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Abstract

Modeling Rich Interactions for Web Search Intent Inference, Ranking and Evaluation

By Qi Guo

Billions of people interact with Web search engines daily and their interactions provide

valuable clues about their interests and preferences. While modeling search behavior, such

as queries and clicks on results, has been found to be effective for various Web search ap-

plications, the effectiveness of the existing approaches are limited by ignoring what the

searcher sees (examination) and does (context) before clicking a result. This thesis aims

to address these limitations by modeling and interpreting a wider range of searcher inter-

actions, including mouse cursor movement and scrolling behavior (or pinching, zooming

and sliding with a touch screen), that could be served as a proxy of searcher examination,

contextualized in a search session. The thesis focuses on improving three fundamental and

interrelated areas of Web search, namely, intent inference, ranking and evaluation. To im-

prove the first area, the thesis developed techniques to infer the immediate search goals

in a search session, along multiple dimensions, including top-level general intent (e.g.,

navigational vs. informational), commercial intent (e.g., research vs. purchase) and ad-

vertising receptiveness (i.e., interest in search ads). To improve the second area, the thesis

developed the Post-Click Behavior (PCB) relevance prediction model for estimating the “in-

trinsic” document relevance from the examination and interaction patterns on the viewed

result documents. To improve the third area, the thesis developed techniques for predict-

ing search success, which include a principled framework to study Web search success,

and fine-grained interaction models that improve prediction accuracy for both desktop and

mobile settings. As demonstrated with extensive empirical evaluation, the developed tech-

niques outperform the state-of-the-art methods that only use query, click and time signals,

enabling more intelligent Web search systems.
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Chapter 1

Introduction

Web search has transformed the society and now is the primary method of ac-

cessing and discovering information. Billions of people interact with Web search

engines daily. These interactions with search engines convey valuable information

about the needs and preferences of the users. For example, a click on a result docu-

ment may indicate that the searcher was interested in the topic of the document, and

the amount of the time spent on the document may further indicate how much the

searcher found that the document was relevant. Furthermore, if a searcher issued

multiple search queries with very few clicks, then she may be struggling in finding

the needed information; in contrary, if the searcher clicked on multiple search re-

sults and spent considerable amount of time on each, she may be exploring and was

successful.

Most of the existing work on modeling searcher interactions focuses on the query,

result click-through and the time spent on visiting a page [82, 88, 111, 3, 144, 33,

68], and tends to ignore how searchers actually view and interact with the visited

pages. However, the same search query, click and time spending patterns may be

actually associated with very different examination patterns that could be indicative

of different search goals or different levels of searcher satisfaction. For example,

extensive examination before clicking may indicate that the search goal was more

exploratory or that the searcher was less confident in the clicked result and care-

ful reading after a click may indicate higher satisfaction with the visited document

than extensive quick skimming. Being agnostic about how users actually exam-

ine the search result pages and clicked documents, the interpretation of the search
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behavior tends to be inaccurate, largely limiting the capabilities of utilizing the im-

plicit feedback provided by the users. To address this limitation, the thesis aims

to model the searcher examination and interaction patterns when visiting a search

engine result page (SERP) or a result document, in addition to the limited set of

behavioral signals that were studied in the literature.

(a) (b)

Figure 1.1: (a) A user of an eye-tracker with camera integrated into a computer monitor;

(b) eye gaze trajectories captured overlaid on a search engine result page

One possible approach of modeling examination involves the use of eye-tracking

devices. Figure 1.1 (a) shows a picture of using an eye-tracker with the camera in-

tegrated at the lower part of a computer monitor. Figure 1.1 (b) shows the eye gaze

trajectories on a SERP captured by the eye tracker, where the pink circles represent

the gaze fixations and the lines connecting the circles represent the gaze saccades.

Fixations refer to spatially stable gaze periods for approximately 300 milliseconds

while the saccades refer to rapid gaze movements within approximately 50 mil-

liseconds between fixations. The larger the pink circle is, the longer the time the

user spends on the particular region of the page. As we can see, the user spent most

time carefully reading the first result (suggested by the horizontal gaze trajectories)

while skimming through the lower-ranked results on the SERP, indicating his pri-

mary interest in the first result (even without a click). However, eye-tracking is not

yet a scalable solution for modeling examination. For one, eye-tracking devices
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require extra efforts from the users – before using the eye-tracker, the user needs

to calibrate; while using the tracker, the user needs to stay still to prevent the eye-

tracker from losing focus (otherwise re-calibration may be needed). For another,

eye-tracking devices are expensive – the price of a competent eye-tracker at present

is as expensive as a luxury car. As these two limitations are not likely to be ad-

dressed in the foreseeable future, more scalable alternative is needed to benefit the

billions of search engine users.

Figure 1.2: Density of distance between mouse cursor and eye gaze positions on SERPs

and non-SERPs (landing pages): Euclidean distance and distances in X and Y directions.

Instead of relying on eye-tracking devices, the thesis explored the modeling of

fine-grained interactions such as mouse cursor movements and scrolling behavior

(or pinching, zooming, sliding behavior with a touch screen), which can be served

as a proxy of eye-tracking to capture searcher’s attention. These interactions can

be captured with Javascript code that could be returned as part of a SERP or with

an instrumented browser plugin. Unlike eye-tracking, collecting and modeling the

fine-grained interactions is scalable to billions of search engine users as it does not
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require any changes in their usage (e.g., calibration, sitting still) of the search engine

or purchasing additional expensive equipments. This exploration was inspired by

the recent research by Rodden et al. [117, 118], where the the coordination between

mouse cursor and eye gaze positions was discovered. Figure 1.2 shows the density

of distance between mouse and eye on the SERPs and non-SERPs (i.e., landing

pages) computed based on data collected from a user study of hundreds of search

tasks performed with general Web search engines (e.g., Bing 1, Google 2), broken

down in X and Y directions. As we can see, the distribution of distance peaks

around zero for both directions and both types of pages, confirming the previous

findings [117, 118] that mouse and eye sometimes are coordinated (e.g., when users

use mouse cursor to help reading or mark promising results) and mouse cursor

movements may be a reasonable proxy of eye gaze movements.

Another limitation addressed in the thesis comes from the “one size fits all”

paradigm of the existing methods – in response to the same search query, a search

engine typically returns the same set of results. However, Web search queries are

often ambiguous and a same query may carry different meanings for different users.

For example, the query “jaguar” may refer to the third-largest feline after the tiger

and the lion that could be found in Americas or the British luxury sports car brand or

even the Jacksonville Jaguars American football team from Florida (if the searcher

missed the last “s” in the query). In response to the diverse underlying search goals

of the same query, existing methods and systems typically focus on returning the

search results for the most likely intent and sometimes blend in results for other

intents. Figure 1.3 shows the returned SERPs from two commercial search engines

in response to the submitted query “jaguar”. As we can see, most of the top search

results returned by the two search engines were about the luxury car brand, includ-

ing its official website, models, pricing, and links to the local car dealers. Only

a few results were about the feline and almost none was about the football team.

Such search results may be satisfactory for a car shopper but are far from optimal
1www.bing.com
2www.google.com
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for people who were interested in learning about the big cat or football fans who

wanted to read about the recent news of the team.

(a) (b)

Figure 1.3: Top search results from two commercial search engines for query “jaguar”

To address this “one size does not fit all” problem, search engines such as Bing

and Google have started to personalize the search results in recent years by profil-

ing users based on their long-term search history (e.g., previous queries and result

click-through), promoting result documents that were frequently visited (or that are

similar to those frequently visited documents) for each of the sign-on users or users

with their browser cookies enabled. Search personalization certainly alleviates the

problem of diversity in information needs but suffers from two limitations. First, the

same user may use the same query to reflect different information needs – for ex-
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ample, a user who is interested in both basketball and machine learning may query

“michael jordan” for either the former Chicago Bulls star or the Berkeley professor

at different times. Second, storing the long-term search history for personalization

may raise the privacy concerns for the search engine users [126, 148, 49]. In order

to address these limitations, the thesis focuses on the modeling of search context in

a session (or, in other words, the short-term search history). For example, if the user

searched for “scottie pippen” prior to “michael jordan”, then she is more likely to be

interested in the basketball player in the current session; in contrast, if the previous

query was “graphical models” then the current search query probably refers to the

machine learning professor. Modeling the session context also limits the storage of

search history, substantially reducing the concern of privacy.

In summary, the thesis focuses on modeling a rich set of searcher interactions

and the session-level search context to improve the understanding of immediate

searcher goals and preferences for enabling more intelligent information retrieval

(IR) systems and better search experience. Specifically, the thesis explored the

opportunities of improvements in the three fundamental areas of Web IR, namely,

intent inference, ranking and evaluation.

The connections of these three areas can be better viewed through the Web IR

model in Figure 1.4: a user comes to the search engine with a task in mind, which is

associated with a information need (or a few information needs), and then verbalize

each information need (usually mentally, not loud) and translate it into a search

query in some languages. Given the submitted query, the search engine attempts

to infer the underlying information need through the intent inference module and

returns a ranked list of results selected from the Corpus (i.e., a collection of Web

documents, crawled and indexed by the back-end modules of the search engine)

by certain matching mechanisms specified in the Ranking module. Then the user

interacts with the returned results by examining and possibly clicking and viewing

one or more of them (interaction), and a query refinement process may be needed

to create new queries to refine the results. To gauge and improve the performance

of the search engine, the evaluation module records the queries and corresponding
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Figure 1.4: A refined classic Web IR model

search results for further analysis, often through human judgments. The output of

the evaluation modules typically includes insights on improving the different search

engine modules, such as suggestions on modifying the intent inference and ranking

algorithms.

Search interaction, the topic of the thesis, may contribute to these three interre-

lated areas, enabling improvements of the search engine in different aspects. Im-

proving the intent inference module through interpreting interaction data allows the

improvement in the earliest stage, which may allow improvements in all the fol-

lowing stages, including selecting, ranking and presenting the search results and

evaluating the result quality. Interaction data may also be used to improve the rank-

ing module through direct estimation of document relevance, which may be the

most effective in improving search result quality but the number of impacted areas
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tends to be less than improving the intent inference module, which even though

has broader impact but may suffer from error propagation to limit effectiveness.

While interaction data allows for improving intent inference and ranking models

more directly (e.g., through updating feature weights for a machine leaning model),

more substantial improvements on the underlying search engine components (e.g.,

crawling and indexing algorithms) may be possible through automatic evaluation

and diagnosis based on the interaction data.

1.1 Contributions

The main contributions in the thesis are summarized as follows:

• Techniques for inferring search information needs from interaction data:
The thesis develops models of rich searcher interactions, including query,

click-through, time, and pre-click examination through interactions such as

mouse cursor movements on a SERP, contextualized in a search session. These

models are used to predict the immediate search intent along multiple dimen-

sions, including general search intent [56, 55], commercial search intent, and

search advertising receptiveness [57, 58] (Chapter 3).

• Techniques for estimating result relevance from interaction data: The

thesis develops models of the rich post-click examination and interaction pat-

terns, that are indicative of reading and skimming behavior. These models

are used to estimate the “intrinsic” relevance of a visited landing page or a

subsequently visited page on the search trail [60] (Chapter 4).

• Techniques for predicting session-level search success from interaction
data: The thesis develops a principled framework (UFindIt) with different

search success definitions [1] and reproducible large-scale remote user studies

for modeling session-level search success. The thesis also introduces the Fine-

grained Session Behavior (FSB) model that aggregates rich interaction data

for the entire session and captures both pre- and post-click behavior [62]. In
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addition, the thesis explores touch screen based interaction models for mobile

devices [65] (Chapter 5).

• Insights into modeling fine-grained search interaction for improving Web
search: The thesis provides insights into the characteristics of various behav-

ioral signals and their effectiveness for different applications in the context of

Web search. Finally, the thesis considers the integration of the fine-grained in-

teraction models into a production search system, and the issues of deploying

and evaluating such a system (Chapter 6).

1.2 Organization

The thesis is organized as follows: In Chapter 2, related work is reviewed to put

the thesis in context. Then, Chapter 3 presents the techniques for detecting gen-

eral intent, commercial intent, and future search behavior (e.g., ad click-through).

In Chapter 4, the PCB model is introduced, which incorporates fine-grained post-

click behavior to improve the estimation of document relevance and search result

ranking. In Chapter 5, the techniques for predicting session-level search success

are presented, including the UFindIt framework for large-scale remote user stud-

ies, QRAV success model, FSB fine-grained interaction model, and a touch screen

based interaction model of mobile search success. In Chapter 6, the thesis is con-

cluded with a summary of the findings, a discussion about system integration and

limitations of the proposed techniques, and future research directions.
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Chapter 2

Background and Related Work

The origins of user modeling research can be traced to library and information

science research of the 1980s. An excellent overview of the traditional “pre-Web”

user modeling research is available in [14]. With the explosion of the popularity

of the Web and the increasing availability of large amounts of user data, Web us-

age mining has become an active area of research. The related work of the thesis

centers around user modeling and spans the three key research areas in Web infor-

mation retrieval, namely, inferring search intent, estimating document relevance,

and evaluating search experience.

2.1 Inferring Search Intent

Inferring user intent in Web search has been studied extensively, which can be

broadly categorized into three dimensions, namely, the general intent detection [94,

11, 79, 21], the topical intent detection [121, 25, 97, 30, 113] and commercial intent

detection [42, 9, 8].

2.1.1 General Search Intent

For general intent detection, there is a broad consensus on the top 3 levels of intent

taxonomy, namely the navigational, transactional and informational intents intro-

duced by Broder [23]. Later on, a more specific query intent classification was

presented in [119], where informational and resource (transactional) user goals are
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further divided into specific sub-goals. Lee et al. [94] proposed a way to automati-

cally classify queries into navigational and informational using user-click behavior

and anchor-link distribution, while achieving high precision when considering only

the “predictable” queries from their dataset of 50 queries, 40% of the queries were

found “unpredictable”, suggesting substantial ambiguity lies in Web search queries.

Baeza-Yates et al. [11] experimented with a larger set of 6000 popular queries and

proposed to classify queries into informational, non-informational and ambiguous,

using supervised and unsupervised machine-learning algorithms applied over query

vector enriched by the clicked documents. To better understand query ambiguity in

the general intent dimension, Wang and Agichtein [137] proposed to use click en-

tropy and found that ambiguity can be considered as an orthogonal dimension to

the general intent dimension – for example, query “people” may be both ambigu-

ous and navigational as different users may want to navigate to different sites, while

the query “lyrics” may be both clear and informational as the underlying search goal

for different users is probably the same. While many of the proposed techniques

do not aim to detecting transactional intent, Jansen et al. proposed [79] a rule-

based approach that classifies queries into all the three classes (i.e., navigational,

informational and transactional), which does not require expensive external sources

to train. A more comprehensive survey and comparisons of the different general

intent detection algorithms can be found in [21]. Bian et al. [19] proposed to use

query-dependent loss functions and jointly learn the ranking function and query cat-

egorization (in the general intent dimension), achieving improvements over ranking

functions without query categorization. Most recently, Lin et al. [98] investigated

the non-navigational search intent at a finer level, proposing the notion of actions,

which aim to capture specific intents that are performed on entities. They found

that 28% of the queries are navigational (with corresponding action that is to visit a

specific website) while 57% of the queries are either transactional or informational

and bear needs regarding non-website entities. To better support the intent-based

actions, Lin et al. developed a graphical model based on queries and clicks to rec-

ommend actions (e.g., reading reviews, shopping online) for the non-navigational
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entity-bearing queries.

2.1.2 Topical Search Intent

The line of topical intent detection research is inspired by the KDDCup 2005 query

classification challenge, where 67 query topics were given as the target categories

for classification. The KDDCup 2005 winning team Shen et al. [122] proposed to

build a bridging classifier using the Open Directory Project 1 (ODP) taxonomy as

the intermediate taxonomy, which can be used to map the search result enriched

user queries to the target categories. Broder et al. [25] extended this work by signif-

icantly expanding the query topics to approximately 6000 and proposed to directly

use the search result enriched queries without creating mappings between differ-

ent taxonomies. Instead of enriching feature representation, Li et al. [97] focused

on increasing the amounts of training data by semi-supervised learning with click

graphs and demonstrated the effectiveness of the proposed approach in detecting

product-related and job-related intent. Also utilizing the click graphs, Radlinsky et

al. [113] proposed a three step approach, which begins with the expansion based

on query reformulations and follows with random-walk on the click graph to filter

and generate query intent clusters. Bian et al. [18] proposed a divide-and-conquer

framework for ranking specialization, which defines a global ranking functions by

combining risks from all query topics. Another extension of this line of work is

the problem of vertical selection, introduced by Diaz [43] and further extended by

Arguello et al. [7, 6], where the goal is not only to detect whether the search intent

belongs to a particular vertical but also jointly decide whether the particular vertical

contains high quality content to be incorporated into the organic search results.

2.1.3 Commercial Search Intent

The problem of commercial intent detection was firstly introduced by Dai et.al [42],

where the authors proposed to enrich the queries with search results to detect whether
1http://www.dmoz.org/
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a query contains commercial intent. Ashkan et al. [9, 8] developed techniques to

use both the ad click-through in addition to search result enriched queries to jointly

detect general search intent and commercial intent and studied the effects of the

number of displayed ads and ad click-through patterns. Related to this thread of re-

search is the work on predicting ad click-through, most of which focuses on learning

from the content of displayed ads (e.g., [37, 115]). Becker et al. [13] considered the

result (and ad) relative position and presentation features to improve click-through

estimation, within a single page.

Despite the success in detecting search intent, the above approaches are not suf-

ficient as they only focus on predicting the majority intent and do not take into ac-

count the session-level search context and the individual user behavior. It has been

shown that specific user goals and experience vary widely and have substantial ef-

fect on user behavior [140]. Some queries have substantial variation in intent [132],

and searcher behavior can help distinguish user intent in such ambiguous cases. An

early attempt in addressing this issue in the dimension of query topics was from

Cao et al. [30], where the authors modeled the query and click sequence in the

session using sequential models such as conditional random fields. Extending this

work, White et al. [138] conducted a comprehensive analysis on finding the op-

timal weights to combine the query and context models (based on recent queries,

clicks and subsequently browsed pages) to predict short-term search interests. This

thread of research in detecting search intent is the closet to the proposed techniques

described in Chapter 3, but, in contrast, addressed are two different dimensions in

detecting search intent, namely, the general search intent and commercial search in-

tent; also, the proposed techniques represent the user interactions in a much richer

and finer-grained way, allowing for more effective models.

Recently, eye tracking has started to emerge as a useful technology for under-

standing some of the mechanisms behind user behavior (e.g., [41, 83, 91]). While

informative, the eye-tracking instrumentation is not scalable. To address this issue,

a model to estimate searcher’s viewing behavior based on observable click data was

introduced by Wang et al. [134]. Another thread of work aiming to address the
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eye-tracking scalability issue was introduced by Rodden et al., where the authors

observed the correlation between mouse and eye movements [118].

The proposed techniques in inferring search intent expands on the observations

described above by exploiting the additional evidence from the fine-grained inter-

actions and session-level context. In contrast to most of the previous work in intent

detection, the focus is on predicting the immediate search goal in a search session,

specifically in the dimensions of general search intent (e.g., navigational vs. infor-

mational) and the commercial search intent (e.g., research vs. purchase), instead

of detecting the majority goal of a search query. The proposed model is also capa-

ble of predicting future behavior, e.g., whether the user is likely to click on an ad

sometime during the current session, allowing search engines to adjust retrieval al-

gorithms on the fly to customize for the immediate information needs of a searcher.

2.2 Estimating Document Relevance

Ranking or estimating document relevance is at the core of Web IR. Web search en-

gines typically rely on various sources of evidence to generate search result ranking.

The most common and basic ones are the similarity between the submitted query

(or the corresponding inferred intent) with the result document (e.g., BM25 [116])

and the quality of the document (e.g., PageRank [22]). With increasing popular-

ity, implicit feedback (i.e., search interaction) has become widely used to improve

search result ranking. A good overview of different implicit measures studied in

the previous research is described in Kelly and Teevan [89]. In particular, extensive

research has been conducted in exploiting result click-through and document dwell

time as implicit feedback while research in modeling examination (e.g., through

eye-tracking and fine-grained interaction) in Web search has started only recently.



15

2.2.1 Click-through

One of the earliest research in modeling click-through is by Joachims [82], where

the author proposed a Support Vector Machine (SVM) algorithm to learn ranking

functions from result click-through. Later, Joachims et al. [83] presented empirical

evaluation of interpreting click-through evidence through controlled eye-tracking

studies in the laboratory setting and derived a variety of strategies (e.g., Click >

Skip Above) to characterize search result preference based on the click patterns and

the insights drawn from eye-tracking studies. One key finding was that the higher-

ranked results tend to receive more attention and click-through and, without taking

this position bias or trust bias into account, click-through would be a noisy rele-

vance signal. Agichtein et al. [3] proposed to adjust the click-through rate (CTR,

computed through aggregating over multiple users) by modeling behavior devia-

tions for a document at a given rank from the expected behavior (i.e., interaction

with all documents at the same rank) and to enrich click-through signals through

model browsing and time patterns, demonstrating improved relevance estimation

compared to the strategies proposed by Joachims et al. [83]. Agichtein et al. also

incorporated the richer behavior representation into learning a Web search ranking

function using neural networks and demonstrated substantial improvements over a

commercial search engine in a large-scale evaluation [2, 4]. In addition to SVM

and neural network, the most recent developments demonstrated the effectiveness

of boosting based algorithms, such as GBRank proposed by Zheng et al. [150] and

LambdaRank proposed by Burges et al. [26], for learning ranking functions.

To address the position bias (among the various presentation biases) of result

click-through, much research was conducted to develop click models (i.e., mod-

els that estimate the probability of click) and estimate the examination. Aiming to

predicting ad CTR, Richardson et al. [115] proposed to model click and viewing

behavior separately, and assumed that a user has to view a document or ad before

clicking on it, which, known as examination hypothesis, is served as the basis of

many later developed click models. Crawswell et al. [39] extended the examina-
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tion hypothesis and proposed the Cascade Model by assuming the linear traversal

of result examination that is ended with the first click or abandonment. Dupret and

Piwowarski proposed a User Browsing Model (UBM) which aimed to model the

examination variations due to different search intents (e.g., navigational vs. infor-

mational [23]) and extended the model to handling scenarios with multiple clicks.

Guo et. al [54] developed Dependent Click Model (DCM) which also extended the

cascade model by handling multiple clicks in a query session and featured a simpler

specification and more efficient algorithms. Srikant et al. [128] modeled the multi-

click scenario from a different perspective, demonstrating the change of behavior

due to the change of relevance caused by prior clicks. Lagun and Agichtein [92]

verified the change of viewing behavior due to the change in overall result qual-

ity through an eye-tracking study, showing viewing pattern such as the time spent

on viewing the first result is a good indicator of overall result quality. To enable

large-scale remote studies of Web search examination, Lagun and Agichtein [91]

proposed the viewser system, which only allows view port around the mouse cursor

and blurs the rest of the search results. As shown in the study, the viewing behavior

through the constrained view port in the viewser system is a good approximation of

natural viewing behavior, resulting in better estimation of document attractiveness

(i.e., perceived relevance) through the click over view (COV) measure. Most re-

cently, Huang et al. [76] incorporated pre-click mousing and scrolling behavior into

a click model, demonstrating higher accuracy in predicting future click-through.

Another related effort in estimating examination is by Wang et al. [134], where the

partially observable markov (POM) model was developed to estimate (un-clicked)

result viewing behavior from click patterns and the POM model was further ex-

tended by He and Wang [70] through incorporating time information.

