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Abstract 

 

High-resolution metabolomics of diffuse large B-cell and follicular lymphomas: A pilot case-control 

study 

By Brandon E. Shih 

 

 

Background: Non-Hodgkin lymphoma (NHL) is a common cancer within the US, accounting for about 

4% of all new cancer cases and 3% of all cancer deaths. The etiology of NHL is poorly understood with 

no useful biomarker to aid early diagnosis. To address this gap, we conducted a comprehensive 

metabolome-wide association study (MWAS) to identify metabolomic perturbations and pathways 

associated with NHL risk.  

Methods: We used previously collected serum samples from a large population-based case-control study 

of incident NHL across six counties within the San Francisco Bay Area conducted between 2001 and 

2005. For our pilot study, serum samples were available for 142 NHL cases frequency and matched to 

142 controls by age and sex. Metabolome perturbations associated with the risk for two main NHL 

subtypes, diffuse large B-cell lymphoma (DLBCL, n = 75) and follicular lymphoma (FL, n = 67), were 

assessed with an untargeted HRM workflow using liquid chromatography-high resolution mass 

spectrometry with HILIC positive and C18 negative chromatography columns, followed by conditional 

logistic regression, pathway enrichment analysis, and chemical annotation. 

Results: After HRM data processing and cleaning, 7,061 and 5,633 metabolic features were identified in 

serum samples with positive and negative ionization modes, respectively. Twenty-one metabolic 

pathways and ten metabolic pathways were found to be associated with DLBCL and FL risk, respectively. 

The only metabolic pathway associated with risk in both subtypes was tryptophan metabolism pathway. 

We confirmed thirteen metabolites within tryptophan pathways associated with either DLBCL or FL risk. 

Additionally, we confirmed nine metabolites within tyrosine metabolism associated with FL risk. 

Discussion: The thirteen metabolites identified within tryptophan pathways suggest they might contribute 

to the suppression of anti-tumor immune responses, creating a favorable environment for tumor cells. The 

nine metabolites within tyrosine metabolism may also suggest a similar contribution to innate immune 

response and other important biological functions. Identification of metabolome perturbations and 

pathways associated with NHL risk from this study may contribute to the development of novel 

biomarkers for risk of NHL. 
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Chapter I: Background/Literature Review 

Descriptive Epidemiology of NHL 

Non-Hodgkin lymphoma (NHL) is a cancer arising from B-lymphocytes, T-lymphocytes, or 

natural killer cells of the immune system (1). The American Cancer Society estimates in 2021, there will 

be 81,560 new cases and 20,720 deaths from NHL in the US (2). However, these estimates vary by NHL 

subtype, age, sex, and ethnicity. The two most common types of NHL are diffuse large B-cell lymphoma 

(DLBCL) and follicular lymphoma (FL) (3). In 2016, the US incidence rate of DLBCL was 5.6 per 

100,000 persons per year while the incidence rate of FL was 2.7. Comparing the mortality rates, DLBCL 

had a higher mortality rate of 1.8 per 100,000 persons while FL had a morality rate of 0.5. Of the two 

subtypes, DLBCL is the more aggressive tumor with a relative 5-year survival of 64% compared to 5-year 

survival of 89% among FL patients (4,5). When comparing NHL estimates by age and sex, age-

standardized rates in the UK showed men have consistently higher rates compared to women (6). As age 

increases, the divergence between sex-specific rates become more apparent as men have higher rates than 

women. Differences in age are also seen when examining specific NHL subtypes. For example, most 

patients with DLBCL have a median age at diagnosis over 70 years while the median age at diagnosis for 

FL is 65 years (6).  

 

Molecular Basis of NHL 

Each specific NHL subtype exhibit different gene expression profiles. Gene expression profiling 

of DLBCL reveal three molecular subgroups of DLBCL: germinal-center B-cell-like (GCB) DLBCL, 

activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBCL) (7,8). While 

classified under DLBCL, each subgroup express different type of genes. GCB DLBCL derives from 

germinal-center B-cells and have been shown to express BCL-6 or LMO-2 (7–9). However, these genes 

are shown to be downregulated in ABC DLBCL. ABC DLBCL derives from B cells in the process of 

differentiating into plasma cells and exhibit an upregulation in many of the genes normally expressed in 
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plasma cells, such as XBP-1 (7).  The molecular pathways involved in the development of FL produces a 

different gene expression profile. About 90% of all FL cases express the anti-apoptotic BCL-2 protein but 

a small percentage of FL cases contain alterations leading to deregulated expression of the transcriptional 

repressor, BCL-6 (10) instead. Both of these proteins are linked to germinal center B cells (11). The 

subtle differences across NHL gene expression profiles make identification of subtypes important in 

determining appropriate treatment options and prognosis. 

 

Treatment of NHL 

The current standard treatment plan for DLBCL patients is a combination of rituximab, 

cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy (9,12). However, 

the addition of rituximab as maintenance after chemoimmunotherapy treatment was not beneficial (13). 

Treatments are available for NHL patients, but disparities among marginalized populations persist. The 

incidence of NHL is lower in minority groups but Black patients present with NHL at younger ages and 

with more advanced disease compared to White patients (14). Research also shows HIV-positive patients 

with NHL are presenting with more advanced disease, higher scores under prognostic models, and worse 

overall survival (OS) compared to HIV-negative patients (14–16). As immunotherapy has been used to 

treat different types of cancers by targeting PD-1 receptors, studies have also analyzed the association 

between PD-1/PD-L1 and NHL. One study found the potential prognostic impact PD-1/PD-L1 could have 

on NHL subtypes. For example, PD-L1+ DLBCL tumors had inferior OS rates than PD-L1- DLBC 

tumors (17). In comparison with FL subtypes, there have been contradicting evidence to determine the 

prognostic value of these receptors.  

