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Abstract  

 

The Application of Spatial Regression Analysis in Examining the Relationship Between 

Drinking Water Contaminants and Cancer Incidence Rates in Iowa and Illinois  

By Sabah Munir 

 

 

Background: Past studies have examined the relationships between drinking water contaminants 

and cancer risk or incidence. However, many of these previous designs limited their scope to just 

one state, and the use of GIS techniques was restricted to only studying cancer incidence 

patterns. The current study sought to use spatial regression analysis to study the relationships 

between drinking water contaminants and cancer incidence in two Upper Midwest states (i.e., 

Iowa and Illinois).  

 

Materials and Methods: Gaussian GAMs were used to conduct exploratory analyses between 

contaminants and cancer incidence rates while controlling for state and county urbanicity 

identifiers. SAR models helped study the associations between contaminants and cancer 

incidence rates while controlling for state and county urbanicity and examining the significance 

of spatial dependency on contaminant data.  

 

Results: Both Illinois and Iowa reported fewer variations in concentration values for nitrates and 

arsenic. Higher radium values clustered in eastern Iowa and northern Illinois, and high haloacetic 

acids and total trihalomethane concentrations occurred in the southern halves of each state. 

Cancer incidence rates for all four cancers were varied across both states, and a cluster of higher 

prostate incidence was identified in western Iowa. Based on spatial analysis, for the incidence 

rates of both colon and rectal cancer and lung and bronchial cancer, radium yielded negative 

associations while total trihalomethanes yielded positive associations. Exploratory analysis also 

yielded significant positive associations between radium and female breast cancers and between 

haloacetic acids and lung and bronchial cancers. No significant associations were found between 

any contaminants and prostate cancer.  

 

Discussion and Conclusions: The findings regarding radium’s association with cancer incidence 

supported only past literature for female breast cancer. Likewise, the findings regarding 

haloacetic acids and total trihalomethanes partly supported past literature for colon and rectal and 

lung and bronchial cancers. Spatial regression was useful in identifying relationships between 

contaminant exposure and cancer incidence while controlling for state and urbanicity 

classifications, although only one model demonstrated significant second-order spatial 

dependence. The existing model can be expanded further by including additional variables, 

stratifying the dependent variable by socio-demographic factors, or including more states in the 

sample data.  
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1. Introduction 

In the United States, incidence rates for most types of cancer have been decreasing or have 

remained stable since the year 1975 (Siegel et al., 2021). However, specific directions of change in 

cancer incidence can differ based on cancer site/type and socio-demographic factors. For example, 

male prostate and female breast cancer incidence rates grew in the 1980’s and 1990’s due to 

increased awareness and screening. Likewise, different patterns can be observed within a cancer type 

based on sex; between 1975 and 2017, female lung and bronchus cancer incidence rates increased as 

the corresponding rates for males decreased. This was partly due to changes in smoking prevalence, 

where the overall rate of smoking decreased but that some female birth cohorts reported increased 

smoking prevalence compared to preceding cohorts (Siegel et al., 2021).  

The risk for cancer can also vary based on whether an individual lives in a rural area. Farmers 

were found to be at a lower risk for colon and lung cancers but at a higher risk for prostate cancer and 

for relatively less-common cancers (e.g., brain cancer) (Blair & Freeman, 2009). As found in the 

context of late-stage colorectal cancer, however, higher rates of late-stage cancer were less prevalent 

in urban locations and more associated with increased rates of non-local diagnoses. Individuals from 

rural locations were more likely to travel longer distances to access facilities equipped for cancer 

diagnoses, most of which are located in urban areas (Rushton et al., 2004). Therefore, urbanicity 

status does play some role in the incidence and severity of cancers.   

Cancer development can be impacted by many exposure-related factors, one of which 

includes the widespread use of chlorine as a drinking water disinfectant (Evans et al., 2020). Despite 

this process reducing the risk of infection from water-borne pathogens, water chlorination also 

produces several byproduct compounds that are thought to be associated with negative health 

outcomes such as birth defects, miscarriages, and cancer (Evans et al., 2020). These chlorination 



2 

 

 

byproducts can be categorized into different groups, of which trihalomethanes and haloacetic acids 

comprise a majority of all chlorination byproducts (Gopal et al., 2007). Total trihalomethanes, or 

TTHMs, result from the reactions between hypochlorous acid (a compound derived from reactions 

between water and chlorine gas) and other organic compounds in water. Among the class of 

trihalomethanes, chloroform, bromodichloromethane, and bromoform are of specific interest with 

respect to their effects on cancer development. Bromoform in particular is associated with a small 

incremental lifetime risk for colon and rectal cancer (Dobaradaran et al., 2020), and exposure to high 

levels of chloroform is associated with an increased risk of breast cancer (Font-Ribera et al., 2018). 

Likewise, haloacetic acids, abbreviated as HAA or HAA5, come from reactions between chlorine and 

other organic compounds; dichloroacetic acid is of most concern in this category as a potential 

carcinogen. Past meta-analyses have indicated that the byproducts of water chlorination do not 

significantly change the relative risks for breast, colon, or lung cancers, but they do significantly 

increase the risk for rectal cancer (Morris, 1995).   

Other potentially-carcinogenic chemicals can seep into drinking water sources from the soil; 

this includes radium, arsenic, and nitrates. Radium is often found in aquifer systems across the United 

States; it can seep from the soil into water ahead of its use for human consumption (Szabo et al., 

2012). Levels of radium-226 above 5 pCi/L were associated with higher risks for lung cancer among 

males and breast cancer among females (Bean et al., 1982). Arsenic levels in groundwater samples, 

especially in the Upper Midwest, tend to be elevated due to the presence of glacial sediments in the 

soil (Erickson & Barnes, 2005). Higher exposure levels of arsenic were associated with higher risk 

ratios for prostate cancer, including aggressive cancers; it is also key to note that even at these higher 

levels, the arsenic concentration is still considered as low-level (Roh et al., 2017). Nitrate can 

naturally occur in soils as a result of bacteria, dying vegetation, or animal waste products, but it can 
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also come from fertilizers or as airborne industrial or automobile outputs (Manassaram et al., 2006). 

