In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I agree that the library of the University shall make it available for inspection and circulation in accordance with its regulations, governing materials of this type. I agree that permissions to copy from, or to publish, this dissertation may be granted by the professor under whose direction it was written, or in his absence, by the Dean of the Graduate School when such copying or publication is solely for scholarly purpose and does not involve potential gain. It is understood that any copying from, or publication of this dissertation which involves potential gain will not be allowed without written permission.

[^0]
Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B Chapter 2. Biomimetic Synthesis of Fused Polypyrans

By
Rongbiao Tong
Doctor of Philosophy
Department of Chemistry

Dr. Frank E. McDonald
Adviser

Dr. Lanny S. Liebeskind Committee Member

Dr. Fredric M. Menger
Committee Member

Accepted:

Lisa A. Tedesco, Ph. D.
Dean of the Graduate School

Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B Chapter 2. Biomimetic Synthesis of Fused Polypyrans

By
Rongbiao Tong
B. S., Hunan University, 2000
M. S., Hunan University, 2003

Adviser: Frank E. McDonald

An Abstract of
A dissertation submitted to the Faculty of the Graduate School of Emory University in partial fulfillment

Of the requirements for the degree of
Doctor of Philosophy

Department of Chemistry

Abstract

\section*{Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B}

The first biomimetic total syntheses of ent-nakorone (7 steps in 32.1% yield from farnesol), ent-durgamone (8 steps in 21% yield from geranylacetone), and entabudinol B (5 steps in 15.92\% yield from advanced intermediates of entnakorone and ent-durgamone) were accomplished by combining features of tandem polyepoxide cyclization with biomimetic polyene cyclization. The present biomimetic synthesis route offers efficient access to these marine natural products. In addition, the synthesis of the tetrasubstituted alkene of ent-abudinol B demonstrates the application of palladium-catalyzed cross-coupling of two different polycyclic ketones via the corresponding vinyl triflates, followed by partial hydrogenation of the resulting conjugated diene.

The second generation of biomimetic total synthesis of the enantiomer of abudinol B was achieved in 8 steps from commercially available trans-transfarnesylacetate with 0.18% overall yield, following a synthetic strategy inspired by and closely mimicking the proposed biosynthetic pathway. This synthesis demonstrates the viability of tandem oxa- and carbacyclizations of structurally complex polyepoxide-alkene substrates. This second generation synthesis features a two-directional biomimetic cyclization strategy, in which the separate polycyclic ring systems are constructed by Lewis acid-promoted tandem oxa- and carbacyclizations from a structural analog of squalene diepoxide. This demonstration of tandem cyclizations provides experimental support for the chemical viability of a proposed biogenetic pathway.

Chapter 2. Biomimetic Synthesis of Fused Polypyrans

The biomimetic synthesis of fused bispyran via Lewis acid-mediated tandem oxacyclization of 1,4,7-polyepoxide is explored. Fragmentation was the main competing process for oxacyclization of skipped polyepoxides. The nature of the Lewis acid promoter is critical for the endo-regioselectivity of epoxide cyclization, although anomalous apparent retention of stereochemistry is observed at some reactive centers. The mechanistic interpretation leads us to hypothesize that the energy of the reaction transition state required for synchronous cyclizations to form polypyrans is much higher than that in the analogous synthesis of polyoxepanes, and thus the stepwise mechanism may operate.

Oxacyclization of 2,3-disubstituted epoxide only proceeded in an exo mode to give cyclization products, which structures were highly dependent on the Lewis acid promoter and reaction time. These results provide the direct evidence in supporting the important role played by C3 substituent on the mode of oxacyclization of polyepoxide. These findings greatly expand our mechanistic understanding of oxacyclization of polyepoxides to polycyclic ethers and will guide our designing of novel oxacyclization in the future.

Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B Chapter 2. Biomimetic Synthesis of Fused Polypyrans

By
Rongbiao Tong
B. S., Hunan University, 2000
M. S., Hunan University, 2003

Adviser: Frank E. McDonald

A dissertation submitted to the Faculty of the Graduate School of Emory University in partial fulfillment

Of the requirements for the degree of
Doctor of Philosophy

Department of Chemistry

Acknowledgements

I would like to convey my deepest appreciation to my adviser Dr. Frank E. McDonald for his guidance during my graduate studies at Emory University. He is an excellent mentor and provided me with a stimulating research environment and intellectual freedom. His unlimited enthusiasm for chemistry, along with interactive teaching, has greatly impressed me and will become an invaluable motivation in my future career.

I also extend my appreciation to my committee members, Dr. Lanny S. Liebeskind and Dr. Fredric M. Menger, for their creative suggestions and guidance during the past five years. The interactions with them were stimulating and were very helpful for my projects at Emory. I particularly thank Dr. Simon B. Blakey for willingness to be a committee member for my research proposal, and for his constructive criticism (along with Dr. Liebeskind and Dr. Menger) on my pre-proposal and proposal. Other organic faculty members, especially Dr. Albert Padwa and Dr. Debbie Mohler whose classes I took, taught me a great deal and I appreciated them greatly.

Dr. Shaoxiong Wu in the NMR center, Dr. Kenneth I. Hardcastle in the X-ray crystallography center, and Dr. Fred Strobel in the mass spectrometry center have been outstanding and I acknowledged their constant support.

The McDonald group members have been very friendly and created a very stimulating research environment. Special thanks goes to Jason C. Valentine, YiHung Chen, Zhongbo Fei, Bonsuk Koo, Mary Smart, Brad Balthaser, John

Wiseman, Omar Robles-Resendiz, Matt Boone and Claney Pereira, for having been wonderful co-workers in the lab.

I have enjoyed my life at Emory because I made many friends here. I attended parties on weekends or holidays, discussed literatures and tough problems, chatted about routine issues in life with my new found friends. I will miss the wonderful days I spent at Emory. I thank all of you, particularly Weiqiang Zhan, Hao Yang, Hao Li, Zhihui Zhang, Yongqiang Zhang, Harry Wong, Bo Chen, Songbai Liu, Wenyong Chen and Shuangpei Liu.

Lastly, I would like to thank my wife Rong Ni for taking care of my son Terry Tong and holding our family together. It would have been impossible to accomplish my graduate research without her selfless and constant support. Thank you!

Table of Contents

Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B
1.1. Introduction and Background -1
1.1.1. Total synthesis and biomimetic synthesis -1
1.1.2. Biomimetic total Synthesis of isoprenoid natural products from squalene-like substrates -3
1.1.2.1. Biogenesis of isoprenoid natural products -3
1.1.2.2. Stereochemistry issues in biogenesis of isoprenoid natural product -5
1.1.2.3. Biomimetic synthesis of isoprenoid natural products -8
1.1.3. Biomimetic synthesis of polycyclic ethers 12
1.1.3.1. Biogenesis of polycyclic ether natural products 12
1.1.3.2. Biomimetic synthesis of polycyclic ethers 15
1.1.3.3. Biomimetic synthesis of polycyclic ether natural products18
1.1.4. Biogenesis of abudinol B and related natural products 19
1.1.5. Retrosynthetic analysis of abudinol B, durgamone and nakorone--25
1.2. Results and discussion -27
1.2.1. Total synthesis of ent-durgamone and bicyclic ketone 77 -27
1.2.2. Total synthesis of ent-nakorone (ent-67) -35
1.2.3. Total synthesis of enantiomer of abudinol B (ent-64) -40
1.3. Biomimetic total synthesis of abudinol B from squalene-like precursor -52
1.3.1. Synthetic strategies 52
1.3.2. Synthesis of cyclization substrate 149 55
1.3.3. First-stage biomimetic tricyclization 59
1.3.4. Second-stage biomimetic bicyclization 61
1.4. Conclusions 68
1.5. Experiments 70
2-D NMR spectra 159
X-Ray database in total synthesis of abudinol B 163
1.6. References 220
Chapter 2. Biomimetic Synthesis of Fused Polypyrans
2.1. Introduction and Background 231
2.1.1. Reductive etherification 232
2.1.2. Endo-selective cyclization of epoxide 236
2.1.3. Biomimetic oxacyclization of skipped polyepoxide 239
2.2. Results and Discussion 240
2.2.1. Oxacyclization with internal disubstituted epoxide 240
2.2.2. Unexpected oxacyclization of skipped 2,3-disubstituted epoxides 247
2.3. Conclusions 253
2.4. Experiments 255
2-D NMR spectra 293
X-Ray database in biomimetic synthesis of fused polypyrans 303
2.5. References 330

List of Figures

Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B
Figure 1. Examples of polycyclic ether natural products- 13
Figure 2. Examples of polycyclic ether terpenoid natural products 20
Figure 3. Oxa-carbacyclization substrates $\mathbf{7 8}, 83$ and 84 28
Figure 4. Intermediate or product of nonselective Shi epoxidation 29
Figure 5. The thermal ellipsoid diagrams for bicyclic ketones 95 and epi-95- -32
Figure 6. The thermal ellipsoid diagram for compound 115 39
Figure 7. McMurry cross coupling of arylketone 41
Figure 8. Thermal ellipsoid diagram for compound 117 49
Figure 9. Fragments of squalene-like substrate 149 55
Figure 10. NOESY NMR experiments of compounds 148a and 148b -60
Figure 11. Potential biomimetic synthesis of raspacionin from 149 61
Figure 12. Thermal ellipsoid diagram for pentacyclic product 179 -66
Chapter 2. Biomimetic Synthesis of Fused Polypyrans
Figure 1. Representative core structure of polycyclic ethers 231
Figure 2. The thermal ellipsoid diagram for compound 51 -242
Figure 3. The thermal ellipsoid diagram for compound 52 -244
Figure 4. The thermal ellipsoid diagram for compound 56 -245
Figure 5. Cyclization substrate 62 and 63 -248

List of Schemes

Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B
Scheme 1. Robinson's biomimetic synthesis of tropinone -2
Scheme 2. Biosynthesis of hopene and lanosterol from squalene -4
Scheme 3. Stork-Burgstahler's studies on the stereochemistry of polyene
cyclization -6
Scheme 4. Schinz-Eschenmoser evidence for nonclassical cyclic carbenium ion---6
Scheme 5. Stereospecific cyclization of epoxy alkene- -8
Scheme 6. Johnson's biomimetic total synthesis of sophoradiol- -9
Scheme 7. Corey's biomimetic total synthesis of dammarenediol II 10
Scheme 8. Corey's biomimetic total synthesis of isoprenoid natural products- 11
Scheme 9. Nakanishi's biogenetic hypothesis of brevetoxin B 14
Scheme 10. Jamison's biomimetic oxacyclization of polyepoxide 15
Scheme 11. Valentine and McDonald's biomimetic oxacyclization of polyepoxide
via epoxonium ion 16
Scheme 12. Holton's biomimetic total synthesis of hemibrevetoxin B 18
Scheme 13. Kashman's biogenetic hypothesis for abudinols 22
Scheme 14. Norte’s biosynthesis for abudinol B 23
Scheme 15. Retrosynthetic analysis of abudinol B, durgamone and nakorone- 25
Scheme 16. Synthesis of diepoxy ketone 87 28
Scheme 17. Synthesis of cyclization substrates -29
Scheme 18. TBSOTf mediated oxa-carbacyclization of 78 31
Scheme 19. Oxa-carbacyclization of 83 and 84 33
Scheme 20. McDonald/ Wei alkene-epoxide cyclization 33
Scheme 21. Total synthesis of ent-durgamone (ent-66) 34
Scheme 22. Synthesis of farnesyl sulfone 104 36
Scheme 23. Synthesis of propargylic silane 109 36
Scheme 24. Synthesis of cyclization substrate 81 37
Scheme 25. Synthesis of enantiomer of nakorone (ent-59) 38
Scheme 26. McMurry coupling of 94 and 116 40
Scheme 27. Takeda's method for assembly of ketones 94 and 116 42
Scheme 28. Vinyllithium formation via Shapiro reaction 43
Scheme 29. Coupling of ketone 94 with 116 via hydrazone formation 44
Scheme 30. Barton's method to assemble ent-abudinol B from azine 127 45
Scheme 31. Suzuki cross-coupling of 94 and 116 46
Scheme 32. Attempts on hydrogenation of diene 137 48
Scheme 33. Palladium-catalyzed hydrogenation of diene 137 48
Scheme 34. Hole transfer catalyst promoted hydrogenation of diene 137 -50
Scheme 35. Completion of the total synthesis of ent-abudinol B (ent-64) -51
Scheme 36. Retrosynthetic analysis of ent-abudinol B (ent-64) 53
Scheme 37. Synthesis of coupling substrate 156 56
Scheme 38. Synthesis of farnesyl diepoxy bromide 150 56
Scheme 39. Synthesis of squalene-like substrate 149 57
Scheme 40. First stage biomimetic tricyclization of 149 59
Scheme 41. Olefination of tricyclic ketone 148 62
Scheme 42. Double Shi diastereoselective epoxidation of 148 63
Scheme 43. Bicyclization of 147a to ent-abudinol B (ent-64) 64
Scheme 44. TMSOTf-promoted cyclization of diastereomeric 147b 65
Scheme 45. $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ promoted bicyclization of 180 -67
Chapter 2. Biomimetic Synthesis of Fused Polypyrans
Scheme 1. Reductive etherification for synthesis of polycyclic pyrans 233
Scheme 2. Intramolecular allylation of acetals 235
Scheme 3. Reductive etherification of carbonyl and unsaturated ester -236
Scheme 4. Endo-selective cyclizations of epoxide 237
Scheme 5. Biomimetic oxacyclization of skipped polyepoxide 239
Scheme 6. Synthesis of model substrate 41 240
Scheme 7. Synthesis of skipped triepoxide 48 241
Scheme 8. Oxacyclization of model substrate diepoxide 41 242
Scheme 9. Trialkylsilyl triflate-promoted oxacyclization of triepoxide 48 and 53----243
Scheme 10. TBSOTf-promoted oxacyclization of skipped triepoxide 48 244
Scheme 11. Mechanistic explanation of oxacyclization to bispyran 56 245
Scheme 12. McDonald's oxacyclization of isoprenoid-derived polyepoxide 247
Scheme 13. Synthesis of diepoxide 66 248
Scheme 14. Synthesis of diepoxide 67 249
Scheme 15. Lewis acid promoted oxacyclization of diepoxide 66 -250

Scheme 16. Oxacyclization of skipped triepoxide 67------------------------------------251
Scheme 17. Transition metal promoted opening of epoxide 67--------------------252

List of Tables

Chapter 1. Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B

Table 1. Crystal data and structure refinement for compound 95---------------163
Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 95 . $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.-------------------------164

Table 3. Bond lengths [\AA] and angles [0] for compound $95---------------------165$
Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 95. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} 2 U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]-----------166$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 95 167

Table 6. Torsion angles [${ }^{\circ}$] for compound 95 168

Table 7. Hydrogen bonds for compound 95 [\AA and ${ }^{\circ}$]---------------------------------169
Table 8. Crystal data and structure refinement for compound epi-95
Table 9. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for epi-95. $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.171
Table 10. Bond lengths [A] and angles [${ }^{\circ}$] for epi-95 172

Table 11. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for epi-95.
The anisotropicdisplacement factor exponent takes the form:

$$
-2 \pi^{2}\left[h^{2} a^{\star 2} U^{11}+\ldots+2\right. \text { h k a* b* U12]-------------------------------------174 }
$$

Table 12. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for epi-95.---175

Table 13. Torsion angles [0] for epi-95--176
Table 14. Hydrogen bonds for epi-95 [Å and ${ }^{\circ}$] --177
Table 15. Crystal data and structure refinement for 115---------------------------178
Table 16. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $115 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor---------------------------------------179

Table 17. Bond lengths [Å] and angles [0] for 115------------------------------------180
Table 18. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for 115. The anisotropic displacement factor exponent
takes the form: $-2 \pi^{2}\left[h^{2} a^{*} 2 U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]---------183$
Table 19. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement
parameters $\left(\AA^{2} \times 10^{3}\right.$) for 115---184
Table 20. Torsion angles [] for 115---185
Table 21. Hydrogen bonds for 115 [\AA and 0]--187
Table 22. Crystal data and structure refinement for 117-----------------------------188

Table 23. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 117. $U(e q)$ is
defined as one third of the trace of the orthogonalized Uij tensor------189
Table 24. Bond lengths [Å] and angles [0] for 117-----------------------------------191
Table 25. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 117.
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$
Table 26. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} 2 \times 10^{3}\right)$ for 117--199

Table 27. Torsion angles [${ }^{\circ}$] for 117 -202

Table 28. Crystal data and structure refinement for 179 -206

Table 29. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 179. $U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor 207

Table 30. Bond lengths [Å] and angles [0] for 179------------------------------------209
Table 31. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 179.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Table 32. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement

Chapter 2. Biomimetic Synthesis of Fused Polypyrans

Table 1. Crystal data and structure refinement for 51
Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $51 . U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor -304

Table 3. Bond lengths [Å] and angles [0] for 51--305
Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 51.
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{*^{2}} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$
Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 51 -308

Table 6. Torsion angles [${ }^{\circ}$] for 51 -309

Table 7. Hydrogen bonds for 51 [\AA and ${ }^{\circ}$] -310

Table 8. Crystal data and structure refinement for 52 311

Table 9. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 52. $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor--312

Table 10. Bond lengths [\AA] and angles [0] for 52--------------------------------------313
Table 11. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 52.
The anisotropic displacement factor exponent takes the form:

$$
\begin{equation*}
-2 \pi^{2}\left[h^{2} a^{*^{2}} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right] \tag{315}
\end{equation*}
$$

Table 12. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic
displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $52---------------------------316$
Table 13. Torsion angles [${ }^{\circ}$] for 52 -317

Table 14. Hydrogen bonds for 52 [Å and ${ }^{\circ}$ --319

Table 15. Crystal data and structure refinement for 56 -320

Table 16. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 56. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor--321

Table 17. Bond lengths $[A ̊]$ and angles [$[$] for 56 -322

Table 18. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 56.
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{*^{2}} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.
Table 19. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $56---326$

Table 20. Torsion angles [${ }^{\circ}$] for 56---328

Abbreviations

Ac	Acetyl
AIBN	2,2'-azbisisobutyronitrile
AN	acetonitrile
Aq	aqueous
Ar	aryl
Boc	tert-butoxycarbonyl
$t-\mathrm{BOOH}$	tert-butylhydroperoxide
n-BuLi	n-butyllithium
t-BuLi	tert-butyllithium
Bz	benzoyl
Cat	catalytic
d	doublet
dppf	diphenylphosphinoferrocene
dppp	1,3-bis(diphenylphosphino)propane
DIBAL-H	diisobutylaluminum hydride
DIPT	diisopropyl tartrate
DMAP	N, N-dimethylaminopyridine
DMF	N, N-dimethylformamide
DMM	dimethoxymethane
DMSO	dimethylsulfoxide
DTBMP	2,6-di-tert-butyl-4-methylpyridine
EDTA	ethylenediaminetetraacetic acid

Equiv	equivalent
EtOAc	ethyl acetate
HMPA	Hexamethylphosphoric triamide
HRMS	high-resolution mass spectroscopy
KHMDS	potassium bis(trimethylsilyl)amide
LA	Lewis acid
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
m	multiplet
mL	milliliter
mmol	millimole
MS	molecular sieves
Ms	methanesulfonyl
NBS	N -bromosuccinimide
NIS	N-iodosuccinimide
NMR	nuclear magnetic resonance
Ph	phenyl
PhNTf_{2}	N-phenyltrifluoromethanesulfonimide
Pyr	pyridine
q	quartet
Red-AI	sodium bis(2-methoxyethoxy)aluminum hydride
rt	room temperature

s	singlet
Sat	saturated
t	triplet
TBAF	tetrabutylammonium fluoride
TBAI	tetrabutylammonium iodide
TBS	tert-butyldimethylsilyl
TEA	triethylamine
TFA	tetrahydrofuran
THF	tetrahydropyran
THP	triisopropylsilyl
TIPS	thin layer chromatography
TLC	$N, N, N{ }^{\prime}, N$ 'tetramethylethylenediamine
TMEDA	trimethylsilyl
TMS	toluene
Tol	

Chapter 1

Biomimetic Total Synthesis of ent-Durgamone, ent-Nakorone and ent-Abudinol B

1.1. Introduction and Background

1.1.1. Total synthesis and biomimetic synthesis

As a science, total synthesis of natural products is a relatively young discipline ${ }^{1}$, marked by the first total synthesis of strychnine (1954/Woodward), followed by many other milestones such as Vitamin B_{12} (1973/Woodward/Eschenmoser), Ginkgolide B (1988/Corey), Calicheamicin Y1 (1992/Nicolaou), Cytovaricin (1990/Evans), Palytoxin (1994/Kishi), Taxol (1994/Nicolaou) and brevetoxin B (1995/Nicolaou). The strategy toward the success of total synthesis of complex natural products was first practiced by R. B. Woodward and was fully developed by E. J. Corey at Harvard University to be a routine synthetic technology, termed as retrosynthetic analysis, ${ }^{2}$ which revolutionized the total synthesis as a truly respected science. While mastering the logic of retrosynthetic analysis is still far from trivial, some new strategies have been widely accepted and have guided the total syntheses of an ever-increasing number of complex natural products. ${ }^{3}$ One of these important strategies is biomimetic synthesis, mimicking the biological process of production of natural products. ${ }^{4}$ Biomimetic synthesis was first coined in 1917 by Robinson ${ }^{5}$, who described the concept of biomimetic
synthesis through a concise total synthesis of tropinone 4 from glutaraldehyde $\mathbf{1}$, methylamine 2 and acetone dicarboxylic acid 3 (Scheme 1).

Scheme 1. Robinson's biomimetic synthesis of tropinone.

Later, van Tamelen ${ }^{6}$ studied systematically different ideas and logic underlying biomimetic or biogenetic synthesis and defined biomimetic synthesis as a specific reaction or a sequence of reactions that mimic a proposed biosynthetic pathway. The process being imitated usually has a solid biochemical background. However, in some cases, biomimetic synthesis was used to describe a sequence of reactions mimicking hypothetical biogenesis. The connection of biomimetic synthesis and total synthesis of natural products is apparent, as commented by Skyler and Heathcock ${ }^{7}$ "For all natural products, there exists a synthesis from ubiquitous biomolecules. The inherent interconnectivity of natural products implies that a truly biomimetic total synthesis represents a general solution not to the preparation of a compound but to the preparation of all similarly derived natural products (discovered or undiscovered)." Exploration of chemical production process of natural products was partially driven by the understanding of their chemical formation in the biological systems. However, the biosynthetic process in nature usually involves enzyme-mediated reactions with exclusive chemo- and stereoselectivity, which poses tremendous challenges to the
chemical synthesis. These problems have to be solved by developing new synthetic strategies or chemical reactions, which will be illustrated in the following sections. But, we believe that certain chemical reaction conditions can be found to promote the exact or similar type of reactions with the natural or nonnatural substrates as nature does. Our confidence in the chemical synthesis of natural products in a biomimetic fashion has been consolidated by many successful and elegant biomimetic total syntheses and well expressed by Heathcock that "...we think that the molecular frameworks of most natural products arise by intrinsically favorable chemical pathways-favorable enough that the skeleton could have arisen by a nonenzymic reaction in the primitive organism. If a molecule produced in this purely chemical manner was beneficial to the organism, enzymes would eventually have evolved to facilitate the production of this useful material." 8

1.1.2. Biomimetic total synthesis of isoprenoid natural products from squalene-like substrates

1.1.2.1. Biogenesis of isoprenoid natural products

Since biomimetic synthesis has been recognized as an extremely efficient strategy for guiding total synthesis of natural products ${ }^{4}$, many efforts have been made to discover the biosynthetic pathways of natural products and develop new synthetic methods based on the hypothetical or established biogenesis. Among these efforts, biomimetic syntheses of polycyclic isoprenoid natural products ${ }^{9}$, such as hopene, lanosterol, cholesterol, sophoradiol and progesterone, are
among the most significant and interesting topics, probably because isoprenoid natural products not only play an important biological role in living organisms but also open a window to discover new drugs for the benefit of human beings. The biomimetic approach to total synthesis of polycyclic isoprenoids was inspired primarily by the enzyme-mediated cascade cyclization-carbacyclization of squalene (5) (scheme 2), ${ }^{9,10}$ which was elucidated mechanistically by sitedirected mutagenesis experiments ${ }^{11}$ as well as crystallographic analysis ${ }^{12}$ of the corresponding enzymes and further supported by molecular modeling. ${ }^{13}$

Scheme 2. Biosynthesis of hopene and lanosterol from squalene.

9

hopene (11)

6

Squalene (5) has been recognized to be the starting material (precisely, the intermediate) for many triterpenoid and isoprenoid natural products including hopene and lanosterol. Cascade carbacyclization of squalene (5) promoted by
squalene-hopene cyclase produced pentacyclic hopene via beta-hydrogen elimination of carbocation intermediate 10. Interestingly, oxidosqualene cyclase mediated carbacyclization of epoxysqualene (6) afforded the tetracyclic intermediate 7, which required sequential migrations of hydrogen and methyl groups and beta-hydrogen elimination to complete the production of lanosterol. Mimicking such biological production process will be of significance and importance from the synthetic point of view because multiple carbon-carbon bonds will be formed in a single step and simultaneously multiple stereocenters will be set.

1.1.2.2. Stereochemistry issues in biogenesis of isoprenoid natural products

Additional impetus for the development of biomimetic polyene cyclization was provided by the "Stork-Eschenmoser" hypothesis, ${ }^{9 b, 14}$ which rationalized the stereochemical relationship between the squalene-cyclic triterpenes by using modeling substrates that underwent similar carbacyclizations. In 1955, Stork and Burgstahler ${ }^{15}$ reported the stereochemistry of cyclization of farnesic acid 12 and farnesyl acetic acid 17 (Scheme 3). Reaction of Lewis acid $\left(\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}\right.$ or $\left.\mathrm{SnBr}_{4}\right)$ with farnesic acid or farnesyl acetic acid generated very strong protic acid $\mathrm{HB}(\mathrm{O}) \mathrm{F}_{3}$ or HBr , which induced the subsequent cyclization of 12 or 17 . Isolation of monocyclization product 13 under mild condition led them to hypothesize that the carbacyclization involved a discrete carbenium ion intermediate such as $\mathbf{1 4}$, whereas formation of $\mathbf{1 6}$ under strong protic acidic conditions was interpreted as
a result of concerted anti-parallel addition through a charge delocalized transition state 15.

Scheme 3. Stork-Burgstahler's studies on the stereochemistry of polyene cyclization.

(18)

Scheme 4. Schinz-Eschenmoser evidence for nonclassical cyclic carbenium ion.

Schinz case

nonclassical cyclic carbenium ion

Eschenmoser case

nonclassical cyclic carbenium ion

These experiments also inspired the proposition that a weakly nucleophilic donor olefin favors a nonconcerted addition and therefore a carbenium ion intermediate.

The hypothesis was examined and partially supported by studying the cyclization of farnesyl acetic acid 17 under similar conditions. Formation of ambreinolide 19 revealed a single transition state through three concerted anti addition to the trisubstituted alkene.

Additionally, Schinz and Eschenmoser ${ }^{16}$ provided experimental evidence to further support the anti-parallel addition and chair-like folding conformation during the polyene carbacyclization. A nonclassical cyclic carbenium ion was proposed as the intermediate $\mathbf{2 1}$ or $\mathbf{2 4}$ to account for the stereospecific cyclizations of geranic acid 20 and norgeranic acid 23, respectively. Notably, in both cases formic acid underwent highly stereoselective nucleophilic additions to the intermediate nonclassical cyclic carbenium ions to generate the equatorial secondary alcohols after deformylation.

Carbacyclization of a variety of polyene compounds have been extensively studied by Stork and Eschenmoser, resulting in findings that the acid-catalyzed polyene cyclizations were nonstereospecific, but highly stereoselective. However, Goldsmith and coworkers ${ }^{17}$ at Emory University provided the first chemical evidence in supporting stereospecific cyclization of epoxy alkene (scheme 5). $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$-promoted cyclization of epoxy alkene $\mathbf{2 6}$ with central trans-substituted double bond led to tricyclic alcohol 28 with trans-fused A / B rings; while the corresponding cis-alkene 29 produced A/B cis-fused tricyclic alcohol 31 with lower yield under the same cyclization conditions. Intermediates 27 and 30 were proposed to account for the stereochemical outcome of the cyclization, which
were further supported by isolation of many corresponding side products. The stereochemistry of these products clearly suggested that cyclization of epoxy

Scheme 5. Stereospecific cyclization of epoxy alkene.

alkene occurred in a stereospecific process via cation (27 or 30) with conformationally fixed geometries. However, the authors have recognized that a concerted anti-parallel addition was also possible and could not be ruled out.

1.1.2.3. Biomimetic synthesis of isoprenoid natural products

The "Stork-Eschenmoser" hypothesis rationalized the stereochemical course of the biochemical cyclization of polyene on stereoelectronic grounds. However, direct experimental support for this hypothesis was provided by W. S. Johnson, ${ }^{18}$ who initiated the research program that developed biomimetic polyene cyclizations into viable synthetic strategies. The work ${ }^{18}$ from this laboratory culminating in the 1990s has demonstrated that the use of removable fluoride as a cation-stabilizing auxiliary and alkyne as a terminal carbon nucleophile are critical to the success of Johnson's non-enzymatic, biomimetic pentacyclization,
which was clearly illustrated by the landmark achievement in the biomimetic total synthesis of triterpenoid natural product sophoradiol in 1994 (scheme 6). ${ }^{18 \mathrm{e}}$ Fish and Johnson discovered that the fluoride as cation-stabilizing auxiliary played a critical role in the formation of third cyclohexane ring (C-ring) because in the biological production process it was usually generated by cationic rearrangement

Scheme 6. Johnson's biomimetic total synthesis of sophoradiol.

of cyclopentane produced by a favorable exo cyclization based on Baldwin's rule (5-exo Markovnikov addition over 6-endo anti-Markovnikov addition, in agreement with results obtained by van Tamelen and Leiden utilizing the alkyne as a terminating group ${ }^{19}$). Historically significant contributions from Johnson's laboratory included the development of different initiators and terminators, which greatly expanded the scope of polyene carbacyclizations. Tertiary allylic alcohols, acetals and epoxides are good initiators in the presence of a Lewis acid $\left(\mathrm{SnCl}_{4}\right.$ or TFA), while propargylic silanes, allylic silanes and vinyl fluorides are found to be viable terminators for the cascade cyclization.

Since Johnson's pioneering synthetic work in the biomimetic polyene carbacyclization, many other elegant achievements have been made during the past decades. Contributions from E. J. Corey's laboratory are particularly noteworthy. In contrast to Johnson's use of fluoride as a cation-stabilizing auxiliary to control the regioselectivity of six-membered C-ring and alkyne as a nucleophilic terminator to facilitate the pentacyclization, Corey ${ }^{20}$ utilized the enolsilane not only to direct regioselectivity for C-ring formation but also to assist the cascade cyclization due to its good nucleophilicity. The very first example that Corey used for this strategy was the first biomimetic total synthesis of dammarenediol in 1996 (scheme 7) ${ }^{20 a}$. Treatment of the squalene monoepoxide 35 with methyl aluminum dichloride (MeAlCl_{2}, better Lewis acid in many cases) initiated the tricyclization, which was terminated with enolsilane to produce tricyclic diketone 36 as a single diastereomer in 42 \% yield after desilylation and thioacetal hydrolysis. Total synthesis of dammarenediol II 37 was completed in six steps from tricyclic diketone 36 in 28% overall yield.

Scheme 7. Corey's biomimetic total synthesis of dammarenediol II.

35

1) MeAlCl_{2}
2) $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{CN}$
3) $(\mathrm{TFA})_{2} \mathrm{IPh}$
$\downarrow 42 \%$

Most importantly, Corey et al. demonstrated that epoxide was a viable initiator for the cascade carbacyclization of polyene through a chair-chair-chair transition state if a suitable Lewis acid was employed (Goldsmith ${ }^{17 b}$ first explored $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ mediated cyclization of epoxy olefins). It should be noted that epoxy squalene was found to adopt a chair-boat-chair conformation in many cyclases-catalyzed polycyclization, instead of the chair-chair-chair conformation enforced by the squalene-hopene cyclase. Again, these experiments further supported the "Stork-Eschenmoser" hypothesis.

An additional advantage of Corey's strategy was the easy preparation of the enolsilane substrates. The power, efficiency and flexibility of Corey's strategy are clearly demonstrated by many subsequent biomimetic total syntheses of natural products, including scalarenedial ${ }^{20 b}$, serratenediol ${ }^{20 c}$ and onocerin ${ }^{20 d}$ as shown in scheme 8.

Scheme 8. Corey's biomimetic total synthesis of isoprenoid natural products.

r 30% yield

Scalarenedial Core structure

Serratenediol (41)

Onocerin (43)

Cascade carbocylization of polyene is so successfully being emulated by chemical processes that biomimetic synthesis has revolutionized the development of chemical synthesis strategies that are similar to or inspired by
this mode of natural product biosynthesis. For instance, polycyclic ethers were proposed to arise from cascade oxacyclizations of polyepoxide, which will be reviewed briefly in the next section.

1.1.3. Biomimetic synthesis of polycyclic ethers

1.1.3.1. Biogenesis of polycyclic ether natural products

Polycyclic ether marine natural products (figure 1), such as ciguatoxin (44), gymnocin A (45), brevetoxin B (BTX-B, 46), yessotoxin (47), gambierol (48) and maitotoxin (49), have attracted much attention of chemists and biochemists due to their skeletal novelty, complexity, regularity and potent biological activities. ${ }^{21}$ Fish poisoning was first recognized as an important biological activity of polycyclic ethers since massive fish kills was observed in the "red tide", which produced those toxins that exert their toxicity by binding to ion channels ${ }^{22}$. The characteristic structural features of polycyclic ethers included: (1) a backbone of repeating oxygen-carbon-carbon (O-C-C) units extending from one end to the other, regardless of the ring size; (2) cyclic ethers were stacked together in a unique trans-syn-trans-fused fashion with alternative oxygen; (3) hydroxyl (OH) or/and methyl groups are the only functional groups on the inner ether rings. While these extremely complex structures have presented formidable challenges to synthetic organic chemists, they have provided an opportunity and also served as the inspiration for development of new synthetic methodology. ${ }^{21 c}$, 21d, 23 Currently, the mostly accepted biogenetic hypothesis of polycyclic ethers is the Nakanishi ${ }^{24}$ cascade oxacyclization of polyepoxide, a postulate that rationalized

Figure 1. Examples of polycyclic ether natural products.

the structural and stereochemical regularity of the ladder-like polycyclic ethers based on Shimizu's ${ }^{13} \mathrm{C}$-labeling experiments (Scheme 9).

Scheme 9. Nakanishi's biogenetic hypothesis of brevetoxin B.

Stereoselective biogenetic epoxidation of polyene $\mathbf{5 0}$ would give polyepoxide 51 (first postulated by Cane, Celmer and Westley, termed as "CCW hypothesis"25), which underwent endo-regioselective and anti-stereospecific oxacyclization to give brevetoxin B (46). This speculative biogenesis successfully explains the backbone of brevetoxin B (46) with trans-syn-trans topography so that biosynthesis of other related polycyclic ether natural products has been proposed to follow the same type of mechanism. ${ }^{26}$ However, there is little direct evidence, neither site-directed mutagenesis nor molecular modeling, to support this hypothesis employing cascade oxacyclization of polyepoxides. This provides an
impetus for synthetic organic chemists to study the individual chemical transformations and to develop new chemical reactions.

1.1.3.2. Biomimetic synthesis of polycyclic ethers

Fortunately, searching for the chemical evidence of this intellectually appealing biogenesis through biomimetic synthesis was undertaken by a few research laboratories, including McDonald (Emory), Fujiwara/Murai (Hokkaido) and Jamison (MIT), resulting in development of many new chemical reactions ${ }^{23,27}$. Particularly, Vilotijevic and Jamison ${ }^{28}$ recently reported that the cascade oxacyclization of polyepoxide (52) performed in water produced the desired polycyclic ether (54) with trans-syn-trans fusion and with exclusive endoregioselectivity and anti-stereospecific addition (scheme 10). Notably, high endoselectivity (THF vs THP) was achieved without directing groups on any of the epoxides when using water as the cyclization promoter and solvent.

Scheme 10. Jamison's biomimetic oxacyclization of polyepoxide.

Mechanistically, two water molecules work cooperatively to activate both the nucleophile (OH group on the ether ring template) and electrophile (epoxide) through hydrogen bonding as shown in the hypothetical intermediate 53. As recognized by the authors, this cascade oxacyclization "represents the long-
sought evidence in favor of Nakanishi's hypothesis of ladder polyether biosynthesis (or at least the feasibility)."

It is still unclear, however, that the cascade oxacyclization of polyepoxide in the Nakanishi hypothesis started from left to right (-COOH or OH as nucleophile) or from right to left (epoxide as nucleophile). ${ }^{23}$ Experimental results from Jamison's team certainly supported the first case (left-to-right). However, an alternative mechanism (right-to-left) was also convincing and viable based on the McDonald's biomimetic oxacyclization ${ }^{27}$ of polyepoxide via a bicyclic epoxonium ion intermediate (Scheme 11), ${ }^{29}$ which was further elucidated by experimental and computational studies of model systems by other groups. ${ }^{30}$

Scheme 11. Valentine and McDonald's biomimetic oxacyclization of polyepoxide via epoxonium ion.

56a, $X=\mathrm{Me}$
56b, X=H

58a, $X=\mathrm{Me}$
58b, X=H

57a, $X=\mathrm{Me}$
57b, $X=H$

Cascade oxacyclization of tetraepoxide 55 was initiated by selective activation of terminal 14,15-epoxide with Lewis acid $\left(\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}\right)$ to generate the hypothetical epoxonium ion intermediate 56 , which was attacked by the nearest epoxide (C10-C11) oxygen producing another epoxonium ion 57, etc. The cyclization was finally terminated by the carbonate to afford the trans-syn-trans tetracyclic ethers
58. Both substrates (55a and 55b) provided the all-endo oxacyclization products 58a and 58b, which were evidence in support of the epoxonium ion intermediate. Additionally, substituent (methyl or trimethylsilyl, not hydrogen) on C3 and C15 was found to be critical in favor of all-endo selectivity, which was otherwise disfavored under the Baldwin's rules. ${ }^{31}$

To some extent, biomimetic cascade oxacyclization of polyepoxide developed independently by Jamison and McDonald provides the direct chemical evidences in support of Nakanishi's hypothesis. Extension of these methods toward the total synthesis of polycyclic ether natural products is far from satisfactory, however, partially due to limitations of current methods, along with the difficulty in the preparation of the corresponding substrates with the current methods. In Jamison's case, the skipped polyene, a precursor of polyepoxide, was unstable and usually synthesized in situ by reduction of skipped polyalkyne with elemental lithium in ammonia followed immediately by oxidation; whereas in McDonald's case, biomimetic synthesis of polyoxepane (7-membered cyclic ether) was more successful than that of the polypyran (6-membered cyclic ether) synthesis. Regio-selective activation of polyepoxides was not completely solved, while substituents (such as Methyl) on both terminal epoxides are necessary to achieve the endo-selectivity of oxacyclization. On the other hand, the biomimetic cyclizations developed independently by McDonald's laboratory and Jamison's laboratory demonstrated the feasibility of oxacyclization of polyepoxides and would be useful in preparation of many other structurally related molecules.

1.1.3.3. Biomimetic synthesis of polycyclic ether natural

products

One successful application of biomimetic synthesis to total synthesis was reported by the Holton's laboratory, ${ }^{32}$ who undertook convergent total synthesis hemibrevetoxin B, which was the first example of a total synthesis accomplished using the endo-selective biomimetic cascade oxacyclization of an epoxide (scheme 12).

Scheme 12. Holton's biomimetic total synthesis of hemibrevetoxin B.

In the key step of the synthesis, treatment of compound 59 with N (phenylseleno)phthalimide induced the cascade cyclization to give 61 as a single diastereomer through exo-addition of epoxide to epi-selenonium 60 and subsequently endo opening of epoxonium ion with alcohol. The epoxide served not only as a nucleophile to open the epi-selenonium ion but also as an electrophile being attacked by a hydroxyl group. These results clearly
demonstrated the power and efficacy of biomimetic synthesis, since two of the four ether rings in hemibrevetoxin B were constructed in a single operation. However, the truly biomimetic synthesis has not yet become a practical and mainstream method for synthesis of other polycyclic ether natural products. In particular, the total synthesis of maitotoxin, the largest non-biopolymer natural products known to date, still stands as a challenge to modern synthetic methodology.

Since cascade carbacyclization and oxacyclization were proposed to be responsible for the biological production of steroids and polycyclic ethers natural products, respectively, biomimetic polycyclization was extensively explored and provided the chemical evidences to support the corresponding hypothesis. Inspired by these hypotheses and biomimetic syntheses, combination of these two processes -cascade oxa-carbacyclization, was postulated as a biosynthetic pathway ${ }^{33}$ of polycyclic ether triterpenoids, such as abudinol B. Since there is little evidence available to support such hybrid processes, part of this thesis will focus on searching the chemical evidences in support of this hypothesis through biomimetic total synthesis of abudinol B and related natural and non-natural products, which have been proposed to be biosynthesized via cascade oxacarbacyclization of squalene derivatives.

1.1.4. Biogenesis of abudinol B and related natural products

Polycyclic ether terpenoid marine natural products ${ }^{34}$ are very abundant secondary metabolites from algae or sponges. They are one of the most
interesting families of marine natural products, not only presenting a great diversity of structural frameworks with different ring sizes and fusion, but also exhibiting strong biological activities. Recently, a family of polycyclic ether triterpenoid marine natural products, including abudinols, sodwanones and raspacionins (figure 2$)^{34-36}$, has been isolated from sponges of the Axinellidae family Ptilocaulis spiculifer, Axinella weltneri and Raspaciona aculeate, collected from Red Sea, Indo Pacific ocean and Mediterranean sea.

Figure 2. Examples of polycyclic ether terpenoid natural products.

Abudinol B (64)

These triterpenoids constitute a big family in terms of unique and fascinating structural architectures and biological activities. In contrast to most of the triterpenoids marine natural products isolated from algae, such as thyrsiferol and closely related metabolites, ${ }^{34}$ which display very strong cytotoxicity against tumoral or leukemia cell lines, triterpenoids isolated from sponges exhibited tremendous differences in bioactivities (mostly cytotoxicity). For instance, almost
all raspacionins ${ }^{36}$ showed cytotoxicity $(4-8 \mu \mathrm{M})$ against MCF-7 tumoral cell line, while abudinols ${ }^{35}$ and muzitone ${ }^{35}$ have not been found to indicate any interesting anticancer activity so far. Evan in the same class, Sodwanones ${ }^{35,37} \mathrm{G}$, I and M display good cytotoxicity ($0.1-20 \mu \mathrm{M}$) against Cell lines of P-388, A-549, HT-29 or MEL-28, but the other sodwanones have not yet been reported to be cytotoxic. These findings that minor structural differences result in considerable changes in biological activities stimulate the interests of synthetic organic chemists in the development of new and general methods for synthesis of these natural products and their analogs, which will offer an opportunity to study structure-activity relationships. From a synthetic point of view, particular attention has been paid to the total synthesis of abudinol B (64) as well as the oxidative degradation products durgamone (66) and nakorone (67), which were first reported in 1999 as isolated compounds from Red Sea sponges of the Axinellidae familiy Ptilocaulis spiculifer. The unique, highly condensed oxepane-cycloalkane skeleta of these triterpenoids were not previously synthetically explored, but given our interest in endo-regioselective, biomimetic tandem oxacyclizations, these structures attracted our interest for the potential of combining polyepoxide cyclizations with biomimetic polyene cyclizations.

Biogenetically, triterpenoid metabolites from sponges, featuring sevenmembered cyclic ether trans-fused with substituted cyclohexane, in most cases, are derived from enzyme-catalyzed cascade oxidative cyclization of squalene derivatives. For instance, Kashman ${ }^{35 a}$ proposed squalene as the starting material for the biological production of abudinols and oxidative degradation products
durgamone and nakorone (scheme 13). Regio and stereoselective enzymatic oxidation of squalene (5) provided intermediate 71, which underwent antiMarkovnikov cyclization with endo-selectivity to give tricyclic ether 72.

Scheme 13. Kashman's biogenetic hypothesis for abudinols.

74

Regioselective oxidation (dihydroxylation or epoxidation) to $\mathbf{6 6}$ or $\mathbf{6 7}$ followed by another anti-Markovnikov cyclization and dehydration afforded the abudinols A and B. Nucleophilic attack by hydroxyl group on C22 resulted in formation of abudinol A (63) through path a cyclization, whereas abudinol B (64) was produced by cyclization terminated by tertiary alcohol on C23. Aerobic oxidation of abudinol A then provided durgamone (66) and nakorone (67). Although the
apparent violation of Markovnikov's rule in the cyclization steps has been a matter of considerable debate, many known precedents of such anomalies have been provided in the biosynthesis of tetra- and pentacyclic triterpenes. A typical example is the formation of tetrahymanol ${ }^{38}$, which required three antiMarkovnikov additions.

Alternatively, Norte ${ }^{34}$ proposed that biosynthesis of abudinol B (64) could be achieved by sequential tandem oxa-carbacyclization of squalene tetraepoxide (75) (scheme 14). Tandem oxa- and carbacyclizations of two adjacent epoxides and both alkenes of squalene tetraepoxide 75 would provide hypothetical intermediate 76 containing A, B, and C rings, and subsequent tandem cyclization with the remaining two epoxides would complete the biosynthesis of the

Scheme 14. Norte's biosynthesis for abudinol B.

abudinols A and B. Abudinol $A(63)$ corresponds to diepoxide cyclization to form carbon-oxygen bond at C 22 , whereas the oxepane ring of abudinol $B(64)$ would arise from carbon-oxygen bond formation at the more substituted C23. In contrast to Kashman's hypothesis, Norte's cascade cyclization followed the

Markovnikov's rule, which suggests the feasibility of mimicking the cyclization under acidic conditions. In addition, Norte's proposal for the cascade cyclization is a hybrid process of the well-studied cascade carbacyclization of squalenederived substrates and the oxacyclization of polyepoxide for the synthesis of polycyclic ethers.

1.1.5. Retrosynthetic analysis of abudinol B, durgamone and nakorone (first generation)

Our synthetic strategies toward the total synthesis of the enantiomers of abudinol B, durgamone and nakorone was inspired primarily by Norte's biosynthetic hypothesis of abudinol B and our biomimetic cascade oxacyclizations of polyepoxides (scheme 15). ${ }^{39}$

Scheme 15. Retrosynthetic analysis of abudinol B, durgamone and nakorone.

Due to the ready availability of 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose "Shi catalyst" from D-fructose, we elected to prepare the enantiomers of the natural products durgamone (66), nakorone (67) and abudinol B (64). However, an improved preparation for the L-fructose via multiple steps is now available for preparing the enantiomeric Shi catalyst. ${ }^{41 \mathrm{c}}$ Ent-abudinol B (ent64) was envisioned to be assembled by construction of the tetrasubstituted alkene via McMurry cross coupling of tricyclic ent-nakorone (ent-67) and bicyclic ketone 77, a process conceptionally equivalent to "retro-ozonolysis". The key oxa-carbacyclization of epoxy-alkene would be developed for the syntheses of the tricyclic ketone ent-67 and bicyclic ketone $\mathbf{7 7}$ by use of propargylic silane ${ }^{18}$ and enolsilane ${ }^{20}$ to terminate the cascade cyclizations, respectively. The enantiomer of durgamone (ent-66) could be synthesized by a ring contraction of bicyclic ketone 77 under analogous conditions for ring expansion (Nakata rearrangement). ${ }^{40}$ Geranyl acetone (79) with all required carbons and methyl substituents was then proposed as the commercially available starting material for synthesis of diepoxy enolsilane 78 via two classical transformations. Entnakorone (ent-67) would be synthesized from the cascade oxa-carbacyclization product $\mathbf{8 0}$ via oxidative cleavage ${ }^{18}$ of the corresponding allene of $\mathbf{8 0}$. Alkylation of farnesol (82) derivatives with propargylic silane followed by functional group manipulations would provide the oxacyclization substrate 81.

1.3. Results and discussion

While considerable accomplishments have been recorded in the biomimetic or bioinspired cascade cyclizations of polyalkene 9 ,18,20 and polyepoxide cyclizations, ${ }^{27-29}$ the cyclization processes of multiple epoxides with multiple alkenes have not been previously studied. Such a hybrid process has been proposed for the biosynthesis of various triterpenoids which feature cyclic ethers fused to carbacyclic rings, including the marine triterpenoid natural product abudinol B, durgamone and nakorone. Given our interest in endo-regioselective and biomimetic tandem oxacyclizations, ${ }^{27,29}$ the structurally unique, highly condensed oxepane-cycloalkane skeleta of these terpenoids, attracted our interest for the potential of combining polyepoxide cyclizations with biomimetic polyene cyclizations. Herein, we report our studies on oxacyclization of polyepoxide-alkene ${ }^{39}$ toward the total synthesis of enantiomers of abudinol B (ent-64), durgamone (ent-66) and nakorone (ent-67).

1.2.1. Total synthesis of ent-durgamone (ent-66) and bicyclic ketone 77

Our total synthesis of ent-abudinol B (ent-64) commenced with the biomimetic syntheses of tricyclic ent-nakorone (ent-67) and bicyclic ketone 77 via independent cascade oxa-carbacyclization. To explore the hybrid cascade oxacarbacyclization suggested in the retrosynthetic analysis, we began our studies with the synthesis of substrates 78, 83 and 84 , respectively (figure 3).

Figure 3. Oxa-carbacyclization substrates 78, 83 and 84.