 

Analytic Epidemiology of NHL 

Several epidemiologic studies have shown NHL is more common among immunocompromised 

patients (i.e. HIV patients) and can be caused by genetic mutations or infections. Because there are 

multiple NHL subtypes such as DLBCL and FL (18), the risk factors associated with each subtype varies 
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as well. For example, a pooled analysis of 4,667 DLBCL cases showed that factors most commonly 

associated with DLBCL included B-cell activating autoimmune disease (OR: 2.36, 95% CI: 1.80-3.09), 

hepatitis C virus (HCV) positivity (OR: 2.02, 95% CI: 1.47-2.76), first-degree family history of NHL 

(OR: 1.95, 95% CI: 1.54-2.47), and higher body mass index (BMI) of > 30 kg/m2 as a young adult (OR: 

1.58, 95% CI: 1.12-2.23) (19). Several occupations were also identified as risk factors for NHL. Among 

women, being a field crop/vegetable farmer, a seamstress/embroider, and a hairdresser was associated 

with a higher DLBCL risk. Among men, working as a driver or material handling operator was associated 

with a higher risk for DLBCL (19,20). Both DLBCL and FL were shown to share several risk factors. A 

pooled analysis of 3,530 FL cases showed individuals with a first-degree family history of NHL (OR: 

1.99, 95% CI: 1.55-2.54), higher BMI as a young adult (OR: 1.21, 95% CI: 1.09-1.35 per 5 kg/m2 

increase), and individuals who worked as a spray painter (OR: 2.66, 95% CI: 1.36-5.24) had a higher FL 

risk (19). Across sex, cigarette smoking was a stronger risk factor for FL among females than males (19). 

Aside from behavioral risk factors and patient demographics, observational studies have also found 

certain infections to be risk factors for NHL. Q fever, caused by the agent, Coxiella burnetii, has been 

known to be associated with B-cell NHL (21,22). Other known infections associated with NHL include 

HCV, Epstein-Barr virus (EBV), Helicobacter pylori, and human immuno-deficiency virus (HIV) 

(20,23). 

There have also been studies analyzing the role of specific chemical exposures as risk factors for 

NHL but results have been inconsistent. One of these chemical exposures is trichloroethylene (TCE) and 

has been widely used as an industrial solvent to remove grease from metal. Because of their widespread 

use, occupation exposure to TCE and has been associated with higher risk of NHL (24). However, when 

analyzed by subtype, TCE was only found to be associated with FL and chronic lymphocytic leukemia 

(CLL) and not DLBCL (20,25). Similar associations of higher risk for NHL are found for another 

chlorinated solvent, carbon tetrachloride (26). Other occupational chemical exposures associated with a 

higher risk in NHL include chemicals found in herbicides and insecticides. A meta-analysis of six case-

control studies, including the most recent Agricultural Health Study cohort, found glyphosate-based 
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herbicide exposure (i.e. Roundup and Ranger Pro) is associated with a higher risk of NHL (Summary RR: 

1.41, 95% CI: 1.13-1.75) (20,27). Additionally, another meta-analysis of 44 cohort and case-control 

studies found a positive association between higher NHL risk and exposure to active ingredients and 

chemical groups in agricultural pesticides, including phenoxy herbicides (i.e. MCPA), carbamate 

insecticides, organophosphorus insecticides, and lindane, an organochlorine insecticide (28). Despite 

finding associations with all these categories of risk factors, the etiology of NHL has still yet to be 

determined.  

 

Molecular Epidemiology of NHL 

Because of the familial predisposition to lymphoma including NHL (29), multiple studies focused 

on germline mutations and used genome-wide association approach to identify potential genetic variants 

responsible for the development of NHL. Most genome-wide association studies (GWAS) have focused 

specifically on human leukocyte antigen (HLA) variants and found HLA-B (rs2523607) locus associated 

with DLBCL risk in European (OR: 1.32, 95% CI: 1.21-1.44) and Asian (OR: 3.05, 95% CI: 1.32-7.05) 

populations (30). When examining the association with FL risk, two GWAS studies in European 

populations found several HLA-DQB1 variants (rs10484561, rs7755224, and rs264712) associated with a 

higher risk of FL (30–32). Chronic inflammation also plays an important role when determining the 

etiology of NHL. One meta-analysis of 17 nested case-control studies reviewed inflammatory markers, 

such as interleukin 6 (IL-6), IL-10, and tumor necrosis factor α (TNF-α) and their association with NHL. 

The results of the meta-analysis showed higher blood concentrations of IL-6 (OR: 1.22, 95% CI: 0.97-

1.54), IL-10 (OR: 1.24, 95% CI: 0.93-1.63), TNF-a (OR: 1.18, 95% CI: 1.04-1.34) and other 

inflammatory markers were associated with a higher risk of NHL (33).  

Using metabolomics analysis can help identify potential biomarkers and understand biological 

and metabolic pathways (34) of NHL but not many studies have examined multiple -omics among 

different NHL subtypes, such as genomics for natural killer/T-cell lymphoma (35) or Burkitt lymphoma 

(36). Examples of high resolution metabolomic (HRM) approaches include identifying which metabolic 
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pathways were affected by traffic related air pollution (37) or metabolic pathways most affected in 

adolescents with elevated hepatic steatosis (38). These studies introduce the potential of using HRM to 

provide further insight into the exposure-disease etiology through molecular and genetic mechanisms 

within NHL.  For example, a cross-sectional study of 175 individuals in Guangdong, China used 

metabolomic pathway identification to assess the association between occupational exposure to TCE with 

adverse health outcomes, including NHL and kidney and liver cancers (39).  