Because of its prevalence in soil, nitrate can contaminate groundwater, which serves as a major 

source of drinking water (Manassaram et al., 2006). Even at acceptable levels of nitrate, increased 

concentrations in drinking water are associated with an increased risk of colorectal cancer 

(Schullehner et al., 2018). Other studies have reported mixed findings. For example, no association 

was found between increasing concentrations of nitrates and the relative risks for different cancers 

(colon, breast, lung) among older Iowan women, but these nitrate levels showed a significant 

negative relationship with the risk for rectal cancers, suggesting a protective effect (Weyer et al., 

2001).   

 In this project, we used a spatial simultaneous autoregressive model to examine cancer 

incidence rates in two states in the Upper Midwest: Iowa and Illinois. These two states were selected 

for characteristics that may be relevant to cancer risk. Both states were affected by geographic factors 

such as the Late Wisconsinan glacial drift and the Mid-Continent and Ozark Plateau Cambro-

Ordovician aquifer system, which were implicated for higher groundwater arsenic and radium levels 

in the region (Erickson & Barnes, 2005; Szabo et al., 2012). In addition, these neighboring states are 

unique in that they are home to major urban areas while also being agriculture-heavy, and their 

shared border is defined by a major waterway (the Mississippi River) that is often a focus of health 

and environmental research (Jones et al., 2018).  

The present analysis on these two states would allow us to examine the relationship between 

cancer incidence rates and the concentrations of certain drinking water contaminants while 

considering the role of spatial dependence. While past studies have also examined this relationship, 

many of them such as Blair and Freeman (2009) and Rushton et al. (2004) have focused on a single 

state. In addition, studies such as Mandal et al. (2009) and Rushton et al. (2004) also utilized GIS 
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techniques, but their analyses were limited to patterns in cancer incidence across one or more states. 

Our current analysis covers two states in examining both cancer incidence and variations in 

contaminant concentrations.   

2. Materials and Methods 

2.1 Data Sources 

2.1.1 Drinking Water Contaminant Data 

 We obtained drinking water data between January 1990 and December 2017 that had been 

collected as part of the Environmental Protection Agency’s Safe Drinking Water Information System 

(SDWIS). As required by the Safe Drinking Water Act, local agencies in each state regularly measure 

drinking water sources at various locations in state counties for contaminants and organisms, the 

results of which are stored in a federal database. Direct requests for water sample measurements were 

made to Iowa and Illinois authorities. Iowa water data from all 99 counties were obtained via email 

communication with a water supply environmental specialist at the Iowa Department of Natural 

Resources. Illinois water data from all 102 counties were obtained through a combination of an 

official FOIA request and email communication with a public service administrator at the Illinois 

EPA. The raw SDWIS datasets for Iowa contained 33,608 nitrate observations, 4,357 radium 

observations, 4,771 arsenic observations, 19,456 haloacetic acid observations, and 29,578 total 

trihalomethane observations. The raw SDWIS datasets for Illinois contained 49,070 nitrate 

observations, 14,250 radium observations, 20,912 arsenic observations, 70,531 haloacetic acid 

observations, and 74,708 total trihalomethane observations.  

Within each contaminant type, all observations belonging to a given county were used to 

calculate a mean concentration value across the full 1990-2017 exposure window for that county. In 

addition, this method was used to calculate decade-specific mean concentration values, where the 
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year of collection was extracted as a new variable and used to flag whether the observation was 

recorded in the 1990’s, the 2000’s, or the 2010’s prior to finding county-level means in each decade 

subset. Descriptive statistics of the county-level drinking water data are presented in Table 1, 

including the number of counties with available data and means, standard deviations, and ranges 

across counties.  

Table 1. Descriptive statistics for county-level drinking water contaminant concentrations by state and exposure window 

  Iowa  Illinois 

Contaminant By Exposure Window, 

Units 

Sample 

Size 

Mean (SD) Range Sample 

Size 

Mean (SD) Range 

Nitrates, mg/L       

-All Years 99 2.21 (1.70) 0.07-6.87 99 1.56 (1.80) 0.01-8.15 

-1990-1999 99 2.51 (2.02) 0.03-8.14 99 1.51 (1.69) 0-7.31 

-2000-2009 93 2.00 (1.72) 0.02-6.87 99 1.41 (1.66) 0-7.61 

-2010-2017 92 2.09 (1.71) 0.08-6.07 99 1.58 (1.89) 0-9.39 

Radium, pCi/L       

-All Years 94 1.77 (1.16) 0.18-5.20 99 1.98 (1.52) 0.24-5.85 

-1990-1999 90 1.66 (1.41) 0-6.10 27 6.10 (2.73) 1.50-13.00 

-2000-2009 93 1.83 (1.16) 0.33-5.62 95 2.14 (1.85) 0-7.31 

-2010-2017 92 1.38 (1.18) 0-4.10 99 1.71 (1.13) 0-5.22 

Arsenic, μg/L       

-All Years 99 0.92 (1.29) 0-7.59 99 2.74 (4.08) 0-30.50 

-1990-1999 99 0.24 (0.58) 0-3.23 98 2.22 (3.17) 0-14.80 

-2000-2009 92 1.40 (1.66) 0-9.86 99 2.97 (5.78) 0-48.90 

-2010-2017 91 1.31 (1.48) 0-7.84 99 2.48 (3.11) 0-14.50 

Haloacetic Acids (HAA5), μg/L       

-All Years 99 11.40 (11.20) 0.45-54.10 99 16.10 (10.30) 0.72-43.30 

-1990-1999 11 15.50 (7.77) 3.50-25.70 63 20.10 (19.80) 0-95.70 

-2000-2009 99 11.10 (13.20) 0.00-66.90 99 17.40 (14.30) 0.61-93.90 

-2010-2017 99 11.20 (10.00) 0.60-44.40 99 14.30 (8.49) 0.79-33.90 

Total Trihalomethanes (TTHM), μg/L       

-All Years 99 23.10 (15.80) 1.50-79.20 102 37.30 (46.00) 3.03-425.00 

-1990-1999 74 9.87 (15.80) 0-99.40 78 38.40 (25.50) 0-113.00 

-2000-2009 99 26.00 (20.20) 0.52-84.60 102 44.70 (105.00) 1.95-1030.00 

-2010-2017 99 25.70 (15.60) 1.66-64.20 102 29.70 (14.70) 3.62-62.20 

 