78

83

84

Reduction of commercially available geranylacetone (79) with sodium borohydride in methanol (scheme 16), followed by enantioselective double Shi epoxidation ${ }^{41}$ and Parikh-Doering oxidation, afforded the keto diepoxides 87 with high overall yields and good diastereoselectivity (8:1). Alternatively, synthesis of 87 was also achieved by ketalization of geranylacetone (79) with trimethylorthoformate in the presence of catalytic amount of ammonium nitrate, followed by the double Shi epoxidation and acid-catalyzed deketalization ${ }^{42}$. A single diastereomer of 87 was obtained by the second method; however, lower yields in the ketalization of geranylacetone 79 and deketalization of 89 were obtained due to the acidic sensitivity of the dimethoxyketal diepoxide 89.

Scheme 16. Synthesis of diepoxy ketone 87.

The "extra" two-step ketone protection/deprotection was necessary to achieve high diastereoselectivity in the double Shi epoxidation, because the ketone in 79
may be oxidized into dioxirane 90 that underwent nonselective epoxidation of the adjacent alkene (figure 4), which was found by previous studies in our laboratory. In contrast to the ketone, the corresponding alcohol, such as 85, imposes little affect on the selectivity of the neighboring alkene since diepoxide 86 was found to be the major product, which was inseparable from the minor diastereomer iso86. The ratio of 86 to iso- 86 was determined to be $8: 1$ by subsequent transformations.

Figure 4. Intermediate or product of nonselective Shi epoxidation.

90

iso-86

In order to explore the cascade oxa-carbocylization with different terminal carbon nucleophiles, the methyl ketone of diepoxide 87 was converted into enolsilane 78, allylsilane 83 and 1,1-disubstituted alkene 84, respectively (Scheme 17).

Scheme 17. Synthesis of cyclization substrates.

Specifically, following the general procedure ${ }^{43}$ for formation of kinetic enolate ${ }^{44}$, deprotonation of methyl ketone with potassium bis(trimethylsilyl)amide followed by capture with tert-butyldimethylsilyl chloride, provided diepoxy enolsilane 78. Similarly, trapping the kinetic enolate from 87 with Comins reagent ${ }^{45}$ [N -phenylbis(trifluoromethanesulfonimide)] gave enol triflate 91, which underwent palladium-catalyzed Negishi cross-coupling ${ }^{46}$ with (trimethylsilylmethyl) magnesium chloride to afford the allylsilane 83. Particularly noteworthy is that Negishi cross-coupling proceeded much faster than the epoxide opening with the nucleophilic Grignard reagent, and due to its low Lewis acidity, the resulting side product $\mathrm{Mg}(\mathrm{OTf}) \mathrm{Cl}$ (trifluoromethanesulfonylmagnesium chloride) did not promote oxa-carbacyclization of 83 . Synthesis of diepoxy alkene 84 was achieved by following a modified Julia olefination ${ }^{47}$ of ketone 87. With these substrates in hand, we began to explore the viabilities of hybrid cyclization processes, cascade oxa-carbacyclization, under abiological conditions. Oxa-carbacyclization of 78 was previously performed in our laboratory ${ }^{48}$ using stoichiometric Lewis acid of freshly distilled trifluoroboron etherate $\left(\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}\right)$ or methylaluminum dichloride $\left(\mathrm{MeAlCl}_{2}\right)$ to provide mixtures of bicyclic ketones 94 and 95 in $40-60 \%$ yield . Reproducing such reactions, however, has never been a trivial matter if the yield is the major concern, because impurities such as HF and HCl from Lewis acid decomposition or trace amount of water in the solvent would significantly lower the yields of cyclizations. Mechanistically guided design and screen of Lewis acids led us to discover trialkylsilyl triflates ${ }^{49}$ as potentially effective promoters of oxa-carbacyclizations. Treatment of an $8: 1$ mixture
favoring diastereomer 78 with substoichiometric tert-butydimethylsilyl trifluoromethanesulfonate (TBSOTf) in the presence of 2,6-di-tert-butyl-4methylpyridine (DTBMP) gave chromatographically separable 94 and epi-94 in excellent yield. Oxa-carbacyclization was assumed to be first induced by selective coordination of silyltriflate with the terminal epoxide $9 \mathbf{2 月}^{49}$ to give bicyclo[4.1.0]epoxonium ion intermediate 93, ${ }^{29}$ which was attacked with tethered enolsilane in anti-parallel addition fashion ${ }^{15-17}$, to provide bicyclic ketone 94 corresponding to the D and E rings of ent-abudinol B (ent-64) (scheme 18). DTBMP was used as a bulky and non-nucleophilic base to trap any proton or triflic acid (HOTf) generated in the system for any reason. The base is also beneficial to generate the silylated cyclic products. Interestingly, bicyclic epi-94 was formed in much slower rate, which was observed by monitoring the reaction

Scheme 18. TBSOTf mediated oxa-carbacyclization of 78.

with thin layer chromatography (TLC). The stereochemistry and other structural aspects of 94 and epi-94 were conclusively substantiated by X-ray analysis of the desilylation products 77 and 95 , respectively (figure 5).

Figure 5. The thermal ellipsoid diagrams for bicyclic ketones 77 and 95 .

77

95

These results suggest that $\mathrm{C}-1$ addition of alkene nucleophile is highly stereospecific with clean inversion of stereochemistry at C6 in both cyclizations. The trialkylsilyl triflate promoted oxa-carbacyclization excelled in reproducibility, bench operation and scaling up as compared with previous protocols. The ability to achieve such non-enzymatic oxa-carbacyclization clearly demonstrated the viability of cascade cyclization of polyepoxide-alkene substrates.

Under similarly optimized conditions, diepoxy allylsilane 83^{49} underwent similar bicyclization with a catalytic amount of TMSOTf and DTBMP to provide bicyclic alkene 98 in 92% yield, which could be transformed into bicyclic ketone 94 or 77 via ozonolysis and functional group manipulations (Scheme 19). The excellent yield with clean conversion suggests that allylsilane is an effective terminator for TMSOTf-promoted cascade oxa-carbacylization. Other Lewis acids ${ }^{49}$ including $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{MeAlCl}_{2}{ }^{20}$ have been shown to promote the oxacyclization in lower yields.

Scheme 19. Oxa-carbacyclization of 83 and 84.

Most importantly, the 1,1-disubstituted alkene of diepoxide 84 did participate in the tandem oxacyclization using 1.1 equivalent of TMSOTf and 2.0 equivalent of DTBMP at $-78{ }^{\circ} \mathrm{C}$ to give bicyclic ether 98 in 68% yield. $\mathrm{C} 9-\mathrm{C} 10$ trisubstituted alkene of 98 was obtained as a major identified product, which was rationalized by the formation of non-classical carbenium cation intermediate 97 followed by C9 beta-hydrogen elimination to afford thermodynamically stable alkene. A lower yield was expected for this transformation since 1,1-disubstituted alkene was known to be less nucleophilic than the corresponding enol silane or allylic silane. In a closely related case, our laboratory previously reported the oxacarbacyclization of farnesol-derived diepoxy alkene 99 (scheme 20) ${ }^{29 a}$. The low yield (21\%) of oxa-carbacyclization was consistent with low nucleophilicity of allylic alkene, even with a carbonate as the terminating nucleophile.

Scheme 20. McDonald/ Wei alkene-epoxide cyclization.

Comments on the oxa-carbacyclization of these diepoxy-alkenes are warranted before describing the exploration of other types of oxa-carbacyclization: 1) electron-rich alkenes are more favorable to undergo cascade mixed oxacarbacyclizations; 2) the oxa-carbacyclization proceeds with endo-selectivity in anti-parallel addition; 3) silyl Lewis acids (TMSOTf or TBSOTf) in the presence of bulky base (DTBMP) are the choice of Lewis acid for the cascade oxacarbacyclizations and 4) the stereochemistry of epoxides will affect the cyclization rate, but not the course, so that rate of cyclization is faster with the epoxides of all S or R configuration.

With a sufficient supply of bicyclic ketone 77 by our efficient oxa-carbacyclization, the enantiomer of durgamone (ent-66) was then synthesized by zinc acetatemediated stereospecific ring contraction of the chloromesylate 101 (Scheme 21).

Scheme 21. Total synthesis of ent-durgamone (ent-66).

Treatment of $\mathbf{7 7}$ with chloromethylsulfonyl chloride in the presence of 2,6-lutidine resulted in formation of chloromesylate 101 in quantitative yield, which was subjected to zinc acetate mediated stereospecific ring contraction in acetic acid at $50^{\circ} \mathrm{C}$ to give ent-durgamone (ent-66) in 50% yield, presumably via epoxonium ion intermediate 102. External nucleophilic water (or acetate ion) was expected
to attack the more substituted carbon, which has been studied by Nakata ${ }^{40}$ for ring expansion of cyclic ethers. All of our spectroscopic data matched the very limited data reported for the natural products except for the optical rotation. The value of optical rotation of our synthetic enantiomer of durgamone (ent-66) is +14 (c 0.13 in methanol), whereas -28.5 (c 0.1 in methanol) of natural durgamone (66) was reported. The magnitude difference may be due to inaccurate measurement of concentration or impurities in the natural sample.

1.2.2. Total synthesis of ent-nakorone (ent-67)

Inspired by Johnson's landmark work ${ }^{18}$ in the cascade carbacyclization of polyalkenes, propargylic silane was introduced as a terminal nucleophile for the synthesis of ent-67 via similar oxa-carbacyclization because it is electronically rich, easily accessible and less sterically hindered. In addition, conversion of allene product by ozonolysis into the corresponding ketone was also reported to be high yielding. The synthesis of ent-nakorone began with preparation of coupling substrates farnesyl sulfone 104 (scheme 22) ${ }^{51}$ and propargylic bromide 109 (scheme 23) ${ }^{52}$. The known farnesyl sulfone was prepared using a newer procedure. Specifically, farnesol (82) was treated with triphenylphosphine and N bromosuccinimide (NBS) in THF at $0{ }^{\circ} \mathrm{C}$ to give the unstable allylic bromide 103, which in the same reaction pot underwent substitution with p-toluenesulfinic acid, sodium $\left(\mathrm{NaSO}_{2} \mathrm{Tol}\right)$ in the presence of a catalytic amount of tetrabutylammonium iodide $\left(\mathrm{Bu}_{4} \mathrm{NI}\right)$ for accelerating the $\mathrm{S}_{\mathrm{N}} 2$ substitution, to provide farnesyl sulfone 104 in 99\% yield.

Scheme 22. Synthesis of farnesyl sulfone 104.

The synthesis of the known compound 109^{52} was achieved more easily by the following sequence from 2-butyn-1-ol 105 (scheme 23). Deprotonation of alcohol 105 with butyllithium (n-BuLi) at $-78{ }^{\circ} \mathrm{C}$ followed by deprotonation of the propargylic methyl with tert-butyllithium (t-BuLi) while slowly warming to $0{ }^{\circ} \mathrm{C}$, generated dianion 106, which was trapped with trimethylsilyl chloride (TMSCI) to provide 107. Selective desilylation of 107 with acetic acid (AcOH) and water in the same reaction pot gave the desired 4-trimethylsilyl-2-butyn-1-ol (108) in 89\%

Scheme 23. Synthesis of propargylic silane 109.

yield. Bromination of the resulting alcohol 108 was carried out with PPh_{3} and NBS in THFat $0{ }^{\circ} \mathrm{C}$ to provide the desired 1-bromo-4-trimethylsilyl-2-butyne (109) in 90% yield. Noteworthy is that a considerably lower yield (5.2\%) was obtained in our hands when following the previously reported procedure ${ }^{52}$ from an expensive propargylic silane 110. Alkylation ${ }^{53}$ of the lithium anion of farnesyl sulfone (104) with propargylic bromide 109 proceeded smoothly to afford triene-
yne 111 in 92% yield (scheme 24). Regio- and stereoselective double Shi epoxidation of 111 provided diepoxide 112 by taking advantage of the electronwithdrawing effect of the allylic sulfone to prevent epoxidation of the proximal

Scheme 24. Synthesis of cyclization substrate 81.

alkene. Palladium-catalyzed reductive desulfonylation ${ }^{54}$ with Superhydride ${ }^{\circledR}$ $\left(\mathrm{LiEt}_{3} \mathrm{BH}\right)$ provided the desired diepoxy enyne 81 in good yield. Mechanistically, palladium(II) was reduced by the Superhydride ${ }^{\circledR}$ to palladium(0), which underwent oxidative addition to allylic sulfone to generate m-allyl palladium 113. Nucleophilic attack on the less hindered carbon with hydride resulted in formation of product 81. The fresh preparation of palladium catalyst $\left[\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{dppp})\right]$ was imperative to successful reduction and high regioselectivity.

It is informative and instructive to comment on the desulfonylation: 1) Superhydride did not reduce or open the epoxides under the reaction conditions, which was a concern prior to conducting the reaction; 2) the electrophilic π-allyl palladium did not initiate the cascade cyclization of the remaining diepoxide, while π-allyl metal (such as Rh or Pd) ${ }^{55}$ has been shown to be very reactive and
initiate the alkylation or cyclization to form acyclic or cyclic ethers; and 3) The nucleophilic propargylic silane survived, and palladium-catalyzed enyne cyclization or coupling ${ }^{56}$ was not observed. The ability to achieve the regioslective desulfonylation with Superhydride in the presence of epoxides and propargylic silane has clearly revealed the stability of $\pi-a l l y l$ palladium species from allylic sulfone.

With the substrate 81 in hand, we studied the oxa-carbacyclization terminated with propargylic silane (scheme 25). Treatment of diepoxy enyne 81 with catalytic amount of TMSOTf and DTBMP resulted in the trans-anti-trans tricyclic allene 80 in excellent yield, presumably via TMSOTf-activation of terminal epoxide 114.

Scheme 25. Synthesis of enantiomer of nakorone (ent-59).

The oxa-carbacyclizaton proceeded smoothly in stereospecific anti-parallel addition fashion by following Markovnikov's rule and was usually completed in
one hour with 100% conversion of starting materials. Incredibly, the stereochemistry and tricyclic structural architecture of $\mathbf{8 0}$, consistent with the enantiomers of natural product nakorone and abudinols A and B, was constructed in one single operation from a linear substrate 81 . The yield of oxacyclization of diepoxy en-yn 81 to allene 80 significantly exceeded that obtained from oxacyclization of diepoxy en-carbonate 99 to 100 shown in Scheme 20. Ozonolysis ${ }^{57}$ of the allene of 80 to tricyclic ketone 116 was followed by desilylation with tetrabutylammonium fluoride $\left(\mathrm{Bu}_{4} \mathrm{NF}\right)$ to furnish the entnakorone (ent-67), which also corresponds to the A, B and C rings of the abudinols. Alternatively, desilylation of 80 to allene 115 followed by ozonolysis also provided the ent-nakorone (ent-67) in approximately the same yields. However, oxidative cleavage of allene by the Sharpless method ${ }^{58,18 f}$ (catalytic RuCl_{3} and NaIO_{4}) gave mixtures of ent-nakorone (ent-67) and 116 in lower yields. The structural and stereochemical aspects of the tricyclic allene 115 were substantiated by analysis of X-ray crystallographic data (figure 6).

Figure 6. The thermal ellipsoid diagram for compound 115.

1.2.3. Total synthesis of enantiomer of abudinol B (ent-64)

Having demonstrated the efficient oxa-carbacyclization to provide sufficient amount of bicyclic ketone 94 and tricyclic ketone 116, we set out to assemble these two sectors into ent-abudinol B (ent-64). We envisioned that abudinols would arise from cross-coupling of bicyclic ketones 94 or ent-66 with tricyclic 116 by a process conceptually equivalent to retro-ozonolysis. Unfortunately, the sterically hindered ketone 116 as well as the enolizable nature of 94 was incompatible with several otherwise reliable transformations of this type. In addition, it would be extremely challenging to set the right geometry of the newlyformed tetrasubstituted alkene from two cyclic ketones, since no precedents were reported to date.

A number of efforts were still made to explore this challenging transformation. First, we began to study the McMurry cross coupling ${ }^{59}$ (Scheme 26), a retroozonolysis process, since only a single-step reaction was required with the ketones 94 and 116 to provide the expected ent-abudinol B (ent-64) if it works.

Scheme 26. McMurry coupling of 94 and 116.

However, upon treatment of ketones 94 and 116 with classically recommended titanium trichloride and zinc-copper complex, no cross-coupling products were detected by ${ }^{1} \mathrm{H}$ NMR or HRMS. Diene 118 was identified by HRMS with the nonpolar products, which was explained by homocoupling of radical generated from sterically less hindered bicyclic ketone 94 followed by dehydration.

There are no precedents documenting that an aliphatic cyclic ketone will undergo intermolecular McMurry cross-coupling with another aliphatic cyclic ketone. The possibility of a bad catalyst cocktail was ruled out by successfully carrying out the control experiment with cyclohexanone. In typical intermolecular McMurry crosscoupling, the arylketone, except for excessive acetone, was the only viable coupling partner when the other is an aliphatic ketone because it would be reduced first and formed an aryl-stabilized radical, which has a lifetime long enough for coupling with external partners (Figure 7). ${ }^{59 c, 59 \mathrm{~d}}$

Figure 7. McMurry cross coupling of arylketone.

We next explored the reaction of one ketone with olefinating reagent derived from the other ketone, as typically polysubstituted alkenes could generally be synthesized by olefination of corresponding ketone or aldehydes with Tebbe-, Julia- or Wittig-type reagents. ${ }^{60}$ To that end, we explored the titanocenemediated olefination developed by Takeda, due to its efficiency and power to
construct the crowded tetrasubstituted alkene from two different aliphatic ketones (scheme 27).

Scheme 27. Takeda's method for assembly of ketones 94 and 116.

Ketone 94 was then converted into gem-dichloride 120 by following the Takeda protocol for gem-dihalide synthesis. ${ }^{61}$ Unfortunately, titanocene carbene 121, prepared in situ from gem-dichloride $120, \mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and magnesium, did not undergo olefination with ketone 116, probably because of the steric hindrance presented by the ketone 116 and/or instability of titanocene carbene 121. Complex mixtures were observed by TLC and crude ${ }^{1} \mathrm{H}$ NMR. Ketone 116 could not be transformed into the corresponding gem-dichloride species due to the easy elimination of HCl of the gem-dichloride product as well as desilylation. Therefore, we turned our attention to the other methods that are not obvious or direct to abudinol B, for example, alkylation of ketone 116 and reductive deoxygenation. We decided to make the carbon carbon single bond first via alkylation of 116 with vinyllithium (123) prepared in situ by Shapiro Reaction (scheme 28). ${ }^{62}$ Condensation of ketone 94 with hydrazine produced the hydrazone 122 in good yield. Deprotonation of 122 with three equivalents of n -

BuLi at low temperature caused Shapiro reaction to generate vinyllithium 123 when warming up to $0^{\circ} \mathrm{C}$.

Scheme 28. Vinyllithium formation via Shapiro reaction.

Unfortunately, the vinyllithium 123 was not to react with the tricyclic ketone 116, but to be protonated by THF solvent ${ }^{62 \mathrm{~d}}$ while warming. Difficulty in preparing the vinyllithium 123 at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ with a high yield as well as its strong basicity ${ }^{62 \mathrm{~d}}$ for potential enolization of ketone 116 made this route less attractive, given the fact that few precedents in the literature were documented for the stereospecific reductive deoxygenation ${ }^{63}$ of allylic alcohol with migration of the double bond.

Considering the successful application of Barton's two fold molecule extrusion ${ }^{64}$ for synthesis of tetrasubstituted alkene from two different cyclic ketones, we expected that the tetrasubstituted alkene in the ent-abudinol B could be constructed from ketones 94 and 116 by following similar sequences (scheme 29 and Scheme 30). We synthesized the azine (bishydrazone) 127 by following Jenneskens's procedure ${ }^{64 \mathrm{c}}$ for synthesis of asymmetric bishydrazone from two different ketones.

Scheme 29. Coupling of ketone 94 with 116 via hydrazone formation.
TMSO

94

Condensation of ketone 116 with phosphite hydrazine ${ }^{65}$ in the presence of catalytic amount of acetic acid provided the required hydrazone phosphate 125. Deprotonation of the resulting hydrazone 125 with NaHMDS followed by reaction with ketone 94 afforded desired azine 127. Surprisingly, azine 127 could not be synthesized by reaction of ketone 116 with hydrazone 128 under the same reaction conditions probably because the steric hindrance of the tricyclic ketone 116 disfavors nucleophilic addition upon it.

Following Barton's protocol, treatment of 127 with $\mathrm{H}_{2} \mathrm{~S}$ gas in sealed tube gave heterocycle 129, which, unexpectedly, is unstable and decomposes on TLC when monitoring the reaction progress with TLC (Scheme 30). Subsequent subjection of the crude 129 to lead tetraacetate $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ oxidation did not afford the desired heterocycle 130. Reversing these two steps, oxidation followed

Scheme 30. Barton's method to assemble ent-abudinol B from azine 127.

by substitution, still did not change the fate of instability of intermediate. Oxidative bromination ${ }^{66}$ of 127 also resulted in unstable product 132, which did not undergo substitution reaction with hydrogen sulfide salt. Neither 117 nor its derivatives (desilylation products) were detected by ${ }^{1} \mathrm{H}$ NMR or TLC when the one-pot procedure was attempted to avoid decomposition and isolation of unstable intermediates. The unpleasent odor and high toxicity of sulfur compounds associated in this transformation discouraged other attempts on this BartonKellogg olefin synthesis. Other fruitless efforts on utilizing bishydrazone chemistry of 127 included the AIBN-initiated radical reaction, thermal decomposition (heating) and photo decomposition (sunlight exposure for days to month in a sealed tube).

Because palladium-mediated cross-coupling reactions ${ }^{67}$ were well established in making a C-C bond with exceeding efficiency and mild conditions, we next set out to explore palladium catalyzed cross-coupling reactions with the derivatives of ketone substrates 94 and 116. Fortunately, numerous efforts on this new

Scheme 31. Suzuki cross-coupling of 94 and 116.

strategy were eventually rewarded by efficiently uniting 94 (DE rings) and 116 (ABC rings) sectors (Scheme 31). Using conditions developed by Miyaura, ${ }^{68}$ the ketone 94 and 116 could be efficiently converted to the corresponding coupling partners. Trapping the kinetic enolate from 94 with Comins reagent $\left(\mathrm{PhNTf}_{2}\right)$ produced vinyltriflate 133. Similarly, 116 was converted into vinyl triflate 135. Palladium-catalyzed cross-coupling of 136 with 133 proceeded effectively and united the $A B C$ and $D E$ ring sectors through a one-pot sequence, in which
tricyclic enol triflate 135 was first converted into the vinyl boronate 136 by palladium catalysis, and then coupled with bicyclic enol triflate 133 in the presence of $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{dppf})$ and wet $\mathrm{K}_{3} \mathrm{PO}_{4}$, to provide pentacyclic diene 137 in good yield. Isolation of the vinylborate 136 was not necessary in terms of yields and bench operation. Trace of water seemed beneficial to the second-step crosscoupling (133 and 136), because dry potassium triphosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)$ gave lower yields. Under optimized conditions, Suzuki cross-coupling of boronate 138 with vinyl triflate 135 gave lower yield of diene 137, probably because initial oxidative addition product Pd (II) is too bulky to favor the subsequent transmetallation with boronate 138. Homocoupling and protonation of 138 were found to be two main competing processes that accounted for the moderate yield.

Surprisingly, more challenges were encountered in the partial hydrogenation of diene 137 due to the poor regio- and stereoselectivity of the very limited methods ${ }^{69}$ available. It was well known that conjugated diene coordinated by chromium ${ }^{69 \mathrm{c}}$ or other meta ${ }^{69 b-f}$ could be partially hydrogenated in 1,4-cis-addition manner ${ }^{69}$, however, it was expected to give "wrong" Z-alkene geometry instead of the E-alkene in abudinol B. The faith that luck always goes to the wellprepared person gave me the courage and power to try various methods available.

No reaction occurred when diene 137 was subjected to the partial hydrogenation conditions including titanocene-mediated reduction $(A)^{70}$, rhodium-catalyzed hydrogenation (B) $)^{71}$, trifluoroacetic acid (TFA) promoted reduction (C) $)^{72}$ and AIBN-initiated radical reaction (D) (scheme 32).

Scheme 32. Attempts on hydrogenation of diene 137.

Conditions: A: $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$, DIBAL-H, THF
$\mathrm{B}: \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}$, benzene
C: TFA, $\mathrm{Et}_{3} \mathrm{SiH}$, benzene
D: AIBN, $\mathrm{Bu}_{3} \mathrm{SnH}$, benzene

Fortunately, palladium-catalyzed hydrogenation of diene 137 in toluene at $0^{\circ} \mathrm{C}$, utilizing conditions developed by Shibasaki ${ }^{73}$ for stereoselective synthesis of an exocyclic tetrasubstituted enol ether and olefin in 1, 4-addition manner, gave the desired product 117, along with a substantial amount of the regioisomeric alkene 142 (3:5) in 95\% yield (scheme 33). Mechanistically, PdH_{2} coordinating the less

Scheme 33. Palladium-catalyzed hydrogenation of diene 137.

hindered cyclohexene (139) underwent regio- and stereoselective carbopalladation to provide π-allyl palladium 140 that underwent kinetic reductive
elimination to afford the long-sought 117 in 30% yield. Whereas 141, conformationally equilibrated with π-allyl palladium 140, provided thermodynamic product 142 after reductive elimination. Solvent effect on the regio-and stereoselectivity was substantial since polar solvents such as methanol, ethanol or ethyl acetate provided only trace desired product 117. Reaction temperature was another important factor that affected the regio- and stereoselectivity of palladium-catalyzed hydrogenation. The newly-formed alkene geometry and all other structural aspects of our synthetic material were conclusively confirmed by crystallographic analysis of the bis-silyl abudinol B 117 (figure 8).

Figure 8. Thermal ellipsoid diagram for compound 117.

Several attempts, ${ }^{74}$ including acid-catalyzed $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, base-promoted $\left(\mathrm{KNH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right)$ and transition metal-mediated $\left\{\mathrm{Pd} / \mathrm{C}, \mathrm{PdCl}_{2}, \mathrm{PdCl}_{2} / \mathrm{AgBF}_{4}\right.$, $\left.\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}\right\}$ isomerizations, were made to isomerize the regioisomeric alkenes 142, but without success. In an effort to improve the overall conversion of 137 to 117 , we undertook studies on hole transfer catalyst promoted hydrogenation ${ }^{75}$ (scheme 34), a partial reduction process developed by Bauld.

Treatment of 137 with cation radical initiator [tri(4-bromophenyl)ammonium hexachloroantimonate] ${ }^{75 \mathrm{c}}$, a hole transfer catalyst, in the presence of tributyltin hydride or triphenyltin hydride gave predominantly alkene 145 after simultaneous removal of trimethylsilyl group, along with approximately 5\% tetrasubstituted alkene 146 with the "wrong" alkene geometry. The cis-diene cation radical 143 was proposed to account for regioselective formation of 146 via unfavorable 1,4addition of dihydrogen, which was in sharp contrast to Bauld's case that 1,4addition hydrogenation product was obtained exclusively.

Scheme 34. Hole transfer catalyst promoted hydrogenation of diene 137.

Although the improvement of conversion of diene 137 to monoene 117 was not achieved, the short and efficient synthetic route for preparation of diene 137 guaranteed a sufficient supply of 117 for completing the total synthesis of entabudinol B. Desilylation of 117 with tetrabutylammonium fluoride (TBAF) in THF at $60{ }^{\circ} \mathrm{C}$ provided the structure corresponding to antipode of naturally occurring
abudinol B (ent-64) in 84% yield (scheme 35). All spectroscopic data for the synthetic enantiomer of abudinol B was well matched with that of the limited data reported for the natural abudinol B. The alkene geometry and all other structural aspects of our synthetic material were conclusively confirmed by crystallographic analysis of 117.

Scheme 35. Completion of the total synthesis of ent-abudinol B (ent-64).

In conclusion, the biomimetic total synthesis of ent-durgamone (ent-66) was achieved in 8 steps from commercially available geranylacetone (79) with 21% overall yield, and ent-nakorone (ent-67) was accomplished in 7 steps from commercial starting material farnesol (82) with 32.1% overall yield. Convergent and biomimetic total synthesis of ent-abudinol B (ent-64) was achieved in 5 steps from bicyclic ketone 94 and tricyclic ketone 116 with 15.9% overall yield. Most importantly, cascade cyclizations of diepoxides tethered to enolsilane and to enepropargylsilane were developed and could be applied to the efficient, potentially biomimetic syntheses of several structurally related terpenoid natural product structures. These findings led to additional exploration on the possibility of the direct formation of abudinols and other oxacyclic triterpenoid natural products from polyepoxide substrates similar to squalene tetraepoxide.

1.3. Biomimetic total synthesis of ent-abudinol B from squalene-like precursor

1.3.1. Synthetic strategies

Upon completion of the first total synthesis ${ }^{39}$ of abudinol B, we undertook studies of the much more risky biomimetic synthesis: total synthesis of this triterpene natural product from a squalene-like precursor. Squalene (5) and the (S)-2,3monoepoxide of squalene are precursors for the biogenesis of many 30-carbon terpenoid natural products, including steroids and hopanoids. ${ }^{9 a}$ The demonstrated cascade polycyclization nature of the biosynthetic processes for these important natural products from squalene and squalene epoxide has also revolutionized the development of chemical synthesis strategies ${ }^{9 b}$ that are similar to or inspired by this mode of natural product biosynthesis. More recently, a variety of triterpenoid natural products containing cyclic ethers have been discovered in marine sources including algae and sponges. ${ }^{34,35}$ The biosynthetic pathway for these compounds can be envisioned to arise from additional oxidations of squalene, accompanied by oxacyclizations to form the cyclic ether structures. While considerable accomplishments have been recorded in biomimetic or bioinspired cascade cyclizations of polyalkene and polyepoxide cyclizations, the cyclization processes of multiple epoxides with multiple alkenes have not been extensively studied. Such a hybrid process has been proposed for the biosynthesis of various triterpenoids which feature cyclic ethers fused to carbacyclic rings, including the marine triterpenoid natural product abudinol B (64)
(Scheme 14). The 30-carbon skeleton of abudinol B as well as the position of methyl substituents is consistent with a triterpene arising from biogenetic

Scheme 36. Retrosynthetic analysis of ent-abudinol B (ent-64).

oxidative polycyclization of squalene (5), and also shares several structural features with other cyclic ether triterpene natural products. ${ }^{34,35}$ Although the nature of the biosynthetic polycyclization process has not yet been demonstrated, Norte ${ }^{34}$ has proposed that tandem oxa- and carbacyclization of two adjacent epoxides and both alkenes of squalene tetraepoxide (75) could provide the hypothetical intermediate 76 containing the fused tricyclic sector in an initial tricyclization stage, followed by subsequent stage featuring bicyclization of the remaining two epoxides to afford the structure of abudinol B via beta-elimination of hydrogen to form the tetrasubstituted alkene.

Our second generation of biomimetic total synthesis of abudinol B was primarily inspired by the biogenesis proposed by Norte and highly based on the striking findings from our first generation synthesis ${ }^{39}$ (Scheme 36). We envisioned that the D and E rings of ent-abudinol B could be formed via Lewis acid-initiated tandem oxa-carbacyclization of diepoxy alkene 147 as well as simultaneous construction of the congested tetrasubstituted alkene by loss of one equivalent of proton, a process that mirrored the second stage of biogenesis of abudinol B . Stereochemically defined 147 could be synthesized by sequential functional group manipulations of 148, including regio- and diastereoselective double Shi epoxidation ${ }^{41}$ of the trisubstituted alkene and methylenation of the corresponding ketone. The first stage of biosynthesis of abudinol B was simulated by Lewis acid mediated tandem oxa-carbacyclization of diepoxides 149. In order to more effectively promote the initial tricyclization cascade to afford the fused tricyclic network of abudinol B as observed in the proposed biogenetic intermediate 76, the enolsilane at $\mathrm{C} 14-\mathrm{C} 15$ of 149 was designed as a good nucleophile for efficient termination of the cascade cyclization. The epoxides of compounds 149 and 147 were antipodal to those required for abudinol B, due to the ready availability of the D-fructose-derived chiral ketone ${ }^{41}$ (D-epoxone ${ }^{\circledR}$) for enantioselective epoxidation.

1.3.2. Synthesis of cyclization substrate 149

For the synthesis of squalene-like precursor 149, we envisioned that the carbon skeleton could be assembled by alkylation of farnesyl allylic bromide 150 with geranyl homoenolate 151 prepared in situ by Brook rearrangement ${ }^{76}$ of alkoxide from vinyl Grignard addition to geranyl acylsilane 152 (figure 9), sequential transformations developed by Kuwajima ${ }^{77}$ and extended by Corey ${ }^{20}$ for synthesis of enol silane with high level of regioselectivity.

Figure 9. Fragments of squalene-like substrate 149.

150

151

152

We started our syntheses with preparation of 151 and 152 from commercially available materials (scheme 37 and scheme 38). Specifically, deprotonation of known compound 153^{78} with freshly-prepared lithium diisopropylamide (LDA) in THF at $-30^{\circ} \mathrm{C}$ initially and then at $0{ }^{\circ} \mathrm{C}$ for 10 min produced the corresponding lithium azaenolate 154 , which was cooled to $-30{ }^{\circ} \mathrm{C}$ again and treated with geranyl bromide to provide imine 155 (Scheme 36). Hydrolysis ${ }^{20 a, b}$ in HOAcNaOAc buffer afforded the acylsilane 152, which underwent alkylation ${ }^{77}$ with three equivalents of vinylmagnesium chloride in diethyl ether to afford tertiary alcohol 156 in excellent yield. No products resulting from Brook rearrangement were found by TLC or ${ }^{1} \mathrm{H}$ NMR after aqueous workup, consistent with results from Kuwajima's experiments ${ }^{77}$.

Scheme 37. Synthesis of coupling substrate 156.

For the synthesis of 150 (scheme 38), double Shi epoxidation ${ }^{41}$ of trans-trans farnesyl acetate (157) afforded the desired diepoxide 158 with approximately 10:1 diastereoselectivity, along with starting material and triepoxide 159 with lower diastereoselectivity on the allylic alkene. Deacetylation of 158 with catalytic amount of potassium carbonate in methanol provided diepoxy alcohol $160^{29 a}$, which was treated with methanesulfonyl chloride (MsCl) in the presence of

Scheme 38. Synthesis of farnesyl diepoxy bromide 150.

Side reactions

triethylamine at $-30^{\circ} \mathrm{C}$, followed by addition of THF solution of anhydrous lithium bromide, to produce diepoxy allylic bromide 150 in good yield. Particular caution must be exercised to the purification of 150 since silica gel can cause explosive tandem exo-cyclization reaction to generate bicyclic tetrahydrofuran 162 (scheme 38). The allylic bromide 150 is also sensitive to light, moisture (even with weak acid such as glassware) and oxygen, and therefore should be used as soon as possible or stored in the freezer $\left(-20^{\circ} \mathrm{C}\right)$ under argon atmosphere. Shi epoxidation of trans-trans farnesol afforded mixtures of diepoxide (160) and triepoxide in approximate 1:1 ratio, so the acetate protective group of 157 was demonstrated to be a deactivating group for the adjacent alkene.

Synthesis of squalene-like 149 via coupling of 150 with 156 (or 151) was performed by following Kuwajima's protocol ${ }^{77}$ (Scheme 39). Deprotonation of the alcohol 156 by n-BuLi in hexane at $-78{ }^{\circ} \mathrm{C}$ to lithium alkoxide 163 was followed by addition of THF to promote Brook rearrangement at $-78^{\circ} \mathrm{C}$ and delocalize the

Scheme 39. Synthesis of squalene-like substrate 149.

resulting anion 164 to generate chelated homoenolate 151, which underwent alkylation with diepoxy allylic bromide 150 at $-30^{\circ} \mathrm{C}$ to provide the Z-coupled silyl enol ether 149 with squalene-like carbon skeleton. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR analysis of both crude and chromatographed product demonstrated the absence of the isomeric E-tetrasubstituted enol ether. The stereoselective formation of 149 may be attributed to a chelated structure 151 analogous to chelated magnesium structures proposed by Kuwajima. Moderate yield of the alkylation may be due to poor electrophilicity of allylic bromide as compared with primary iodide (methyl iodide, alkylation occurred at $-78{ }^{\circ} \mathrm{C}$), and therefore resulted in protonation and oxidative homocoupling of intermediate 151 to give side products 165 and 166, respectively. In order to obtain a reasonable yield, stringent exclusion of oxygen and water from the reaction system was imperative to suppress these side reactions. Notably, compound 149 was also obtained in a one-pot reaction, but in lower yield, by following the Corey's protocol, in which intermediate 151 was generated in situ by addition of vinyllithium to geranyl acylsilane 152 in diethyl ether at $-78{ }^{\circ} \mathrm{C}$. The main drawback of this coupling method was that the strong nucleophilicity and basicity of vinyllithium required the exact measurements of its amount, aging time and temperature for Brook rearrangement. Additionally, shorter shelf-life time of vinyllithium solution required fresh preparation or titration prior to reaction.

1.3.3. First-stage biomimetic tricyclization

For the first stage of biomimetic tricyclization (Scheme 40), we found that 1.1 equivalents of trimethylsilyl triflate selectively activated the terminal epoxide of 149 and effectively promoted the regio- and stereoselective tandem cyclization to provide trans-anti-trans-fused tricyclic ketone 148a as the major product, consistent with concerted anti-parallel addition and an expected chair-like conformation 167. The best yield of 148a (50\%, single diastereomer) was achieved when the reaction was quenched with 1.1 equivalents of tetrabutylammonium fluoride at $-78^{\circ} \mathrm{C}$ within ten minutes of trimethylsilyl triflate Scheme 40. First stage biomimetic tricyclization of 149.

Side reactions
\qquad

169

addition, whereas longer reaction times or aqueous quench resulted in the generation of the epimeric product at C14, 148b, perhaps through silyloxonium ion intermediate 168a and 168b. Compound 148a and 148b were thoroughly characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY and NOESY spectroscopy (figure 10), as well as high resolution mass spectrometry.

Figure 10. NOESY NMR experiments of compounds 148a and 148b.

Bicyclic ether 169 and monocyclic ether 170 were also isolated as minor products resulted from partial (truncated) cyclization and beta-hydrogen elimination, processes that were well documented in polyalkene carbacyclization. In contrast, no partial cyclization products were isolated or detected in the oxacarbacyclization of diepoxy-en-yn 81, probably because propargylic silane has a better orbital alignment with alkene then enol silane as well as more electronrichness and less steric hindrance. Interestingly, the cyclic part of the structure in 169 corresponds to the half of raspacionin (A and B rings) (figure 11), while the position of methyl substituents in acyclic part is also consistent with that of the other half of raspacionin, which may arouse interests in exploration of biomimetic synthesis of raspacionin.

Figure 11. Potential biomimetic synthesis of raspacionin from 149.

To our surprise, substrate 149 was unreactive with tert-butydimethylsilyl triflate (TBSOTf) under a variety of conditions, in contrast with our previous observations with a simpler enolsilane-diepoxy substrate (Scheme 18). Other Lewis acids, including $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{AgClO}_{4}, \mathrm{TBSCl}-\mathrm{AgClO}_{4}{ }^{79}$, $\mathrm{TBSCl}-\mathrm{AgBF}_{4}{ }^{79}$ and $\mathrm{MeAICl}_{2}{ }^{20}$, resulted in lower yields of products or no reaction. These findings further demonstrated the importance of Lewis acid promoters, as well as nucleophilic terminators, to oxa-carbacyclization mimicking the biological production processes.

1.3.4. Second-stage biomimetic bicyclization

In order to explore the ultimate bicyclization of the hypothetical biogenesis of entabudinol B (ent-64) from the enantiomer of substrate 76 under abiological conditions, the conversion of 148 into 147 required methylenation of the $\mathrm{C}-15$ ketone and double diastereoselective epoxidation of the trisubstituted alkenes of a triene intermediate. Unexpectedly, the olefination of the ketone in 148 presented serious challenges. Methylenation with Tebbe reagent (prepared in situ from $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and $\left.\mathrm{Me}_{3} \mathrm{Al}\right)^{80}$, Petasis reagent (prepared in situ from $\left.\mathrm{Cp}_{2} \mathrm{TiMe}_{2}\right)^{81}$ or modified Julia tetrazole sulfone (1-tert-butyl-5-methanesulfonyl1 H-tetrazole $)^{47 \mathrm{c}}$, gave only trace amounts of desired olefination products 171 and
unidentified decomposition mixtures. After evaluating a variety of reagents for this transformation, we found that the classical Wittig reagent ${ }^{20 c}$ prepared in situ from a refluxing benzene solution of methyltriphenylphosphine bromide $\left(\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}\right)$ and potassium tert-butoxide (KO-t-Bu) gave good yields of the disubstituted alkene product, albeit with some epimerization at C14 prior to methylenation (Scheme 41).

Scheme 41. Olefination of tricyclic ketone 148.

Mechanistically, the presence of tert-butanol caused the dynamic equilibrium between enolate 172 and ketones 148, while Wittig reagent drove the equilibrium to move past ketone mixtures (148a and 148b) that were irreversibly converted to methylene 171. Due to the steric hindrance of methyl substituents on C10, olefination of 148a proceeded much slower to afford 171a as a minor product.

Regio- and enantioselective epoxidations of the two trisubstituted alkenes was then achieved in the presence of the disubstituted alkene by careful control of the
reaction temperature, concentration, amount of D-epoxone ${ }^{\circledR}$ and reaction time, to provide 147 (147a and 147b) (scheme 42). To the best of our knowledge, this is the first example of epoxone-catalyzed regioselective epoxidation of trisubstituted alkenes in the presence of a disubstituted alkene. ${ }^{41}$

Scheme 42. Double Shi diastereoselective epoxidation of 148.

A comment on the stereochemistry of 147 is warranted before describing our results on the ultimate bicyclization to abudinol B : although the relative stereochemistry at C14 is consistent with the lower energy conformation for the tandem cyclization process ${ }^{82}$ from 149 to 148a, we were concerned that the C14 stereochemistry might not be consistent with a concerted cyclization mechanism terminating with cleavage of the $\mathrm{C}-\mathrm{H}$ sigma bond at C 14 resulting from orbital alignment with the C15-alkene, when in a favorable conformation ${ }^{82 b, c}$ for cyclization onto the two epoxides. Thus we were pleased to observe that trimethylsilyl triflate-promoted reaction of 147a did provide ent-abudinol B (ent-64) (scheme 43), albeit in modest yield accompanied by several byproducts including the trisubstituted alkene isomer 175 as well as the partial cyclization structure 176. The spectroscopic properties of our synthetic product ent-64 matched the reported literature data as well as direct comparison with another sample of ent-

64 generated in our first generation synthesis of ent-abudinol B, which in turn had been previously confirmed by X-ray diffractometry of the bis-silyl ether of entabudinol B.

Scheme 43. Bicyclization of 147a to ent-abudinol B (ent-64).

The partial cyclization ${ }^{83}$ product 176, resulting from beta-hydrogen elimination ${ }^{20 c}$ from C20 after diepoxide cyclization, may arise due to the relatively low nucleophilicity expected for the $\mathrm{C} 15-\mathrm{C} 28$ disubstituted alkene. The mechanism for the tandem bicyclization process to ent-64 and trisubstituted alkene isomer 175 is consistent with the intermediacy ${ }^{15}$ of a C 15 carbenium ion or ion-pair, perhaps due to the relatively poor nucleophilicity of the 1,1-disubstituted alkene of 148a which is also consistent with the generation of partial cyclization product 176 as a significant byproduct.

Interestingly, TMSOTf-promoted cascade oxa-carbacyclization of 147b (with stereochemistry at C-14 corresponding to the initial tricyclization product 148b)
provided a mixture of trisubstituted alkenes 177 and 178 (scheme 44), consistent with bicyclization and beta-hydrogen elimination from $\mathrm{C}-16$ and $\mathrm{C}-28$, respectively. Similar carbenium ion intermediate as 174 a was speculated to involve in the cyclization of 147b, supported by the isolation of the corresponding side products 177 and 178 , analogs of 175 .

Scheme 44. TMSOTf-promoted cyclization of diastereomeric $\mathbf{1 4 7 b}$.

No trace of ent-abudinol B (ent-64) could be found in the crude product mixture or any of the isolated byproducts from the cyclization of 147 b , nor have we isolated a possible Z-tetrasubstituted alkene isomer of abudinol B. It still remains unclear that bicyclization of 147 proceeded in a concerted or stepwise mechanism. ${ }^{15}$ But these results have demonstrated the viability of oxacarbacyclization of diepoxide-alkene with certain Lewis acid promoters. The structure of 179 was unambiguously confirmed by X-ray diffractometry (figure 12), which also clarified the structural assignments for the key precursor compounds 147, 148, and 149, and provided a lead structure for confidently assigning the structures of analogous compounds such as 175 and 177.

Figure 12. Thermal ellipsoid diagram for pentacyclic product 179.

In an effort to improve the final bicyclization of 147 by preventing the triflate anion from possible participation in the cyclization, we set out to protect the free alcohol with trimethylsilyl group (TMS) and performed the cyclization with $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ as the Lewis acid promoter (Scheme 45). However, mixtures of products resulted

Scheme 45. $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ promoted bicyclization of 180.

from partial cyclization was found, in both cases, to be predominant, which was confirmed by crude ${ }^{1} \mathrm{H}$ NMR with four diagnostic resonances between 4.6 ppm and 5.1 ppm (singlet for 1,1-disubstituted alkene). The messy reaction indicated by TLC as well as the limited supply of the substrates 180 precluded further efforts on optimization of the reaction conditions.

In summary, a short and more biomimetic total synthesis of ent-abudinol B (ent64) has been accomplished in 8 steps from commercially available trans-transfarnesylacetate with 0.18% overall yield, following a synthetic strategy inspired by and closely mimicking the proposed biosynthetic pathway. This synthesis demonstrates the viability of tandem oxa- and carbacyclizations of structurally complex polyepoxide-alkene substrates. More significantly, the cyclization behavior of 147, which is the enantiomer of a possible advanced biosynthetic
precursor to abudinol B, provides the first chemical evidence for the biosynthesis pathway proposed for abudinol B and other oxepane-containing triterpenoid marine natural products.

1.4. Conclusions

We have achieved the first biomimetic total synthesis of ent-durgamone (ent-66), ent-nakorone (ent-67), and ent-abudinol B (ent-64) via novel cascade cyclizations of diepoxides tethered to enolsilane and to ene-propargylsilane. Assembly of the tricyclic and bicyclic sectors for synthesis of ent-abudinol B was extensively explored to construct the tetrasubstituted alkene with the desired alkene geometry. Our synthesis clarified an ambiguous stereochemical assignment for abudinol B as well as for durgamone and nakorone, and provided valuable insights into the synthesis of the condensed oxepanecycloalkane sectors of abudinol B. Cascade oxa-carbacyclizations of polyepoxide-alkene have been developed and could be applied to the efficient, potentially biomimetic syntheses of several structurally related terpenoid natural product structures.

A short, more biomimetic total synthesis of ent-abudinol B (ent-64) has also been accomplished from a squalene-like substrate 149, following a synthetic strategy inspired by and closely mimicking the proposed biosynthetic pathway. This synthesis demonstrates the viability of tandem oxa- and carbacyclizations of structurally complex polyepoxide-alkene substrates. More significantly, the cyclization behavior of 147 , which is the enantiomer of a possible advanced
biosynthetic precursor to abudinol B, provides the first chemical evidence for the biosynthesis pathway proposed for abudinol B and other oxepane-containing triterpenoid marine natural products.

Oxa-carbocyclizations of polyepoxide-alkenes were extensively explored in this thesis, and the results were summarized below.

1.5. Experiments

General: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an Inova-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), or an Inova-600 spectrometer (600 MHz for ${ }^{1} \mathrm{H}, 150 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). NMR spectra were recorded as solutions in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ with residual chloroform (7.27 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.23 ppm for ${ }^{13} \mathrm{C}$ NMR) taken as the internal standard, and were reported in parts per million (ppm); or as specified in deuterated benzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ (7.16 ppm for ${ }^{1} \mathrm{H}$ NMR, 128.2 ppm for ${ }^{13} \mathrm{C}$ NMR). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. IR spectra were collected on a Mattson Genesis II FT-IR spectrometer, with samples as neat films. Mass spectra (high resolution FAB) were recorded on a VG 70-S Nier Johason Mass Spectrometer. Optical rotations were recorded at $23^{\circ} \mathrm{C}$ with a Perkin-Elmer Model 341 polarimeter. Melting point was recorded on FISHER-JOHNS melting point apparatus. Analytical thin layer chromatography (TLC) was performed on precoated glass backed plates purchased from Whatman (silica gel 60 F254; 0.25 mm thickness). Flash column chromatography was carried out with silica gel 60 (230-400 mesh ASTM) from EM Science. All reactions except as mentioned were conducted with anhydrous solvents in oven-dried or flame-dried and argoncharged glassware. All anhydrous solvents were dried over $3 \AA$ or $4 \AA \AA$ molecular sieves. Trace water content was tested with Coulometric KF Titrator from Denver Instruments. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. All reagents were purchased from Sigma-Aldrich.

Reduction of geranylacetone (79) ${ }^{84}$

Geranylacetone ($\mathbf{7 9}, 4.00 \mathrm{~g}, 21.0 \mathrm{mmol}$) was dissolved in methanol (40 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Sodium borohydride ($0.78 \mathrm{~g}, 21 \mathrm{mmol}$) was added in three batches over 10 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and was then quenched slowly with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$. The combined organic fractions were washed with brine (60 mL) and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the racemic secondary alcohol 85 , which was purified by flash column chromatography on silica gel to give pure $85(3.70 \mathrm{~g}, 90 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{t}, J=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=7.2,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.96(\mathrm{t}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}$, $3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,131.5,124.4,124.1,68.0,39.8,39.3,26.8$, 25.8, 24.5, 23.6, 17.8, 16.1.