To determine if individual metabolites or metabolic pathways can serve as early biomarkers of 

lymphoma, one study examining 66 cases and 96 controls found hypoxanthine and elaidic acid to be more 

abundant across all lymphoma subtypes but due to small sample sizes, but only obtained four partial least 

square-discriminant analysis (PLS-DA) models for DLBCL, chronic lymphocytic leukemia (CLL), 

multiple myeloma (MM), and Hodgkin lymphoma (HL) (40). Another study of 15 DLBCL cases and 34 

controls found ascorbate and aldarate metabolism, glycine, serine and threonine metabolism, and 

aminoacyl-tRNA biosynthesis most impacted among NHL DLBCL cases (41). This study also identified 

3-indolelactic acid, a product from tryptophan metabolism, which suggests higher levels of tryptophan 

among DLBCL patients. A third study from South Korea analyzed plasma samples from 5 cases and 6 

healthy controls and found steroid hormone biosynthesis, ABC transporters, and arginine and proline 

metabolism but this study only examined 2 NHL and 3 MM cases (42). As evidenced by these studies, 

many of the current NHL metabolomic literature have insufficient population sizes and present different 

metabolic pathways associated with NHL risk. Using a HRM approach would be helpful to further 

understand the NHL disease-exposure pathogenesis and identify therapeutic targets for different NHL 

subtypes.   
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Chapter II: Manuscript 

High-resolution metabolomics of diffuse large B-cell and follicular lymphomas: A pilot case-control 

study 

 

Abstract 

Background: Non-Hodgkin lymphoma (NHL) is a common cancer within the US, accounting for about 

4% of all new cancer cases and 3% of all cancer deaths. The etiology of NHL is poorly understood with 

no useful biomarker to aid early diagnosis. To address this gap, we conducted a comprehensive 

metabolome-wide association study (MWAS) to identify metabolomic perturbations and pathways 

associated with NHL risk.  

Methods: We used previously collected serum samples from a large population-based case-control study 

of incident NHL across six counties within the San Francisco Bay Area conducted between 2001 and 

2005. For our pilot study, serum samples were available for 142 NHL cases frequency and matched to 

142 controls by age and sex. Metabolome perturbations associated with the risk for two main NHL 

subtypes, diffuse large B-cell lymphoma (DLBCL, n = 75) and follicular lymphoma (FL, n = 67), were 

assessed with an untargeted HRM workflow using liquid chromatography-high resolution mass 

spectrometry with HILIC positive and C18 negative chromatography columns, followed by conditional 

logistic regression, pathway enrichment analysis, and chemical annotation. 

Results: After HRM data processing and cleaning, 7,061 and 5,633 metabolic features were identified in 

serum samples with positive and negative ionization modes, respectively. Twenty-one metabolic 

pathways and ten metabolic pathways were found to be associated with DLBCL and FL risk, respectively. 

The only metabolic pathway associated with risk in both subtypes was tryptophan metabolism pathway. 

We confirmed thirteen metabolites within tryptophan pathways associated with either DLBCL or FL risk. 

Additionally, we confirmed nine metabolites within tyrosine metabolism associated with FL risk. 

Discussion: The thirteen metabolites identified within tryptophan pathways suggest they might contribute 

to the suppression of anti-tumor immune responses, creating a favorable environment for tumor cells. The 

nine metabolites within tyrosine metabolism may also suggest a similar contribution to innate immune 

response and other important biological functions. Identification of metabolome perturbations and 

pathways associated with NHL risk from this study may contribute to the development of novel 

biomarkers for risk of NHL. 
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Introduction 

In 2021, the American Cancer Society estimates there will be 81,560 new cases and 20,720 

deaths from non-Hodgkin lymphoma (NHL) in the US (2). NHL is a lymphoid disorder arising from the 

cells of the immune system with varied patterns of clinical behavior and treatment response (1). The two 

most common types of NHL are diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) 

(3). The 2016 US incidence rate of DLBCL was 5.6 per 100,000 persons per year while the incidence rate 

of FL was 2.7. However, NHL rates have been steadily increasing, particularly in persons older than 55, 

over recent years without consensus as to the underlying cause (43). To explain the rising rates of NHL, 

several epidemiologic studies have shown NHL can be caused by genetic mutations or infections and are 

more common among immunocompromised patients. Other epidemiologic studies have hypothesized the 

role of industrialization and increased exposure to chemicals contributing to the rise of NHL rates, but the 

results have been inconsistent. For example, occupational exposure to trichloroethylene (TCE) is known 

to be associated with higher risk of NHL (24), however, evidence has been limited and more research is 

needed.  