2.1.2 Cancer Incidence Data 

 County-level cancer incidence rates were downloaded directly from the State Cancer Profiles 

public database of the National Institutes of Health (National Cancer Institute). Rates were provided 

as the latest five-year age-adjusted incidence rates per 100,000 based on data from 2013-2017. 



6 

 

 

County-specific rates were obtained for Iowa and Illinois based on specific cancer site (colon and 

rectum, lung and bronchus, breast [female only], or prostate), sex (both sexes, males, or females), and 

age group (all age, <65, or 65+). Incidence rates included all race/ethnicity groups and cancer stages. 

Descriptive statistics of cancer incidence rates are presented in Table 2. As stated on the State Cancer 

Profiles database, county cancer data was suppressed if there were less than 16 cases of a given 

cancer. For the purposes of the current analysis, suppressed county cancer data was treated as missing 

data.  

Table 2. Descriptive statistics for county-level cancer incidence rates per 100,000 population by state 

  Iowa  Illinois 

Cancer Site Sample 

Size 

Mean (SD) Range Sample 

Size 

Mean (SD) Range 

Colon and Rectum       

-Overall 97 45.90 (8.71) 29.60-75.60 98 47.10 (7.81) 34.30-67.80 

-Male 83 53.00 (12.30) 29.50-99.90 88 53.60 (9.53) 35.10-73.10 

-Female 79 41.50 (9.24) 22.90-58.90 88 41.30 (8.35) 27.20-63.80 

-<65 53 22.20 (6.76) 12.00-49.50 80 22.30 (4.82) 14.30-43.80 

-<65, Male 27 24.40 (6.73) 12.20-42.50 58 26.10 (6.84) 13.20-45.10 

-<65, Female 16 18.90 (3.50) 13.30-26.50 46 19.10 (5.45) 10.80-42.20 

-65+ 90 223.00 (44.60) 132.00-321.00 92 223.00 (48.50) 122.00-392.00 

-65+, Male 49 262.00 (60.20) 162.00-425.00 73 255.00 (50.50) 174.00-424.00 

-65+, Female 60 207.00 (51.00) 137.00-312.00 70 197.00 (47.70) 115.00-363.00 

Lung and Bronchus       

-Overall 99 62.70 (11.70) 29.90-91.80 102 76.30 (15.50) 50.20-134.00 

-Male 95 75.90 (16.90) 36.20-128.00 99 91.50 (21.20) 52.70-147.00 

-Female 86 54.80 (12.00) 26.20-84.80 96 65.40 (13.30) 45.00-125.00 

-<65 63 22.50 (5.48) 11.30-40.90 90 27.60 (8.88) 12.10-67.20 

-<65, Male 27 24.00 (6.03) 12.70-40.00 74 29.90 (10.50) 12.40-64.60 

-<65, Female 25 23.00 (7.43) 12.90-40.40 60 26.00 (8.32) 11.90-46.20 

-65+ 97 354.00 (66.80) 159.00-536.00 101 417.00 (78.30) 277.00-643.00 

-65+, Male 85 456.00 (107.00) 233.00-777.00 94 518.00 (117.00) 307.00-936.00 

-65+, Female 72 305.00 (68.50) 196.00-493.00 90 342.00 (70.90) 204.00-584.00 

Breast (Females Only)       

-Overall 98 125.00 (23.60) 69.60-220.00 100 128.00 (18.30) 80.30-173.00 

-<65 84 84.30 (17.10) 39.80-155.00 90 85.40 (13.40) 51.70-124.00 

-65+ 89 443.00 (80.60) 241.00-674.00 92 442.00 (75.10) 278.00-681.00 

Prostate (Males Only)       

-Overall 99 109.00 (26.00) 56.70-177.00 100 105.00 (17.60) 66.00-159.00 

-<65 74 47.70 (13.40) 27.60-85.40 80 42.70 (8.72) 17.60-67.60 

-65+ 90 581.00 (124.00) 347.00-875.00 95 544.00 (99.90) 331.00-806.00 
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2.1.3 Urbanicity Identification 

 Identification of a county as metropolitan, micropolitan, or rural was based on designation by 

the US Health Resources and Service Administration’s Federal Office of Rural Health Policy 

(FORHP). The available FORHP dataset contains only those counties in the United States that 

constitute rural areas as per FORHP guidelines, including metros that are located in a rural census 

tract and both micropolitan and rural areas. Six counties in Illinois were not linked by the FORHP as 

they were identified as being part of the Chicago metropolitan area. Instead, they were manually 

added to the dataset as urban counties based on Core Based Statistical Areas (CBSA) data available 

on the Rural Health Information Hub website. A summary of CBSA category distributions by state is 

presented in Table 3.  

Table 3. Descriptive statistics for CBSA county types by state 

 Iowa Illinois 

CBSA County Classification Count Percent of Counties (%) Count Percent of Counties (%) 

Metropolitan 21 21.2 40 39.2 

Micropolitan 19 19.2 24 23.5 

Rural 59 59.6 38 37.3 

 

2.2 Statistical Analysis 

 All data management and analyses were performed using R. Specifically for the purpose of 

model building, the “mgcv” package was used to fit generalized additive models while the “spdep” 

package was used to fit spatial econometrics models.  