Another major bias of click-through lies in the attractiveness of search result snip-

pet [33] – in other words, the user click on a result based on its perceived relevance

other than the intrinsic relevance [47] – therefore, a click does not necessarily im-

ply satisfaction with a result document [33]. Chapelle and Zhang [33] proposed

the Dynamic Bayesian Network (DBN) click model to model both the attractive-
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ness and satisfaction of a result document with the assumption that a user ends

his or her query session when he or she is satisfied – that is, only the last click

in a query session indicates satisfaction or actual relevance. A similar model was

developed by Guo et al. [53] under the Bayesian framework, featuring more effi-

cient probabilistic inference as compared to the iterative inference algorithms for

the DBN model. Another effort in this direction is by Zhong et al. [151], where

the authors incorporated the dwell time information into a click model to improve

estimation of document relevance. Extending this thread of research, Dupret and

Liao [47] proposed the utility model to better estimate the intrinsic relevance of

a document, assuming multiple clicks in a session as a utility accumulation pro-

cess. While search ending often indicate satisfaction, sometimes it may also imply

a failure, in which case, no utility may be gained through any of the clicks in the

session. To address this problem, Hassan et al. [69] developed session-level suc-

cess prediction model to improve relevance estimation, which exploits click utility

only when a search session was successful. Other advancements in click models

addressed behavioral variations introduced from various aspects, such as branching

(i.e., multi-tab usage) [74], vertical aggregation [35, 34], different intents [73] and

different users [123].

2.2.2 Dwell Time

Dwell time, as a post-click implicit feedback measure, is another possible solution

(other than modeling behavior sequence in a session) to the presentation biases of

result click-through. As shown in previous work [99], dwell time approximately

follows a Weibull distribution and different factors (such as content and layout)

may have influence on the dwell time on a document. Using document dwell time

for inferring relevance has a long history in the information retrieval community,

with mixed conclusions about its utility. Some of the first research done in the area

of implicit feedback in information retrieval was that of Morita and Shinoda [106].

They conducted a study where participants were asked to provide explicit feedback
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about interestingness of news articles that they have read. The study focused on the

correlation between reading time and explicit feedback while considering document

length and additional textual features. They noted that there is a strong tendency to

spend more time on interesting articles rather than on uninteresting ones. Similar

findings have also been reported in [38] and [51]. Furthermore, Morita and Shinoda

found only a very weak correlation between the lengths of articles and associated

reading times, indicating that most articles are only read in parts, not in their en-

tirety.

Interestingly, dwell time does not always correlate with relevance. Kelly and

Belkin [87] tried to reproduce the results of Morita and Shinoda in a different, more

complex information retrieval scenario, yet found no correlations between display

time and explicit relevance ratings for a document. In a subsequent, naturalistic

study, Kelly and Belkin [88] found again no general relationship between display

time and the users’ explicit ratings of the documents’ usefulness. Instead, they ob-

served high variation of display time with respect to different users and different

tasks. Following this study, White and Kelly [144] reported that adjusting display

time thresholds for implicit feedback according to task type leads to improved re-

trieval performance, while adjusting the thresholds according to individual users

degraded performance. This stands in contrast to findings of a prior study by Rafter

and Smyth [114] who showed for one specific task type that display time is cor-

related with user interest, especially after individually adjusting the measure. In

summary, while dwell time clearly contains some relevance signal, numerous pre-

vious studies has found almost as many different interpretations of it with no clear

consensus of the relationship to relevance of the document.

2.2.3 Examination

The proposed techniques in estimating document relevance build on previous re-

search on connecting searcher examination patterns to user interest and document

relevance. In particular, eye tracking studies have been helpful for understand-
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ing common patterns in search result examination (e.g., [83, 41]). To operational-

ize these insights, the proposed techniques exploit the coordination between the

searcher gaze position and mouse movement over the search results, shown previ-

ously in references [117, 118, 59, 75]. The mouse cursor movements have shown

to be useful in various applications, such as inferring searcher intent [56, 58] and

search result preferences [77, 76, 139], and inferring user attention in complex Web

pages containing images, tex and varied content [108].

Additional implicit measures have been examined on the object level (e.g., doc-

ument paragraph or page item) as well. On one hand, it has been found that

good indicators of interest include the amount of scrolling on a page [38], click-

through [51, 83], and exit type for a Web page [51]. On the other hand, mouse

movements and mouse clicks while viewing a document do appear to provide some

correlation to user interest [38]. Furthermore, user behavior on the SERP, when

combined with page dwell-time and session level information, can significantly im-

prove result ranking in the aggregate (e.g., [2]), and can be further improved by

personalizing these measures (e.g., [105]).

Other previous efforts focused on modeling more explicit user interactions on the

page. Golovchinsky et al. [52] focused on user-created annotations on documents

such as highlightings, underlinings, circles, and notes in margin. They used this

kind of feedback to infer relevance of document passages. In a document search

scenario utilizing query expansion, they reported a significant improvement of the

annotation-based feedback technique over explicit relevance feedback on the doc-

ument level. Ahn et al. [5] followed a similar idea but used the concept of a per-

sonal notebook where users could paste text passages worth remembering. On the

basis of the text passages they built up term-based task profiles which were then

used for re-ranking search result lists. Compared to a baseline ranking function not

considering any feedback, the task-profile-based ranking performed significantly

better. The previous two approaches both need more or less explicit and there-

fore rare user interactions (i.e., annotating, copying and pasting) to work properly.

Buscher et al. [27] only rely on implicit data and determine which parts of a doc-
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ument have been read, skimmed, or skipped by interpreting eye movements. Read

and skimmed parts were taken as relevant while skipped document parts were ig-

nored. They report considerable improvements concerning re-ranking of result lists

when including gaze-based feedback on the segment level compared to relevance

feedback on the document level. Gyllstrom and Soules [66] follow a similar idea,

but consider all text that has been visible on the screen for building up term-based

task profiles. They use such profiles for task-based indexing of documents on the

desktop and show that re-finding documents that way is more effective compared

to simple desktop search.

2.2.4 Personalization

Web search personalization is the problem of customizing search result ranking ac-

cording to individual user’s interests. The earliest personalization in Web search IR

(e.g., early version of Google personalized search) depends on users to specify the

interested topics. Aiming to automatically detect such topics of interest for individ-

ual users, Liu et al. [100] proposed to collect user search history and profile users by

mapping their previous search queries into categories in the Open Directory Project

(ODP). To enable scalable computation of personalized PageRank scores [22], Jeh

et al. [81] proposed a technique that encodes personalized views as partial vectors

and allows the construction of personalized views at query time. Dumais et al. [46]

developed Stuff I’ve Seen (SIS) system to facilitate personal information re-use by

indexing various entities such as emails, web pages, documents that a user has seen

before. Sugiyama et al. [129] proposed to profile user browse history and adapted

Collaborative Filtering algorithms to construct profiles and personalize search re-

sults. Teevan et al. [131] proposed a richer user representation to re-rank search

results, which models information such as documents and emails a user has viewed

and created in addition to his or her search and browse history. Tan et al. [130] pro-

posed statistical language modeling based methods to represent and mine the long-

term search history to more accurately estimate the current query language model
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for more effective search result ranking. Dou et al. [45] performed a large-scale

evaluation of different personalized strategies, finding click-based personalization

strategies perform consistently well while profile-based ones are unstable. The im-

portance of short-term search context was found to be also important in addition to

the long-term modeling or user profiling. Matthijs and Radlinski [104] proposed

to model long-term browsing history using rich representations of documents (e.g.,

title, content) and evaluated their re-ranking methods using an interleaving tech-

nique which measures result click-through on SERPs with merged results from the

original and personalized rankings. Sontag et al. [127] propose a generative model

of relevance based on long-term search history to personalize result rankings and

evaluated the proposed techniques with history search data at a large scale.

2.2.5 Search Context

Context-aware Web search ranking aims to exploit the context (e.g., short-term

search history) in the current session as compared to exploiting the long-term user

search and browse history as in personalization. While personalization helps in re-

trieving documents that are of general interest to the user, modeling context enables

more accurate retrieval in response to the immediate information need. Also, per-

sonalization may result in higher concern in privacy as it requires the storage of

larger amount of personal data [126].

One of the earliest efforts in context-aware Web search ranking is Shen et al. [125],

where the authors proposed several retrieval algorithms based on statistical lan-

guage models to combine the previous queries and clicked document summaries

with the current query to improve search result ranking. Extending this study, Shen

et al. [124] introduced a theoretic framework of context-aware user modeling and

developed a client-side Web search agent UCAIR that can perform eager implicit

feedback in query expansion based on previous queries and result re-ranking based

on click-through information. To address various types of search context (e.g., re-

formulation, specialization, and generalization), Xiang et al. [147] proposed various
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heuristics for context-aware Web search result ranking and validated the proposed

techniques with both human judgments and user click data at a large scale. Aim-

ing to bridging the gap between the two related areas, Bennett et al. [17] studied

how the modeling of session context (i.e., short-term search history) interact with

personalization (i.e., long-term search history), finding that the two sources of in-

formation are complementary and that the long-term history is particularly valuable

at the start of a search session while the short-term context is particular useful for

an extended search session.

Most closely related to the proposed techniques, Huang and White [77] found

correlations between cursor hovering over some of the results on the Search Engine

Result Page (SERP) and result relevance. Complementary to previous efforts, the

proposed work is the first to analyze the examination patterns, and relevance, from

rich post-click searcher behavior such as cursor movements on landing pages and

subsequently viewed documents, and the first to develop a predictive model, PCB,

that captures these patterns. As Chapter 4 demonstrates, PCB can provide signif-

icant improvements for estimating document relevance and consequently for im-

proving search result rankings. While the proposed techniques focus on modeling

the implicit feedback and search context in a session, the modeling of examination

through fine-grained interactions can be also applied to improve long-term person-

alziation and combining short-term and long-term history is likely to achieve further

improvements in Web search ranking as suggested by the previous studies [45, 17].

2.3 Evaluating Search Experience

The research on automatic techniques in evaluating can be categorized in three dif-

ferent levels, namely: query-level, session-level and the level of using multiple

search engines.
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2.3.1 Query-level

Research on query-level evaluation has been conducted to understand differences

in the quality of search results for individual queries in aggregate. Such predictions

can be used to devote additional resources or alternative methods to improve search

results for difficult queries. While it has been shown that using different query rep-

resentations [15] or retrieval models [12] improves search performance, it is more

challenging to accurately predict which methods to use for a particular query. Mea-

sures such as query clarity [40], Jensen-Shannon divergence [31], and weighted

information gain [152] have been developed to predict performance on a query (as

measured by average precision, for example). Yom-tov et al. [149] proposed to

estimate query difficulty through histogram-based and tree-based approaches and

demonstrated the effectiveness of the difficulty estimation in improving information

retrieval, detecting missing content and merging results for distributed IR systems.

Leskovec et al. [95] used graphical properties of the link structure of the result set to

predict the quality of the result set and the likelihood of query reformulation. Tee-

van et al. [132] developed methods to predict which queries could most benefit from

personalization. While most of the techniques in predicting query performance de-

pends on analyzing query, returned results, and document collection, Guo et al. [63]

developed techniques that incorporate searcher interactions such as clicks and time,

demonstrating valuable information carried in the interaction data. To more accu-

rately quantify the result quality in response to a query, Wang et al. [135] proposed

the “pSkip” metric, which estimates the probability of skipping based on the user

click-through, and validated their proposed metric with eye-tracking data collected

from user studies.

2.3.2 Session-level

As search query tends to be ambiguous and typically only represents a fraction

of the overall information need, evaluating the query-level performance may not

provide a full picture about the search experience. To this end, Hassan et al. [68]
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developed Markov models to predict search success at the session-level, demon-

strating the additional benefits of session-level evaluation over the Feild et al. [50]

developed methods to predict user frustration, and showed that features capable of

accurately predicting engine switching events were also highly predictive of frus-

tration. To utilize unlabeled data, Hassan [67] proposed semi-supervised methods

to predict Web search success. In addition, Hassan et al. [69] that the success pre-

diction models can also be applied to improve document relevance estimation.

A special case of studying search success is the research on search abandonment,

where the searcher leaves the SERP without clicking on any search results. The

abandonment could be good, in which case the searcher found the needed informa-

tion on the SERP, or bad, in which case the searcher did not find anything relevant

and gave up [96]. Diriye et al. [44] studied the reasons why searchers abandoned

their searches and developed techniques to predict abandonment rationales using

features from query, result and interaction in a session.

Community Question Answering (CQA) sites such as Yahoo! Answers 2 and

Quora 3 are served as alternatives to address information needs that might not have

answers on the Web. Often, the answers on those sites are returned as results in Web

search. Some other times, searchers may even become askers on CQA sites when

Web search fails [102]. While the asker and answerers usage history on the CQA

sites were found to be major indicators of asker satisfaction on CQA sites [103], the

characteristics of query clarity, query-to-question match, and answer quality were

found to be effective in predicting the satisfaction of the Web searchers that end up

visiting a CQA website in a search session [101].

2.3.3 Multi-engine level

At the level of multi-engine usage, research has examined search engine switching

behavior. Early research by Mukhopadhyay et al. [107] has used economic mod-

els of choice to understand whether people developed brand loyalty to a particular
2http://answers.yahoo.com/
3http://www.quora.com/
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search engine, and how search engine performance (as measured by within-session

switching) affected user choice. They found that dissatisfaction with search engine

results had both short-term and long-term effects on search engine choice. Juan

and Cheng [85] described some more recent research in which they summarize user

share, user engagement and user preferences using click data from an Internet ser-

vice provider. They identify three user classes (loyalists to each of the two search

engines studied and switchers), and look at the consistency of engine usage patterns

over time.

Heath and White [71] and Laxman et al. [93] developed models for predicting

switching behavior within search sessions using sequences of user actions (e.g.,

query, result click, non-result click, switch) and characteristics of the pages visited

(type of page and dwell time) as the input features. Heath and White [71] used a

simple threshold-based approach to predict a switch action if the ratio of positive

to negative examples exceeded a threshold. Using this approach they achieved high

precision for low recall levels, but precision dropped off quickly at higher levels

of recall. Working with the same data, Laxman et al. [93] developed a genera-

tive model based on mixtures of episode-generating hidden Markov models and

achieved much higher predicative accuracy.

White et al. [146] developed methods for predicting which search engine would

produce the best results for a query. For each query they represented features of the

query, the title, snippets and URLs of top-ranked documents, and the results set, for

results from multiple search engines, and learned a model that predicts which en-

gine produced the best results for each query. The model was learned using a large

number of queries for which explicit relevance judgments were available. One way

in which such results can be leveraged is to promote the use of multiple search en-

gines on a query-by-query basis, using the predictions of the quality of results from

multiple engines. White and Dumais [141] characterized search engine switch-

ing through a large-scale survey and built predictive models of switching based on

features of the pre-switch query, session, and user. White et al. [143] modeled

long-term engine usage over a six-month period, and identified three user classes:
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(i) those who do not switch, (ii) those who switch at some time, and (iii) those who

switch back and forth between different search engines. Guo et al. [64] studied

in depth the reasons why users switch search engines and developed techniques to

predict in-situ engine switching rationales using features of query, and pre-switch

and post-switch interaction.

The thesis extends this thread of research in developing techniques for predict-

ing session-level searcher success from rich interaction data, including a principle

framework for formally studying the success prediction problem, an infrastructure

for conducting remote large-scale user studies, and fine-grained interaction models

for both desktop and mobile settings. As Chapter 5 demonstrates, the proposed

techniques are more effective than previous methods that exploit only a limited set

of search behavior.
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Chapter 3

Inferring Search Intent

An improved understanding of searcher information needs is the crucial first step

for search engines to generate satisfactory search results. As briefly mentioned in

Chapter 1, what makes the problem particularly daunting is that the same query

may reflect different goals not only for different users, but even for the same user at

different times. For example, a user may search for “surface” initially to learn about

the Microsoft Surface tablet; however, days or weeks later the same user may search

for “surface” to identify the best deals on actually purchasing the device. Thus,

identifying the most popular or majority meaning for a query is not sufficient; rather,

the challenge is to identify the intent of the given search, contextualized within a

search task (e.g., buying a tablet, which may involve goals such as researching the

device, comparing data plans, lookup of customer reviews, and eventual purchase).

To infer the immediate search intent, the proposed solution is to model the fine-

grained interactions such as mouse movements on the search engine result page

(SERP) in a search session, which is inspired by the coordination between the

searcher gaze position and mouse movement discovered in recent work [117, 118].

The hypothesis is that searcher interactions such as mouse movement, hover-

ing and scrolling can help more accurately infer searcher intent and interest in the

search results. That is, like eye movements, such interactions can reflect searcher

attention. This would allow estimating which parts of the SERP the user is inter-

ested in (e.g., whether the searcher is paying more attention to the organic or the

sponsored results), and provide additional clues about the search intent.

To test this hypothesis, a novel model was developed of inferring searcher intent

that incorporates both search context and rich interactions with the results. The
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model is operationalized by converting these interactions into features, which can

then be used as input to classification algorithms to infer the search intent from the

interaction data.

While many other dimensions of search intent have been studied (e.g., [119, 122,

42]), the thesis focuses on two representative dimensions of search intents, namely,

general search intent and commercial search intent. The first dimension, originated

by Broder [23] and refined by Rose and Levionson [119], includes three top-level

intent classes: navigational, informational and transactional, where navigational

searches aim to find a specific Web site that the user has in mind, informational

searches aim to find information about a topic, and transactional searches aim

to perform some web-based activity such as downloading, gaming or shopping.

The second dimension, commercial search intent, consists of two broad classes of

searches: research and purchase, illustrated in the examples above. While the first

dimension is the most popular categorization of search intent, successfully distin-

guishing between the two commercial intent classes has significant practical appli-

cations for search advertising. For example, a searcher issuing a seemingly com-

mercial query (e.g., “surface”) may not be interested in the search ads if the organic

(non-sponsored) search results are sufficient for their needs. In this case, show-

ing ads could annoy the searcher, and contribute to “training” them to ignore the

ads [24]. Thus, knowing the searcher intent (and consequently, interest in viewing

sponsored results) would allow search engines to target ads better; and for adver-

tisers to better target the appropriate population of “receptive” searchers. So, if we

could infer a user’s current interests based on her search context and behavior, a

search engine may then show more or fewer ads (or none at all) if the current user

is in the “research” mode.

The experiments in this chapter follow a similar progression. First, the proposed

interaction model is shown to be helpful in distinguishing between “navigational”

and “informational” intents. Then, the proposed interaction model is shown to be

also helpful in distinguish between known “research” and “purchase” commercial

intents. Next, the proposed model is applied to the large-scale search data of real
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users, demonstrating that the searches predicted to have “purchase” intent indeed

have significantly higher ad click-through rates than those predicted to have “re-

search” intent. Finally, the proposed model is applied to the task of predicting

“advertising receptiveness” (i.e., ad click-through for an individual user within the

current search session), which could have significant practical applications for com-

mercial search engines.

In summary, the contributions of this chapter include:

• A richer model of searcher intent, that incorporates searcher interactions with

session-level state for jointly modeling searcher goals and behavior.

• Empirical evidence that the fine-grained searcher interactions improve the ac-

curacy of predicting search intents along multiple dimensions.

• A large-scale experimental evaluation of the proposed model on predicting ad

click-through, an important problem in its own right.

The bulk of this chapter has been published as [56, 58].

3.1 Motivation

In this section, examples are provided to further motivate the proposed model in

improving the general intent detection (Section 3.1.1), commercial intent detection

(Section 3.1.2), and behavioral targeting in search advertising (Section 3.1.3).

3.1.1 Inferring General Search Intent

While it has been shown previously that the most popular intent of a query can

be detected for sufficiently frequent queries (e.g., [78, 97, 21]), the goal here is to

detect the intent of the specific search – that is, for queries that could plausibly be

navigational or informational in intent. Specifically, to detect the immediate search

goals in a search session, fine-grained interactions such as mouse movements can

provide additional clues. Figure 3.1 illustrates the representative mouse trajectories
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of these two types of intents. Figure 3.1 (a) shows the mouse trajectory for the

navigational query “facebook”, where the user directly moves the mouse to click on

the first search result. In contrast, as we can see in Figure 3.1 (b), the informational

query “spanish wine” exhibits a very different pattern of mouse trajectory: the user

moves the mouse slowly and is likely to examine the first two results before clicking

on the third one.

(a) (b)

Figure 3.1: Searcher mouse trajectories on the search engine result pages for query with

navigational intent: “facebook” (a) and query with informational intent: “spanish wine” (b)

3.1.2 Inferring Commercial Search Intent

In addition to the top-level categorization of general search intent, many other di-

mensions of search intent have been identified, including topical [119], exploratory

vs. specific [119], commercial vs. non-commercial [42]. In particular, the the-

sis focuses on two important commercial intent categories, namely Research vs.

Purchase intent.

As a concrete example, consider how users with research intent examine the

SERP for a query “nikkor 24-70 review”. This query is commercial (the searcher

is probably considering whether to buy this digital camera model), but could also

be research-oriented (the searcher is interested in reviews, and not yet in making an
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(a) (b)

Figure 3.2: Searcher gaze position (a) and corresponding mouse trajectory (b) for query

with research intent

immediate purchase). Figure 3.2 (a) shows the gaze position “heat map” (different

colors represent amount of time spent examining the corresponding page position).

Figure 3.2 (b) shows the mouse movements performed by the subject as they were

examining the SERP. This example illustrates the possible connection between user

interactions on the SERP and interest in the specific results. Thus, it is important to

model not only the “popular” intent of a query, but also the searcher’s immediate in-

tent based on the context (within a search session) as well as on the interactions with

the search results. In addition to research importance, this capability has important

practical applications to search advertising, as described next.

3.1.3 Application: Search Advertising

An important practical application of the proposed methods is predicting whether

the user is likely to click on search ads shown next to the “organic” results. This

problem is related to the research vs. purchase orientation of the user’s goals: a

user is more likely to click on a search ad if they are looking to make a purchase,

and less likely if they are researching a product. This observation was empirically

verified by comparing the ad click-through of “research” and “purchase” searches
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as classified by the proposed model.

Furthermore, one could predict whether the searcher is more or less likely to click

on an ad in future searches within the current session. This idea is illustrated in

Figure 3.3, which shows an example where the user hovers the mouse over the ads

before she clicks on an organic result in her first search for the query “green coffee

maker”. In her following search for the same query, in the same session, she clicks

on an ad. This predisposition was referred to as “advertising receptiveness”, and, as

shown later, the user’s interest in a search ad shown for a future search within the

same session can be predicted based on the user interactions with the current search

result page.

Figure 3.3: Mouse trajectory on a SERP for query “green coffee maker” with an ad click

on the next search result page

If a search engine could be notified that a searcher is (or is not) interested in

search advertising for their current task, the next results returned could be more

accurately targeted towards this user. For example, if the user appears interested in

buying a hybrid car, ads for hybrids as well as deals in the organic results should be

returned. In contrast, if the user appears to be just researching hybrid technology,

then the search engine should privilege customer reviews or technical articles. To

achieve this real-time behavioral targeting, contextualized user interaction models
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are needed.

3.2 Search and User Model

This section first describes the definitions of search tasks and search goals, then

introduces the proposed approach to mine the contextualized fine-grained interac-

tions.

3.2.1 Search Model: Tasks and Goals

The proposed work assumes a simplified model of search following recent literature

(e.g., [84]), where a user is attempting to accomplish an overall search task by

solving specific search goals, as illustrated in Figure 3.4.

Figure 3.4: Relationship between a search task, immediate goals and specific searches to

accomplish each goal.

Many user information needs require multiple searches until the needed informa-

tion is found. Thus, it is natural to organize individual queries into overall tasks and

immediate goals. For this, the idea of a search task (i.e., an extended information

need) was used, which, in turn, requires more immediate goals (i.e., atomic infor-

mation needs) to accomplish by submitting and examining related searches. The

operational definition of a search task is that it consists of a consecutive sequence

of queries that share at least one non-stopword term with any previous query within
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the task. An example search session consisting of two search tasks is reported in

Figure 3.5. This simple definition of a search task was verified manually, and out

of more than 100 tasks examined, in all but 3 tasks the searches shared at least

one non-stopword term with some other search in the task. In the dataset used in

this study, while the 30-minute sessions tend to be 6.77 searches long on average,

tasks tend to contain 2.71 searches on average, which is consistent with previous

finding [140] that users perform on average only two or three query reformulations

before giving up.

Figure 3.5: An example user session, consisting of two consecutive disjoint search tasks.