Using metabolomics analysis can identify potential biomarkers and help understand biological 

and metabolic pathways involved in development and progression of NHL (34). However, there are very 

few studies utilizing -omics approaches, with most of them having small sample sizes and including 

different subtypes of lymphoma (35,36). One pilot metabolomics study using gas chromatography-mass 

spectrometry (GC-MS) found hypoxanthine and elaidic acid to be more abundant across all lymphoma 

subtypes compared to controls. Fatty acids were found to be increased among multiple myeloma and 

Hodgkin lymphoma patients while 2-aminoadipic acid and 2-aminoheptanedioic acid, erythritol and 

threitol were increased among DLBCL and chronic lymphocytic leukemia (40). However, sample size in 

this study was very small with only thirteen DLBCL and eight FL cases. Another small untargeted 

metabolomics study (DLBCL = 15, controls = 34) using urine samples found ascorbate and aldarate 

metabolism, glycine, serine and threonine metabolism, and aminoacyl-tRNA biosynthesis most impacted 

among DLBCL cases (41). Both of these metabolomic studies had small sample sizes of mostly DLBCL 
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cases and found different metabolomic pathways associated with DLBCL risk, demonstrating the need for 

a larger metabolomics study and analysis of more than one NHL subtype. Using a high-resolution 

metabolomics (HRM) approach would be helpful to further understand the NHL disease-exposure 

pathogenesis and identify biomarkers of risk and therapeutic targets for different NHL subtypes. Our 

study was designed to conduct a comprehensive metabolomic pathway analysis and chemical 

identification to find metabolomic features and pathways associated with risk for two subtypes of NHL – 

DLBCL and FL. Using previously collected data and serum samples from a NHL San Francisco Bay Area 

Case-Control study (44), we aimed to compare metabolomic profiles of DLBCL and FL subtypes with 

healthy controls. Identifying any associated metabolites or metabolic pathways linked to an overall higher 

risk of DLBCL or FL could help understand which endogenous metabolic pathway(s) are perturbed by 

environmental chemicals or other exposures.  

 

Methods 

Parent NHL Case-Control Study Design 

The design of the parent case-control study was previously published (44). In summary, cases 

were identified within approximately one month of diagnosis by the Northern California Cancer Center’s 

rapid case ascertainment. Eligible patients were diagnosed with incident NHL from October 2001 to 

October 2005. All eligible patients were 20-84 years old and residents of one of the six Bay Area counties 

at time of diagnosis. There were 1,704 eligible cases interviewed during the study period. An additional 

452 cases died prior to initial contact, 161 could not be located/moved, 155 were too ill, and 360 refused 

to participate. Pathology reports and diagnostic materials were obtained from the diagnosing pathology 

department and re-reviewed by an expert pathologist to confirm the diagnosis and provide a consistent 

classification of NHL subtypes using the REAL/WHO (45) lymphoma classification. Control participants 

were identified by random digit dial supplemented by random sampling of Centers of Medicare & 

Medicaid Services list for those older than 65 years old. Eligibility criteria for controls were identical to 

cases with the exception of an NHL diagnosis. Control participants were frequency matched to cases by 
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age within five years, sex, and county of residence. Among 1,939 eligible random-digit dialed controls, 

1,313 completed in-person interviews, 85 were too sick to participate, and 541 refused to participate. 

Among the 1,475 eligible Medicare controls, 768 completed in-person interviews, 97 were too ill to 

participate, and 610 refused to participate.  

Demographic and risk factor data including HIV status, body mass index (BMI), county location 

at diagnosis, self-reported race and ethnicity, and paternal and maternal ancestry were collected from all 

study participants during their in-person interviews. BMI was classified according to the National 

Institute of Health Guidelines. No proxy interviews were conducted. The median time from diagnosis to 

venipuncture was 6.5 months. Blood and/or buccal cell specimens were collected for eligible participants 

who agreed to biospecimen collection (87% of cases and 88% of controls). All study participants were 

approved by the review committee for human research at the University of California, San Francisco.  

 

Pilot High-Resolution Metabolomics Study Design 

We conducted a pilot high-resolution metabolomics (HRM) study on a randomly selected subset 

of NHL cases and matched controls that satisfied the following inclusion criteria: negative HIV status, 

available plasma sample not previously thawed, non-Hispanic White, and one of two main NHL subtypes 

(diffuse large B-cell lymphoma, DLBCL or follicular lymphoma, FL). Because the case-control study 

predominately included White study participants, we did not have sufficient power to include other race 

and ethnicities. The final metabolomics study included 75 DLBCL cases and 75 controls and 67 FL cases 

and 67 controls for a total of 142 cases and 142 controls. All controls were frequency matched to cases by 

age within five years, race/ethnicity, sex, and county of residence. All DLBCL and FL cases and control 

plasma samples were similarly collected, processed, and stored in -80°C until metabolomic analysis. 

 

HRM Analysis and Data Processing 

HRM untargeted profiling was conducted using a liquid chromatography with high-resolution 

mass spectrometry (LC-HRMS) techniques (Thermo ScientificTM Q-ExactiveTM HF) at the HERCULES 
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High Resolution Metabolomics Core. To enhance the coverage of metabolic feature detection, each 

sample was analyzed in triplicates and in polar and non-polar analytical columns and analysis modes: 

hydrophilic interaction liquid chromatography (HILIC) with positivity electrospray ionization (ESI) and 

C18 hydrophobic reversed-phase chromatography with negative ESI. Samples were randomized into 

batches of twenty, consisting of ten cases and ten matched controls. For each sample, 65 mL of plasma 

was treated with acetonitrile containing a mixture of 14 stable isotope internal standards added to the 

aliquot at 2:1 to precipitate proteins. Samples were then analyzed with NIST 1950-calibrated reference 

pooled human plasma preceding and following each block according to standard operating procedures. 