2.2.1 Gaussian Generalized Additive Model 

 Exploratory analyses were conducted to examine associations between each contaminant type 

and the overall incidence rate for each of the four cancers; the incidence rates as stratified by sex or 

age were excluded from the main analysis with the possibility of further analysis at a later time. Both 

linear and non-linear associations between incidence rates and contaminants were considered using 

penalized splines. An F-test was used to compare whether the models with smooth terms were 
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significantly better than their counterparts with only linear terms at α=0.05. All models had the 

following form:  

𝑦𝑖 = 𝛽0 + 𝑓(𝐶𝑂𝑁𝐶𝑖) + 𝛽1𝑆𝑇𝑖 + 𝛽2𝐶𝐵𝑆𝐴𝑖 + 𝜖𝑖 

where for county 𝑖, 𝑦𝑖 was the overall county-specific incidence rate of a single cancer type (colon 

and rectum, lung and bronchus, breast, or prostate), 𝐶𝑂𝑁𝐶𝑖 referred to a given contaminant’s county-

specific mean concentration (as a mean of all available years or as a mean of a specific decade), and 

𝑓( ) denoted either a linear or smooth function. The models were also adjusted for two geographic 

variables: 𝑆𝑇𝑖 (identification of a county as being in Iowa or Illinois) and 𝐶𝐵𝑆𝐴𝑖 (classification of a 

county as being metropolitan, micropolitan, or rural). Model parameter estimates and standard errors 

for 𝐶𝑂𝑁𝐶𝑖 were then used to calculate the estimated risk and 95% confidence intervals, per standard 

deviation for each 𝐶𝑂𝑁𝐶𝑖 exposure, making the final risk values more comparable between 

exposures and exposure window years.  

2.2.2 Simultaneous Autoregressive Model 

 The initial generalized additive models did not account for residual spatial dependence 

between county-level cancer incidence rates. In reality, counties are not separate entities; their 

populations may frequently move around across several neighboring counties in order to access key 

resources. Therefore, it is likely that the location of an individual’s exposure to a certain drinking 

water contaminant is not restricted to just that individual’s county of residence. In addition, 

neighboring counties are likely to share similar spatially-varying risk factors. A spatial analysis 

would thus control for spatial dependence not explained by the model.  

 We considered a spatial simultaneous autoregressive (SAR) model, which allows us to 

account for the effects on the outcome variable from a given county as attributable to immediately-
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neighboring counties or the neighbors of those immediate neighbors. In this manner, the data was 

examined using the following simultaneous autoregressive model:  

𝑌𝑖 = 𝛽0 + 𝛽1𝐶𝑂𝑁𝐶𝑖 + 𝛽2𝑆𝑇𝑖 + 𝛽3𝐶𝐵𝑆𝐴𝑖 + 𝜌𝑾𝒊(𝒀 − 𝜷𝑿) + 𝜖𝑖 

where 𝑌𝑖 was the overall county-specific incidence rate of a single cancer type (colon and rectum, 

lung and bronchus, breast, or prostate). However, this model now accounted for 𝑾𝒊, or the row-

standardized matrix of spatial adjacency effects as first-order (due to immediate neighbors) or 

second-order (due to neighbors of immediate neighbors). Whether the first-order or second-order 

effects yielded different results were assessed by comparing the AIC values of these models and to 

that of the original generalized additive models. From this, the model with the lowest significant AIC 

value was selected and used to derive the parameter estimates and standard errors for 𝛽1. 

3. Results 

3.1 Spatial Visualizations  

 For cancer and 2010-2017 exposure, spatial patterns in contaminant concentration levels and 

cancer incidence were visualized with choropleth maps.  

3.1.1 Distributions of Mean Contaminant Concentrations From 2010-2017 

 Focusing specifically on the 2010-2017 exposure window, the mean concentration for each 

contaminant was plotted for each county in Iowa and Illinois, resulting in five separate choropleth 

maps as indicated in Figure 1.  
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Figure 1. From left-to-right and top-to-bottom, choropleth plots for the mean contaminant concentration during 

the 2010-2017 exposure window for (a) nitrate, (b) radium, (c) arsenic, (d) haloacetic acids, and (e) total 

trihalomethanes 

 Based on the patterns observed in Figure 1, we note that counties in Iowa reported wider 

ranges of concentrations for radium, haloacetic acid, and total trihalomethanes, but for nitrate and 

arsenic, most counties with available data reported means that fell in the lower half of the spectra for 

those contaminants. Counties in Illinois reported wider ranges of concentrations for all contaminants 

except nitrate and arsenic, where isolated pockets of moderate values appeared in central Illinois. For 

radium, both states reported wide concentration ranges; values in the upper half of the concentration 

spectrum (>2.5 pCi/L) occurred especially in far-northeastern Iowa and stretching across northern 

Illinois. Higher values for haloacetic acids (>20 μg/L) and total trihalomethanes (>35 μg/L) occurred 

in southern Iowa and southern Illinois, especially towards these states’ borders with Missouri.  

