 2 0.6023 0.0179 0.079 (0.430, 0.739) 0.086 (0.434, 0.770) 0.088 96.0%

100 3 3 0.6022 0.0178 0.041 (0.504, 0.665) 0.044 (0.516, 0.688) 0.047 94.6%
2 2 0.5644 -0.0200 0.050 (0.487, 0.681) 0.058 (0.450, 0.679) 0.062 96.2%

200 3 3 0.5852 0.0008 0.028 (0.529, 0.640) 0.031 (0.525, 0.645) 0.031 96.5%
2 2 0.6046 0.0202 0.038 (0.509, 0.660) 0.042 (0.523, 0.686) 0.046 94.3%

Table A.24: Nominal simulation results of estimates and inference of ψR for moderate
agreement scenario with true ψR = 0.6935, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.5, σS = 0.4

N K L ψ̂R Bias SEa CIb SEc′
CId RMSEe CPf

50 3 3 0.7190 0.0255 0.079 (0.539, 0.848) 0.086 (0.550, 0.888) 0.090 95.0%
2 2 0.6979 0.0044 0.101 (0.495, 0.892) 0.120 (0.463, 0.933) 0.120 97.2%
3 1 0.7256 0.0321 0.085 (0.527, 0.860) 0.091 (0.548, 0.903) 0.096 95.0%
2 1 0.7053 0.0118 0.106 (0.486, 0.901) 0.124 (0.463, 0.948) 0.124 97.5%

100 3 3 0.6971 0.0036 0.055 (0.586, 0.801) 0.060 (0.580, 0.814) 0.060 95.9%
2 2 0.6685 -0.0250 0.072 (0.553, 0.834) 0.083 (0.507, 0.830) 0.086 96.5%
3 1 0.7037 0.0102 0.059 (0.578, 0.809) 0.063 (0.580, 0.828) 0.064 95.8%
2 1 0.6761 -0.0174 0.076 (0.545, 0.842) 0.085 (0.510, 0.843) 0.087 96.2%

200 3 3 0.6865 -0.0070 0.038 (0.619, 0.768) 0.042 (0.604, 0.769) 0.043 96.4%
2 2 0.7073 0.0138 0.052 (0.591, 0.796) 0.059 (0.592, 0.822) 0.060 96.0%
3 1 0.6933 -0.0002 0.041 (0.613, 0.774) 0.045 (0.606, 0.781) 0.045 96.9%
2 1 0.7103 0.0168 0.053 (0.589, 0.798) 0.060 (0.592, 0.829) 0.063 96.8%
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Table A.25: Nominal simulation results of estimates and inference of ψN for good
agreement scenario with true ψN = 0.9406, µU = 0, σU = 1, µV = 0.1, σV =
1, ρUV = 0.9, σR = 0.7, σS = 0.7

N K L ψ̂N Bias SEa CIb SEc′
CId RMSEe CPf

50 3 3 0.9117 -0.0289 0.053 (0.837, 1) 0.064 (0.785, 1) 0.071 96.3%
2 2 0.9301 -0.0105 0.077 (0.789, 1) 0.095 (0.744, 1) 0.096 97.7%

100 3 3 0.9482 0.0076 0.037 (0.869, 1) 0.043 (0.865, 1) 0.043 96.9%
2 2 0.9013 -0.0393 0.056 (0.832, 1) 0.067 (0.769, 1) 0.078 95.4%

200 3 3 0.9342 -0.0063 0.026 (0.890, 0.992) 0.030 (0.876, 0.992) 0.030 96.4%
2 2 0.9519 0.0113 0.038 (0.866, 1) 0.047 (0.860, 1) 0.048 98.1%

Table A.26: Nominal simulation results of estimates and inference of ψR for good
agreement scenario with true ψR = 0.9539, µU = 0, σU = 1, µV = 0.1, σV =
1, ρUV = 0.9, σR = 0.7, σS = 0.7

N K L ψ̂R Bias SEa CIb SEc′
CId RMSEe CPf

50 3 3 0.9581 0.0042 0.071 (0.815, 1.093) 0.085 (0.791, 1.125) 0.085 97.3%
2 2 0.9131 -0.0408 0.101 (0.756, 1.152) 0.128 (0.663, 1.163) 0.134 97.4%
3 1 0.9596 0.0057 0.088 (0.782, 1.126) 0.098 (0.767, 1.152) 0.099 97.2%
2 1 0.9433 -0.0105 0.117 (0.725, 1.183) 0.122 (0.665, 1.221) 0.122 97.8%

100 3 3 0.9409 -0.0130 0.051 (0.854, 1.054) 0.058 (0.826, 1.055) 0.060 97.4%
2 2 0.9018 -0.0521 0.074 (0.808, 1.100) 0.091 (0.723, 1.081) 0.106 95.2%
3 1 0.9673 0.0135 0.062 (0.832, 1.076) 0.071 (0.828, 1.106) 0.072 96.7%
2 1 0.9511 -0.0028 0.090 (0.778, 1.129) 0.102 (0.751, 1.151) 0.102 96.7%

200 3 3 0.9386 -0.0153 0.034 (0.887, 1.021) 0.042 (0.857, 1.020) 0.044 97.7%
2 2 0.9509 -0.0030 0.051 (0.854, 1.054) 0.064 (0.826, 1.076) 0.064 98.5%
3 1 0.9776 0.0237 0.046 (0.864, 1.044) 0.051 (0.877, 1.078) 0.056 95.2%
2 1 0.9892 0.0353 0.060 (0.837, 1.071) 0.071 (0.850, 1.128) 0.079 95.4%
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Table A.27: Comparisons of ψ̂N and ψ̂R when treated as ordinal (ord.), nominal
(nom.) and binary (bin.) observations for mammography data

Radiologists
ψ̂N ψ̂R

Ord. Nom. Bin. Ord. Nom. Bin.