Raw data was extracted and a quality control was performed using apLCMS (46) and xMSanalyzer (47) 

software packages. The processed data included a total of 15,321 metabolic features in HILIC+ and 

11,188 metabolic features in C18- modes. Data were further filtered to remove metabolic features not 

detected in >50% in any of the groups (DLBCL, FL, or controls) and with median CV > 30%, leaving 

7,061 metabolic features remaining for HILIC+ and 5,633 metabolic features for C18-. The resulting 

analytical data contained individual metabolic features defined by mass-to-charge ratio (m/z), retention 

time (RT), and ion intensities. Technical replicates were averaged. Zero averaged values were replaced 

with the minimum value divided by 2. All data were log2-transformed. Batch correction was conducted 

using ComBat package in R (48). A flowchart of data cleaning and processing is shown in Figure 1. 

 

Statistical Analysis 

Conditional logistic regression model was used to estimate the strength of the association 

between each metabolic feature and DLBCL or FL risk, matching on age (continuous) and sex 

(men/women) and additionally adjusting for BMI (underweight, normal weight, overweight, obese class 

1, and obese class 2). P-values were corrected using Benjamini-Hochberg (49) (FDR) method to account 

for multiple testing. 
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Metabolic Pathways and Metabolite Identification 

The metabolic features identified to be statistically significantly (raw p-value < 0.05) associated 

with risk for DLBCL and FL were used to conduct the pathway enrichment and metabolite annotation 

analyses. Metabolic pathway identification was performed using Mummichog (version 1.0.9) (50). 

Positive and negative ionization modes for both DLBCL and FL subtypes were analyzed separately using 

commonly used adducts (isotopic derivatives) to produce a collection of predicted metabolic pathways. 

For HILIC+, only the following adducts were considered: M[+], M + H[+], M + Na[+], M(C13) + H[1+] 

(in lieu of M + K[+]), M + 2H[2+], and M(C13) + 2H[2+]. For C18-, the following adducts were 

considered: M-H[−], M + Cl[−], M + ACN-H[−], M + HCOO[−], M(C13)-H[−], M-H2O-H[−], and M + 

Na-2H[−]). Once metabolic pathways were identified, they were examined using the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) to determine the associations between specific chemicals or pathways. 

To supplement our pathway analysis, individual extracted ion-chromatograms (EIC) plots were 

generated and scored on a scale from 0 to 3 to identify plots with clean and prominent peaks. Those with 

clean and prominent peaks were compared to the Human Metabolome Database (HMDB) to identify 

confirmed and validated putative chemical identities. Additionally, metabolic features were assigned 

potential chemical identities using xMSAnnotator (51) package in R, and compared to an in-house list of 

confirmed and validated metabolites from the HERCULES High Resolution Metabolomics Core. 

 

Results 

Baseline Characteristics of Study Participants 

The baseline characteristics of cases and controls are summarized in Table 1. The mean age of 

DLBCL cases and controls was 65 years and the mean age of FL cases and controls was 62 years. There 

were 39 (52%) DLBCL cases and 37 (55%) FL cases that were men. All 284 participants were White, 

non-Hispanic, with negative HIV status. Across both DLBCL and FL subtypes, most participants BMI 

profiles were of normal weight and overweight.  
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Metabolic Features Associated with NHL Subtypes Risk 

A summary of data extraction and processes for HRM analysis is presented in Figure 1. After 

data quality filtering, 7,061 and 5,633 metabolic features in HILIC+ and C18- ionization modes, 

respectively, remained for further analysis. The strength of association between each metabolic feature 

and risk of NHL subtype was estimated using conditional logistic regression. With C18- ionization, we 

detected 574 statistically significant (raw p-value < 0.05) metabolic features for DLBCL and 446 

statistically significant metabolic features for FL. With HILIC+ ionization, we detected 552 statistically 

significant metabolic features for DLBCL and 565 statistically significant metabolic features for FL. 

Manhattan plots were used to further illustrate the association of metabolic features with risk for DLBCL 

and FL (Figures 2a-d). Each set of significant features was used to determine metabolomic pathways 

using Mummichog and the resulting pathways associated with each subtype are listed in Tables 2a-b. 

 

Metabolic Pathways Associated with NHL Subtypes Risk 

Table 2a and Table 2b is divided by NHL subtype and includes metabolic pathways arranged 

alphabetically. For DLBCL, the most significant pathway was starch and sucrose for HILIC+ and pentose 

phosphate pathway for C18- ionization modes. The most significant pathway for FL was methionine and 

cysteine for HILIC+ and vitamin B6 (pyridoxine) metabolism for C18- ionization modes. The following 

pathways were identified with HILIC+ and C18- ionization modes associated with DLBCL risk: caffeine 

metabolism, hexose phosphorylation, N-Glycan biosynthesis, propanoate metabolism, sialic acid 

metabolism, and starch and sucrose metabolism. The only pathway overlapping between DLBCL and FL 

subtypes was tryptophan pathway. Given the role tryptophan pathway plays in inflammation, we focused 

on identifying putative chemicals from tryptophan pathway (Tables 3-4). In addition to tryptophan, we 

also identified putative chemicals from tyrosine pathway found to be associated with FL risk (Table 5). 

From metabolic features found within tryptophan pathway that were statistically significantly 

associated with DLBCL risk, we were able to identify the following chemicals using the potential 

matches in the HMDB database: D-Galactose, Acetoacetyl-CoA, L-Formylkynurenine, Indole-3-
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Acetaldehyde, Quinolinate, Anthranilate, and 5-Methoxyindoleacetate. Within the same pathway found to 

be associated with FL risk, we identified the following chemicals: L-Kynurenine, 3-Hydroxyanthranilate, 

5-Phenyl-1,3-Oxazinane-2,4-Dione, 3-Hydroxykynurenamine, N-Methyltryptamine, and Indole-3-

Acetamide. Among tyrosine pathway associated with FL risk, we identified 5-S-Cysteinyldopa, Caffeate, 

Choline Phosphate, L-Cysteine, alpha-N-Phenylacetyl-L-Glutamine, 2-Aminoacrylate, Tyramine O-

Sulfate, 7,8-Dihydrobiopterin, and Salsolinol. 