Shi epoxidation of diene 85

Diene 85 ($3.70 \mathrm{~g}, 18.9 \mathrm{mmol}$), 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose (Shi catalyst: D-epoxone ${ }^{\oplus}, 2.40 \mathrm{~g}, 9.40 \mathrm{mmol}$), tetrabutylammonium hydrogen sulfate ($0.64 \mathrm{~g}, 1.9 \mathrm{mmol}$) and $\mathrm{NaB}_{4} \mathrm{O}_{7}-1 \mathrm{HH}_{2} \mathrm{O}$ (0.05 M in aq. Na_{2} EDTA ($4 \times 10^{-4} \mathrm{M}, 370 \mathrm{~mL}$) were suspended with vigorous stirring in dimethoxymethane (DMM) : acetonitrile (AN, $2: 1,310 \mathrm{~mL}$) and cooled to $0^{\circ} \mathrm{C}$. In a three-neck 2.0 L flask fitted with two addition funnels, one addition funnel was charged with an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(28.7 \mathrm{~g}, 208 \mathrm{mmol}$, in 200 $\mathrm{mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$), and the second addition funnel was charged with Oxone ($32.0 \mathrm{~g}, 52.0$ $\mathrm{mmol})$ dissolved in aqueous Na_{2} EDTA $\left(4 \times 10^{-4} \mathrm{M}, 200 \mathrm{~mL}\right)$. These solutions were added dropwise and simultaneously over 2 h from the two addition funnels. After the additions were complete, the reaction mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. The reaction was then diluted with water (200 mL) and $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer was collected and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic fractions were washed with brine (150 mL) and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the crude product $\mathbf{8 6}$, which was purified by
short column on silica gel to give the mixture of alcohol diastereomers of 86 (4.09 $\mathrm{g}, 95 \%$ yield). These compounds were directly used in the next step.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.83(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.50$ (m, 9H), $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 67.3,63.9,63.4,60.6,58.6,36.0,35.3,25.1,24.9$, 24.8, 23.6, 18.7, 16.8.

Parikh-Doering oxidation of alcohol 86

A 250 mL flame-dried flask with a magnetic stir bar was charged with compound 86 ($3.65 \mathrm{~g}, 16.0 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, dry DMSO ($13.0 \mathrm{~mL}, 190 \mathrm{mmol}$) and dry $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mathrm{~mL}, 70.0 \mathrm{mmol})$. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ using a water-ice bath. After stirring for 20 min , sulfur trioxide-pyridine complex $(8.84 \mathrm{~g}$, 55.0 mmol) was added in 10 batches over 20 min . The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for another 3 h before warming to room temperature. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ and quenched with saturated aq. $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 80 \mathrm{~mL})$. The combined organic fractions were washed with brine (50 mL), dried with anhydrous MgSO_{4} and evaporated under reduced pressure (rotary evaporation) to afford the crude product 87. Column
chromatography on $\mathrm{Et}_{3} \mathrm{~N}$ (2\%) buffered silica gel using eluent of hexane : ethyl acetate (2:1) gave a clear oily product $8\left(3.44 \mathrm{~g}, 95 \%\right.$ yield, d.r.: $8: 1$ by ${ }^{1} \mathrm{H}$ NMR).
$[\alpha]_{D}=+24\left(c 1.15, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}) 2963, 2929, 1716, 1378, 1165.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.70(\mathrm{dd}, J=7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 2.60-2.54 (m, 2H), $2.12(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.25$ (s, 3H), 1.23 (s, 3H), 1.21 (s, 3H).
${ }^{13} \mathrm{C}^{\mathrm{N}}$ NR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.8, 63.9, 62.3, 60.9, $58.5,40.3,35.3,30.1$, 24.9, 24.6, 22.8, 18.8, 16.8.

HRMS (FAB) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$227.1642, found 227.1640.

Kinetic enolization of ketone $\mathbf{8 7} \mathbf{7 8}^{\mathbf{4 8}}$

A 250 mL dry flask was charged with potassium bis(trimethylsily) amide (0.50 M in toluene, $48.0 \mathrm{~mL}, 24.0 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($4.90 \mathrm{~g}, 32.0$ mmol) dissolved in THF (80 mL). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, then ketone $87(3.62 \mathrm{~g}, 16.0 \mathrm{mmol})$ dissolved in toluene (50 mL) was added dropwise over 30 minutes. The reaction mixture was stirred for 90 minutes at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{~mL})$ was added to quench the reaction, followed by addition
of saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The reaction mixture was allowed to warm to room temperature and stirred for another 20 minutes. The organic layer was separated from the aqueous layer which was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic fractions were then washed with brine (50 mL), dried with anhydrous MgSO_{4} and evaporated under reduced pressure (rotavap). Flash column chromatography on silica gel buffered with $\mathrm{Et}_{3} \mathrm{~N}$ (2\%) using eluent of hexanes : ethyl acetate (10:1) gave silyl enol ether 78 ($4.73 \mathrm{~g}, 87 \%$ yield). $[\alpha]_{D}=+10\left(c 0.29, \mathrm{CHCl}_{3}\right)$.

IR (neat, cm^{-1}) 2958, 2930, 2858, 1256, 839.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.01(\mathrm{dd}, J=10.8,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ _ $\delta 158.4,90.4,64.1,63.2,62.7,60.5,58.5,35.4$, $33.6,26.3,25.8,25.0,24.8(3), 18.8,16.8,-4.6,-4.5$.

HRMS (FAB) Calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 341.2507$, found 341.2504.

Trapping kinetic enolate of ketone 87 with Comins reagent ${ }^{48}$

A 25 mL dry flask was charged with potassium bis(trimethylsilyl)amide (0.50 M in toluene, $4.8 \mathrm{~mL}, 2.4 \mathrm{mmol})$, then cooled to $-78{ }^{\circ} \mathrm{C}$. A THF $(2 \mathrm{~mL})$ solution of
ketone 87 ($0.36 \mathrm{~g}, 1.6 \mathrm{mmol}$) was added dropwise over 30 minutes to the cooled solution. After the addition was complete, the reaction mixture was stirred for 90 minutes at $-78{ }^{\circ} \mathrm{C}$. Then, N -phenylbistrifluoromethanesulfonimide $\left(\mathrm{PhNTf}_{2}\right.$, comins' reagent, $1.15 \mathrm{~g}, 3.2 \mathrm{mmol}$) dissolved in THF (2 mL) was added dropwise over 15 minutes. The reaction mixture was stirred for another 1.5 hours at $-78^{\circ} \mathrm{C}$. Saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ to quench the reaction. The reaction mixture was allowed to warm to room temperature and stirred for another 20 minutes. The organic layer was separated from the aqueous layer which was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic fractions were then washed with brine (20 mL), dried with anhydrous MgSO_{4} and evaporated under reduced pressure (rotavap). Flash column chromatography on silica gel using eluent of hexanes : ethyl acetate ($10: 1$) gave silyl enol ether 91 (0.40 g , 70% yield).

IR (neat, cm^{-1}): 2966, 2930, 1671, 1416, 1212, 1141, 935, 898.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.15,(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 2.77$ (dd, $J=$ 7.6, 5.2 Hz, 1H), 2.69 (m, 1H), 2.61-2.45 (m, 2H), 1.90-1.50 (m, 6H), $1.30(\mathrm{~s}, 3 \mathrm{H})$, 1.29 (s, 3H), 1.26 (s, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} _\delta 155.8,118.7,105.3,63.9,62.2,61.6,58.7,35.2\right.$, 31.3, 25.7, 25.0, 24.7, 18.8, 16.9.

Nigishi Cross-coupling of 91 with Grignard reagent ${ }^{48}$

To a dry 15 mL round bottom flask was charged with THF (1 mL) solution of enol triflate $91(0.36 \mathrm{~g}, 1.06 \mathrm{mmol})$, then cooled to $0^{\circ} \mathrm{C}$. Tetrakis(tripenylphospine) palladium ($0.12 \mathrm{~g}, 0.11 \mathrm{mmol}$) was added to the cooled solution with stirring under argon atmosphere, resulting in a bright orange solution, to which was added (trimethylsilylmethyl)magnesium chloride (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature slowly, while a precipitate was observed upon warming. After 30 minutes, saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to quench the reaction and the resulting mixture was transferred to a separatory funnel. Organic layer was collected and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic fractions were combined and washed with brine (10 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Column chromatography on silica gel using eluent of EtOAc in hexane (5% to 20%) afforded allylic silane $76(0.27 \mathrm{~g}, 0.9 \mathrm{mmol}, 85 \%$) as clear oil.

IR (neat, cm^{-1}) 3073, 2958, 2927, 1633, 1460, 1378, 1248, 855.
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}$, $3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right]^{2} \delta 146.7,107.6,64.0,63.1,60.5,58.6,35.4,35.1$, 27.0, 25.0, 24.8, 18.8, 16.9, -1.15.

HRMS (FAB) Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$297.2244, found 297.2241.

Methylenation of ketone 87

84

1-tert-butyl-5-methanesulfonyl-1H-tetrazole was first synthesized by following the literature procedure ${ }^{47 \mathrm{c}}$ as follows: On refluxing water $(27 \mathrm{~mL})$ solution of NaN_{3} ($5.6 \mathrm{~g}, 82 \mathrm{mmol}$) was added t-Bu-NCS ($10 \mathrm{~g}, 87 \mathrm{mmol}$) dissolved in $i-\operatorname{PrOH}(21$ mL) over 30 minutes. After addition was complete, the mixture was refluxed for 16 h , then cooled down with an ice bath. Concentrated $\mathrm{HCl}(13 \mathrm{~mL})$ was added carefully to the cooled mixture. Evaporated half of the water and stored at $0^{\circ} \mathrm{C}$ overnight, resulting in yellow solid that was filtered and washed with ice-cooled water, then dried under high vacuum for 48 h . The pale yellow powder obtained above was diluted with 120 mL THF and added dropwise to a suspension of sodium hydride $(\mathrm{NaH}, 60 \%, 3.2 \mathrm{~g}, 82 \mathrm{mmol})$ in $\mathrm{THF}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 minutes stirring at $0^{\circ} \mathrm{C}$, methyl iodide ($\mathrm{Mel}, 5.3 \mathrm{~mL}, 115 \mathrm{mmol}$.) was added via syringe. The mixture was allowed to warm up to room temperature and stirred overnight. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ was added to the reaction mixture and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The organic layer was then washed with brine, dried with MgSO_{4} and evaporated. The crude solid thus obtained was diluted in EtOH (290
mL) at $0^{\circ} \mathrm{C}$, then $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6}\left(6.34 \mathrm{~g}, 0.0845\right.$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water, 63 mL) was added to the reaction mixture. After 4 hours, EtOH was evaporated almost completely. The mixture was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was collected and washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to give 1-tert-butyl-5-methanesulfonyl-1Htetrazole (11.24 g).

Julia olefination of ketone 87 with tetrazole: A 25 mL dry flask was charged with a THF (2 mL) solution of ketone $87(0.36 \mathrm{~g}, 1.6 \mathrm{mmol})$ and 1-tert-butyl-5-methanesulfonyl-1H-tetrazole ($0.38 \mathrm{~g}, 1.9 \mathrm{mmol}$) obtained above, then cooled to $-78{ }^{\circ} \mathrm{C}$. Sodium bis(trimethylsilyl)amide (1.0 M in THF, $2.1 \mathrm{~mL}, 2.1 \mathrm{mmol}$), was added dropwise over 30 minutes to the cooled solution. After the addition was complete, the reaction mixture was stirred for 60 minutes at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm slowly up to room temperature and stirred overnight. The reaction was quenched by adding a phosphate buffer solution ($\mathrm{pH}=7.0$). Organic layer was collected and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic fractions were combined and washed with brine (10 mL) , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Column chromatography on silica gel using eluent of EtOAc in hexane (5\% to 20\%) afforded diepoxy alkene 84 ($0.32 \mathrm{~g}, 1.44 \mathrm{mmol}, 90 \%$) as a clear oil.

IR (neat, cm^{-1}) 3073, 2964, 2927, 1648, 1454, 1378, 1338, 1164, 887.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ __ $\delta 144.9,110.6,64.0,63.0,60.5,58.6,35.4,34.6$, 27.0, 25.0, 24.7, 22.6, 18.8, 16.8.

Cascade oxa-carbocyclization of diepoxy enolsilane 78

General procedure A: A 500 mL flame-dried flask was charged with magnetic stir bar, diepoxy-enol silane $78(1.70 \mathrm{~g}, 5.00 \mathrm{mmol})$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and di-2,6-t-butyl-4-methylpyridine (DTBMP, $0.21 \mathrm{~g}, 1.0 \mathrm{mmol}$) and cooled to $-78^{\circ} \mathrm{C}$. tert-Butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) ($0.23 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was added dropwise via syringe under argon atmosphere. (The use of DTBMP with TBSOTf is essential for reproducibility of cyclization yields.) The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours. After the reaction was complete, $\mathrm{Et}_{3} \mathrm{~N}(1$ mL) then was added at $-78^{\circ} \mathrm{C}$ and was stirred for another 15 minutes. Aqueous saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added to the reaction mixture at $-78^{\circ} \mathrm{C}$ and warmed to room temperature. The dichloromethane layer was separated and the aqueous layer was extracted with dichloromethane ($2 \times 50 \mathrm{~mL}$). The combined dichloromethane fractions were washed with brine $(80 \mathrm{~mL})$, dried with anhydrous MgSO_{4} and evaporated. Flash column chromatography on silica gel using eluent of EtOAc in hexane (5% to 10%) gave cyclization product 94 ($1.02 \mathrm{~g}, 60 \%$ yield) as a white solid and epi-94 ($0.13 \mathrm{~g}, 7.5 \%$).

Data for compound 94

m.p. $=113^{\circ} \mathrm{C}-115^{\circ} \mathrm{C} .[\mathrm{a}]_{\mathrm{D}}=-2.2\left(c 0.32, \mathrm{CHCl}_{3}\right)$.

IR (neat, cm^{-1}) 2948, 2895, 2858, 1720, 1462, 1251, 1086.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.66(\mathrm{dd}, J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$, 0.82 (s, 9H), $0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 210.2,80.4,77.8,72.6,53.7,43.3,41.2,39.7$, 30.4, 29.7, 25.9, 24.7(3), 22.7, 18.0, 17.9, -3.9, -4.7.

HRMS (FAB) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 341.2507$, found 341.2497.

Data for compound epi-94

IR (neat, cm^{-1}) 2950, 2887, 2857, 1721, 1464, 1250, 1090, 836.
${ }^{1} \mathrm{H}^{\mathrm{H} M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07(\mathrm{dd}, J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{ddd}, \mathrm{J}=14.4,13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (dd, J=13.8, 2.4 Hz, 1H), $1.92(\mathrm{~m}, 2 \mathrm{H})$, 1.88-1.80(m, 1H), 1.74-1.66 (m, $1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$, 0.032 (s, 3H), 0.017 (s, 3H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.8,789,77.3,73.1,54.0,41.8,39.7,36.1,30.3$, $29.0,26.2,26.0,22.7,18.4,17.8,-4.3,-5.2$.

Procedure B: The following conditions are generally utilized in our laboratory for the endo-selective tandem oxacyclization of polyepoxides. Specifically, the diepoxy enolsilane 78 ($0.22 \mathrm{~g}, 0.65 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ with magnetic stirring under argon atmosphere. The solution was cooled to -40
${ }^{\circ} \mathrm{C}$, and freshly distilled $\mathrm{BF}_{3}-\mathrm{OEt}_{2}\left(0.1925 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.4 \mathrm{~mL}, 0.65 \mathrm{mmol}\right)$ was added dropwise over 10 minutes. After 30 minutes at $-40^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and followed by workup as described in procedure A. The crude ${ }^{1} \mathrm{H}$ NMR indicated the presence of 94 and desilylated product 77 (94:77=1:1, 40\% combined yield).

Procedure C: A 25 mL flame-dried flask was charged with magnetic stir bar, diepoxy enolsilane $78(0.22 \mathrm{~g}, 0.65 \mathrm{mmol})$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.0 \mathrm{~mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ with stirring. Methylaluminum dichloride (1.00 M in hexanes, $0.66 \mathrm{~mL}, 0.66 \mathrm{mmol}$) was added dropwise via syringe under argon atmosphere. The reaction mixture was stirred for 1.5 hours at $-78^{\circ} \mathrm{C}$, and monitored by TLC. When the reaction was complete, 1.0 N HCI (aqueous) was added at $-78^{\circ} \mathrm{C}$, and the reaction mixture was warmed to room temperature and stirred for another 15 minutes. The reaction mixture was worked up as described in procedure A. The crude ${ }^{1} \mathrm{H}$ NMR indicated the presence of 94 and 77 favoring 94 ($94: 77=4: 1$, 60% combined yield).

structures

Desilylation of 94: Tetrabutylammonium fluoride (TBAF) (1.00 M in THF, 1.2 mL , 1.2 mmol) was added to the THF (50 mL) solution of bicyclic ketone $94(0.23 \mathrm{~g}$, 0.68 mmol). The reaction mixture was stirred at room temperature for 12 hours. $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was then added to dilute the reaction, followed by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. Organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The organic fractions were washed with brine (50 mL), dried over MgSO_{4} and evaporated. Column chromatography on silica gel afforded the product 77 ($0.15 \mathrm{~g}, 99 \%$ yield) as a white crystal solid.

Exact same procedure as desilylation of 94 was executed for epi-94 to afford 77 in 99% yield as white crystal.

Data for compound 77

m.p. $=96^{\circ} \mathrm{C}-98^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=-24\left(c=0.115, \mathrm{CHCl}_{3}\right)$.

IR(neat, cm^{-1}) 3463, 2972, 2942, 1704, 1078.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{dd}, J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42-1.67(\mathrm{~m}, 10 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 211.0,78.2,76.8,73.3,53.8,41.9,39.6,35.9,30.4$, 29.2, 25.7, 21.6, 17.8.

HRMS (FAB) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$227.1642, found 227.1640.

Data for compound 95

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \underline{D}_{6}\right) \delta 3.16(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=11.2,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dd}, \mathrm{J}=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.16-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H})$.

X-Ray analysis: The structure of compounds $77^{2 b}$ and 95 was established by Xray analysis. The thermal ellipsoid diagrams and data for compound 77 and 95 are provided below:

95

For the X-ray data of compound 77, see page 163-169; for the X-ray data of compound 95, see page 170-177.

Oxa-carbocyclization of diepoxy allylsilane 83

Following the general procedure A for oxa-carbocyclization of diepoxy enolsilane 78, diepoxy allyl silane 83 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) underwent TMSOTf ($5.0 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ promoted oxacyclization in the presence of DTBMP ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ to yield 96 ($27 \mathrm{mg}, 90 \%$).

IR(neat, cm^{-1}) 3071, 2973, 2940, 2871, 1654, 1443, 1375, 1250, 1094, 1074, 862, 838.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69 (dd, $J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (m, 1H), 2.00 (m, 1H), 1.95 (d, J=12.8 Hz, 2 H), 1.90-1.72 (m, 2H), 1.57 (m, 2H), 1.37 (m, 1H), 1.16 (s, 3H), 1.11 (s, 3H), 1.03 (m, 1H), $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,108.8,78.3,77.7,74.5,48.7,39.6,36.5$, 33.7, 31.6, 29.3, 26.6, 22.6, 17.3, 0.18.

HRMS (FAB) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}_{1}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$297.2244, found 297.2238.

Oxa-carbocyclization of diepoxy alkene 84

Following the general procedure A for oxa-carbocyclization of diepoxy enolsilane 78, diepoxy alkene $84(60 \mathrm{mg}, 0.27 \mathrm{mmol})$ underwent TMSOTf ($71 \mathrm{mg}, 0.32$ mmol) initiated oxacyclization in the presence of DTBMP ($109 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ to yield of $98(51 \mathrm{mg}, 65 \%)$.

IR (neat, cm^{-1}): 2962, 2942, 1440, 1375, 1250, 1078, 837.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, 1.14 (s, 3H), 0.93 (s, 3H), 0.09 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.2,130.3,78.7,77.8,73.9,39.3,34.6,30.7$, 29.1, 27.5, 26.6, 23.5, 23.4, 19.8, 0.19.

HRMS (FAB) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}_{1}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$297.2244, found 297.2252.

Ring-contraction of bicyclic alcohol 95 to furnish ent-durgamone (ent-66)

Bicyclic ketone 95 ($60.0 \mathrm{mg}, 0.27 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 mL). 2,6-lutidine ($0.12 \mathrm{~mL}, 1.06 \mathrm{mmol}$) was added to the solution and cooled to $0{ }^{\circ} \mathrm{C}$ with ice-water bath. Chloromethanesulfonyl chloride ($0.08 \mathrm{~mL}, 0.53 \mathrm{mmol}$) was added to the cooled solution. The reaction mixture was then allowed to warm to room temperature and continued stirring for 3 hours. The reaction mixture was diluted with ethyl acetate (5 mL) and washed with water $(5 \mathrm{~mL})$. The crude chloromesylate product (101) obtained after evaporation of organic solvents was dissolved in a mixture of acetic acid (3 mL) and water (3 mL). Zinc acetate (200 $\mathrm{mg}, 0.88 \mathrm{~mL}, 1.30 \mathrm{mmol})$ was added and the resulting mixture was heated to 50 ${ }^{\circ} \mathrm{C}$ for 3-4 hours. After the reaction was complete, $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to dilute the reaction, which was then transferred to a separatory funnel. The organic layer was collected, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 5 mL). The combined organic fractions were dried with anhydrous MgSO_{4} and evaporated under reduced pressure. Flash column chromatography on silica gel (hexane: $\mathrm{AcOEt}=1: 1)$ gave ent-durgamone (ent-66) $(30.0 \mathrm{mg}, 50 \%$ yield) as well as small amounts of starting material and acylated product.

Comparison of our synthetic ent-66 with the published spectral data ${ }^{35 a}$ showed mostly the expected similarities between our compound and the natural product,
although the difference in magnitude of optical rotation is noted. Direct comparison is complicated by the absence of proton NMR data reported in ref 35a for methylene and methine hydrogens.
natural product 66 (ref. 35a)

durgamone (66)
$[\alpha]_{D} \quad-28.5(c 0.1, \mathrm{MeOH})$

IR (neat, cm^{-1}):
O-H stretch not reported
2972 (C-H stretches)
2342
1707 (C=O stretch)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \underline{\mathrm{D}_{6}}, \delta\right):$
H-7 3.74 (dd, $J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$
H-5 3.27 (t, J=5.5 Hz, 1H)
CH or CH_{2} not reported not reported
our synthetic material (ent-66, this work)

ent-durgamone (ent-66)
$+14(c 0.13, \mathrm{MeOH})$

3472
2947
corresponding band not observed
1704
1459 (C-H methyl bend)
1382 (C-H methyl bend)
1095 (C-O stretch)
$\left(400 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}_{6}}, \delta\right):$
$3.74(\mathrm{dd}, \mathrm{J}=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$
$3.25(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H})$
$2.10(\mathrm{dt}, J=14.8,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$
1.98 (dd, J=13.8, 2.6 Hz, 1H)

Sulfonylation of farnesol 82

The known sulfonyl triene $104^{51 a}$ was prepared from trans-trans-farnesol (82) using a newer procedure. ${ }^{51 \mathrm{~b}}$ Specifically, trans-trans-farnesol (82, $10.0 \mathrm{~g}, 43.0$ mmol) and triphenylphosphine ($14.7 \mathrm{~g}, 56.0 \mathrm{mmol}$) were dissolved in dry THF (200 mL) and then cooled to $0{ }^{\circ} \mathrm{C}$ with ice-water bath. N -Bromosuccinimide (NBS) $(9.23 \mathrm{~g}, 51.6 \mathrm{mmol})$ was slowly added in ten batches over 20 minutes. The light yellow reaction mixture was stirred for 1.5 hours at $0{ }^{\circ} \mathrm{C}$ until complete conversion was achieved. Then, tetrabutylammonium iodide ($1.60 \mathrm{~g}, 4.30 \mathrm{mmol}$) and p-toluenesulfinic acid sodium salt $\left(\mathrm{NaSO}_{2} \mathrm{Tol}, 11.5 \mathrm{~g}, 64.5 \mathrm{mmol}\right)$ were subsequently added. The brown suspension was warmed to room temperature and stirred overnight. The reaction was quenched with saturated aqueous sodium sulfite and transferred to a separatory funnel. Organic layer was collected and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried with anhydrous MgSO_{4} and concentrated under reduced pressure. Purification by chromatography on silica gel using ethyl acetate: hexane (1:9) was performed to afford compound 104 (15.4 g, 99\% yield).

IR (neat, cm^{-1}) 3024, 2965, 2921, 2856, 1919, 1662, 1597, 1444, 1346, 1302, 1149, 745.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.15(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16$ - $1.92(\mathrm{~m}, 8 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 146.4,144.6,136.0,135.9,131.6,129.7,128.7$, 124.4, 123.6, 110.6, 56.3, 39.9, 26.9, 26.4, 25.9, 21.8, 17.9, 16.4, 16.2.

Preparation of propargylic bromide 109

This known compound $109^{52 a}$ was more easily prepared by the following sequence ${ }^{52 \mathrm{~b}}$ from 2-butyn-1-ol. Specifically, a 250 mL flame-dried flask charged with stir bar, 2-butyn-1-ol 105 ($3.17 \mathrm{~g}, 45.3 \mathrm{mmol}$) and THF (100 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ with acetone-dry ice bath for 20 minutes. n-BuLi $(2.50 \mathrm{M}$ in hexane, $18.1 \mathrm{~mL}, 45.3 \mathrm{mmol})$ then was added dropwise over 20 minutes, followed by slow addition of t-BuLi (1.70 M in pentane, $29.0 \mathrm{~mL}, 50.0 \mathrm{mmol}$) over 30 minutes. The reaction solution was allowed to warm to $0^{\circ} \mathrm{C}$ over 2 hours and stirred at 0 ${ }^{\circ} \mathrm{C}$ for 20 minutes, and then cooled to $-78^{\circ} \mathrm{C}$. Trimethylsilyl chloride (TMSCI, 11.5 $\mathrm{mL}, 90.5 \mathrm{mmol}$) was added slowly to the solution of the dianion intermediate. The reaction mixture was allowed to warm to room temperature and stirred overnight. A clear solution was turned into a yellowish suspension, which was checked by

TLC (ethyl acetate : hexane $=1: 20$) to ensure completion. Hydrolysis of the resulting crude C-silylpropargyl, O-silylether product to release the alcohol was conducted by adding water $(40 \mathrm{~mL})$ and acetic acid $(2 \mathrm{~mL})$ to the reaction mixture at room temperature and stirred for 2 hours. (Additional time was required when less water or acetic acid was used). The reaction progress was monitored by TLC (ethyl acetate : hexane $=1: 4$). After completion, $\mathrm{Et}_{2} \mathrm{O}$ was added to dilute the reaction mixture, which was then transferred to a separatory funnel. The organic layer was collected and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40$ $\mathrm{mL})$. The combined organic fractions were washed with brine $(50 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and evaporated. Flash column chromatography on silica gel afforded the desired product 4-trimethylsilyl-2-butyn-1-ol (5.70 g, 89\% yield), which matched the published spectral data. ${ }^{85}$ The resulting alcohol ($5.70 \mathrm{~g}, 40.0$ mmol) was added to THF (100 mL) solution of $\mathrm{PPh}_{3}(13.7 \mathrm{~g}, 52.2 \mathrm{mmol})$ and cooled to $0^{\circ} \mathrm{C}$. NBS ($8.57 \mathrm{~g}, 48.2 \mathrm{mmol}$) was added in five portions over 20 minutes at $0^{\circ} \mathrm{C}$, and stirred for one hour at $\quad 0^{\circ} \mathrm{C}$. Hexane $(100 \mathrm{~mL})$ was then added to dilute the solution, which resulted in the precipitation of $\mathrm{Ph}_{3} \mathrm{PO}$. This solid was removed by filtration. Evaporating the solvent from the filtrate gave the crude product 109. This compound was suitable for use in the next step, or could be further purified by hexane extraction ($2 \times 50 \mathrm{~mL}$) of the desired product by filtering additional solid $\mathrm{Ph}_{3} \mathrm{PO}$, providing 109 after evaporation of solvents (7.38 g, 90% yield). Compound 109 partially decomposed in the presence of silica gel, as demonstrated by attempted thin layer chromatography.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{dd}, J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42-1.67(\mathrm{~m}, 10 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 87.1,74.4,32.2,17.0,-1.82$.

Alkylation of triene 104 with propargylic bromide 109

Allylic sulfone 104 ($9.10 \mathrm{~g}, 25.0 \mathrm{mmol}$) was dissolved in THF (110 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$ under argon. n - BuLi (2.5 M in hexane, $11.1 \mathrm{~mL}, 27.8 \mathrm{mmol}$) was added dropwise over 20 minutes via syringe. The solution was allowed to warm to $-40^{\circ} \mathrm{C}$ over 1 hour, and then recooled to $-78{ }^{\circ} \mathrm{C}$. The bromide $109(4.60$ $\mathrm{g}, 22.0 \mathrm{mmol}$) in THF (15 mL) was added slowly via syringe. Stirring was continued for 2 hours at $-78^{\circ} \mathrm{C}$, and then the reaction was allowed to warm to room temperature overnight. After the reaction was complete, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and water (100 mL) were added to dilute the reaction mixture, which was transferred to a separatory funnel for separation and collection of the organic fraction. The aqueous fraction was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were washed with brine (50 mL), dried with anhydrous MgSO_{4} and evaporated. Flash column chromatography on silica gel (ethyl acetate : hexane = $1: 4)$ afforded the product 111 as a clear oil ($11.1 \mathrm{~g}, 92 \%$ yield).

IR (neat, cm^{-1}) $2957,2917,2224,1664,1596,1441,1313,1144,849$.
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.07$ (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dt}, J=10.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ $(\mathrm{m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 8 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H})$, $1.32(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.3,144.6,135.7,134.8,131.6,129.6,129.5(2)$, 124.4, 123.7, 116.7(2), 80.4, 73.5, 64.1, 40.1, 39.9, 26.9, 26.5, 25.9, 21.8, 19.6, 17.9, 17.1, 16.2, 7.2, -2.0(3).

HRMS (FAB) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{SSi}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$485.2904, found 485.2898.

Regio- and enantioselective diepoxidation of enyne 111

Trienyne 111 ($3.50 \mathrm{~g}, 7.30 \mathrm{mmol}$), Shi catalyst (D-epoxone ${ }^{\circledR}, 0.93 \mathrm{~g}, 3.63 \mathrm{mmol}$), tetrabutylammonium hydrogen sulfate ($0.25 \mathrm{~g}, 0.72 \mathrm{mmol}$) and $\mathrm{NaB}_{4} \mathrm{O}_{7}-10 \mathrm{H}_{2} \mathrm{O}$ (0.05 M in Na_{2} EDTA [$4 \times 10^{-4} \mathrm{M}$], 109 mL) were suspended with vigorous stirring in DMM : acetonitrile ($2: 1,109 \mathrm{~mL}$) and cooled to $0^{\circ} \mathrm{C}$. From two separate addition funnels, solutions of $\mathrm{K}_{2} \mathrm{CO}_{3}(11 \mathrm{~g}, 80 \mathrm{mmol})$ dissolved in water $(87 \mathrm{~mL})$, and Oxone ${ }^{\circledR}(12.3 \mathrm{~g}, 20 \mathrm{mmol})$ dissolved in Na_{2} EDTA $\left[4 \times 10^{-4} \mathrm{M}\right.$] $(87 \mathrm{~mL})$, were added dropwise and simultaneously over two hours. After the addition was
complete, the reaction mixture was stirred for 20 minutes at $0^{\circ} \mathrm{C}$. The reaction was diluted with water (100 mL) and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, which was transferred to separatory funnel. Organic fractions were collected and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with brine (100 mL) and dried over anhydrous MgSO_{4}. Evaporation of the solvents by rotary evaporation gave the crude products, which were a mixture of starting triene 111, monoepoxide, and diepoxide 112 as judged by TLC. This crude mixture was then subjected to another cycle of enantioselective epoxidation as described above, including the same workup. Flash column chromatography on silica gel gave the product 112 as a mixture of sulfone diastereomers ($2.86 \mathrm{~g}, 76 \%$ yield).

IR (neat, cm^{-1}) 2957, 2224, 1663, 1597, 1452, 1312, 1144, 852.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.03$ $(m, 1 H), 3.87(m, 1 H), 2.93(m, 1 H), 2.70(m, 2 H), 2.55-2.47(m, 1 H), 2.42(s, 3 H)$, 2.16-2.03 (m, 2H), 1.80-1.56 (m, 8H), 1.37-1.25 (m, 12H), $0.00(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}) $\delta 145.3,134.8,134.7,129.6,129.4,129.4,117.3$, $117.1,80.5,73.3,64.0,63.3,62.7,60.5,58.6,36.6,35.7,27.2,25.0,21.8,21.4$, 19.7, 18.8, 16.4, 14.3, 7.1, -2.0(3).

HRMS(FAB): Calcd. for $\left.\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{SSi[}\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$517.2802, found 517.2791.

Palladium-catalyzed desulfonylation of 112

Preparation of palladium catalyst $\left(\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{dppp})^{86}\right.$: Anhydrous palladium dichloride (500 mg) was suspended in 12.5 mL of benzonitrile (12.5 mL) and the mixture was heated to $100^{\circ} \mathrm{C}$ with stirring. After 20 minutes, the most PdCl_{2} was dissolved in the solvent to give a red solution. This solution was filtered while is still warm and the filtrate was poured into 75 mL low-boiling petroleum ether (39$65^{\circ} \mathrm{C}$). A light yellow product was washed with additional petroleum ether. 1,3Bis(diphenylphosphine)propane (dppp, 645 mg) was added once to a magnetically stirred suspension of yellow solid $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{PhCN})_{2}(600 \mathrm{mg})$ obtained above in 10 mL of anhydrous benzene. The solution immediately changes from a dark red color to pale yellow, and a yellow crystalline precipitate began to form. After the suspension has been stirred for 30 minutes, pentane (7 mL) was added to the reaction mixture, resulting in more precipitate. The yellow solid is then filtered under argon atmosphere and washed three times with pentane to give the desired palladium catalyst $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{dppp})(880 \mathrm{mg}, 95 \%)$.

A 100 mL flame-dried flask was charged with sulfone-diepoxide 112 ($2.10 \mathrm{~g}, 4.10$ $\mathrm{mmol}), \mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{dppp})(0.24 \mathrm{~g}, 0.41 \mathrm{mmol})$, and THF (50.0 mL). The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ with vigorous stirring. Lithium triethylborohydride (Superhydride) (1.0 M in THF, $10.2 \mathrm{~mL}, 10.2 \mathrm{mmol}$) was added dropwise to the
suspension over 20 minutes. An initially heterogeneous reaction mixture became clear and homogeneous and then turned dark brown. The reaction proceeded for 30-60 minutes to reach 80 to 90% conversion, at which time $\mathrm{Et}_{2} \mathrm{O}(30.0 \mathrm{~mL})$ was added and followed by quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{CI}$ (30.0 mL). Longer reaction times resulted in partial reduction of epoxide. The reaction mixture was transferred to a separatory funnel. The organic layer was separated from the aqueous layer, which was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30.0 \mathrm{~mL})$. The combined organic fractions were washed with brine (50.0 mL), dried over anhydrous MgSO_{4} and evaporated. Flash column chromatography on $\mathrm{Et}_{3} \mathrm{~N}(2 \%)$ buffered silica gel (hexane: AcOEt = 4: 1) gave product $81(0.94 \mathrm{~g}, 63 \%$ yield, 75\% yield based on recovered starting material, > 20:1dr) and starting sulfone 112 (0.32 g, 15\% yield).
$[\alpha]_{D}=+7.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

IR (neat, cm^{-1}) 2958, 2924, 2218, 1668, 1455, 1383, 1248, 850.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.23(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}$, $3 H), 2.17-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.55(\mathrm{~m}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}) $\delta 135.2,124.1,78.7,77.7,64.0,63.1,60.5,58.6$, $36.5,35.4,28.3,27.4,25.0,24.8,19.5,18.8,16.9,16.3,7.1,-1.9(3)$.

HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 363.2714$, found 363.2710 .

Cascade oxa-carbocyclization of diepoxide-enyne 81

A 250 mL flame-dried flask was charged with compound 81 ($0.60 \mathrm{~g}, 1.70 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and DTBMP ($68.0 \mathrm{mg}, 0.33 \mathrm{mmol}$) and then cooled to $-78^{\circ} \mathrm{C}$. TMSOTf ($0.06 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was added dropwise with vigorous stirring at -78 ${ }^{\circ} \mathrm{C}$. The reaction was usually complete within 1 hour. If not complete, more TMSOTf ($0.03 \mathrm{~mL}, 0.16 \mathrm{mmol}$) was added to consume all starting material 81. $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL})$ was added to the reaction mixture and stirred for another 10 minutes before water (10 mL) was added to quench the reaction at $-78^{\circ} \mathrm{C}$. The organic fractions were separated by decanting the organic layer from the frozen aqueous component when the reaction mixture was still cold. After this ice had melted upon warming to room temperature, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic fractions were washed with brine (50 mL), dried with anhydrous MgSO_{4} and evaporated. Flash column chromatography on silica gel (hexane: EtOAc $=30$: 1) provided the desired tricyclic allene 80 ($0.45 \mathrm{~g}, 75 \%$ yield).
$[\alpha]_{\mathrm{D}}=-39\left(c 1.55, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}) 2954, 2879, 1960, 1443, 1250.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{dd}, \mathrm{J}=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{t}, J=13.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.60-1.30(\mathrm{~m}, 9 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.77$ (s, 3H), 0.00 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.2,113.3,78.5,77.8,76.9,58.6(2), 44.3,41.2$, $35.4,35.3,29.1,28.4,27.6,26.2,22.9,21.2,20.9,13.6,0.2(3)$.

HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$363.2714, found 363.2708.

Desilylation of allene 80 and X-ray crystal structure

Tetrabutylammonium fluoride (TBAF, 1.0 M in THF, $0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$) was added to a THF (5.0 mL) solution of tricyclic allene $80(60.0 \mathrm{mg}, 0.17 \mathrm{mmol})$. The resulting reaction mixture was stirred at room temperature for 1 hour. $\mathrm{Et}_{2} \mathrm{O}$ (5.0 mL) was added to dilute the reaction mixture, followed by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (5 mL). Organic layer was separated, and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice ($2 \times 10 \mathrm{~mL}$). The organic fractions was washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and evaporated. Column chromatography on silica gel afforded the product 115 (59.4 mg, 99\% yield).
m.p. $=139-141^{\circ} \mathrm{C}$ (decomposition).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=6.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.58(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dt}, J=13.8$,
$2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.3,113.0,78.2,77.8,77.4,76.8,58.5(2), 44.2$, $41.4,35.2,29.2,28.5,27.5,25.6,21.9,21.1,20.9,13.4$.

X-Ray analysis: The structure of 115 was substantiated by X-ray diffractometry.
The thermal ellipsoid diagram is shown for compound 115:

For X-ray data of compound 115, see page 178-187.

Ozonolysis of allene 80

Procedure A: A solution of allene $80(0.60 \mathrm{~g}, 1.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$, and an O_{3} stream was passed through this solution for six minutes. Then $\mathrm{Me}_{2} \mathrm{~S}(2.0 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$, and the resulting reaction mixture was stirred and allowed to warm to room temperature overnight. Removal of the solvent and excess $\mathrm{Me}_{2} \mathrm{~S}$ under reduced pressure provided the crude ketone, which was purified by flash column chromatography on silica gel by using the eluent (ethyl acetate : hexane $=1: 9$) to afford the analytically pure crystalline product 116 ($0.53 \mathrm{~g}, 88 \%$ yield $)$.
m.p. $=98-101^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=-57\left(c 0.69, \mathrm{CHCl}_{3}\right)$.

IR (neat, cm^{-1}) 2939, 2869, 1740, 1250, 1096, 1049.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11,5.4 \mathrm{~Hz}$, 1 H), 2.37 (ddd, $J=19.6,8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.05(\mathrm{dt}, J=19.2,9.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.88(\mathrm{dt}, \mathrm{J}=13.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~m}$, 4 H), 1.18 (m, 2H), 1.05 (s, 3H), $1.02(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, $9 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 221.0,78.6,77.7,76.8,54.8,47.9,41.5,36.3,34.5$, $30.6,28.9,27.4,26.0,22.8,18.5,16.2,14.1,0.18(3)$.

HRMS (FAB) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 353.2507$, found 353.2507 .

Procedure $\mathbf{B}^{18 f}$: To a suspension of allene $80(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in mixture of acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}, 2 \mathrm{~mL}\right)$, tetrachloromethane $\left(\mathrm{CCl}_{4}, 2 \mathrm{~mL}\right)$ and water (3 mL) was added periodate ($264 \mathrm{mg}, 1.2 \mathrm{mmol}$) and ruthenium trichloride hydrate $(4 \mathrm{mg})$ at room temperature. The reaction mixture was stirred vigorously for 15 hours at room temperature and diluted with diethyl ether. Similar workup was followed as procedure A to give ketone 116 and ent-67 in about 40\% combined yield.

Desilylation of tricyclic ketone 109 to furnish ent-nakorone (ent-67)

TBAF (1.0 M in THF, $1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added to a solution of ketone 116 $(0.35 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$. The resulting reaction mixture was stirred at room temperature for 1 hour. $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to dilute the reaction mixture, followed by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ to quench the reaction. The organic layer was separated and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The organic fractions were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4} and evaporated. Column chromatography afforded ent-nakorone (ent-67, $0.28 \mathrm{~g}, 99 \%$ yield).
$[\alpha]_{D}=-50^{\circ}(c=0.25, \mathrm{MeOH})$.
IR(neat, $\left.\mathrm{cm}^{-1}\right) 3427,2973,2935,2867,1725,1452,1376,1090,1058$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \underline{\underline{D}_{6}}$) $\delta 3.52(\mathrm{dd}, J=11.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 1 H), 2.08 (ddd, J=19.2, 8.8, 1.6 Hz, 1H), 1.89 (dt, J=13.6, 2.8 Hz, 1H), 1.77 (dd, $J=18.0,8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.68(\mathrm{~m}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, 3H), 0.75 (s, 3H), $0.29(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \underline{\mathrm{D}}_{6}$) δ 218, 78.3, 77.5, 77.1, 54.7, 47.8, 41.9, 36.2, 34.5, 31.3, 29.4, 28.2, 25.9, 22.2, 18.7, 16.4, 14.5.

HRMS (FAB) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 281.21112$, found 281.21062.

Comparison of our synthetic ent-67 with the published data (ref. 4) showed mostly the expected similarities between our compound and the natural product, although to our surprise, the optical rotations of both synthetic and naturally occurring compounds are reported to have the same sign (which should be opposite for antipodes), and the magnitude of the rotations are quite different. The original assignment of absolute stereochemistry in naturally occurring nakorone was made by CD/ORD measurement ${ }^{35 a}$, whereas our assignment of synthetic ent-67 is based on the Flack absolute structure parameter of the crystal structure of compound 115, with synthetic ent-67 and 115 sharing 116 as the common parent precursor compound by straightforward reaction sequences.

Reported for natural product 67 (ref. 35a) our synthetic material (ent-67, this work)

nakorone (67)
$\left[\begin{array}{c}\alpha]_{D}\end{array} \quad-210.0(c 0.2, \mathrm{MeOH})\right.$

ent-nakorone (ent-67)
$-50(c 0.25, \mathrm{MeOH})$

IR (neat, cm^{-1}):
O-H stretch not reported
2950 (C-H stretches)
2853 (C-H stretches)
1737 (C=O stretch)
C-H methyl bends not reported
1085 (C-O stretch)
1054 (C-O stretch)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \underline{\mathrm{D}}_{6}, \delta\right):$
H-6 3.47 (dd, $J=11.3,5.0 \mathrm{~Hz}$)
H-3 $3.28(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz})$
$\mathrm{H}-13^{\mathrm{a}} 2.04$ (dd, $J=18.9,8.9 \mathrm{~Hz}$)
$\mathrm{H}-121.82(\mathrm{t}, \mathrm{J}=14.0 \mathrm{~Hz})$
$\mathrm{H}-13^{\mathrm{b}} 1.75(\mathrm{dd}, \mathrm{J}=18.9,17.8 \mathrm{~Hz})$
CH or CH_{2} not reported
H-15 1.07 (s,3H)
H-16 1.00 (s, 3H)
H-17 0.85 (s, 3H)
H-18 0.72 (s, 3H)
H-O not reported

3427
2973. 2935

2867
1725
1425, 1376
1090
1058
$\left(400 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}}_{6} \underline{\delta}\right.$):
3.52 (dd, $J=11.4,5.0 \mathrm{~Hz}, 1 \mathrm{H})$
$3.34(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$
2.08 (ddd, J=19.2, 8.8, 1.6 Hz, 1H)
1.89 (dt, $J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$
1.77 (ddd, $J=18.0,8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$)
1.68-1.13 (m, 10H)
1.12 (s, 3H)
1.04 (s, 3H)
0.88 (s, 3H)
0.75 (s, 3H)
0.29 (s, OH, 1H)
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \underline{\underline{D}} \underline{\underline{6}}, \delta\right):$
C-14 216.0
C-2 79.5
CH-O 76.8
$\mathrm{CH}-\mathrm{O} 76.3$
CH 54.3
$4^{\circ} \mathrm{C} \quad 49.5$
$4^{\circ} \mathrm{C} \quad 42.0$
$\mathrm{CH}_{2} \quad 36.2$
$\mathrm{CH}_{2} \quad 33.8$
$\mathrm{CH}_{2} \quad 31.2$
C-16 29.5
$\mathrm{CH}_{2} \quad 27.2$
$\mathrm{CH}_{2}{ }^{`} 25.2$
C-15 21.5
$\mathrm{CH}_{2} \quad 18.2$
C-18 15.0
C-17 13.3

HRMS (El) for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}$
found 280.2036, calcd. 280.2031
$\left(100 \mathrm{MHz}, \mathrm{C}_{6} \underline{D}_{6} \underline{\underline{0}}, \bar{\delta}\right):$
218
78.3
77.5
77.1
54.7
47.8
41.9
36.2
34.5
31.3
29.4
28.2
25.9
22.2
18.7
16.4
14.5

HRMS (FAB) for $\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] \mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{3}$
found 281.2106, calcd. 281.2111.
${ }^{1}$ H NMR spectra comparison is shown below

Gem-dichlorination of ketone 94

Finely powered molecular sieves ($4 \AA, 1.0 \mathrm{~g}$) was dried in oven for 48 hours and cooled down under vacuum to room temperature. Methanol (2 mL) and hydrazine hydrate ($18.8 \mathrm{mg}, 0.59 \mathrm{mmol}$) were added successively to the flask with stirring. After 20 minutes, a methanol (2 mL) solution of ketone $94(20 \mathrm{mg}, 58 \mu \mathrm{~mol})$ was added to the reaction mixture. After stirring for 2 hours, molecular sieves was removed by filtration and washed with diethyl ether (5 mL). The filtrate was concentrated with rotovap and the excess of hydrazine was removed under vaccum with gentle heating $\left(30-35{ }^{\circ} \mathrm{C}\right)$ to give the crude product (119), which was used for next step without further purification. To another flask was charged with copper dichloride ($47 \mathrm{mg}, 0.35 \mathrm{mmol}$) and methanol (2 mL). Triethylamine was added at room temperature with stirring. After stirring for 10 minutes, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ with ice-water bath and a methanol solution of hydrazone (119) obtained above was added dropwise over 10 minutes. The cooling bath was removed to allow warming up to room temperature over 1 hour. The reaction was quenched with 3.5% aqueous ammonia solution. The organic materials were extracted with diethyl ether, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Chromatography on silica gel afforded the gem-dichloride product $\mathbf{1 2 0}$ contaminated by eliminated products.

IR (neat, cm^{-1}) 2950, 2929, 2856, 1463, 1442, 1379, 1360, 1254, 1091, 833.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.1-1.46(\mathrm{~m} 8 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.08$ $(\mathrm{s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 89.4,79.2,73.9,70.7,58.7,46.8,40.5,36.7,28.8$, 28.6, 26.3, 26.2, 25.8, 23.2, 18.5. -4.2, -5.1.

Shapiro reaction of ketone 94

Ketone 94 (20 mg, $59 \mu \mathrm{~mol})$, trisylhydrazide ($19.2 \mathrm{mg}, 64.6 \mu \mathrm{~mol}$) and THF (2 mL) were stirred at room temperature for 4 hours. The THF was evaporated under reduced pressure and the solid residue was dissolved in methanol/water (85: 15, $8 \mathrm{~mL})$. Filtration gave the white solid 122 that was dried under vacuum overnight. To a THF (1.0 mL) solution of $122(10 \mathrm{mg}, 16 \mu \mathrm{~mol})$ was added n -BuLi ($1.6 \mathrm{M}, 4$ $\mu \mathrm{mL}, 6.5 \mu \mathrm{~mol})$ dropwise over 30 min at $-55^{\circ} \mathrm{C}$. after stirring at $-50^{\circ} \mathrm{C}$ for minutes, another n -BuLi (1.6 M, $4 \mu \mathrm{~L}, 6.5 \mu \mathrm{~mol})$ was added dropwise at $-50^{\circ} \mathrm{C}$ and the reaction mixture was warmed up to room $0^{\circ} \mathrm{C}$ over 30 minutes in order to form the vinyl lithium. Addition of ketone 116 ($5.6 \mathrm{mg}, 16 \mu \mathrm{~mol}$) dissolved in THF (1 mL) to this vinyllithium solution at $-78{ }^{\circ} \mathrm{C}$ resulted in the protonation of vinyllithium to give alkene 124 as indicated by ${ }^{1} \mathrm{H}$ NMR. Addition of TMEDA resulted in the same outcome.