3.2.2 User Model: Goal-driven Search

The proposed user model naturally follows the search model. A user, while solv-

ing a search task, has a number of immediate goals. While these goals are “hid-

den” - that is, not directly observable, the user searches (queries) and their interac-

tions on the corresponding search results can be observed. Thus, model a user as

a non-deterministic state machine with hidden states representing user goals, and

observable actions that depend on the user’s current state. The proposed model is

illustrated in Figure 3.6: searcher actions such as queries, result clicks, and mouse

movements are observations generated by the hidden states corresponding to the

user’s goals. The interactions were restricted to those on the SERP to make this

work more realistic: search engines are able to capture user interactions over their

own results, but capturing actions on other pages require significant additional ef-

fort.

For example, if the immediate user goal is informational, then longer mouse tra-

jectories are more likely to be observed on the SERP (as the user is likely to exam-
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ine more results to decide which one is most relevant); in contrast, if the immediate

user goal is navigational, the user can quickly recognize the target site, resulting

in shorter mouse trajectory and faster response time. Similarly, ad clicks are more

likely to be emitted if the user is in a receptive state to search advertising (e.g., has a

Purchase goal), and less likely if the user is in a non-receptive state (e.g., has a Re-

search goal). Hence, observations including the search context and user interactions

are related to the states (goals) of the users. If the hidden states can be inferred using

the observations, both the user’s immediate search goal and potentially the overall

task may be recovered, as well as predict future user actions such as ad clicks, in

subsequent searches.

Figure 3.6: Sample states and observations for a single search within a task.

Note that the predictions in the proposed model are dependent on both the current

and the previous goal state of the user, thus naturally allowing to maintain the user’s

“mental state” across individual searches. Furthermore, this formalism allows for

arbitrary number of hidden states which may correspond to different types of goals

and more complex tasks. For example, this would allow modeling different varia-

tions of ad receptiveness. These sequential user models have been explored in some

recent work (e.g., [30]). However, what makes the model unique is the rich repre-
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sentation of user actions on the SERP before a click on the search result, allowing

to potentially capture the mental state of the user while he or she is examining the

search results.

3.3 Infrastructure, Features and Algorithms

This section describes the actual implementation of the proposed system, including:

first, the infrastructure for extracting and storing user interactions (Section 3.3.1);

then, the concrete representation of these interactions as features (Section 3.3.2)

for incorporating the interaction information into classification algorithms (Sec-

tion 3.3.3).

3.3.1 Infrastructure

The user interaction data was captured by the EMU [61] browser plug-in, which

buffers the GUI events such as mouse movements, scrolling, and sends them to

the server for logging. The EMU Web browser plug-ins were installed on approx-

imately 150 public-use computers (mostly Windows PCs) at the Emory University

library. The usage was tracked only for users who have explicitly opted in to par-

ticipate in the study. No identifiable user information was stored.

As mentioned earlier, the instrumentation described above for the search result

pages does not necessarily require a user download or installation: JavaScript code

similar to what was run in the toolbar can be easily returned in the header of a Search

Engine Result Page (SERP). Also, as the proposed techniques in this chapter only

model searcher behavior on a SERP, and do not consider the external result pages

visited by clicking on the results, all the data collected would be available to the

search engine via light-weight server-side instrumentation.

In the current implementation, the mouse movements and scroll events are sam-

pled at every 5 pixels moved, or every 50 ms, whichever is more frequent, and all

other events (e.g., MouseDown) are kept without downsampling.
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3.3.2 Features

This section describe the types of interactions captured and the corresponding fea-

ture representations.

Query group: Query text is perhaps the most intuitive and in-expensive feature

available for inferring user intent. For example, an informational query is likely

to contain more terms than a navigational or a transactional query, while a research

query is more likely to contain the word “review” than a query with purchase intent.

Query features have been used to predict search intent in previous research [122,

30], but were found to be of limited effectiveness as they tend to be sparse. For

this group, the proposed features include query length in words and characters, and

the unigram words of the query text, as well as binary features IncludesTLD, which

indicates whether the query includes a TLD token such as “.com” or “.org”.

Click group: Click-through, both in aggregate and in an individual session, has

shown to be useful in inferring user intent. As shown in previous research [94, 21],

result click-through distribution in aggregate is indicative of different types of gen-

eral search intent. For example, informational queries tend to have a more flat dis-

tribution while the click-through rate of navigational queries tend to be dominant

by one URL. As for an individual session, click-through can be considered as im-

plicit feedback from the user [11, 30], which is especially discriminative when the

search query is ambiguous [30]. For this group, the aggregated features considered

include the largest fraction of the result click-through, the average deliberation time

(i.e., time before the first click on a search result), and the similarity between the

most frequently clicked search result URL and the query (i.e., whether the query is

a substring of the URL with the clicked URL, potentially indicating a navigational

intent), computed over a large server-side search click log from a commercial search

engine. For a individual search session, the captured features are the types and prop-

erties of result clicks, which include the unigram word tokens in the clicked URL

(ClickUrl); the number of URLs visited after a result click (NumBrowseAfterClick),

the average and total dwell time on each visited result URL, the number and posi-
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tion in session of the satisfied (SAT) URL visits (those with dwell time greater than

30 seconds [51]) and dissatisfied (DSAT) or “bounce” visits (those with dwell time

less than 15 seconds [120]), and a categorical feature ClickUrl indicating the type

(e.g., organic result, menu item, search ad)) of the click.

Interaction group: This group features aim to capture the fine-grained examina-

tion and interaction patterns before a click on the search result, which could provide

additional clues about different search intents. For example, with an information

intent, the searcher is more likely to move the mouse cursor more extensively and

slowly before clicking on a relevant result as compared to the behavior with a navi-

gational intent. The features considered include: the number of SERP GUI events,

such as number of mouse events (TotalMouse), scroll events (TotalScroll) and key-

press events (TotalKeypress); time features, such as SERP deliberation time, mea-

sured as seconds until first GUI event (DeliberationTime), the time until the first

result click (SERPDwellTime); and hovering features, that measure how the time

that the mouse hovers over an area of interest such as north ads, east ads, and or-

ganic results regions.

Also captured was the physiological characteristics hidden in mouse cursor move-

ments, following reference [109]. In particular, the mouse trajectory representation

is split into two subgroups, Interaction (Global) and Interaction (Local), where the

former include features such as the length, vertical and horizontal ranges of mouse

trajectory, in pixels while the latter aims to distinguish the patterns in different

stages of the user interactions. Specifically, for the Interaction (Local) subgroup,

each mouse trajectory was split into five segments: initial, early, middle, late, and

end. Each of the five segments contains 20% of the sample points of the trajecto-

ries. Then the same properties (e.g., speed, acceleration, slope etc.) were computed

as above, but computed for each segment individually. The intuition is to capture

mouse movement during 5 different stages of SERP examination (e.g., first two seg-

ments correspond to the visual search stage, and last segment corresponds to mov-

ing the mouse to click on a result). Also considered were the features describing the
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general statistics of the trajectory, namely, the means and the standard deviations of

the mouse coordinates, the difference in distance and time between two adjacent

mouse points, the velocity, acceleration, slope and rotation (computed from the

difference of slopes between neighboring points). The more sophisticated repre-

sentation can capture more complex patterns of interactions. For example, with an

informational intent, the mouse cursor is more likely to switch between speeding

up (when the user finds something interesting and moves the mouse towards it) and

slowing down (when the user begins reading or is about to click) several times and

is more likely to move back and forth (rotation angles change several times) than for

a navigational query. Similarly, other characteristics like the slope of the trajectory

may also vary for different intents.

SERPContent group: As a popular way to enrich the query text, the search en-

gine result page (SERP) that contains the top results of the query has been widely

used as “pseudo” relevance feedback, which is shown to be effective in previous re-

search for inferring both topical and commercial search intents [122, 42, 25, 9]. For

this group, unigram word features were derived from the text content of the over-

all SERP (SERPText), and the organic results (OrganicText) and sponsored results

(AdText), respectively (after frequency filtering).

ResultQuality group: These features aim to capture coarse information about the

SERP relation to the query, namely how many words in the organic result sum-

maries match the query terms (SnippetOverlap); how many words in the text of the

ads match the query terms (AdOverlap); as well as the normalized versions of these

features computed by dividing by the query length, in words. Also captured are

the number of ads, number of ads at the top of the SERP (NorthAds), and number

of ads on the side (EastAds). These features has been shown in previous work to

correlate with the degree of commercial interest in the query [9, 8].

Context group: This group captures where the search belongs to within the search

task, the features include: whether the query is initial in session (IsInitialQ), whether

the query is identical to previous query (IsSameQ), whether the query overlap with
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previous query submitted; respectively true if a word is replaced (IsReformulat-

edQ), or added(IsExpansionQ), or removed (IsContractedQ); whether the query

was issued within same session (RepeatQ); the current position (progress) within

a search session, e.g., whether this was a first, second, or 5th search in the session

(SERPIndex).

3.3.3 Classifier Implementation

Now, the details of classifier implementations considered are provided. What was

experimented with include three different families of classifiers, namely, decision

trees, Support Vector Machines (SVMs) and Conditional Random Fields (CRFs).

Decision trees and SVMs support flexible feature representation and model com-

plex interactions, and CRFs naturally support modeling sequences. Note that the

search-level predictions of decision trees and support vector machines can be ag-

gregated to generate the predictions for an entire search session or task as illustrated

in Figure 3.7.

Figure 3.7: Session aggregation of search-level predictions
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Decision Trees: The C4.5 algorithm was used to build the decision trees. At each

node of the tree, C4.5 chooses one attribute of the data that most effectively splits

its set of samples into subsets enriched in one class or the other. Its criterion is the

normalized information gain (difference in entropy) that results from choosing an

attribute for splitting the data. The attribute with the highest normalized information

gain is chosen to make the decision. The C4.5 algorithm avoids overfitting the data

by determining how deeply to grow a decision tree. Also, it handles continuous

attributes and training data with missing attribute values.

Support Vector Machine (SVM): The sequential minimal optimization algorithm

was used for training a support vector classifier. This implementation globally re-

places all missing values and transforms nominal attributes into binary ones. It

also normalizes all attributes by default. Also, the polynomial kernel with degree 4

(chosen during preliminary development experiments) was used.

Conditional Random Field (CRF): The Decision Trees and SVM representations

allow only limited representation of the search state: that is, whether the searcher

is still in “exploratory” stage of the search or is now on the next goal of verifying

specific information found during exploration “lookup” stage. To explicitly model

these different states (goals) within a session, CRF allows defining a conditional

probability over hidden state sequences given a particular observation sequence

of searches. Take predicting future ad clicks as an example: at training, the hid-

den state is assigned according to whether an ad click was observed in the future

searches within the task. Note that an ad click on current SERP is simply an obser-

vation, and is not necessarily an indication whether a user remains likely to click on

future search ad in the same task. At test time, the intent sequence is identified that

maximizes the conditional probability of the observation sequence.

Next, the experiments on predicting general search intent, commercial search in-

tent and advertising receptiveness are described in three parallel sections. In each

section, the problem statement, data, methods compared, metrics, results and find-

ings are described in more details.
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3.4 Inferring General Search Intent

Four variants of the general intent detection problem were considered:

• Problem 1: Classify a search into the three general intent categories [23, 119],

namely, navigational, informational and transactional.

• Problem 2: Same as Problem 1, but do not distinguish between transactional

and navigational intents. As we will see, the interaction pattern of a trans-

actional search actually is similar to a navigational search, and there is often

ambiguity between the two goals even for a human annotator. In this setting,

all transactional queries are labeled as navigational. Note that similar formu-

lations of binary intent classification have also been considered in previous

research [94, 21].

• Problem 3: Same as Problem 2, but consider re-finding [133] searches (i.e.,

those searches where the user uses the query as a “bookmark” to return to a

previously visited website) as navigational.

• Problem 4: Same as Problem 3, but identify and ignore the abandoned [96]

searches (i.e., queries with none of the results clicked) as the interaction pat-

terns differ substantially from searches followed by a click.

3.4.1 Data Collection

The data was gathered from mid-January 2008 until mid-March 2008 from the

publicly-used machines in the Emory University libraries. The dataset statistics

are reported in Table 3.1. The population was primarily undergraduate college stu-

dents, graduate students, staffs and faculty, who agreed to opt-in for this study. The

identity of the participants is unknown.

This study focused on only initial queries that is, avoiding follow-up queries in

the same search session. The dataset statistics are summarized in Table 3.1, consist-

ing of around 1500 initial searches, with their search engine result pages, clicked
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URLs, and corresponding mouse move trajectories. From this set, 300 searches

were randomly sampled (without replacement, only including the first search of

each query) into the final sample. The number was chosen so that the sample is

large enough to be interesting, and small enough to allow careful human labeling

of the “correct” classification of the intent, according to the tasks, defined next.

Statistic Total

Number of users 860

Number of search sessions 1,597

Number of queries 3,214

Average trajectory length (px) 1,068

Average vertical range (px) 324

Average horizontal range (px) 537

Table 3.1: Dataset statistics

The ground truth labels for general intent detection were generated through hu-

man annotators. To manually classify search intent, the annotators were presented

with the search query, the clicked URLs, and the SERP snapshots overlaid with the

corresponding mouse trajectories. Using these clues, the annotators then labeled

the search intent into one of the classes, also marking searches that had ambiguous

intent, when it was unclear whether a search was navigational or informational, for

example.

The labeled dataset statistics are reported in Table 3.2. Note that 14% of the

searches in the sample were ambiguous, and an additional 3% of the searches

missed the corresponding search engine result pages. These 17% of the searches

were excluded from the final dataset as there was no reasonable way of recovering

the corresponding “true” search intent.

3.4.2 Metrics

Having obtained a set of manually labeled search intents as described above, the

prediction accuracy of the various methods can be compared. In particular, standard
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Label Count Percentage

Navigational 89 29.67%

Informational 147 49.00%

Transactional 13 4.33%

Error 9 3.00%

Ambiguous 42 14.00%

Table 3.2: Distribution of labeled general intents in the 300 search sample

information retrieval and classification metrics were used:

• Accuracy: The fraction of all the searches that were correctly assigned the

intent label (compared to the manually assigned “true” label).

• F1: Macro-averaged F1 measure computed for each class, averaged across all

classes. This complementary metric can help capture the difference in perfor-

mance for skewed class distributions (where Accuracy might be misleading).

The F1 measure for each class is computed as 2 · PR/(P + R) where P is

precision (i.e., fraction of predicted class instances that are correct) and R is

recall (fraction of all true class instances correctly identified).

These two metrics give a complete picture of overall performance as well as perfor-

mance for each intent class.

3.4.3 Methods Compared

The main methods used for general intent prediction in this section are summarized

as below. C4.5 decision tree algorithm was used for the baseline as it performed

the best for the query and click-through features and support vector machines were

used to train the remaining classifiers as it achieved the best performance when

interaction features were incorporated. The feature groups and the corresponding

features are summarized in Table 3.3.
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• Query+Click: C4.5 decision trees classifier trained using query and click-

through features only, which can be obtained from the traditional server-side

search logs. This method represents the state-of-the-art baseline [94].

• Interactions (Simple): Support vector machines trained using Interactions

(Global) features only.

• Interactions (Full): Support vector machines trained using both the Interac-

tions (Global) and Interactions (Local) features.

• All: Support vector machines trained on the combination of both the full

client-side interaction features as well as the server-side query and click-

through features, thereby using all the available information.

Feature group Count Description

Query 2 QueryLengthChars, QueryLengthWords

Click 3 TopFraction, DeliberationTime, IsSubstring

Interaction (Global) 3 TrajectoryLength, VerticalRange, HorizontalRange

Interaction (Local) 19 AvgSpeed*(5), AvgAcceleration*(5), Slope*(5),

RotationAngle*(4)

All 27 All features and feature classes used for experiments

Table 3.3: Summary of the features used for general intent detection

3.4.4 Results and Discussion

Now, the experimental results for general intent detection are reported. First con-

sider Problem 1, which aims to classify the three classic intent classes, with corre-

sponding results, produced using 4-fold cross-validation, summarized in Table 3.4.

As we can see, the naı̈ve representation of interaction Interactions (Simple) consis-

tently outperforms Query+Click, for a modest gain on both of the accuracy and F1

metrics. Furthermore, the enhanced representation Interactions (Full) substantially

outperforms Interactions(Simple), indicating the benefit of modeling the detailed
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properties of pre-click mouse trajectory on SERPs. Finally, the integrated full sys-

tem All, that combines query, click, and fine-grained interaction features, has the

highest accuracy and F1 measure of all systems. Interestingly, the improvement of

All over Interactions (Full) is not large, suggesting that the most benefit comes from

the search behavior in the session, and not from the information aggregated across

all users issuing the same query (e.g., click-through distribution) – allowing All to

have higher accuracy than the Query+Click baseline by as much as 17%. Among

the three intent classes, the informational class was the most easy to be detected,

followed by the navigational class and transactional class, supporting the hypothesis

that the interaction patterns of the navigational and transactional intents are similar.

Next, the results for Problem 2 are discussed, which provide further insights about

this hypothesis.

Method Accuracy (%) F1

Nav Info Trans Macro Average

Query+Click 65.46 46.20 76.60 0 40.93

Interactions (Simple) 67.70 (+3%) 57.90 76.3 0 44.73(+9%)

Interactions (Full) 75.50 (+15%) 69.00 82.40 0 50.47 (+23%)

All 76.31 (+17%) 71.30 83.10 0 51.47(+26%)

Table 3.4: Accuracy and F1 for different methods (Problem 1)

Table 3.5 reports the accuracy of the different methods if transactional searches

are re-labeled as navigational. As we can see, the accuracy of all the methods in-

creases for this problem, which further supports the hypothesis that navigational

and informational intent exhibits similar behavior patterns – combining the two re-

sulting in more accurate classification. The gain of the full fine-grained interaction

model (Interactions (Full)) and the full model (All) over the query and click base-

line or the simple interaction classifier remains consistent and substantial.

As reported in Table 3.2, 14% of the searches in the sample were ambiguous. Fur-

ther analysis and re-labeling (Table 3.6) revealed that 27 of the ambiguous searches

are likely to be with re-finding intent [133] – that is, searches that appear infor-
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Method Accuracy (%) F1

Nav Info Macro Average

Query+Click 67.87 49.40 76.50 62.95

Interactions (Simple) 70.28 (+4%) 68.60 71.80 70.20 (+12%)

Interactions (Full) 78.71 (+16%) 72.30 82.70 77.50 (+23%)

All 79.92 (+18%) 76.60 82.40 79.50 (+26%)

Table 3.5: Accuracy and F1 for different methods (Problem 2)

mational based on the text of the query, but are really “bookmarks” to re-retrieve

previously found website. The guess was based on the observation that in these

cases the users went directly to click on a search result, which is very similar to the

user behavior of typical navigational searches. This hypothesis was further verified

by confirming that a portion of the clicked URLs were previously visited (not all

of the URL revisits could be verified due to the limited timespan of the collected

logs). Although according to the query text, a search might look like informational,

such as the behavior with query “rpi rankings” and query “emory financial aid” as

illustrated in Figure 3.8, the user intent might actually be navigational since she had

visited the page or she was aware of such a page.

Label Number Percentage

Re-finding/Navigational 27 9.00%

Ambiguous (Unknown) 15 5.00%

Abandonment 85 28.33%

Table 3.6: Distribution of the re-labeled ambiguous searches

If the re-finding searches are considered as navigational in intent (referred to as

Problem 3), the behavior of the classifiers changes drastically, as reported in Ta-

ble 3.7.

As we can see, the fine-grained interaction model Interactions (Full) substan-

tially outperforms the combined method Interactions (All). This result illustrates

that when search intent is indeed personalized – that is, for the current user session,
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(a) (b)

Figure 3.8: Mouse trajectories for searches with navigational/re-finding intent: query “rpi

rankings” (a) and query “emory financial aid” (b)

Method Accuracy (%) F1

Nav Info Macro Average

Query+Click 64.49 49.00 72.80 60.90

Interactions (Simple) 71.38(+11%) 72.70 70.00 71.35(+17%)

Interactions (Full) 79.71(+24%) 78.50 80.80 79.65(+31%)
All 77.53(+20%) 77.40 77.70 77.55(+27%)

Table 3.7: Accuracy and F1 for different methods (Problem 3)

the normally informational query may actually be navigational – then the classifier

session-level interaction is more accurate, and incorporating the “majority” intent

in fact degrades performance. Interestingly, in the analysis, also found was that for

easier informational queries users may exhibit similar trajectory patterns as navi-

gational searches. To address this problem, user history may be utilized to help

teasing out the “re-finding” behavior, which may results in further improvement in

prediction. In contrast, a navigational search may exhibit patterns resemble typical

informational searches when the search engine fails to return the target website.

Nevertheless, the examination patterns for navigational searches still tend to dif-

fer from the informational searches – with a navigational intent, the examination is
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more likely a glance at the title, which may results in faster mouse movement or

scrolling behavior, while for an informational intent, the examination is more likely

to be scrutinizing on the snippets, which tends to result in slower mouse movements

or scrolling.

Another major source of ambiguity comes from the abandoned searches (i.e.,

those with no click on any result). As shown in Figure 3.9, the mouse cursor tra-

jectories appear similar as a navigational search, which introduces noise into the

classifier. For example, if a user misspells the query, or none of the results appear

relevant, the user may immediately click the “did you mean” feature,

ine the query, or even give up the search task. Conversely, the user may have gotten

the needed information from the result summaries, which is referred to as “good

abandonment” in the literature [96]. To address these issues, including features of

the subsequently page visit in the same task session could be useful. Nevertheless,

as we have seen, even without these additional features, the fine-grained interaction

features already result in an effective search intent classifier.

(a) (b)

Figure 3.9: Mouse trajectories for abandoned searches: query “unpaid paking ticket” fol-

lowed by a click on “did you mean” (a) and query “the things they carried” followed by a

reformulation (b)

For the sake of exploration, one may consider simply discard the abandoned
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searches (referred to as Problem 4). The results for this problem are reported in

Table 3.8.

Method Accuracy (%) F1

Nav Info Macro Average

Query+Click 68.21 76.20 52.30 64.25

Interactions (Simple) 76.41(+12%) 70.10 72.80 75.30(+17%)

Interactions (Full) 83.59(+23%) 86.70 78.70 82.70(+29%)
All 82.56(+21%) 86.00 77.00 81.50(+27%)

Table 3.8: Accuracy and F1 for different methods (Problem 4)

As we can see, the Accuracy and F1 of all the methods further increase substan-

tially as compared to Problem 3, suggesting much additional room for improve-

ments if the abandoned searches can be handled appropriately. Interestingly, the In-

teractions (Full) classifier is still the most accurate, indicating that when re-finding

queries are treated according to the individual user intent and when the abandoned

queries are not considered, information about behavior of other users is not helpful

for individual search intent identification.

Feature Contributions:

To better understand the contribution of the different features, the information

gain of each feature (computed for Problem 2) are reported in Table 3.9. As we can

see, the most important features represent different aspects of the mouse trajectories

(e.g., speed, acceleration, rotation) but also include query length and deliberation

time – the more traditional user modeling features.
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Information Gain Feature

0.2043 AvgAcceleration (segment 3)

0.197 AvgAcceleration (segment 2)

0.1705 AvgSpeed (segment 3)

0.1509 AvgSpeed (segment 4)

0.1451 VerticalRange

0.1449 AvgAcceleration (segment 4)

0.1425 AvgAcceleration (segment 1)

0.1275 TrajectoryLength

0.1146 TopFraction

0.1125 RotationAngle (segment 0)

0.0922 AvgSpeed (segment 2)

0.0843 QueryLengthWords

0.0781 IsSubstring

0.075 AvgAcceleration (segment 0)

0.0708 DeliberationTime

Table 3.9: Most important features for general intent detection (ranked by Information

Gain)

3.5 Inferring Commercial Search Intent

The problem is to detect, given a user’s behavior on a SERP, whether the query had

research or purchase intent.

3.5.1 Data Collection

A user study was performed with 10 subjects, who were graduate and undergraduate

students and university staff, that is, were technically savvy and had some experi-

ence with Web search. The subjects were asked to perform two search sessions.