To supplement our pathway analysis, individual extracted ion-chromatograms (EIC) plots were 

generated and compared to known databases to identify confirmed and validated metabolites. Eight plots 

were found for metabolic features within the tryptophan pathway in DLBCL (Figure 3), six plots were 

found for metabolic features within the tryptophan pathway in FL (Figure 4), and two plots were found 

for metabolic features within the tyrosine pathway (Figure 5).  

 

Discussion 

In this analysis, we used HRM profiling to identify 571 significant metabolic features for DLBCL 

C18-, 446 significant metabolic features for FL C18-, 552 significant metabolic features for DLBCL 

HILIC+, and 565 significant metabolic features for FL HILIC. These metabolic features were used for 

pathway identification, and 21 metabolic pathways were associated with DLBCL risk and ten metabolic 

pathways were associated with FL risk. The only pathway found to be associated with both DLBCL and 

FL risk was tryptophan metabolism pathway.  

Tryptophan is one of nine essential amino acids and acts as a precursor to kynurenine, which 

plays a crucial role in the regulation of immune response during infections, inflammation, and pregnancy 

(52). Tryptophan catabolism has also been an increasingly important factor in tumorigenesis. Produced by 

tumor or tumor-associated cells, indoleamine 2,3-dioxygenas 1 (IDO1) catabolizes tryptophan to suppress 

antitumor immune response, creating a more favorable environment for tumor cells to escape host 

immunity (53,54). One previous case-control study of 15 DLBCL cases and 34 controls found an 

upregulation of 3-indolelactic acid among DLBCL cases. Since 3-indolelactic acid is a byproduct of 
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tryptophan metabolism, this suggested an increase in tryptophan metabolism among DLBCL (41). While 

we did not find similar upregulation of 3-indolelactic acid, these results corroborate our findings of 

tryptophan metabolism perturbations among DLBCL cases. We also found metabolic features in 

tryptophan metabolism to be associated with FL risk. Additionally, we found kynurenine and its derivates 

to be associated with risk for DLBCL and FL. The increased levels of tryptophan metabolism and 

kynurenine from our samples suggest the possibility of using tryptophan metabolism as a potential 

biomarker and therapeutic target for DLBCL and FL cases. However, further research on the downstream 

effects of immunosuppressive tryptophan metabolism is required.  

In addition to tryptophan metabolism, we also found metabolic features in tyrosine metabolism 

pathway to be associated with FL risk. While no studies have examined the use of tyrosine as a diagnostic 

marker for NHL, one previous study assessed the usefulness of tyrosine as a metabolic marker for 

colorectal cancer. The study found lower levels of tyrosine may be attributed to the metabolic disturbance 

resulting from colorectal cancer development and a panel with glutamine-leucine and tyrosine could be 

used as a biomarker for early detection of colorectal cancer (55). While our results showed an association 

between tryptophan and tyrosine metabolism with DLBCL and FL, other metabolomic studies found 

different associations such as adenine and guanine metabolism across various subtypes of lymphoma (40). 

Differences in our results suggest further research is required to elucidate the associations. 

Animal studies have also explored the importance of taurine during chemotherapy to treat T-cell 

lymphoma. Taurine was one of the top metabolites associated with DLBCL risk in our study (OR: 0.12, 

95% CI: 0.04-0.37) and is known as an amino acid with positive effects on digestion, endocrine, and 

immune systems. One previously published study found taurine played a role in enhancing adjuvant 

therapy by reducing toxicity effects from chemotherapy (56). Another study used nuclear magnetic 

resonance-based metabolic profiling to identify metabolites to differentiate between DLBCL and FL and 

found the most relevant metabolites were alanine in DLBCL cases and taurine in FL cases (57). While our 

results also found taurine in DLBCL, findings from our study and the NMR study suggest taurine may be 

an important metabolite associated with DLBCL and FL risk. 
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Strengths and Weaknesses 

One of the major strengths from our study was being the largest study to utilize untargeted HRM 

to analyze metabolomic profiles of DLBCL and FL. By using an untargeted approach, we were able to 

examine all metabolic features and metabolic pathways associated with NHL risk without a priori 

hypotheses. We also performed our study within a homogenous study population by restricting 

participants to non-Hispanic White and HIV negative participants. By using a more well-defined 

population, we were able to reduce the impact of heterogeneity across participants that might have 

contributed to metabolite differences. However, this has also prevented us from generalizing our results to 

a broader NHL population. Additionally, another limitation in our analysis was in our study design. By 

performing a case-control study, plasma samples were collected after NHL diagnosis. Detected 

metabolomic pathways or metabolites in our study could have been present prior to NHL diagnosis or 

caused by NHL but we were unable to establish temporality which limits our ability to determine if they 

can be used as early predictors of NHL diagnosis. We were also unable to determine if metabolites 

changed across lymphoma stages or treatments because information on lymphoma disease stage or 

current treatment regimens was not available.  