Data for compound 122

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.6,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.94-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{~m}, 21 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.

Data for compound 124.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.47(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 1 \mathrm{H})$, 1.24-1.16 (m, 2H), $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, $6 \mathrm{H})$.

Hydrazidation of ketone 116

Phosphorylation of hydrazine ${ }^{1}$: Hydrazine monohydrate ($3.2 \mathrm{~g}, 100 \mathrm{mmol}$) was added dropwise with vigorous stirring to mixtures of carbon tetrachloride (60 mL), dichloromethane (100 mL) and powdered potassium bicarbonate (20.7 g , 150 mmol) and triethylbenzylammonium chloride ($227 \mathrm{mg}, 1 \mathrm{mmol}$) at room temperature. After stirring for 15 minutes, diethyl phosphite ($13.8 \mathrm{~g}, 100 \mathrm{mmol}$) dissolved in dichloromethane was added dropwise to the reaction mixture at

[^1]room temperature. After stirring 4 hours, filtration was undertaken to remove the $\mathrm{K}_{2} \mathrm{CO}_{3}$. Solvents was evaporated and the residue was kept at $100^{\circ} \mathrm{C}$ for 2 hours to give almost pure product diethylphosphorohydrazidate $15.0 \mathrm{~g}, 89 \%$).

Hydrazidation of ketone 116: $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ solution of ketone $116(40 \mathrm{mg}$, 0.11 mmol) and a drop of acetic acid were added to stirring mixtures of diethylphosphorohydrazidate ($21 \mathrm{mg}, 0.13 \mathrm{mmol}$) obtained above and sodium bisulfate $(400 \mathrm{mg})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 3 days. Filtration through a celite pad and concentration of the filtrate gave the crude hydrazone 125, which was used for the next step without further purification.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{~d}, J=25.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=11.4,48 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=17.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=18,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{t}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.40(\mathrm{~m}$, $6 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.00(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}$, $3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) _\delta 166.9,78.6,77.8,77.7,63.6,63.6,63.5,57.0$, $44.6,41.1,35.1,33.4,29.0,27.9,26.1,25.3,22.9,20.0,19.7,16.4,13.9,0.20$, 0.16

Cross-coupling of hydrazone 125 with ketone 94 to bisazine 127

To a dry 15 mL flask was charged with hydrazone 125 ($112 \mathrm{mg}, 0.23 \mathrm{mmol}$) and THF (8 mL). Sodium bis(trimethylsilyl)amide (1.0 M in THF, $0.43 \mathrm{~mL}, 0.43 \mathrm{mmol}$) was added to the hydrazone solution dropwise at room temperature. After stirring for 20 minutes, a THF (1 mL) solution of bicyclic ketone 94 ($146 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added at room temperature. The resulting reaction mixture was stirred for 2 days. Saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to quench the reaction and transferred to a separatory funnel. The organic materials were collected and the aqueous layer was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$ twice. The combined organic fractions were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Chromatography on silica gel using eluent mixture (5% to 25% of EtOAc in hexane) gave the bisazine 127 ($136 \mathrm{mg}, 86 \%$)

IR (neat, cm^{-1}) 2938, 2859, 1659, 1463, 1443, 1376, 1250, 1091, 1074, 837.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{dd}, J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1 H), 3.68 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, $J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (dd, $J=13.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.40(\mathrm{~m}$, 15 H) , 1.16 (s, 3H), 1.12 (s, 3H), 1.08 (s, 3H), 1.07 (s, 3H), 1.00 (s, 3H), 0.93 (s, 3H), 0.92 (s, 9H), 0.87 (s, 3H), 0.72 (s, 3H), 0.05 (s, 9H), 0.01 (s, 3H), 0.00 (s, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 176.7,163.1,78.8,78.6,77.8,77.7,76.9,74.2$, $56.3,44.6,41.2,40.6,40.5,36.1,35.1,33.9,33.2,31.2,29.1,29.0,28.0,27.4$, 26.3 (3C), 26.1, 25.5, 22.9, 22.8, 19.9, 19.4, 18.4, 17.7, 14.4, 13.9, 0.19, 0.18, 4.3, -5.1.

HRMS (FAB) Calcd. for $\mathrm{C}_{39} \mathrm{H}_{73} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Si}_{2}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 689.5103$, found 689.5108.

Kinetic formation of vinyl triflate from ketone 94

General procedure: A 25 mL flame-dried flask was charged with potassium bis(trimethylsilyl)amide (KHMDS) (0.50 M in toluene, $3.12 \mathrm{~mL}, 1.6 \mathrm{mmol}$), and then cooled to $-78{ }^{\circ} \mathrm{C}$. To this cooled solution was added ketone $94(0.18 \mathrm{~g}, 0.53$ mmol) in THF (5 mL) dropwise over 20 minutes via syringe. After the addition was complete, the solution was stirred for another 2 hours at $-78{ }^{\circ} \mathrm{C}$, then N -phenyl-bis-trifluoromethanesulfonimide ($\mathrm{PhNTf}_{2}, 0.38 \mathrm{~g}, 1.05 \mathrm{mmol}$) in THF (2 mL) was added dropwise over 10 minutes. The reaction was complete within 2 hours at $-78{ }^{\circ} \mathrm{C}$ with vigorous stirring. Then, saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to quench the reaction and the reaction mixture was transferred to a separatory funnel. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic fractions were washed with brine (10 mL), dried with anhydrous MgSO_{4} and evaporated under reduced pressure to
afford the crude product, which was flash column chromatographied on silica gel (hexane $: \operatorname{EtOAc}=20: 1$) to give vinyl triflate 133 as a clear oil ($0.24 \mathrm{~g}, 95 \%$).
$[\alpha]_{D}=-1.2\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}) 2954, 2931, 2858, 1696, 1464, 1419, 1246, 1209, 1143.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.54(\mathrm{ddd}, J=5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=9.8$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03-1.94 (m, 1H), $1.89(\mathrm{dd}, J=19.0,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{dd}, J=$ $12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 147.1,116.1,78.7,77.5(2), 70.3,42.6,38.0,35.7$, $30.2,29.2,26.3,26.1(3), 22.1,18.3,18.2,-4.2,-5.0$.

HRMS (FAB) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{SSi}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$473.1999, found 473.1995.

Kinetic formation of vinyl triflate from ketone 116

Following the general procedure reported for compound 133, vinyl triflate 135 was prepared) as a clear oil ($0.33 \mathrm{~g}, 95 \%$) from ketone 116 ($0.25 \mathrm{~g}, 0.71 \mathrm{mmol}$), KHMDS (0.5 M in toluene, $4.30 \mathrm{~mL}, 2.13 \mathrm{mmol}$) and $\mathrm{PhNTf}_{2}(0.51 \mathrm{~g}, 1.42 \mathrm{mmol}$

$$
[\alpha]_{D}=-11.1\left(c 1.7, \mathrm{CHCl}_{3}\right) .
$$

IR (neat, cm^{-1}) 2943, 2866, 1632, 1423, 1252, 1213,1143.
${ }^{1}{ }^{1} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.53 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (dd, $J=8.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.88 (dt, $J=13.2,1.2 \mathrm{~Hz}$, 1 H), 1.51-1.36 (m, 8H), $1.04(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.00$ (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 158.3, 114.9, 78.8, 77.7(2), 76.6, 57.1, 45.2, 40.4, $34.3,32.3,28.9,27.8,26.0,25.7,23.0,17.7,14.0,0.20(3)$.

HRMS (FAB) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{SSi}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$485.1999, found 485.1997.

Cross coupling of vinyl triflates 133 and 135

A 15 mL flame-dried flask with stirring bar was charged with vinyl triflate 133 $(48.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(4.0 \mathrm{mg}, 5.7 \mu \mathrm{~mol}), \mathrm{Ph}_{3} \mathrm{P}(3.0 \mathrm{mg}, 11.5$ $\mu \mathrm{mol}$), potassium phenoxide (KOPh, $20.0 \mathrm{mg}, \quad 0.15 \mathrm{mmol}$), bis(neopentylglycolato)diboron ($\mathbf{1 3 4}, 24.0 \mathrm{mg}, 0.11 \mathrm{mmol}$) and toluene ($4.0 \mathrm{~mL}, 6.8$ ppm of $\mathrm{H}_{2} \mathrm{O}$) under argon atmosphere. The reaction mixture was degassed three times by the freeze-thaw method before it was heated to $50^{\circ} \mathrm{C}$ and stirred for 3
hours at $50^{\circ} \mathrm{C}$ under argon atmosphere. The corresponding alkenyl boronate was obtained in excellent yield ($>90 \%$) as judged by TLC. The reaction mixture was then cooled to room temperature. To this solution were added dppf $(4.0 \mathrm{mg}$, $7.2 \mu \mathrm{~mol}), \mathrm{Cl}_{2} \operatorname{Pd}(\mathrm{dppf})(4.0 \mathrm{mg}, 4.9 \mu \mathrm{~mol})$, vinyl triflate $133(50.0 \mathrm{mg}, 0.106 \mathrm{mmol})$ in DMF ($4.0 \mathrm{~mL}, 12.0 \mathrm{ppm}$ of $\mathrm{H}_{2} \mathrm{O}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (wet) ($90.0 \mathrm{mg}, 0.424 \mathrm{mmol}$) sequentially. The resulting mixture was freeze-thaw degassed three times, before heating to $80^{\circ} \mathrm{C}$ for 12 hours under argon. After it was complete as monitored by TLC, the reaction mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(20$ mL), and transferred to a separatory funnel. The organic layer was collected and was washed with water $(3 \times 10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 10 \mathrm{~mL})$. The combined organic fractions were dried over anhydrous MgSO_{4} to afford the crude UV-active product, which was purified by preparative TLC to provide analytically pure diene 137 ($46.1 \mathrm{mg}, 70 \%$ yield).
$[a]_{\mathrm{D}}=-7.8\left(c 0.78, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}) 3049, 2931, 2857, 2359, 2338, 2233, 1463, 1444, 1376, 1360, 1251, 1089, 1070, 1051, 999, 873, 837.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.61(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $12,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=$ $12,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=17.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.96$ (s, $4 \mathrm{H}), 1.87(\mathrm{t}, J=18,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.40(\mathrm{t}, J=9.2,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.22-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}$, $3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 154.5,130.2,124.9,120.8,78.5,78.3,77.9,76.8$, $77.5,71.8,60.2,47.6,43.4,40.7,36.7,36.4,35.8,35.2,32.7,29.7,29.1,28.6$, $27.6,26.8,26.2(3), 23.0,22.0,18.4,18.3,18.2(2), 14.0,0.2(3),-4.1,-5.0$.

HRMS (FAB) Calcd. for $\mathrm{C}_{39} \mathrm{H}_{71} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 659.4885$, found 659.4877.

Palladium-catalyzed hydrogenation of diene 137 and X-ray crystal structure

A suspension of Pd-C (5 wt\%, $8.0 \mathrm{mg}, 3.7 \mu \mathrm{~mol})$ in toluene ($2.0 \mathrm{~mL}, 6.8 \mathrm{ppm}$ of $\mathrm{H}_{2} \mathrm{O}$) was stirred for 1 hour at room temperature under 1 atm of H_{2} pressure (balloon). Diene 137 ($25.0 \mathrm{mg}, 38 \square \mathrm{~mol}$) in toluene (1.0 mL) was then added to the precooled suspension $\left(0^{\circ} \mathrm{C}\right)$ and stirring was continued for 6-12 hours (monitored by TLC) at $0{ }^{\circ} \mathrm{C}$ under the same hydrogen pressure. If the reaction was too slow, up to $10-20 \mathrm{~mol} \%$ additional Pd / C was added, which did not change the ratios or yields of products. The reaction mixture was filtered through Celite and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The filtrate was collected. Removal of the solvents by rotary evaporation afforded mixtures of three isomers (23.8 mg , 95% combined yield), which were separated by preparative TLC to give desired
product $117\left(7.5 \mathrm{mg}, 30 \%\right.$ yield), $\mathrm{mp}=142-145{ }^{\circ} \mathrm{C}$, trisubstituted alkene 142 (12.5 mg, 50\% yield) and epi-142 (2.5 mg, 10\% yield).

Data for compound 117

$$
[\alpha]_{\mathrm{D}}=+9.2\left(c 0.33, \mathrm{CHCl}_{3}\right)
$$

IR(neat, cm^{-1}) 2933, 2858, 1462, 1444, 1376, 1360, 1251, 1090, 1070, 1028.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=16.8,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52(\mathrm{dd}, J=12,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 2.11$ (m, 1H), $2.06(\mathrm{~d}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{t}, J=13.2,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.35-1.10(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}$, $3 H), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, 9H), $0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 142.7,125.0,78.53,78.50,77.8,77.4,76.7,75.3$, $59.6,45.6,44.8,41.1,40.7,37.3,36.5,35.6,32.3,30.2,29.2,29.1,28.7,28.3$, 26.6, 26.3, 26.2(3), 23.0, 22.9, 20.7, 204, 18.4, 16.7, 13.9, 0.21(3), -4.19, -5.12.

HRMS (FAB) Calcd. for $\mathrm{C}_{39} \mathrm{H}_{73} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 661.5042$, found 661.5038 .

Data for compound 142

${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=16.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.20(\mathrm{~m}, 23 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $3 H), 0.89(s, 9 H), 0.85(s, 3 H), 0.82(s, 3 H), 0.65(s, 3 H), 0.07(s, 9 H), 0.00(s$, $6 \mathrm{H})$.

Data for compound epi-142

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.32(\mathrm{~s}, 1 \mathrm{H}), 3.69$ (dd, J=7.2, $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.57 (m , 2 H), 1.98 (m, 5H), 1.71-1.20 (m, 19H), 1.14 (s, 3H), 1.11 (s, 3H), 1.09 (s, 3H), 1.08 (s, 3H), 0.93 (s, 9H), $0.90(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 83(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.00$ (s, 6H).

X-ray data for compound 117: The structural skeleton and the alkene geometry of compound 117 were confirmed by X-ray analysis. The thermal ellipsoid diagram is provided below.

For X-ray data of compound 117, see page 188-205.

Hole transfer catalyst promoted hydrogenation of diene 137

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ solution of diene $137(10 \mathrm{mg}, 15.2 \mu \mathrm{~mol})$ and tributyltin hydride ($11 \mathrm{mg}, 38 \mu \mathrm{~mol}$) was added hole transfer catalyst $\left[(\mathrm{p}-\mathrm{BrPh})_{3} \mathrm{~N}^{+} \mathrm{SbCl}_{6}\right.$, $24.8 \mathrm{mg}, 30 \mu \mathrm{~mol}]$ under argon atmosphere at $0{ }^{\circ} \mathrm{C}$. After completion of the reaction (about 1-2 minutes), the reaction was quenched with a saturated solution of potassium carbonate in methanol (2 mL). the reaction mixtures was then transferred to a separatory funnel and the organic materials was collected, while the aqueous layer was extracted with diethyl ether twice ($2 x 5 \mathrm{~mL}$).The combined organic fractions was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure (rotavap). The residue obtained was purified by column chromatography on silica gel to gave the major product $145(8.5 \mathrm{mg}$, 95%) , along with small amount of 146 ($0.5 \mathrm{mg}, 5 \%$) that was subjected to desilylation to epi-abudinol B containing "wrong" alkene geometry.

Data for compound 145

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.19(\mathrm{dd}, J=4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81$ (dd, $J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.4(\mathrm{~m}, 23 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $1.04(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.

Data for compound 146

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.19(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dd, J = 13.6, 2.4 Hz, 1H), 2.10-1.4 (m, 23H), $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}$, $3 H), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, $6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 142.4,124.4,78.5,78.1,78.0,77.4,77.3,75.1$, $59.0,44.8,42.7,41.3,39.7,37.7,36.7,35.4,31.0,30.6,29.9,29.2,28.8,28.1$, $27.4,27.1,26.6,26.3,25.6,23.0,21.9,20.9,20.5,18.3,17.7,13.8,-4.2,-5.1$.

Global desilylation of diene 117 to furnish ent-abudinol B (ent-64)

To the THF (3.0 mL) solution of compound $117(6.1 \mathrm{mg}, 10 \mu \mathrm{~mol})$ was added TBAF in THF (1.0 M in THF, $0.10 \mathrm{~mL}, 0.10 \mathrm{mmol}$) at room temperature under argon atmosphere. The resulting solution was then heated to $60{ }^{\circ} \mathrm{C}$ for $6-10$ hours. $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to dilute the reaction mixture, which was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The reaction mixture was
transferred to a separatory funnel. The organic layer was collected, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic fractions were dried with anhydrous MgSO_{4} and evaporated by rotavap. Flash column chromatography on silica gel by using eluent (hexane: ethyl acetate $=4$: 1) afforded ent-abudinol B (ent-64, $4.0 \mathrm{mg}, 84 \%$ yield).

$$
[\alpha]_{D}=+23(c 0.05, \mathrm{MeOH}) .
$$

IR (neat, cm^{-1}) $3460,2970,2930,2868,1446,1376,1359,1076,1036$.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}}_{6}$) $\delta 3.77(\mathrm{dd}, \mathrm{J}=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, \mathrm{J}=12,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.01(\mathrm{~s}, \mathrm{OH}), 2.74(\mathrm{dt}, \mathrm{J}=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (t, J=6.8 Hz, 2H), 2.19-2.31 (m, 1H), $2.10(\mathrm{dt}, \mathrm{J}=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-2.01$ (m, 2 H), 1.28-1.89 (m, 14H), 1.21 ($\mathrm{s}, 3 \mathrm{H}$), 1.20 (s, 3H), 1.09 (s, 3H), 1.08 (s, 3H), 1.07 (s, 3H), 1.02 (s, 3H), 1.01 (s, 3H), 0.91 (t, J=7.2, 6.8, 2H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}}_{6}\right.$ $\delta 142.6,125.3,77.7,77.5,77.0,76.8,76.6,75.5,59.7$, 54.0, 45.5, 44.8, 41.3, 40.8, 37.4 36.6, 35.4, 32.5, 30.4, 29.3, 29.0, 28.1, 26.2, 25.7, 21.9, 21.7, 20.8, 20.4, 16.8, 14.1. HRMS (FAB) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 475.37819$, found 475.37809 . Comparison of our synthetic ent-64 with the published spectral data (ref. ${ }^{4)}$ showed mostly the expected similarities between our compound and the natural product. Direct comparison is complicated by the absence of proton and carbon NMR data reported in ref. 4 for methylene and methine.

$[\alpha]_{\mathrm{D}}-5.0(c 0.05, \mathrm{MeOH})$	$+23(c 0.05, \mathrm{MeOH})$
$\underline{\text { IR (neat, } \mathrm{cm}^{-1} \text {): }}$	
3484 (O-H stretches)	3460
2950 (C-H stretches)	2970, 2930, 2868
1446 (C-H stretches)	1446
not reported	1376 (C-H methyl bend)
	1359 (C-H methyl bend)
	1076 (C-O stretch)
	1036 (C-O stretch)
1023 (C-O stretch)	1024
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \underline{\underline{\mathrm{D}}} \underline{6} \underline{6}$,) $:$	$\left(400 \mathrm{MHz}, \mathrm{C}_{6} \underline{\underline{D}_{6}} \underline{\underline{\delta}}\right.$) $)$
H-7 3.75 (dd, $J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H})$	3.77 (dd, J= 10.8, 5.2 Hz, 1H)
H-18 3.66 (dd, $J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H})$	3.69 (dd, $J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$
H-3 3.36 (d, J = 6.8, 1H)	3.38 (d, $J=6.8,1 \mathrm{H})$
H-23 3.36 (d, $J=6.8,1 \mathrm{H})$	3.38 (d, J = 6.8, 1H)
$\mathrm{H}-\mathrm{O} \quad$ not reported	3.01 (s, OH) chemical shift is variable
CH or CH_{2} not reported	2.74 (dt, $J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$
not reported	2.36 (t, J = 6.8 Hz, 2H)
not reported	2.31-2.19 (m, 1H)

	not reported	2.10 (dt, J = 9.6, 4.0 Hz, 1H)
	not reported	2.01-1.89 (m, 2H)
	not reported	1.89-1.28 (m, 14H)
H-27	1.19 (s, 3H)	1.21 (s, 3H)
H-25	1.18 (s, 3H)	1.20 (s, 3H)
H-26	1.08 (s, 3H)	1.09 (s, 3H)
H-28	1.06 (s, 3H)	1.08 (s, 3H)
H-31	1.05 (s, 3H)	1.07 (s, 3H)
H-29	1.01 (s, 3H)	1.02 (s, 3H)
H-30	1.00 (s, 3H)	1.01 (s, 3H)
not rep	ported	0.91 (t, J = 7.2, 6.8 Hz, 2H)
${ }^{13} \mathrm{C}$ N	MR ($\mathrm{C}_{6} \underline{\underline{D}_{6}} \underline{, \delta}$) :	$\left(100 \mathrm{MHz}, \mathrm{C}_{6} \underline{\underline{\mathrm{D}}} \underline{6}\right.$, $\left.\bar{\delta}\right)$:
C-14	143.6 (C=C)	142.6
C-15	125.6 ($\mathrm{C}=\mathrm{C}$)	125.3
C-2, 3	3, 7, 18, 23, 24 (C-O) not reported	77.7, 77.5, 77.0, 76.8, 76.6, 75.5
C-4, 5	, 6, 8, 9, 10 11, 12, 13, 16, 17,	59.7, 54.0, 45.5, 44.8, 41.3, 40.8, 37.4,
19,20	, 21, $22(\mathrm{C}-\mathrm{H})$ not reported	$36.6,35.4,32.5,30.4,28.1,26.2,25.7,20.4$
C-26	29.2 (Me)	29.3
C-28	28.9 (Me)	29.0
C-27	21.3 (Me)	21.9
C-25	21.2 (Me)	21.7
C-30	20.1 (Me)	20.8

C-31 18.4 (Me) 16.8
C-29 13.9 (Me)14.1
$\underline{\text { HRMS (EI) for }\left(\mathrm{M}^{+}\right) \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{4}}$ HRMS (FAB^{+}) for $\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] \mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4}$found 474.3702, calcd. 474.3696

$$
\text { found 475.3781, calcd. } 475.3782
$$

${ }^{1}$ H NMR spectra comparison of natural abudinol B and synthetic entabudinol B (ent-64) is shown below

Biomimetic total synthesis of abudinol B
 from squalene-like precursor

Alkylation of imine 153 to acylsilane 152^{206}

To a 80 mL THF solution of diisopropyl amine ($5.95 \mathrm{~g}, 8.24 \mathrm{~mL}, 58.8 \mathrm{mmol}$) was slowly added n-BuLi (2.5 M in hexane, $23.5 \mathrm{~mL}, 58.8 \mathrm{mmol}$) at $-30{ }^{\circ} \mathrm{C}$ (acetonitrile-dry ice) and stirring continued for 30 min . To this LDA solution was added imine $153^{78}(12.0 \mathrm{~g}, 52.4 \mathrm{mmol})$ dropwise at $-30^{\circ} \mathrm{C}$. The resulting yellow solution was allowed to warm to $0^{\circ} \mathrm{C}$ over 30 min . The reaction solution then was cooled to $-30^{\circ} \mathrm{C}$, and a 10 mL THF solution of geranyl bromide $(7.60 \mathrm{~g}, 6.60$ $\mathrm{mL}, 35.0 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to warm up to $-10{ }^{\circ} \mathrm{C}$ over 60 min and quenched with 40 mL of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was then transferred to a separating funnel. The organic fractions were collected and aqueous fractions were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 80$ mL). The combined organic fractions were washed with brine, dried over anhydrous MgSO_{4}, and evaporated under reduced pressure. The residue obtained was dissolved in pentane (80 mL) and treated with 80 mL of AcOH NaOAc buffer (prepared by mixing 9.9 g of $\mathrm{NaOAc}, 21 \mathrm{~mL}$ of AcOH and 90 mL of
$\mathrm{H}_{2} \mathrm{O}$). The resulting reaction mixture was vigorously stirred for 3 hours at room temperature, diluted with 80 mL of $\mathrm{H}_{2} \mathrm{O}$ and 80 mL of hexane, and transferred to a separating funnel. Organic fractions were collected and the aqueous fractions were extracted with hexane ($2 \times 80 \mathrm{~mL}$). The combined organic solution was successively washed with sat. NaHCO_{3}, brine, dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel to give acylsilane 152 as a colorless oil ($8.63 \mathrm{~g}, 84 \%$).

IR (neat, cm^{-1}) 2953.5, 2928.4, 2858.0, 1642.1, 1462.8, 1249.7, 836.9, 775.2.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.07(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{q}$, $J=7.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{t}, \mathrm{J}=8.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, \mathrm{J}=8.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.68$ (s, 3H), 1.60 (s, 6H), 0.93 (s, 9H), 0.18 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 247.6,136.0,131.6,124.5,123.3,50.4,39.9,26.9$, 26.6, 26.6, 26.6, 25.9, 20.8, 17.9, 16.7, 16.1, -6.8, -6.8.

HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSi}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$295.2452, found 295.2448.

Vinyl Grignard addition to acylsilane 152^{77}

152

HCl, 88\%

Acylsilane 152 ($5.88 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added dropwise to anhydrous $\mathrm{Et}_{2} \mathrm{O}$ solution (100 mL) of vinyl magnesium chloride (37.5 mL , 1.6 M in THF, 60.0 $\mathrm{mmol})$. The resulting reaction mixture was stirred for 1 hour at $0^{\circ} \mathrm{C}$ and quenched with $1.0 \mathrm{~N} \mathrm{HCl}(60 \mathrm{~mL})$. Separation of organic layers from the aqueous layer was performed on a separating funnel. The aqueous phase was extracted with hexane ($2 \times 100 \mathrm{~mL}$). The combined extracts and organic fractions were washed with brine and dried over anhydrous MgSO_{4}. Removal of the solvents by rotary evaporation and column chromatography on silica gel gave the corresponding tertiary alcohol 156 ($5.66 \mathrm{~g}, 87.9 \%$) as clear oil.

IR(neat, cm^{-1}): 3506.0, 3083.6, 2960.2, 2929.4, 2858.0, 1810.8, 1668.1, 1625.7, 1463.7, 1382.7, 1247.7, 902.5, 833.1, 769.5 .
${ }^{1}{ }^{H} \mathrm{H} \operatorname{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95(\mathrm{dd}, \mathrm{J}=10.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 5.08$ (m, 2H), 5.03 (dd, J=15.8, 1.6 Hz, 1H), 2.10-2.02 (m, 3H), 2.00-1.95 (m, 3H), $1.95-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{~s}$, 9 H), 0.00 (d, J=2.4 Hz, 6H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.8,135.6,131.7,124.9,124.4,110.2,74.3$, 39.9, 37.4, 28.0, 28.0, 28.0, 26.7, 25.9, 21.4, 18.5, 17.9, 16.3, -7.5, -7.6.

HRMS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{OSi}\left(\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 323.2765$, found 323.2766 .

Double Shi epoxidation of farnesyl acetate 157^{41}

In a three-neck 3.0 L flask fitted with two addition funnels was charged with farnesyl acetate $157(9.0 \mathrm{~g}, 34.1 \mathrm{mmol})$, 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose (D-epoxone, $4.38 \mathrm{~g}, 17.1 \mathrm{mmol}$, added in three batches over 90 min), tetrabutylammonium hydrogen sulfate ($0.93 \mathrm{~g}, 2.70 \mathrm{mmol}$) and $\mathrm{NaB}_{4} \mathrm{O}_{7}-10 \mathrm{H}_{2} \mathrm{O}\left(0.05 \mathrm{M}\right.$ in aq. $\mathrm{Na}_{2} \mathrm{EDTA}\left(4 \times 10^{-4} \mathrm{M}, 360 \mathrm{~mL}\right)$ and mixture of dimethoxymethane (DMM) and acetonitrile (2:1, 480 mL). The suspension was cooled to $-5^{\circ} \mathrm{C}$ with salt-ice bath and vigorously stirred. One addition funnel was charged with an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(54.6 \mathrm{~g}, 246 \mathrm{mmol}\right.$, in $465 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$), and the second addition funnel was charged with Oxone (57.9 g, 94.2 mmol) dissolved in aqueous Na_{2} EDTA ($4 \times 10^{-4} \mathrm{M}, 465 \mathrm{~mL}$). These solutions were added dropwise and simultaneously over 90 min from the two addition funnels. After the additions were complete, the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was then diluted with water $(200 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer was collected and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic fractions were washed with brine (150 mL) and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the crude product, which was purified by column chromatography on silica gel to give the diepoxy acetate 158 (5.40 g,
53.6%, d.r.: $10: 1$ based on ${ }^{1} \mathrm{H}$ NMR) and triepoxy acetate 159 ($3.60 \mathrm{~g}, 24 \%$, d.r.:
$3: 1$ based on ${ }^{1} \mathrm{H}$ NMR)).

Data for compound 158

$[\alpha]_{D}+15.2\left(c 0.835, \mathrm{CHCl}_{3}\right)$.
IR(neat, cm^{-1}): 2963.1, 2927.4, 1738.5, 1455.0, 1379.8, 1232.3, 1024.0
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.37(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{q}, J=6.0$, $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, $3 H), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס171.3, 141.3, 119.1, 64.0, 62.9, 61.4, 60.5, 58.6, $36.3,35.4,27.0,25.0,24.9,21.2,18.8,16.9,16.6$.

HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$297.2060, found 297.2057.

Data for compound 159

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.28(\mathrm{dd}, \mathrm{J}=12,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=12,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{dd}, \mathrm{J}=6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 6 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.

Bromination of diepoxyl acetate 158

To a solution of farnesyl diepoxy acetate 158 ($5.40 \mathrm{~g}, 18.3 \mathrm{mmol}$) in 20 mL of anhydrous MeOH was added powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(252 \mathrm{mg}, 1.83 \mathrm{mmol})$ at room temperature. After stirring for $30-60 \mathrm{~min}$, solid $\mathrm{NH}_{4} \mathrm{Cl}$ ($120 \mathrm{mg}, 2.19 \mathrm{mmol}$) was added to neutralize the reaction mixture. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to facilitate the precipitation of the salts, which was removed by filtration through a celite. Removal of solvents using rotary evaporation afforded crude diepoxy allylic alcohol, which passed through a very short column (100 mL of silica gel, eluents: 1:1 mixture of hexane: EtOAc) or was used for next step without further purification. To the solution of resulting alcohol obtained above in 60 mL of THF was added $\mathrm{Et}_{3} \mathrm{~N}(4.95 \mathrm{~mL}, 36.6 \mathrm{mmol})$) and $\mathrm{MsCl}(1.80 \mathrm{~mL}, 23.9 \mathrm{mmol})$, successively, at $-40^{\circ} \mathrm{C}$ (mesitylene-dry ice). After stirring 45 min at $-40^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm up to $0^{\circ} \mathrm{C}$, and a solution of lithium bromide (LiBr, $6.38 \mathrm{~g}, 73.5 \mathrm{mmol}$, flame-dried under vacuum) in 14 mL of THF was added. After stirring for 1 hour at $0^{\circ} \mathrm{C}$, The reaction mixture was diluted with hexane (30 mL) and cold water $(30 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted with hexane ($2 \times 50 \mathrm{~mL}$). The combined organic fractions were washed with brine (80 mL) and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the crude product 150, which went through a
very short silica gel column and was used for the next step without further purification (3.44 g, 60\%).

$$
[\alpha]_{D}=+7.3\left(c \text { 1.1, } \mathrm{CHCl}_{3}\right) .
$$

IR (neat, cm^{-1}): 2961.2, 2925.5, 1656.6, 1456.0, 1379.8, 1250.6, 1202.4, 1121.4, 872.6.
${ }^{1} \mathrm{H}^{\mathrm{H} M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{q}, \mathrm{J}=6.0,5.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.52(\mathrm{~m}$, $6 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 142.6,121.3,64.0,62.7,60.5,58.6,41.0,36.4$, 35.3, 29.4, 26.9, 25.0, 24.7, 18.8, 16.9.

HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Br}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 317.1111$, found 317.1109.

162

Data for compound 162

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83(\mathrm{dd}, J=16.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H})$, $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 143.6,111.5,85.9,85.6,84.4,83.3,72.0,37.4$, $31.6,28.3,28.0,27.1,26.5,25.3,24.7$.

Brook rearrangement and alkylation of the resulting homoenolate with 150

To a hexane solution of n-BuLi ($3.52 \mathrm{~mL}, 8.80 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added a hexane (8.0 mL) solution of allylic alcohol $156(2.58 \mathrm{~g}, 8.00 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 20 min at this temperature. THF (32 mL) was then slowly added along the sidewall of the flask and the resulting light yellow solution was stirred for 1 hour at $-78^{\circ} \mathrm{C}$. A THF (30 mL) solution of allylic bromide $150(3.06 \mathrm{~g}, 9.60 \mathrm{mmol})$ was then cannulated slowly to the reaction mixture, which was then allowed to warm up to $-40^{\circ} \mathrm{C}$ and stirred for another 3 hours at $-40^{\circ} \mathrm{C}$, and then was placed in the freezer for overnight at $-20^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ and warmed up to room temperature. The organic fraction was collected and the aqueous layer was extracted with hexane ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine $(80 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. After rotary evaporation of solvents, the residue was purified by column chromatography on silica gel (gradient eluents from 1% to 10% of EtOAc in Hexane) gave the corresponding product $149(2.23 \mathrm{~g}, 50 \%)$ as a colorless oil, along with 165 ($128 \mathrm{mg}, 5 \%$) and 166 ($411 \mathrm{mg}, 8 \%$).

Data for compound 149

$[\alpha]_{\mathrm{D}}=+7.3\left(c 0.345, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}): 2958.3, 2928.4, 2857.0, 1672.0, 1451.2, 1377.9, 1252.5, 1139.7, 836.9.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.15(\mathrm{t}, \mathrm{J}=6.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{t}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{q}, \mathrm{J}=7.2,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 12 \mathrm{H})$, $1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, 3 H), 1.25 ($\mathrm{q}, \mathrm{J}=2.8,2.0 \mathrm{~Hz}, 6 \mathrm{H}$), 0.92 ($\mathrm{s}, 9 \mathrm{H}$), 0.10 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 150.5,135.5,134.2,131.5,125.4,124.5,123.9$, 107.8, 64.1, 63.3, 60.5, 58.6, 39.9, 36.9, 36.5, 35.5, 28.6, 27.5, 26.9, 26.1, 26.1, 26.1, 25.9, 25.7, 25.1, 25.0, 24.9, 18.9, 18.5, 17.9, 16.9, 16.6, 16.2, -3.7, -3.7.

HRMS (ESI): Calcd. for $\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{O}_{3} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 559.4541$, found 559.4534.

Data for compound 165

IR (neat, cm^{-1}): 2958, 2929, 2858, 1677, 1462, 1446, 1381, 1330, 1254, 1191, 1045, 836.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} 3\right) \delta 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{ddd}, J=12.8,6.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.20-1.88 (m, 8H), 1.69 (s, 3H), 1.61 (s, 6H), 0.98 (s, 9H), 0.91 (s, 3H), 0.15 (s, 6 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,135.5,131.5,124.6,124.0,102.0,39.9$, 36.9, 26.9, 26.3, 26.1 (3C), 26.0, 25.9, 17.9, 16.2, 11.0, -3.7, -3.7.

Data for compound 166

IR (neat, cm^{-1}): 2957, 2928, 2857, 1672, 1462, 1361, 1253, 1171, 836, 777.
${ }^{1} \mathrm{H}^{\mathrm{H} M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.88(\mathrm{~m}$, $8 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,135.5,131.5,124.6,124.0,108.5,39.9$, $36.9,31.9,29.9,26.9,26.3,26.1$ (6C), 25.9, 25.5, 22.8, 18.5, 17.9, 16.3, 14.3, 3.8 (4C).

Alternatively, the compound 149 was prepared in one-pot procedure from acylsilane 152 and allylic bromide 143 by following Corey's protocol. ${ }^{13}$

One-pot preparation of 142

To a diethyl ether (2 mL) solution of vinyllithium ($0.81 \mathrm{~mL}, 0.30 \mathrm{mmol}, 0.37 \mathrm{M}$ in THF, prepared from tetravinyltin and $n-\mathrm{BuLi})$ was added an $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ solution of acylsilane $152(58.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 2 hours at this temperature. A THF (2 mL) solution of allylic bromide 150 (63.6 $\mathrm{mg}, 0.20 \mathrm{mmol}$) was then added slowly along the flask wall and the reaction mixture was stirred for another 3 hours at $-40^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and quenched with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The organic fraction was collected and the aqueous layer was extracted with hexane ($2 \times 5 \mathrm{~mL}$). The combined organic extracts were washed with brine (8 mL) and dried over anhydrous MgSO_{4}. after rotary evaporation of solvents, the residue was purified
by column chromatography on silica gel (gradient eluents from 1% to 10% of EtOAc in Hexane) gave the corresponding product 149 ($20 \mathrm{mg}, 18 \%$) as a colorless oil as well as recovery of allylic bromide 150 (32 mg).

Cascade oxa-carbocyclization of diepoxy enol alkene 149

Procedure A: To a solution of diepoxy silyl enol ether $149(2.20 \mathrm{~g}, 3.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added 2,6 -di-tert-butyl-4-methylpyridine (DTBMP, 88.8 mg , 0.433 mol) at $-78^{\circ} \mathrm{C}$ was added TMSOTf ($0.783 \mathrm{~mL}, 4.33 \mathrm{mmol}$). After 10 min , TBAF ($4.33 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 4.33 mmol) was added at $-78{ }^{\circ} \mathrm{C}$ to reaction mixture. After 30 minutes, the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, diluted with hexane $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and warmed up to room temperature. The organic layer was collected and the aqueous layer was extracted with hexane ($2 \times 80 \mathrm{~mL}$). The combined organic fractions were washed with brine (100 mL) and dried over anhydrous MgSO_{4}.

Rotary evaporation of solvents gave the crude product, which was shown to be the mixture of silylated products and free alcohols. The desired silylated product of 148a could be isolated by two times of slow column chromatography on silica gel with gradient eluents. However, better separation could be achieved by desilylation. The mixtures obtained above were dissolved in THF (20 mL) and treated with TBAF ($4.50 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 4.50 mmol) at room temperature. After 30 minutes, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and transferred to a separation funnel. The aqueous fraction was extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$) twice. The combined organic fractions were washed with brine (80 mL) and dried over anhydrous MgSO_{4}. Column chromatography on silica gel provided the three products: 148a ($875 \mathrm{mg}, 50 \%$), 169 ($175 \mathrm{mg}, 10 \%$), 170 ($210 \mathrm{mg}, 12 \%$).

Procedure B: To a solution of diepoxy 149 ($1.40 \mathrm{~g}, 2.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (160 mL) was added 2,6-di-tert-butyl-4-methyl pyridine (DTBMP, $56.6 \mathrm{mg}, 0.276 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ was added TMSOTf ($0.498 \mathrm{~mL}, 2.76 \mathrm{mmol}$). After 60 min , Sat. NaHCO_{3} $(30 \mathrm{~mL})$ was then added at $-78^{\circ} \mathrm{C}$ and reaction mixture was allowed to warm up to room temperature with vigorous stirring over 10 min . More water $(100 \mathrm{~mL})$ was added to the reaction mixture. Workup and purification were performed by following the procedure A to provide four major products: 148a ($223 \mathrm{mg}, 20 \%$), 148b ($223 \mathrm{mg}, 20 \%$), 169 ($89 \mathrm{mg}, 8 \%$), 170 ($111 \mathrm{mg}, 10 \%$).

Data for 168, silylated product of 148a

$[\alpha]_{\mathrm{D}}-58\left(c 0.13, \mathrm{CHCl}_{3}\right)$.
IR(neat, cm^{-1}): 2959.3, 2937.1, 2857.0, 2728.8, 1707.7, 1446.4, 1376.9, 1250.6, 1099.2, 873.6, 839.9.
${ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.08(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.24(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 5 \mathrm{H})$, $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} L^{2}\right.$ 211.5, 136.3, 131.6, 124.5, 123.2, 78.6, 77.8, 77.0, 64.2, 60.0, 44.4, 44.3, 41.2, 39.9, 38.2, 35.6, 29.1, 28.2, 26.9, 26.2, 25.9, 23.1, $22.9,22.5,20.4,17.9,16.2,15.3,13.2,0.2,0.2,0.2$.

HRMS (ESI): Calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{O}_{3} \mathrm{Si}\left(\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 517.4072$, found 517.4066.

Data for compound 148a

[a]d -28.5 (c $0.785, \mathrm{CHCl}_{3}$).
IR(neat, cm^{-1}): 3501.2, 2968.9, 2933.2, 1702.8, 1446.6, 1376.9, 1092.5.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, \mathrm{J}=6.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}$, J=11.4, 4.6 Hz, 1H), 2.42 (m, 1H), 2.34 (d, J=8.0 Hz, 1H), 2.35 (m, 1H), 2.24 (m, $3 \mathrm{H}), 2.03(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H})$, 1.65-1.40 (m, 8H), 1.35-1.20 (m, 2H), $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H})$, 0.71 (s, 3H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} 3\right) \delta 211.5,136.3,131.6,124.4,123.1,78.2,77.5,77.3$, $64.1,59.8,44.3,44.3,41.3,39.9,38.1,35.3,29.1,28.3,26.8,25.9,25.5,23.1$, 22.5, 22.0, 20.3, 17.9, 16.2, 15.3, 13.1.

HRMS (ESI): Calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 445.36762$, found 445.36633 .

Data for compound 148b

$[\alpha]_{\mathrm{D}}=+31.5\left(\begin{array}{c}c \\ 1.465 \\ \left., \mathrm{CHCl}_{3}\right)\end{array}\right.$.
IR (neat, cm^{-1}): 3506.9, 2967.0, 2935.1, 1703.8, 1445.4, 1378.9, 1090.6.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.08(\mathrm{~m}, 2 \mathrm{H}), 3.77$ (dd, J=6.4, 2.4 Hz, 1H), 3.47 (dd, J=11.2, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, J=8.4, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50-2.10 (m, 5H), 2.04 (m, $3 \mathrm{H}), 1.97(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.8-1.40$ $(\mathrm{m}, 8 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.7,136.3,131.6,124.4,123.0,78.2,77.5,77.2$, $61.7,53.5,46.2,45.9,41.0,39.9,35.5,33.9,29.2,28.3,26.9,25.9,25.8,24.6$, 23.8, 22.4, 22.0, 21.9, 17.9, 16.2, 13.5.

HRMS (ESI): Calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 445.36762$, found 445.36815 .
Noesy NMR experiments for stereochemistry confirmation of 148a and 148b:

NOESY of compound 148a \curvearrowleft Represent NOE

NOESY of compound 148b

NMR spectrum comparison of 148a and 148b with known compound tricyclic allene (X-ray) ${ }^{5}$.

For 2-D NMR spectra of 148a and 148b, see page 159-162.

Tricyclic allene	compound 148a	compound 148b
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \delta\right)$	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta$)	${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \delta\right)$
H-3:		
3.80 (dd, J=6.6, 3.6 Hz, 1H)	3.82 (dd, J=6.6, 3.8 Hz, 1H)	3.77 (dd, J=6.4, 2.4 Hz, 1H)
H-7:		
3.58 (dd, J=11.4, 4.8 Hz, 1H)	3.59 (dd, J=11.4, 4.6 Hz, 1H)	3.47 (dd, J=11.2, 4.8 Hz, 1H)
Me-25: 1.26 (s, 3H)	1.28 (s, 3H)	1.23 (s, 3H)
Me-26: 1.13 (s, 3H)	1.14 (s, 3H)	1.11 (s, 3H)
Me-27: 0.87 (s, 3H)	0.87 (s, 3H)	0.85 (s, 3H).
Me-28: 1.01 (s, 3H)	0.71 (s, 3H)	1.05 (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \delta\right)$	${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \delta\right)$	${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \delta\right)$
C-2: 78.2	78.2	78.2
C-3: 76.8	77.3	77.2
C-7: 77.8	77.5	77.5
C-25: 21.9	22.0	22.0
C-26: 29.2	29.1	29.2
C-27: 13.4	13.1	13.5
C-28: 20.9	15.3	16.2

Data for compound 169

IR (neat, cm^{-1}): 3491.5, 3077.9, 2966.9, 293.2, 1709.6, 1644.0, 1443.5, 1377.0, 1082.8, 1060.7.
${ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H})$, 3.81 (dd, J=6.8, 3.6 Hz, 1H), 3.68 (dd, J=11.8, 5.0 Hz, 1H), 2.41 (dd, J=15.2, 7.6 Hz, 2H), 2.39 (m, 3H), $2.26(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.18(\mathrm{~m}, 2 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.3,147.0,136.5,131.6,124.4,122.9,107.7$, $77.8,77.1,76.1,52.5,43.5,43.5,42.9,39.9,35.8,34.0,33.0,29.3,26.8,26.3$, $25.9,24.3,23.3,22.7,21.4,17.9,16.2,12.3$.

HRMS (ESI): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 445.36762$, found 445.36728.

Data for compound 170

IR (neat, cm^{-1}): 3482.0, 2966.0, 2927.4, 2859.9, 1712.5, 1448.3, 1375.0, 1099.2, 1076.1.
${ }^{1} \mathrm{H}^{\mathrm{H} M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 2 \mathrm{H})$, 3.96 (d, J=9.6 Hz, 1H), 3.41 (dd, J=11.0, 3.4 Hz, 1H), 2.41 (ddd, J=14, 7.6, 7.2 $\mathrm{Hz}, 5 \mathrm{H}), 2.25(\mathrm{~m}, 3 \mathrm{H}), 2.18-1.82(\mathrm{~m}, 10 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.64$ (s, 3H), $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.3,136.5,135.7,135.7,131.6,124.4,124.4$, $122.9,119.4,76.8,72.6,71.9,43.0,42.5,39.9,36.5,29.8,27.6,27.0,26.8,25.9$, $25.6,24.2,24.1,22.6,20.1,17.9,16.3,16.2$.

HRMS (ESI): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}_{3}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 445.36762$, found 445.36841 .

Wittig methylenation of ketone $148^{20 \mathrm{c}}$

General procedure: To a suspension solution of methyltriphenylphosphonium bromide ($804 \mathrm{mg}, 2.25 \mathrm{mmol}$) in benzene (15 mL) was added potassium tertbutoxide (1.0 M in THF, $2.25 \mathrm{~mL}, 2.25 \mathrm{mmol}$) at room temperature. The resulting mixture was heated to $90{ }^{\circ} \mathrm{C}$ (external temperature, refluxing) for 15 minutes. Then yellow solution was cooled down to $50{ }^{\circ} \mathrm{C}$ and the ketone $148(100 \mathrm{mg}$, 0.225 mmol) in benzene (4 mL) was added. Refluxing was continued for 2-4 hours (checked by TLC). The reaction mixture then was cooled to room temperature and went through a short silica gel column (filtration to remove salt) under pressure and washed the column with diethyl ether. After evaporating the solvents, the residue was chromatographied on silica gel(hexane to $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to give 171a and 171b (85 mg) as a colorless oil in 82% yield.

The Wittig olefination seems to epimerize at the ketone a chiral center. Other methods that have been attempted without success included: Petasis, modified Julia (tetrazole sulfone), Tebbe reagent.

Data for compound 171a

$[\alpha]_{D}=+22.0\left(c 0.375, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}): 3452.0, 3074.0, 2964.1, 2931.3, 2877.3, 1639.2, 1446.4, 1378.9, 1087.7, 889.0.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}$, $J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-1.80(\mathrm{~m}, 12 \mathrm{H}), 1.80-1.38$ $(\mathrm{m}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}$, $3 \mathrm{H})$, $0.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.3,135.3,131.5,124.6,124.4,109.3,78.1$, $77.8,77.5,56.3,52.0,44.9,41.0,39.9,39.4,35.6,33.5,29.3,28.4,28.4,27.1$, $26.9,25.9,25.7,24.0,22.0,21.3,17.9,16.2,13.2$.

HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 443.38836$, found 443.38913 .

Data for compound 171b

$[\alpha]_{D}=+8.2\left(c 0.305, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}): 3450.0, 3077.9, 2966.0, 2931.3, 2877.3, 1639.2, 1446.4, 1378.9, 1091.5, 1054.9, 889.0.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.82$ (dd, $J=6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-1.80(\mathrm{~m}, 12 \mathrm{H}), 1.80-1.20$
$(\mathrm{m}, 9 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $3 H), 0.69(s, 3 H)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,135.2,131.5,124.6,124.4,110.4,78.2$, $78.0,77.5,59.6,56.9,43.2,41.3,39.9,37.9,37.7,35.2,29.2,28.5,27.2,26.9$, $26.0,25.9,25.6,22.0,20.0,17.9,16.3,14.4,13.0$.

HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 443.38836$, found 443.38844 .

Wittig methylenation of ketone 168

Following the general procedure for Wittig methylenation of ketone 148, ketone 168 was olefinated to provide mixtures of 182 a and 182 b , which were difficult to separate by column chromatography. Mixtures of 182a and 182b were used for the next Shi epoxidation for better separation.

Data for compound 182b

IR (neat, cm^{-1}): 3072, 2939, 2877, 1639, 1444, 1378, 1251, 1099, 873, 838.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dd, J= 12.0, $4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.20-1.80 (m, 12H), 1.80-1.38 (m,
$9 H), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, 3H), 0.09 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.6,135.3,131.5,124.6,124.4,108.8,78.4$, $77.8,77.1,56.3,52.1,44.8,40.6,39.9,39.4,35.8,33.5,28.9,28.4,28.2,27.1$, $26.9,26.2,25.9,23.9,22.9,21.3,17.9,16.2,13.4,0.22,0.12$.

HRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{59} \mathrm{O}_{2} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 515.42789$, found 515.42837.