Each subject was asked first to research a product of interest to them for potential

future purchase. Then, the same subject was asked to attempt to “buy” an item of
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immediate interest to the subject, which may or may not be the same item the sub-

ject was researching in the previous stage. The subjects were not restricted on time,

and could submit any queries (usually, to the Google search engine) and click on

any results.

All the interactions were also tracked using the proposed EMU Firefox plugin

(Section 3.4). At the same time, the searcher gaze position was tracked using the

EyeTech TM3 integrated eye tracker at approximately 30Hz sampling rate, for sub-

sequent analysis. Additionally, each search and corresponding SERP interactions

were labeled as parts of a research or purchase session, according to the explicitly

stated intent of the corresponding session.

3.5.2 Methods Compared

Support vector machines (SVM) were used to train the commercial intent detector.

The major feature groups and representative features are summarized in Table 3.10.

• Baseline: always guesses the majority class (Research).

• SVM (Query): similar to the state-of-the-art models using query features

(e.g., [111]), implemented using Query group features described in Section

3.3.2, and trained using the SVM model.

• SVM (All): the SVM classifier implemented using the features described in

Section 3.3.2 to infer the user goal for each search (independently of other

searches in the session).

3.5.3 Results and Discussion

In this experiment, the intent of each search is predicted independently of other

searches in the session. The data was split by time, using the first 90% of searches

for each subject’s data for training, and the rest for testing (recall, that each sub-

ject had two sessions, one research, and one purchase). To evaluate classification
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Feature group Count Description

Query 4 QueryTokens* (unigram), QueryLengthChars, QueryLengthWord, Includ-

esTLD (1 if contains “.com”, “.edu”).

Click 7 ClickUrl* (unigram), NumBrowseAfterClick, AverageDwellTime, TotalDwell-

Time, SAT, DSAT, ClickType

Interaction 99 MouseRange, MouseCoordinates, MouseSpeed, MouseAcceleration, Total-

Mouse, TotalScroll, TotalKeypress, SERPDwellTime, DeliberationTime, Hov-

erEastAd, HoverNorthAd, HoverOrganic, etc (see main text)

SERP Content 3 AdText* (unigram), OrganicText* (unigram), SERPText* (unigram). Each fea-

ture contains 100 most frequent terms from each area of the SERP (e.g., 100

most frequent tokens in the ads).

Result Quality 7 TotalAds, NorthAds, EastAds,SnippetOverlap, SnippetOverlapNorm, AdOver-

lap, AdOverlapNorm

Context 7 IsInitialQ, IsSameQ, IsReformulatedQ, IsExpansionQ, IsContractedQ, Re-

peatQ, SERPIndex

All 127 All features and feature classes used for experiments

Table 3.10: Summary of the features used for representing searcher context and interactions

in inferring search intent

performance, the standard Precision, Recall and Macro-averaged F1 were used. Ta-

ble 3.11 shows that the proposed system, SVM (All), outperforms both baselines,

resulting in accuracy of almost 97%.

To identify the most important features contributing to the classification, feature

ablation was performed by removing one feature group at a time from the classi-

fier(Table 3.12). All the feature groups provide significant contributions, but the

most important features appear to be SERPContent and Interaction features: with

these features removed, accuracy degrades to 86.7% from 96.7% with these features

included. This makes sense since the SERP content can help enrich the context of

a query, while the Interaction features provide additional clues about the searcher

interest. However, since this user study was done over a rather small number of sub-

jects, further investigation and additional user study is needed to fully understand

the connection between various feature groups. To complement these results, the

proposed model was validated on an objective ad click-through metric on a much
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larger user population, as described next.

Method Acc. Research Purchase F1

Prec. Recall Prec. Recall

Baseline 56.7 56.7 100 0 0 36.2

SVM (Query) 86.7 93.3 82.4 80.0 92.3 86.6

SVM (All) 96.7 100 94.1 92.9 100 96.6

Table 3.11: Classification performance for research vs. purchase.

Method Acc. Research Purchase F1

Prec. Rec. Prec. Rec.

SVM (All) 96.7 100 94.1 92.9 100 96.6
SVM (-Query) 93.3 94.1 94.1 92.3 92.3 93.2

SVM (-Click) 90.0 93.8 88.2 85.7 92.3 89.9

SVM (-Interaction) 86.7 100 76.5 76.5 100 86.7

SVM (-SERPContent) 86.7 93.3 82.4 80.0 92.3 86.6

SVM (-ResultQuality) 93.3 100 88.2 86.7 100 93.3

SVM (-Context) 93.3 100 88.2 86.7 100 93.3

Table 3.12: Feature ablation results for intent classification.

3.5.4 Ad Click-through on Real Search Data

To better understand its effectiveness, the proposed model was evaluated on a large

dataset of real user searches collected in the Emory University libraries using the

infrastructure described earlier. The hypothesis is that for research searches, click-

through on search ads should be lower than for purchase searches. Therefore, the

effectiveness of the intent classification model can evaluated by comparing the ad

click-through on the searches classified as research by the model, to those classified

as purchase. To avoid “cheating”, no click group or result URL features were used,

as they could provide information to the classifier about the ad click on the SERP.
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The data was gathered from mid-August through mid-December 2008. To ensure

data consistency, a longitudinal dataset was generated, consisting of the usage for

440 opted-in users, who clicked a search ad at least once during this period. For this

universe of users all the search sessions attempted during this period were included.

The resulting dataset contains 4,377 login sessions, comprising 6,476 search ses-

sions, 16,693 search tasks and 45,212 searches.

The predicted purchase searches have substantially higher ad click-through rates

(9.7%) compared to research searches (4.1%), and all searches with at least one ad

displayed (5.9%). These statistics are summarized in Table 3.13. As hypothesized,

the research and purchase predictions indeed correlate with ad click-through of real

users. What makes this result remarkable is that the proposed model was trained

on a small dataset compiled from just 10 subjects in the user study (with clear

intent labels), yet still provides promising performance on unconstrained user data

obtained “in the wild”.

Search class #ACLK (%) #SERP with Ads Ad CTR (%)

All 854 14545 5.9

Research 417 10054 4.1 (-29%))

Purchase 437 4491 9.7 (+66%)

Table 3.13: Search ad click-through statistics on all search pages (All), and for searches

classified as “Research” and “Purchase”.

3.6 Inferring Advertising Receptiveness

This problem of predicting future ad click-through for the current user is distinct

from predicting ad click-through in aggregate for many users. The problem is de-

fined as follows: Given the first i searches in a search task S(s1, ..., si, ...., sm), and

the searcher behavior on these first i SERPs, predict whether the searcher will click

on an ad on the SERP within the current search task S, for any of the future searches

si+1, si+2, ..., sm.
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3.6.1 Methods Compared

Conditional Random Fields (CRF) were used to train the future ad click-through

predictor. Same as training the commercial intent detector, the major feature groups

and representative features are summarized in Table 3.10.

As a realization of the problem statement, the CRF was configured to have two

hidden states, A+ and A-, corresponding to “Receptive” (meaning that an ad click is

expected in a future search within the current session), and “Not receptive” (mean-

ing to not expect any future ad clicks within the current session). Figure 3.10 illus-

trates this configuration, as we can see the first two searches are labeled as A+ as

there is an future ad click (during the third search) and the third and fourth searches

are labeled as A- as there is no future ad click in the remainder of the task session.

Figure 3.10: CRF model configuration with two hidden states, A+ (receptive), and A- (non-

receptive), with labels assigned according to the observed future ad click-through - here on

the third search result page within the session.

The methods compared are summarized as follows:

• CRF (Query): CRF model, implemented using the Query group features as

described in Section 3.3.2, which represents the state-of-the-art methods that

use the query signals, such as [111].

• CRF (Query+Click): CRF model, implemented using Query group and Click

group features as described in Section 3.3.2, which represents the state-of-

the-art models that use the query and click signals, such as [30].
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• CRF (All): CRF model, implemented using all features as described in Sec-

tion 3.3.2, which include fine-grained interaction, SERP content, result qual-

ity and context features in addition to the query and click features.

• CRF (All-Interaction): Same as above, but with the Interaction group fea-

tures removed, which is to gauge the additional evidence lies in the interaction

feature group when other feature groups presented.

3.6.2 Data and Evaluation Metrics

For this problem, the dataset was based on the interaction data collected from the

opted-in users in the Emory Libraries, and consists of the same log data as described

in Section 3.5.4.

Evaluation Metrics: To focus on the ad click prediction, the results are reported

for the positive class, i.e., the “advertising-receptive” state. Specifically, Precision

(P), Recall (R), and F1-measure (F1) are reported and calculated as follows:

• Precision (P): Precision is computed with respect to the positive (receptive)

class, as fraction of true positives over all predicted positives. Specifically, for

each search task, the precision is the fraction of correct positive predictions

over all positive predictions for the task, averaged across all the search tasks.

• Recall (R): for each task, the recall is computed as the fraction of correct

positive predictions over all positive labels in the task. This value is then

averaged over all the tasks.

• F1-measure (F1): F1 measure, computed as 2P ·R
P+R

.

3.6.3 Results and Discussion

To simulate an operational environment, the data was split by time, and the first

80% of the sessions was used for training the system, while the remaining 20%
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of the sessions was used for test. The results on the test set are reported in Ta-

ble 3.14. As we can see, the proposed system achieves the highest performance

on all metrics, compared to the baselines. Specifically, CRF (Query+Click) out-

performs CRF (Query) on the ad receptiveness prediction task by incorporating the

click information, and the CRF (All) system further increases both precision and

recall by incorporating additional behavior features. Interestingly, removing the In-

teraction group of features from the full system (CRF (All-Interaction)) degrades

the recall and overall F1 performance of the system, while precision is somewhat

improved. This suggests that interaction features help detect additional cases (com-

pared to query and click information alone) where a searcher may be interested in

the ads, while occasionally introducing additional false positives. Discuss of the

performance of the system in more detail are provided, next.

Method Precision Recall F1

CRF (Query) 0.05 (-) 0.11 (-) 0.07 (-)

CRF (Query+Click) 0.14 (+153%) 0.12 (+11%) 0.13 (+77%)

CRF (All) 0.15 (+170%) 0.21 (+99%) 0.17 (+141%)
CRF (All-Interaction) 0.16 (+206%) 0.14 (+32%) 0.15 (+112%)

Table 3.14: Precision, Recall, and F1 for predicting ad receptiveness within a search task

Potential limitations: While the ad click prediction experiments were performed

over a relatively large dataset collected over thousands of real search sessions for

hundreds of users, some limitations exist for the study. Specifically, the user pop-

ulation is relatively homogeneous (college and graduate students, and faculty and

staff), and substantially more training data may be required to achieve this perfor-

mance for the general population. Another limitation is lack of conversion data:

ad click-through is just one evaluation metric, and may not be predictive of the ul-

timate intent of the searcher (e.g., a searcher may click on an ad out of curiosity).

Despite the limitations above, the population is large enough that useful conclusions

could be drawn. To better understand the system performance and guide follow-up

research, the representative case studies are presented next to provide better under-
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standing of the system performance:

Not using a mouse as a reading aid: this is the most frequent source of error in-

troduced by the interaction features: when mouse is not used to mark or focus user

interest, interaction information could be misleading. One example is given in Fig-

ure 3.11, where the mouse cursor keeps still around the search box (indicated by the

black cross, the red square and dots) while the searcher scans various places on the

search engine result page (SERP), which is indicated by the widely distributed gaze

heatmap. One possible approach is to classify users into different groups according

to their mouse usage patterns, and train separate prediction models for each group.

Figure 3.11: Mouse trajectory and gaze heatmap on a search engine result page when mouse

is not used to mark or focus user interest

Long difficult research sessions with ad clicks: in such cases, the searcher began

with a research intent, and in her first several searches, no interest in ads were

shown. However, as the session progresses, the user eventually clicks on an ad as

the promising organic results are exhausted. For example, one searcher submitted

a query “comcast basic cable channels” in her task to find Comcast’s basic cable

line-up, and finally clicked on an ad because of the unsatisfactory organic results.

Such ad clicks appear to be different from cases where a user clicks on ads because

of a premeditated purchasing intent.

Commercial purchase sessions without ad clicks: in such cases, a searcher ex-
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amined the ads but did not click on any. This could be due to poor quality of

search ads, or to availability of more promising organic search results. For example,

one searcher submitted a query “george boots” and clicked on a Google’s Product

Search result. In this case, the searcher might be actually receptive to search ad-

vertising. However, such sessions were labeled as “non-receptive” since there’s no

future ad click to use as evidence. One natural extension of the model is to ex-

pand the labels by considering clicks on product search results to be similar to ad

clicks with respect to purchasing intent. Another possibility may be that particular

users could be generally “less-receptive” to advertising. To tackle this problem,

personalizing the user models is a promising direction for future work.

3.7 Summary

This chapter introduced techniques that captured not only the queries and clicks,

but also the fine-grained interactions with the search results, contextualized within

a search session. The experimental results on detecting two dimensions of Web

search intent demonstrated the generalizability and flexibility of the proposed ap-

proach. This thread of research began with detecting general search intent such

as predicting navigational vs. informational goal and demonstrated the benefits

of using client-side fine-grained interactions in more accurately determining user

needs in a search session. Then the prediction of research vs. purchase goal of

the searcher was studied, and insights were obtained about the feature groups most

important for distinguishing these variants of commercial intent from a controlled

user study. Following up on the prediction in the commercial dimension, the model

was validated by showing correlation of the predicted search intents with the ad

click-through rates of real users. Finally, the proposed intent detection model was

extended to address an important practical application of predicting future search

ad click-through within the current search session of each user, demonstrating the

effectiveness of the proposed model.
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Chapter 4

Estimating Document Relevance

In Chapter 3, the techniques for inferring search intent based on pre-click behav-

ior are introduced. These techniques allow for more accurate retrieval of unseen

documents through enriching and contextualizing the search query. However, if a

document has been visited (i.e., its associated interaction data is available), direct

estimation of its relevance may be more preferable, which allows directly re-ranking

the search results. In this chapter, post-click search behavior is studied in depth for

estimating the “intrinsic” page relevance for a search task. The bulk of this chapter

has been published as [60].

To directly estimate document relevance, previous research has made great use of

result click-through data (e.g., [3, 83, 48, 47]). However, the usefulness of click-

through statistics is limited by a number of presentation biases, which strongly in-

fluence user click behavior. One of the most significant limitations of click-through

data, is that clicks are based primarily on a document’s perceived relevance [47],

where a searcher guesses the page’s relevance based on a short summary gener-

ated by the search engine. However, the “perceived” relevance may be inconsistent

with the actual “intrinsic” relevance [47], where a searcher clicks on a result only

to find out that it is not relevant. To address this problem, page dwell time (the

time spent examining the result document) has been proposed as a measure of in-

trinsic document relevance [106, 38, 51, 88, 144, 28]. The main intuition is that

“short” dwell time (typically, considered to be less than 30 seconds), indicates that

a document is non-relevant. The most heavily studied scenario is that of a “bounce

back”, which happens when the searcher returned to the Search Engine Result Page
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(SERP) shortly after she clicked on a result, indicating low result relevance [120].

This heuristic and resulting metrics have been successfully adapted by the major

search engines, and have undoubtedly improved search quality by detecting non-

relevant or even detrimental results.

Unfortunately, the converse of the short dwell time rule is not true: a “long” page

dwell time does not necessarily imply result relevance. In fact, a most frustrating

scenario is when a searcher spends a long time searching for relevant information

on a seemingly promising page that she clicked, but fails to find the needed infor-

mation. Such a document is clearly non-relevant (and arguably one of the most

detrimental to the searcher experience). Yet, based on dwell time alone, this docu-

ment would be considered highly relevant, and remain high in the search ranking to

frustrate future searchers.

(a) relevant (dwell time: 30s) (b) non-relevant (dwell time: 30s)
Figure 4.1: Cursor-based “Reading” examination heatmap of a relevant document (a) com-

pared to “Scanning” of a non-relevant document (b), both with equal dwell time (30 sec-

onds).
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To address this problem, the proposed approach is to use a rich set of post-click

searcher behavior for more precisely analyzing how the searchers spend their time

on the landing pages and the subsequently viewed documents, which would in turn

allow for more accurate estimation of intrinsic document relevance. As an illus-

tration, Figures 4.1(a-b) show the searchers’ cursor movement on clicked result

pages for the task of finding the phone number of the Verizon Wireless helpline for

Massachusetts, where the user spends approximately 30 seconds examining each

of the pages (i.e., both pages have almost equal dwell time). The color intensity

in the figures indicates the amount of time the mouse cursor spent over the cor-

responding document regions, with the exact cursor coordinates indicated by the

small crosses. The differences in the examination of a relevant page (Figure 4.1(a))

and a non-relevant page (Figure 4.1(b)) are striking. For the former, the searcher

was carefully “reading” the text and using the mouse as a reading aid (examination

of the page reveals that the answer of the search task indeed lies in the highlighted

paragraph), while for the latter, the searcher appears to be “skimming” or “scan-

ning” the page, without finding relevant information worth careful reading (indeed,

the answer was not on the page). This example illustrates the underlying hypoth-

esis: that page dwell time alone is not sufficient to distinguish between relevant

and non-relevant pages, but post-click searcher behavior can provide the necessary

additional evidence to distinguish the two.

Specifically, the hypothesis is that searcher interactions on landing pages such as

cursor movements and scrolling can help more accurately interpret searcher viewing

behavior, in turn, improve relevance estimation. That is, like eye movements, such

interactions can reflect searcher attention. These interactions can be captured with

Javascript code that is embedded in a browser Add-on (e.g., a search engine tool-

bar). This would allow estimating whether some parts of the landing page captured

the searcher’s attention and provide additional clues about the document relevance.

To test this hypothesis, the patterns of examination and interaction behavior are

identified, that correspond to viewing a relevant or non-relevant document (Section

4.1), followed by developing a novel model of inferring document relevance that in-
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corporates rich Post-Click Behavior (PCB) such as cursor movements and scrolling

that could capture these patterns (Section 4.2). Similar to intent inference models,

the relevance prediction model is then operationalized by converting these interac-

tions into features, which can then be used as input to machine learning algorithms

for tasks such as estimating personalized and aggregate document relevance, and

improving result ranking (Section 4.3).

In summary, the contributions in this chapter include:

• Characterizing patterns of examination and interaction behavior that corre-

spond to viewing a relevant or non-relevant document (Section 4.1).

• PCB, a novel model of relevance estimation that captures post-click behavior

(Section 4.3).

• Empirical evidence that PCB is more effective than using dwell time informa-

tion alone, both for estimating the explicit judgments of each user, as well as

for ranking the documents using the estimated relevance (Section 7).

4.1 Landing Page Examination

This section describes the patterns of landing page examination and interaction that

were identified. Overall, two basic patterns of viewing were observed, namely,

“reading” and “scanning” (as illustrated in Figure 4.1). “Reading” tends to oc-

cur when relevant information (or seemingly relevant information) is found, and

the searcher is consuming (or further verifying) the information. In contrast, “scan-

ning” typically indicates that the searcher has not yet found the relevant information

and is still in the process of searching. Typically, the viewing behavior is some mix-

ture of these two basic components. Sometimes, the mixture is dominated by one

of the two types. For example, Figure 4.1(a) is dominated by the “reading” behav-

ior (suggested by the cursor heatmap overlaid on top of the answer of the search

task [118]) while Figure 4.1(b) is dominated by the “scanning” behavior (suggested
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by the more vertically spread-out cursor distribution on the right of the screen on

this page that does not contain the relevant information [118]).

(a) relevant (dwell time: 70s) (b) non-relevant (dwell time: 80s)

Figure 4.2: An example of “Reading” a relevant long document (a) vs. “Scanning” a non-

relevant long document (b).

At other times, the viewing behavior is more complex, especially, when the rele-

vance of the document is not obvious (e.g., the document is long and contains a mix

of relevant and irrelevant information). Figure 4.2(a) shows an example of viewing

behavior on a long relevant landing page, while Figure 4.2(b) shows an example of

viewing behavior on a irrelevant long page. The search task for both of the pages

were “How many pixels must be dead on a MacBook before Apple will replace the

laptop? Assume the laptop is still under warranty.” and the dwell time on the two

documents were roughly 70 seconds and 80 seconds, respectively. The two docu-

ments in this example are both from Apple’s support forum and are much longer

than the example documents in Figure 4.1. In such a case, using dwell time alone

would suggest that the two are both relevant, and moreover the second document is

slightly more relevant. However, the document examination patterns suggest that
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the two are quite different. The cursor movements on the first document are more

focused on the left side, with clustering around the top posts, which suggests “read-

ing” behavior (indeed, closer examination shows that the top posts contain relevant

information). However, the pattern indeed seems more complex than what we have

seen in Figure 4.1(a) – the cursor positions are more spread-out vertically and no ex-

tensive horizontal cursor movement was observed. In contrast, on the non-relevant

document in Figure 4.2(b), the searcher keeps the mouse still and scrolls – which

indicates “scanning” behavior. Interestingly, here too the cursor positions are clus-

tered on the left (indicating slowing down of cursor movements) over the top post,

which may indicate “reading” behavior. Examination reveals that the page indeed

contains on-topic information, that initially seems relevant, but does not contain the

needed answer. Thus, in this example, the initial “reading” behavior is followed by

a series of “scanning” before the searcher exits the page without finding her answer.

As these examples indicate, in addition to the variety in combining the two basic

viewing patterns, the corresponding behavioral signals of these two patterns vary

too. For example, when reading, searchers might keep the cursor still or use the

cursor to mark the text (eye and cursor are coordinated only vertically) without

actively moving the cursor horizontally (eye and cursor are coordinated both verti-

cally and horizontally). Nevertheless, in both cases, the searcher tend to slow down

the cursor movements or scrolling, especially, in the vertical direction. As for the

“scanning” behavior, in contrast, the searcher tend to move the cursor and/or scroll

faster as they are searching for the relevant information or sometimes also keeps the

mouse still.

In summary, after examining many viewing sessions, common patterns across

all the post-click page examinations that correlate with document relevance were

observed and listed below:

• Periods of horizontal reading indicate relevance: The searchers are more

likely to slow down and move mouse horizontally to read when the docu-

ment is relevant, as opposed to only quickly scanning the document when it
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is non-relevant.

• Focused attention indicates relevance: searchers tend to focus on only one or

a small number of areas for a relevant document, while distribute time more

evenly throughout an non-relevant document. In contrast to the previous case,

if searchers exhibit “reading” behavior (e.g., slowing down) multiple times, it

is more likely that she still did not find the right information that satisfies her

need – for more complex task, or documents with denser text, such “reading”

behavior are likely to be triggered.

• Left-prevalence: On relevant pages, searchers tend to keep the cursor towards

the left half of the screen, where typically most of the content laid out on a

Web page, to help reading or prepare to click on a link for more details.

• “Scanning” followed by “reading” indicates relevance: Often, a “scanning”

behavior followed by focused, careful “reading” behavior at the end of the

examination indicates relevance, while “reading” behavior in the beginning

followed by “scanning”(i.e., the searcher is still not yet satisfied with what he

or she has found so far), indicates non-relevance of the document.

• “Skipping” indicates non-relevance: Periods of reading or scanning, inter-

spersed with periods of quick scrolling (“skipping” document sections) indi-

cates lower relevance than continuous examination – searchers may become

impatient, and accelerate “scanning” to an even faster pace.

These patterns can be captured by post-click behavioral signals such as sequences

of cursor and scroll speeds and ranges. In the next section, the features designed to

model these examination patterns are described, which can subsequently be used to

better estimate document relevance.
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4.2 Post-Click Behavior (PCB) Features

This section describes the proposed Post-Click Behavior (PCB) features to capture

the the page examination patterns that could indicate a difference in document rel-

evance. In addition, also included are dwell time, task-level information (which is

also shown to be useful in estimating document relevance in recent studies [69]),

and the original search engine result ranking, as features in the PCB model. The

full list of PCB features and their brief descriptions are reported in Table 4.1, and

expanded below.

4.2.1 Dwell Time

Dwell time, or document viewing time, has been previously used as the basic in-

dicator of document relevance. As typically done, dwell time is defined as the

interval, in seconds, between the time the page is loaded and the time the searcher

leaves the page. Dwell time is used both as a baseline to compare against and as a

feature in the full PCB model.