3.1.2 Distributions of Five-Year Cancer Incidence Rates From 2013-2017 

 The five-year incidence rates for each cancer site were plotted for each county in Iowa and 

Illinois, resulting in four separate choropleth maps as indicated in Figure 2.  
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Figure 2. From left-to-right and top-to-bottom, choropleth plots for the five-year incidence rates, 2013-2017, 

for (a) colon and rectal cancers, (b) lung and bronchial cancers, (c) female breast cancers, and (d) male prostate 

cancers 

 Based on the patterns observed in Figure 2, it was noted that for all four cancer sites, there 

was a wide range of cancer incidence rate values in both Iowa and Illinois. For colon and rectal 

cancer, female breast cancer, and male prostate cancer, the lowest and highest values for incidence 

rates tended to occur in Iowa. As a whole, lower rates of colon and rectal cancers were especially 

present in northeastern Iowa and northern Illinois (30-55 cases per 100,000), but west-central Illinois 

showed a cluster of higher incidence for lung and bronchial cancer (90-110 cases per 100,000). Apart 

from the maximum value in western Iowa, the spread of female breast cancer incidence rates was 

roughly heterogeneous across both states. Western Iowa also tended to have a more distinct clustering 

of counties with high incidence rates for prostate cancer (>130 cases per 100,000) while similar 

clusters were smaller and more spread out in northern and southern Illinois.  
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3.2 Exploratory Analyses  

The purpose of performing initial analyses with a GAM was to examine relationships between 

contaminant exposure and cancer incidence rates while controlling for state (reference of Iowa) and 

urbanicity classification (reference of metropolitan). As seen in Table 4, the resulting linear effects of 

this model yielded the following values of change in incidence rates.  

Table 4. Estimated changes in mean cancer incidence per 100,000 per standard deviation (SD) increase in contaminant and 

95% confidence intervals (CI). Statistically significant associations (p<0.05) are bolded and indicated by *. 

Contaminant Exposure 

Window 

SD Colon Cancer Lung Cancer Breast Cancer Prostate Cancer 

Nitrate 1990-2017 1.89 -0.80 (-2.06, 0.45) 0.10 (-1.86, 2.05) 0.66 (-2.51, 3.83) 2.99 (-0.20, 6.18) 
 

1990-1999 2.01 0.62 (-0.64, 1.87) 0.72 (-1.24, 2.68) 1.04 (-2.13, 4.20) 1.96 (-1.86, 5.77) 
 

2000-2009 1.70 -0.07 (-1.26, 1.12) 1.01 (-0.84, 2.86) 1.32 (-1.62, 4.26) -0.07 (-1.26, 1.12) 
 

2010-2017 1.83 -0.14 (-1.33, 1.06) -0.01 (-1.87, 1.85) 0.86 (-2.11, 3.82) 2.42 (-0.78, 5.61) 

Radium 1990-2017 1.88 -0.44 (-2.07, 1.19) -2.20 (-4.72, 0.32) 4.79 (0.77, 8.80) * -0.24 (-4.66, 4.18) 

 1990-1999 2.68 -0.03 (-2.28, 2.23) 1.86 (-1.18, 4.89) 1.10 (-4.71, 6.90) 1.07 (-5.44, 7.58) 

 2000-2009 1.99 -1.66 (-3.18, -0.14) * -3.13 (-5.48, -0.78) * 1.75 (-2.10, 5.59) -0.68 (-4.86, 3.51) 

 2010-2017 1.55 -1.79 (-3.35, -0.23) * -4.64 (-7.01, -2.28) * 2.50 (-1.41, 6.42) -4.04 (-8.24, 0.17) 

Arsenic 1990-2017 1.83 -0.02 (-0.73, 0.70) 0.22 (-0.86, 1.31) -1.13 (-2.91, 0.66) 0.31 (-1.59, 2.20) 

 1990-1999 1.23 0.07 (-0.56, 0.70) 0.57 (-0.40, 1.54) -1.07 (-2.64, 0.50) 0.54 (-1.24, 2.32) 

 2000-2009 2.21 0.08 (-0.52, 0.69) 0.19 (-0.76, 1.13) -0.63 (-2.14, 0.88) 0.94 (-0.67, 2.56) 

 2010-2017 1.92 0.47 (-0.50, 1.44) -0.02 (-1.44, 1.40) -0.47 (-2.90, 1.95) 1.42 (-1.01, 3.86) 

HAA5 1990-2017 13.70 0.02 (-1.47, 1.51) 0.80 (-1.49, 3.09) -0.40 (-4.09, 3.29) 1.96 (-2.04, 5.95) 

 1990-1999 19.40 0.73 (-1.22, 2.67) -0.28 (-3.64, 3.09) 1.28 (-2.65, 5.20) -2.50 (-6.50, 1.50) 

 2000-2009 14.30 0.98 (-0.34, 2.30) 2.83 (1.01, 4.66) * 0.02 (-3.00, 3.04) -1.78 (-5.03, 1.47) 

 2010-2017 12.80 1.04 (-0.58, 2.67) 2.27 (-0.18, 4.73) 0.10 (-3.93, 4.13) -2.34 (-6.65, 1.97) 

TTHM 1990-2017 30.30 0.75 (-0.93, 2.43) 2.51 (0.92, 4.10) * -0.82 (-3.34, 1.70) 2.22 (-0.50, 4.94) 

 1990-1999 24.50 1.59 (0.03, 3.14) * 2.56 (0.13, 4.99) * 0.78 (-2.91, 4.46) 1.36 (-2.71, 5.44) 

 2000-2009 35.50 1.61 (0.20, 3.03) * 1.47 (0.62, 2.31) * -0.58 (-1.92, 0.76) 0.42 (-1.03, 1.87) 

 2010-2017 27.70 2.42 (0.27, 4.58) * 4.32 (0.96, 7.68) * -1.21 (-6.65, 4.23) 1.83 (-3.97, 7.62) 
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Radium was found to be significantly associated with cancer incidence counts (illustrated by 

the estimated changes in Table 4). Focusing just on colon and rectal cancers, significant negative 

associations were found with radium concentrations during two of the three decade-specific exposure 

windows (Table 4), where there was a decrease in colon and rectal cancers of 1.66 cases per 100,000 

(95% CI: -3.18, -0.14) for exposures during 2000-2009 and of 1.79 cases per 100,000 (95% CI: -3.35, 

-0.23) for exposures during 2010-2017. These two same exposure windows also yielded significant 

negative associations with lung and bronchial cancers (Table 4), where there was a decrease of 3.13 

cases per 100,000 (95% CI: -5.48, -0.78) and 4.64 cases per 100,000 (95% CI: -7.01, -2.28) for 

exposures during 2000-2009 and during 2010-2017, respectively. On the contrary, radium was 

positively associated with the incidence of female breast cancer, where there was an increase of 4.79 

cases per 100,000 (95% CI: 0.77, 8.80) for the full 1990-2017 exposure window.  