(A, B) 0.671 0.669 0.645 0.667 0.687 0.387
(A, C) 0.466 0.505 0.357 0.524 0.582 0.286
(A, D) 0.790 0.798 0.697 0.655 0.699 0.364
(A, E) 0.783 0.812 0.643 0.713 0.752 0.429
(A, F) 0.674 0.653 0.762 0.643 0.683 0.571
(A, G) 0.650 0.665 0.541 0.663 0.671 0.316
(A, H) 0.734 0.721 0.486 0.584 0.618 0.324
(A, I) 0.766 0.742 0.738 0.766 0.784 0.279
(A, J) 0.696 0.727 0.619 0.668 0.715 0.286
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Table A.28: Ordinal simulation results of estimates and inference of ψN for poor
agreement scenario with true ψN = 0.105, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.1, σS = 0.1

N K L ψ̂N Bias SEa SEc′
RMSEe CIb CId CPf

50 3 3 0.105 0.001 0.029 0.029 0.029 (0.048, 0.161) (0.048, 0.162) 93.5%
2 2 0.110 0.005 0.036 0.037 0.037 (0.035, 0.175) (0.038, 0.182) 93.9%

100 3 3 0.109 0.004 0.021 0.021 0.021 (0.063, 0.146) (0.068, 0.150) 94.8%
2 2 0.100 -0.005 0.023 0.025 0.025 (0.060, 0.150) (0.052, 0.148) 92.8%

200 3 3 0.104 0.000 0.014 0.015 0.015 (0.077, 0.132) (0.076, 0.133) 95.6%
2 2 0.106 0.002 0.017 0.018 0.018 (0.071, 0.139) (0.071, 0.141) 95.7%
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Table A.29: Ordinal simulation results of estimates and inference of ψR for poor
agreement scenario with true ψR = 0.117, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.1, σS = 0.1

N K L ψ̂R Bias SEa SEc′
RMSEe CIb CId CPf

50 3 3 0.121 0.005 0.041 0.041 0.042 (0.036, 0.197) (0.040, 0.203) 93.7%
2 2 0.120 0.003 0.051 0.051 0.052 (0.018, 0.216) (0.019, 0.220) 92.2%
3 1 0.122 0.005 0.041 0.042 0.042 (0.036, 0.198) (0.040, 0.203) 94.1%
2 1 0.120 0.003 0.051 0.052 0.052 (0.017, 0.216) (0.019, 0.221) 92.3%

100 3 3 0.120 0.004 0.029 0.029 0.030 (0.060, 0.173) (0.063, 0.178) 94.8%
2 2 0.111 -0.005 0.034 0.035 0.036 (0.051, 0.182) (0.043, 0.180) 92.2%
3 1 0.121 0.005 0.029 0.030 0.030 (0.060, 0.174) (0.063, 0.179) 95.0%
2 1 0.112 -0.005 0.034 0.035 0.036 (0.051, 0.183) (0.043, 0.181) 92.0%

200 3 3 0.114 -0.003 0.019 0.020 0.020 (0.079, 0.154) (0.074, 0.153) 95.2%
2 2 0.115 -0.002 0.025 0.025 0.025 (0.068, 0.165) (0.065, 0.164) 95.2%
3 1 0.114 -0.003 0.019 0.020 0.021 (0.079, 0.154) (0.074, 0.154) 94.8%
2 1 0.115 -0.002 0.025 0.025 0.025 (0.068, 0.166) (0.065, 0.165) 94.7%

Table A.30: Ordinal simulation results of estimates and inference of ψN for moderate
agreement scenario with true ψN = 0.449, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.5, σS = 0.4

N K L ψ̂N Bias SEa SEc′
RMSEe CIb CId CPf

50 3 3 0.454 0.005 0.057 0.061 0.061 (0.337, 0.560) (0.335, 0.573) 95.4%
2 2 0.468 0.019 0.071 0.077 0.079 (0.310, 0.588) (0.317, 0.619) 97.1%

100 3 3 0.461 0.012 0.039 0.043 0.045 (0.373, 0.525) (0.377, 0.546) 97.3%
2 2 0.427 -0.021 0.047 0.051 0.055 (0.357, 0.541) (0.328, 0.527) 92.5%

200 3 3 0.448 -0.001 0.028 0.030 0.030 (0.395, 0.503) (0.389, 0.508) 96.3%
2 2 0.466 0.017 0.032 0.038 0.041 (0.386, 0.512) (0.392, 0.540) 96.7%
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Table A.31: Ordinal simulation results of estimates and inference of ψR for moderate
agreement scenario with true ψR = 0.543, µU = 0, σU = 1, µV = 0.5, σV =
1, ρUV = 0.3, σR = 0.5, σS = 0.4

N K L ψ̂R Bias SEa SEc′
RMSEe CIb CId CPf

50 3 3 0.574 0.031 0.075 0.083 0.089 (0.396, 0.690) (0.411, 0.738) 95.6%
2 2 0.555 0.011 0.094 0.106 0.107 (0.360, 0.727) (0.347, 0.763) 97.6%
3 1 0.582 0.039 0.080 0.088 0.096 (0.387, 0.700) (0.410, 0.755) 96.2%
2 1 0.556 0.012 0.097 0.109 0.110 (0.354, 0.733) (0.342, 0.769) 97.0%