Despite these limitations, our study found hundreds of significant metabolic features across two 

NHL subtypes and identified 21 metabolic pathways associated with DLBCL risk and ten metabolic 

pathways associated with FL risk. All metabolic pathways were important because we do not know the 

specific drivers behind the rising NHL rates over recent years. Previous studies have shown the 

importance of tryptophan metabolism, tyrosine metabolism, and taurine, but more research on these 

pathways is warranted. If their potential applications as diagnostic or therapeutic biomarkers in other 

scenarios can be applied to NHL risk, we may have a better understanding of increasing NHL rates.  
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Tables 

Table 1. Baseline characteristics of DLBCL and FL cases and controls, SF Bay Area Case-Control, 

2001-2005 

Characteristic DLBCL FL 

Cases (n = 75) Controls (n = 75) Cases (n =67) Controls (n =67) 

Sex, n (%)     

   Men 39 (52) 39 (52) 37 (55) 37 (55) 

   Women 36 (48) 36 (48) 30 (45) 30 (45) 

Age, yrs, mean (SD) 65.04 (12.45) 64.83 (12.17) 61.99 (11.81) 61.91 (11.80) 

BMI (kg/m2), n (%)     

   Underweight, 

   < 18.5 

2 (3) 2 (3) 3 (5) 0 (0.0) 

   Normal, 

   18.5 - 24.9 

48 (64) 34 (45) 32 (48) 26 (39) 

   Overweight, 

   25 - 29.9 

13 (17) 28 (37) 16 (24) 20 (30) 

   Obese, Class I, 

   30 – 34.9 

7 (9) 7 (9) 13 (19) 16 (24) 

   Obese, Class II, 

   35+ 

5 (7) 4 (5) 3 (5) 4 (6) 

County, n (%)     

   1 15 (20)  10 (13) 17 (25) 11 (16) 

   2 11 (15) 14 (19) 13 (19) 13 (19) 

   3 5 (7) 6 (8) 7 (11) 6 (9) 

   4  21 (28) 23 (31) 13 (19) 17 (25) 

   5 5 (7) 9 (12) 7 (11) 7 (11) 

   6 18 (24) 13 (17) 10 (15) 13 (19) 

Abbreviations: yrs, years; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; BMI, body 

mass index 
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Table 2. Mummichog metabolism pathways associated with DLBCL (a) and FL (b), SF Bay Area 

Case-Control, 2001-2005 

a. DLBCL (HILIC+/C18-)     b.    FL (HILIC+/C18-) 

Metabolism 

Pathways 

Overlap 

Size 

Pathway 

Size 

p-value Pos/Neg  Metabolism 

Pathways 

Overlap 

Size 

Pathway 

Size 

p-value Pos/Neg 

Caffeine 

metabolism 

6 16 0.006 C18-  Methionine 

and cysteine 

metabolism 

9 56 0.009 HILIC+ 

Caffeine 

metabolism 

3 7 0.009 HILIC+  Porphyrin 

metabolism 

3 19 0.067 C18- 

Chondroitin sulfate 

degradation 

3 6 0.006 HILIC+  Tryptophan 

metabolism 

7 70 0.083 C18- 

Galactose 

metabolism 

5 23 0.026 HILIC+  Tyrosine 

metabolism 

11 84 0.020 HILIC+ 

Heparan sulfate 

degradation 

3 6 0.006 HILIC+  Urea 

cycle/amino 

group 

metabolism 

8 67 0.027 C18- 

Hexose 

phosphorylation 

5 19 0.041 C18-  Vitamin B6 

(pyridoxine) 

metabolism 

4 12 0.003 C18- 

Hexose 

phosphorylation 

4 19 0.048 HILIC+  Vitamin E 

metabolism 

5 30 0.035 HILIC+ 

N-Glycan 

biosynthesis 

3 11 0.036 HILIC+  Vitamin D 1 1 0.040 HILIC+ 

N-Glycan 

biosynthesis 

4 13 0.037 C18-       

Pentose phosphate 

pathway 

11 40 0.004 C18-       

Phosphatidylinositol 

phosphate 

metabolism 

6 26 0.012 HILIC+       

Propanoate 

metabolism 

3 9 0.019 HILIC+       

Propanoate 

metabolism 

5 19 0.041 C18-       

Sialic acid 

metabolism 

7 26 0.018 C18-       

Sialic acid 

metabolism 

5 26 0.043 HILIC+       

Starch and Sucrose 

Metabolism 

4 10 0.004 HILIC+       

Starch and Sucrose 

Metabolism 

4 8 0.007 C18-       

Tryptophan 

metabolism 

11 67 0.018 HILIC+       

Valine, leucine and 

isoleucine 

degradation 

4 18 0.038 HILIC+       
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Table 3. Putative chemical identification for metabolic features in tryptophan pathway associated 

with DLBCL risk, SF Bay Area Case-Control, 2001-2005 

 
m/z RT Col OR (95% CI) Putative Identity Adduct 

139.0584 60 HILIC+ 0.76 (0.61, 0.94) Anthranilate M(C13)+H[1+] 

160.0757 36 HILIC+ 0.46 (0.24, 0.85) Indole-3-Acetaldehyde M+H[1+] 

167.0218 82 HILIC+ 0.50 (0.32, 0.78) Quinolinate M[1+] 

181.0718 31 HILIC+ 0.67 (0.49, 0.91) D-Galactose M+H[1+] 

195.0875 29 HILIC+ 0.78 (0.66, 0.93) CE2152 (Unidentified) M+Na[1+] 

203.0526 62 HILIC+ 1.60 (1.11, 2.31) D-Galactose M+Na[1+] 

206.0809* 26 HILIC+ 0.61 (0.41, 0.92) 5-Methoxyindoleacetate M+H[1+] 