4.2.2 Result Rank

The rank of search result is the belief in its relevance that the search engine holds,

which is typically obtained by combining hundreds of ranking signals. Presumably,

the smaller the rank value (i.e., the higher the document was ranked), the more rel-

evant the document is likely to be. However, if the search engine fails in accurately

estimating the document relevance, the rank would become uninformative. For the

viewed documents in the search trail that were not ranked in a search engine result

page, the rank of the landing page (i.e., the origin of the search trail the document

was on) is used 1.
1The ranks are set to be 11 for a small portion of the documents whose ranking information is missing or

cannot be recovered.
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Group (30) Feature ρ

Dwell (1) dwell: time of the page view in seconds 0.167**

Rank (1) rank: the rank of the document or the rank of the origin (i.e., the landing page)

of the search trail that the document is on if its rank is not available

-0.073

Cursor (14)

cursorcnt: num. of cursor movements 0.164**

cursorfreq: cursorcnt/dwell -0.082*

dist: total overall distance the cursor traveled in pixels -0.137**

xdist: total distance the cursor traveled horizontally in pixels 0.101**

ydist: total distance the cursor traveled horizontally in pixels 0.172**

speed: dist/dwell 0.101**

xspeed: xdist/dwell -0.143**

yspeed: ydist/dwell -0.124**

xmin: minimal x coordinate 0.112**

ymin: minimal y coordinatee 0.093*

xmax: maximal x coordinate 0.067

ymax: maximal y coordinate 0.243**

xrange: xmax-xmin -0.006

yrange: ymax-ymin 0.172**

Scroll (5)

scrlcnt: num. of vertical scrolls -0.008

scrlfreq: scrlcnt/dwell -0.206**

scrldist: total vertical scroll distance -0.092*

scrlspeed: scrldist/dwell -0.212**

scrlmax: maximum scroll top -0.026

AOI (3)

dwell aoi: total time the cursor spent in the pre-defined Area of Interest (AOI) 0.227**

cursorcnt aoi: cursor count in AOI 0.189**

cursorfreq aoi: cursorcnt/dwell -0.195**

Task (6)

avg dwell: average dwell time of preceding page views in the task 0.081*

querycnt: number of preceding queries -0.138**

serpcnt: number of preceding search engine result page (SERP) views -0.142**

clkcnt: number of preceding clicks -0.171**

ctr: clkcnt/serpcnt 0.085*

tasktime: total time elapsed in seconds since the task started -0.046

Table 4.1: Feature descriptions and Pearson’s correlations with relevance Levels (** indi-

cates statistical significance at p < .01 level; * indicates statistical significance at p < .05

level).
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4.2.3 Cursor Movements

As suggested in the previous section, characteristics of cursor movements such as

speed and range could indicate the searcher’s reading behavior, and consequently

the relevance of the document. For example, low speeds may indicate that the

searcher was carefully “reading”, while a long vertical range may indicate that the

searcher found the document relevant and was willing to explore. The number

and frequency of the cursor movements, distance, speed, and the range the mouse

cursor travels in pixels (both overall, and its horizontal and vertical components) are

measured, as well as the minimum and maximum of horizontal and vertical cursor

coordinates.

4.2.4 Vertical Scrolling

Previous research (e.g., [38]) found that the amount a user scrolls correlates with

the “interestingness” of a Web document in a non-Web search setting, while in a

Web search scenario, another study [51] did not find a strong correlation between

the amount of scrolling and the “satisfiability” of a clicked document. In this study,

in addition to modeling the overall amount of scrolling, the frequency and speed of

scrolling behavior are also modeled, as well as the overall scroll distance and range

in pixels. The intuition behind is to capture the searcher’s examination patterns. For

example, high frequency and speed of scrolling may indicate that the searcher was

“scanning” or skipping parts of the document, while a moderate range of scrolling

with low speeds may indicate that the searcher was “reading”.

4.2.5 Interactions in the Areas of Interest (AOI)

It has been proposed that searchers are more willing to interact with the content

when it is relevant. To capture this idea, an “Areas of Interest”(AOI) is defined,

as the region in a document where the main content lies, and model the searcher

behavior within the AOI. In particular, the number and frequency of cursor move-

ments within an AOI are measured, in addition to these measures for the document
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as a whole. Since a typical Web page has its main content on the left half of the

page, one AOI was defined as the region of the document with the X-coordinates

between 100 and 400 pixels, and the Y-coordinates larger than 100 pixels. More

sophisticated estimation of AOI’s can be done, but as we will see later, even this

simple AOI appears to improve the correlation between the features and document

relevance (Section 4.5.1).

4.2.6 Task/Session-level Context

As shown in the recent work [69], task-level information could be valuable for

improving relevance estimation. The intuition is that a page viewed in a successful

search task is likely to be more relevant while a page viewed in a unsuccessful task,

is likely to be less relevant. To detect task success, previously proposed features

are incoporated, such as the number of queries, number of clicks, click-through

rate (CTR), average dwell time, overall task time, and the number of page views.

These features have been shown to be effective in detecting success or frustration

in previous studies [68, 50, 1] and are potentially useful in improving document

relevance estimation [69].

4.2.7 User Normalization

Previous work has identified significant variation in behavior across different searchers

(e.g., [88, 144, 59]). Three methods were proposed to normalize feature values for

individual searchers. The first method subtracts the mean of the feature values for a

user, from the original feature values (most common approach); the second method

substract the median feature values for the user, as it is typically more robust to

outliers than the first approach; the third method uses z-score normalization, which

transforms the original feature distribution into normal distribution by scaling the

difference between the original value and mean by the standard deviation.
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4.3 Relevance Estimation Models

This section describes the machine learning algorithms used. The relevance estima-

tion is formulated as a regression problem, and two popular regression algorithms

were experimented with.

4.3.1 Ridge Regression (RR)

The first algorithm is Ridge Linear Regression, which is a variant of ordinary Mul-

tiple Linear Regression, whose goal is to circumvent the problem of predictors

collinearity and overfitting. Furthermore, the M5’s method is used to select at-

tributes for use in the linear regression for each run. Specifically, the algorithm

steps through the attributes and removes the one with the smallest standardized co-

efficient until no improvement is observed in the estimate of the error given by the

Akaike information criterion. The advantages of using such a linear regressor lie in

the easy interpretability and time-efficiency in training, which is potentially favor-

able in a large scale setting. And the disadvantage mainly lies in the less expressive

power of the model, which does not capture the non-linear interaction among dif-

ferent features.

4.3.2 Bagging with Regression Trees (BRT)

The second algorithm is Bagging[20], which is a method for generating multiple

versions of a predictor and using these to get an aggregated predictor. The aggre-

gation averages over the versions when predicting a numerical outcome and does a

plurality vote when predicting a class. The multiple versions are formed by making

bootstrap replicates of the learning set and using these as new learning sets. The

single predictor or weak learner used was the C4.5 regression tree. The advantage

of this non-linear regressor is, in contrast, the advanced expressiveness, which can

help model the complex relationships among the features, and not surprisingly it

suffers from longer training time and may not be applicable in certain large-scale
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scenarios.

4.4 Experimental Setup

This section describes the experimental setup on estimating document relevance

and re-ranking the documents.

4.4.1 Data

The data set used for the experiments, which has hundreds of search tasks and ex-

plicit relevance judgments of visited Web pages, is from a user study conducted by

researchers at the University of Massachusetts [50]. The usage data of the partici-

pants was tracked, specifically, containing the URLs the searchers visited, the fine-

grained interactions with the browsed pages, such as clicks, cursor movements, and

scrolling, the time-stamp of each page view and interaction is also recorded. The

search tasks in the user study were designed to be representative of Web search

and difficult to solve with a search engine (i.e., the answer was not easily found on

a single page). This is particularly valuable, since these more difficult and long-

tailed search tasks are the main challenge for the state-of-the-art search engines.

To distinguish oneself from the others, a search engine provider should ensure that

they do a good job on such search tasks, and as we will see later in Section 4.5,

the proposed techniques indeed improve relevance estimation and ranking for such

difficult search tasks.

The original dataset is publicly available online 2. Similarly, the processed data

and source code for this study is available at http://ir.mathcs.emory.

edu/data/WWW2012/. Next, the details of the user study and the collected data

are described (additional information can be found along with the original dataset).

User study: The study relied on a modified version of the Lemur Query Log Tool-
2http://ciir.cs.umass.edu/˜hfeild/downloads.html
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bar 3 for Firefox browser. To begin a task, participants had to click a ‘Start Task’

button. This prompted them with the task and a brief questionnaire about how

well they understood the task and the degree to which they felt they knew the an-

swer. They were asked to use any of four search engines: Bing, Google, Yahoo!, or

Ask.com and were allowed to switch at any time. Links to these appeared on the

toolbar and were randomly reordered at the start of each task. Users were allowed

to use tabs within Firefox.

Explicit Judgments: Each time the participants navigated away from a non-search

page, they were asked the degree to which the page satisfied the task on a five point

scale (“1” indicates the page “did not satisfy the information need at all” and “5”

indicates that the page “completely satisfied the information need”), with an option

to evaluate later.

This self-reported explicit judgment was used as the ground truth for document

relevance. A total of 211 tasks were completed, feedback was provided for 463

queries and 694 visited pages. For the experiments, the set of page views used

have dwell time at least one second and at least one cursor coordinate recorded so

as to exclude artificial URL visits (e.g., URL redirections) that are recorded in the

dataset and focused on modeling the initial visit of a document in each session as

subsequent visits of the same document typically exhibit larger variance in behavior

and the dataset consists of only a very small portion of such subsequent page visits.

As a result, the final dataset contains 666 page views with relevance judgments.

4.4.2 Evaluation Metrics

Given a feature vector x of post-click page view, the explicit judgment of page

relevance y, and a regression function f(x) (where (x, y) is an instance of the test

dataset D), the performance on predicting document relevance is evaluated using

the standard measure of correlation, and evaluated its performance on re-ranking

documents using the standard measure of normalized discounted cumulative gain.
3http://www.lemurproject.org/querylogtoolbar/
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Correlation: Pearson’s correlation ρf(.),S between the document relevance pre-

dicted by f(.) and true document relevance y across all instances in the test data

D is given by:

ρf(.),S =

∑
(x,y)∈D(f(x)− µf (.))(y − µy)

(|D| − 1)σf(.)σy

where µ is the observed sample mean and σ is the observed sample standard devia-

tion. This correlation coefficient is helpful for detecting the presence of informative

predictions, even in the presence of shifting and scaling. The ideal value for corre-

lation is 1.0, with a value of 0 showing no observed correlation.

Normalized Discounted Cumulative Gain at K (NDCGk): as a standard met-

ric of search engine providers, given a ranked list of documents for a search task,

NDCGk [80] measures the quality of a ranked list at position k, as follows:

NDCGk =
DCGk

IDCGk

, DCGk =
k∑

i=1

2reli − 1

log2(1 + i)

where IDCGk is the DCGk value of the ideal ranking with respect to the actual

document relevance, and the reli is the relevance judgment, which is at a five point

scale. DCGk aims to penalize the ranked list with highly relevant documents ap-

pearing at lower positions, with the graded relevance value reduced logarithmically

proportional to the position of the result. NDCGk of 1.0 indicates a perfect rank-

ing that is identical to IDCGk and smaller values indicates worse rankings. The

NDCGk were first computed for each individual search task and then averaged into

one NDCGk to summarize the quality of the ranked list provided by each method.

Various k values were evaluated.

4.4.3 Methods Compared

The following different methods for estimating document relevance were consid-

ered, including methods using individual feature groups, combined feature groups,
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with or without user normalization, for both the linear regressor RR and non-linear

regressor BRT.

DTR Baseline: a strong baseline model was developed that utilizes signals from

click Dwell time, Task-level context, and the search engine original Ranking (DTR).

This model is representative of the state-of-the-art methods using dwell time [144]

and task-level information[69].

Post-Click Behavior (PCB): the full model with all the feature groups combined,

which include cursor movements, scrolling, interactions in areas of interest (AOI)

and dwell time, task-level context and rank.

PCB with User Normalization (PCB User): the full PCB model with user nor-

malization for all feature groups, as described above.

Single Feature Group Runs: models trained on the six individual feature groups

were evaluated, namely, dwell time, search engine original ranking, task-level con-

text, cursor movements, scrolling, and interactions in the areas of interest (AOI).

In particular, the dwell time, task-level context, and rank feature groups can be

considered as three additional baselines to gauge the performance of the models.

The three remaining behavioral feature groups are the proposed variants in model-

ing post-click interactions, and serve as the main building blocks of the full PCB

model.

Combined Feature Group Runs: also evaluated were the PCB model with each

single individual feature group removed from the full model to test the contribution

of different feature groups when other groups are presented. This is important, as

some features in different groups could be correlated.

4.5 Results and Discussion

This section reports the experimental results and discuss the findings. The first ex-

periment was to analyze the association between each individual feature and the
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explicit relevance judgments, and the second experiment was predict document rel-

evance and re-ranking results based on the estimation, where each individual feature

group and some combinations of the different groups were evaluated.

4.5.1 Feature Association with Relevance

To study the association between each individual feature and the explicit relevance

judgements, Pearson’s Correlation for each feature were computed and conducted

statistical significant testing. The results are summarized in Table 4.1, along with

the descriptions of the features, significant associations are highlighted: * indicates

significance at p < .05 level and ** indicates significance at p < .01 level. As

follows, the discussion is organized by feature groups.

Dwell Time As we can see from Table 4.1, there is a moderate correlation of 0.167

between dwell time and document relevance, which is consistent with previous find-

ings [144], since longer dwell time typically indicates searcher interests in the page.

However, as we can see later, some other post-click behavioral signals are actually

correlated better with document relevance, suggesting the potential of improving

upon dwell time information.

Rank The correlation between search engine result ranking and document relevance

is -0.073, which matches the intuition that smaller rank values correspond to higher

relevance. However, the correlation is low and insignificant. One explanation is that

all the visited documents on a search trail following a click typically share the same

rank (as some of which were not ranked) but vary in their relevance levels. This

assumption is supported by the observation of a higher though still insignificant ρ

of -0.094 when the correlation is computed over only pages that were ranked by

the search engines. This low correlation of the search engine result ranking with

relevance reveals the difficulty of the search tasks in the dataset.

Cursor Movements As suggested in the previous section, characteristics of cursor

movements are indicative of searcher’s reading behavior. Interestingly, no such
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tendency between the cursor movement features and the document relevance was

observed. Starting from the beginning of the list, the amount of cursor movements

(i.e., cursorcnt) exhibits a similar level of correlation of 0.164 as dwell time, which

makes sense, as the longer the time the searcher spent on a page the larger amount

she might move the cursor.

A more interesting question then is, whether the cursor movements provide some

additional information about document relevance – as discussed later, cursor move-

ments and dwell time provides complementary information – and based on the re-

sults in this section alone, stronger associations from some of the cursor features

we were actually already observed. For example, the maximal y coordinate of the

cursor (i.e., ymax) exhibits a stronger correlation of 0.243 with relevance, which

suggests that the further down the searcher moves the cursor the more likely she

found the page to be relevant. This is consistent with the observation from the case

studies (Section 4.1) – searchers tend to use mouse more actively and “read” when

the page is relevant while the page is not relevant, keep mouse still and “scan”,

in which case, it is less likely that she would move mouse further down. Note

that there is a difference between scrolling down and moving mouse down – as we

can see from the table, the correlation between maximal scrolling and relevance is

only a insignificant -0.026, one possible interpretation may be that searchers tend to

scroll when “scanning” and keep mouse still, while more likely to move the cursor

to interact when interesting information is found.

Another interesting observation is about cursor movement speed: while overall

the amount of cursor movement is correlated positively with document relevance,

the speeds, both in vertical and horizontal directions, have negative correlation,

which matches the observation and intuition: lower speed of cursor movements is

indicative of “reading”, which is more likely to happen when the page is relevant.

As for horizontal movements, the distance cursor travels exhibits a significant posi-

tive correlation of 0.101. This feature captures the horizontal movement of reading

aid behavior illustrated in Figure 4.1, the possible explanation of lower correlation

based on the case studies is that the horizontal movement behavior happens less fre-
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quent than vertical moves, but when it does happen, it typically is a strong indicator

of “reading” [118].

Vertical Scrolling In agreement with previous research [51], no significant cor-

relation between the amount of scrolling (i.e., scrlcnt and scrlmax) and relevance

was observed. However, interestingly, significant negative correlations was found

of scrolling frequency and scrolling speed of -0.206 and -0.212 respectively, which

well supports the hypothesis that high frequency and speed of scrolling indicate

“scanning” behavior, which in turn, suggests lower document relevance.

Interactions in Areas of Interest (AOI) The intuition behind the AOI features

is that searchers are more likely to interact with the content when it is relevant.

Therefore, the expected position of the main content of Web page was specified as

the AOI, hypothesizing that the interactions within the AOI are more indicative of

document relevance. As we can see from Table 4.1, AOI features exhibits higher

correlations as compared to their overall counter-parts. For example, the correlation

of AOI dwell time, which is the dwell time accumulated when the cursor is within

the area of interest, increases substantially from correlation of 0.167 to 0.227 while

the correlation of AOI cursor frequency increases even more significantly from -

0.082 to -0.195.

Task/Session-level Context In agreement with previous work [69], the task-level

information is indeed found valuable in inferring document relevance. In particular,

a document in a more successful search session is indeed more likely to be relevant,

which is supported by statistically significant correlations between CTR and rele-

vance, as well as the average dwell time and relevance. In contrast, a document is

found less likely to be relevant in a less successful search session, which is indicated

by the significant negative correlations between relevance and features representing

task length (e.g., query count and dwell time). This makes intuitive sense, since a

long session typically indicates the more efforts searchers have to put in finding the

information, a claim supported by previous studies [1, 50].
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Next, the findings in predicting documents relevance are discussed, and the per-

formance of each individual feature groups as well as different feature group com-

binations are compared.

4.5.2 Predicting Document Relevance

This section reports the results and findings in predicting document relevance ex-

plicitly judged by the users. For training and testing, 10-fold cross-validation was

used with 100 randomized experimental runs. The reported overall correlation was

aggregated over all the folds and runs (note that, each instance occurs only once

in exactly one fold for each run). The six single feature groups, different combi-

nations of these groups, and the effects of adding user normalization information

were evaluated.

Single Feature Group Runs: The results of the single feature group runs are sum-

marized in Table 4.2. As we can see, all the three post-click interaction feature

groups outperform the three baseline feature groups using dwell time, task-level in-

formation and search engine ranks, as well as the stronger DTR baseline that com-

bines these three groups of signals; but none of them is comparable with the full

model PCB. This trend is consistent across both the linear ridge regressor (RR) and

the non-linear bagging regressor (BRT). Specifically, the correlation with relevance

for the cursor feature group is the highest, followed by the scrolling feature group,

aoi feature group, the task-level, dwell time and rank feature groups. Interestingly,

BRT improves the performance of the cursor feature group over RR substantially.

One possible interpretation is that the features within the cursor group have com-

plex interactions with each other, which can not be successfully captured using a

linear model such as RR.

Combined Feature Group Runs: The results are summarized in Table 4.3. As we

can see, all the combined feature groups again outperform the DTR baseline that

does not incorporate the post-click interaction features. For the ridge linear regres-

sion (RR) setting, the best performing model is the combination of all feature groups
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Single Feature Group RR BRT

PCB 0.399*+ 0.411*+

cursor 0.326*+ 0.389*+

scroll 0.277+ 0.268*+

aoi 0.261*+ 0.177*

task 0.201* 0.146*

dwell 0.184* 0.136

rank 0.04 0.136

DTR 0.211 0.231

Table 4.2: Pearson’s correlation between the predicted and actual document relevance for

the single feature groups. The groups are listed in descending order of the BRT perfor-

mance. (* indicates a significant improvement over all the worse-performing groups in the

same column at p < .05 level, + indicates a significant improvement over the DTR baseline

in the same column at p < .05 level)

PCB and removing any one of the groups decreases the performance significantly.

Among the six groups, the contributions of the cursor and scroll groups are the most

significant while removing each of the other groups only results in decrease with a

small margin. As for the non-linear bagging regression (BRT) setting, only the cur-

sor, scroll, and rank groups contribute significantly when other groups are presented

and the additive contribution from the ranking information is the least substantial

among the three. The three remaining groups, namely, dwell, task, and aoi, do

not seem to contribute additional information when the other groups are presented.

One possible explanation is that the non-linear BRT regressor was able to capture

the complex relationships among different features and induce the information car-

ried by the features in dwell time, task-level context and AOI interactions, making

it unnecessary to incorporate these features when other groups are presented, even

though all the feature groups tend to be useful in combination when only a linear

regressor such as RR is used.
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Combined Feature Group RR BRT

PCB 0.399+ 0.411+

no.cursor 0.326*+ 0.336*+

no.scroll 0.353*+ 0.379*+

no.aoi 0.394*+ 0.412+

no.task 0.394*+ 0.413+

no.dwell 0.395*+ 0.414+

no.rank 0.393*+ 0.409*+

DTR 0.211 0.231

Table 4.3: Pearson’s correlation between the predicted and actual document relevance for

the combined feature groups. The groups are listed in ascending order of the BRT perfor-

mance. (* indicates a significant decrease in performance from PCB in the same column

when removing the feature group at p < .05 level, + indicates a significant improvement

over the DTR baseline in the same column at p < .05 level)

User Normalization: The effects of adding the user normalization information

were further evaluated. The results are summarized in Table 4.4. As we can see,

adding user information to the full model (PCB User) further improves the per-

formance in predicting document relevance, which was the best-performing model

among all the other feature combinations, and as expected, the model also outper-

forms the DTR baseline. In particular, the improvement with a linear regressor was

smaller compared to that of the non-linear bagging regressor. This result indicates

the existence of variation in behavioral signals across different users, a claim sup-

ported by previous research [144, 59, 29]. However, as we have seen, even without

the user information, the behavioral patterns seem sufficiently consistent to achieve

improvement in estimation performance.

Next, the discussion moves on to be about the results and findings on improv-

ing result ranking in aggregate using the estimated document relevance from the

proposed models.
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Combined Feature Group RR BRT

PCB User 0.420* 0.447*

PCB 0.399* 0.411*

DTR 0.214 0.231

Table 4.4: Pearson’s correlation between the predicted and actual document relevance when

adding user normalization features (* indicates a significant improvement over the DTR

baseline in the same column at p < .05 level)

4.5.3 Re-ranking

This section reports the results on re-ranking documents using the estimated rele-

vance from the regressors. For training and testing, 10-fold cross-validation was

again used. NDCGk averaged over all the search tasks across different users was

reported. Specifically, combined feature groups with one feature group removed

at a time, the DTR baseline, and the full models PCB and PCB User were com-

pared. As BRT generally performs better than RR, BRT was used for the rest of the

experiments.

The feature ablation results are summarized in Table 4.5. The trend is the same

as what we have observed in Table 4.3: cursor and scroll feature groups tend to

contribute the most, while the rest of the groups contribute marginally when other

groups are presented. One interesting difference in this setting is that for smaller

K, the contribution of scroll features appears larger than that of the cursor features.

The results of the post-click behavior models, with and without user normaliza-

tion (PCB and PCB User) are reported in Figure 4.3. Both variants of the PCB

model again outperform the DTR baseline, and adding user normalization features

PCB User provides moderate improvements in ranking, especially for smaller val-

ues of K.

Next, the performance of PCB was evaluated on the subset of documents that

were ranked by the search engines (i.e., landing pages). The results are summa-

rized in Figure 4.4. For the landing pages, PCB and PCB User still consistently
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Combined Feature Group K=10 K=20

PCB 0.579 0.675

no.scroll 0.515 (-11.0%) 0.630 (-6.7%)

no.cursor 0.548 (-5.2%) 0.619 (-8.3%)

no.aoi 0.570 (-1.5%) 0.671 (-0.7%)

no.rank 0.576 (-0.5%) 0.669 (-0.9%)

no.dwell 0.578 (-0.1%) 0.677 (+0.2%)

no.task 0.587 (+1.5%) 0.681 (+0.8%)

DTR 0.515 (-10.9 %) 0.598 (-11.4 %)

Table 4.5: NDCG at K for the combined feature groups with one feature group removed at

a time, the groups are listed in ascending order of NDCG@10.

outperform the DTR baseline at all values of K, indicating that PCB predictions

could be directly usable by a search engine for improving search ranking quality.
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Figure 4.3: NDCG at K for the DTR baseline and the full models with (PCB User) and

without (PCB) user normalization features in re-ranking all the pages.