100 3 3 0.541 -0.003 0.050 0.057 0.057 (0.445, 0.642) (0.429, 0.653) 97.4%
2 2 0.520 -0.023 0.065 0.072 0.075 (0.417, 0.670) (0.380, 0.660) 94.3%
3 1 0.548 0.005 0.054 0.060 0.061 (0.438, 0.649) (0.430, 0.667) 98.0%
2 1 0.520 -0.024 0.066 0.073 0.077 (0.415, 0.672) (0.377, 0.662) 94.2%

200 3 3 0.536 -0.007 0.036 0.041 0.041 (0.472, 0.615) (0.457, 0.616) 96.6%
2 2 0.546 0.002 0.041 0.052 0.052 (0.462, 0.624) (0.444, 0.648) 98.6%
3 1 0.537 -0.006 0.038 0.043 0.043 (0.470, 0.617) (0.454, 0.621) 96.8%
2 1 0.546 0.002 0.043 0.054 0.054 (0.460, 0.627) (0.441, 0.651) 98.6%

Table A.32: Ordinal simulation results of estimates and inference of ψN for good
agreement scenario with true ψN = 0.814, µU = 0, σU = 1, µV = 0.1, σV =
1, ρUV = 0.9, σR = 0.5, σS = 0.4

N K L ψ̂R Bias SEa SEc′
RMSEe CIb CId CPf

50 3 3 0.803 -0.011 0.069 0.078 0.078 (0.678, 0.950) (0.651, 0.955) 95.4%
2 2 0.807 -0.007 0.094 0.107 0.108 (0.630, 0.998) (0.596, 1.017) 96.7%

100 3 3 0.832 0.018 0.047 0.053 0.056 (0.722, 0.905) (0.728, 0.935) 95.1%
2 2 0.772 -0.042 0.065 0.076 0.087 (0.687, 0.940) (0.623, 0.921) 93.6%

200 3 3 0.812 -0.001 0.033 0.038 0.038 (0.748, 0.879) (0.739, 0.886) 97.2%
2 2 0.829 0.015 0.045 0.054 0.056 (0.726, 0.901) (0.723, 0.934) 97.6%
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Table A.33: Ordinal simulation results of estimates and inference of ψR for good
agreement scenario with true ψR = 0.908, µU = 0, σU = 1, µV = 0.1, σV =
1, ρUV = 0.9, σR = 0.5, σS = 0.4

N K L ψ̂N Bias SEa SEc′
RMSEe CIb CId CPf

50 3 3 0.941 0.034 0.090 0.107 0.112 (0.732, 1.084) (0.732, 1.150) 96.5%
2 2 0.876 -0.032 0.122 0.146 0.149 (0.668, 1.147) (0.590, 1.162) 96.6%
3 1 0.965 0.058 0.107 0.123 0.136 (0.698, 1.117) (0.725, 1.206) 94.9%
2 1 0.864 -0.044 0.133 0.155 0.161 (0.647, 1.168) (0.560, 1.168) 95.6%

100 3 3 0.900 -0.008 0.061 0.073 0.073 (0.787, 1.028) (0.757, 1.043) 97.1%
2 2 0.864 -0.043 0.089 0.105 0.114 (0.734, 1.081) (0.659, 1.070) 95.5%
3 1 0.915 0.007 0.077 0.087 0.087 (0.758, 1.058) (0.744, 1.085) 96.9%
2 1 0.861 -0.046 0.095 0.112 0.121 (0.722, 1.093) (0.642, 1.081) 95.2%

200 3 3 0.892 -0.016 0.044 0.052 0.055 (0.821, 0.995) (0.789, 0.994) 97.1%
2 2 0.899 -0.008 0.056 0.074 0.075 (0.797, 1.018) (0.754, 1.045) 98.1%
3 1 0.896 -0.011 0.052 0.062 0.063 (0.806, 1.009) (0.775, 1.018) 97.8%
2 1 0.901 -0.007 0.063 0.081 0.081 (0.783, 1.032) (0.743, 1.059) 97.7%
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Table A.35: Comparison of ψ̂N with different cut-off values for dichotomizing Stenosis
data

Method 1 Method 2 Rater
Cut-off value for percent of Stenosis
15 25 50 75 85

IA MRA–2D 1 0.719 0.869 0.671 0.544 0.394
2 0.758 0.883 0.712 0.482 0.369
3 0.736 0.868 0.603 0.454 0.313

IA MRA–3D 1 0.584 0.691 0.671 0.303 0.372
2 0.597 0.715 0.654 0.285 0.362
3 0.520 0.683 0.607 0.261 0.260

MRA–2D MRA–3D 1 0.932 1.019 0.903 0.697 0.583
2 0.929 1.014 0.943 0.686 0.583
3 0.892 1.050 0.906 0.646 0.462

Table A.36: Comparison of ψ̂R with different cut-off values for dichotomizing Stenosis
data

Method 1 Method 2 Rater
Cut-off value for percent of Stenosis
15 25 50 75 85

IA MRA–2D 1 0.496 0.484 0.372 0.005 0.005
2 0.466 0.500 0.349 0.001 0.001
3 0.344 0.457 0.266 0.001 0.001

IA MRA–3D 1 0.440 0.496 0.344 0.004 0.006
2 0.437 0.513 0.345 0.001 0.001
3 0.325 0.480 0.252 0.000 0.001

MRA–2D MRA–3D 1 0.998 1.206 0.856 0.850 0.674
2 1.050 1.189 0.991 0.840 0.630
3 1.068 1.267 0.871 0.801 0.532
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Table A.37: Comparison of ψ̂N along with their 95% bootstrap confidence intervals
(CI) for nine pairs of radiologists