226.0121 61 HILIC+ 1.60 (1.03, 2.48) CE2949 (Unidentified) M+Na[1+] 

238.0921* 103 HILIC+ 1.52 (1.02, 2.29) L-Formylkynurenine M(C13)+H[1+] 

427.0760 95 HILIC+ 1.56 (1.07, 2.29) Acetoacetyl-CoA M(C13)+2H[2+] 

* Not confirmed by EIC plots 

Table 4. Putative chemical identification for metabolic features in tryptophan pathway associated 

with FL risk, SF Bay Area Case-Control, 2001-2005 

 
m/z RT Col OR (95% CI) Putative Identity Adduct 

188.0104* 283 C18- 0.42 (0.18, 0.95) 3-Hydroxyanthranilate M+Cl[-] 

188.0105 21 C18- 0.76 (0.58, 0.99) 3-Hydroxyanthranilate M+Cl[-] 

190.0510 23 C18- 2.33 (1.12, 4.87) 5-Phenyl-1,3-Oxazinane-2,4-Dione M-H[-] 

194.0464 20 C18- 0.83 (0.70, 0.99) Indole-3-Acetamide M+Na-2H[-] 

194.0821 178 C18- 0.36 (0.13, 0.98) N-Methyltryptamine M+Na-2H[-] 

207.0777 23 C18- 5.36 (2.10, 13.68) L-Kynurenine M-H[-] 

225.0895 293 C18- 3.37 (1.29, 8.82) 3-Hydroxykynurenamine M+HCOO[-] 

* Not confirmed by EIC plots 

Table 5. Putative chemical identification for metabolic features in tyrosine pathway associated with 

FL risk, SF Bay Area Case-Control, 2001-2005 

 
m/z RT Col OR (95% CI) Putative Identity Adduct 

88.0393* 206 HILIC+ 3.18 (1.55, 6.54) 2-Aminoacrylate M+H[1+] 

91.0275* 271 HILIC+ 4.02 (1.11, 14.60) Caffeate M+2H[2+] 

93.0448 104 HILIC+ 0.21 (0.05, 0.82) Choline Phosphate M+2H[2+] 

110.0293 37 HILIC+ 0.45 (0.22, 0.92) Tymsf, Tyramine O-Sulfate M(C13)+2H[2+] 

122.0271* 196 HILIC+ 2.51 (1.34, 4.69)  L-Cysteine M+H[1+] 

181.1037* 54 HILIC+ 1.22 (1.02, 1.46) (-)-Salsolinol M(C13)+H[1+] 

240.0309* 25 HILIC+ 0.62 (0.43, 0.91) Tymsf, Tyramine O-Sulfate M+Na[1+] 

262.0918* 71 HILIC+ 1.51 (1.00, 2.27) 7,8-Dihydrobiopterin M+Na[1+] 

265.1195* 37 HILIC+ 0.69 (0.49, 0.98) Alpha-N-Phenylacetyl-L-Glutamine M+H[1+] 

316.0754* 97 HILIC+ 0.68 (0.51, 0.91) 5-S-Cysteinyldopa M[1+] 

* Not confirmed by EIC plots 
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Figures 

Figure 1. HRM data extraction and processing flowchart, SF Bay Area Case-Control, 2001-2005 
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Figure 2. Manhattan plots of significant metabolic features associated with DLBCL (a. HILIC+, b. 

C18-) and FL (c. HILIC+, d. C18-) risk, SF Bay Area Case-Control, 2001-2005 
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c. FL (HILIC+), 565 significant 

metabolic features 

 

d. FL (C18-), 446 significant metabolic 

features 
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Figure 3. EIC plots for putative chemicals identified in tryptophan pathway and associated with 

DLBCL risk, SF Bay Area Case-Control, 2001-2005 

 

a.  Anthranilate    b. Indole-3-Acetalde 

    

c.  Quinolinate    d. D-Galactose 

   

e.  CE2152     f. D-Galactose 
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g. CE2949     h. Acetoacetyl-CoA 
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Figure 4. EIC plots for putative chemicals identified in tryptophan pathway and associated with FL 

risk, SF Bay Area Case-Control, 2001-2005 

 

a. 3-Hydroxyanthranilate    b. 5-Phenyl-1,3-Oxazinane-2,4-Dione 

   

c.  Indole-3-Acetamide    d. N-Methyltryptamine 

   

e.  L-Kynurenine     f. 3-Hydroxykynurenamine 
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Figure 5. EIC plots for putative chemicals identified in tyrosine pathway and associated with FL 

risk, SF Bay Area Case-Control, 2001-2005 

 

a. Choline Phosphate    b. Tymsf, Tyramine O-Sulfate  
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Chapter III: Future Directions 

The findings from our pilot HRM study and evidence from previously published studies support a 

potential role of tryptophan and tyrosine metabolism in the development of NHL. Because tryptophan and 

tyrosine metabolism are also involved in the immune response during tumorigenesis, it is important for 

further research to confirm our results via targeted approaches for measuring metabolites found within 

these pathways, such as kynurenine. Because our case-control study was not able to collect information 

before NHL case diagnosis, post-diagnosis treatments, and NHL stage, future research should consider 

these important clinical covariates. Additionally, future work in a diverse population is warranted to 

generalize our results to broader NHL populations. Our study provides a starting point of which metabolic 

pathways to potentially target and requires further exploration. If subsequent studies support our findings, 

it may be possible to discover early diagnostic biomarkers for NHL risk. 

 

 

 