Regio- and stereoselective Shi epoxidation of triene 171

Triene 171a ($50.0 \mathrm{mg}, 0.113 \mathrm{mmol}$), 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose (Shi catalyst, D-epoxone, $14.6 \mathrm{mg}, 0.056 \mathrm{mmol}$), tetrabutylammonium hydrogen sulfate ($3.80 \mathrm{mg}, 0.011 \mathrm{mmol}$) and $\mathrm{NaB}_{4} \mathrm{O}_{7^{-}}$ $10 \mathrm{H}_{2} \mathrm{O}\left(0.05 \mathrm{M}\right.$ in aq. Na_{2} EDTA $\left.\left(4 \times 10^{-4} \mathrm{M}\right), 2.0 \mathrm{~mL}\right)$ were suspended with vigorous stirring in dimethoxymethane (DMM) : acetonitrile ($2: 1,3.2 \mathrm{~mL}$) and cooled to $-10^{\circ} \mathrm{C}$ with ice-salt bath. In a three-neck 10 mL flask fitted with two addition funnels, one addition funnel was charged with an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(172 \mathrm{mg}, 1.24 \mathrm{mmol}$, in 1.25 mL H O), and the second addition funnel was charged with Oxone ($192 \mathrm{mg}, 0.32 \mathrm{mmol}$) dissolved in aqueous Na_{2} EDTA (4 $\left.\times 10^{-4} \mathrm{M}, 1.25 \mathrm{~mL}\right)$. These solutions were added dropwise and simultaneously
over 90 min from the two addition funnels with the reaction temperature at $-5^{\circ} \mathrm{C}$. After the additions were complete, the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was then diluted with $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer was collected and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5.0 \mathrm{~mL})$. The combined organic fractions were washed with brine (10 mL) and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the crude product, which was indicated by TLC to be the mixture of starting material triene, monoepoxide, diepoxide and triepoxide. The separation of the mixture by column chromatography on silica gel gave the diepoxide 147a ($20 \mathrm{mg}, 37.4 \%$), and monoepoxide (25 mg , with small amount of starting material) and triepoxide(4 mg). The mixture of starting material and monoepoxide was subjected to another epoxidation (second cycle, 0.5 equivalent of the first cycle) and workup as described for the first cycle. The second cycle gave the diepoxy $147 \mathrm{a}(6.8 \mathrm{mg})$. Overall yield is 50%.
$[a]_{\mathrm{D}}=+30.5\left(c 0.31, \mathrm{CHCl}_{3}\right)$ IR (neat, cm^{-1}): 3482.8, 3074.0, 2961.2, 2934.1, 2877.3, 1640.2, 1454.1, 1378.9, 1251.6, 1089.6, 890.9.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=6.6,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.25-1.90 (m, 6H), 1.80-1.38 (m, 15H), 1.31 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H), 1.25 (s, 3H), 1.23 (s, 3H), 1.01 (s, 3H), 0.88 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $: \delta 153.3,109.9,78.1,77.8,77.4,64.1,63.1,60.5$, 58.7, 56.5, 52.1, 44.9, 41.0, 35.8, 35.7, 35.4, 33.5, 29.3, 28.3, 28.3, 27.8, 25.7, $25.1,24.8,24.0,22.0,21.3,18.9,16.9,13.2$

HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 475.37819$, found 475.37933 .
The same procedure as diepoxide 171a was followed to obtained 147b: 171b(20 $\mathrm{mg}, 0.045 \mathrm{mmol}$), Shi ketone (D-epoxone, $5.8 \mathrm{mg}, 0.023 \mathrm{mmol})$, Oxone (76.4 mg , $0.124 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(68.3 \mathrm{mg}, 0.495 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(1.5 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$, solvent ($\mathrm{AN}: D M M=1: 2,1.26 \mathrm{~mL}$), Buffer ($\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}, 0.05 \mathrm{M}$ in $\mathrm{Na}_{2} E D T A, 0.5 \mathrm{~mL}$). Yield: 56% (12 mg of diepoxide 171b).
$[\alpha]_{\mathrm{D}}=+6.6\left(c 0.385, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}): 3461.6, 3075.9, 2962.1, 2931.3, 2877.3, 1639.2, 1446.4, 1378.9, 1251.6, 1091.5, 892.9.
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=6.6,3.2 \mathrm{~Hz}$, 1 H), 3.56 (dd, J=11.4, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (t, J=5.4 Hz, 1H), 2.72 (t, J=5.6 Hz, 1H), $2.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, \mathrm{J}=14,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-$ $1.40(\mathrm{~m}, 16 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (s, $3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,111.1,78.2,77.9,77.4,64.1,63.2,60.6$, 59.6, 56.7, 43.3, 41.3, 37.9, 35.5, 35.1, 34.4, 29.9, 29.2, 28.5, 27.7, 26.0, 25.6, 25.1, 24.8, 22.0, 20.0, 18.9, 17.0, 14.4, 13.0.

HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 475.37819$, found 475.37857 .

Regio- and stereoselective Shi epoxidation of triene 182

Shi epoxidation of mixture of 182a and 182b was carried out by following the procedure above for Shi epoxidation of 171 to yield 180a and 180b, respectively.

Data for compound 180a

IR (neat, cm^{-1}): 3081, 2958, 2939, 2875, 1639, 1444, 1378, 1249, 1097, 1064, 873, 838.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.50 (dd, J=11.6, 5.2 Hz, 1H), 2.65 (m, 2H), 2.12-1.30 (m, 22H), 1.23 (s, 3H), 1.20 (s, 3H), 1.19 (s, 3H), 1.18, (s, 3H), 1.02(s, 3H), 0.77 (s, 3H), 0.60 (s, 3H), 0.03 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,110.9,78.5,77.9,77.4,64.1,63.2,59.7$, 58.7, 43.3, 41.2, 38.0, 35.5, 35.4, 34.4, 29.1, 28.4, 27.8, 26.3, 26.1, 25.1, 24.8, $22.9,20.1,19.9,18.9,18.1,17.0,14.4,13.1,0.24$ (3C).

HRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{59} \mathrm{O}_{4} \mathrm{Sii}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 547.41772$, found 547.41795 .

Data for compound 180b

IR (neat, cm^{-1}): 3073, 2956, 2940, 2875, 1639, 1452, 1378, 1249, 1099, 873, 838.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (dd, J=12.0, 4.4 Hz, 1H), 2.73 (m, 2H), 2.21 ($\mathrm{m}, 1 \mathrm{H}$), 2.15-1.90 (m, 4H), 1.82-1.34 (m, 16H), 1.31 (s, 3H), 1.29 (s, 3H), 1.28 (s, 3H), 1.13, (s, 3H), 1.10 (s, $3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,109.3,78.4,77.8,77.0,64.1,63.2,60.5$, 58.6, 56.3, 52.0, 44.9, 40.6, 36.0, 35.8, 35.4, 33.5, 28.9, 28.5, 28.2, 27.9, 26.2, $25.1,24.8,23.9,22.9,21.3,18.9,16.9,13.4,0.13$ (3C).

HRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{59} \mathrm{O}_{4} \mathrm{Sii}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 547.41772$, found 547.41782 .

Cascade oxa-carbocyclization of diepoxy alkene 147b

To a solution of diepoxy alkene $149 \mathrm{~b}(25.6 \mathrm{mg}, 54 \mu \mathrm{~mol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2,6-di-tert-butyl-4-methyl pyridine (DTBMP, $17 \mathrm{mg}, 81 \mu \mathrm{~mol}$) at $-78^{\circ} \mathrm{C}$ was added TMSOTf ($14 \mu \mathrm{~L}, 81 \mu \mathrm{~mol}$). Reaction mixture was stirred for another 30 min . Sat. NaHCO_{3} was then added at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with hexane (5 mL) and cold water (5 mL). The organic layer was collected and the aqueous layer was extracted with hexane ($2 \times 10 \mathrm{~mL}$). The combined organic fractions were washed with brine (10 mL) and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the crude product, which was purified with
silica gel column to give product $177(6.3 \mathrm{mg}, 20 \%)$ and impure $178(10 \mathrm{mg}$, $30 \%)$. The impure 178 was desilylated with tetrabutylammonium fluoride in THF at room temperature for 1 hour, followed by esterification with 4-bromobenzyol chloride in the presence of dimethylamino pyridine (DMAP) in dichloromethane at room temperature for 24 hours, to afford 179 ($11.4 \mathrm{mg}, 25 \%$).

Data for compound 177

$[\alpha]_{\mathrm{D}}=+28.0\left(c 0.145, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}): 2935.1, 2875.4, 1442.5, 1378.9, 1249.7, 1093.4, 873.6, 838.9
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=11.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-1.90(\mathrm{~m}$, 7H), 1.75 (m, 2H), 1.64-1.48 (m, H), 1.48-1.42 (m, 2H), 1.42-1.35 (m, 4H), 1.17 (s, 3 H), 1.14 (s, 3H), 1.13 (s, 3H), 1.10 (s, 3H), 0.97 (s, 3H), 0.96 (s, 3H), 0.85 (s, $3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.088(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,132.6,78.7,78.4,77.9,77.9,77.9,77.5$, 74.0, 56.3, 52.4, 45.1, 40.9, 39.6, 35.9, 34.8, 33.3, 29.9, 29.1, 28.3, 27.7, 27.4, 26.7, 26.3, 23.8, 23.4, 22.9, 21.3, 20.8, 13.3, 0.2 (6 C).

HRMS (ESI): Calcd. for $\mathrm{C}_{36} \mathrm{H}_{67} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 619.45724$, found 619.45697.

Data for compound 179

$[\alpha]_{\mathrm{D}}=+9.0\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right)$.
IR (neat, cm^{-1}): 2923.6, 2854.1, 1722.1, 1589.1, 1446.4, 1270.9, 1170.6, 1101.2, 1012.5, 756.0.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}$, 4H), 5.21 (d, J=7.2 Hz, 1H), 5.19 (d, J=7.8 Hz, 1H), 5.18 (s, 1H), 3.88 (dd, J=9.6, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 3 \mathrm{H}), 2.18-$ 1.92(m, 8H), 1.82-1.71(m, 2H), 1.64-1.42 (m, 8H), $1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H})$, 0.94 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 165.0,164.9,139.6,132.1,132.1,131.1,131.0$, $129.5,129.4,128.5,128.4,119.4,80.7,80.5,78.7,78.0,77.4,73.1,57.7,53.9$, $45.1,41.1,37.3,37.2,36.9,33.7,32.6,29.9,29.4,29.2,28.6,27.5,24.2,23.8$, 23.5, 22.4, 21.9, 21.6, 18.6, 13.4.

HRMS (ESI): Calcd. for $\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{O}_{6}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 841.24959$, found 841.24898.
The structure of 179 was substantiated by X-Ray analysis: The thermal ellipsoid diagram was shown below:

For X-ray data of compound 179, see page 206-219.

Cascade oxa-carbocyclization of diepoxy alkene 147a to furnish ent-

abudinol B

Diepoxy alkene 147a ($20 \mathrm{mg}, 42 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, 2,6 -di-tert-butyl-4-methylpyridine (DTBMP, $35 \mathrm{mg}, 168 \mu \mathrm{~mol}$) was added, and the solution was cooled to $-78^{\circ} \mathrm{C}$. TMSOTf ($16 \mu \mathrm{~L}, 93 \mu \mathrm{~mol}$) was added with stirring. After 60 min at $-78{ }^{\circ} \mathrm{C}$, TBAF (1.0 M in THF, $186 \mu \mathrm{~L}, 186 \mu \mathrm{~mol}$) was added at -78 ${ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 30 min . Sat. NaHCO_{3} was then added at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) and cold water (5 mL) and warming to room temperature. The organic layer was collected and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 10 mL). The combined organic fractions were washed with brine $(20 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. Rotary evaporation of solvents gave the crude product, which was purified with silica gel column to give product ent-abudinol B (ent-64) ($3.0 \mathrm{mg}, 15 \%$), compound 175 ($2.0 \mathrm{mg}, 10 \%$) and compound 176 (4.0 $\mathrm{mg}, 20 \%)$. A small amount of an isomer attributed to be the $15-16$ alkene isomer of 175 was observed but could not be purified to the extent required for unambiguous characterization.

Comparative characterization data for ent-abudinol B (ent-64):
Naturally occurring product $\quad 1^{\text {st }}$ generation synthesis $\quad 2^{\text {nd }}$ generation synthesis
$[\alpha]_{\mathrm{D}}-5.0(c 0.05, \mathrm{MeOH}) \quad+23(c 0.05, \mathrm{MeOH}) \quad+20(c 0.05, \mathrm{MeOH})$

IR (neat, cm^{-1}):

3484 (O-H stretches)	3460	3450
2950 (C-H stretches)	2970,2930	2971,2931
C-H stretches not reported	2868	2871
1446 (C-H stretches)	1446	1456,1447
	1376 (C-H methyl bend)	1376
	1359 (C-H methyl bend)	1361
	1076 (C-O stretch)	1076
	1036 (C-O stretch)	1056
$1023(C-O$ stretch)	1024	1024

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}_{6}} \underline{6}, \delta\right): \quad\left(400 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}_{6}} \underline{\underline{\delta}}, \bar{\delta}\right): \quad\left(600 \mathrm{MHz}, \mathrm{C}_{6} \underline{\underline{D}_{6}} \underline{\delta}\right):$ H-7:
$3.75(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}) 3.77(\mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}) 3.77(\mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$ H-18:
$3.66(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}) 3.69(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) 3.68(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$

H-3: $3.36(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H})$	$3.38(\mathrm{~d}, \mathrm{l}=6.8,1 \mathrm{H})$	$3.36(\mathrm{~d}, \mathrm{~J}=6.4,1 \mathrm{H})$
$\mathrm{H}-23: 3.36(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H})$	$3.38(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H})$	$3.36(\mathrm{~d}, \mathrm{~J}=6.4,1 \mathrm{H})$
H-O not reported	$3.01(\mathrm{~s}, \mathrm{OH})$	$3.00(\mathrm{~s}, \mathrm{OH})$
CH or CH_{2} not reported	$2.74(\mathrm{dt}, \mathrm{J}=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$	$2.73(\mathrm{dt}, \mathrm{J}=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$
not reported	$2.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$	$2.34(\mathrm{~m}, 2 \mathrm{H})$
not reported	$2.31-2.19(\mathrm{~m}, 1 \mathrm{H})$	$2.22(\mathrm{dd}, \mathrm{J}=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$
not reported	$2.10(\mathrm{dt}, \mathrm{J}=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$	$2.09(\mathrm{dt}, \mathrm{J}=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$
not reported	$2.01-1.89(\mathrm{~m}, 2 \mathrm{H})$	$2.01-1.89(\mathrm{~m}, 2 \mathrm{H})$

not reported	$1.89-1.28(\mathrm{~m}, 14 \mathrm{H})$	$1.89-1.28(\mathrm{~m}, 14 \mathrm{H})$
not reported	$0.91(\mathrm{t}, \mathrm{J}=7.2,6.8,2 \mathrm{H})$	
$\mathrm{H}-27$	$1.19(\mathrm{~s}, 3 \mathrm{H})$	$1.21(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{H}-25$	$1.18(\mathrm{~s}, 3 \mathrm{H})$	$1.20(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{H}-26$	$1.08(\mathrm{~s}, 3 \mathrm{H})$	$1.09(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{H}-28$	$1.06(\mathrm{~s}, 3 \mathrm{H})$	$1.08(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{H}-31$	$1.05(\mathrm{~s}, 3 \mathrm{H})$	$1.07(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{H}-29$	$1.01(\mathrm{~s}, 3 \mathrm{H})$	$1.02(\mathrm{~s}, 3 \mathrm{H})$
$\mathrm{H}-30$	$1.00(\mathrm{~s}, 3 \mathrm{H})$	$1.01(\mathrm{~s}, 3 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \underline{\underline{D}}_{\underline{6}}, \delta\right.$) :	$\left(100 \mathrm{MHz}, \mathrm{C}_{6} \underline{\mathrm{D}}_{\underline{6}} \underline{6} \text {, }\right)^{\text {(}}$	
C-14 143.6 (C=C)	142.6	143.1
C-15 125.6 (C=C)	125.3	125.8
C-2, 3, 7, 18, 23, 24	77.7	78.3
(C-O) not reported	77.5	78.0
	77.0	77.5
	76.8	77.4
	76.6	77.2
	75.5	76.0
C-4, 5, 6, 8, 9, 10 11, 12, 13,	, 59.7	60.3
16, 17, 19, 20, 21,22 (C-H)) $\quad 54.0$ (impurity)	
not reported	45.5	46.1
	44.8	45.4

41.3	41.8
40.8	41.4
37.4	37.9
36.6	37.1
35.4	35.9
32.5	33.0
30.4	31.0
30.1 (misassigned as impurity)	30.6
28.1	28.6
26.2	26.8
25.7	26.2
20.4	22.4

C-26 $29.2(\mathrm{Me})$	29.3	29.8

C-28 $28.9(\mathrm{Me})$	29.0	29.6

$\begin{array}{lll}\text { C-27 } 21.3(\mathrm{Me}) & 21.9 & 22.2\end{array}$
$\begin{array}{lll}\mathrm{C}-2521.2(\mathrm{Me}) & 21.7 & 21.4\end{array}$
$\begin{array}{lll}\text { C-30 } 20.1(\mathrm{Me}) & 20.8 & 20.9\end{array}$
$\begin{array}{lll}\text { C-31 } 18.4(\mathrm{Me}) & 16.8 & 17.4\end{array}$
$\begin{array}{lll}\text { C-29 } 13.9 \text { (Me) } & 14.1 & 14.5\end{array}$

Calcd. 474.3696, found 474.3702. calcd. 475.3782. found 475.3782, 475.3799
${ }^{1} \mathrm{H}$ NMR spectra comparison of natural abudinol B and synthetic entabudinol B ($1^{\text {st }}$ and $2^{\text {nd }}$ generations) is shown below.
H

$1^{\text {st }}$ generation synthesis

3.5	3.0	2.5	2.0	1.5	1.0

Data for compound 175

IR (neat, cm^{-1}): 3469.3, 2923.6, 2852.2, 1727.1, 1461.8, 1378.9, 1272.8, 1143.6, 1070.3.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.05(\mathrm{~s}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=12.3,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, \mathrm{J}=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, \mathrm{OH}), 2.18-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{~m}$, 2 H), 1.78 (m, 2H), 1.75-1.38 (m, 16H), 1.29 (s, 3H), 1.27 (s, 3H), 1.26 (s, 3H), 1.17 (s, 3H), 1.14(s, 3H), 0.96(s, 3H), 0.86 (s, 3H), $0.65(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.4,133.0,78.4,78.2,78.1,74.9,59.3,57.8$, $43.5,41.3,39.9,37.8,35.2,34.7,31.5,29.9,29.9,29.2,29.2,28.5,27.9,26.1$, 25.6, 24.8, 22.6, 22.0, 20.1, 20.1, 14.3, 13.0.

HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 475.3782$, found 475.3785 .

Data for compound 176

IR (neat, cm^{-1}): 3473.2, 2923.6, 2871.5, 2852.2, 1718.3, 1448.3, 1378.9, 1160.9, 1078.0, 1054.9, 914.1.
${ }^{1}{ }^{1} \mathrm{H}$ NR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 5.43(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $\mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, br, 2H), 3.49 (dd, J=11.7, 4.5 Hz, 1 H), 3.32(dd, J=10.8, 3.6 Hz, 1H), 2.29 (s, 1H), 2.18-1.90 (m, 6H), 1.88-1.70 (m, 2 H), 1.70-1.30 (m, 16H), 1.48 (s, 3H), 1.20 (s, 3H), 1.18 (s, 3H), 1.17 (s, 3H), $1.08(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,135.8,119.3,110.8,78.2,78.0,77.6,76.7$, 72.6, 71.9, 59.7, 56.9, 43.2, 41.3, 37.9, 35.2, 34.2, 29.9, 29.6, 29.2, 28.5, 27.0, 26.2, 25.6, 24.2, 22.0, 20.1, 20.0, 14.4, 13.0.

HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 475.3782$, found 475.37874 .

2-D NMR spectra for compounds 148a and 148b:

H-H NOESY

X-Ray database in total synthesis of abudinol B

X-ray data for compound 77:

Table 1. Crystal data and structure refinement for compound 77.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.47^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
jcv2s
C13 H22 O3
226.31

173(2) K
1.54178 Å

Orthorhombic
P2(1)2(1)2(1)
$a=9.1824(4) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=10.6533(5) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=13.0707(6) \AA \quad \gamma=90^{\circ}$.
1278.61(10) \AA^{3}

4
$1.176 \mathrm{Mg} / \mathrm{m}^{3}$
$0.655 \mathrm{~mm}^{-1}$
496
$0.23 \times 0.08 \times 0.08 \mathrm{~mm}^{3}$
5.36 to 66.47°.
$-10<=\mathrm{h}<=10,-10<=\mathrm{k}<=11,-13<=1<=15$
5713
$2129[\mathrm{R}(\mathrm{int})=0.0348]$
96.1 \%

Semi-empirical from equivalents
1.000 and 0.783724

Full-matrix least-squares on F^{2}
2129/0/233
1.064
$\mathrm{R} 1=0.0377, \mathrm{wR} 2=0.0876$
$R 1=0.0503, w R 2=0.1045$
0.1(3)
0.184 and -0.224 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound 77. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$3371(2)$	$10644(2)$	$6408(2)$	$27(1)$
$\mathrm{C}(2)$	$3810(2)$	$9384(2)$	$6919(2)$	$26(1)$
$\mathrm{C}(3)$	$2715(3)$	$8932(2)$	$7716(2)$	$28(1)$
$\mathrm{C}(4)$	$1425(2)$	$8214(2)$	$7280(2)$	$26(1)$
$\mathrm{C}(5)$	$266(2)$	$8962(2)$	$6697(2)$	$22(1)$
$\mathrm{C}(6)$	$-717(2)$	$8015(2)$	$6138(2)$	$27(1)$
$\mathrm{C}(7)$	$-1799(3)$	$8635(2)$	$5443(2)$	$32(1)$
$\mathrm{C}(8)$	$-1172(3)$	$9543(3)$	$4683(2)$	$38(1)$
$\mathrm{C}(9)$	$-134(3)$	$10464(3)$	$5198(2)$	$32(1)$
$\mathrm{C}(10)$	$984(2)$	$9818(2)$	$5880(2)$	$22(1)$
$\mathrm{C}(11)$	$3859(3)$	$11721(3)$	$7087(3)$	$41(1)$
$\mathrm{C}(12)$	$4023(3)$	$10779(3)$	$5347(2)$	$39(1)$
$\mathrm{C}(13)$	$-652(3)$	$9729(3)$	$7448(2)$	$31(1)$
$\mathrm{O}(1)$	$1808(2)$	$10792(1)$	$6363(1)$	$27(1)$
$\mathrm{O}(2)$	$4023(2)$	$8392(2)$	$6200(1)$	$30(1)$
$\mathrm{O}(3)$	$-3102(2)$	$8425(2)$	$5492(2)$	$50(1)$

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound 77 \qquad

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.445(3)$
$\mathrm{C}(1)-\mathrm{C}(12)$	$1.517(3)$
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.519(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.553(3)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.428(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.525(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.521(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.532(3)$
$\mathrm{C}(5)-\mathrm{C}(13)$	$1.529(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.538(3)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.552(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.500(3)$
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.219(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.501(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.525(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.524(3)$
$\mathrm{C}(10)-\mathrm{O}(1)$	$1.430(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)$	$110.14(19)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	$103.59(19)$
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(11)$	$110.2(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.70(19)$
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.9(2)$

$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.9(2)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.83(19)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.08(18)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.30(19)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$114.6(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.7(2)$
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.02(19)$
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(6)$	$109.41(19)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$107.59(18)$
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(10)$	$111.17(19)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$110.64(18)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$107.93(18)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$112.80(19)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$122.5(2)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$122.0(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$115.5(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$111.2(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$112.9(2)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$106.68(19)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	$110.36(16)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$112.49(19)$
$\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(1)$	$117.70(17)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound 77. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$16(1)$	$32(1)$	$32(1)$	$-5(1)$	$1(1)$	$-4(1)$
$\mathrm{C}(2)$	$20(1)$	$35(1)$	$23(1)$	$-5(1)$	$-3(1)$	$0(1)$
$\mathrm{C}(3)$	$30(1)$	$30(1)$	$24(1)$	$2(1)$	$-3(1)$	$1(1)$
$\mathrm{C}(4)$	$26(1)$	$29(1)$	$25(1)$	$5(1)$	$2(1)$	$0(1)$
$\mathrm{C}(5)$	$20(1)$	$23(1)$	$22(1)$	$-2(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(6)$	$20(1)$	$26(1)$	$33(1)$	$-5(1)$	$4(1)$	$-5(1)$
$\mathrm{C}(7)$	$19(1)$	$41(2)$	$36(1)$	$-17(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(8)$	$29(1)$	$51(2)$	$34(2)$	$1(1)$	$-10(1)$	$3(1)$
$\mathrm{C}(9)$	$27(1)$	$37(2)$	$32(1)$	$6(1)$	$-4(1)$	$2(1)$
$\mathrm{C}(10)$	$17(1)$	$26(1)$	$25(1)$	$-2(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(11)$	$29(2)$	$36(2)$	$58(2)$	$-17(1)$	$-2(1)$	$-9(1)$
$\mathrm{C}(12)$	$29(1)$	$48(2)$	$40(2)$	$11(1)$	$7(1)$	$-6(1)$
$\mathrm{C}(13)$	$27(1)$	$35(2)$	$32(2)$	$-10(1)$	$9(1)$	$0(1)$
$\mathrm{O}(1)$	$18(1)$	$24(1)$	$39(1)$	$-2(1)$	$-1(1)$	$-3(1)$
$\mathrm{O}(2)$	$21(1)$	$34(1)$	$36(1)$	$-11(1)$	$4(1)$	$1(1)$
$\mathrm{O}(3)$	$16(1)$	$76(1)$	$59(1)$	$-20(1)$	$2(1)$	$-4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10\right.$ 3) for compound 77 .

	x	y	z	U(eq)
$\mathrm{H}(2)$	4840(30)	9540(20)	7279(18)	32(7)
H(3A)	2440(30)	9640(20)	8131(18)	32(7)
H(3B)	3260(30)	8320(30)	8211(19)	43(7)
H(4A)	980(30)	7770 (20)	7860(20)	36(7)
H(4B)	1850(30)	7530(20)	6786(16)	30(6)
H(6A)	-1240(30)	7490(20)	6642(19)	37(7)
H(6B)	-80(30)	7450(20)	5679(17)	32(6)
H(8A)	-2020(30)	10040(30)	4290(20)	65(9)
H(8B)	-620(30)	9040(30)	4170(20)	52(9)
H(9A)	-700(30)	11080(20)	5635(19)	35(7)
H(9B)	400(30)	10950(20)	4640(20)	41(7)
H(10)	1640(20)	9250(20)	5441(16)	17(5)
H(11A)	3550(30)	11610(30)	7820(20)	54(9)
H(11B)	3500(30)	12550(30)	6780(20)	53(9)
H(11C)	4980(30)	11800(30)	7136(19)	50(8)
H(12A)	3670(30)	10090(30)	4800(20)	54(8)
H(12B)	3770(30)	11560(30)	5050(20)	44(8)
H(12C)	5140(30)	10690(20)	5360(20)	46(8)
H(13A)	-1080(30)	9190(20)	8010(20)	32(7)
H(13B)	-80(30)	10310(30)	7850(20)	46(8)
H(13C)	-1470(30)	10190(30)	7108(19)	50(8)
H(2O)	4940(40)	8430(40)	5980(30)	83(12)

Table 6. Torsion angles [${ }^{\circ}$] for compound 77.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$93.0(2)$
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$-31.0(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$-153.1(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-30.0(3)$
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-154.1(2)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$83.8(2)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-42.4(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$83.6(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-72.7(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	$-73.3(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$167.6(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$50.0(3)$
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$67.0(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-173.55(19)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-54.1(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(3)$	$-126.6(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$53.1(3)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$130.8(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-48.8(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$49.2(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	$-176.08(19)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$-54.9(3)$
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(1)$	$54.8(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(1)$	$-67.8(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(1)$	$174.78(17)$
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$-64.2(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$173.2(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$55.8(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(1)$	$-135.84(19)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(1)$	$101.7(2)$
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(10)$	$70.0(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(10)$	$-172.1(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(10)$	$-55.0(2)$

Symmetry transformations used to generate equivalent atoms:
Table 7. Hydrogen bonds for compound 77 [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O}) \ldots \mathrm{O}(3) \# 1$	$0.89(4)$	$1.91(4)$	$2.797(2)$	$177(4)$

Symmetry transformations used to generate equivalent atoms:
\#1 x+1,y,z

\underline{X}-ray data for compound 95:

Table 8. Crystal data and structure refinement for compound 95.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.02^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

T105OH_0m
C13 H22 O3
226.31

173(2) K
1.54178 Å

Monoclinic
P2(1)/n
$a=7.2507(4) \AA \quad \alpha=90^{\circ}$.
$b=15.5937(9) \AA \quad \beta=99.195(2)^{\circ}$.
$\mathrm{c}=11.8296(7) \AA \quad \gamma=90^{\circ}$.
$1320.33(13) \AA^{3}$
4
$1.138 \mathrm{Mg} / \mathrm{m}^{3}$
$0.635 \mathrm{~mm}^{-1}$
496
$0.45 \times 0.30 \times 0.17 \mathrm{~mm}^{3}$
8.27 to 66.02°.
$-8<=\mathrm{h}<=7,-17<=\mathrm{k}<=18,-12<=1<=13$
7336
$2022[\mathrm{R}(\mathrm{int})=0.0221]$
87.9 \%

Semi-empirical from equivalents
Full-matrix least-squares on F^{2}
2022 / 0 / 149
1.052
$\mathrm{R} 1=0.0360, \mathrm{wR} 2=0.0925$
$\mathrm{R} 1=0.0383, \mathrm{wR} 2=0.0945$
0.238 and -0.186 e. \AA^{-3}

Table 9. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 95 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$66(2)$	$8886(1)$	$3480(1)$	$25(1)$
$\mathrm{C}(2)$	$-1552(2)$	$9518(1)$	$3381(1)$	$29(1)$
$\mathrm{C}(3)$	$-2171(2)$	$9823(1)$	$2146(1)$	$33(1)$
$\mathrm{C}(4)$	$-524(2)$	$10142(1)$	$1646(1)$	$32(1)$
$\mathrm{C}(5)$	$1101(2)$	$9532(1)$	$1744(1)$	$32(1)$
$\mathrm{C}(6)$	$1774(2)$	$9232(1)$	$2989(1)$	$28(1)$
$\mathrm{C}(7)$	$3201(2)$	$8507(1)$	$2937(1)$	$34(1)$
$\mathrm{C}(8)$	$3805(2)$	$7986(1)$	$4033(1)$	$38(1)$
$\mathrm{C}(9)$	$2274(2)$	$7393(1)$	$4332(1)$	$34(1)$
$\mathrm{C}(10)$	$909(2)$	$7825(1)$	$5033(1)$	$31(1)$
$\mathrm{C}(11)$	$-926(2)$	$7334(1)$	$4899(1)$	$41(1)$
$\mathrm{C}(12)$	$1748(2)$	$7900(1)$	$6293(1)$	$41(1)$
$\mathrm{C}(13)$	$2687(2)$	$9986(1)$	$3702(1)$	$36(1)$
$\mathrm{O}(1)$	$584(1)$	$8707(1)$	$4679(1)$	$28(1)$
$\mathrm{O}(2)$	$-523(2)$	$10843(1)$	$1189(1)$	$46(1)$
$\mathrm{O}(3)$	$3012(2)$	$6663(1)$	$4981(1)$	$48(1)$

Table 10. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for 95.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.4353(14)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	1.5223(17)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(6)$	1.5464(16)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5338(18)$	$\mathrm{O}(3)-\mathrm{H}(3)$	0.8400
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900		
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	106.19(9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.4994(19)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	109.84(10)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	113.52(10)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	109.1
$\mathrm{C}(4)-\mathrm{O}(2)$	1.2192(16)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	109.1
$\mathrm{C}(4)-\mathrm{C}(5)$	1.5038(19)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	109.1
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5486(18)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.22(10)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.2
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.2
$\mathrm{C}(6)-\mathrm{C}(13)$	1.5341(19)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.2
$\mathrm{C}(6)-\mathrm{C}(7)$	1.5405(18)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.2
$\mathrm{C}(7)-\mathrm{C}(8)$	1.533(2)	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.9
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	110.40(11)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.6
$\mathrm{C}(8)-\mathrm{C}(9)$	1.529(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.6
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.6
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.6
$\mathrm{C}(9)-\mathrm{O}(3)$	1.4286(16)	$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.1
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5433(18)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	121.94(13)
$\mathrm{C}(9)-\mathrm{H}(9)$	1.0000	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	122.99(13)
$\mathrm{C}(10)-\mathrm{O}(1)$	1.4456 (15)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.07(11)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.5209(19)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.84(10)
$\mathrm{C}(10)-\mathrm{C}(12)$	$1.5224(19)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.0
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.8
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800	$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)$	110.54(11)

$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(1)$	$111.25(10)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	$110.32(11)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	$110.04(10)$	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$110.36(10)$
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(5)$	$109.49(11)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$110.48(11)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$107.16(10)$	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(9)$	$111.66(11)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$108.23(10)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$117.25(11)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	108.0	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	108.0	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.0	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.0	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	107.2	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$113.38(11)$	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.9	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.9	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.9	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.9	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.7	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$	$112.51(11)$	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$106.08(10)$	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.36(11)$	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{H}(9)$	107.9	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	107.9	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	107.9	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(10)$	$118.45(9)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$110.44(10)$	$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{H}(3)$	109.5
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(12)$	$103.38(11)$		

Symmetry transformations used to generate equivalent atoms:

Table 11. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 95 . The anisotropicdisplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U 13	U 12
$\mathrm{C}(1)$	$27(1)$	$27(1)$	$22(1)$	$-1(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(2)$	$27(1)$	$31(1)$	$29(1)$	$3(1)$	$7(1)$	$0(1)$
$\mathrm{C}(3)$	$30(1)$	$33(1)$	$34(1)$	$4(1)$	$3(1)$	$1(1)$
$\mathrm{C}(4)$	$40(1)$	$32(1)$	$23(1)$	$1(1)$	$1(1)$	$-5(1)$
$\mathrm{C}(5)$	$34(1)$	$37(1)$	$27(1)$	$0(1)$	$9(1)$	$-5(1)$
$\mathrm{C}(6)$	$26(1)$	$32(1)$	$26(1)$	$-2(1)$	$6(1)$	$-3(1)$
$\mathrm{C}(7)$	$29(1)$	$42(1)$	$33(1)$	$-1(1)$	$10(1)$	$2(1)$
$\mathrm{C}(8)$	$29(1)$	$46(1)$	$39(1)$	$0(1)$	$7(1)$	$10(1)$
$\mathrm{C}(9)$	$38(1)$	$33(1)$	$29(1)$	$3(1)$	$4(1)$	$9(1)$
$\mathrm{C}(10)$	$36(1)$	$30(1)$	$29(1)$	$4(1)$	$6(1)$	$5(1)$
$\mathrm{C}(11)$	$43(1)$	$38(1)$	$44(1)$	$9(1)$	$12(1)$	$-1(1)$
$\mathrm{C}(12)$	$52(1)$	$43(1)$	$30(1)$	$5(1)$	$6(1)$	$11(1)$
$\mathrm{C}(13)$	$33(1)$	$40(1)$	$35(1)$	$-4(1)$	$6(1)$	$-9(1)$
$\mathrm{O}(1)$	$34(1)$	$29(1)$	$22(1)$	$1(1)$	$5(1)$	$4(1)$
$\mathrm{O}(2)$	$57(1)$	$37(1)$	$46(1)$	$13(1)$	$11(1)$	$-3(1)$
$\mathrm{O}(3)$	$61(1)$	$44(1)$	$43(1)$	$10(1)$	$15(1)$	$26(1)$

Table 12. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{X}\right.$ 10^{3}) for 95.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1)	-376	8345	3071	30
$\mathrm{H}(2 \mathrm{~A})$	-1171	10021	3875	35
H(2B)	-2623	9242	3661	35
H(3A)	-2770	9343	1677	39
H(3B)	-3100	10289	2135	39
H(5A)	2150	9817	1451	39
H(5B)	734	9025	1257	39
H(7A)	2669	8105	2324	41
H(7B)	4335	8762	2706	41
H (8A)	4910	7637	3939	45
H(8B)	4182	8386	4678	45
H(9)	1533	7183	3599	40
H(11A)	-1759	7604	5370	62
H(11B)	-684	6739	5146	62
H(11C)	-1517	7343	4093	62
H(12A)	2964	8188	6365	62
H(12B)	1912	7327	6632	62
H(12C)	909	8236	6694	62
H(13A)	3160	9790	4482	54
H(13B)	1760	10440	3729	54
H(13C)	3724	10210	3351	54
H(3)	3686	6379	4602	73

Table 13. Torsion angles [${ }^{\circ}$] for $\mathbf{9 5}$.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$175.80(10)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$55.01(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-51.54(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	$-128.50(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$51.95(15)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$126.43(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-54.03(15)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	$-52.10(13)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	$66.61(14)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$70.76(12)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$-170.53(11)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-172.44(9)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-53.73(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	$-69.26(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$170.82(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$52.18(14)$
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$71.91(15)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-51.37(15)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-168.84(12)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$71.07(16)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)$	$153.14(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-85.74(15)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	$160.12(11)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	$35.51(15)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-77.45(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$157.94(12)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$45.72(15)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$-78.88(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(10)$	$134.59(10)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(10)$	$-102.27(12)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(1)$	$-71.74(13)$
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(1)$	$170.25(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(1)$	$50.71(14)$

Table 14. Hydrogen bonds for $95\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<$ (DHA)
$\mathrm{O}(3)-\mathrm{H}(3) \ldots \mathrm{O}(2) \# 1$	0.84	1.94	$2.7695(14)$	171.7

Symmetry transformations used to generate equivalent atoms:
\#1-x+1/2,y-1/2,-z+1/2

X-ray data for compound 115:

Table 15. Crystal data and structure refinement for 115.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=65.97^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

T104_0m
C19 H30 O2
290.43

173(2) K
1.54178 Å

Orthorhombic
P2(1)2(1)2(1)
$a=7.1883(5) \AA \quad \alpha=90^{\circ}$.
$b=9.8601(7) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=23.4975(16) \AA \quad \gamma=90^{\circ}$.
1665.4(2) \AA^{3}

4
$1.158 \mathrm{Mg} / \mathrm{m}^{3}$
$0.561 \mathrm{~mm}^{-1}$
640
$0.73 \times 0.53 \times 0.10 \mathrm{~mm}^{3}$
8.37 to 65.97°.
$-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=9,-27<=1<=24$
6645
$2524[\mathrm{R}(\mathrm{int})=0.0201]$
90.0 \%

Semi-empirical from equivalents
Full-matrix least-squares on F^{2}
2524 / 0 / 203
1.083
$\mathrm{R} 1=0.0322, \mathrm{wR} 2=0.0761$
$\mathrm{R} 1=0.0344, \mathrm{wR} 2=0.0774$
0.0(2)
0.160 and -0.134 e. \AA^{-3}

Table 16. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 115 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$-1110(2)$	$-5342(2)$	$-1681(1)$	$23(1)$
$\mathrm{C}(2)$	$358(2)$	$-6056(2)$	$-1320(1)$	$27(1)$
$\mathrm{C}(3)$	$564(2)$	$-5438(2)$	$-725(1)$	$27(1)$
$\mathrm{C}(4)$	$-1304(2)$	$-5418(2)$	$-421(1)$	$27(1)$
$\mathrm{C}(5)$	$-1417(3)$	$-4519(2)$	$112(1)$	$33(1)$
$\mathrm{C}(6)$	$-3350(3)$	$-3881(3)$	$138(1)$	$53(1)$
$\mathrm{C}(7)$	$-4343(3)$	$-4340(2)$	$-411(1)$	$35(1)$
$\mathrm{C}(8)$	$-2721(2)$	$-4677(2)$	$-806(1)$	$25(1)$
$\mathrm{C}(9)$	$-3063(2)$	$-5273(2)$	$-1404(1)$	$23(1)$
$\mathrm{C}(10)$	$-4301(2)$	$-4259(2)$	$-1730(1)$	$26(1)$
$\mathrm{C}(11)$	$-4439(2)$	$-4414(2)$	$-2380(1)$	$28(1)$
$\mathrm{C}(12)$	$-2667(2)$	$-4086(2)$	$-2705(1)$	$29(1)$
$\mathrm{C}(13)$	$-1251(2)$	$-5265(2)$	$-2732(1)$	$28(1)$
$\mathrm{C}(14)$	$702(3)$	$-4754(2)$	$-2867(1)$	$39(1)$
$\mathrm{C}(15)$	$-1883(3)$	$-6285(2)$	$-3182(1)$	$40(1)$
$\mathrm{C}(16)$	$-1869(3)$	$-6854(2)$	$-228(1)$	$37(1)$
$\mathrm{C}(17)$	$-4030(2)$	$-6665(2)$	$-1409(1)$	$30(1)$
$\mathrm{C}(18)$	$-98(3)$	$-4426(2)$	$489(1)$	$42(1)$
$\mathrm{C}(19)$	$1264(3)$	$-4351(2)$	$847(1)$	$51(1)$
$\mathrm{O}(1)$	$-1196(2)$	$-6061(1)$	$-2213(1)$	$25(1)$
$\mathrm{O}(2)$	$-1941(2)$	$-2863(1)$	$-2461(1)$	$32(1)$

Table 17. Bond lengths [\AA] and angles [${ }^{\circ}$] for 115.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.4388(18)	$\mathrm{C}(13)-\mathrm{O}(1)$	1.4501(18)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.525(2)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.525(3)$
$\mathrm{C}(1)-\mathrm{C}(9)$	1.549(2)	$\mathrm{C}(13)-\mathrm{C}(15)$	1.529(2)
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	1.534(2)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.521(2)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	1.535(2)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(16)$	1.541(2)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
C(4)-C(8)	1.547(2)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(18)$	1.301(3)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
C(5)-C(6)	1.527(3)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.544(3)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.292(3)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(19)-\mathrm{H}(19)$	1.00(2)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(19)-\mathrm{H}(20)$	1.04(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.527(2)	$\mathrm{O}(2)-\mathrm{H}(2)$	0.8400
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900		
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	106.59(12)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.543(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(9)$	110.35(12)
$\mathrm{C}(8)-\mathrm{H}(8)$	1.0000	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	114.44(13)
$\mathrm{C}(9)-\mathrm{C}(17)$	1.539(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	108.4
$\mathrm{C}(9)-\mathrm{C}(10)$	1.543(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	108.4
$\mathrm{C}(10)-\mathrm{C}(11)$	1.537(2)	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{H}(1)$	108.4
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.00(13)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0
$\mathrm{C}(11)-\mathrm{C}(12)$	1.521(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0
$\mathrm{C}(12)-\mathrm{O}(2)$	1.434(2)	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.8
$\mathrm{C}(12)-\mathrm{C}(13)$	1.547(2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	110.41(13)
$\mathrm{C}(12)-\mathrm{H}(12)$	1.0000	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.6

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.6	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	110.03(12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.6	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	117.77(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.6	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	107.9
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.1	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	107.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.90(14)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(16)$	111.03(14)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.9
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(16)$	106.07(13)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	108.20(13)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	115.09(14)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	99.76(13)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.5
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(8)$	115.65(14)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.5
$\mathrm{C}(18)-\mathrm{C}(5)-\mathrm{C}(6)$	127.31(16)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5
$\mathrm{C}(18)-\mathrm{C}(5)-\mathrm{C}(4)$	123.87(16)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	108.64(14)	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	107.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	105.41(15)	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(11)$	106.42(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.7	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	114.12(14)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.7	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	114.30(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.7	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{H}(12)$	107.2
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.7	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	107.2
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.8	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	107.2
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	102.66(14)	$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	109.20(13)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	111.2	$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(15)$	103.50(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	111.2	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	110.29(15)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	111.2	$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	113.03(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	111.2	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.47(14)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.1	$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(12)$	109.06(14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.99(14)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(4)$	104.45(13)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(4)$	117.24(13)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	104.0	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	104.0	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{H}(8)$	104.0	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(8)$	114.76(13)	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)$	108.30(13)	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	107.26(12)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(1)$	111.56(13)	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	104.77(13)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5

$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5	$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(5)$	$177.4(2)$
$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	$121.7(15)$
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(20)$	$118.6(15)$
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{H}(19)-\mathrm{C}(19)-\mathrm{H}(20)$	$120(2)$
$\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(13)$	$117.70(11)$
$\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5	$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{H}(2)$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 18. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 115. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$24(1)$	$21(1)$	$23(1)$	$-1(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(2)$	$22(1)$	$29(1)$	$30(1)$	$1(1)$	$-1(1)$	$3(1)$
$\mathrm{C}(3)$	$24(1)$	$28(1)$	$29(1)$	$1(1)$	$-4(1)$	$0(1)$
$\mathrm{C}(4)$	$24(1)$	$32(1)$	$25(1)$	$2(1)$	$-3(1)$	$-1(1)$
$\mathrm{C}(5)$	$35(1)$	$41(1)$	$24(1)$	$1(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(6)$	$45(1)$	$86(2)$	$28(1)$	$-11(1)$	$-2(1)$	$21(1)$
$\mathrm{C}(7)$	$28(1)$	$48(1)$	$30(1)$	$1(1)$	$2(1)$	$7(1)$
$\mathrm{C}(8)$	$23(1)$	$26(1)$	$27(1)$	$1(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(9)$	$20(1)$	$23(1)$	$25(1)$	$2(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(10)$	$20(1)$	$27(1)$	$29(1)$	$2(1)$	$0(1)$	$1(1)$
$\mathrm{C}(11)$	$26(1)$	$30(1)$	$29(1)$	$4(1)$	$-7(1)$	$2(1)$
$\mathrm{C}(12)$	$32(1)$	$30(1)$	$25(1)$	$3(1)$	$-3(1)$	$2(1)$
$\mathrm{C}(13)$	$36(1)$	$27(1)$	$22(1)$	$4(1)$	$0(1)$	$1(1)$
$\mathrm{C}(14)$	$37(1)$	$36(1)$	$43(1)$	$8(1)$	$12(1)$	$6(1)$
$\mathrm{C}(15)$	$54(1)$	$40(1)$	$27(1)$	$-6(1)$	$-5(1)$	$8(1)$
$\mathrm{C}(16)$	$32(1)$	$40(1)$	$38(1)$	$13(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(17)$	$26(1)$	$30(1)$	$34(1)$	$4(1)$	$-3(1)$	$-6(1)$
$\mathrm{C}(18)$	$44(1)$	$45(1)$	$35(1)$	$-9(1)$	$-3(1)$	$7(1)$
$\mathrm{C}(19)$	$56(2)$	$50(1)$	$49(1)$	$-10(1)$	$-21(1)$	$8(1)$
$\mathrm{O}(1)$	$30(1)$	$24(1)$	$22(1)$	$-1(1)$	$-1(1)$	$1(1)$
$\mathrm{O}(2)$	$37(1)$	$24(1)$	$36(1)$	$3(1)$	$6(1)$	$-3(1)$

Table 19. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 115.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1)	-678	-4396	-1758	27
H(2A)	1571	-6007	-1519	33
$\mathrm{H}(2 \mathrm{~B})$	20	-7025	-1283	33
H(3A)	1465	-5978	-500	32
H(3B)	1049	-4502	-757	32
H(6A)	-3259	-2880	154	64
H(6B)	-4033	-4201	479	64
H(7A)	-5131	-5147	-342	42
H(7B)	-5122	-3604	-570	42
H(8)	-2127	-3778	-883	30
H(10A)	-5574	-4321	-1572	31
H(10B)	-3837	-3333	-1648	31
H(11A)	-4803	-5359	-2467	34
H(11B)	-5444	-3814	-2520	34
H(12)	-3036	-3871	-3106	34
H(14A)	1542	-5529	-2914	58
H(14B)	1146	-4181	-2554	58
H(14C)	674	-4224	-3220	58
H(15A)	-3134	-6611	-3088	60
H(15B)	-1018	-7052	-3191	60
H(15C)	-1905	-5844	-3556	60
H(16A)	-1076	-7138	90	55
H(16B)	-1719	-7488	-546	55
H(16C)	-3172	-6848	-105	55
H(17A)	-3119	-7375	-1322	45
H(17B)	-4568	-6831	-1786	45
H(17C)	-5020	-6677	-1122	45
H(2)	-1126	-2536	-2678	49
H(19)	1350(40)	-4970(20)	1180(10)	66(7)
H(20)	2250(40)	-3600(30)	791(11)	83(8)

Table 20. Torsion angles [${ }^{\circ}$] for $\mathbf{1 1 5}$.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-177.74(13)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-55.46(18)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$55.24(18)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-165.30(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(16)$	$73.61(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$-54.32(17)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)$	$-40.8(2)$
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)$	$83.0(2)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)$	$-156.60(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$143.87(16)$
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-92.42(18)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$28.03(18)$
$\mathrm{C}(18)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-178.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-3.8(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-22.7(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$176.15(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(4)$	$41.22(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$-164.06(14)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$-42.51(16)$
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$70.70(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	$59.00(18)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	$-179.46(13)$
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	$-66.24(19)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)$	$-62.2(2)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)$	$67.31(19)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$58.13(19)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-172.33(13)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	$175.06(15)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	$-55.39(17)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(17)$	$47.15(16)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(17)$	$-73.05(16)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$171.90(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$51.70(17)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$-16)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$166.71(13)$
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-71.13(18)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$164.48(14)$
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-68.06(19)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-44.03(18)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	$82.88(18)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$86.53(16)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(1)$	$-36.29(19)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(1)$	$-36.92(19)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-159.74(14)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-158.93(14)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	$78.24(17)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	$-162(5)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(18)-\mathrm{C}(19)$	$24(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)-\mathrm{C}(19)$	$-135.27(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(13)$	$99.91(15)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(13)$	$78.00(17)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{O}(1)-\mathrm{C}(1)$	$-164.53(14)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{O}(1)-\mathrm{C}(1)$	$-46.70(18)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(1)-\mathrm{C}(1)$	

Symmetry transformations used to generate equivalent atoms:

Table 21. Hydrogen bonds for $\mathbf{1 1 5}\left[\AA^{\circ}\right.$ and ${ }^{\circ}$].