Radiologists Replication
ψ̂N 95% Bootstrap CI

Replicated Repeated Replicated Repeated

(A, B)
1

0.645
0.584

(0.395, 0.964)
(0.170, 1.111)

2 0.619 (0.213, 1.108)

(A, C)
1

0.357
0.269

(0.196, 0.576)
(0.081, 0.677)

2 0.301 (0.082, 0.645)

(A, D)
1

0.697
0.690

(0.462, 0.965)
(0.261, 1.154)

2 0.669 (0.203, 1.079)

(A, E)
1

0.643
0.619

(0.393, 0.951)
(0.221, 1.064)

2 0.707 (0.301, 1.205)

(A, F)
1

0.762
0.624

(0.500, 1.000)
(0.262, 1.261)

2 0.711 (0.288, 1.212)

(A, G)
1

0.541
0.563

(0.361, 0.806)
(0.200, 0.981)

2 0.569 (0.202, 0.987)

(A, H)
1

0.486
0.400

(0.304, 0.717)
(0.103, 0.765)

2 0.439 (0.145, 0.950)

(A, I)
1

0.738
0.761

(0.543, 0.967)
(0.365, 1.067)

2 0.787 (0.332, 1.092)

(A, J)
1

0.619
0.661

(0.422, 0.842)
(0.276, 1.018)

2 0.697 (0.300, 1.054)
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Table A.38: Comparison of ψ̂R along with their 95% bootstrap confidence intervals
(CI) for nine pairs of radiologists

Radiologists Replication
ψ̂R 95% Bootstrap CI

Replicated Repeated Replicated Repeated

(A, B)
1

0.387
0.346

(0.121, 0.762)
(0.140, 0.980)

2 0.424 (0.168, 1.069)

(A, C)
1

0.286
0.233

(0.089, 0.565)
(0.098, 0.711)

2 0.295 (0.105, 0.806)

(A, D)
1

0.364
0.328

(0.116, 0.686)
(0.126, 0.876)

2 0.397 (0.142, 0.871)

(A, E)
1

0.429
0.392

(0.129, 0.842)
(0.143, 1.049)

2 0.502 (0.196, 1.106)

(A, F)
1

0.571
0.530

(0.182, 1.000)
(0.203, 1.449)

2 0.582 (0.220, 1.544)

(A, G)
1

0.324
0.294

(0.098, 0.615)
(0.121, 0.787)

2 0.360 (0.133, 0.867)

(A, H)
1

0.324
0.279

(0.103, 0.644)
(0.112, 0.907)

2 0.350 (0.133, 0.928)

(A, I)
1

0.286
0.229

(0.088, 0.520)
(0.092, 0.602)

2 0.270 (0.097, 0.612)

(A, J)
1

0.286
0.250

(0.087, 0.532)
(0.095, 0.628)

2 0.314 (0.118, 0.699)
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Table A.39: Comparison of estimated G functions for CIAs for nine pairs of radiolo-
gists

Radiologists Rep.
G(X,X ′) G(Y, Y ′) G(X,Y )

Replicated Repeated Replicated Repeated Replicated Repeated

(A, B)
1

0.040
0.030

0.093
0.072

0.103
0.088

2 0.038 0.073 0.090

(A, C)
1

0.040
0.030

0.060
0.040

0.140
0.130

2 0.038 0.040 0.130

(A, D)
1

0.040
0.030

0.113
0.097

0.110
0.093

2 0.038 0.091 0.096

(A, E)
1

0.040
0.030

0.080
0.066

0.093
0.078

2 0.038 0.070 0.076

(A, F)
1

0.040
0.030

0.067
0.041

0.070
0.057

2 0.038 0.055 0.066

(A, G)
1

0.040
0.030

0.100
0.086

0.127
0.103

2 0.038 0.083 0.106

(A, H)
1

0.040
0.030

0.080
0.057

0.123
0.109

2 0.038 0.058 0.109

(A, I)
1

0.040
0.030

0.173
0.172

0.143
0.133

2 0.038 0.185 0.142

(A, J)
1

0.040
0.030

0.133
0.130

0.140
0.122

2 0.038 0.131 0.122

Table A.40: Simulation results of estimates and inference of ψN for matched repeated
binary measurements for case 1 (true value ψN = 0.933)

N Condition ψ̂N Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.852 -0.081 0.179 0.258 (0.501, 1.202) 91.7%
2 0.846 -0.086 0.180 0.258 (0.493, 1.200) 90.2%

50 1 0.908 -0.025 0.106 0.180 (0.700, 1.115) 93.2%
2 0.905 -0.027 0.108 0.182 (0.694, 1.116) 92.0%

100 1 0.923 -0.009 0.071 0.131 (0.785, 1.062) 95.6%
2 0.923 -0.010 0.071 0.132 (0.784, 1.062) 95.6%

200 1 0.934 0.001 0.054 0.094 (0.829, 1.039) 94.0%
2 0.934 0.001 0.054 0.093 (0.829, 1.039) 93.6%
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Table A.41: Simulation results of estimates and inference of ψR for matched repeated
binary measurements for case 1 (true value ψR = 0.931)

N Condition ψ̂R Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.835 -0.097 0.379 0.421 (0.091, 1.578) 93.0%
2 0.835 -0.096 0.387 0.434 (0.076, 1.594) 92.7%