The by-products of water chlorination were also found to be significantly associated with 

cancer incidence counts. Haloacetic acids yielded a significant positive association with lung and 

bronchial cancers during only one of the three decade-specific exposure windows (Table 4), where 

there was an increase in lung and bronchial cancers of 2.83 cases per 100,000 (95% CI: 1.01, 4.66) 

for exposures during 2000-2009. Total trihalomethanes yielded positive significant associations with 

colon and rectal cancers during all three decade-specific exposure windows (Table 4), where there 

was an increase of 1.59 cases per 100,000 (95% CI: 0.03, 3.14) for exposures during 1990-1999, of 

1.61 cases per 100,000 (95% CI: 0.20, 3.03) for exposures during 2000-2009, and of 2.42 cases per 

100,000 (95% CI: 0.27, 4.58) for exposures during 2010-2017. Total trihalomethanes also yielded 

positive significant associations for lung and bronchial cancers during the full timeframe and during 

all three decade-specific exposure windows (Table 4), where there was an increase of 2.56 cases per 

100,000 (95% CI: 0.13, 4.99) for exposures during 1990-1999, of 1.47 cases per 100,000 (95% CI: 
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0.62, 2.31) for exposures during 2000-2009, of 4.32 cases per 100,000 (95% CI: 0.96, 7.68) for 

exposures during 2010-2017, and of 2.51 cases per 100,000 (95% CI: 0.92, 4.10) for the full 1990-

2017 exposure window. 

None of the contaminant exposure windows were significantly associated with prostate cancer 

incidence (Table 4). Likewise, none of the other contaminants (nitrate, arsenic) yielded significant 

associations with colon and rectal, lung and bronchial, or female breast cancers.  

Non-linear effects were also considered from this model. While several contaminant exposure 

windows had non-linear associations with cancer incidence, only five non-linear associations were 

statistically significant at α=0.05. Radium concentrations from the 2000-2009 exposure window 

yielded a significant non-linear association with lung and bronchial cancer incidence (F=3.499, 

p=0.008) (Figure 3).  

  

Figure 3. Plot of non-linear effects of 2000-2009 mean radium concentrations on lung and bronchial cancer 

incidence rates 
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At α=0.05. haloacetic acid concentrations from the 2000-2009 exposure window also yielded 

a significant non-linear association with lung and bronchial cancer incidence (F=4.351, p=0.026) 

(Figure 4). 

 

Figure 4. Plot of non-linear effects of 2000-2009 mean haloacetic acid concentrations on lung and bronchial 

cancer incidence rates 

Total trihalomethanes yielded three significant non-linear associations. The 1990-1999 

exposure window was associated with lung and bronchial cancer incidence (F=2.327, p=0.019) and 

with prostate cancer incidence (F=3.419, p=0.0141) (Figure 5), and the 2000-2009 exposure window 

was associated with only lung and bronchial cancer incidence (F=1.684, p=0.001) (Figure 5). Beyond 

these findings, non-linear associations were not examined further in the current analysis. 
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Figure 5. From left-to-right and top-to-bottom, plot of non-linear effects of (a) 1990-1999 mean total 

trihalomethane concentrations on lung and bronchial cancer incidence rates, (b) 2000-2009 mean total 

trihalomethane concentrations on lung and bronchial cancer incidence rates, and (c) 1990-1999 mean total 

trihalomethane concentrations on prostate cancer incidence rates 

 

3.3 SAR Modeling 

The SAR model identified relationships between contaminant exposure and cancer incidence 

rates while controlling for state and urbanicity classification and considering spatial dependence. As 

seen in Tables 5 and 6, the results of this model allowed for selection between first-order and second-

order spatial dependence and their resulting values of change in cancer incidence rates. For 

simplicity, the exposure windows were limited to those from the 2010-2017 timeframe.  
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Table 5. Spatial dependence estimates and parameters for model comparisons. Statistically significant associations (p<0.05) 

are bolded and indicated by *. 

  Colon Lung Breast Prostate 

Contaminant Weight λ σ2 AIC λ σ2 AIC λ σ2 AIC λ σ2 AIC 

Nitrate 1st-order 0.07 65 1325 -0.03 159 1525 0.19 393 1681 -0.20 458 1719 
 

2nd-order 0.17 64 1324 -0.24 157 1523 0.02 401 1683 -0.00 468 1721 

Radium 1st-order 0.06 63 1320 0.02 148 1510 0.19 390 1679 -0.14 460 1719 

 2nd-order 0.16 63 1319 -0.33 143 1507 -0.00 398 1682 -0.00 465 1720 

Arsenic 1st-order 0.08 64 1315 0.01 159 1516 0.19 395 1673 -0.14 459 1710 

 2nd-order 0.12 64 1315 -0.26 156 1514 0.02 403 1675 0.02 464 1711 

HAA5 1st-order 0.08 64 1364 -0.05 157 1577 0.17 407 1749 -0.14 478 1789 

 2nd-order 0.17 64 1364 -0.25 155 1575 -0.04 413 1751 0.02 483 1790 

TTHM 1st-order 0.10 62 1374 0.04 167 1613 0.16 406 1766 -0.11 482 1809 

 2nd-order 0.15 62 1374 -0.33 162 1609* -0.05 411 1768 -0.01 485 1810 

 

Table 6. Estimated changes in mean cancer incidence per 100,000 per standard deviation (SD) increase in 

contaminant and 95% confidence intervals (CI), accounting for spatial dependence. Statistically significant 

associations (p<0.05) are bolded and indicated by *. 