Figure 4.4: NDCG at K for the DTR baseline and the full model (PCB) in re-ranking only

the landing pages.
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4.6 Summary

This chapter introduced a new model for representing the searchers’ post-click be-

havior (PCB) that captures not only dwell time and task-level information, but also

fine-grained user interactions after clicking on a search result, such as cursor move-

ments and scrolling. To the best of my knowledge, PCB is the first successful

attempt to exploit such “low-level” post-click behavioral signals to identify the ba-

sic patterns of “reading” and “scanning” behavior, as well as more complex com-

binations of these, coupled with expressive features to capture these examination

patterns automatically (Section 4.2).

The experimental results show that these behavioral signals indeed correlate with

searchers’ explicit judgments of document relevance, and provide additional valu-

able information beyond dwell time and session-level information. Specifically, the

distance and range the cursor travels, as well as movement speed, especially its

vertical component, are was found to be among the most predictive signals of doc-

ument relevance; while the amount of scrolling itself was not found to be strongly

correlated with document relevance, the frequency and speed of scrolling was. In

combination, these signals enable PCB to exhibit significant improvements of rele-

vance estimation, as well as significant improvements in re-ranking the documents

based on this relevance estimation. Finally, when user information is available (e.g.,

for long-term users of a search engine), adjusting the PCB model for each user’s

“normal” profile can further improve the prediction performance.

In summary, this study has laid the groundwork for exploiting fine-grained post-

click search behavior for document relevance estimation, identifying common page

examination patterns and operationalizing the insights in a novel PCB model for

effective relevance prediction. Together, the proposed methods enabled substantial

improvements of relevance estimation, and the resulting document ranking over and

beyond dwell time alone.
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Chapter 5

Evaluating Search Experience

In Chapter 3 and Chapter 4, techniques were introduced on improving the in-

formation retrieval effectiveness through better intent inference and direct estima-

tion of document relevance. This chapter focuses on developing techniques for the

complementary problem of automatically evaluating the search experience, which

is important to gauge the performance of a search engine, identify the potential

weak areas to improve, and intervene and provide additional assistance in real-time

when users are detected to be struggling. Three studies were conducted, focusing

on different aspects of this problem.

In the first study, a principled framework of studying Web search success and a

novel data collection infrastructure was proposed for performing controlled, yet re-

alistic, scalable, and reproducible crowd-sourcing studies of search behavior. These

techniques addressed the tension between the relatively small-scale, but controlled

lab studies, and the large-scale log-based studies where the search goals are un-

known. In addition to the relative large scale (hundreds of users) and the known

search goals for each task, the proposed techniques also benefit from the objective

and well-defined search success metrics that can be used to evaluate whether the

search goal was actually achieved. A search success model based on CRFs was

developed and trained on the behavior data collected from the proposed infrastruc-

ture, and was demonstrated to be effective under different definitions of Web search

success. The bulk of this part has been published as [1].

In the second study, additional fine-grained behavioral evidence was modeled to

improve the prediction of search success. While result click-through, dwell time
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and sequences of searches [68, 50, 64, 1] are effective in predicting searcher suc-

cess, the prediction accuracy is largely limited as such models are agnostic about

how users actually view and interact with the visited pages. For example, as we have

seen in Chapter 4, the dwell time does not provide a full picture of the search expe-

rience – spending a long time on a landing page might suggest that the searcher was

struggling and could not find the relevant information if she was actually scanning

instead of reading during the stay. Similarly, spending some time carefully reading

a result snippet before clicking on it is different from quickly scanning the whole

search result page within the similar amount of time – in the latter case, the user ap-

pears to be less satisfied with the returned results and is less likely to be successful.

As an example, Figure 5.1 shows the mouse cursor heat maps overlaid on the visited

search engine result pages from a successful and an unsuccessful search sessions

respectively. As we can see, the mouse cursor positions in the unsuccessful session

(Figure 5.1(b)) are more spread-out than in the successful session (Figure 5.1(a))

and spread to the lower part of the result page, suggesting that when the searcher

examines multiple search results (especially the lower-ranked ones) before click,

she is more likely to be unsuccessful in finding the needed information. The bulk

of this study has been published as [62].

In the third study, further extension in this thread was conducted in the mobile

search space. Recently, as mobile devices, such as smart phones, have become an

increasingly popular platform for browsing and searching the Web, it is becoming

crucial that the Web search experience on a mobile phone is satisfactory. How-

ever, to the best of my knowledge, no work has been done to understand how the

behavioral patterns on a mobile device can reveal the success and satisfaction of a

search task. There are many differences in the usage of computers and mobile de-

vices [36, 86], and so it is unclear whether the models of search success developed

for the desktop setting (e.g., using fine-grained user signals, such as scrolling and

mousing [28, 58, 77]) would translate to the mobile search setting. As an attempt to

close this gap, this study aims to automatically predict search success and satisfac-

tion in mobile Web search from behavior on mobile phones with touch screens. In
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(a) successful (b) unsuccessful

Figure 5.1: Example mouse cursor heat maps: (a) - search result page in a successful search

session; (b) - search result page in a unsuccessful search session.

addition to previously studied behavioral signals of search success, client-side inter-

action features were investigated, which include zooming (an example of zooming

interaction was given in Figure 5.2), scrolling/sliding, and orientation changing -

increasingly common in modern smart phones - and show that these features sig-

nificantly improve prediction accuracy. The bulk of this study has been published

as [65].

In summary, the main contributions of this chapter include:

• A flexible and general informational search success model for in-depth anal-

ysis of search success and failure for different definitions of success.

• Effective machine learning-based techniques for predicting and analyzing dif-

ferent types of search success.
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(a) original (b) zoomed in

Figure 5.2: An example of zooming interaction with an Android smart phone with a touch

screen: (a) the user was viewing the original picture; (b) the user zoomed in using two

fingers on the touch screen.

• FSB, a effective novel model of success prediction that jointly models fine-

grained pre- and post- click behavior at the session-level.

• Effective machine learning-based techniques for predicting mobile search suc-

cess using client-side interactions.

5.1 Predicting Search Success with UFindIt

This section introduces a principled search framework and a novel competition-

based data collection methodology. The proposed approach is based on enticing

participants to compete in a game-like setting, to find answers to real informational

questions, while tracking the resulting search behavior.
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This approach has a number of advantages over previously reported search eval-

uation methods: i) the information needs are real, well-defined questions selected

from community forums such as wiki.answers.com and Yahoo! Answers. ii) the

goals (needed information) are known to both the searchers and the assessors, and

are well-defined, allowing for objective measures of success; and iii) sufficient

amount and diversity of search behavior can be acquired for difficult queries (which

are relatively rare among all queries submitted to search engines), thus enabling in-

depth study of the behavior characteristics for these difficult and rare queries that

were not previously available through passive log analysis.

Next, the search success model is presented, which allows formulating hypotheses

that motivate the study design, and the experiments described in the rest of the

section.

5.1.1 Search Success Model

To better analyze the search process, a simple, yet powerful four-stage QRAV

(Query-Result-Answer-Verification) model of an informational search success was

proposed. This model is primarily geared towards analyzing and describing searches

with specific, direct information needs, such as those phrased as factoid questions.

The process of successfully answering factual queries was conceptually divided

into several parts. First, the user should correctly understand the question and issue

a relevant query (Q for Query formulation). If the query retrieves at least one target

document in the top 10 results, it is considered a Good Query. Then, the user has

to find the correct result on a search engine result page (SERP), and click on it to

examine the document (R for Result identification). If a result document contains

the correct answer, it is considered a Good URL, indicated by R+. Furthermore,

how many clicks away this document was from the SERP was considered, indicated

by the subscript. For example, if a document containing a correct answer was the

last in the search session, it is denoted as R+
L . The next step is extracting an answer

from a document (A for Answer extraction). Finally, the answer is verified that



92

it correctly answers the question and is in fact supported by the document (V for

Verification of the answer).

Thus, the final success of a user in finding an answer to a question depends on suc-

cessfully performing each stage in the QRAV model, represented as Q+R+A+V +.

In a case where a user issues a good query and clicks on a good document, but

submits an incorrect answer, the outcome would be represented as Q+R+A+V −.

Finally, if the success in a particular stage is unknown (or not considered), the “?”

mark is used. The model is illustrated graphically in Figure 5.3, where the states in

the process are represented by circles and the arrows represent possible state tran-

sitions. Note that some transitions in the model are not possible, e.g., by definition

it is not possible to directly go from a bad query (Q−) to a good result (R+).

Figure 5.3: Possible state transitions in QRAV model.

The QRAV model can describe (and estimate) the success factors at each stage of

the search process, and naturally represent previously posed definitions of search

success:

• Q+R+
∗ A

+V +: The correct answer was found and validated to be supported

by a good document - it is a search success in the strictest sense, most similar

to the definition of a correct answer in a TREC question answering track [72].

• Q+R+
∗ A

+V ?: An answer was found on a good result, and submitted - which

means that the participant was satisfied with the session and believed that she
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found an answer (but the answer could still be incorrect). This definition of

success matches the definition of Aula et al. [10], where the users submitted

the answer to a difficult search task, but the answer was not validated.

• Q+R+
∗ A

?V ?: A good URL was found - the user visited a relevant page, but did

not necessary extract the correct answer. This definition matches the model

based on analysis of search engine click logs by independent assessors as

in [68].

• Q?R+
LA

?V ?: A good URL was found and it was the last in the search session.

This follows the ideas of marginal document utility in a search session [47] -

after viewing the last document in the search session, the user is satisfied and

stops searching.

Having defined the measures of success, the sets of actions (behavior) that cor-

relate with each of the above definitions of success now can be analyzed. In other

words, at each stage of the process, searchers perform actions, some of which are in-

dicative of a success or failure, or a continuation at one of the QRAV stages above.

The proposed study, described next, was designed with the goal of being able to

validate, and isolate the success or failure of the searcher at each stage of the pro-

cess. Using this model one can also analyze the corresponding behavioral clues for

predicting the success or failure at each stage of the search process.

5.1.2 Acquiring Search Behavior Data

The overall design of the study was modeled on a game, more precisely as a search

competition: the participants played a game consisting of 10 search tasks (ques-

tions) to solve, with a timer displaying the number of seconds remaining, shown to

the subject (see Figure 5.4). The stated goal of the game was to submit the highest

possible number of correct answers within the allotted time. Overall, four game

rounds were used in this study, with participants recruited and scored separately for

each round. The top “players” in each round (typically, those successfully posting
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a correct answer to 7 or 8 out of the 10 questions) received a bonus payment. More

details about the search tasks, study procedure, and system implementation can be

found in the original paper of this study [1].

Figure 5.4: An example search game interface, which has the question, the search query

window, and a dropdown box for choosing a search engine to use (Google, Yahoo! Search,

or Bing). When the answer is found, the participant submits it together with the supporting

URL. The query result page is opened in new tab, allowing natural querying and browsing.

5.1.3 Predicting Search Success

This section describes the models, features, and algorithms used for analyzing and

predicting the success of searchers.

Algorithms

Markov Model (MML+Time): As the baseline state-of-the-art model, the Markov

Model approach introduced in the reference [68] was adapted. As in the origi-

nal model, the states are the types of visited page “Q” for SERPs, “R1” for pages

clicked from SERP or “E” for end-of-session. The only difference from original
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model is that the data in this study does not contain sponsored-search clicks and

search engine-specific links like “related search”, but information about pages vis-

ited from hyperlinks – those pages correspond to additional model state “R>1”.

The transitions of Markov Model are events of new page visit. Given the session

success B ∈ {1, 0} (success or fail), the transition probability between two states

si, si ∈ {Q,R1, R>1, E}, is estimated on the training set:

P (si → sj,∆t|B) =
Nsi,sj ,B

Nsi,B

Γ(∆t, k, θ) (5.1)

where Nsi,sj ,B is a frequency of transitions si → sj in sessions with a given

result B, Nsi,B is a frequency of state si in those sessions, and ∆t is a time delta

between events si and sj . The model in reference [68] assumes that has the Gamma

distribution Γ(∆t, k, θ) with parameters k and θ, estimated from the training set.

Parameters k and θ also depend on si, sj , and B.

The trained Markov Model is used to predict session success from the search

behavior data. For the sequence of states with known time deltas S = s0
∆t1−−→

s1
∆t2−−→ ...

∆tn−−→ sn the log likelihood of success and failure is estimated as:

LLB(S) =
n∑

i=1

logP (si → sj,∆t|B) (5.2)

and the session success is defined as:

Pred(B) =

{
1 if LL1(S) ≥ LL0(S)

0 otherwise
(5.3)

The performance of the Markov Model was tested, with and without the time delta

distribution features, and the experiments confirmed that incorporating time delta

distribution indeed improves performance. This agrees with the results described in

reference [68] and validates the implementation.

Conditional Random Fields (CRF): an extension of the Markov Model approach

above was used, by adapting the CRF model [90] for the task. The benefit of CRF
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is that it allows to augment the Markov Model with additional search behavior fea-

tures, derived from previous works in references [50, 68, 145], and described next.

The Mallet 1 implementation of CRF was used, freely available for research.

A CRF allows defining a conditional probability P (y|x,λ) over the hidden state

sequences y = {y1, ..., yn} given a particular observation sequence of n page views

x = {x1, ..., xn}, and the CRF parameters λ that are estimated at training. At train-

ing time, the hidden state of an observation (i.e., a page view) can be assigned a

“+” or “-” label, depending on whether the user was successful in the task. Alter-

natively, one can also assign “Q+”, “Q−”, “R+”, “R−” labels to the intermediate

stages in the session to allow more fine-grained modeling. At test time, given an

observed page view sequence x′, the most likely state sequence y′ can be inferred

by maximizing the conditional probability P (y′|x′,λ) using the formula:

P (y|x,λ) =
1

Z(x)
exp(

∑
j

λjFj(y,x)) (5.4)

where 1
Z(x)

is a normalization factor and Fj(·) is the jth feature function, which

could be either a state feature function or a transition feature function. An example

configuration is shown in Figure 5.5. Each observation corresponds to a page view

(i.e., either a search engine result page, Queryi; or the landing page of a clicked

result, Resulti), and is represented by a vector of features introduced next, (Table 1)

such as dwell time on the page, query length in words, and number of queries in a

session.

To experiment with the tradeoff between the precision and recall, the marginal

probability of the last hidden state yn = “+” was used as the classification confi-

dence, since the last state indicates whether a searcher is successful or not across all

potential CRF configurations. The marginal probability is computed by summing

over the probabilities of all labeled sequences Y + that end with label “+” in their

last states, according to the following formula:
1Available at: http://mallet.cs.umass.edu/
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Figure 5.5: CRF implementation of session-level model. The labels represent overall ses-

sion success; the observations at each step in the sequence are the features in Table.

conf =
∑
y∈Y +

P (y|x,λ) (5.5)

For the experiments the Mallet implementation of CRF was used, which allows

only nominal features. Therefore, the numeric features were discretized using in-

creasingly large thresholds. For numeric features, the used discretization thresholds

are shown in the column “Bins”. The complete set of behavioral features used for

the CRF model is reported in Table 5.1. Also used were aggregated behavioral

features for analysis of user success, as described in the next section. The aggrega-

tion function is shown in the column “User” for the features that have a reasonable

interpretation for describing an individual searcher.

Search Behavior Representation: Features

Search behavior was represented by adapting and extending the features introduced

in previous studies. Specifically, the browsing features from [145] were used. Addi-

tional features, such as session duration and number of viewed pages were adapted

from [50]. Also added was a feature for the average page trail length.

For the analysis, only used features were those could be reasonably matched to

user’s search skills or expertise. For example, one hypothesis was that highly suc-

cessful searchers view more results (i.e., CntR is higher), use more advanced syntax
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(i.e., QADV is higher), and perform search faster (i.e., the duration of session in sec-

onds ł ∆t is lower). As will be shown, the first two hypotheses are supported by

the collected data, but the third is not. To compute these features, the base feature

values in Table 5.1 are aggregated for each participant according to the rules pre-

sented in the last column, and then averaged over all the sessions that the user has

completed.

5.1.4 Results and Discussion

This section presents the results of analyzing and predicting search success. First,

the participant data and descriptive statistics are described. Then, the behavior pat-

terns of successful vs. unsuccessful searchers are contrasted. Then, the behavior

patterns associated with search task difficulty were analyzed in order to automati-

cally predict search success for the various definitions of success in the proposed

model.

Participant and Search Behavior Data

A total of 200 MTurk participants finished at least one of the game rounds. The

user sessions were both automatically and manually checked to detect violations of

game rules. For example, some users did not use the search interface provided by

the study, or used unsupported browsers, despite being warned not to do so in the

task instructions. The users who did not answer even the easy, effectively trivial

questions were filtered out, as it indicated either poor understanding of the game

rules, or an attempt to make a quick buck without effort. After this filtering, 159

users (79.5%) remained in the dataset. The data for these users consists of 14873

search sessions, distributed among 40 distinct questions in 4 game rounds. All these

159 users were paid the base $1 payment. The top 25% of the searchers (ranked

by the number of correct answers submitted) were paid an additional $1 bonus. In

total, the user payments cost less than $250.

Overall, there were from 30 to 50 valid search sessions collected for each ques-
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tion. For each session the browsing events were extracted from the log of the de-

ployed proxy. Each session was finished by either submitting an answer (87% of

sessions), or by passing to the next question. The submitted answers were man-

ually marked as either correct (65% of all sessions) or incorrect. An answer was

considered correct if the page of the submitted URL indeed contained the submit-

ted answer. There were 4382 search engine queries in the collected log data, and

14676 page visits. This data is available at ( http://ir-ub.mathcs.emory.

edu/uFindIt/). Additional data statistics, including the overall average session

times, number of actions, average query length, and others are reported in Table 5.2.

These statistics largely agree with the published statistics from a similar study of

web search success reported by Aula et al. [10]. The small quantitative differences

can be expected, as the study focuses on relatively difficult information gathering

tasks.

Prediction of Search Session Success

This section reports results on the prediction of session success by using the behav-

ioral features as input. The proposed Conditional Random Fields (CRF) algorithm

described in section 5.1.3 was compared to both the naı̈ve baseline algorithm that al-

ways predicts success (the majority class), as well as to the state-of-the-art Markov

Model method that incorporates time distribution between actions (MML+Time)

described in [68] and summarized in section 5.1.3.

Four-fold cross-validation was used in the following manner: for each of the four

game rounds, the model was trained on all sessions from the other three games, and

apply the trained model to predict the search success of the current game. Thus,

there are four folds of roughly equal size. For each fold, neither the users nor the

questions intersect. Algorithms are compared by accuracy and F-measure, macro-

averaged over the positive (successful) and negative (unsuccessful) classes. The re-

sults are presented in Table 5.3, which shows that the proposed CRF model exhibits

significant improvement over both the baseline and MML+Time models proposed
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in [68] for all definitions of success except the first one.

Feature significance: The relative significance of behavioral features used for

training CRF are now explored by using a subset of the features, starting from one

feature, and use a greedy search to extend the used subset, one feature at a time,

by adding the best of the remaining features. In each step the feature that gives

the highest F1 performance of the CRF algorithm for predicting Q?A?V ? success

is chosed. The results are shown in Table 5.4, and the best results obtained by this

greedy feature selection for each definition of success are shown in Table 5.3. As

we can see, the first, most significant feature (State) is the same one as reported

in [68] łthe search action itself. Interestingly, the time interval between the ac-

tions and the choice of the web search engine are the two next most useful features.

This makes sense, as the faster searchers are also likely to be more advanced or

experienced, and are also more likely to experiment with switching search engines

(encouraged by a drop-down box in the proposed search interface). Finally, the po-

sition of the search result clicks provides additional indication of the search result

quality – which in turn indicates the presence of a good query.

Next, the differences in the performance of the MML variants and the proposed

CRF system are explored, for different definitions of search success (Section 5.1.1).

Figures 5.6 (a-d) report the precision vs. recall plots of identifying the Successful

class. CRF performs best, and significantly better than MML for the definitions

proposed in [68] (b) and for the definition proposed in [47] (d). For the other def-

initions of success (e.g., the most strict one (a)), the improvement of CRF is less

striking, while MML variants exhibit performance comparable to the reports in the

original study [68].

5.1.5 Real World Success Prediction:A Log-based Study

We have seen that the proposed model can successfully predict success of over

a hundred participants in the tournament-like setting. Can one use the resulting

model, trained on the contest data, to predict search success in a real-world search
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Figure 5.6: Recall-precision curves for compared algorithms, for different definitions of

session success in QRAV model.

engine log? To answer this question, a large log of web searches is used, which

is performed from hundreds of shared-access workstations in a major university

library, to predict search success using the models trained on the collected contest

data.

Experimental Setup

The data was collected by instrumenting over 100 shared-use workstations at the

Emory University library using the EMU toolkit 2, with participants explicitly opt-

ing in to allow the searches to be tracked for library improvements (with roughly

60% opt-in rate). 16,693 search sessions (using almost primarily the Google search
2http://ir.mathcs.emory.edu/EMU/
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engine) were collected over a period of 6 months. A sample of 175 search ses-

sions consisting of more than one query (and thus more likely to be a non-trivial

search) were manually labeled by the researchers to be successful or not, using the

methodology and criteria outlined in Hassan et al. [68]. Specifically, the assessors

used their best guess of the searcher intent based on the sequence of queries sub-

mitted, clicks on the results, and by manual examination of the visited result pages

(recorded in the proxy log). 29% of the sessions were labeled as successful, 28%

as unsuccessful, and 43% as unknown C where the assessors were not able to infer

the searcher intent or determine whether the visited results satisfy the search.

Methods Compared

The CRF was trained on all the contest data, using all of the features in Table 5.1.

The algorithms were trained using the two most successful definitions of search suc-

cess in QRAV model, namelyQ?R+A?V ? (finding a good document) andQ?R+
LA

?V ?

(finding a good document as last in the search session). Then, the CRF model

trained on the UFindIt game data was applied to log data.

Results and Discussion

Table 5.5 reports the results of predicting search session success. While the ab-

solute accuracy and F1 values are lower than those on the original search contest

data, the predictions significantly and substantially outperform the baseline. This

experiment demonstrates that training a success model on search contest data can

have significant practical applications, by directly applying the trained models to

estimate search success of users of a production search engine.
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Feature Description CRF Bins Aggregation

state Type of visited pages s ∈ {Q,R1, R>1, E}
∆t Time delta between previous state and current state ≤ 3s, 10s, 30s

∑
∆t

Qengine One of google, bing, yahoo

Qabandoned True if no clicks for the query

QWL Query word length ≤ 3s Avg

Qwiki True if wikipedia.org is on SERP

QADV True if the query use advanced query syntax.

(i.e., queries that use search operators – quotes,

“+” operator, and field operators like “site:” and

“allintext:”.)

Avg Count

QDT Query Deliberation Time - minimum time delta be-

tween query and first click

Avg

Rwiki True if visited page is on wikipedia.org

RQserppos Position of SERP click ≤ 2, 5 Avg

Rtrail Length of trail from search engine result page, de-

fined as the number of clicks from SERP

≤ 1 Avg

refserp/start True if visited page was clicked from the SERP

or from the start of a game (these features are ex-

tracted from HTTP Referer header, and could catch

some patterns of non-linear browsing, when user

uses several browser tabs)

Session-level aggregates

CntQ/CntR Count of queries and pages in the session ≤ 1, 3 Avg

QPS QPS = CntQ∑
∆t

– average number of Queries sub-

mitted by a user Per Second

Avg

CPQ CPQ = CntR
CntQ

– average number of result Clicks

Per Query

Avg

Table 5.1: Behavior features used for CRF. “Q*” features are defined only for SERPs (if

the state=Q), “R*” features are defined only for non-SERP pages. Discretization thresholds

are shown in the “Bins” column. For the features used in the search behavior analysis, the

aggregation function is shown in the last column.
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Statistic All Successful Unsuccessful

Count 1487 971 518

Average duration, sec. (
∑

∆t) 215 (223) 182 (176) 276 (384)

Average number of query

terms/query (QWL)

6.0 (4.8) 5.8 (4.7) 6.6 (5.1)

Average number of queries per

session (CntQ)

2.9 (6.7) 2.3 (5.0) 4.0 (12.4)

Ratio of queries with operators

(QADV)

0.05 (0.07) 0.05 (0.06) 0.05 (0.13)

Table 5.2: Descriptive statistics for search sessions collected with the UFindIt game. The

corresponding statistics from reference [10] are shown in parentheses.