50 1 0.901 -0.030 0.260 0.312 (0.392, 1.410) 91.8%
2 0.909 -0.022 0.249 0.319 (0.422, 1.397) 92.8%

100 1 0.916 -0.015 0.179 0.239 (0.566, 1.267) 95.0%
2 0.927 -0.004 0.174 0.241 (0.587, 1.268) 94.4%

200 1 0.932 0.000 0.129 0.174 (0.680, 1.184) 92.8%
2 0.935 0.004 0.129 0.175 (0.682, 1.189) 92.6%

Table A.42: Simulation results of estimates and inference of ψN for matched repeated
binary measurements for case 2 (true value ψN = 0.855)

N Condition ψ̂N Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.719 -0.136 0.145 0.198 (0.524, 1.094) 94.4%
2 0.719 -0.136 0.144 0.198 (0.528, 1.091) 93.6%

50 1 0.787 -0.068 0.091 0.126 (0.679, 1.037) 95.6%
2 0.790 -0.065 0.094 0.128 (0.674, 1.043) 95.2%

100 1 0.843 -0.012 0.062 0.084 (0.751, 0.994) 96.0%
2 0.845 -0.011 0.062 0.084 (0.753, 0.996) 96.2%

200 1 0.863 0.008 0.046 0.058 (0.792, 0.975) 92.8%
2 0.864 0.009 0.046 0.058 (0.793, 0.975) 93.4%
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Table A.43: Simulation results of estimates and inference of ψR for matched repeated
binary measurements for case 2 (true value ψR = 0.674)

N Condition ψ̂R Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.584 -0.089 0.283 0.301 (0.030, 1.139) 91.2%
2 0.592 -0.081 0.296 0.306 (0.013, 1.172) 90.4%

50 1 0.631 -0.042 0.203 0.231 (0.234, 1.029) 91.6%
2 0.636 -0.038 0.194 0.236 (0.255, 1.016) 91.0%

100 1 0.637 -0.037 0.140 0.179 (0.362, 0.911) 92.0%
2 0.646 -0.028 0.138 0.181 (0.375, 0.917) 92.6%

200 1 0.648 -0.026 0.102 0.132 (0.448, 0.848) 91.8%
2 0.649 -0.024 0.101 0.132 (0.452, 0.847) 91.4%

Table A.44: Simulation results of estimates and inference of ψN for matched repeated
binary measurements for case 3 (true value ψN = 0.676)

N Condition ψ̂N Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.650 -0.026 0.139 0.152 (0.377, 0.923) 93.4%
2 0.651 -0.025 0.144 0.153 (0.370, 0.933) 94.2%

50 1 0.679 0.003 0.100 0.107 (0.483, 0.874) 94.6%
2 0.677 0.001 0.102 0.109 (0.478, 0.877) 94.6%

100 1 0.690 0.014 0.069 0.079 (0.555, 0.826) 96.0%
2 0.693 0.017 0.069 0.079 (0.557, 0.829) 96.6%

200 1 0.698 0.022 0.051 0.057 (0.598, 0.797) 89.6%
2 0.700 0.024 0.050 0.057 (0.601, 0.798) 91.8%
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Table A.45: Simulation results of estimates and inference of ψR for matched repeated
binary measurements for case 3 (true value ψR = 0.485)

N Condition ψ̂R Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.415 -0.071 0.212 0.215 (-0.002, 0.831) 91.6%
2 0.418 -0.068 0.218 0.221 (-0.009, 0.844) 90.0%

50 1 0.443 -0.043 0.152 0.172 (0.145, 0.740) 90.6%
2 0.445 -0.041 0.149 0.175 (0.153, 0.736) 92.8%

100 1 0.447 -0.038 0.108 0.133 (0.235, 0.659) 91.2%
2 0.452 -0.033 0.106 0.134 (0.244, 0.661) 90.6%

200 1 0.452 -0.033 0.078 0.099 (0.300, 0.604) 90.6%
2 0.454 -0.031 0.077 0.099 (0.303, 0.605) 89.6%

Table A.46: Simulation results of estimates and inference of ψN for matched repeated
binary measurements for case 4 (true value ψN = 0.807)

N Condition ψ̂N Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.763 -0.044 0.198 0.258 (0.375, 1.150) 91.8%
2 0.760 -0.046 0.197 0.264 (0.373, 1.147) 89.4%

50 1 0.819 0.013 0.123 0.184 (0.578, 1.061) 91.8%
2 0.819 0.013 0.126 0.185 (0.572, 1.067) 92.2%

100 1 0.836 0.030 0.084 0.142 (0.671, 1.001) 94.2%
2 0.838 0.031 0.083 0.142 (0.676, 1.000) 94.0%

200 1 0.849 0.042 0.059 0.110 (0.732, 0.965) 94.8%
2 0.849 0.043 0.059 0.109 (0.733, 0.965) 94.6%
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Table A.47: Simulation results of estimates and inference of ψR for matched repeated
binary measurements for case 4 (true value ψR = 0.818)

N Condition ψ̂R Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.738 -0.080 0.352 0.399 (0.048, 1.429) 93.6%
2 0.742 -0.076 0.353 0.399 (0.050, 1.434) 90.6%

50 1 0.798 -0.021 0.240 0.283 (0.328, 1.267) 92.4%
2 0.805 -0.013 0.233 0.289 (0.348, 1.261) 92.4%