D-H...A	d(D-H)	$d(H \ldots A)$	$d(D \ldots A)$	$<$ (DHA)
$\mathrm{O}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1) \# 1$	0.84	2.23	$2.9706(16)$	147.3

Symmetry transformations used to generate equivalent atoms:
\#1-x,y+1/2,-z-1/2

X-ray data for compound 117

Table 22. Crystal data and structure refinement for 117.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=24.41^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

T106s
C39 H72 O4 Si2
661.15

173(2) K
$0.71073 \AA$
Monoclinic
P2(1)
$\begin{array}{ll}a=13.008(2) \AA & \alpha=90^{\circ} . \\ b=7.6273(11) \AA & \beta=106.982(3)^{\circ} . \\ c=22.235(3) \AA & \gamma=90^{\circ} . \\ 2109.9(5) \AA^{\circ} & \end{array}$
2
$1.041 \mathrm{Mg} / \mathrm{m}^{3}$
$0.118 \mathrm{~mm}^{-1}$
732
$0.21 \times 0.13 \times 0.08 \mathrm{~mm}^{3}$
1.64 to 24.41°.
$-15<=\mathrm{h}<=15,-8<=\mathrm{k}<=8,-25<=1<=25$
23220
$6956[\mathrm{R}(\mathrm{int})=0.0669]$
100.0 \%

Semi-empirical from equivalents
Full-matrix least-squares on F^{2}
6956 / 1/406
1.051
$\mathrm{R} 1=0.0887, \mathrm{wR} 2=0.2032$
$R 1=0.1065, w R 2=0.2156$
-0.1(3)
1.183 and - 0.672 e. \AA^{-3}

Table 23. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 117. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(1)	1679(4)	1592(7)	3426(2)	34(1)
C(2)	750(4)	2130(7)	4229(2)	40(1)
C(3)	1499(5)	826(8)	4683(3)	47(1)
C(4)	1519(5)	-1028(7)	4416(3)	46(1)
C(5)	2225(4)	-1293(7)	3986(2)	39(1)
C(6)	1868(4)	-401(7)	3335(2)	34(1)
C(7)	2791(4)	-506(6)	3042(2)	30(1)
C(8)	2723(4)	596(7)	2438(2)	33(1)
C(9)	2567(4)	2513(7)	2596(3)	40(1)
C(10)	1603(4)	2693(7)	2859(2)	37(1)
$\mathrm{C}(11)$	3194(4)	-2297(7)	2898(3)	38(1)
C(12)	4052(4)	-1799(7)	2589(3)	41(1)
C(13)	3796(4)	32(7)	2323(2)	34(1)
C(14)	4393(4)	895(7)	2029(2)	37(1)
C(15)	4177(4)	2672(8)	1715(3)	43(1)
C(16)	5115(4)	3905(7)	1970(3)	42(1)
C(17)	6164(4)	3140(6)	1924(2)	33(1)
C(18)	6415(4)	1347(7)	2221(2)	34(1)
C(19)	5430(4)	141(7)	1949(2)	37(1)
C(20)	7364(4)	495(7)	2050(3)	40(1)
C(21)	8384(4)	1594(8)	2145(3)	45(1)
C(22)	8278(4)	3128(7)	1699(3)	44(1)
C(23)	7762(5)	4757(7)	1892(3)	47(1)
C(24)	-403(5)	1852(9)	4234(3)	59(2)
C(25)	1107(6)	4019(8)	4397(3)	67(2)
C(26)	837(4)	-1324(8)	2940(3)	48(1)
C(27)	1835(4)	76(9)	1839(3)	50(2)
C(28)	6647(5)	1462(9)	2940(2)	49(1)
C(29)	8646(5)	5735(9)	2379(3)	64(2)
C(30)	7253(5)	5946(8)	1328(3)	57(2)

$\mathrm{C}(31)$	$2607(6)$	$1670(10)$	$6196(3)$	$67(2)$
$\mathrm{C}(32)$	$4318(8)$	$-243(15)$	$5797(5)$	$112(3)$
$\mathrm{C}(33)$	$4108(8)$	$3734(14)$	$5637(4)$	$108(4)$
$\mathrm{C}(34)$	$8863(8)$	$-342(12)$	$700(5)$	$108(3)$
$\mathrm{C}(35)$	$9358(11)$	$3530(20)$	$503(6)$	$195(8)$
$\mathrm{C}(36)$	$7174(9)$	$1897(17)$	$-193(4)$	$116(4)$
$\mathrm{C}(37)$	$6332(9)$	$570(30)$	$-112(5)$	$242(12)$
$\mathrm{C}(38)$	$7609(9)$	$1148(15)$	$-749(4)$	$124(4)$
$\mathrm{C}(39)$	$6779(17)$	$3860(20)$	$-333(6)$	$283(14)$
$\mathrm{O}(1)$	$2572(3)$	$1469(6)$	$4899(2)$	$52(1)$
$\mathrm{O}(2)$	$693(2)$	$1796(5)$	$3581(2)$	$38(1)$
$\mathrm{O}(3)$	$7007(3)$	$4340(5)$	$2217(2)$	$44(1)$
$\mathrm{O}(4)$	$7708(3)$	$2595(5)$	$1070(2)$	$42(1)$
$\mathrm{Si}(1)$	$3378(1)$	$1613(3)$	$5621(1)$	$61(1)$
$\mathrm{Si}(2)$	$8257(2)$	$1961(3)$	$531(1)$	$75(1)$

Table 24. Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{1 1 7}$.

$\mathrm{C}(1)-\mathrm{O}(2)$	1.431(5)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(10)$	1.494(7)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(6)$	1.562(7)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.327(7)
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(14)-\mathrm{C}(15)$	1.512(7)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.442(6)	$\mathrm{C}(14)-\mathrm{C}(19)$	1.524(7)
$\mathrm{C}(2)-\mathrm{C}(24)$	1.518(7)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.514(8)
$\mathrm{C}(2)-\mathrm{C}(25)$	1.526(8)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(3)$	1.544(8)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{O}(1)$	1.424(7)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.514(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.537(8)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.521(7)	$\mathrm{C}(17)-\mathrm{O}(3)$	1.431(6)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}(17)-\mathrm{C}(18)$	1.513(7)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17)$	1.0000
$\mathrm{C}(5)-\mathrm{C}(6)$	1.542(7)	$\mathrm{C}(18)-\mathrm{C}(20)$	1.538(7)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	C(18)-C(28)	1.541(7)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.550(7)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.528(7)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{C}(26)$	1.542(7)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(11)$	1.530(7)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.531(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.563(7)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(8)-\mathrm{C}(9)$	1.531(7)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.514(8)
$\mathrm{C}(8)-\mathrm{C}(27)$	1.538(7)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{C}(13)$	1.552(7)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	1.537(6)	$\mathrm{C}(22)-\mathrm{O}(4)$	1.438(6)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900	$\mathrm{C}(22)-\mathrm{C}(23)$	1.532(8)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900	$\mathrm{C}(22)-\mathrm{H}(22)$	1.0000
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900	$\mathrm{C}(23)-\mathrm{O}(3)$	1.413(7)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900	C(23)-C(29)	1.525(8)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.519(7)	$\mathrm{C}(23)-\mathrm{C}(30)$	1.532(8)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{C}(13)$	1.515(7)	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800

$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800	$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800	$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800	C(36)-C(37)	1.540(18)
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800	C(36)-C(39)	1.582(17)
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800	C(36)-C(38)	1.608(12)
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800	$\mathrm{C}(36)-\mathrm{Si}(2)$	1.804(10)
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9800
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9800
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	0.9800	C(39)-H(39B)	0.9800
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	0.9800
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9800	$\mathrm{O}(1)-\mathrm{Si}(1)$	1.645(4)
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9800	$\mathrm{O}(4)-\mathrm{Si}(2)$	1.637(4)
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	0.9800		
$\mathrm{C}(31)-\mathrm{Si}(1)$	1.841(6)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	107.4(4)
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9800	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	108.9(4)
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	0.9800	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)$	114.3(4)
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	0.9800	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	108.7
$\mathrm{C}(32)-\mathrm{Si}(1)$	1.836(10)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{H}(1)$	108.7
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	108.7
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9800	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(24)$	102.7(4)
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	0.9800	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(25)$	109.5(4)
$\mathrm{C}(33)-\mathrm{Si}(1)$	1.871(9)	$\mathrm{C}(24)-\mathrm{C}(2)-\mathrm{C}(25)$	111.1(5)
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9800	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	112.2(4)
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	0.9800	$\mathrm{C}(24)-\mathrm{C}(2)-\mathrm{C}(3)$	109.9(5)
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	0.9800	$\mathrm{C}(25)-\mathrm{C}(2)-\mathrm{C}(3)$	111.1(5)
$\mathrm{C}(34)-\mathrm{Si}(2)$	1.917(9)	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	108.7(5)
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	111.6(5)
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	114.8(5)
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	107.1
$\mathrm{C}(35)-\mathrm{Si}(2)$	1.879(9)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	107.1
$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	0.9800	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	107.1

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	116.5(4)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	114.3(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.2	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.2	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.7
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.2	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.2	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.7
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107.3	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.3(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(7)$	102.3(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.0	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	111.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.0	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	111.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.0	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	111.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.0	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	111.3
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.2	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.2
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	108.6(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	107.5(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(26)$	113.2(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.2
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(26)$	107.9(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.2
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	106.2(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.2
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	108.9(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.2
$\mathrm{C}(26)-\mathrm{C}(6)-\mathrm{C}(1)$	112.0(4)	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	119.7(4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	123.8(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.9(4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(8)$	128.9(5)
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	103.8(4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	107.3(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	104.2	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	128.0(5)
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{H}(7)$	104.2	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	122.4(5)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	104.2	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	109.6(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(27)$	109.2(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	111.3(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	119.2(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{C}(27)-\mathrm{C}(8)-\mathrm{C}(13)$	105.7(4)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	107.2(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{C}(27)-\mathrm{C}(8)-\mathrm{C}(7)$	116.4(4)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	99.4(4)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.5(4)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	112.3(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.6	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.1
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.6	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.1
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.6	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.1
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.6	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.1
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.1	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	107.9

$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(18)$	109.9(4)	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(29)$	103.9(5)
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(16)$	108.0(4)	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(22)$	112.8(4)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	113.8(4)	$\mathrm{C}(29)-\mathrm{C}(23)-\mathrm{C}(22)$	107.1(5)
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{H}(17)$	108.3	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(30)$	110.6(5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	108.3	$\mathrm{C}(29)-\mathrm{C}(23)-\mathrm{C}(30)$	110.3(5)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	108.3	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(30)$	111.7(5)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	111.1(4)	$\mathrm{C}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	110.1
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(28)$	110.7(4)	$\mathrm{C}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	108.8
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(28)$	110.7(4)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	108.5(4)	$\mathrm{C}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(19)$	106.5(4)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(28)-\mathrm{C}(18)-\mathrm{C}(19)$	109.2(4)	$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	112.9(4)	$\mathrm{C}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	110.0
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.0	$\mathrm{C}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	110.0
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.0	$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.0	$\mathrm{C}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	108.4
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.0	$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	107.8	$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(18)$	117.4(4)	$\mathrm{C}(6)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	107.9	$\mathrm{C}(6)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.7
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	107.9	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.9	$\mathrm{C}(6)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.2
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.9	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.2	$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	115.1(4)	$\mathrm{C}(8)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.8
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	108.5	$\mathrm{C}(8)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.6
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	108.5	$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	108.5	$\mathrm{C}(8)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.0
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	108.5	$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	107.5	$\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(21)$	109.9(4)	$\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	110.0
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)$	111.0(4)	$\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.3
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	114.0(5)	$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{H}(22)$	107.2	$\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.1
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	107.2	$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	107.2	$\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5

$\mathrm{C}(23)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	109.2	$\mathrm{Si}(2)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	107.9
$\mathrm{C}(23)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.6	$\mathrm{Si}(2)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	109.5
$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5	$\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.6	$\mathrm{Si}(2)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	110.9
$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5	$\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	109.5
$\mathrm{H}(29 \mathrm{~B})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5	$\mathrm{H}(35 \mathrm{~B})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})$	109.5
$\mathrm{C}(23)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	109.8	C(37)-C(36)-C(39)	116.3(13)
$\mathrm{C}(23)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.0	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(38)$	106.2(9)
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5	$\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{C}(38)$	110.6(10)
$\mathrm{C}(23)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.6	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{Si}(2)$	108.0(8)
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5	$\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{Si}(2)$	105.9(9)
$\mathrm{H}(30 \mathrm{~B})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5	$\mathrm{C}(38)-\mathrm{C}(36)-\mathrm{Si}(2)$	109.7(7)
$\mathrm{Si}(1)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	109.3	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.6
$\mathrm{Si}(1)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	110.1	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	110.1
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5	$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.0	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	108.7
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5	$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(31 \mathrm{~B})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5	H(37B)-C(37)-H(37C)	109.5
$\mathrm{Si}(1)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	110.5	$\mathrm{C}(36)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.0
$\mathrm{Si}(1)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5	$\mathrm{C}(36)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	111.3
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5	$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	108.4	$\mathrm{C}(36)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	108.1
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5	$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(32 \mathrm{~B})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5	$\mathrm{H}(38 \mathrm{~B})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	108.5	$\mathrm{C}(36)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	110.0	$\mathrm{C}(36)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5	H(39A)-C(39)-H(39B)	109.5
$\mathrm{Si}(1)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.9	$\mathrm{C}(36)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.4
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5	$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{H}(33 \mathrm{~B})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5	H(39B)-C(39)-H(39C)	109.5
$\mathrm{Si}(2)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5	$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Si}(1)$	129.4(3)
$\mathrm{Si}(2)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.8	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(2)$	118.2(4)
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5	$\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{C}(17)$	117.8(4)
$\mathrm{Si}(2)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.2	$\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{Si}(2)$	125.7(3)
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(32)$	110.6(4)
H(34B)-C(34)-H(34C)	109.5	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(31)$	111.0(3)

$\mathrm{C}(32)-\mathrm{Si}(1)-\mathrm{C}(31)$	$109.5(4)$	$\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(35)$	$109.7(4)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(33)$	$104.6(3)$	$\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(35)$	$113.0(6)$
$\mathrm{C}(32)-\mathrm{Si}(1)-\mathrm{C}(33)$	$111.1(5)$	$\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(34)$	$111.7(3)$
$\mathrm{C}(31)-\mathrm{Si}(1)-\mathrm{C}(33)$	$110.0(4)$	$\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(34)$	$108.6(5)$
$\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(36)$	$105.5(3)$	$\mathrm{C}(35)-\mathrm{Si}(2)-\mathrm{C}(34)$	$108.4(6)$

Symmetry transformations used to generate equivalent atoms:

Table 25. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 117. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$33(3)$	$28(3)$	$43(3)$	$-2(2)$	$16(2)$	$1(2)$
$\mathrm{C}(2)$	$48(3)$	$37(3)$	$40(3)$	$-8(2)$	$22(2)$	$-3(3)$
$\mathrm{C}(3)$	$48(3)$	$60(4)$	$40(3)$	$-6(3)$	$24(3)$	$-16(3)$
$\mathrm{C}(4)$	$46(3)$	$46(3)$	$51(4)$	$11(3)$	$20(3)$	$-9(3)$
$\mathrm{C}(5)$	$40(3)$	$33(3)$	$49(3)$	$5(2)$	$20(3)$	$-6(2)$
$\mathrm{C}(6)$	$26(2)$	$34(3)$	$40(3)$	$-2(2)$	$8(2)$	$-5(2)$
$\mathrm{C}(7)$	$32(3)$	$25(2)$	$31(3)$	$1(2)$	$7(2)$	$-1(2)$
$\mathrm{C}(8)$	$31(3)$	$38(3)$	$32(3)$	$2(2)$	$12(2)$	$5(2)$
$\mathrm{C}(9)$	$42(3)$	$37(3)$	$47(3)$	$5(2)$	$24(3)$	$8(2)$
$\mathrm{C}(10)$	$40(3)$	$31(3)$	$42(3)$	$5(2)$	$14(2)$	$12(2)$
$\mathrm{C}(11)$	$35(3)$	$35(3)$	$48(3)$	$-5(2)$	$18(2)$	$5(2)$
$\mathrm{C}(12)$	$39(3)$	$39(3)$	$47(3)$	$-1(2)$	$15(2)$	$9(2)$
$\mathrm{C}(13)$	$39(3)$	$36(3)$	$28(3)$	$1(2)$	$11(2)$	$11(2)$
$\mathrm{C}(14)$	$38(3)$	$39(3)$	$33(3)$	$-3(2)$	$7(2)$	$7(2)$
$\mathrm{C}(15)$	$40(3)$	$55(3)$	$39(3)$	$11(3)$	$21(2)$	$14(3)$
$\mathrm{C}(16)$	$52(3)$	$37(3)$	$41(3)$	$10(2)$	$19(3)$	$18(3)$
$\mathrm{C}(17)$	$41(3)$	$27(3)$	$29(3)$	$-12(2)$	$8(2)$	$3(2)$
$\mathrm{C}(18)$	$36(3)$	$34(3)$	$31(2)$	$-5(2)$	$8(2)$	$3(2)$
$\mathrm{C}(19)$	$42(3)$	$30(3)$	$40(3)$	$-1(2)$	$16(2)$	$7(2)$
$\mathrm{C}(20)$	$43(3)$	$36(3)$	$41(3)$	$6(2)$	$12(2)$	$10(3)$
$\mathrm{C}(21)$	$30(3)$	$49(3)$	$57(3)$	$-15(3)$	$12(2)$	$8(3)$
$\mathrm{C}(22)$	$33(3)$	$46(3)$	$53(3)$	$-11(3)$	$10(3)$	$-3(2)$
$\mathrm{C}(23)$	$51(3)$	$30(3)$	$56(4)$	$-11(3)$	$11(3)$	$-10(3)$
$\mathrm{C}(24)$	$58(4)$	$64(4)$	$69(4)$	$-12(4)$	$40(3)$	$3(3)$
$\mathrm{C}(25)$	$95(5)$	$50(4)$	$69(5)$	$-19(3)$	$45(4)$	$-6(4)$
$\mathrm{C}(26)$	$39(3)$	$47(3)$	$61(4)$	$-18(3)$	$21(3)$	$-7(3)$
$\mathrm{C}(27)$	$38(3)$	$69(4)$	$39(3)$	$-8(3)$	$5(2)$	$8(3)$
$\mathrm{C}(28)$	$54(3)$	$57(4)$	$34(3)$	$0(3)$	$9(2)$	$18(3)$
$\mathrm{C}(29)$	$58(4)$	$58(4)$	$69(4)$	$-20(3)$	$5(3)$	$-10(3)$
$\mathrm{C}(30)$	$65(4)$	$41(3)$	$66(4)$	$-9(3)$	$22(3)$	$-11(3)$
$\mathrm{C}(31)$	$89(5)$	$70(4)$	$43(3)$	$-9(3)$	$20(3)$	$-25(4)$

$\mathrm{C}(32)$	$98(7)$	$135(9)$	$99(7)$	$5(6)$	$20(5)$	$34(7)$
$\mathrm{C}(33)$	$113(7)$	$155(9)$	$51(5)$	$4(5)$	$16(4)$	$-79(7)$
$\mathrm{C}(34)$	$136(8)$	$86(6)$	$109(7)$	$-10(5)$	$48(6)$	$46(6)$
$\mathrm{C}(35)$	$215(12)$	$262(16)$	$176(12)$	$-142(11)$	$164(11)$	$-187(13)$
$\mathrm{C}(36)$	$141(8)$	$147(9)$	$60(5)$	$-7(6)$	$30(5)$	$46(8)$
$\mathrm{C}(37)$	$100(8)$	$550(40)$	$87(7)$	$-120(13)$	$39(6)$	$-163(14)$
$\mathrm{C}(38)$	$176(10)$	$153(10)$	$56(5)$	$-36(6)$	$54(6)$	$-63(8)$
$\mathrm{C}(39)$	$470(30)$	$231(19)$	$88(9)$	$46(10)$	$-14(13)$	$260(20)$
$\mathrm{O}(1)$	$50(2)$	$68(3)$	$40(2)$	$-3(2)$	$19(2)$	$-12(2)$
$\mathrm{O}(2)$	$36(2)$	$39(2)$	$45(2)$	$-11(2)$	$20(2)$	$-4(2)$
$\mathrm{O}(3)$	$49(2)$	$35(2)$	$46(2)$	$-19(2)$	$12(2)$	$2(2)$
$\mathrm{O}(4)$	$42(2)$	$38(2)$	$44(2)$	$-10(2)$	$13(2)$	$-11(2)$
$\mathrm{Si}(1)$	$59(1)$	$88(1)$	$38(1)$	$2(1)$	$15(1)$	$-14(1)$
$\mathrm{Si}(2)$	$82(1)$	$89(2)$	$68(1)$	$-37(1)$	$44(1)$	$-45(1)$

Table 26. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 117.

	x	y	z	U(eq)
H(1)	2282	2043	3784	40
H(3)	1230	714	5059	57
H(4A)	1761	-1853	4773	55
H(4B)	774	-1355	4180	55
H(5A)	2281	-2569	3919	47
H(5B)	2956	-867	4209	47
H(7)	3418	6	3369	35
H(9A)	2445	3237	2212	48
H(9B)	3225	2945	2910	48
H(10A)	1535	3937	2968	44
H(10B)	941	2368	2525	44
H(11A)	3503	-2980	3288	46
H(11B)	2610	-2984	2609	46
H(12A)	4771	-1823	2902	50
H(12B)	4049	-2637	2249	50
H(15A)	3523	3183	1787	51
H(15B)	4044	2532	1256	51
H(16A)	5182	4173	2415	50
H(16B)	4971	5019	1731	50
H(17)	6123	3042	1469	39
H(19A)	5337	-50	1496	44
H(19B)	5569	-1013	2161	44
H(20A)	7562	-590	2302	48
H(20B)	7111	143	1602	48
H(21A)	8604	2046	2581	55
H(21B)	8966	819	2098	55
H(22)	9021	3464	1699	53
H(24A)	-898	2454	3876	88
H(24B)	-487	2328	4627	88
H(24C)	-565	595	4210	88
H(25A)	1814	4216	4336	100

H(25B)	1144	4257	4836	100
H(25C)	579	4804	4121	100
H(26A)	516	-647	2557	71
H(26B)	323	-1417	3184	71
H(26C)	1020	-2501	2827	71
H(27A)	1139	509	1864	75
H(27B)	1809	-1203	1797	75
H(27C)	1996	597	1474	75
H(28A)	6897	325	3133	74
H(28B)	5988	1798	3040	74
H(28C)	7203	2349	3105	74
H(29A)	8321	6650	2574	97
H(29B)	9140	6273	2174	97
H(29C)	9043	4914	2703	97
H(30A)	6583	5421	1068	85
H(30B)	7756	6080	1078	85
H(30C)	7101	7099	1477	85
H(31A)	2184	2752	6140	101
H(31B)	3097	1628	6625	101
H(31C)	2124	657	6126	101
H(32A)	3929	-1353	5686	169
H(32B)	4710	-244	6246	169
H(32C)	4826	-108	5551	169
H(33A)	4514	3670	5329	162
H(33B)	4605	3934	6057	162
H(33C)	3592	4702	5527	162
H(34A)	9145	-514	1155	162
H(34B)	9446	-479	507	162
H(34C)	8302	-1214	524	162
H(35A)	9052	4710	441	293
H(35B)	9630	3222	149	293
H(35C)	5948	3486	895	293
H(37A)	-17	-631	186	
H(37B)	559	-492	363	
H(37C)	8969	251	363	
H(38A)	-596	363		

$\mathrm{H}(38 \mathrm{~B})$	8154	1925	-830	186
$\mathrm{H}(38 \mathrm{C})$	6998	1054	-1130	186
$\mathrm{H}(39 \mathrm{~A})$	6618	4093	-784	425
$\mathrm{H}(39 \mathrm{~B})$	7344	4658	-99	425
$\mathrm{H}(39 \mathrm{C})$	6130	4038	-202	425

Table 27. Torsion angles [${ }^{\circ}$] for 117.

$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$91.2(5)$
$\mathrm{C}(24)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$-155.2(4)$
$\mathrm{C}(25)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$-31.8(6)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-33.1(6)$
$\mathrm{C}(24)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$80.6(5)$
$\mathrm{C}(25)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-156.0(5)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-45.0(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$80.7(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-69.1(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$168.2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(26)$	$-68.8(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$53.0(6)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$168.6(4)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$48.5(5)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-74.7(5)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$165.2(4)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(26)$	$44.6(5)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(26)$	$-75.6(5)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	$62.2(6)$
$\mathrm{C}(26)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	$-57.6(6)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	$179.1(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-168.9(4)$
$\mathrm{C}(26)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$71.4(6)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-51.9(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$56.3(6)$
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-167.7(4)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(27)$	$-66.1(6)$
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(27)$	$69.8(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	$-179.0(4)$
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	$-43.0(5)$
$\mathrm{C}(27)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$73.5(5)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-165.1(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-53.4(5)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$-175)$

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$-54.5(6)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	$56.8(6)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	$177.3(4)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	$41.8(5)$
$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-23.4(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$178.8(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$-3.6(5)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	$-38.5(8)$
$\mathrm{C}(27)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	$84.7(7)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	$-154.3(5)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$144.1(5)$
$\mathrm{C}(27)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$-92.7(5)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$28.3(5)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$176.2(5)$
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-0.9(9)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	$-2.2(8)$
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	$-179.3(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$125.3(6)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-56.2(5)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$54.3(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(3)$	$-175.8(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-53.4(5)$
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	$-69.7(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	$168.0(4)$
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(28)$	$53.0(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(28)$	$53.7(5)$
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-67.6(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$173.5(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$52.2(5)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-123.5(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$57.9(5)$
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-55.1(5)$
$\mathrm{C}(28)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-174.8(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{C}(21)$	$-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(21)$
$\mathrm{C}(28)$	
C	

$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-69.2(6)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(4)$	-43.9(6)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	81.5(6)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(3)$	93.8(5)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(3)$	-31.0(6)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(29)$	-152.6(5)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(29)$	82.7(6)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(30)$	-31.7(6)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(30)$	-156.4(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Si}(1)$	-102.4(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Si}(1)$	130.1(4)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(2)$	-133.0(4)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(2)$	102.7(5)
$\mathrm{C}(24)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(1)$	-167.6(4)
$\mathrm{C}(25)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(1)$	74.2(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(1)$	-49.6(6)
$\mathrm{C}(29)-\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{C}(17)$	-169.1(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{C}(17)$	-53.4(6)
$\mathrm{C}(30)-\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{C}(17)$	72.6 (5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(23)$	102.1(5)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(23)$	-133.3(4)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{Si}(2)$	-95.7(5)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{Si}(2)$	137.2(4)
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(32)$	98.7(6)
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(31)$	-23.1(6)
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(33)$	-141.7(6)
$\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(36)$	-168.6(6)
$\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(35)$	-46.6(7)
$\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(34)$	73.6(5)
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{O}(4)$	-60.4(10)
$\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{O}(4)$	64.8(11)
$\mathrm{C}(38)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{O}(4)$	-175.8(7)
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(35)$	179.8(10)
$\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(35)$	-55.0(11)
$\mathrm{C}(38)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(35)$	64.4(10)
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(34)$	59.4(10)

$\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(34)$	$-175.4(10)$
$\mathrm{C}(38)-\mathrm{C}(36)-\mathrm{Si}(2)-\mathrm{C}(34)$	$-56.0(9)$

Symmetry transformations used to generate equivalent atoms:

$\underline{X \text {-ray data for compound } 179}$

Table 28. Crystal data and structure refinement for 179.

Identification code	Tong112907SQ
Empirical formula	C44 H56 Br2 O6
Formula weight	840.71
Temperature	200(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$\mathrm{a}=8.8790(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=20.7162(7) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=24.1069(8) \AA \quad \gamma=90^{\circ}$.
Volume	4434.2(3) \AA^{3}
Z	4
Density (calculated)	$1.259 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.654 \mathrm{~mm}^{-1}$
F(000)	1752
Crystal size	$0.48 \times 0.32 \times 0.22 \mathrm{~mm}^{3}$
Theta range for data collection	8.34 to 66.70°.
Index ranges	$-8<=\mathrm{h}<=9,-21<=\mathrm{k}<=23,-24<=1<=24$
Reflections collected	17742
Independent reflections	$6314[\mathrm{R}(\mathrm{int})=0.0407]$
Completeness to theta $=66.70^{\circ}$	88.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5929 and 0.3624
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6314 / 0 / 476
Goodness-of-fit on F^{2}	1.048
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0491, \mathrm{wR} 2=0.1342$
R indices (all data)	$\mathrm{R} 1=0.0579, \mathrm{wR} 2=0.1401$
Absolute structure parameter	0.05(2)
Largest diff. peak and hole	0.581 and -0.467e. \AA^{-3}

Table 29. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 179. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x					y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Br}(1)$	$8263(1)$	$11135(1)$	$3643(1)$	$120(1)$				
$\mathrm{Br}(2)$	$6930(1)$	$6352(1)$	$1331(1)$	$89(1)$				
$\mathrm{C}(1)$	$7412(6)$	$11044(3)$	$2930(2)$	$62(1)$				
$\mathrm{C}(2)$	$7931(6)$	$11408(2)$	$2506(2)$	$63(1)$				
$\mathrm{C}(3)$	$7346(5)$	$11339(2)$	$1987(2)$	$59(1)$				
$\mathrm{C}(4)$	$6164(5)$	$10903(2)$	$1893(2)$	$48(1)$				
$\mathrm{C}(5)$	$5634(6)$	$10534(2)$	$2333(2)$	$50(1)$				
$\mathrm{C}(6)$	$6253(6)$	$10607(2)$	$2856(2)$	$61(1)$				
$\mathrm{C}(7)$	$5564(6)$	$10855(2)$	$1328(2)$	$52(1)$				
$\mathrm{C}(8)$	$3942(6)$	$10248(2)$	$722(2)$	$52(1)$				
$\mathrm{C}(9)$	$4381(5)$	$9561(2)$	$544(2)$	$48(1)$				
$\mathrm{C}(10)$	$2745(5)$	$9086(2)$	$1254(2)$	$39(1)$				
$\mathrm{C}(11)$	$2725(5)$	$8385(2)$	$1446(2)$	$43(1)$				
$\mathrm{C}(12)$	$2052(6)$	$8294(2)$	$2023(2)$	$47(1)$				
$\mathrm{C}(13)$	$482(5)$	$8578(2)$	$2063(2)$	$47(1)$				
$\mathrm{C}(14)$	$-200(5)$	$8680(2)$	$2663(2)$	$49(1)$				
$\mathrm{C}(15)$	$-1385(6)$	$9222(3)$	$2572(2)$	$61(1)$				
$\mathrm{C}(16)$	$-966(6)$	$9569(3)$	$2030(2)$	$57(1)$				
$\mathrm{C}(17)$	$570(5)$	$9282(2)$	$1865(2)$	$42(1)$				
$\mathrm{C}(18)$	$1196(5)$	$9412(2)$	$1274(2)$	$39(1)$				
$\mathrm{C}(19)$	$1385(5)$	$10149(2)$	$1219(2)$	$47(1)$				
$\mathrm{C}(20)$	$2285(5)$	$10401(2)$	$716(2)$	$50(1)$				
$\mathrm{C}(21)$	$5952(6)$	$9377(3)$	$760(3)$	$69(2)$				
$\mathrm{C}(22)$	$4403(7)$	$9540(3)$	$-90(2)$	$68(1)$				
$\mathrm{C}(23)$	$171(5)$	$9180(2)$	$810(2)$	$53(1)$				
$\mathrm{C}(24)$	$-640(7)$	$8136(3)$	$1754(2)$	$67(2)$				
$\mathrm{C}(25)$	$950(5)$	$8803(2)$	$3115(2)$	$46(1)$				
$\mathrm{C}(26)$	$1521(6)$	$9378(2)$	$3227(2)$	$49(1)$				
$\mathrm{C}(27)$	$2761(6)$	$9496(2)$	$3642(2)$	$49(1)$				
$\mathrm{C}(28)$	$3511(5)$	$8882(2)$	$3855(2)$	$41(1)$				

$\mathrm{C}(29)$	$5823(6)$	$8795(3)$	$4410(2)$	$66(2)$
$\mathrm{C}(30)$	$5823(7)$	$8057(3)$	$4379(2)$	$63(1)$
$\mathrm{C}(31)$	$4365(7)$	$7724(3)$	$4573(2)$	$65(1)$
$\mathrm{C}(32)$	$3091(6)$	$7715(2)$	$4142(2)$	$53(1)$
$\mathrm{C}(33)$	$2338(5)$	$8350(2)$	$3971(2)$	$43(1)$
$\mathrm{C}(34)$	$1490(5)$	$8218(2)$	$3426(2)$	$47(1)$
$\mathrm{C}(35)$	$1241(6)$	$8569(3)$	$4426(2)$	$55(1)$
$\mathrm{C}(36)$	$6912(7)$	$9104(3)$	$4007(3)$	$82(2)$
$\mathrm{C}(37)$	$6189(8)$	$8980(4)$	$5015(2)$	$90(2)$
$\mathrm{C}(38)$	$7043(6)$	$7371(2)$	$3715(2)$	$54(1)$
$\mathrm{C}(39)$	$7003(6)$	$7154(2)$	$3134(2)$	$49(1)$
$\mathrm{C}(40)$	$5984(5)$	$7393(2)$	$2745(2)$	$49(1)$
$\mathrm{C}(41)$	$5945(6)$	$7158(2)$	$2212(2)$	$57(1)$
$\mathrm{C}(42)$	$6962(6)$	$6676(2)$	$2062(2)$	$59(1)$
$\mathrm{C}(43)$	$7955(6)$	$6422(2)$	$2431(2)$	$60(1)$
$\mathrm{C}(44)$	$8000(6)$	$6662(2)$	$2969(2)$	$55(1)$
$\mathrm{O}(1)$	$5933(6)$	$11198(2)$	$954(2)$	$90(1)$
$\mathrm{O}(2)$	$4550(4)$	$10378(2)$	$1274(1)$	$59(1)$
$\mathrm{O}(3)$	$3299(3)$	$9084(1)$	$692(1)$	$42(1)$
$\mathrm{O}(4)$	$4311(4)$	$9057(2)$	$4336(1)$	$52(1)$
$\mathrm{O}(5)$	$6069(4)$	$7846(2)$	$3810(1)$	$63(1)$
$\mathrm{O}(6)$	$7869(5)$	$7151(2)$	$4067(2)$	$79(1)$

Table 30. Bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 7 9}$.

$\mathrm{Br}(1)-\mathrm{C}(1)$	1.887(5)	$\mathrm{C}(25)-\mathrm{C}(34)$	1.503(6)
$\operatorname{Br}(2)-\mathrm{C}(42)$	1.887(5)	C(26)-C(27)	1.508(7)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.351(8)	C(27)-C(28)	1.524(6)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.383(8)	$\mathrm{C}(28)-\mathrm{O}(4)$	1.410(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.362(7)$	C(28)-C(33)	1.542(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.404(6)	$\mathrm{C}(29)-\mathrm{O}(4)$	1.459(6)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.389(6)	C(29)-C(36)	1.513(9)
$\mathrm{C}(4)-\mathrm{C}(7)$	1.464(7)	C(29)-C(30)	1.531(8)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.384(7)	$\mathrm{C}(29)-\mathrm{C}(37)$	1.542(7)
$\mathrm{C}(7)-\mathrm{O}(1)$	1.195(6)	$\mathrm{C}(30)-\mathrm{O}(5)$	$1.456(6)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.343(5)$	$\mathrm{C}(30)-\mathrm{C}(31)$	1.540(9)
$\mathrm{C}(8)-\mathrm{O}(2)$	1.462(6)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.537(7)
$\mathrm{C}(8)-\mathrm{C}(20)$	1.504(7)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.533(6)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.537(7)	C(33)-C(35)	$1.535(6)$
$\mathrm{C}(9)-\mathrm{O}(3)$	1.424(5)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.540(6)
$\mathrm{C}(9)-\mathrm{C}(22)$	1.527(7)	$\mathrm{C}(38)-\mathrm{O}(6)$	1.210(6)
$\mathrm{C}(9)-\mathrm{C}(21)$	1.537(7)	$\mathrm{C}(38)-\mathrm{O}(5)$	$1.332(5)$
$\mathrm{C}(10)-\mathrm{O}(3)$	1.442(5)	$\mathrm{C}(38)-\mathrm{C}(39)$	1.471(7)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.523(5)	C(39)-C(40)	1.394(6)
$\mathrm{C}(10)-\mathrm{C}(18)$	1.533(6)	$\mathrm{C}(39)-\mathrm{C}(44)$	1.407(6)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.525(6)$	$\mathrm{C}(40)-\mathrm{C}(41)$	1.377(7)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.516(7)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.393(7)
$\mathrm{C}(13)-\mathrm{C}(17)$	1.537(6)	$\mathrm{C}(42)-\mathrm{C}(43)$	1.357(7)
$\mathrm{C}(13)-\mathrm{C}(24)$	1.544(7)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.390(7)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.582(6)		
$\mathrm{C}(14)-\mathrm{C}(25)$	1.516(6)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.4(5)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.554(7)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$	119.8(4)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.538(7)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Br}(1)$	118.7(4)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.540 (6)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.5(5)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.551(6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.0(5)
$\mathrm{C}(18)-\mathrm{C}(23)$	1.521(6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	118.9(4)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.542(6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	123.3(4)
$\mathrm{C}(19)$-C(20)	1.544(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	117.7(4)
$\mathrm{C}(25)-\mathrm{C}(26)$	1.323(6)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.2(5)

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.9(5)	$\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(17)$	105.9(3)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	123.2(5)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	106.8(3)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(4)$	124.2(4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	117.3(4)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(4)$	112.6(4)	$\mathrm{C}(8)-\mathrm{C}(20)-\mathrm{C}(19)$	115.4(4)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(20)$	109.3(4)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(34)$	120.2(4)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	109.3(4)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(14)$	123.8(4)
$\mathrm{C}(20)-\mathrm{C}(8)-\mathrm{C}(9)$	116.1(4)	$\mathrm{C}(34)-\mathrm{C}(25)-\mathrm{C}(14)$	115.9(4)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(22)$	103.8(4)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	124.1(4)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(21)$	110.8(4)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	114.1(3)
$\mathrm{C}(22)-\mathrm{C}(9)-\mathrm{C}(21)$	108.7(5)	$\mathrm{O}(4)-\mathrm{C}(28)-\mathrm{C}(27)$	106.4(3)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$	113.7(4)	$\mathrm{O}(4)-\mathrm{C}(28)-\mathrm{C}(33)$	112.0(3)
$\mathrm{C}(22)-\mathrm{C}(9)-\mathrm{C}(8)$	108.0(4)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)$	111.3(4)
$\mathrm{C}(21)-\mathrm{C}(9)-\mathrm{C}(8)$	111.4(4)	$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(36)$	110.6(4)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)$	106.7(3)	$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(30)$	111.5(5)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(18)$	109.7(3)	$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{C}(30)$	113.0(5)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(18)$	113.5(3)	$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(37)$	102.5(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	113.6(3)	$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{C}(37)$	111.5(5)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	111.7(4)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(37)$	107.1(5)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	107.6(4)	$\mathrm{O}(5)-\mathrm{C}(30)-\mathrm{C}(29)$	110.2(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(24)$	109.4(4)	$\mathrm{O}(5)-\mathrm{C}(30)-\mathrm{C}(31)$	106.2(4)
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(24)$	116.5(4)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	115.6(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	117.5(4)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	114.8(4)
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)$	100.1(4)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	119.4(4)
$\mathrm{C}(24)-\mathrm{C}(13)-\mathrm{C}(14)$	105.8(4)	$\mathrm{C}(35)-\mathrm{C}(33)-\mathrm{C}(32)$	109.8(4)
$\mathrm{C}(25)-\mathrm{C}(14)-\mathrm{C}(15)$	115.8(4)	C(35)-C(33)-C(34)	110.6(4)
$\mathrm{C}(25)-\mathrm{C}(14)-\mathrm{C}(13)$	115.0(4)	C(32)-C(33)-C(34)	106.8(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	103.2(4)	$\mathrm{C}(35)-\mathrm{C}(33)-\mathrm{C}(28)$	110.3(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	107.0(4)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	111.6(4)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	104.7(4)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(28)$	107.6(3)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	103.9(4)	$\mathrm{C}(25)-\mathrm{C}(34)-\mathrm{C}(33)$	115.9(4)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)$	117.9(3)	$\mathrm{O}(6)-\mathrm{C}(38)-\mathrm{O}(5)$	123.5(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.2(4)	$\mathrm{O}(6)-\mathrm{C}(38)-\mathrm{C}(39)$	124.6(4)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(10)$	112.0(3)	$\mathrm{O}(5)-\mathrm{C}(38)-\mathrm{C}(39)$	112.0(4)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	108.3(3)	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(44)$	118.4(4)
$\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(19)$	109.6(3)	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(38)$	123.2(4)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(17)$	114.0(4)	$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{C}(38)$	118.3(4)

$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$121.2(4)$
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	$118.7(5)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	$122.0(5)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{Br}(2)$	$118.9(4)$
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{Br}(2)$	$119.1(4)$
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	$119.4(5)$
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(39)$	$120.4(5)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$118.1(3)$
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	$117.6(3)$
$\mathrm{C}(28)-\mathrm{O}(4)-\mathrm{C}(29)$	$117.9(3)$
$\mathrm{C}(38)-\mathrm{O}(5)-\mathrm{C}(30)$	$118.8(4)$

Symmetry transformations used to generate equivalent atoms:

Table 31. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 179. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U 13	U 12
$\mathrm{Br}(1)$	$123(1)$	$145(1)$	$91(1)$	$-18(1)$	$-51(1)$	$-26(1)$
$\mathrm{Br}(2)$	$121(1)$	$77(1)$	$69(1)$	$-20(1)$	$16(1)$	$-7(1)$
$\mathrm{C}(1)$	$52(3)$	$62(3)$	$71(3)$	$-16(3)$	$-19(3)$	$4(2)$
$\mathrm{C}(2)$	$52(3)$	$44(2)$	$92(4)$	$-18(3)$	$-19(3)$	$-4(2)$
$\mathrm{C}(3)$	$47(3)$	$43(2)$	$87(4)$	$0(2)$	$-3(3)$	$-5(2)$
$\mathrm{C}(4)$	$51(3)$	$32(2)$	$60(3)$	$-4(2)$	$-3(2)$	$2(2)$
$\mathrm{C}(5)$	$49(3)$	$51(3)$	$51(3)$	$-3(2)$	$-5(2)$	$-4(2)$
$\mathrm{C}(6)$	$64(3)$	$61(3)$	$58(3)$	$2(2)$	$-4(3)$	$-1(2)$
$\mathrm{C}(7)$	$61(3)$	$41(2)$	$56(3)$	$-1(2)$	$2(3)$	$-11(2)$
$\mathrm{C}(8)$	$61(3)$	$53(3)$	$43(3)$	$10(2)$	$-7(2)$	$-9(2)$
$\mathrm{C}(9)$	$46(3)$	$57(3)$	$41(3)$	$8(2)$	$0(2)$	$3(2)$
$\mathrm{C}(10)$	$45(2)$	$37(2)$	$34(2)$	$-1(2)$	$-4(2)$	$5(2)$
$\mathrm{C}(11)$	$55(3)$	$38(2)$	$36(2)$	$2(2)$	$7(2)$	$9(2)$
$\mathrm{C}(12)$	$55(3)$	$35(2)$	$51(3)$	$7(2)$	$0(2)$	$4(2)$
$\mathrm{C}(13)$	$51(3)$	$56(3)$	$34(2)$	$8(2)$	$-5(2)$	$-5(2)$
$\mathrm{C}(14)$	$42(3)$	$57(3)$	$49(3)$	$8(2)$	$2(2)$	$-1(2)$
$\mathrm{C}(15)$	$46(3)$	$79(3)$	$59(3)$	$14(3)$	$8(2)$	$6(2)$
$\mathrm{C}(16)$	$51(3)$	$71(3)$	$49(3)$	$9(2)$	$7(2)$	$14(2)$
$\mathrm{C}(17)$	$35(2)$	$51(2)$	$39(2)$	$-2(2)$	$1(2)$	$4(2)$
$\mathrm{C}(18)$	$43(2)$	$40(2)$	$32(2)$	$3(2)$	$-4(2)$	$5(2)$
$\mathrm{C}(19)$	$55(3)$	$40(2)$	$47(3)$	$6(2)$	$-5(2)$	$11(2)$
$\mathrm{C}(20)$	$61(3)$	$40(2)$	$50(3)$	$12(2)$	$-9(2)$	$2(2)$
$\mathrm{C}(21)$	$42(3)$	$90(4)$	$75(4)$	$4(3)$	$-7(3)$	$4(3)$
$\mathrm{C}(22)$	$81(4)$	$81(4)$	$43(3)$	$5(2)$	$12(3)$	$-7(3)$
$\mathrm{C}(23)$	$47(3)$	$65(3)$	$47(3)$	$4(2)$	$-16(2)$	$-3(2)$
$\mathrm{C}(24)$	$76(4)$	$64(3)$	$60(3)$	$6(2)$	$-3(3)$	$-30(3)$
$\mathrm{C}(25)$	$46(3)$	$58(3)$	$33(2)$	$7(2)$	$7(2)$	$1(2)$
$\mathrm{C}(26)$	$56(3)$	$46(2)$	$44(3)$	$9(2)$	$1(2)$	$13(2)$
$\mathrm{C}(27)$	$72(3)$	$40(2)$	$33(2)$	$-1(2)$	$-1(2)$	$2(2)$
$\mathrm{C}(28)$	$48(3)$	$42(2)$	$32(2)$	$-2(2)$	$4(2)$	$5(2)$
$\mathrm{C}(29)$	$66(4)$	$80(4)$	$51(3)$	$-10(2)$	$-18(3)$	$21(3)$

$\mathrm{C}(30)$	$67(4)$	$82(3)$	$39(3)$	$-4(2)$	$-9(2)$	$27(3)$
$\mathrm{C}(31)$	$94(4)$	$58(3)$	$43(3)$	$10(2)$	$-5(3)$	$25(3)$
$\mathrm{C}(32)$	$71(3)$	$42(2)$	$45(3)$	$8(2)$	$3(2)$	$9(2)$
$\mathrm{C}(33)$	$56(3)$	$45(2)$	$28(2)$	$7(2)$	$-3(2)$	$7(2)$
$\mathrm{C}(34)$	$53(3)$	$50(2)$	$38(2)$	$10(2)$	$8(2)$	$-1(2)$
$\mathrm{C}(35)$	$63(3)$	$69(3)$	$34(3)$	$4(2)$	$12(2)$	$10(2)$
$\mathrm{C}(36)$	$60(4)$	$94(4)$	$91(4)$	$-9(3)$	$-6(3)$	$-3(3)$
$\mathrm{C}(37)$	$88(5)$	$130(6)$	$52(3)$	$-34(3)$	$-29(3)$	$26(4)$
$\mathrm{C}(38)$	$56(3)$	$42(2)$	$65(3)$	$0(2)$	$-1(3)$	$9(2)$
$\mathrm{C}(39)$	$51(3)$	$37(2)$	$59(3)$	$3(2)$	$3(2)$	$4(2)$
$\mathrm{C}(40)$	$53(3)$	$43(2)$	$52(3)$	$-1(2)$	$1(2)$	$7(2)$
$\mathrm{C}(41)$	$60(3)$	$52(3)$	$58(3)$	$9(2)$	$1(2)$	$-1(2)$
$\mathrm{C}(42)$	$61(3)$	$48(2)$	$66(3)$	$-1(2)$	$10(3)$	$-7(2)$
$\mathrm{C}(43)$	$63(3)$	$39(2)$	$77(3)$	$-10(2)$	$15(3)$	$0(2)$
$\mathrm{C}(44)$	$46(3)$	$42(2)$	$78(3)$	$7(2)$	$0(3)$	$6(2)$
$\mathrm{O}(1)$	$125(4)$	$81(3)$	$64(3)$	$13(2)$	$1(2)$	$-52(3)$
$\mathrm{O}(2)$	$66(2)$	$59(2)$	$51(2)$	$10(2)$	$-4(2)$	$-24(2)$
$\mathrm{O}(3)$	$50(2)$	$48(2)$	$29(2)$	$-2(1)$	$1(1)$	$1(1)$
$\mathrm{O}(4)$	$55(2)$	$57(2)$	$42(2)$	$-6(1)$	$-10(2)$	$13(2)$
$\mathrm{O}(5)$	$72(2)$	$72(2)$	$45(2)$	$1(2)$	$-4(2)$	$37(2)$
$\mathrm{O}(6)$	$92(3)$	$80(2)$	$64(2)$	$-12(2)$	$-26(2)$	$43(2)$

Table 32. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 179.