Success Definition
Baseline MML+Time CRF (All) CRF (Selected)

Acc F1 Acc F1 Acc F1 Acc F1

Q?R+A+V + 0.65 0.40 0.61 0.58 0.68 0.60 (+4%) 0.68 0.62

Q?R?A+V ? 0.87 0.47 0.72 0.55 0.86 0.64 (+17%) 0.88 0.66

Q?R+A?V ? 0.83 0.45 0.66 0.53 0.80 0.57 (+8%) 0.81 0.59

Q?R+
LA

?V ? 0.60 0.38 0.59 0.53 0.68 0.66 (+26%) 0.69 0.67

Table 5.3: Prediction of search session success for different levels of success in QRAV

model. Relative improvement against MML+Time model is shown in parenthesis.

Feature F1 Accuracy

State 0.624 0.675

+∆t≤10 0.655 (+5%) 0.680

+Qengine 0.666 (+1.7%) 0.680

+R1 serp pos≤ 2 0.670 (+0.6%) 0.687

+R1 serp pos≤ 5 0.671 (+0.1%) 0.686

Table 5.4: Prediction of search success by the CRF model, when adding one best-

performing feature at a time.
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Success Definition
Baseline CRF (All)

Acc F1 Acc F1

Q?R+A?V ? 0.51 0.34 0.55 (+8%) 0.52 (+53%)

Q?R+
LA

?V ? 0.51 0.34 0.53 (+4%) 0.44 (+29%)

Table 5.5: Prediction of search success for real-world log using CRF trained on contest

data, for success definitions in [68] and [47] respectively.
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5.2 Predicting Search Success with FSB

This session presents the Fine-grained Session Behavior (FSB) model, which cap-

tures fine-grained interactions to improve the prediction of search success. As we

have seen earlier, fine-grained interactions such as mouse cursor movements and

scrolling behavior on a Web page are valuable signals in inferring search intent

(Chapter 3) and estimating document relevance (Chapter 4). As the rest of the sec-

tion demonstrates, by incorporating these “low-level” signals, FSB also achieves

significant improvements for predicting search success over the state-of-the-art meth-

ods. To the best of my knowledge, FSB is the first to jointly models the fine-grained

behavioral patterns on both search engine result pages and pages on the search

trails [142].

5.2.1 Fine-grained Session Behavior (FSB) Features

Next, the proposed Fine-grained Session Behavior (FSB) features are described,

which aim to capture the page examination patterns that could be indicative of

search success. In addition, also included are features from the queries, clicks and

dwell time. The brief descriptions about some of the FSB features along their cor-

relation with the success labels (Section 5.2.4) are reported in Tables 5.6, 5.7,

and 5.8 and expanded below. Note that the features in the fine-grained interaction

groups, namely, cursor and scroll, are first computed for each page view and then

aggregated over the entire search session. These two groups can be further divided

into pre-click and post-click sub feature groups, corresponding to behavior on the

search engine result pages and the behavior on the pages in the search trail.

Query Features: Query features derived from the query string itself, include the

query length in words and characters, average number of characters of query terms,

the number of submitted queries, SERP views, and unique queries. Intuitively, the

longer the query, the more likely the task is difficult and the searcher ends up unsuc-

cessful. On a session-level, the larger the number of queries users have to submit

the more likely that the user is struggling. Notice the subtle difference between
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Group Feature ρ

Query
avg qwords: average number of words of the queries in the session -0.117

num queries: total number of queries in the session -0.522**

Click

num clicks: total number of clicks in the session -0.363**

ctr q: total number of clicks over number of queries in the session 0.150*

ctr s: total number of clicks over number of SERP views in the session 0.358**

Time

tasktime: total time duration in the session -0.473**

avg time s: average deliberation time on SERP pages in the session -0.107

avg time c: average dwell time on clicked landing pages in the session -0.119

satr c: the ratio of satisfactory clicks (clicks with dwell time at least 30 seconds) 0.059

dsatr c: the ratio of dis-satisfactory clicks (with dwell time at most 10 seconds) -0.083

Table 5.6: Coarse-grained behavior feature descriptions and Pearson’s correlations with

success ratings (** indicates statistical significance at p < .01 level; * indicates statistical

significance at p < .05 level).

submitting a query and viewing a SERP – one query might correspond to multiple

SERP views. The former can be captured from server-side logs while the latter can

only be obtained with a client-side instrumentation.

Click Features: Click features include the number of clicks and click-through rate

(over queries and SERPs). Click-through generally is an indicator of success as

searchers click on a document when they think that the document can satisfy their

information needs. However, a large number of clicks, especially when paired with

an even larger number of submitted queries, might indicate that the clicked doc-

uments are actually not relevant and the search goal is unsuccessful. Here, the

click-through rate may provide additional evidence about search success.

Time-related Features: Both the time users spend on the SERP and the pages on

the search trail are considered. In the literature [51, 68, 60], the former is referred

as “deliberation time” while the latter is referred as “dwell time”. Usually, these

measurements of time are defined as the intervals, in seconds, between the time the

page is loaded and the time the searcher leaves the page. To aggregate the time

information across multiple page views in the session, computed are the total time

span during the session, averaging time spent on different types of pages, and the
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ratio of clicks that result in SAT (dwell time ≥ 30 seconds) and DSAT (dwell time

≤ 10 seconds) [51], following previous research [68, 64].

Group Feature ρ

Cursor (SERP)

avg ymax s: average maximum y coordinate on SERPs -0.384**

min ymax s: minimum maximum y coordinate on SERPs 0.163*

max ymax s: maximum of maximum y coordinate on SERPs -0.330**

med ymax s: median of maximum y coordinate on SERPs 0.073

num low ymax s: number of maximum y coordinate on SERPs that are

below 400 pixels

-0.138*

num high ymax s: number of maximum y coordinate on SERPs that

are above 800 pixels

-0.031

Cursor (Trail)

avg ymax t: average maximum y coordinate on trail pages 0.179**

min ymax t: minimum maximum y coordinate on trail pages 0.253**

max ymax t: maximum of maximum y coordinate on trail pages 0.200**

med ymax t: median of maximum y coordinate on trail pages 0.289**

num low ymax t: ratio of maximum y coordinate on trail pages that are

below 400 pixels

-0.132

num high ymax t: ratio of maximum y coordinate on trail pages that

are above 800 pixels

0.361**

Table 5.7: Sample fine-grained cursor feature descriptions and Pearson’s correlations with

success ratings (** indicates statistical significance at p < .01 level; * indicates statistical

significance at p < .05 level).

Cursor Movement Features: As suggested in the previous section, characteristics

of cursor movements such as speed and range could indicate the searcher’s reading

behavior, and consequently the success of the search goal. For example, on a land-

ing page, low speeds may indicate that the searcher was carefully “reading”, while

a long vertical range may indicate that the searcher found the document relevant

and was willing to explore. The features include the number and frequency of the

cursor movements, distance, speed, and the range the mouse cursor travels in pixels

(both overall, and its horizontal and vertical components), as well as the minimum

and maximum of horizontal and vertical cursor coordinates.

Vertical Scrolling Features: In addition to modeling the overall amount of scrolling,

the frequency and speed of scrolling behavior were also modeled, as well as the
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Group Feature ρ

Scroll (SERP)

avg ymax s: average speed of vertical scrolls on SERPs -0.318**

min ymax s: minimum speed of vertical scrolls on SERPs 0.069

max ymax s: maximum speed of vertical scrolls on SERPs -0.331**

med ymax s: median speed of vertical scrolls on SERPs -0.074

Scroll (Trail)

avg ymax t: average speed of vertical scrolls on trail pages -0.087

min ymax t: minimum speed of vertical scrolls on trail pages -0.071

max ymax t: maximum speed of vertical scrolls on trail pages -0.068

med ymax t: median speed of vertical scrolls on trail pages -0.131

Table 5.8: Sample fine-grained scroll feature descriptions and Pearson’s correlations with

success ratings (** indicates statistical significance at p < .01 level; * indicates statistical

significance at p < .05 level).

overall scroll distance and range in pixels, following [60]. The intuition behind is

to capture the searcher’s examination patterns. For example, high frequency and

speed of scrolling may indicate that the searcher was “scanning” or skipping parts

of the document, while a moderate range of scrolling with low speeds may indicate

that the searcher was “reading”.

Aggregation of Interaction Features: Different strategies were explored in aggre-

gating the page-level features, including computing the mean, median, minimum,

and maximum of all the page views and counting the number of page views that

meet some specific requirements. The four statistics are more generic treatments of

aggregation, with the mean or average more frequently used, median more robust to

outliers, and minimum and maximum capture the extreme behavior. The threshold-

based counting aggregation is more customized towards individual features, which

may result in more effective predictors when appropriately applied. This approach

may require a deeper understanding of each individual feature to define meaning-

ful thresholds. Further discussion will be provided about the different strategies in

more depth in Section 5.2.4 and the comparison about their effectiveness.

Note that aggregation over an entire section might be problematic when a search

session consists of multiple sub-goals, in which case the search behavior may ex-

hibit larger variations. To address this issue, search goal boundary detection al-
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gorithms (e.g., [110, 68]) can be applied to ensure aggregation is over single

search goal. Alternatively, one may also consider aggregation over each search

trail [142], which may also reduce the variance that comes from different types of

pages. In this study, the proposed aggregation is on a single search goal as each

session in the dataset consists of one single search goal (Section 5.2.2). While fur-

ther improvement may be possible (e.g., through trail-level aggregation), as we will

see later, this goal-based aggregation formalism already results in effective models

(Section 5.2.4).

5.2.2 Data

The data set used for the experiments is the same as the one used in Chapter 4,

which has hundreds of search tasks and explicit relevance judgements of visited

Web pages, is from a user study conducted by researchers at the University of Mas-

sachusetts [50]. The usage data of the participants was tracked, containing the

URLs the searchers visited, the fine-grained interactions with the browsed pages,

such as clicks, cursor movements, and scrolling, the time-stamp of each page view

and interaction was also recorded. The search tasks in the user study were designed

to be representative of Web search and difficult to solve with a search engine (i.e.,

the answer was not easily found on a single page). As mentioned earlier, this is par-

ticularly valuable as these more difficult and long-tailed search tasks are the main

challenge for the state-of-the-art search engines, and an accurate success predic-

tion algorithm would enable search engines to evaluate and improve performance

in these search tasks at a large scale.

Explicit Judgements: Each time the participants completed a search task, they

were asked the degree to which their information need of the task was satisfied

during the entire search session on a five point scale (“1” indicates the search session

“did not satisfy the information need in any way” and “5” indicates that the search

session “completely satisfied the information need”).

This self-reported explicit judgement was used as the ground truth for search suc-
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cess. A total of 211 search tasks were completed and provided feedbacks from 30

participants, with 463 queries submitted and 711 pages visited.

5.2.3 Evaluation Metrics

Given a feature vector x of search session, the explicit judgement of search success

y, and a classification function f(x) (where (x, y) is an instance of the test dataset

D), its performance on predicting the search success was evaluated using the stan-

dard measure of Accuracy (Acc), Precision (P), Recall (R) and F1-measure (F1)

calculated as follows:

• Accuracy (Acc): The fraction of all search sessions x inD that were correctly

assigned the label f(x) compared to the explicit judgement of search success

y.

• Precision (P): Precision is computed as the fraction of the predictions f(x)

of the positive class that are correct.

• Recall (R): Recall is computed as the fraction of all true positive class ses-

sions y that are correctly identified.

• F1-measure (F1): F1 measure, which is the harmonic mean of precision and

recall, computed as 2P ·R
P+R

, provides a more complete picture of the perfor-

mance especially when class distribution is skewed.

5.2.4 Results and Discussion

This section describes the experimental results and discusses the findings, by start-

ing with analyzing the association between each individual session feature and the

explicit success judgements, and then moving on to the results on success predic-

tion, where each individual feature group and some combinations of the different

feature groups are evaluated.
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Feature Association with Search Success

The association between each individual session feature and the explicit success

judgements were studied by computing Pearson’s Correlation for each feature with

statistical significant testing. The results are summarized in Tables 5.6, 5.7 and 5.8.

We organize the discussion by feature groups and compare alternative session-level

aggregation strategies and sources of evidence (e.g., pre-click vs. post-click) when

appropriate.

Query, Click, Time As we can see from Table 5.6, the average query length is neg-

atively correlated with the session length, though not significant, while the number

of submitted queries exhibits much stronger negative correlation of -0.522, confirm-

ing the intuition that the longer the queries the user had to submit and the larger the

number of queries, the more likely that the user was struggling and more likely to

fail.

The number of clicks turns out to be negatively correlated with search success,

which may seem counter-intuitive as click-through is typically considered as a sig-

nal of finding relevant information. One explanation is that the large number of

clicks may come from the large number of queries. Indeed, divided over the num-

ber of queries, the click-through rate measures results in positive correlations, with

the ratio computed over SERP views much more significant. This suggests benefits

of client-side instrumentation.

As for the time measures, it turns out that the overall time span of a session ex-

hibits the most significant correlation of -0.473, which makes sense as it character-

izes the session length as the number of queries and clicks do. Somewhat surpris-

ingly, the average dwell time on landing pages is negatively correlated with search

success. One explanation is that as the task difficulty increases, users need to spend

on average longer time to find the information on a page. The SAT and DSAT

click-through rates, in contrast, match the intuitions and exhibit positive and nega-

tive correlations with success. However, the correlations are not significant, which

may also be explained by the fact that the search tasks in the dataset are relatively
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more challenging.

Cursor Movements The analysis of this feature group is given in Table 5.7. For

simplicity, the discussion only focuses on analyzing the most discriminative fea-

ture of this group – maximum y coordinates and compare the different aggregation

functions on this feature as well as two different sources of evidence, namely the

pre-click behavior on search engine result pages (SERP) and the post-click behavior

on the search trail pages.

For the SERPs, the averaging function for cursor (avg ymax s) appears to be most

effective, which is substantially stronger than the deliberation time counterpart of

cursor avg time s (Table 5.6). Interestingly, the minimum aggregation function

(min ymax s) results in a significant positive correlation of 0.163. Note that very

small maximum y coordinate suggests abandonment of search results and the min-

imum aggregation function of maximum y coordinate to some extent quantifies the

likelihood of abandonment.

For the search trail pages, the averaging function (avg ymax t) only results in a

moderate significant positive correlation of 0.179, which is stronger than its dwell

time counter-part (avg time s) with a negative insignificant correlation of only -

0.107 as shown in Table 5.6. Interestingly, the averaging function does not seem to

be the most effective for the search trail pages. Instead, median function appears

to be the most effective statistic, likely due to its robustness to outliers and larger

variance. The best aggregation function for this feature turns out to be counting

with meaningful thresholds. For example, the number of “SAT” page views, whose

maximum y coordinate is on or above 800 pixels (num high ymax t), exhibits a

substantially stronger correlation of 0.361. The gain is significant compared to its

dwell time based counterpart (satr t), whose correlation is only an insignificant

0.09. Similarly, the number DSAT page views, whose maximum y coordinate be-

low 400 pixels(num high ymax t) exhibits stronger correlation than its dwell time

counterpart (dsatr t). These observations match the finding in [60] that post-click

cursor features such as maximum y coordinates have stronger association with rel-
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evance as compared to dwell time. However, as we haven seen, careful selection of

the session-level aggregation functions could have significant impacts on the pre-

dictive power of such a page-level feature.

Vertical Scrolling The analysis of this feature group is given in Table 5.8. Simi-

lar to the cursor feature group, the discussion focuses only on analyzing the most

discriminative feature of this group – the scroll speed, to illustrate the differences

in the various aggregation options as well as the patterns in pre-click and post-click

pages. Overall, the correlations of different aggregations of sources of evidence all

result in negative correlations for scroll speed, while the correlations are stronger

for SERPs than trail pages. This may be explained by the larger variance in the

types of trail pages – some of which may be shorter and do not require scrolling.

As a result, scrolling may be more sparse and less reliable than the cursor features

such as maximum y coordinate, as suggested by the overall weaker associations

for search trail pages. In contrast, the correlations for scroll speeds on SERPs are

much stronger with mean and maximum aggregation functions, resulting in signif-

icant correlations of -0.318 and -0.331, which is likely attributable to the relative

fixed layout of search engine result pages, where user behavior tend to have smaller

variance.

Predicting Search Success

This section reports the results and findings in predicting search success explic-

itly judged by the users using the different groups of features (Section 5.2.1). The

success prediction problem is formulated as classification, and consider a search

session with explicit success judgements (Section 5.2.2) equal to or larger than 4

as successful and unsuccessful otherwise. This definition of search success corre-

sponds to the Q+R+
∗ A

+V ? type of success according to the Query-Result-Answer-

Verification (QRAV) model proposed in Section 5.1.1, where a participant was sat-

isfied with her search session and believed that she found an correct answer, without

a verification whether the submitted answer was actually accurate.
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The underlying success prediction algorithm used was logistic regression, which

is a widely used generalized linear model for classification [50, 64], where the pre-

dictors can take different forms, such as continuous, discrete, dichotomous, or a mix

of these. The response variable, in this study, whether the search goal was success-

ful or unsuccessful, is not a linear function of the predictors but a logit transforma-

tion of their linear combination. Logistic regression has the advantages of simple

implementation, good interpretability, and time-efficiency in training at scale.

For training and testing, 10-fold cross-validation was used with 100 randomized

experimental runs. The evaluated methods included the full model FSB, its four

single feature group components: query, click, time, and cursor. Also evaluated

were the cursor serp and cursor trail sub-groups, which are based on the cursor

feature group computed for the SERPs and trail pages respectively. Two baselines

considered are a naı̈ve Majority Baseline (MB) that always guesses the majority

class successful and a state-of-the-art baseline QCT model trained on the Query,

Click and Time feature groups. Feature group ablation analysis was also conducted

by removing the single feature groups one at a time. Finally, the three selected

aggregation functions were compared, namely, average (avg), median (med), and

the threshold based counting function (thres). The reported metrics are: Accuracy

and weighted averages of Precision, Recall, and F1-measure over the two search

success classes.

Single Feature Groups: The results are summarized in Table 5.9. The differences

between different methods are statistically significant at .05 level under paired t-test

except the difference between cursor serp and QCT and the difference between cur-

sor trail and click. As we can see, the full model FSB significantly outperforms the

two baselines as well as all the single feature groups. The cursor group performs

the best among all the single feature groups and is the only single feature group

that outperforms both of the two baselines. The remaining single feature groups

outperform the MB baseline but underperform the QCT baseline. Among the two

cursor subgroups, the cursor serp group is significantly more predictive than the



116

cursor trail group, which may be due to the more severe data sparsity and larger

variance lies in the different search trail pages compared to the SERPs. Neverthe-

less, the combined feature group cursor significantly outperforms each of the two

sources of evidence individually, suggesting the two are complementary.

Methods Acc (%) P R F1 (% Imp.)

FSB 77.1 77.9 77.1 77.5 (+7.6%)

cursor 75.3 76.0 75.3 75.6 (+5.1%)

cursor serp 71.2 72.0 71.2 71.6 (-0.6%)

cursor trail 65.8 65.8 65.8 65.8 (-8.6%)

query 68.9 68.7 68.9 68.8 (-4.4%)

click 66.3 66.2 66.3 66.3 (-8.0%)

time 70.1 70.5 70.1 70.3 (-2.4%)

QCT 71.8 72.3 71.8 72.0 (n/a)

MB 61.7 38.1 61.7 47.1 (-33.4%)

Table 5.9: Accuracy, Precision, Recall and F1-measure for the full FSB model, the single

feature groups, and the QCT, MB baselines. The percentage of improvement over the QCT

baseline is reported for the F1-measure.

Feature Group Ablation: The results are summarized in Table 5.10. The differ-

ences between the full model FSB and all the feature ablation methods are signifi-

cant at .05 level under paired t-test except for FSB-query, suggesting all the feature

groups except the query group contribute significantly to the full model even when

other feature groups are presented. The largest decrease comes from removing the

cursor feature group. Interestingly, even though cursor serp seems to contribute

more than the cursor trail subgroup, the contributions from both of the two sub-

groups are statistically significant as supported by the fact that FSB-cursor signifi-

cantly underperforms FSB-cursor serp and FSB-cursor trail.

Aggregation Functions: The results are summarized in Table 5.11. The differences

between different methods are statistically significant at .05 level under paired t-test.

As we can see, all the single aggregation functions underperform the full FSB model
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Methods Acc (%) P R F1 (% Diff.)

FSB 77.1 77.9 77.1 77.5 (n/a)

FSB-cursor 71.8 72.3 71.8 72.0 (-7.3%)

FSB-cursor serp 72.2 72.6 72.2 72.4 (-6.6%)

FSB-cursor trail 73.7 74.5 73.7 74.1 (-4.4%)

FSB-query 77.3 78.0 77.3 77.6 (+0.2%)

FSB-click 74.8 75.7 74.8 75.2 (-2.9%)

FSB-time 73.3 73.9 73.3 73.6 (-5.0%)

Table 5.10: Accuracy, Precision, Recall and F1-measure for feature group ablation. The

difference compared to the FSB full model is reported for the F1-measure.

that utilizes all the three functions. Among the individual functions, FSB (thres)

performs the best, followed by FSB (med) and FSB (avg), showing the importance

in selecting the aggregation functions.

Methods Acc (%) P R F1 (% Diff.)

FSB 77.1 77.9 77.1 77.5 (n/a)

FSB (avg) 71.9 72.4 71.9 72.1 (-7.2%)

FSB (med) 72.8 73.4 72.8 73.1 (-6.0%)

FSB (thres) 73.1 73.8 73.1 73.4 (-5.5%)

Table 5.11: Accuracy, Precision, Recall and F1-measure for individual aggregation func-

tions. The difference compared to the FSB full model is reported for the F1-measure.
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5.3 Predicting Success in Mobile Search

In this section, the success prediction model is generalized to the mobile search

space, where a smart phone with a touch screen was used by the searcher. Sim-

ilar to the more traditional desktop setting, client-side interactions were found to

be particular predictive of search success in this study. The methodology is first

introduced, followed by the results and findings.

5.3.1 Methodology

A controlled user study was conducted to collect data with known search success

outcome. Ten subjects were recruited (6 male, 4 female, average age 26.2 ± 3.2).

All subjects were undergraduate and graduate students or staff at the Emory Uni-

versity, and had some experience with Web search and smart phones. The search

tasks (descriptions are given in Table 5.12) were designed for this study to be repre-

sentative of common Web search tasks on mobile devices. The tasks have varying

difficulty and topics, and highlight geographical intents that have been identified as

a significant portion of mobile information needs [36].

The user study proceeded as follows: before the tasks began, the participants

were given a tutorial of using the phone, including opening bookmarks, clicking,

zooming, scrolling, and changing the physical device orientation. Next, a warm-up

task was given to each participant to familiarize them with the task procedure. To

begin each task, the participants were presented a task description and an initial

query. For each task, the participants were instructed to first open the bookmark

with the Google search engine result page (SERP) of the initial query. Once they

reached the SERP, they could click the search results and/or reformulate the query

if needed until the information was found or it took too long than they would spend

in reality. After each task, the participants were asked a few questions, including

whether they have successfully completed the task and how satisfied they were

about the search experience during the task. Following the warm-up, eight search

tasks were given to each participant.
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Check the weather to determine how you would dress today (weather)

Find the MARTA routes and schedules from Georgia Tech to Emory on Tuesdays

after 7PM (marta schedules)

Find out today’s hours of WoodPEC swimming pool

Find the address and the driving directions from Emory University to Lenox

Square

Find the closest zipcar location to MathCS (zipcar locations)

Find out the names of the three Niagara Falls and read a bit about them

Find the earliest show times of “social network” after 7:00 PM today in the closest

movie theater (social network)

Find out the nearby restaurants that are opened between 7:00-9:00 PM today, with

approximately 15 dollars cost per person (restaurant).