100 1 0.809 -0.010 0.169 0.217 (0.478, 1.139) 95.2%
2 0.819 0.000 0.164 0.218 (0.496, 1.141) 94.6%

200 1 0.822 0.003 0.121 0.159 (0.585, 1.058) 94.0%
2 0.825 0.006 0.121 0.160 (0.587, 1.062) 94.2%

Table A.48: Simulation results of estimates and inference of ψN for matched repeated
binary measurements for case 5 (true value ψN = 0.701)

N Condition ψ̂N Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.691 -0.010 0.176 0.203 (0.346, 1.037) 94.2%
2 0.695 -0.006 0.174 0.207 (0.354, 1.037) 94.4%

50 1 0.734 0.033 0.121 0.147 (0.497, 0.972) 96.4%
2 0.734 0.033 0.124 0.148 (0.491, 0.978) 95.2%

100 1 0.746 0.045 0.084 0.105 (0.581, 0.911) 93.6%
2 0.748 0.047 0.086 0.105 (0.579, 0.917) 94.0%

200 1 0.756 0.055 0.061 0.073 (0.636, 0.876) 94.6%
2 0.757 0.055 0.061 0.072 (0.636, 0.877) 94.4%
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Table A.49: Simulation results of estimates and inference of ψR for matched repeated
binary measurements for case 5 (true value ψR = 0.634)

N Condition ψ̂R Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.553 -0.081 0.276 0.289 (0.011, 1.094) 91.2%
2 0.562 -0.072 0.284 0.304 (0.005, 1.119) 90.6%

50 1 0.600 -0.034 0.197 0.223 (0.215, 0.985) 91.2%
2 0.604 -0.030 0.192 0.227 (0.228, 0.981) 92.2%

100 1 0.606 -0.028 0.137 0.173 (0.338, 0.874) 92.8%
2 0.613 -0.021 0.137 0.173 (0.345, 0.881) 93.6%

200 1 0.615 -0.019 0.100 0.127 (0.419, 0.811) 92.4%
2 0.617 -0.017 0.099 0.127 (0.424, 0.810) 92.2%

Table A.50: Simulation results of estimates and inference of ψN for matched repeated
binary measurements for case 6 (true value ψN = 0.573)

N Condition ψ̂N Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.566 -0.007 0.157 0.170 (0.258, 0.874) 94.6%
2 0.566 -0.007 0.163 0.170 (0.247, 0.885) 94.0%

50 1 0.595 0.022 0.113 0.122 (0.373, 0.817) 95.4%
2 0.593 0.020 0.113 0.123 (0.372, 0.814) 95.2%

100 1 0.604 0.031 0.080 0.088 (0.447, 0.761) 93.4%
2 0.606 0.033 0.081 0.088 (0.448, 0.765) 94.0%

200 1 0.610 0.037 0.059 0.065 (0.494, 0.725) 94.4%
2 0.611 0.038 0.058 0.064 (0.497, 0.725) 95.2%
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Table A.51: Simulation results of estimates and inference of ψR for matched repeated
binary measurements for case 6 (true value ψR = 0.497)

N Condition ψ̂R Bias Empirical SD Bootstrap SE CIb CPf

25 1 0.427 -0.070 0.220 0.224 (-0.004, 0.857) 90.2%
2 0.431 -0.066 0.226 0.230 (-0.012, 0.874) 89.2%

50 1 0.457 -0.040 0.158 0.177 (0.147, 0.767) 90.4%
2 0.458 -0.038 0.154 0.181 (0.156, 0.761) 91.4%

100 1 0.460 -0.037 0.112 0.137 (0.241, 0.679) 90.2%
2 0.465 -0.032 0.110 0.137 (0.248, 0.681) 90.8%

200 1 0.466 -0.031 0.081 0.102 (0.308, 0.625) 91.0%
2 0.468 -0.029 0.079 0.102 (0.312, 0.623) 89.4%
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Table A.52: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 1 (true value ψN = 0.933)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.007 -0.025 0.139 0.106 88.0% 93.2%
2 -0.027 0.108 92.0%

100 1 0.004 -0.009 0.097 0.071 92.0% 95.6%
2 -0.010 0.071 95.6%

200 1 0.002 0.001 0.071 0.054 94.0% 94.0%
2 0.001 0.054 93.6%

Table A.53: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 2 (true value ψN = 0.855)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.002 0.003 0.130 0.091 92.8% 95.6%
2 0.003 0.094 95.2%

100 1 0.005 0.017 0.095 0.062 93.1% 96.0%
2 0.019 0.062 96.2%

200 1 -0.002 0.028 0.066 0.046 93.8% 92.8%
2 0.029 0.046 93.4%
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Table A.54: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 3 (true value ψN = 0.676)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.006 0.003 0.114 0.100 94.1% 94.6%
2 0.001 0.102 94.6%

100 1 0.005 0.014 0.083 0.069 94.0% 96.0%
2 0.017 0.069 96.6%

200 1 -0.002 0.022 0.058 0.051 93.7% 89.6%
2 0.024 0.050 91.8%

Table A.55: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 4 (true value ψN = 0.807)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.010 0.013 0.142 0.123 92.0% 91.8%
2 0.013 0.126 92.2%

100 1 0.006 0.030 0.103 0.084 92.6% 94.2%
2 0.031 0.083 94.0%

200 1 -0.001 0.042 0.074 0.059 93.9% 94.8%
2 0.043 0.059 94.6%

Table A.56: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 5 (true value ψN = 0.701)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.006 0.033 0.128 0.121 93.8% 96.4%
2 0.033 0.124 95.2%