	X	y	z	U(eq)
H(2)	8708	11714	2570	75
H(3)	7739	11586	1688	71
H(5)	4845	10232	2274	60
H(6)	5887	10360	3159	73
H(8)	4443	10554	459	63
H(10)	3461	9335	1492	46
H(11A)	3769	8218	1446	52
H(11B)	2137	8126	1177	52
H(12A)	2009	7827	2110	56
H(12B)	2711	8504	2301	56
H(14)	-759	8278	2763	59
H(15A)	-2408	9034	2545	73
H(15B)	-1368	9529	2887	73
H(16A)	-887	10040	2089	68
H(16B)	-1729	9485	1739	68
H(17)	1310	9492	2120	50
H(19A)	1882	10309	1560	57
H(19B)	368	10345	1206	57
H(20A)	1840	10217	375	60
H(20B)	2164	10876	697	60
H(21A)	5883	9259	1153	104
H(21B)	6635	9746	718	104
H(21C)	6340	9010	547	104
H(22A)	4666	9103	-213	103
H(22B)	5152	9847	-229	103
H(22C)	3406	9655	-233	103
H(23A)	551	9340	453	79
H(23B)	-851	9345	871	79
H(23C)	152	8707	805	79
H(24A)	-244	8035	1384	100

H(24B)	-1610	8357	1717	100
H(24C)	-778	7735	1964	100
H(26)	1125	9740	3033	58
H(27A)	2339	9735	3962	58
H(27B)	3537	9773	3469	58
H(28)	4239	8723	3569	49
H(30)	6674	7893	4611	75
H(31A)	4605	7274	4678	78
H(31B)	3997	7947	4910	78
H(32A)	2291	7426	4285	63
H(32B)	3494	7511	3802	63
H(34A)	2161	7967	3178	56
H(34B)	608	7943	3510	56
H(35A)	1786	8618	4776	83
H(35B)	445	8245	4470	83
H(35C)	791	8983	4320	83
H(36A)	6541	9046	3627	123
H(36B)	7903	8900	4043	123
H(36C)	6997	9566	4089	123
H(37A)	6067	9447	5062	136
H(37B)	7230	8859	5100	136
H(37C)	5503	8753	5266	136
H(40)	5302	7725	2851	59
H(41)	5239	7320	1950	68
H(43)	8612	6083	2322	72
H(44)	8706	6493	3227	66

Table 33. Torsion angles [${ }^{\circ}$] for $\mathbf{1 7 9 .}$

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-1.8(8)$
$\mathrm{Br}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$178.8(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$2.0(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-1.6(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$179.1(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1.0(7)$
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-179.8(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-0.7(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$1.1(8)$
$\mathrm{Br}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-179.5(4)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(1)$	$174.7(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(1)$	$-6.1(8)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(2)$	$-5.8(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(2)$	$173.5(4)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)$	$91.0(4)$
$\mathrm{C}(20)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)$	$-33.2(5)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(22)$	$-154.3(4)$
$\mathrm{C}(20)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(22)$	$81.5(5)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)$	$-35.0(5)$
$\mathrm{C}(20)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)$	$-159.2(4)$
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-175.6(4)$
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-54.7(5)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$55.1(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	$-53.0(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(24)$	$74.4(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-165.0(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(25)$	$28.9(6)$
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(25)$	$-87.1(4)$
$\mathrm{C}(24)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(25)$	$151.5(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$156.0(4)$
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$39.9(4)$
$\mathrm{C}(24)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-81.5(5)$
$\mathrm{C}(25)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$106.4(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-20.15)$

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-7.7(6)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	$-168.8(4)$
$\mathrm{C}(24)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	$68.0(5)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	$-45.5(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)$	$56.8(5)$
$\mathrm{C}(24)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)$	$-66.4(6)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)$	$-179.9(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(13)$	$33.7(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$167.4(4)$
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(23)$	$45.2(4)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(23)$	$-74.1(4)$
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(19)$	$-75.1(4)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(19)$	$165.7(3)$
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(17)$	$170.0(3)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(17)$	$50.8(4)$
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$68.9(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$-58.5(5)$
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(10)$	$-54.7(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(10)$	$177.9(4)$
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-171.5(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$61.1(5)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-68.7(5)$
$\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-41.7(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$53.8(5)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(20)-\mathrm{C}(19)$	$168.1(4)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(20)-\mathrm{C}(19)$	$-44.9(5)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(8)$	$79.2(5)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(25)-\mathrm{C}(26)$	$-68.1(6)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(25)-\mathrm{C}(26)$	$-36.0(6)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(25)-\mathrm{C}(34)$	$84.3(6)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(25)-\mathrm{C}(34)$	$146.9(4)$
$\mathrm{C}(34)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$-92.8(5)$
$\mathrm{C}(14)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$2.5(7)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$\mathrm{C}(28)-\mathrm{O}(4)$
$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{C}(33)$	$-174.5(4)$
C	

$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{O}(5)$	90.6(5)
$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{O}(5)$	-34.8(6)
$\mathrm{C}(37)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{O}(5)$	-158.1(5)
$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	-29.8(6)
$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	-155.1(4)
$\mathrm{C}(37)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	81.6(6)
$\mathrm{O}(5)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	-42.0(5)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	80.5(5)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	-67.2(6)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(35)$	-76.9(6)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	163.1(4)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	45.8(6)
$\mathrm{O}(4)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(35)$	56.9(4)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(35)$	-62.0(4)
$\mathrm{O}(4)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	-65.4(4)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	175.6(3)
$\mathrm{O}(4)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(34)$	177.7(3)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(34)$	58.7(4)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(34)-\mathrm{C}(33)$	17.4(6)
$\mathrm{C}(14)-\mathrm{C}(25)-\mathrm{C}(34)-\mathrm{C}(33)$	-165.4(4)
$\mathrm{C}(35)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(25)$	73.5(5)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(25)$	-167.1(4)
$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(25)$	-47.1(5)
$\mathrm{O}(6)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	176.5(5)
$\mathrm{O}(5)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	-4.3(7)
$\mathrm{O}(6)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(44)$	-0.6(7)
$\mathrm{O}(5)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(44)$	178.6(4)
$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)$	-0.1(7)
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)$	-177.3(4)
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	-0.7(7)
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	1.9(7)
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{Br}(2)$	-179.6(4)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	-2.2(7)
$\mathrm{Br}(2)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	179.3(4)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(39)$	1.4(7)
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(44)-\mathrm{C}(43)$	-0.2(7)

$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(44)-\mathrm{C}(43)$	$177.0(4)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$3.8(7)$
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$-175.7(4)$
$\mathrm{C}(20)-\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(7)$	$-114.5(5)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(7)$	$117.4(4)$
$\mathrm{C}(22)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	$-165.6(4)$
$\mathrm{C}(21)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	$77.9(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	$-48.5(5)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(9)$	$-136.2(4)$
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(9)$	$100.4(4)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(4)-\mathrm{C}(29)$	$-137.1(4)$
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{O}(4)-\mathrm{C}(29)$	$101.1(5)$
$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{O}(4)-\mathrm{C}(28)$	$71.4(5)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{O}(4)-\mathrm{C}(28)$	$-55.3(5)$
$\mathrm{C}(37)-\mathrm{C}(29)-\mathrm{O}(4)-\mathrm{C}(28)$	$-169.5(5)$
$\mathrm{O}(6)-\mathrm{C}(38)-\mathrm{O}(5)-\mathrm{C}(30)$	$-8.8(8)$
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{O}(5)-\mathrm{C}(30)$	$171.9(4)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{O}(5)-\mathrm{C}(38)$	$135.0(5)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{O}(5)-\mathrm{C}(38)$	$-99.1(5)$

Symmetry transformations used to generate equivalent atoms:

1.6 References

1. (a) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH Publishers: Weinheim, Germany, 1996. (b) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II; VCH Publishers: Weinheim, Germany, 2003. (c) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 44.
2. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis Publisher: John Wiley \& Sons, Inc, 1995.
3. Strategies and Tactics in Organic Synthesis ed.: Harmata, M. 2004, Publisher: Elsevier.
4. (a) de la Torre, M. C.; Sierra, M. A. Angew. Chem. Int. Ed. 2004, 43, 160.
(b) Heathcock, C. H. Angew. Chem. Int. Ed. 1992, 31, 665.
5. (a) Robinson, R, J. Chem. Soc. 1917, 111, 762. (b) Robinson, R. J. Chem. Soc. 1917, 111, 876.
6. van Tamelen, E. E. Fortschr. Chem. Org. Naturst. 1961, 19, 242.
7. Skyler, D.; Heathcock, C. H. Org. Lett. 2001, 3, 4323.
8. Heathcock, C. H. Proc. Natl. Acad. Sci. 1996, 93, 14323.
9. (a) Abe, I.; Rohmer, M.; Prestwich, G. D. Chem. Rev. 1993, 93, 2189. (b) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730.
10. (a) Harrison, D. M. Nat. Prod. Rep. 1985, 2, 525. (b) Bloch, K. Science, 1965, 150, 19. (c) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem. Int. Ed. 2000, 39, 2812.
11. (a) Feil, C.; Sussmuth, R.; Jung, G.; Poralla, K. Eur. J. Biochem. 1996, 242, 51. (b) Corey, E. J.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1289. (c) Corey, E. J.; Cheng, H.; Baker, H. C.; Matsuda, S. P. T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1277.
12. (a) Wendt, K. U.; Poralla, K.; Schulz, G. E. Science 1997, 277, 1811. (b) Wendt, K. U.; Lenhart, A.; Schulz, G. E. J. Mol. Biol. 1999, 286,175.(c) Reinert, D. J.; Balliano, G.; Schulz, G. E. Chem. Biol. 2004, 11, 121.
13. (a) Rajamani, R.; Gao, J. J. Am. Chem. Soc. 2003, 125, 12768. (b) Corey, E. J.; Staas, D. D. J. Am. Chem. Soc. 1998, 120, 3526.
14. Eschenmoser, A.; Arigoni, D. Helv. Chim. Acta. 2005, 88, 3011.
15. Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc. 1955, 77, 5068.
16. (a) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta. 1955, 38, 1890. (b) Gamboni, G.; Schinz, H.; Eschenmoser, A. Helv. Chim. Acta. 1954, 37, 964.
17. (a) Goldsmith, D. J.; Philips, C. F. J. Am. Chem. Soc. 1969, 91, 5862. (b) Goldsmith, D. J. J. Am. Chem. Soc. 1962, 84, 3913.
18. (a) Johnson, W. S.; Chenera, B.; Tham, F. S.; Kullnig, R. K. J. Am. Chem. Soc. 1993, 115, 493. (b) Johnson, W. S.; Fletcher, V. R.; Chenera, B.; Bartlett, W. R.; Tham, F. S.; Kullnig, R. K. J. Am. Chem. Soc. 1993, 115, 497. (c) Johnson, W. S.; Buchanan,R. A.; Bartlett, W. R.; Tham, F. S.; Kulling, R. K. J. Am. Chem. Soc. 1993, 115, 504. (d) Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. J. Am. Chem. Soc. 1993, 115, 515. (e) Fish, P. V.; Johnson, W. S. J. Org. Chem. 1994, 59, 2324. (f) Fish, P. V.; Johnson, W. S.; Jones, G. S.; Tham, F. S.; Kullnig, R. K. J. Org. Chem. 1994, 59, 6150.
19. van Tamelen, E. E.; Leiden, T. M. J. Am. Chem. Soc. 1982, 104,2061.
20. (a) Corey, E. J.; Lin, S. J. Am. Chem. Soc. 1996, 118, 8765. (b) Corey, E. J.; Luo, G.; Lin, L. S. J. Am. Chem. Soc. 1997, 119, 9927. (c) Zhang, J.; Corey, E. J. Org. Lett. 2001, 3, 3215. (d) Mi, Y.; Schreiber, J. V.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 11290. (e) Corey, E. J.; Luo, G.; Lin, L. S. Angew. Chem. Int. Ed. 1998, 37, 1126.
21. (a) Murata, M.; Yasumoto, T. Nat. Prod. Rep. 2000, 17, 293. (b) Deranas, A. H.; Norte, M.; Fernandez, J. J. Toxicon 2001, 39, 1101. (c) Nakata, T. Chem. Rev. 2005, 105, 4314. (d) Inoue, M. Chem. Rev. 2005, 105, 4379. 22. (a) Poli, M. A.; Mende, T. J.; Baden, D. G. Mol. Pharmacol. 1986, 30, 129. (b) Lasker, R.; Smith, F. G. W. U. S. Fish Wildl. Serv. Fish Bull. 1954, 55. (c) Poli, M. A.; Musser, S. M.; Dickey, R. W.; Eilers, P. P.; Hall, S. Toxicon 2000, 38, 981.
22. (a) Fujiwara, K.; Murai, A. Bull. Chem. Soc. Jpn. 2004, 77, 2129. (b) Kadota, I.; Yamamoto, Y. Acc. Chem. Res. 2005, 38, 423. (c) Sasaki, M.; Fuwa, H. Synlett 2004, 11, 1851.
23. (a) Nakanishi, K. Toxicon 1985, 23, 473. (b) Shimizu, Y. Natural Toxins: Animal, Plant, and Microbial ed. by Harris, J. B.; Clarendon Press, Oxford 1986, 123. (c) Lee, M. S.; Repeta, D. J.; Nakanishi, K.; Zagorski, M. G. J. Am. Chem. Soc. 1986, 108, 7855. (d) Chou, H.-N.; Shimizu, Y. J. Am. Chem. Soc., 1987, 109, 2184. (e) Lee, M. S.; Qin, Q.-W.; Nakanishi, K.; Zagorski, M. G. J. Am. Chem. Soc. 1989, 111, 6234.
24. Cane, D. E.; Celmer, W. D.; Westley, J. W. J. Am. Chem. Soc. 1983, 105, 3954.
25. Gallimore, A. R.; Spencer, J. B. Angew. Chem. Int. Ed. 2006, 45, 4406.
26. (a) Valentine, J. C.; McDonald, F. E. Synlett 2006, 12, 1816. (b) McDonald, F. E.; Tong, R.; Valentine, J. C.; Bravo, F. Pure Appl. Chem. 2007, 79, 281. (c) Hayashi, N.; Fujiwara, K.; Murai, A. Tetrahedron 1997, 53, 12425.
27. Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189.
28. (a) McDonald, F. E.; Bravo, F.; Wang, X.; Wei, X.; Toganoh, M.; Rodríguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K. I. J. Org. Chem. 2002, 67, 2515. (b) Valentine, J. C.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I. J. Am. Chem. Soc. 2005, 127, 4586, and references therein.
29. Wan, S.; Gunaydin, H.; Houk, K. N.; Floreancig, P. E. J. Am. Chem. Soc. 2007, 129, 7915.
30. (a) Baldwin, J. E.; Thomas, R.C.; Kruse, L. I.; Silberman, L. J. Org. Chem. 1977, 42, 3846. (b) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L. I.; Silberman, L.; Thomas, R.C. J. Chem. Soc., Chem. Commun. 1976, 736. (c) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 738.
31. Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125, 7822.
32. Kashman, Y.; Rudi, A. Phytochem. Rev. 2004, 3, 309.
33. Fernández, J.; Souto, M.; Norte, M. Nat. Prod. Rep., 2000, 17, 235
34. (a) Rudi, A.; Yosief, T.; Schleyer, M.; Kashman, Y. Tetrahedron 1999, 55, 5555; (b) Rudi, A.; Stein, Z.; Goldberg, I.; Yosief, T.; Schleyer, M. and Kashman, Y. Tetrahedron Lett. 1998, 39, 1445. (c) Rudi, A.; Aknin, M.; Gaydou, E.; Kashman, Y. J. Nat. Prod. 1997, 60, 700. (d) Ciavatta, M. L.; Scognamiglio, G.; Trivellone, E.; Bisogno, T.; Cimino, G. Tetrahedron 2002, 58, 4943, and references therein.
35. Ciavatta, M. L.; Scognamiglio, G.; Trivellone, E.; Bisogno, T.; Cimino, G. Tetrahedron 2002, 58, 4943; and references therein.
36. (a) Rudi, A.; Kashman, Y.; Benayahu, Y.; Schleyer, M. J. Nat. Prod. 1994, 57, 1416. (b) Rudi, A.; Goldberg, I.; Stein, Z.; Kashman, Y.; Benayahu, Y.; Schleyer, M.; Garcia-Gravalos, M. D. J. Nat. Prod. 1995, 58, 1702. (c) Rudi, A.; Aknin, M.; Gayhou, E. M.; Kashman, Y. J. Nat. Prod. 1997, 60, 700.
37. Caspi, E. Acc. Chem. Res. 1980, 13, 97, and references cited therein.
38. Tong, R.; Valentine, J. C.; McDonald, F. E.; Cao, R.; Fang, X.; Hardcastle, K. I. J. Am. Chem. Soc. 2007, 129,1050.
39. (a) Hori, N.; Nagasawa, K.; Shimizu, T.; Nakata, T. Tetrahedron Lett. 1999, 40, 2145. (b) Nakata, T.; Nomura, S.; Matsukura, H. Tetrahedron Lett. 1996, 37, 213. For examples of mechanistically similar ring contractions, see (c) Hayashi, N.; Fujiwara, K.; Murai, A. Synlett 1997, 793.
40. (a) Wang, X.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224. (b) Shi, Y. Acc. Chem. Res. 2004, 37, 488. (c) Zhao, M.-X.; Shi, Y. J. Org. Chem. 2006, 71, 5377.
41. Lipshutz, B. H.; Harvey, D. F. Synth. Commun. 1982, 12, 267.
42. Scott, W. J.; McMurry, J. E. Acc. Chem. Res. 1988, 21, 47.
43. (a) Corey, E. J.; Sodeoka, M. Tetrahedron Lett. 1991, 32, 7005. (b) Corey, E. J.; Roberts, B. E. Tetrahedron Lett. 1997, 38, 8921
44. Comins, D. L.; Dehgehani, A. Tetrahedron Lett. 1992, 33, 6299.
45. Negishi, E.; Luo, F.-T.; Rand, C. L. Tetrahedron Lett. 1982, $23,27$.
46. (a) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175. (b) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563. (c) Aissa, C. J. Org. Chem. 2006, 71, 360.
47. Valentine, J. C. Ph. D. Dissertation, Emory University, 2005.
48. Tong, R.; McDonald, F. E.; Fang, X.; Hardcastle, K.I. Synthesis 2007, 2337.
49. Morimoto, Y.; Nishikawa, Y.; Ueba, C.; Tanaka, T. Angew. Chem. Int. Ed. 2006, 45, 810.
50. (a) Grieco, P. A.; Masaki, Y. J. Org. Chem. 1974, 39, 2135. (b) Murakami, T.; Furusawa, K. Synthesis 2002, 479.
51. (a) Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron 1988, 44, 6729. (b) Despo, A. D.; Chiu, S. K.; Flood, T.; Petersen, P. E. J. Am. Chem. Soc. 1980, 102, 5120. (c) Chiu, S. K.; Peterson, P. E. Tetrahedron Lett. 1980, 21, 4047. (d) Tietze, L. F.; Wiinsch, J. R.; Noltemeyer, M. Tetrahedron 1992, 48, 2081.
52. Noma, H.; Tanaka, H.; Noguchi, H.; Shibuya, M.; Ebizuka, Y.; Abe, I. Tetrahedron Lett. 2004, 45, 8299.
53. (a) Hutchins, R. O.; Learn, K. J. Org. Chem. 1982, 47, 4382. (b) Mohri, M.; Kinoshita, H.; Inomata, K.; Kotake, H. Chem. Lett. 1985, 451. (c) Orita, A.; Watanabe, A.; Tsuehiya, H.; Otera, J. Tetrahedron 1999, 55, 2889.
54. (a) Suzuki, T.; Sato, O.; Hirama, M. Tetrahedron Lett. 1990, 31, 4747. (b) Fagnou, K.; Lautens, M. Org. Lett. 2000, 2, 2319. (c) Evans, P. A.; Leahy, D. K. J. Am. Chem. Soc. 2002, 124, 7882. (d) Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647. (e) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1987, 109, 1469.
55. Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999, 40, 7739; and references therein.
56. (a) Crandall, J. K.; Conover, W. W. J. Chem. Soc., Chem. Commun. 1973, 340. (b) Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. Tetrahedron Lett. 1992, 33, 737.
57. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
58. (a) McMurry, J. E. Chem. Rev, 1989, 89, 1513. (b) Sabelle, S.; Hydrio, J.; Leclerc, E.; Mioskowski, C.; Renard, P.-Y. Tetrahedron Lett. 2002, 43, 3645. (c) Hirao, T. Synlett, 1999, 175. (d) Mukaiyama, T.; Kagayama, A.; Shiina, I. Chem. Lett. 1998, 1107. (e) Chisholm, M. H.; Klang, J. A. J. Am. Chem. Soc. 1989, 111, 2324.
59. (a) Pospisil, J.; Pospisil, T.; Marko, I. E. Org. Lett. 2005, 7, 2373. (b) Healy, M. P.; Parsons, A. F.; Rawlinson, J. G. T. Org. Lett. 2005, 7, 1597. (c) Takeda, T.; Sasaki, R.; Fujiwara, T. J. Org. Chem. 1998, 63, 7286.
60. Takeda, T.; Sasaki, R.; Yamauchi, S.; Fujiwara, T. Tetrahedron 1997, 53, 557.
61. (a) Tormakangas, O. P.; Toivola, R. J.; Karvinen, E. K.; Koskinen, A. M. P. Tetrahedron 2002, 58, 2175. (b) Siemeling, U.; Neumann, B.; Stammler, H.-G. J. Org. Chem. 1997, 62, 3407. (c) Adlington, R. M.; Barrett, A. G. M. Acc. Chem. Res. 1983, 16, 55. (d) Chamberlin, A. R.; Stemke, J. E.; Bond, F. T. J. Org. Chem. 1978, 43, 147.
62. (a) Ollivier, J.; Dorizon, P.; Piras, P. P.; de Meijere, A.; Salaun, J. Inorg. Chim. Acta 1994, 222, 37. (b) Chau, A.; Paquin, J.-F.; Lautens, M. J. Org. Chem. 2006, 71, 1924.
63. (a) Barton, D. H. R.; Willis, B. J. J. Chem. Soc., Chem. Commun. 1970, 1225. (b) Barton, D. H. R.; Smith, E. H.; Willis, B. J. J. Chem. Soc., Chem. Commun. 1970, 1226. (c) Hoogesteger, F. J.; Havenith, R. W. A.; Zwikker,J. W.; Jenneskens, L. W.; Kooijman, H.; Veldman, N.; Spek, A. L. J. Org. Chem. 1995, 60, 4375.
64. Zwierzak, A.; Sulewska, A. Synthesis 1976, 835.
65. Buters, J.; Wassenaar, S.; Kellogg, R. M. J. Org. Chem. 1972, 37, 4045.
66. (a) Miyaura, T.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651. (c) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4544. (d) Topics in Organometallic Chemistry 19: Metal catalyzed cascade Reactions Volume editor: Muller, T. J. J.; Publisher: Springer, 2006.
67. Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 8001.
68. (a) Montiel-Smith, S.; Quintero-Cartes, L.; Sandoval-Ramirez, J. Tetrahedron Lett. 1995, 36, 8359. (b) Lee, J.-T.; Alper, H. J. Org. Chem. 1990, 55, 1854. (c) Shibasaki, M.; Sodeoka, M. Tetrahedron Lett. 1985, 26, 3491. (d) Maye, J. P.; Negishi, E.-I. J. Chem. Soc., Chem. Commun. 1993, 1830. (e) Reger, D. L.; Habib, M. M.; Fauth, D. J. J. Org. Chem. 1980, 45, 3860. (f) Cramer, R. Acc. Chem. Res. 1968, 1, 186.
69. (a) Cota, J. G.; Meilan, M. C.; Mourino, A.; Castedo, L. J. Org. Chem. 1988, 53, 6094. (b) Thery, N.; Szymoniak, J.; Moise, C. Tetrahedron Lett. 1999, 40, 3155.
70. (a) Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G. Chem. Commun. 1965, 131. (b) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711. (c) Hornfeldt, A.-B.; Gronowitz, J. S.; Gronowitz, S. Acta Chem. Scand. 1968, 22, 2725.
71. Posner, G. H.; Switzer, C. J. Am. Chem. Soc. 1986, 108, 1239.
73.Takahashi, A.; Kirio, Y.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1989, 111, 643.
72. (a) Nelson, S. G.; Bungard, C. J.; Wang, K. J. Am. Chem. Soc. 2003, 125, 13000. (b) Hubert, A. J.; Reimlinger, H. Synthesis 1969, 97. (c) Hubert, A. J.; Reimlinger, H. Synthesis 1970, 405. (d) Brown, A. C. J. Chem. Soc., Chem. Comm. 1975, 222.
73. (a) Mirafzal, G. A.; Liu, J.; Bauld, N. L. J. Am. Chem. Soc. 1993, 115, 6072. (b) Mirafzal, G. A.; Bauld, N. L. J. Am. Chem. Soc. 1993, 114, 5457. (c) Bauld, N. L. Tetrahedron 1989, 45, 5307.
74. Brook, A. G. Acc. Chem. Res. 1974, 7, 77.
75. (a) Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1773. (b) Enda, J.; Kuwajima, I. J. Am. Chem. Soc. 1985, 107, 5495
76. Nowick, J. S.; Danheiser, R. L.; Tetrahedron 1988, 44, 4133.
77. Dilman, A. D.; loffe, S. L. Chem. Rev. 2003, 103, 733.
78. (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611. (b) Pine, S. H.; Kim, G.; Lee, V. Org. Synth. 1990, 69, 72.
79. (a) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392. (b) Payack, J. F.; Hughes, D. L.; Cai, D.; Cottrell, I. F.; Verhoeven, T. R. Org. Synth. 2002, 79, 19.
80. (a) Abe, I.; Rohmer, M. J. Chem. Soc., Perkin Trans. 1 1994, 783. (b) Corey, E. J.; Virgil, S. C.; Sarshar, S. J. Am. Chem. Soc. 1991, 113, 8171. (c) Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1991, 113, 4025.
81. (a) Corey, E. J.; Burk, R. M.; Tetrahedron Lett. 1987, 28, 6413. (b) Corey, E. J.; Reid, J. G.; Myers, A. G.; Hahl, R. W. J. Am. Chem. Soc. 1987, 109, 918.
82. Zheng, Y.F.; Oehlshchlager, A. C.; Georgopapadakou, N. H.; Hartman, P. G.; Scheliga, P. J. Am. Chem. Soc. 1995, 117, 670.
83. Mastalerz, H. J. Org. Chem. 1984, 49, 4092.
84. (a) Stefen, W. L.; Palenik, G.J. Inorg. Chem. 1976, 15, 2432. (b) Doyle, J. R.; Slade, P. E.; Jonassen, H. B. Inorg. Synth.1960, 6, 216.

Chapter 2

Biomimetic Synthesis of Fused Polypyrans

2.1. Introduction and Background

Polycyclic ether marine natural products ${ }^{1}$ with the characteristic characteristic "ladder-like" trans-syn-trans-fused structure have attracted the attention of many scientists in various research fields because of their potent bioactivities and unique, challenging molecular architectures. The structure-activity relationship (SAR) of polycyclic ethers has been focused on by many research groups ${ }^{2}$. However, most of the natural polycyclic ethers are scarce in amount, which caused limitations in their biological studies. Thus, the chemical synthesis of polycyclic ethers would offer alternative ways to supply these compounds. For instance, total syntheses of brevetoxin B^{3} (1995/Nicolaou, 2004/Nakata, 2005/Kadota/Yamamoto), brevetoxin A 4 (1998/Nicolaou), ciguatoxin CTX3C ${ }^{5}$ (2001/Hirama), gambierol 6 (2002/Sasaki, 2002/Kadota/Yamamoto and 2005/Rainier) and gymnocin A^{7} (2003/Sasaki) were achieved. These landmark achievements were made possible by development of many efficient synthetic methodologies ${ }^{8}$, which will be briefly reviewed in this section for synthesis of polypyrans.

Figure 1. Representative core structure of polycyclic ethers.

The existing methods for closure of cyclic ethers were roughly categorized into two classes based on construction of fused polypyrans: reductive etherification and endo-selective cyclization of epoxides.

2.1.1. Reductive etherification

The hydroxyl dithioketal cyclization strategy ${ }^{9}$, one of the earliest and most powerful approaches, was developed by Nicolaou in 1986 for the specific synthesis of medium-sized rings of brevetoxins. Further exploration of this cyclization strategy was undertaken by Fujiwara and Murai ${ }^{10}$ to establish an efficient synthetic method for construction of the trans-fused polypyrans (Scheme1). S-oxido dithioacetal 2, easily prepared from condensation of aldehyde and lithiated S-oxido dithioacetal underwent stereoselective acidpromoted cyclization to provide the desired polypyrans 4 after reductive etherification of hemiketal 3. Tetracyclic pyran 6 could be synthesized in three steps from 4 in high yields. A formal total synthesis of hemibrevetoxin B was achieved by assembly of the B and C rings using this strategy. As seen in the conversion of tricyclic ether 4 to the tetracyclic ether 6, the most widely used and successful method for the construction of trans-fused polypyrans in total synthesis of marine natural products is arguably the ketal formation followed by stereoselective reductive etherification. Bronsted acid is usually used to promote the formation of ketal that was subsequently subjected to reductive cleavage of C-O bond. For instance, in 1998, Sasaki ${ }^{11}$ reported exposure of substrates as complex as 7 to acidic methanol followed by acetylation, gave hemiacetal,

Scheme 1. Reductive etherification for synthesis of polycyclic pyrans.

2
4

Sasaki

7
8

which underwent reductive etherification with triethylsilane in the presence of Lewis acid $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ to provide pentacyclic ether 8 in excellent yield. The stereochemical outcome of the reduction of hemiacetal can be explained by nucleophilic hydride attack from less congested face, consistent with the Cieplak effect ${ }^{12}$ that favors the axial addition to cyclohexene-like substrates. Application of this synthetic method combined with the powerful Suzuki cross-coupling and regio- and stereoselective hydroboration of enol ether led to total syntheses of ciguatoxin (2002/Sasaki), gambierol (2002/Sasaki), gymnocin A (2003/Sasaki) and CTX3C (2004/Sasaki). Elegant extension of this method was also achieved by three independent groups ${ }^{13}$ (Fujiwara/Murai, Nakata, and Mori) by developing
a bidirectional cyclization to construct the two cyclic ether rings at a time. 1,2Diketone 9, easily prepared from oxidation of the corresponding alkyne with $\mathrm{RuO}_{2} / \mathrm{NaIO}_{4}$, underwent stereoselective double ketalization and stereoselective reductive etherification to yield hexacyclic ether 10 that was used for total synthesis of yessotoxin (2003/Mori) ${ }^{14}$.

In 1997, Tachibana and co-workers developed a strategy ${ }^{15 a, b}$ for the synthesis of trans-syn-trans fused polycyclic ethers using the intramolecular allylation of chiral acetals with γ-alkoxyallylstannane. However, the allylation reaction usually gave diastereomers with moderate stereoselectivity and yields, which varied with the reactivity of the acetals and the allylstannane by model studies. In 1998, Sasaki and Tachibana explored the use of less reactive γ-alkoxylallylsilane ${ }^{15 c, d}$ for allylation of acetal 13 in order to improve the stereoselectivity and yields (Scheme 2). $\mathrm{TiCl}_{4}-\mathrm{PPh}_{3}$ induced the intramolecular allylation to produce the tetracyclic ether 14 as a major product with right stereochemistry. The moderate yield and poor stereoselectivity remains unsolved. On the other hand, in 2001 Kadota and Yamamoto developed a stereoselective allylation ${ }^{8 b}$ of α-acetoxy ethers with γ-alkoxylallylstannane for synthesis of trans-fused polycyclic ethers. Treatment of the mixed acetal 15 with $\mathrm{MgBr}_{2}-\mathrm{Et}_{2} \mathrm{O}$ induced the intramolecular cyclization to afford the 16 as single diastereomer in 74% yield, which is an excellent substrate for olefin ring closing metathesis. The stereochemical outcome of the cyclization was not affected by the chirality of α-acetoxy ethers probably due to the formation of oxonium cation intermediate. The efficiency and
powerfulness was demonstrated by the total synthesis of gambierol (2002/Kadota/Yamamoto).

Scheme 2. Intramolecular allylation of acetals.

Reductive etherification with reliable control of the newly formed stereocenters in the desired fashion has been shown to be a highly general and powerful method for the assembly of complex polypyrans. Combination of reductive etherification with other C-C bond formation methods ${ }^{1 \mathrm{c}, \mathrm{d}}$ (Suzuki coupling/hydroboration, Soxido dithioacetal-aldehyde coupling, and acetylide-triflate coupling) provided many efficient and practical methods for construction of complex polycyclic ether natural products, and still become a major strategy for designing new synthetic routes of complex polycyclic ether natural products.

Before moving on to endo-selective cyclization of epoxide, a stereoselective Sml_{2}-promoted reductive etherification developed by Nakata attracted my attention because it efficiently constructs the cyclic pyran by formation of C-C bond with correctly setting both of newly formed stereocenters (Scheme 3). Treatment of 30 with Sml_{2} induced the reductive cyclization to produce the
desired bipyran 32 in 92\% yield via presumably a chair-like transition state 31. Polypyran units could be efficiently achieved by iterative use of this reductive cyclization.

Scheme 3. Reductive etherification of carbonyl and unsaturated ester.

Nakata

Many efficient and powerful synthetic methods for the synthesis of polypyrans could not be covered here, including Clark ${ }^{17}$, McDonald ${ }^{18}$, Rainier ${ }^{19}$ and West 20, because of the limited space here. Readers who are interested in these topics are strongly recommended to consult the related referecences.

2.1.2. Endo-selective cyclization of epoxide

Most marine natural polycyclic ethers are produced by marine dinoflagellates via a sequential chemical processes that are still unknown. Cascade cyclization of polyepoxide has been proposed as a key process ${ }^{21}$ that involves successive epoxide opening in endo selectivity. Inspired by this elegant hypothesis, many synthetic chemists have developed a number of important reactions and methodologies ${ }^{8 a}$ for construction of trans-fused polypyrans using epoxide opening/ring closure strategy.

A main problem encountered in the epoxide opening is to control the ring opening mode in favoring the endo products that was normally disfavored in
accordance with Baldwin's rule. ${ }^{22}$ In order to suppress the potential exo-mode opening, new synthetic methods are eagerly sought and efforts based on the hypothetical biosynthesis are well rewarded (scheme 4). Among the most powerful and widely used methods is hydroxy-vinylepoxide cyclization developed by Nicolaou ${ }^{23}$ in 1980s. In order to achieve endo-selective epoxide opening, vinyl group was introduced by Nicolaou and placed on the endo-site carbon to stabilize the developing cation by π-electron donation (such as in 18).

Scheme 4. Endo-selective cyclizations of epoxide.

Nicolaou

Hirama

Mori

Bartlett

Endo product 19 with trans-fusion was obtained exclusively from cyclization of hydroxy vinylepoxide 17. Subsequently, Hirama ${ }^{24}$ reported a mechanistically related method using palladium endo-activation of epoxide, in which m-allyl palladium intermediate (21) was proposed. However, only cis-epoxide such as 20 yielded the trans-product (22). In addition, alkoxide from desilylation with fluoride ion was necessary to obtain favorable reactivity and stereoselectivity.

In 1996, Mori ${ }^{25}$ established a unique method for endo-selective cyclization of epoxides based on a complementary idea to m-electron stabilization. The electron-withdrawing sulfone group was expected to destabilize the potentially developing cation on the exo-site carbon and thus favor epoxide opening at the endo-site. Moreover, sulfone acting as good leaving group was released to drive the cyclization complete. Iterative use of this method by Mori led to an efficient total synthesis of hemibrevetoxin B.

Although it has not been demonstrated in the total synthesis, iodo-etherification of hydroxy alkene is worthy of comments. As epoxides are relatively reactive and usually could not be carried forward for many steps, alkene is much stable toward many acidic and basic conditions. In 1986, Bartlett ${ }^{26}$ found that activation of alkene 26 with NIS or iodine gave iodopyran (28) exclusively (Scheme 4), which was transformed into dehalogenated pyran 29 when treated with silver salt $\left(\mathrm{AgBF}_{4}\right)$ in DMF. In addition, products resulted from exo epoxide opening in some cases could be transformed into the endo-products when exposed to silver salt in DMF.

2.1.3. Biomimetic oxacyclization of skipped polyepoxide

Traditional approaches ${ }^{1 \mathrm{c}, \mathrm{d}, 8}$ (including mentioned above) to the syntheses of polypyrans have been based on construction of each cyclic ether one at a time, whereas the proposed biosynthesis is potentially more efficient, namely polyoxacyclization of a polyepoxide to furnish the basic backbone in one single step. We have previously reported the chemical demonstration ${ }^{27}$ of this biogenetic hypothesis, by Lewis acid-promoted endo-selective and stereospecific tandem cyclizations of polyepoxides to form trans-fused polyoxepane and polypyran structures, including the oxacyclization of triepoxide 33 to tricyclic product 35 $\left(\right.$ Scheme 5) ${ }^{28}$.

Scheme 5. Biomimetic oxacyclization of skipped polyepoxide.
McDonald

This cascade cyclization process has involved nucleophilic addition at the more substituted carbon of each epoxide via epoxonium ion intermediate such as 34, but we note that such methyl substituents are not always present at all ring junctions in fused polypyran natural products. In addition, the role of substituents on C-3 on the regioselectivity of oxacyclization of skipped polyepoxide has not been extensively explored. Herein we undertake our studies of Lewis acidmediated tandem oxacyclizations of skipped polyepoxides containing an internal 2,3-disubstituted epoxide and/or 5,6-disubstituted epoxide, leading to polypyrans.

2.2. Results and Discussion

2.2.1. Oxacyclization with internal disubstituted epoxide

In order to focus the question of compatibility of an internal disubstituted epoxide, we elected to prepare triepoxide substrate 48 (scheme 7), as well as diepoxide 41 as a model system (scheme 6). Alkylation of triethyl phosphonoacetate 36 with prenyl bromide, and subsequent olefination with formaldehyde provided dienyl ester 37^{29}, which was reduced to the allylic alcohol 38 with diisobutyl aluminum hydride (DIBAL-H) at $-78^{\circ} \mathrm{C}$. Sharpless asymmetric epoxidation ${ }^{30 \mathrm{a}}$ of alcohol 38 and subsequent Shi diastereoselective epoxidation ${ }^{30 \mathrm{~b}}$ gave diepoxide 40, which was converted to the O-carbamate derivative 41 bearing the anticipated nucleophilic terminating group for tandem oxacyclization ${ }^{28}$.

Scheme 6. Synthesis of model substrate 41.

A similar sequence from the known dienyl bromide 43^{31} was utilized for the preparation of triepoxide substrate 48 (Scheme 7). Specifically, lithiated propargylic alcohol was alkylated with prenyl bromide and hydroxyl-directed reduction ${ }^{32}$ of the resulting enyne with LAH provided trans-alkene 42 as a single
isomer. Bromination of allylic alcohol 42 was performed under mild condition to produce light sensitive allylic bromide 43, which underwent alkylation with triethyl phosphonoacetate 36 and subsequent olefination with formaldehyde to provide trienyl ester 44. DIBAL-H reduction of 44 was followed by Sharpless asymmetric epoxidation to produce dienyl epoxy alcohol 46 with comparable yield as 42. Triepoxide 48 was obtained by double Shi epoxidation of hydroxy epoxy alkene 46 and O-carbamate formation under identical conditions used in scheme 6.

Scheme 7. Synthesis of skipped triepoxide 48.

Diepoxide substrate 41 was designed with the gem-disubstituted epoxide at $\mathrm{C} 2^{27 \mathrm{a}}$, so that 5-exo-cyclization at C 2 would not interfere with the anticipated endo-cyclization mode at C 5 of the other epoxide. However, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ as the Lewis acid promoter for oxabicyclization of 41 resulted in an acyclic aldehyde 50, attributed to fragmentation of an epoxonium ion 49 intermediate (scheme 8).

Scheme 8. Oxacyclization of model substrate diepoxide 41.

After evaluation of several other Lewis acids including ytterbium(III) triflate $\left[\mathrm{Yb}(\mathrm{OTf})_{3}\right]$ and gadolinium(III) triflate $\left[\mathrm{Gd}(\mathrm{OTf})_{3}\right],{ }^{33}$ we observed that TMSOTfmediated reaction with diepoxide 41 resulted in the desired spirobicyclic product 51 as the only isolable product. The structure of product 51, including stereochemistry, was conclusively confirmed by the single crystal X-ray analysis (figure 2). We attribute the strong silicon-oxygen covalent bond in the formation of epoxonium ion intermediate 49 to preventing the fragmentation observed with other Lewis acid promoters.

Figure 2. The thermal ellipsoid diagram for compound 51.

We next explored the application of the same conditions with a more complex substrate, triepoxide 48 (Scheme 9). To our surprise, the product 52, containing three five-membered rings from exo-mode oxacyclization of the internal
disubstituted C4-C5 epoxide, was obtained as the major product with TMSOTf after acetylating under standard conditions.

Scheme 9. Trialkylsilyl triflate-promoted oxacyclization of triepoxide 48 and 53.

In addition to the undesired exo-mode of cyclization, crystallography of the 52 (figure 3) revealed that not only C5 and C7 chiral centers but also C2 corresponded to retention of configuration from 48, whereas only C4 underwent the inversion of configuration expected from anti-addition of nucleophiles to epoxide carbons. Stoichiometric amount of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$-promoted reactions of substrate 48 gave similar results. The formation of product 52 was rationalized as possibly arising from protic acid catalysis and a carbenium ion or ion pair intermediate at C 2 , rather than selective activation of the terminal $\mathrm{C} 7-\mathrm{C} 8$ epoxide. While using catalytic amount of $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ as Lewis acid promoter, oxacyclization of triepoxide 48 or 53 at various reaction temperatures only resulted in fragmentation to 54 (and 55 in the case triepoxide 53 was used) (Scheme 9). Activation of terminal C7-C8 epoxide was apparently selective, but the newly-
formed B-O bond with negative charge is easy to break due to the developing positive charge on C5.

Figure 3. The thermal ellipsoid diagram for compound 52.

Thus we hypothesized that a sterically hindered and/or more robust siliconoxygen adduct might provide selective activation of the terminal C7-C8 epoxide, ${ }^{34}$ and if the silyl ether could be isolated, the reaction direction would be clarified. After screening several silyl Lewis acid promoters and conditions, we found that tert-butyldimethyl silyl triflate (TBSOTf) provided a substantially different outcome (scheme 10), affording the fused bis-pyran product 56 from endo-mode oxacyclization. Optimal yields were obtained in the presence

Scheme 10. TBSOTf-promoted oxacyclization of skipped triepoxide 48.

of aromatic amines to facilitate formation of the silyl ether and serving as a protic acid trap ${ }^{35}$, imidazole and 2,6-lutidine were successfully employed, but the best results (including excellent reproducibility) were observed with 2,6-di-tert-
butylpyridine (DTBMP). Crystallographic studies of 56 (figure 4) demonstrated that the expected trans-fused product was not formed, but rather the cis-fusion as shown in 56 was obtained, resulting from apparent retention of configuration of stereochemistry at C5.

Figure 4. The thermal ellipsoid diagram for compound 56.

Scheme 11. Mechanistic explanation of oxacyclization to bispyran 56.

The formation of tricyclic product 56 with apparent retention of configuration at both C4 and C5 is puzzling. 1,2-Disubstituted epoxides generally react with inversion of configuration at the site of nucleophilic addition, given the lack of stabilization for possible carbenium ion or ion pair intermediates at secondary carbons. However, the weakly nucleophilic triflate anion could be competing effectively with the C 2 epoxide oxygen ${ }^{36}$, undergoing direct nucleophilic addition at C5 via epoxonium ion 58 to possible triflate intermediate 59 (Scheme 11) with inversion of configuration at C5. This step would be followed by addition of the C2 oxygen to C5 with a second inversion of configuration, providing overall retention of configuration as observed at C5.

This mechanistic interpretation leads us to hypothesize that the energy of the reaction transition state required for synchronous cyclizations to form polypyrans is much higher than that in the analogous synthesis of polyoxepanes, and thus the stepwise mechanism shown in scheme 10 may operate. The relative efficacy of this cyclization pathway might be generally useful in the synthesis of cis-fused bispyrans, as observed in the LM and NO substructures of maitotoxin ${ }^{37}$.

2.2.2. Unexpected oxacyclization of skipped 2,3-

disubstituted epoxides

In an earlier study, McDonald's laboratory ${ }^{27 c}$ demonstrated that 3-substituted diepoxide 61 underwent $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ promoted endo oxacyclization to provide only oxepane 64 in good yield, while under similar conditions 2,3-disubstituted epoxide 62 produced only exo-cyclization product 65 in much lower yield (scheme 12). These results apparently confirmed the substituent (R) effects that either methyl or removable silane (TMS) at the 2,3-epoxide is required to achieve the endo-oxacyclization to oxepane.

Scheme 12. McDonald's oxacyclization of isoprenoid-derived polyepoxide.

Similar substituents effects on the mode of epoxide opening in oxacyclization are expected for skipped polyepoxide. However, there is no evidence in support of this hypothesis. Hence, we undertook the studies on oxacyclization of skipped 2,3-disubstitued epoxides to polypyrans. We began our studies with preparation of cyclization substrates diepoxide 67, as well as 66 with trimethylsilyl on C3 for control studies (figure 5).

Figure 5. Cyclization substrate 62 and 63.

66

67

Alkylation of propargylic alcohol with prenyl bromide followed by reductive halogenation ${ }^{38}$ of the resulting alkynol yielded vinyl iodide 68, which was used for $1,4-O-C$ silyl migration under modified Magriotis conditions ${ }^{39}$ to give vinyl silane 69 (scheme 13). Double Shi enantioselective epoxidation to diepoxy 70 and O carbamate formation under classical conditions afforded the oxacyclization substrate diepoxide 66.

Scheme 13. Synthesis of diepoxide 66.

For the synthesis of diepoxide 67 (scheme 14), regioselective hydrozirconation ${ }^{40}$ of alkyne 71 and subsequent transmetallation ${ }^{41}$ to organozinc 73 that underwent asymmetric addition ${ }^{41}$ to aldehyde 74 in the presence of chiral amino alcohol catalyst 72, provided the desired skipped dienol 75. Sharpless asymmetric epoxidation of 75 using D-diisopropyl tartrate (D-DIPT) as a chiral auxiliary yielded monoepoxide 76 as single isomer.

Scheme 14. Synthesis of diepoxide 67.

It is worthy of notice that Sharpless asymmetric epoxidation has been used to kinetically resolve recemic allylic secondary alcoho ${ }^{42}$, like 75 . Silylation of the secondary alcohol with triisopropysilyl triflate (TIPSOTf) and deacetylation with potassium carbonate in methanol gave allylic alcohol 77, which was epoxidized under Sharpless conditions using catalytic amounts of D-diisopropyl tartrate (DDIPT) to diepoxy alcohol 74. Vinyl group was then introduced via a two-step oxidation/methylenation sequence and placed to favor selective activation of the adjacent epoxide through r-electron donation. ${ }^{23}$ Diepoxide 67 was then obtained in good yield by two-step protection/deprotection.

With the diepoxide substrates 66 and 67 in hand, we performed the studies of the Lewis acid-promoted oxacyclization. However, under our standard oxacyclization conditions, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ as the Lewis acid promoter for oxacyclization of $\mathbf{6 7}$ resulted in an acyclic aldehyde 81, probably due to fragmentation of an epoxonium ion $\mathbf{8 0}$
intermediate (scheme 15), which is completely unexpected since trimethylsilyl of 66 was elected as a removable substituent and cation-stabilizing auxiliary on C-3 to favor the endo-oxacyclization of isoprenoid-derived epoxides to oxepanes. ${ }^{27 b}$

Scheme 15. Lewis acid promoted oxacyclization of diepoxide 66.

Oxacyclization promoted by other Lewis acids including ytterbium(III) triflate $\left[\mathrm{Yb}(\mathrm{OTf})_{3}\right]$, gadolinium(III) triflate $\left[\mathrm{Gd}(\mathrm{OTf})_{3}\right]$ and trimethylsilyl triflate (TMSOTf), proceeded in the same way to give acyclic product 81. One possible explanation for this unexpected result is that bulky substituent (TMS) on C-3 actually precluded carbamate from nucleophilic $S_{N} 2$ attack on the congested epoxonium ion or $\mathrm{S}_{\mathrm{N}} 1$ attack on congested carbon cation (C-3), thus resulting in fragmentation ${ }^{43}$ that would be impossible to occur for isoprenoid-derived polyepoxide substrates.

2,3-Disubstituted epoxide 66 was synthesized as a cyclization substrate in this study because according to our mechanistic understanding of oxacyclization, epoxonium ion intermediate (such as 34 in scheme 5) from skipped polyepoxide may experience more ring strain [3.1.0] than that from isoprenoid-derived polyepoxide (such as 63 in scheme 12), which may result in favorable endoregioselective oxacyclization without the assistance of substituents. Unfortunately, treatment of diepoxide 67 with Lewis acid $\mathrm{Gd}(\mathrm{OTf})_{3}$ resulted in partial cyclization to afford compound 83 as a major isolated product (scheme 16).

Scheme 16. Oxacyclization of skipped triepoxide 67.

Extending the reaction time under identical conditions, however, provided another unexpected bicyclo[2.2.1] product 85 in 56% yield. $\mathrm{Yb}(\mathrm{OTf})_{3}$ promoted similar oxacyclization of skipped diepoxide 67 as $\operatorname{Gd}(\mathrm{OTf})_{3}$ to give bicyclic compound 85 after 7 days, while exo-cyclization product 86 was isolated when quenching the reaction within 2 to 3 hours after addition of the Lewis acid $\left[\mathrm{Yb}(\mathrm{OTf})_{3}\right]$. Other Lewis acids including $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ and TMSOTf or protic acid (Amberlyst 15) resulted in exo-cyclization to bicyclic product 86. Taken these results together, we proposed a mechanism for the production of 85 that Lewis acid may activate the 2,3 -epoxide first and induced the exo-cyclization to form intermediate 82, which underwent another exo-cyclization to produce intermediate 84. Slow $\mathrm{S}_{\mathrm{N}} 2$ substitution on $\mathrm{C}-2$ was followed to afford 85 , whose structure was determined by extensive NMR studies.