Contaminant SD Colon Cancer Lung Cancer Breast Cancer Prostate Cancer 

Nitrate 1.83 -0.14 (-1.32, 1.03) 0.17 (-1.66, 2.00) 1.22 (-1.66, 4.11) 2.78 (-0.33, 5.89) 

Radium 1.55 -1.75 (-3.28, -0.23) * -4.83 (-7.10, -2.56) * 2.74 (-0.98, 6.46) -3.79 (-7.98, 0.40) 

Arsenic 1.92 0.51 (-0.44, 1.47) -0.05 (-1.46, 1.37) -0.62 (-2.98, 1.73) 1.20 (-1.20, 3.59) 

HAA5 12.80 1.02 (-0.58, 2.62) 2.30 (-0.11, 4.70) 0.08 (-3.87, 4.02) -2.84 (-7.05, 1.38) 

TTHM 27.70 2.43 (0.31, 4.54) * 4.14 (0.90, 7.38) * -0.87 (-6.18, 4.43) 1.23 (-4.48, 6.93) 

 

We selected the type of spatial dependency by comparing the AIC values between the first and 

second-order models; a lower AIC value indicated better model fit. First-order spatial dependency 

was selected unless the AIC for the second-order model was at least two integer values smaller than 

the AIC of the first-order model. As shown in Table 5, for colon and rectal cancer, first-order spatial 

dependency provided better fit for each of the five possible contaminant types based on the AIC 
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values. For lung and bronchial cancer, second-order spatial dependency was preferred for each of the 

five contaminant types. All five contaminant types also demonstrated first-order spatial dependency 

when modeled with female breast and prostate cancers. At α=0.05, only the second-order value for 

lambda (λ) in the model of total trihalomethanes and lung and bronchial cancers was statistically 

significant (p=0.049), thus indicating that this association has spatial dependence based on the effects 

of the neighbors of neighboring counties. No other values for lambda were statistically significant, 

thus indicating that the other associations between contaminants and cancer incidence are more 

dependent on immediate county effects rather than on the effects of neighboring counties (Table 5).  

Radium concentrations yielded a significant negative association with both colon and rectal 

cancer incidence and with lung and bronchial cancer incidence (Table 6). Each 1.55 pCi/L increase in 

a county’s mean drinking water radium concentration from 2010-2017 decreased that county’s 

incidence rate of colon and rectal cancers by 1.75 cases per 100,000 (95% CI: -3.28, -0.23) and the 

incidence rate of lung and bronchial cancers by 4.83 cases per 100,000 (95% CI: -7.10, -2.56). These 

significant associations were similar to the negative associations found with radium as observed from 

GAM, but the magnitude of these estimates were not significantly different between GAM and SAR.  

Total trihalomethanes also yielded significant positive associations with both colon and rectal cancer 

incidence and with lung and bronchial cancer incidence (Table 6), where there was an increase of 

2.43 cases per 100,000 (95% CI: 0.31, 4.54) for colon and rectal cancers and of 4.14 cases per 

100,000 (95% CI: 0.90, 7.38) for lung and bronchial cancers. These significant associations were also 

similar to the positive associations found with total trihalomethanes as observed from GAM, but the 

magnitude of these estimates were not significantly different between GAM and SAR. No other 

contaminants were significantly associated with colon and rectal cancer or with lung and bronchial 

cancer. In addition, none of the five contaminants at the 2010-2017 exposure window were 
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significantly associated with either female breast cancer or prostate cancer, reflecting a similar 

finding as in the GAM model.    

4. Discussion and Conclusions 

From the spatial regression analysis, it was found that mean radium concentrations from 

1990-2017 were positively associated with the incidence of female breast cancer. This association 

supported the past findings of Bean et al. (1982), where radium-226 concentrations above the EPA 

legal limit of 5 pCi/L were positively associated with female breast cancer risk. This is an interesting 

finding in that despite the gap in time between the current analysis and Bean et al. (1982), the 

positive association between radium and female breast cancer was observed. Bean et al. (1982) has 

indicated that water softeners greatly reduce radium content in drinking water. Therefore, it may be 

beneficial to further study this positive relationship with respect to whether the use of water softeners 

reduces contaminant content in drinking water.  

Radium concentrations were negatively associated with the incidence of lung and bronchial 

cancer. This differed from Bean et al. (1982), who instead found a positive association among males. 

The difference between these findings raises the question as to whether stratifying cancer incidence 

by sex would change the direction of association that we found. By not examining the role of sex in 

cancer incidence, there is a risk that the overall lung and bronchial cancer incidence values mask sex-

stratified trends.  

We also found that radium concentrations were negatively associated with the incidence of 

colon and rectal cancer, but no past studies could be found that examined these associations. Past 

literature instead focused on the role of nitrate concentrations (not radium). We did not find any 

significant associations between nitrate and colon and rectal cancer. However, the direction of this 

association has varied between studies; Weyer et al. (2001) found nitrate concentrations to be 
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negatively associated with rectal cancers while Schullehner et al. (2018) found the association with 

colorectal cancers to be positive. The differences in findings could be due to both studies using 

different methods to define the cancer outcomes. Weyer et al. (2001) used an approach that was more 

similar to the current analysis: cancer data limited to the years 1986-1998 were taken from the Iowa 

Cancer Registry. Schullehner et al. (2018) instead identified cancer cases through participant follow-

up.  

Like with radium, we also found that the two groups of chlorination byproducts (haloacetic 

acids and total trihalomethanes) were significantly associated with cancer incidence. In the case of 

colon and rectal cancer, total trihalomethanes were positively associated with cancer incidence, 

supporting the past findings of Dobaradaran et al. (2019), who found that bromoform increased the 

incremental lifetime risk for colon and rectal cancer. However, as the current analysis only considered 

total trihalomethane concentrations, we cannot implicate bromoform for this effect unless we develop 

models that examine each trihalomethane individually.  