100 1 0.006 0.045 0.094 0.084 92.6% 93.6%
2 0.047 0.086 94.0%

200 1 -0.002 0.055 0.066 0.061 93.6% 94.6%
2 0.055 0.061 94.4%
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Table A.57: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 6 (true value ψN = 0.573)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.005 0.022 0.110 0.113 93.8% 95.4%
2 0.020 0.113 95.2%

100 1 0.006 0.031 0.080 0.080 94.7% 93.4%
2 0.033 0.081 94.0%

200 1 0.000 0.037 0.055 0.059 94.9% 94.4%
2 0.038 0.058 95.2%

Table A.58: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 1 (true value ψR = 0.931)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.007 -0.030 0.139 0.260 88.0% 91.8%
2 -0.022 0.249 92.8%

100 1 0.004 -0.015 0.097 0.179 92.0% 95.0%
2 -0.004 0.174 94.4%

200 1 0.002 0.000 0.071 0.129 94.0% 92.8%
2 0.004 0.129 92.6%

Table A.59: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 2 (true value ψR = 0.674)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.001 -0.042 0.167 0.203 94.1% 91.8%
2 -0.038 0.194 92.8%

100 1 0.006 -0.037 0.125 0.140 93.7% 95.0%
2 -0.028 0.138 94.4%

200 1 0.000 -0.026 0.088 0.102 94.1% 92.8%
2 -0.024 0.101 92.6%
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Table A.60: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 3 (true value ψR = 0.485)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.003 -0.043 0.131 0.152 94.0% 90.6%
2 -0.041 0.149 92.8%

100 1 0.004 -0.038 0.097 0.108 93.4% 91.2%
2 -0.033 0.106 90.6%

200 1 0.000 -0.033 0.066 0.078 94.9% 90.6%
2 -0.031 0.077 89.6%

Table A.61: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 4 (true value ψR = 0.818)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.002 -0.021 0.195 0.240 94.8% 92.4%
2 -0.013 0.233 92.4%

100 1 0.007 -0.010 0.149 0.169 93.7% 95.2%
2 0.000 0.164 94.6%

200 1 0.000 0.003 0.102 0.121 94.7% 94.0%
2 0.006 0.121 94.2%

Table A.62: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 5 (true value ψR = 0.634)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.001 -0.034 0.162 0.197 93.9% 91.2%
2 -0.030 0.192 92.2%

100 1 0.006 -0.028 0.123 0.137 94.3% 92.8%
2 -0.021 0.137 93.6%

200 1 0.001 -0.019 0.084 0.100 95.2% 92.4%
2 -0.017 0.099 92.2%
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Table A.63: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 6 (true value ψR = 0.497)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.003 -0.040 0.136 0.158 93.8% 90.4%
2 -0.038 0.154 91.4%

100 1 0.005 -0.037 0.101 0.112 93.1% 90.2%
2 -0.032 0.110 90.8%

200 1 0.001 -0.031 0.068 0.081 95.5% 91.0%
2 -0.029 0.079 89.4%
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Table A.64: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 1 (true values ψN

1 = 0.933 and
ψN

2 = 0.912)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.042 0.045 0.132 0.096 83.0% 88.9%
2 0.063 0.003 0.132 0.102 80.0% 84.9%

100 1 0.038 0.005 0.092 0.063 89.4% 88.9%
2 0.059 0.032 0.092 0.056 84.0% 89.1%

200 1 0.035 0.001 0.064 0.045 88.6% 95.7%
2 0.056 0.024 0.064 0.037 90.8% 96.1%

Table A.65: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 2 (true values ψN

1 = 0.855 and
ψN

2 = 0.829)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.043 0.028 0.124 0.089 85.8% 92.8%
2 0.069 0.046 0.124 0.104 84.0% 92.5%

100 1 0.037 0.018 0.086 0.059 81.6% 91.4%
2 0.063 0.035 0.086 0.066 86.2% 88.3%

200 1 0.038 0.002 0.062 0.043 88.8% 89.4%
2 0.064 0.010 0.062 0.047 87.8% 93.7%
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Table A.66: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 3 (true values ψN

1 = 0.676 and
ψN

2 = 0.650)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.037 0.024 0.116 0.104 83.8% 92.0%
2 0.063 0.014 0.116 0.114 81.0% 88.1%

100 1 0.036 0.016 0.079 0.069 80.8% 87.3%
2 0.061 0.006 0.079 0.078 85.4% 84.9%

200 1 0.033 0.001 0.055 0.049 85.2% 92.3%
2 0.059 0.011 0.055 0.055 84.8% 92.2%

Table A.67: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 4 (true values ψN

1 = 0.806 and
ψN

2 = 0.814)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.060 0.050 0.134 0.121 84.0% 91.3%
2 0.052 0.068 0.134 0.128 83.8% 92.0%

100 1 0.052 0.039 0.095 0.074 88.4% 93.2%
2 0.045 0.052 0.095 0.077 80.8% 92.0%

200 1 0.055 0.017 0.066 0.052 85.2% 95.7%
2 0.047 0.024 0.066 0.052 86.8% 96.7%
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Table A.68: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 5 (true values ψN

1 = 0.701 and
ψN

2 = 0.737)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.075 0.068 0.123 0.116 81.8% 91.1%
2 0.039 0.058 0.123 0.118 85.0% 89.7%

100 1 0.069 0.059 0.091 0.082 88.7% 89.6%
2 0.033 0.047 0.091 0.080 86.2% 88.0%

200 1 0.070 0.041 0.061 0.057 85.4% 91.4%
2 0.034 0.023 0.061 0.055 90.4% 91.2%

Table A.69: Comparing simulation results of estimates and inference of ψN between
replicated and repeated binary measurements for case 6 (true values ψN