Table 5.12: Task descriptions (initial queries).

To capture the client-side interactions, including the number of browsed pages,

zooming, and sliding, a modified version of the Chrome browser application 3 was

developed for the Android phone. The events are encoded in a string and sent to the

server as HTTP requests for analysis.

For each of the success and satisfaction dimensions, the prediction task was for-

mulated as binary classification: that is, each search task was classified into two

classes: successful/satisfied (user selected “very successful/ satisfied” in the post-

task questionnaire) and unsuccessful/unsatisfied.

Each search task was then represented as a feature vector, with values correspond-

ing to the server-side features and client-side features. The server-side features in-

clude the number of queries, clicks, click-through rate (CTR), average query length

and task duration. The client-side features include the numbers of all browsed

pages, search engine result pages (SERP), and non-SERP pages, as well as the

event counts on these pages (e.g., scrolling, scaling). Additional details about the

features are available on the project website referenced above.
3Available at http://ir.mathcs.emory.edu/intent/data/sigir2011/
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The intuition was that these client-side features can provide additional insights

about the search success and satisfaction level. For example, a small number of

queries and clicks with moderate task duration might indicate a successful search

task, as it seems that the user did not need to spend too much time and effort to

complete the task; however, if the user, during this task, browsed a large number

of pages and had to intensively scroll and rescale on the browsed pages, she might

be actually not satisfied and not even successful, since she actually spent a lot of

efforts and was keeping searching without finding the relevant information.

Various classification algorithms were experimented with, including Bayes Net-

work (BN), Support Vector Machines (SVMs), decision trees, and others. Classi-

fication results are reported for BN only, as it performed best in this setup, even

though other algorithms achieved similar performance.

5.3.2 Results and Discussion

To simulate the real scenarios in mobile search, where searchers are less likely to

attempt time-consuming and complex searches, none of the assigned tasks were

overly difficult. As a result, the means of success and satisfaction ratings are 3.25

(std=1.0) and 3.0 (std=1.2) respectively, on a 5-point scale (i.e., 0 represents very

unsuccessful/unsatisfied, 4 represents very successful/satisfied). Interestingly, suc-

cess rating has a noticeably higher mean and the correlation between these two are

high but not perfect (R=0.81), which makes sense since users might feel unsatis-

fied about the experience even if they end up finding the information successfully.

Also, the noticeably higher variance of the satisfaction ratings for each task suggests

higher subjectivity of making satisfaction judgments.

As we can see in Figure 5.7, some tasks are better solved, while other tasks have

more room for improvement. Interestingly, for easier tasks, the variance of both

satisfaction and success ratings across users is smaller. In contrast, for more difficult

tasks, the variance of both satisfaction and success ratings is larger, which suggests

significant opportunities for personalization, or of exploiting successful “expert”
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Figure 5.7: Success (a) and Satisfaction (b) by Task ID.

mobile searchers to help unsuccessful “novice” mobile search users.

Ten-fold cross validation was used: in each fold, tasks of nine participants were

used for training and the remaining tasks of the left-out participant were used for

testing. The average of the results across the folds are reported in Table 5.13. As

we can see, the BN classifiers (the proposed models) significantly outperformed the

majority baselines, exhibiting the accuracy of 79% compared to the baseline system

(accuracy of 54% for predicting satisfaction and 58% for predicting success). Inter-

estingly, using client-side features achieved better performance than using server-

side features, and combining the two achieved optimal performance for predicting

search satisfaction, while clients-side achieved the best performance in predicting

search success.

To understand the contributions of the various features, the χ2 statistic was com-

puted for each feature with respect to the class. The most significant features found
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Method
Both Successful Unsuccessful

Acc F1 Prec. Recall Prec. Recall

Baseline 57.5 36.5 57.5 100 0 0

Server 66.3 64.2N 67.9N 78.34 63.0N 50.0N

Client 80.04 79.2N 80.0N 87.04 80.0N 70.6N

Full 78.84 78.0N 79.6N 84.84 77.4N 70.6N

Method
Both Satisfied Unsatisfied

Acc F1 Prec. Recall Prec. Recall

Baseline 53.8 35.0 53.8 100 0 0

Server 71.5N 68.1N 66.1N 95.3 88.9N 43.2N

Client 76.3N 75.6N 74.0N 86.0N 80.0N 64.8N

Full 78.8N 78.5N◦ 78.3N◦ 83.7N◦ 79.4N 73.0N◦

Table 5.13: Results of predicting success and satisfaction. Significance of differences is

indicated between models and: Baseline: 4p < .05, Np < .01; Server: ◦p < .05, •p < .01.

include the number of browsed pages, number of non-SERP events, task duration,

click-through rate, number of clicks and average query length. Generally, the more

effort a user spent on searching, the less likely she were to be satisfied or successful

– which makes sense in a mobile setting, where the screen size is small, the band-

width is limited, and each user interaction requires effort. Two examples are given

in Figure 5.8.
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(a) successful (b) unsuccessful

Figure 5.8: (a) An example page that leads to a successful task (“social networks”): the

movie show times were presented on the top of the search engine result page; (b) an example

page that leads to an unsuccessful task (“marta schedule”): no instant answer was presented

on SERP and the official site was not optimized for the mobile setting (e.g., fonts too small)
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5.4 Summary

This chapter introduced techniques on modeling interactions for evaluating search

experience at the session-level based on three studies.

The first study presented a novel methodology that emphasizes realistic search

tasks, yet allowing for well-defined, objective success criteria. This methodology

enabled the development of a principled model of web search success that naturally

encompasses previously proposed models. The success prediction models, based

on CRFs and the proposed framework, were trained on the acquired behavior data

and performed adequately on predicting search success on the regular search engine

log, outperforming state-of-the-art baselines such as Markov models.

The second study of Web search success aimed to exploit and aggregate “low-

level” behavioral signals on the session-level for success prediction. This study

presented a new model for representing the searchers’ fine-grained session behav-

ior (FSB) that captures not only information about the queries, clicks and time,

but also fine-grained interactions both before and after clicking on a search result,

such as cursor movements. The experimental results showed that these behavioral

signals indeed correlate with searchers’ explicit judgements of search success, and

provide additional valuable information beyond queries, clicks and the amount of

time users spend on the pages in a search session. It is also found that the dif-

ferent sources of evidence (i.e. behavior before and after a click) carry valuable

complementary information about search success and that the feature aggregation

choice was crucial. In combination, these signals enable FSB to exhibit significant

improvement of predicting search success over the state-of-the-art methods.

The third study of Web search success aimed to generalize the findings to dif-

ferent modalities, focusing on studying the feasibility of predicting search success

and satisfaction in mobile search. The experiments showed that the proposed tech-

niques can predict search success and satisfaction with accuracy of nearly 80%, by

incorporating additional client-side interactions, such as zooming and sliding, out-

performing the baseline methods based on server-side signals such as queries and
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clicks.

The techniques presented in this chapter demonstrated the crucial information lies

in the search interaction data in revealing the search experience and user satisfac-

tion, allowing various important applications in diagnosing and improving search

engine performance.
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Chapter 6

Conclusions and Future Work

This chapter first summarizes the findings, then discusses how the proposed tech-

niques could be integrated in a production search engine, and finally concludes by

considering limitations and future research directions.

6.1 Summary of Findings

This thesis presented techniques for modeling examination through fine-grained

interaction patterns, which, contextualized in a search session, can be used to im-

prove the three fundamental and interrelated areas in Web search and provide more

intelligent and tailored search experience.

The first improved area is intent inference, where the proposed techniques focus

on inferring the immediate search goals of a searcher in a session and modeling

the pre-click examination and interaction patterns on the search engine result pages

(SERPs). The findings in Chapter 3 support the notion that information needs vary

a great deal even for the same search query, and that users examine and interact

with search results differently for distinct information needs. In particular, the find-

ings suggest that user behavior tends to differ between exploratory and directed

search goals. For example, users were found to use mouse more extensively with

typically lower speeds for informational and research-oriented intents while using

the mouse less actively when the search goals were more clear (e.g., for naviga-

tional or transnational intents). Also found was the influence of page content, result

quality, and session context on the behavior. By incorporating evidence from these
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sources, more accurate intent inference was achieved. For example, consider result

quality. A user may need to use mouse more extensively to examine lower-ranked

documents for poor quality results (even for a navigational intent) or may abandon

the search without moving the mouse if the result quality was too poor to be worth

further exploration (even for an informational intent).

The second improved area is estimating document relevance and ranking, where

the proposed techniques focus on estimating the “intrinsic” relevance of a search

document and modeling the post-click examination and interaction patterns on the

landing pages and subsequently viewed pages. The findings in Chapter 4 support

the hypothesis that the fine-grained interactions are associated with the various post-

click viewing patterns that are indicative of the document relevance. In particular,

the findings suggest that user behavior tends to exhibit “reading” patterns when

visiting a relevant document and “skimming” patterns when visiting a irrelevant

document, and these complex patterns are not fully captured by measuring the time

user spent on the visited documents (i.e., dwell time). Also found was the variations

in user behavior – by adjusting the behavioral variance across users, more accurate

relevance estimation was achieved.

The third improved area is automatic evaluation of search experience, where the

proposed techniques focus on inferring the search success by mining rich search

interactions, including the examination patterns both “before” and “after” a click

on the search result. The findings in Chapter 5 support the hypothesis that the fine-

grained interactions provide additional crucial clues about search success beyond

query, click and time information. The two sources of evidence, that is, the exam-

ination patterns both before and after a result click were found to provide valuable

complementary information about the search experience. Among the two, the pre-

click examination was found to be more predictive of search success. The benefits

of modeling the fine-grained interactions were also found for the mobile setting

where a touch screen is used and the interactions include gestures such as pinch-

ing, zooming and sliding. Also addressed in this thread of research was the tension

between log analysis and controlled user studies, where the former lacks of accu-
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rate understanding about search goals and objective measurement of search success

while the latter suffers from the small scale. In particular, the proposed techniques

enable reproducible large-scale remote user studies with pre-defined naturalistic

search goals and objective measurements of search success with various definitions,

resulting a principled framework to study search success – the collected data from

this framework was successfully applied to improving search success prediction for

real search sessions.

In summary, the modeling of both pre-click and post-click examination through

fine-grained interaction, such as mouse movements and scrolling, was found to

provide essential additional clues in improving the search engine performance in

the three different areas, and adjusting for the variations across users and page types

was found to be beneficial, resulting in higher accuracy in predicting the target

variables.

6.2 Integrating Intent Inference, Ranking and Evaluation

As introduced briefly in Chapter 1, the three types of techniques naturally fit in

different components of a search system and may be used to improve the system

performance in a complementary way. In particular, the intent inference and docu-

ment relevance estimation techniques can both be integrated to the ranking module

while the evaluation techniques can be integrated into the monitoring and diagnos-

ing module of the system, which also has impacts on improving the search result

ranking, but from a more indirect fashion. In addition, more accurate intent infer-

ence may also help improving other modules such as query suggestion and result

presentation, and real-time search experience evaluation may enable intervention

for additional assistance.

Web search result documents are retrieved and ranked based on their relevance

to the Web search query, which is measured or computed through a ranking func-

tion. Classic ranking functions typically measure textual similarities between doc-

uments and the given query (e.g., BM25 [116]). However, modern search engines
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adapt the learning-to-rank paradigm [111, 2, 150, 26], where the ranking func-

tion is learned through features derived from the query (e.g., query length), doc-

uments (e.g., PageRank [22]) and query-document pairs (e.g., similarity computed

via BM25 [116]) using machine learning algorithms.

6.2.1 Integrating Intent Inference

Techniques in improving intent inference from Chapter 3 can be used to enrich

the query and query-document feature space and impact the selection of machine

learning algorithms to train the ranker. In particular, the intent classes can be added

as features in the query feature space and intent-document features can be computed

in addition to the query-document features. For example, the ranking function may

promote product review sites for a query “surface” with “research” intent feature

triggered, while promote shopping sites when the “purchase” intent feature is on.

Also, precision-oriented learning algorithms may be selected for navigational intent

while recall-oriented learning algorithms may be selected to improve coverage and

diversity for informational intent. Furthermore, better intent inference may also

help improving query suggestion and result presentation. For example, if the search

intent was informational, query suggestions may be provided to uncover different

aspects of the topics and a more interactive and exploratory search interface may be

preferred; in contrast, if the search intent was navigational, query suggestions may

be provided for navigating to similar websites and a hub-like search result page

highlighting different possible sites to navigate may be more appropriate.

6.2.2 Integrating Relevance Estimation

Techniques in improving relevance estimation from Chapter 4 can be used to enrich

the query-document, intent-document and document feature spaces. For example,

the estimated relevance of a document with respect to a query or an intent class

can be added as a feature. Alternatively, the raw PCB features proposed in Chapter

4 may be incorporated directly to the learning-to-rank framework. These features
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may be further aggregated at the document level, indicating the overall likelihood of

relevance of the document. These techniques would probably have the most direct

impacts on improving search result ranking.

6.2.3 Integrating Automatic Evaluation

While the proposed techniques in intent inference and document relevance may be

more directly impacting the learning of the ranking function, the automatic eval-

uation techniques proposed in Chapter 5 enable the large-scale measurement and

monitoring of the search engine performance, especially, when changes (such as

those brought by applying the proposed intent inference and relevance estimation

techniques) have been made to the search engine. The automatic evaluation tech-

niques also enable deeper analysis and allow for more substantial improvements

that cannot be achieved by improving intent inference and relevance estimation.

For example, if the reason of failure of some search task is found to be the absence

of documents in the index, then the improvements may be made to the crawling or

indexing modules. Such cases are out of scope for the intent inference, relevance es-

timation techniques introduced in Chapter 3 and 4. In addition, in an online setting,

the automatic evaluation techniques can be used to gauge the search experience in

real-time and intervene when likely failure was detected.

6.2.4 Pre-click and Post-click Instrumentation

To enable the modeling of pre-click examination, the Javascript tracking code can

be embedded in the returned SERPs without requiring additional installation, which

makes the fine-grained interaction models applicable to all the general Web search

engine users. To model the post-click behavior, browser plugin would be needed for

general purpose Web search engines, as the landing pages are typically not owned

by the search engine companies. As a result, only a fraction of users may en-

joy these additional benefits brought by post-click examination modeling. How-

ever, for specialized search engines who own the search corpus (e.g., Amazon.com,



131

Yelp.com), the post-click modeling could also be applied without requiring addi-

tional installation.

Consider the instrumentation required for the techniques in the three different ar-

eas. For intent inference and success prediction, pre-click examination was found

to be the major source of improvements, so even without post-click instrumenta-

tion, all the search engines users may be benefited from embedding the Javascript

tracking code in the returned SERPs. For relevance estimation, the proposed tech-

niques, while very effective, can only be fully applied to a fraction of users with

the browser tracking plugin installed, as the post-click instrumentation is needed.

However, the modeling of fine-grained interaction may still improve Web search re-

sult ranking for all users, as pre-click behavior, such as hovering, was also found to

provide additional relevance signals than clicks in previous research [77, 76, 139].

In summary, the modeling of the fine-grained interaction can be applied to all

general search engine users with the pre-click instrumentation for improving the

different Web search applications. Also, when a browser plugin is available or the

search engine owns the landing pages, the post-click instrumentation can also be

enabled and additional improvements can be brought to the search engine users.

6.2.5 Infrastructures for Offline and Online Deployment

As mentioned in earlier chapters, the proposed fine-grained interaction models can

be deployed in either an offline or an online setting, with different settings require

different underlying infrastructures. In an offline setting, the rich interaction data

can be collected and used to re-train the ranking function (Chapter 3 and 4) period-

ically and measure the search engine performance (Chapter 5). In an online setting,

the rich interaction data need to be exploited “on-the-fly” to re-rank search results

in real-time (Chapter 3 and 4) and/or detect struggling users to provide additional

assistance (Chapter 5).

For an offline setting, the data collection can be implemented through instru-

menting the SERPs for pre-click behavioral modeling and through instrumenting
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a browser plug-in for post-click behavioral modeling, as discussed in the previous

section. One possible implementation of such logging system is the EMU sys-

tem [61] proposed in the thesis, which was implemented through sending asyn-

chronous HTTP requests that encode logged usage data to avoid noticeable over-

head and has been successfully deployed at Emory Libraries for years without caus-

ing any reported problems in degrading user experience. While feasible, orders-of-

magnitude larger of interaction data needs to be collected to enable the fine-grained

behavioral modeling described in the thesis, therefore, large-scale data processing

capabilities are needed.

For an online setting, in addition to collecting the rich interaction data as in the

offline setting, a real-time agent to interpret the collected data is needed. The real-

time feedback interpreting agent can be deployed on the server-side, such as the

underlying infrastructure of Google Instant 1 or SurfCanyon 2 that allows dynamic

re-rendering of SERPs; or on the client-side as a browser plugin such as the UCAIR

toolbar [125] that alters SERP locally. The former server-side approach allows

benefiting a larger user base without requiring additional installation but increase

the server-side computation burden. The latter client-side approach flips the pros

and cons by distributing the centralized computation but limits its applicability due

to the required installation. Other benefits of the client-side instrumentation include

the availability of post-click behavior data (as mentioned above) and the increased

privacy protection (user search history may be stored locally without being sent

back to the server through the Web).

6.2.6 Evaluating the Deployed System

Before deployment, the effectiveness of the individual modules need to be tested

offline and only deployed when the test results meet the requirements.

Different methods of offline evaluation were considered in the thesis. The most

adopted method was evaluating over labels from controlled user studies with tens
1www.google.com/instant
2http://surfcanyon.com/
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of participants and hundreds of search tasks (either through self-report or pre-

assignment). Alternatively, third party annotations were used for predicting general

intent (Chapter 3), real user behavior (i.e., future ad click-through in a session) was

used as proxy of “ad receptiveness” (Chapter 3), and remote user studies of hun-

dreds of users were conducted for success prediction under the UFindIt framework,

where self-reported and third party judgements were both considered (Chapter 5).

As shown in Chapter 3, 4, and 5, the accuracies of many of the proposed tech-

niques fall in the 70-90% range based on the offline evaluation, well above the base-

line models learned through a limited set of behavioral signals. While the absolute

accuracy may not be as high as 95% or above (which may be deemed necessary

for deployment in certain applications to avoid the risk of hurting search experi-

ence), their accuracy may actually be sufficient for production deployment, as the

beaten baseline systems are very similar to the deployed state-of-the-art systems.

That is, incorporating the proposed techniques to the existing systems is very likely

to improve the system performance and the low absolute numbers may be due to

the difficulty of the problems. Also, as the overall improvement of the proposed

techniques may also result in hurting performance of the minority of the searches,

risk-sensitive optimization based methods [136] may be adapted to minimize risk

and ensure ranking robustness. In addition, for scenarios where high precision is

needed, sacrificing recall may push the precision into the higher (more acceptable)

ranges.

When deployed, the proposed intent inference and relevance estimation tech-

niques can be further evaluated with A/B testing [16], while the proposed evaluation

techniques provide novel metrics for such testing with the live search traffic.

With A/B testing, two different versions of search systems are deployed and com-

pared. For example, one of the two systems may be the one with the proposed intent

inference techniques integrated, which provides an interactive search interface if the

search session is detected to be with a more exploratory intent, and the other system

is the original system that provides a same search interface. After these two sys-

tems are deployed, different user behavior metrics may be computed over time and



134

be used to compare the user satisfaction with the two systems. Similarly, systems

with and without the improved relevance estimation techniques integrated may be

also compared through running A/B testing.

To measure the search experience, different metrics can be considered. A fre-

quently used metric is the result click-through rate (CTR) [82, 112, 32], which

indicates the attractiveness of the search result – the higher the CTR the better

the search experience is likely to be. However, as we have seen in Chapter 4 and

Chapter 5, click-through may not indicate the intrinsic relevance of a document;

therefore, metrics, such as “success rate”, may be more meaningful, which can be

computed through the success prediction algorithms introduced in Chapter 5. In ad-

dition, other metrics, such as monthly number of search sessions per user, that are

indicative of long-term user engagement and loyalty, can also be used to provide a

complimentary view about the search experience.

6.3 Limitations and Future Work

While the results and findings are promising, the techniques introduced in the thesis

have a few limitations.

First, the additional effectiveness brought by the presented models may be limited

for an unseen information need and/or unseen documents in the search log, when

the corresponding interaction data is not yet available. This limitation is prevalent

for any other user models that require searcher interactions as input (e.g., click

models). To address this limitation, one possible solution is to utilize the interaction

data from the similar information needs and or similar documents that are observed

previously. Also note that, in an online setting, as the search session progresses,

the interaction data accumulated from the initial search(es) and page view(s) is

available to improve the search experience for later searches.

The second limitation lies in the lack of fine-grained interactions when the corre-

sponding tracking instrumentation is not available – instrumenting result pages is at

the discretion of the search engine designers but instrumenting landing pages would
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require browser plug-in deployment and/or partnership with the landing page hosts,

as mentioned earlier.

Third, the effectiveness of the proposed models may be limited to modalities other

than personal computers (with a mouse and keyboard) and devices with a touch

screen (e.g., tablet, smart phone). The fine-grained interaction modeling in the

thesis mainly focuses on the mouse cursor movements and a smaller fraction of the

research aims to model the gestures on a touch screen – in Chapter 5, the pinching,

zooming and sliding interactions on a smart phone touch screen are shown to be

useful in predicting search success. While the results are promising, further studies

are needed to understand the effectiveness of the gesture-based behavioral models

on other applications such as intent inference and relevance estimation. Also, with

the rise of natural interfaces, such as that with the Xbox Kinect, more substantial

adaption of the proposed models may be needed.

Outlined below are some interesting future research directions, including imme-

diate extensions of the thesis that address some of the limitations listed above, and

longer-term research directions that build on the presented techniques.

• Extending supported intent inference classes: As we have seen in Chap-

ter 3, the rich interaction intent model was able to infer immediate informa-

tion needs more accurately for various search intent dimensions, including the

general intent and commercial intent. As a immediate extension, other dimen-

sions of search intent may be considered, such as the topical intent categories

(e.g., arts, computers, sports).

• Addressing sparsity in the fine-grained interaction data: As pointed out

earlier as a limitation, the sparsity in the interaction data (e.g., unavailable

for unseen queries and unseen documents) may limit the applicability of the

presented models. To address this issue, techniques need to be developed to

link unseen information needs and documents to the observed ones, possibly

through modeling textual similarities and co-occurrences (e.g., in the same

search results or sessions).



136

• Adapting to different modalities: While some initial success has been achieved

in Chapter 5, further extensions in this direction include analyzing the fine-

grained behavioral patterns with a touch screen in more depth, developing

prediction models for other applications (e.g., ranking), modeling the be-

havior on customized mobile apps (other than Web searching in the mobile

browser), and incorporating mobile context (e.g., location, personal informa-

tion). Also, further extensions can be done with natural interfaces such as that

of the Xbox Kinect.

• Modeling reading behavior and sub-document level implicit feedback:
As discussed in Chapter 2, some recent success has been achieved in predict-

ing gaze positions from cursor movements and modeling gaze movements

for sub-document level implicit feedback. To extend this thread of research,

reading behavior may be extracted on top of the predicted gaze positions,

which can be used to obtain implicit relevance feedback at the level of the

sub-documents.

• Developing online interactive search systems: An online interactive system

can be developed by integrating the presented techniques as described earlier,

which infers the immediate information needs, re-ranks search results and

provides other search assistance while evaluating and monitoring the search

experience in real-time.

In summary, the thesis has shown that modeling the rich search interactions enable

improved understanding of the searcher information needs, more accurate estima-

tion of document relevance, and better evaluation of search engine performance at

the session-level, using machine learning and data mining techniques. The pre-

sented techniques and ideas allow for more effective and intelligent search systems,

providing building blocks for more extensive research in the area of information

retrieval and user behavior modeling.
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