In the case of lung and bronchial cancers, both haloacetic acids and total trihalomethanes were 

positively associated with cancer incidence. This does not support the findings of Morris (1995), who 

found that chlorination byproducts posed no significant risk for colon or lung cancers but instead 

increased the risk of rectal cancer (which is instead partly supported by the previously-described 

findings for colon and rectal cancer). However, as Morris (1995) conducted a meta-analysis, 

differences in findings could be due to (1) which haloacetic acids and trihalomethanes were included 

in the meta-analysis and (2) that the current analysis only included both total-group variables, 

potentially masking the effects of individual haloacetic acid or trihalomethane types.  

We found no contaminants to be significantly associated with the incidence of prostate cancer, 

in contradiction to Roh et al. (2017), who found a positive association between arsenic and prostate 
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cancer risk. This difference in findings could possibly be explained by how arsenic concentration was 

defined in each study design. We treated arsenic concentrations as continuous values, but Roh et al. 

(2017) defined arsenic concentrations as tertiles of concentration level. The range of mean values 

used in the current analysis overlapped the values defining the tertile ranges, but these tertiles also did 

not include any values of zero concentration. Therefore, it may be valuable to further consider 

categorizing mean concentration values or limiting mean concentrations to nonzero values.  

 For contaminants during the 2010-2017 exposure window, several patterns in contaminant 

concentrations and cancer incidence were found. For example, a commonality between both states 

was the variation in radium, which tended to be more concentrated along the Iowa-Illinois border and 

into northern Illinois. This finding regarding radium is supported by Szabo et al. (2012); the Mid-

Continent and Ozark Plateau Cambro-Ordovician aquifer system, which has been identified as having 

some of the highest radium readings for drinking water in the United States, stretches across most of 

Iowa and into northern and central Illinois. This aquifer system may play a role regarding the 

clustering of higher radium concentrations in the current analysis.  

The current analysis indicated lower arsenic concentrations for counties in northeast Iowa and 

northwest Illinois, which does not agree with the findings of Szabo et al. (2012). The Late 

Wisconsinan glacial drift covered an area that presently includes far-northeastern Iowa and far-

northwestern Illinois, and these same areas have previously recorded higher groundwater arsenic 

levels (Erickson & Barnes, 2005; Szabo et al., 2012).  

Similarly, while the current analysis found higher concentration values for haloacetic acids 

and total trihalomethanes in southern Iowa and southern Illinois, no past studies were identified as 

having directly examined this spatial pattern. However, as discussed by Allaire et al. (2018), rural 

low-income counties tend to report more violations of chlorination by-product limits compared to 
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urban or higher-income counties. It may be useful to further study where rural counties are located in 

the two states and whether these counties have significantly higher mean concentrations of haloacetic 

acids or total trihalomethanes.  

 Based on the mapping of cancer incidence rates, it was found that for all four cancer sites, 

both Iowa and Illinois reported a wide range of incidence rates. Of the clusters present in the four 

maps, the larger cluster of higher prostate cancer incidence in western Iowa was of particular interest. 

This cluster pattern was also observed by Mandal et al. (2009), where northwestern Iowa in particular 

was part of a larger cluster of significantly-high prostate cancer incidence rates. These authors 

proposed that higher prostate cancer rates could be related to Vitamin D deficiencies, especially as 

this region sees lower ultraviolet exposure during the winter.  

 The current analysis considered spatial dependence in the relationships between contaminant 

exposure and cancer incidence. Spatial dependence may be present in county-level incidence rates 

due to other similar cancer risk factors including radon exposure (via inhalation), air quality, or 

smoking. On the other hand, there were a few shortcomings in the current analysis methods that 

could be improved upon in future replications or extensions of these methods. The first improvement 

would be to include more socio-demographic data. For example, data from the Behavioral Risk 

Factor Surveillance System (BRFSS) from the Centers for Disease Control and Prevention may be 

useful for this purpose. Raw BRFSS data could be obtained directly from the CDC website and 

matched to the item names as provided in the measure guides, but a more straightforward approach 

would be to download summarized state BRFSS data from state cancer or health agency websites. 

Likewise, county-level radon values from Iowa and Illinois public-use datasets could be included as 

an additional covariate; Stanley et al. (2019) stated that radon exposure is the leading cause for lung 

cancer among non-smokers and is the second most-likely cause among smokers. Including radon 
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would enable us to specifically control for radon levels when studying the associations between 

contaminant exposure and cancer incidence.  

A recommended future direction would be to further extend the current SAR model to include 

these additional radon, behavioral, and socio-demographic covariates. In addition, the grouping of 

contaminant data by exposure windows could be modified to preserve data to each year in the total 

time-frame or to use smaller multi-year windows. Lastly, future analyses could also be expanded to 

include data from Minnesota and Wisconsin. Given the geographical proximity of these states with 

Iowa and Illinois, it might be useful to examine the relationships between contaminants and cancer 

incidences in this region at-large.  

 From the findings, we can identify several implications and suggestions for further analysis. 

The current models enable the identification of relationships between contaminant exposure and 

cancer incidence while controlling for state and urbanicity classifications. However, first or second-

order spatial dependence is not significant except in the association between total trihalomethane 

concentrations and lung and bronchial cancer incidence (second-order). The models can be improved 

further by adding additional variables pertaining to socio-demographic or risk factor data (e.g., sex, 

smoking prevalence), and analyses can be made more specific by using cancer incidence data as 

limited to a given socio-demographic group. Lastly, the model design allows for data from more 

states to be included; this can enable the current methods to be expanded to the larger Upper 

Midwest.   
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