1 = 0.573 and
ψN

2 = 0.624)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.076 0.049 0.116 0.122 81.4% 89.4%
2 0.025 0.026 0.116 0.115 85.2% 87.1%

100 1 0.071 0.043 0.079 0.083 90.6% 87.2%
2 0.020 0.018 0.079 0.079 83.8% 92.2%

200 1 0.070 0.029 0.056 0.060 87.6% 90.0%
2 0.019 0.001 0.056 0.055 91.6% 92.6%
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Table A.70: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 1 (true values ψR

1 = 0.931 and
ψR

2 = 0.912)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.042 0.031 0.193 0.252 83.8% 89.2%
2 0.062 0.044 0.193 0.175 83.8% 92.8%

100 1 0.039 0.014 0.135 0.175 81.0% 89.6%
2 0.059 0.033 0.135 0.109 89.4% 92.1%

200 1 0.036 0.001 0.095 0.122 84.4% 89.3%
2 0.056 0.002 0.095 0.076 90.6% 94.9%

Table A.71: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 2 (true values ψR

1 = 0.674 and
ψR

2 = 0.768)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.098 0.042 0.167 0.199 81.0% 86.1%
2 0.004 0.023 0.167 0.165 83.4% 87.2%

100 1 0.095 0.033 0.118 0.138 84.8% 94.3%
2 0.001 0.015 0.118 0.109 81.4% 95.6%

200 1 0.092 0.024 0.082 0.099 85.0% 95.2%
2 0.002 0.010 0.082 0.076 85.4% 93.9%
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Table A.72: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 3 (true values ψR

1 = 0.485 and
ψR

2 = 0.651)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.130 0.042 0.142 0.151 85.2% 82.9%
2 0.035 0.015 0.142 0.157 81.0% 82.5%

100 1 0.126 0.037 0.100 0.108 80.4% 84.4%
2 0.039 0.008 0.100 0.106 86.8% 88.9%

200 1 0.124 0.032 0.070 0.076 89.6% 91.2%
2 0.042 0.008 0.070 0.073 88.4% 92.3%

Table A.73: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 4 (true values ψR

1 = 0.818 and
ψR

2 = 0.910)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.113 0.021 0.194 0.230 80.3% 89.3%
2 0.021 0.047 0.194 0.184 82.5% 88.4%

100 1 0.108 0.007 0.138 0.163 80.8% 87.2%
2 0.016 0.035 0.138 0.118 80.0% 80.4%

200 1 0.106 0.005 0.095 0.114 85.4% 84.2%
2 0.014 0.006 0.095 0.080 86.4% 87.3%
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Table A.74: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 5 (true values ψR

1 = 0.634 and
ψR

2 = 0.797)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.142 0.027 0.170 0.193 85.4% 81.6%
2 0.021 0.022 0.170 0.173 82.8% 85.8%

100 1 0.137 0.019 0.122 0.136 80.3% 89.8%
2 0.027 0.011 0.122 0.114 83.3% 90.2%

200 1 0.136 0.010 0.083 0.097 85.2% 93.2%
2 0.027 0.013 0.083 0.078 91.6% 95.7%

Table A.75: Comparing simulation results of estimates and inference of ψR between
replicated and repeated binary measurements for case 6 (true values ψR

1 = 0.497 and
ψR

2 = 0.698)

N Condition
Bias Empirical SD CP

Replicated Repeated Replicated Repeated Replicated Repeated

50 1 0.155 0.031 0.152 0.159 80.0% 82.1%
2 0.046 0.020 0.152 0.164 89.8% 82.1%

100 1 0.148 0.027 0.107 0.113 84.6% 82.2%
2 0.053 0.003 0.107 0.110 85.6% 88.2%

200 1 0.147 0.022 0.074 0.080 89.6% 89.1%
2 0.055 0.005 0.074 0.075 93.8% 92.6%
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A.3 The moment-generating function for the Bi-

nomial distribution

Let n ∼ BIN(N, p). The moment-generating function for the Binomial distribution

is given by

Mn(t) = E(ent)

=
N∑

n=0

ent

 N

n

 pn(1− p)N−n

=
N∑

n=0

 N

n

 (pet)n(1− p)N−n

= [pet + (1− p)]N

Hence, the moments about 0 are

E(n) = M ′′(0)

= Np (A.1)

E(n2) = M ′′′′(0)

= Np [1 + (N − 1)p] (A.2)

E(n3) = M (3)(0)

= Np
[
1 + 3(N − 1)p+ (N − 1)(N − 2)p2

]
(A.3)

E(n4) = M (4)(0)

= Np
[
1 + 7(N − 1)p+ 6(N − 1)(N − 2)p2

+(N − 1)(N − 2)(N − 3)p3
]

(A.4)
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As a result,

Var(n2) = E(n4)− E2(n2)

= Np[1 + (6N − 7)p+ 4(N − 1)(N − 3)p2 − 2(2N − 3)(N − 1)p3]

= Np(1− p) {1 + 2p(N − 1)[(2N − 3)p+ 3]} (A.5)

Cov(n, n2) = E(n3)− E(n2)E(n)

= Np
[
1 + 3(N − 1)p+ (N − 1)(N − 2)p2

]
−Np [1 + (N − 1)p]Np

= Np(1− p)[2(N − 1)p+ 1] (A.6)
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