Transitional metal-promoted opening of epoxide, including $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$, $\mathrm{Mo}(\mathrm{DMF})_{2}(\mathrm{CO})_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{HSiEt} /{ }_{3} / \mathrm{BCl}_{3}$, did not induce the subsequent cascade oxacyclization (Scheme 17). Palladium(0) did not induce cascade oxacyclization via intermediate 87 from oxidative addition of vinyl epoxide of $\mathbf{6 7}$.

Crude ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after aqueous workup indicated the presence of 2,3-epoxide. Molybdenum $\left[\mathrm{Mo}(\mathrm{DMF})_{2}(\mathrm{CO})_{4}\right]$ or rhodium $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ only triggered elimination of epoxide to form a diene through hypothetical intermediate 89. $\mathrm{HSiEt}_{3} / \mathrm{BCl}_{3}$ resulted in complex unidentified mixtures.

Scheme 17. Transition metal promoted opening of epoxide 67.

In summary, we have uncovered some novel mechanistic aspects of oxacyclization of skipped polyepoxide to polypyrans or polytetrahydrofurans: 1) Fragmentation of polyepoxides with Lewis acid was unique to skipped polyepoxides, as compared with isoprenoid-derived polyepoxides; 2) the role of C-3 substituents on the oxacyclization is so critical that different mechanisms was followed with different substituents; 3) energy of the reaction transition state required for synchronous cyclizations of skipped polyepoxides is much higher than that in the analogous synthesis of isoprenoid-derived polyepoxides, and thus the stepwise mechanism may operate. 4) Lewis acid has pronounced effects on efficacy of oxacyclization of skipped polyepoxides.

2.3. Conclusions

We have achieved the silyl Lewis acid-promoted endo-selective oxacyclization of internal disubstituted epoxide to polypyrans via a novel mechanistic pathway. ${ }^{44}$ The silyl Lewis acid was elected based on the mechanism and found to be generally effective on oxacyclization. The relative efficacy of this cyclization pathway might be generally useful in the synthesis of cis-fused bispyrans, as observed in the LM and NO substructures of maitotoxin.

Oxacyclization of skipped polyepoxides with 3-TMS substituted epoxide resulted in fragmentation with various Lewis acid promoters. Cyclization of 2,3disubstituted epoxide only proceeded in an exo mode to give cyclization products, which structures were highly dependent on the Lewis acid promoter and reaction time. These findings greatly expand our mechanistic understanding of oxacyclization of polyepoxides to polycyclic ethers. Further, these results will guide our development of novel oxacyclization in the future. The oxacyclizations of skipped polyepoxides explored in this part was summarized below.

2.4. Experiments

General information: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an Inova-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), or an Inova- 600 spectrometer (600 MHz for ${ }^{1} \mathrm{H}, 150 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). NMR spectra were recorded as solutions in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ with residual chloroform (7.27 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.23 ppm for ${ }^{13} \mathrm{C}$ NMR) taken as the internal standard, and were reported in parts per million (ppm); or as specified in deuterated benzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)(7.16 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR, 128.2 ppm for ${ }^{13} \mathrm{C}$ NMR). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. IR spectra were collected on a Mattson Genesis II FT-IR spectrometer, with samples as neat films. Mass spectra (high resolution FAB) were recorded on a VG 70-S Nier Johason Mass Spectrometer. Optical rotations were recorded at $23^{\circ} \mathrm{C}$ with a Perkin-Elmer Model 341 polarimeter. Melting point was recorded on FISHER-JOHNS melting point apparatus. Analytical thin layer chromatography (TLC) was performed on precoated glass backed plates purchased from Whatman (silica gel 60 F254; 0.25 mm thickness). Flash column chromatography was carried out with silica gel 60 (230-400 mesh ASTM) from EM Science. All reactions except as mentioned were conducted with anhydrous solvents in oven-dried or flame-dried and argoncharged glassware. All anhydrous solvents were dried over $3 \AA \AA$ or $4 \AA$ molecular sieves. Trace water content was tested with Coulometric KF Titrator from Denver Instruments. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. All reagents were purchased from Sigma-Aldrich.

Alkylation of phosphonoacetate and methylenation to ester 37^{29}

Triethyl phosphonoacetate $36(4.59 \mathrm{~g}, 20.5 \mathrm{mmol})$ was dissolved in THF (20 mL) and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(60 \%$ in mineral oil, $1.05 \mathrm{~g}, 25.1 \mathrm{mmol}$) was added in 20 portions over a 20 min period with stirring. After 10 min, prenyl bromide (2.34 $\mathrm{g}, 15.7 \mathrm{mmol})$ was added over 20 min , and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 6 h. $\mathrm{K}_{2} \mathrm{CO}_{3}(4.55 \mathrm{~g}, 33.0 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ and formaldehyde (37% in water, $5.01 \mathrm{~mL}, 62.8 \mathrm{mmol}$) were added to the solution. The mixture was then heated to $80{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 2 h . After cooling to $20^{\circ} \mathrm{C}$, the organic phase was separated and the aqueous phase was extracted twice with ether. The combined organic fractions were washed with water and brine, dried with anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. The residue was purified by silica gel chromatography to give 37 ($1.32 \mathrm{~g}, 50 \%$) as a colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.11$ (dd, J=2.8, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.49(\mathrm{dd}, \mathrm{J}=3.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=14.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71$ (s, 3H), 1.61 (s, 3H), 1.28 (t, J=7.2 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 167.5,140.1,134.2,124.4,120.8,60.8,30.5,25.9$, 17.8, 14.4.

Reduction of ester 37 with DIBAL-H ${ }^{29}$

The dienyl ester 37 ($923 \mathrm{mg}, 5.49 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. Diisobutylaluminum hydride (DIBAL-H, 1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12.1$ $\mathrm{mL}, 12.1 \mathrm{mmol})$ was added slowly. After stirring at $-78^{\circ} \mathrm{C}$ for 2 h , ethyl acetate $(20 \mathrm{~mL})$ was added dropwise to quench the excess DIBAL-H, followed by addition of sat. ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}, 20 \mathrm{~mL}\right)$ and sat. Rochelle's salt (20 mL). The mixture was stirred for several hours, until it became a clear solution, which was transferred to a separatory funnel. The organic fractions were collected, and the aqueous fractions were extracted with ethyl acetate ($50 \mathrm{~mL} x$ 2). The combined organic fractions were washed with water and brine, dried with anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. The residue was purified by silica gel chromatography to give analytical pure allylic alcohol 38 (558 mg, 85\%) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.14(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03$ (s, 2H), 2.72 (d, J=7.6 Hz, 2H), 1.94 (s, br, OH), 1.69 (s, 3H), 1.60 (s, 3H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.8,134.0,121.7,109.8,66.3,32.4,26.2,18.1$.

Sharpless asymmetric epoxidation of allylic alcohol $38^{29,30}$

In a 50 mL , round-bottomed flask, $4 \AA$ molecular sieves (1.86 g) were dispersed in anhydrous dichloromethane (25 mL). Then L-(+)-diisopropyl tartrate (L-DIPT, $117 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added to the reaction flask, and the mixture was cooled to $-40{ }^{\circ} \mathrm{C}$. After $10 \mathrm{~min}, \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(138 \mathrm{mg}, 0.47 \mathrm{mmol})$ was added, and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 min . After that time, t-BuOOH (5.0-6.0 M in decane, $1.69 \mathrm{~mL}, 9.32 \mathrm{mmol}$) was introduced, and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 30 min , after which time the allylic alcohol 38 ($588 \mathrm{mg}, 4.66 \mathrm{mmol}$) was added as a solution in dry dichloromethane (5 mL). The reaction mixture was warmed to $-18{ }^{\circ} \mathrm{C}$ and kept at this temperature overnight. The reaction was quenched by addition of acetone containing 2% water (10 mL), and warmed to room temperature and stirred for 3 h . After filtering through Celite to remove the molecular sieves and salts, the filtrate was dried over MgSO_{4}, the solids were filtered, and the solvent was removed by rotary evaporation. Purification by column chromatography gave pure epoxy alcohol 39 ($615 \mathrm{mg}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.06(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (d, J=12 Hz, 1H), 2.81 (d, J=4.8 Hz, 1H), 2.63 (d, J=4.2 Hz, 1H), 2.45 (dd, J=14.4, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (dd, J=15.6, 7.2 Hz, 2H), 1.67 (s, 3H), 1.58 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $: ~ \delta 135.5,117.7,63.1,60.2,49.4,30.7,25.9,18.0$.

Diastereoselective Shi epoxidation of epoxy alkene 39

Allylic alcohol 39 ($615 \mathrm{mg}, 4.33 \mathrm{mmol}$) was dissolved in a 1: 2 mixture of acetonitrile: dimethoxymethane (68 mL). Under vigorous agitation, a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}$ (EDTA) (44 mL), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(60 \mathrm{mg}, 0.18$ mmol) and 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose (Shi catalyst, D-epoxone ${ }^{\circledR}, 350 \mathrm{mg}, 1.36 \mathrm{mmol}$), were sequentially added. The mixture was cooled to $0^{\circ} \mathrm{C}$, and then Oxone ($3.80 \mathrm{~g}, 6.02 \mathrm{mmol}$), dissolved in 4 x $10^{-4} \mathrm{M} \mathrm{Na}_{2}$ (EDTA) (29.0 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.60 \mathrm{~g}, 26.0 \mathrm{mmol})$, dissolved in water $(29 \mathrm{~mL})$, were simultaneously added to the mixture over 1.5 h . Once the addition was completed, the mixture was stirred for 15 min, diluted with water and extracted with ethyl ether. The organic extracts were dried over MgSO_{4}, and the solvent was removed by rotary evaporation. Purification by column chromatography on silica gel yielded diepoxy alcohol 40 (547 mg, 80\%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 3.75(\mathrm{dd}, \mathrm{J}=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=12.8,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, \mathrm{J}=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$, 1H), 2.46 (br s, OH), 1.91 (dd, J=14.8, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (dd, J=14.8, 8.0 Hz, 1H), 1.29 (s, 3H), 1.23 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 64.4,63.5,60.7,58.7,51.0,32.2,24.8,18.9$.

Carbamate formation from diepoxy alcohol 40

Diepoxy alcohol 40 ($479 \mathrm{mg}, 3.03 \mathrm{mmol}$) was dissolved in THF (50 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. n-BuLi (2.5 M in hexane, $1.45 \mathrm{~mL}, 3.6 \mathrm{mmol}$) was added dropwise over 10 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and dimethyl chlorocarbamate ($648 \mathrm{mg}, 6.06 \mathrm{mmol}$) was added to the solution. The mixture was allowed to warm up to room temperature and stirred overnight. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic fractions were collected and dried over anhydrous MgSO_{4}, and the solvent was removed by rotary evaporation. The residue was purified by silica gel chromatography to afford diepoxy carbamate 41 ($589 \mathrm{mg}, 85 \%$) as a colorless oil.

$$
[\alpha]_{\mathrm{D}}=+5.0\left(c 0.7, \mathrm{CHCl}_{3}\right) .
$$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.33(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (dd, J=15, 6.0 Hz, 1H), 1.75 (dd, J=15.0, 7.2 Hz, 1H), 1.28 (s, 3H), 1.21 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 156.0,66.8,60.2,58.1,56.5,50.9,36.7,36.0$,
32.1, 24.7, 18.8.

Alkylation and Reduction with LAH to allylic alcohol 41

1) 2.2 equiv. n-BuLi

Propargylic alcohol

42

To a THF (25 mL) solution of propargylic alcohol ($1.4 \mathrm{~mL}, 24 \mathrm{mmol}$) was added n-BuLi (2.5 M in hexane, $19.2 \mathrm{~mL}, 48 \mathrm{mmol})$ dropwise over 20 minutes at $-78^{\circ} \mathrm{C}$. After stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes, the reaction mixture was allowed to warm up to room temperature and stirred at this temperature for 30 minutes, and then cooled to $0{ }^{\circ} \mathrm{C}$. Copper iodide (Cul, $114 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added to the cooled solution. After 30 minutes, prenyl bromide ($2.33 \mathrm{~mL}, 20 \mathrm{mmol}$) was added as a THF (2 mL) solution at $0^{\circ} \mathrm{C}-8^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm up to room temperature and stirred overnight. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic fractions were collected and dried over anhydrous MgSO_{4}, and the solvent was removed by rotary evaporation. The residue was purified by silica gel chromatography to afford enyn alcohol ($2.19 \mathrm{~g}, 72 \%$) as colorless oil. To a 250 mL flask was charged THF (80 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Lithium aluminum hydride (LAH, 1.0 M in diethyl ether, $20 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added to the cooled THF, resulting large amount of precipitate in the flask. A THF (5 mL) solution of the enyn alcohol $(2.19 \mathrm{~g}, 19.6 \mathrm{mmol})$ obtained above was then added to the suspension with stirring at $-78{ }^{\circ} \mathrm{C}$. After 10 minutes, the dry ice-acetone cooling bath was removed to allow warming to room temperature and stirred overnight. Ethyl acetate (20 mL) was added dropwise to quench the excess LAH, followed by addition of sat.
ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}, 20 \mathrm{~mL}\right)$ and sat. Rochelle's salt (60 mL). The mixture was stirred for several hours, until it became a clear solution, which was transferred to a separatory funnel. The organic fractions were collected, and the aqueous fractions were extracted with ethyl acetate ($80 \mathrm{~mL} \times 2$). The combined organic fractions were washed with water and brine, dried with anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. The residue was purified by silica gel chromatography to give analytical pure allylic alcohol 42 ($2.12 \mathrm{~g}, 95 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.64(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.72(\mathrm{t}, \mathrm{J}=7.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 133.2,132.1,129.0,121.7,64.0,31.1,25.9,17.9$.

Bromination of allylic alcohol 42^{31}

To a 250 mL round-bottomed flask was charged with dichloromethane (150 mL), allylic alcohol 42 ($4.2 \mathrm{~g}, 36.8 \mathrm{mmol}$) and triphenylphosphine ($11.6 \mathrm{~g}, 44.2 \mathrm{mmol}$). The solution was cooled with water-ice bath to $0^{\circ} \mathrm{C}$. After 20 minutes, carbon tetrabromide ($14.7 \mathrm{~g}, 44.2 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise to the reaction flask. After addition was complete, the reaction mixture was stirred for another two hours. Saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ was added to quench the reaction. The organic fractions were collected, and the aqueous fractions were extracted with diethyl ether ($80 \mathrm{~mL} \times 2$). The combined organic
fractions were washed with water and brine, dried with anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. 50 mL of hexane was added to the residue dissolved in ether (20 mL). The solid (most triphenylphosphine oxide) was filtered and washed with hexane ($10 \mathrm{~mL} \times 2$). The filtrate was concentrated and purified by passing through a short silica gel column to give allylic alcohol 43 ($5.8 \mathrm{~g}, 90 \%$) as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 5.68(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.74(\mathrm{t}, \mathrm{J}=6.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.3,133.8,126.3,120.9,33.8,30.9,25.9,17.9$.

Alkylation of phosphonoacetate and methylenation to ester 44

Prepared as described for compound 37, from triethyl phosphonoacetate 36 ($4.59 \mathrm{~g}, 20.5 \mathrm{mmol}$) in THF (20 mL), NaH (60% in mineral oil, $1.05 \mathrm{~g}, 25.1 \mathrm{mmol}$), 1-bromo-6-methylhepta-2,5-diene ${ }^{3}(43,2.97 \mathrm{~g}, 15.7 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(4.55 \mathrm{~g}, 33.0$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$, and formaldehyde (37% in water, $5.01 \mathrm{~mL}, 62.8 \mathrm{mmol}$). Yield: 1.14 g (35\%); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 2 \mathrm{H})$, 5.10 (m, 1H), 4.18 (dd, $J=15.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=$ $6.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 167.3,140.2,132.6,131.8,126.5,124.9,122.3$, $60.8,34.9,31.4,25.9,17.8,14.4$.

Reduction of ester 44 with DIBAL-H

Prepared as described for compound 38, from compound 44 ($1.14 \mathrm{~g}, 5.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and DIBAL-H (1.0 M in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12.1 \mathrm{~mL}, 12.1 \mathrm{mmol}\right)$. Yield: 773 mg (85\%), colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.24(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}$, $1 \mathrm{H}), 4.05$ (s, 2H), $2.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}$, 3H), 1.59 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 148.3,132.7,131.5,127.1,122.3,110.2,65.9$, 36.6, 31.4, 25.9, 17.8.

Sharpless asymmetric epoxidation of allylic alcohol 45

Prepared as described for compound 39 , from compound 45 ($773 \mathrm{mg}, 4.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), 4 \AA$ molecular sieves (1.86 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, $\mathrm{L}-(+)-$ diisopropyl tartrate ($117 \mathrm{mg}, 0.56 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($138 \mathrm{mg}, 0.47 \mathrm{mmol}$), and tert-BuOOH (5.0-6.0 M in decane, $1.69 \mathrm{~mL}, 9.32 \mathrm{mmol})$. Yield: 788 mg (93\%); colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.49(\mathrm{dt}, \mathrm{J}=15,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}$, 1 H), 3.73 (dd, J=11.4, 4.2 Hz, 1H), 3.60 (dd, $J=12,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (d, J=4.8 $\mathrm{Hz}, 1 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=15,7.8 \mathrm{~Hz}$, 1 H), 2.22 (dd, J=14.4, 6.6 Hz, 1H), 1.91 (dd, J=7.8, 4.2 Hz, 1H), 1.67 (s, 3H), $1.58(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.5,132.9,123.4,121.9,62.9,59.7,49.6,35.4$, 31.4, 25.8, 17.8.

Double Shi epoxidation of epoxy alkene 46

Monoepoxy dienyl alcohol $46(788 \mathrm{mg}, 4.33 \mathrm{mmol})$ was dissolved in a $1: 2$ mixture of acetonitrile : dimethoxymethane (68 mL). Under vigorous agitation, a
0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2}($ EDTA $)(44 \mathrm{~mL}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(60 \mathrm{mg}$, 0.18 mmol) and 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6pyranose (Shi catalyst, D-epoxone, $700 \mathrm{mg}, 2.72 \mathrm{mmol}$), were sequentially added. The mixture was cooled to $0^{\circ} \mathrm{C}$, and then Oxone ($7.60 \mathrm{~g}, 12.0 \mathrm{mmol}$), dissolved in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}$ (EDTA) (58 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(7.20 \mathrm{~g}, 52.0 \mathrm{mmol}$), dissolved in water (58 mL), were simultaneously added to the mixture over 2 hrs . Once the addition was completed, the mixture was stirred for 15 min , diluted with water and extracted with ethyl ether. The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed by rotary evaporation. Purification by column chromatography on silica gel yielded diepoxy alcohol 47 ($648 \mathrm{mg}, 3.03 \mathrm{mmol}$) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.79(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{br}, \mathrm{OH})$, 1.92 (dd, J=15.0, 4.8 Hz, 1H), 1.82 (dd, $J=14.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.69$ $(m, 1 H), 1.31(s, 3 H), 1.24(s, 3 H)$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 64.1,61.1,58.6,58.4,56.3,55.3,51.0,35.7,32.1$, 24.8, 19.0.

Carbamate formation from diepoxy alcohol 47

The triepoxy carbamate 48 was then prepared by following the carbamate formation as described for compound 41, with triepoxy alcohol 47 ($648 \mathrm{mg}, 3.03$ mmol) in THF (50 mL), n-BuLi (2.5 M in hexane, $1.45 \mathrm{~mL}, 3.63 \mathrm{mmol}$), and dimethyl chlorocarbamate ($648 \mathrm{mg}, 6.06 \mathrm{mmol}$). Yield: $674 \mathrm{mg}(85 \%$, two steps from 48) as a colorless oil.
$[a]_{\mathrm{D}}=+38.5\left(c 0.4, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.39(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91 (s, 6H), 2.87 (m, 3H), 2.78 (dd, J=11.4, $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.00 (dd, J=14.4, 4.8 $\mathrm{Hz}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.31$ (s, 3H), 1.24 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.1,66.9,61.0,58.5,56.4,56.1,54.8,50.8$, 36.8, 36.1, 35.3, 32.2, 24.9, 19.0.

Carbonate formation from triepoxy alcohol 47

A round-bottomed flask was charged with triepoxy alcohol 47 ($350 \mathrm{mg}, 1.64$ $\mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, dimethylaminopyridine (DMAP, $300 \mathrm{mg}, 2.45 \mathrm{mmol}$) and triethylamine ($1.3 \mathrm{~mL}, 8.18 \mathrm{mmol}$), and was cooled to $0^{\circ} \mathrm{C}$. Di-tert-butyl dicarbonate $\left[(\mathrm{Boc})_{2} \mathrm{O}, 1.43 \mathrm{~g}, 1.5 \mathrm{~mL}, 6.54 \mathrm{mmol}\right.$ was added at $0{ }^{\circ} \mathrm{C}$. The
reaction was stirred overnight while slowly warming up to room temperature. Saturated NaHCO_{3} was then added to quench and let the stirring continue for 30 - 60 minutes. The organic fractions were collected, and the aqueous fractions were extracted with diethyl ether ($20 \mathrm{~mL} \times 2$). The combined organic fractions were washed with water and brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was removed by rotary evaporation. The residue was purified by silica gel chromatography to give analytical pure allylic alcohol 53 (427 mg, 83\%) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{N} M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=14.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$.

TMSOTf-promoted cascade oxacyclization of diepoxy carbamate 41^{44}

Diepoxy carbamate 41 ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~mL}, \sim 0.05 \mathrm{M}$) at room temperature, and trimethylsilyl triflate (TMSOTf, 0.05 mL , 0.26 mmol) was added. The reaction progress was monitored by TLC. After completion, sat. NaHCO_{3} was added to quench the reaction and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic fractions were collected and dried over anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. The crude
product residue was purified by flash column chromatography on silica gel to give 51 ($20 \mathrm{mg}, 45 \%$), along a small amount of $51-\mathbf{X}$ ($4.0 \mathrm{mg}, 8 \%$).
m.p. $117-118^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=+1.2\left(c 0.34, \mathrm{CHCl}_{3}\right)$.

IR (neat, cm^{-1}): 3433, 2979, 2881, 1799, 1324, 1174, 1057.
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 4.34(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, \mathrm{J}=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (d, J=12.4 Hz, 1H), 3.61 (d, J=12.4, Hz, 1H), 3.39 (br s, 1H), 2.16 (d, J=6.8 $\mathrm{Hz}, 2 \mathrm{H}), 1.26$ (s, 3H), 1.25 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.7, 79.4, 75.2, 72.7, 70.9, 65.3, 37.1, 25.1, 19.2.

HRMS (FAB^{+}) Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$203.0914, found 203.0912.
X-Ray analysis: The structure of compounds 51 was established by X-ray analysis. The thermal ellipsoid diagrams and data for compound 51 are provided below:

For X-ray data of compound 51, see page 303-310.

Data for compound 51-X

IR (neat, cm^{-1}): 3408, 2935, 2877, 1687, 1498, 1451, 1403, 1198, 1061, 768.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (t, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{~s}, 6 \mathrm{H}), 1.93(\mathrm{dd}, \mathrm{J}=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, \mathrm{J}=14.4,4.5,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.28 (s, 3H), 1.20 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 157.1,75.1,71.2,70.2,70.2,67.0,36.9,36.2$, 34.1, 24.1, 22.6.

HRMS (FAB ${ }^{+}$) Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{1}\left[\mathrm{M}+\mathrm{H}^{+}\right]$248.14925, found 248.14937.

$\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$-promoted cascade oxacyclization of diepoxy carbamate 41

Following conditions generally utilized in our laboratory for the endo-selective cascade oxacyclization of polyepoxides, diepoxide $41(80 \mathrm{mg}, 0.35 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-40{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}\left(0.2 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $2.0 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was subsequently added dropwise over 5 minutes. After stirred for 30 minutes at $-40^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. The organic layer was separated. Aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (20 mL), dried with MgSO_{4} and evaporated. The resulting crude product was purified by column chromatography on silica gel to give aldehyde 50 ($60 \mathrm{mg}, 75 \%$) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{H} M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 204.4,156.4,141.7,114.9,80.6,65.7,65.3,36.7$ (2C), 20.9 (2C).

TMSOTf-promoted cascade oxacyclization of triepoxy carbamate 47^{4}

Following the general conditions utilized for oxacyclization of diepoxy carbamate to 51, triepoxy carbamate 48 ($55 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 0.04 \mathrm{M})$ at room temperature, and TMSOTf ($0.04 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added. The reaction progress was monitored by TLC. After completion, sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to quench the reaction and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic fractions were collected and dried over anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. The crude product residue was purified by flash column chromatography on silica gel to provide bis-tetrahydrofuran, which was subjected to acetylation reaction. Specifically, bis-tetrahydrofuran product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature. Acetic anhydride ($38 \mathrm{mg}, 0.38 \mathrm{mmol}$) and triethylamine (0.11 mL , $0.76 \mathrm{mmol})$ were added to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of bis-tetrahydrofuran with stirring. After stirring overnight, the reaction mixture was evaporated. Chromatography on silica gel afforded the acetylated product 52 ($32 \mathrm{mg}, 56 \%$).

IR (neat, cm^{-1}): 2959, 2921, 2851, 1802, 1731, 1242, 1051.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.01$ (dd, $\left.J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (d, J=10.8 Hz, 1H), $2.56(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, \mathrm{J}=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, \mathrm{J}=13.2$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (s, 3H), 1.70 (ddd, J=14.4, 6.0, 2.4 Hz, 1H), 1.20 (s, 6H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.5,154.1,89.1,83.7,81.6,78.6,76.7,76.0$, 71.9, 38.9, 35.6, 25.4, 25.4, 22.4.

HRMS (FAB ${ }^{+}$) Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{7}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$301.1282, found 301.1281.
X-Ray analysis: The structure of compounds 52 was established by X-ray analysis. The thermal ellipsoid diagrams and data for compound 52 are provided below:

For X-ray data of compound 52, see page 311-319.

Oxidative degradation of 52 to ketone 52-D

2) $\mathrm{NaIO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$

The cyclization product bis-tetrahydrofuran $52(20 \mathrm{mg}, 78 \mu \mathrm{~mol})$ was dissolved in methanol (5 mL) at room temperature. Anhydrous potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, $13.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the resulting reaction mixture was stirred for 60 minutes at room temperature. Solid ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}, 80 \mathrm{mg}, 1.5\right.$ mmol) was added to neutralize the base. After 20 minutes, filtration was performed to remove the salts and the filtrate was evaporated. The residue was dissolved in THF (3 mL) and water (1 mL). $\mathrm{NaIO}_{4}(100 \mathrm{mg}, 0.47 \mathrm{mmol})$ was added to the solution with vigorous stirring at room temperature. After 60 minutes, saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to quench the reaction and ethyl acetate (5 mL) was added to dilute the reaction mixture. Organic layer was separated and aqueous layer was extracted with ethyl acetate (10 x 2). The combined organic fractions were washed with brine (20 mL), dried with MgSO_{4} and evaporated under reduced pressure. Chromatography on silica gel gave the ketone 52-D (14 $\mathrm{mg}, 90 \%$). This method has been usually used in our group to confirm the product from exo-cyclization of polyepoxide.

IR (neat, cm^{-1}): 3450, 2972, 2926, 1758, 1448, 1178, 1147, 1063.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.44(\mathrm{ddd}, J=10.4,7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (ddd, $J=$ $9.6,3.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}$, $J=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1), 2.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.31(\mathrm{dd}, J=18.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, 1.14 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta: 213.4,85.0,79.5,77.3,76.6,71.7,38.9,34.9$, 25.3, 22.1.

HRMS (FAB^{+}) Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$201.11214, found 201.11211 .

For 2-D NMR spectra (H-H COSY) of compound 52-D, see page 293.

$\mathrm{BF}_{3}-\mathrm{Et}_{2} \underline{O}$-promoted cascade oxacyclization of triepoxy carbamate 48

Following conditions generally utilized in our laboratory for the endo-selective cascade oxacyclization of polyepoxides, triepoxide $48(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C} . \mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}\left(0.2 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was subsequently added dropwise over 5 minutes. After stirred for 30 minutes at $-40^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the organic layer was separated. Aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried with MgSO_{4} and evaporated. The resulting crude
product was purified by column chromatography on silica gel to give aldehyde 54 (20 mg, 50\%) and 55 ($5 \mathrm{mg}, 10 \%$) as colorless oils.

Data for compound 54

IR (neat, cm^{-1}): 3457, 2984, 2932, 1797, 1730, 1386, 1206, 1168, 1065, 772.
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{ddd}, J=17.2,10.4,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.2,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20(\mathrm{dd}, \mathrm{J}=15.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=15.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, 1.23 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 203.2,138.4,119.9,84.5,81.1,72.9,72.2,64.9$, 41.4, 23.5, 20.6.

Data for compound 55

IR (neat, cm^{-1}): 2981, 2934, 1741, 1460, 1369, 1277, 1255, 1165, 1102, 930, 858. ${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{ddd}, J=17.6,10.4,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=$ $14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (dd, J=14.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.17$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) : $\delta 204.4,139.8,117.7,82.7,81.0,73.2,68.4,55.6$, 51.9, 39.8, 27.9 (3C), 23.2, 21.0.

TBSOTf-promoted oxacyclization of triepoxy carbamate 48

Triepoxy carbamate 48 ($55 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~mL}, 0.04 \mathrm{M}$) at room temperature. 2,6-Di-tert-butyl-4-methylpyridine (DTBMP, $46.7 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added, followed by tert-butyldimethylsilyl triflate (TBSOTf, $0.05 \mathrm{~mL}, 0.23 \mathrm{mmol})$. The reaction progress was monitored by TLC. After completion, sat. NaHCO_{3} was added to quench the reaction, and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic fractions were collected and dried over anhydrous MgSO_{4}, and solvent was removed by rotary evaporation. The crude product residue was purified by flash column chromatography on silica gel to yield bis-tetrahydropyran 56 (39.6 mg, 56\%).
m.p. $195-200^{\circ} \mathrm{C}$ (sublimed). $[\alpha]_{\mathrm{D}}=+18.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$.

IR (neat, cm^{-1}): 2958, 2882, 1786, 1249, 1059.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.03(\mathrm{dd}, \mathrm{J}=12.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $2 H), 3.75(\mathrm{dd}, \mathrm{J}=11.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m} \mathrm{1H}), 3.29(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, \mathrm{J}=15.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (dd, J=15.2, 4.0 $\mathrm{Hz}, 1 \mathrm{H}$), 1.66 (ddd, J=14.0, 12, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.21 (s, 3H), 1.05 (s, 3H), 0.81 (s, $9 H), 0.00(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 154.5,77.8,76.3,74.5,72.7,71.0,69.3,63.4$, $37.2,34.5,28.3,25.9,18.0,15.7,-3.8,-4.7$.

HRMS (FAB ${ }^{+}$) Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{Si}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$373.2041, found 373.2034. page 294-296.

X-Ray analysis: The structure of compounds 56 was established by X-ray analysis. The thermal ellipsoid diagrams and data for compound 56 are provided below:

For X-ray data of compound 56, see page 320-329.

Alkylation and reductive iodination to vinyl iodide 68^{38}

To a solution of sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al, 65\% in toluene, $7.7 \mathrm{~mL}, 25.2 \mathrm{mmol}$) in diethyl ether (10 mL) was added propargylic alcohol ($1.88 \mathrm{~g}, 16.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ slowly over 30 minutes. After the addition was complete, the reaction mixture was stirred for 10 minutes at $0{ }^{\circ} \mathrm{C}$ and then the
water-ice cooling bath was removed. The reaction was allowed to warm up to room temperature and stirred overnight. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ with dry ice-acetone bath for 10 minutes. N-iodosuccinimide (NIS, $6.43 \mathrm{~g}, 28.6 \mathrm{mmol}$) in diethyl ether (10 mL) was added slowly to the reaction mixture. The reaction was allowed to warm up to room temperature and stirred for another 2-3 hours. Saturated Rochelle's salt was used to quench the reaction that was stirred for 1 or 2 hours, resulting in a clear solution. The organic layer was separated and aqueous layer was extracted with diethyl ether ($50 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (50 mL), dried with MgSO_{4} and evaporated. The resulting crude product was purified by column chromatography on silica gel to give vinyl iodide $68(1.3 \mathrm{~g}, 31 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.24 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.02 (s, OH), 1.71 (s, 3H), 1.61 (s, 3H).

Silylation and 0-C Silyl migration to vinyl silane 69^{39}

allylic alcohol $68(1.26 \mathrm{~g}, 5.04 \mathrm{mmol})$ was silylated with trimethylsilyl chloride $(1.28 \mathrm{~mL}, 10.1 \mathrm{mmol})$ in THF (10 mL) in the presence of triethylamine (1.4 mL , 10.1 mmol) at $0^{\circ} \mathrm{C}$. After aqueous workup (sat. NaHCO_{3}), the crude product was used for the O-C silyl migration reaction. Another round bottomed flask was charged with a stir bar and THF (30 mL), then cooled to $-78^{\circ} \mathrm{C}$. tert-Butyllithium (1.7 M in pentane, $6.4 \mathrm{~mL}, 11.0 \mathrm{mmol}$) was added to the THF solution slowly.

Silyl ether ($1.62 \mathrm{~g}, 5.0 \mathrm{mmol}$) obtained above was added slowly as a THF (5 mL) solution. After stirred for 30 minutes at $-78^{\circ} \mathrm{C}$, trimethylsilyl chloride $(1.26 \mathrm{~mL}$, 10.0 mmol) was added and the resulting reaction mixture was warmed up to room temperature slowly and stirred for another 1 hour at room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added to quench the reaction. The organic layer was separated and aqueous layer was extracted with diethyl ether ($30 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (50 mL), dried with MgSO_{4} and evaporated. The resulting crude product was purified by column chromatography on silica gel to give vinyl iodide 69 ($940 \mathrm{mg}, 64 \%$ for 2 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 5.97(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.63 (d, J=6.6 Hz, 2H), 1.56 (s, 3H), 1.45 (s, 3H), 0.00 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 143.5, 140.2, 132.6, 123.3, 62.3, 36.4, 25.9, 18.0, 0.39 (3C).

Double Shi epoxidation of epoxy alkene 46

Following the Shi epoxidation conditions described for triepoxide 47, dienyl alcohol $69(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ was epoxidized to $70(66 \mathrm{mg}, 60 \%)$ with $4: 1$ diastereoselectivity based on the H NMR. Dienyl alcohol 69 ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in a $1: 2$ mixture of acetonitrile : dimethoxymethane (10 mL). Under vigorous agitation, a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2}$ (EDTA)
$(6 \mathrm{~mL}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(10 \mathrm{mg}, 0.29 \mu \mathrm{~mol})$ and 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose (Shi catalyst, d-epoxone, $77.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), were sequentially added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and then oxone (920 mg , 24.0 mmol), dissolved in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2}($ EDTA $)(3.4 \mathrm{~mL})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(7.20 \mathrm{~g}$, 52.0 mmol), dissolved in water (3.4 mL), were simultaneously added to the mixture over 3 hrs. Once the addition was completed, the mixture was stirred for another hour, diluted with water and extracted with ethyl ether. The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed by rotary evaporation. Purification by column chromatography on silica gel yielded diepoxy alcohol 70 ($66 \mathrm{mg}, 60 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=7.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.61 (dd, $J=7.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, \mathrm{OH}), 1.91(\mathrm{dd}, J=15.0,4.8 \mathrm{~Hz}$, 1 H), 1.34 (dd, $J=15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.16$ (s, 3H), 1.08 (s, 3H), $0.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $: \delta 64.1,62.8,60.9,58.7,55.7,36.1,24.8,18.9,-1.22$ (3C).

Carbamate formation from diepoxy alcohol 70

The diepoxy carbamate 66 was then prepared by following the carbamate formation as described for carbamates 41 and 48, with diepoxy alcohol 70 (220 $\mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (10 mL), n-BuLi (2.5 M in hexane, $0.6 \mathrm{~mL}, 1.5 \mathrm{mmol}$), and dimethyl chlorocarbamate ($321 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: 230 mg (79%) as colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} 3\right): ~ \delta 4.17(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=12.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=7.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (s, 3H), 2.88 (s, 3H), 2.58 (dd, J $=6.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=14.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.13 (s, 3H), 1.05 (s, 3H), 0.01 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.3,65.3,61.1,60.7,58.4,55.0,36.6,36.1$, 35.8, 24.8, 18.8, -1.43 (3C).

Hydrozirconation, transmetallation and addition to aldehyde $74^{41 \mathrm{~b}}$

A solution of alkyne $71(3.0 \mathrm{~g}, 17.6 \mathrm{mmol})$ in $150 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ (water: 2.1 ppm) was kept under argon atmosphere and treated with zirconocene hydrochloride $\left(\mathrm{Cp}_{2} \mathrm{ZrHCl}\right.$, freshly prepared from reduction of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with lithium aluminum
hydride, $8.82 \mathrm{~g}, 35.3 \mathrm{mmol})$. The mixture was stirred at room temperature until homogenous solution was formed (about 10 to 20 minutes) and cooled to $-65{ }^{\circ} \mathrm{C}$ with dry ice-acetone bath. Dimethylzinc (1.0 M in toluene, $30 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was added over 30 minutes at $-65{ }^{\circ} \mathrm{C}$. After addition was complete, the reaction mixture was stirred for 40 minutes. Chiral amino alcohol 72 ($470 \mathrm{mg}, 1.76 \mathrm{mmol}$) was added as a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution. The resulting solution was warmed up to -30 oC over 30 minutes and aldehyde $74(2.12 \mathrm{~g}, 17.6 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was added dropwise. After addition was complete, the reaction mixture was allowed to warm up to room temperature slowly and stirred overnight. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ was added slowly at the beginnings to quench the reaction. The organic layer was separated and aqueous layer was extracted with diethyl ether ($80 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried with MgSO_{4} and evaporated. The resulting crude product was purified by column chromatography on silica gel to give bis-allylic alcohol 75 ($4.07 \mathrm{~g}, 77 \%$) as colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.74(\mathrm{t}, J=17.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{dt}, J=17.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{ddt}, J=15.6,9.6,6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}$, 9H), $0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,135.6,131.5,130.6,125.1,72.3,64.4,63.2$, 26.1 (3C), 21.1, 18.6, -5.0 (2C).

Sharpless asymmetric epoxidation of bis-allylic alcohol 75

Following the conditions developed by Sharpless and described for compound 39, from compound $75(2.1 \mathrm{~g}, 7.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), 4 \AA$ molecular sieves (3.5 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL}$), D-(-)-diisopropyl tartrate ($117 \mathrm{mg}, 0.56 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-$ $\mathrm{Pr}_{4}{ }_{4}(138 \mathrm{mg}, 0.47 \mathrm{mmol})$, and $t-\mathrm{BuOOH}(5.0-6.0 \mathrm{M}$ in decane, $2.8 \mathrm{~mL}, 14.0$ $\mathrm{mmol})$. Yield of 76: $1.55 \mathrm{~g}(70 \%)$; colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.30(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}$, 1H), 3.09 (ddd, $J=4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 170.9,131.4,127.3,69.0,64.2,62.7,57.3,55.3$, 26.0 (3C), 21.0, 18.5, -5.1, -5.2.

Preparation of diepoxy alcohol 78

Allylic alcohol 76 ($1.10 \mathrm{~g}, 3.48 \mathrm{mmol}$) was silylated with triisopropylsilyl triflate (TIPSOTf, $1.07 \mathrm{~g}, 3.48 \mathrm{mmol})$ in the presence $2,6-$-lutidine ($0.8 \mathrm{~mL}, 6.9 \mathrm{mmol}$) in $12 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 30 minutes. Quenching the reaction with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20$
mL). The organic layer was separated and aqueous layer was extracted with diethyl ether ($80 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (100 mL), dried with MgSO_{4} and evaporated. The residue was subjected to deacetylation with potassium carbonate ($50 \mathrm{mg}, 0.36 \mathrm{mmol}$) in dry methanol (20 mL) at room temperature for 30 minutes. The resulting allylic alcohol 77 (1.45 g, 3.38 mmol, 97% for 2 steps) was epoxidized using typical Sharpless asymmetric epoxidation conditions to give diepoxy alcohol 78 ($1.36 \mathrm{~g}, 90 \%$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, $4 \AA$ molecular sieves $(2.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, D-(-)-diisopropyl tartrate (117 mg , $0.56 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(138 \mathrm{mg}, 0.47 \mathrm{mmol})$, and tert-BuOOH $(5.0-6.0 \mathrm{M}$ in decane, $1.35 \mathrm{~mL}, 6.76 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.05(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.80$ (dd, $J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{ddd}, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ (m, 21H), $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 73.6,63.0,61.4,57.8,57.6,55.9,55.8,26.1$ (3C),
18.5, 18.1 (3C), 18.1 (6C), 14.4, 12.5 (2C), $-5.17,-5.22$.

Parikh-Doering oxidation and Wittig methylenation to vinyl diepoxide 79

Parikh-Doering oxidation of 78: To a mixture of epoxy alcohol 78 (950 mg , 2.14 mmol), dry dimethylsulfoxide (DMSO, $1.75 \mathrm{~mL}, 24.7 \mathrm{mmol}$) and
triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}, 1.32 \mathrm{~mL}, 9.50 \mathrm{mmol}\right)$ in dichloromethane $(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sulfur trioxide-pyridine complex (SO_{3}-Pyr., $\left.1.06 \mathrm{~g}, 6.67 \mathrm{mmol}\right)$ in four portions. After 3.5 hours, the reaction mixture was diluted with ether (20 mL) and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The organic layer was separated and aqueous layer was extracted with diethyl ether ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (50 mL), dried with MgSO_{4} and evaporated to give epoxy aldehyde.

Wittig methylenation of epoxy aldehyde: In another flask was charged with methyltriphenylphosphonium bromide $\left(\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}, 1.14 \mathrm{~g}, 3.2 \mathrm{mmol}\right)$ and THF (3 mL) and cooled to $0^{\circ} \mathrm{C}$. Sodium bis(trimethylsilyl)amide (NaHMDS, 1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added to this cooled solution, which was then stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$ to form a Wittig reagent solution. The epoxy aldehyde obtained from the Parikh-Doering oxidation was added to this Wittig reagent solution. The reaction mixture was stirred for 40 minutes at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with ether $(20 \mathrm{~mL})$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20$ mL). The organic layer was separated and aqueous layer was extracted with diethyl ether ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (50 mL), dried with MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel to afford diepoxy alkene 79 ($820 \mathrm{mg}, 87 \%$ for 2 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.49(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (dd, $J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.27(\mathrm{dd}, J=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{ddd}, J=4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=6.4$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~m}, 21 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 134.9,120.1,73.4,63.1,62.1,57.2,56.1,55.9$, 26.1 (3C), 18.6, 18.2 (9C), 12.6, -5.1 (2C).

Selective desilylation and carbamate formation from diepoxy alcohol 79

79

Selective removal of tert-butydimethylsilyl of 79 was achieved by treatment of THF (30 mL) solution of $79(250 \mathrm{mg}, 0.566 \mathrm{mmol})$ with hydrofluoride-pyridine complex (HF-pyr., 9 mL of HF-pyridine stock solution, prepared by 2.0 g of Aldrich pyridiniumhydrofluoride, 4 mL of pyridine and 16 mL of THF) in a Nalgene container at room temperature. The reaction mixture was stirred for 1-2 hours and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added dropwise to quench the reaction. The organic layer was separated and aqueous layer was extracted with diethyl ether ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (50 mL), dried with MgSO_{4} and evaporated. The residue ($137 \mathrm{mg}, 75 \%$) was dried under vacuum overnight and used for the carbamate formation without further purification. The diepoxy carbamate 67 was then prepared by following the carbamate formation as described for carbamates 41, 48 and 66. IR (neat, cm^{-1}): 2943, 2866, 1710, 1462, 1399, 1187, 1149, 1061, 883.
${ }^{1} \mathrm{H}^{\mathrm{HMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.57(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (dd, $J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (dd, $J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 134.8,120.3,73.3,65.2,62.0,56.4,56.1,54.5$, $41.8,36.8,18.2$ (6C), 12.6 (3C).

Lewis acid-promoted fragmentation of diepoxysilyl carbamate 66

Procedure A: Following conditions generally utilized in our laboratory for the endo-selective cascade oxacyclization of polyepoxides, diepoxide $66(50 \mathrm{mg}$, $0.172 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-40{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (0.2 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was subsequently added dropwise over 5 minutes. After stirred for 30 minutes at $-40{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. The organic layer was separated. Aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL} \times 2$). The combined organic layers were washed with brine (20 mL), dried with MgSO_{4} and evaporated. The resulting crude product was purified by column chromatography on silica gel to give aldehyde 81 ($27.5 \mathrm{mg}, 65 \%$) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, \mathrm{~J}=2.8$ Hz, 1H), 4.09 (dd, J=8.4, 3.2 Hz, 1H), 3.88 (dd, J=11.6, 3.2 Hz, 1H), 3.69 (dd, $J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.

Procedure B: Diepoxide 66 ($50 \mathrm{mg}, 0.172 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL}) . \mathrm{Yb}(\mathrm{OTf})_{3}(320 \mathrm{mg}, 0.516 \mathrm{mmol})$ or $\mathrm{Gd}(\mathrm{OTf})_{3}(312 \mathrm{mg}, 0.512 \mathrm{mmol})$ was subsequently added at room temperature and stirred for 2-4 hours at room temperature. After completion, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. Workup as procedure A, column chromatography on silica gel gave aldehyde 81 ($32.5 \mathrm{mg}, 65 \%$) as a colorless oil. Treatment of diepoxide 66 with TMSOTf resulted in unidentified complex mixtures.

Lewis acid-promoted oxacyclization of diepoxy carbamate 67

Procedure A: Following conditions generally utilized in our laboratory for the endo-selective cascade oxacyclization of polyepoxides, diepoxide $67(30 \mathrm{mg}, 75$ $\mu \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C}$. $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}(0.53$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.15 \mathrm{~mL}, 80 \mu \mathrm{~mol}$) was subsequently added dropwise over 5 minutes. After stirred for 30 minutes at $-40{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. The organic layer was separated. Aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL} \times 2$). The combined organic layers were washed with brine (20 mL), dried with MgSO_{4} and evaporated. The resulting crude product was purified by column chromatography on silica gel to give aldehyde 86 (13.5 mg, 45 \%) as a colorless oil.

Procedure B: Diepoxide $67(30 \mathrm{mg}, 75 \mu \mathrm{~mol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL}) . \mathrm{Yb}(\mathrm{OTf})_{3}(140 \mathrm{mg}, 0.23 \mathrm{mmol})$ was subsequently added at room temperature and stirred for 2-4 hours at room temperature. After the starting material was completely consumed, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. Workup as procedure A, column chromatography on silica gel gave aldehyde 86 ($18.0 \mathrm{mg}, 60 \%$) as a colorless oil.

Procedure C: Diepoxide 67 ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL}) . \mathrm{Gd}(\mathrm{OTf})_{3}(190 \mathrm{mg}, 0.32 \mathrm{mmol})$ was subsequently added at room temperature and stirred for 2-4 hours at room temperature. The reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. Workup as procedure A, column chromatography on silica gel gave aldehyde 82 ($16.0 \mathrm{mg}, 40 \%$) as a colorless oil.

Procedure D: Diepoxide 67 ($40 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL}) . \mathrm{Yb}(\mathrm{OTf})_{3}(187 \mathrm{mg}, 0.306 \mathrm{mmol})$ or $\mathrm{Gd}(\mathrm{OTf})_{3}(190 \mathrm{mg}, 0.315 \mathrm{mmol})$ was subsequently added at room temperature and stirred for 7 days at room temperature. The reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and stirred overnight at room temperature. Workup as procedure A, column chromatography on silica gel gave aldehyde 85 ($26.0 \mathrm{mg}, 65 \%$) as a colorless oil.

Data for compound 82

IR(neat, cm^{-1}): 3469, 3089, 2944, 2867, 1796, 1463, 1389, 1177, 1125, 1077, 883.
${ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.53(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{q}$, $J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=7.8,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ (ddd, $J=6.6,4.8,4.2 \mathrm{~Hz}$, $1 H), 3.67(\mathrm{dd}, \mathrm{J}=7.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=7.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.20-1.02(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.7,134.3,121.1,75.0,74.4,73.8,67.3,59.9$, 56.7, 18.2 (6C), 12.8 (3C).

for 2-D spectrum (H-H COSY) of compound 82, see page 271.

Data for compound 86

IR(neat, cm^{-1}): 3494, 3076, 2942, 2866, 1781, 1463, 1383, 1174, 1110, 1068, 881.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.98$ (ddd, $\left.\mathrm{J}=17.2,10.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26(\mathrm{dt}, \mathrm{J}=$ $16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dt}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{ddd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=4.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, \mathrm{OH}, 1 \mathrm{H}), 1.20-1.02(\mathrm{~m}$, 21H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,136.0,117.4,89.1,86.8,82,9,80.3,75.2$, 67.6, 18.1 (6C), 12.1 (3C).

for 2-D spectrum (H-H COSY) of compound 86, see page 276.

Data for compound 85:

IR (neat, cm^{-1}): 3080, 2943, 2866, 1709, 1187, 1062.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.14(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=8.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51$ (dd, J=10.8, $10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.92(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta \quad 155.7,137.4,116.8,83.8,83.4,82.7,76.1,71.1$, 62.2, 36.7, 36.3, 18.2, 12.1.

HRMS (FAB ${ }^{+}$) Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~N}_{1} \mathrm{Si}_{1}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 400.2514$ found 400.2514 .
For NOE and 2-D NMR (H-H COSY and H-H NOESY, H-C HMQC) of compound 85, see page 272-275.

2-D NMR spectra (COSY, NOESY, HMQC, NOE)

COSY spectra of compound 52-D

\square

NOESY spectra of compound 56

NOE spectra of compound 56

COSY spectra of compound 82

COSY spectra of compound 85

NOESY spectra of compound 85

NOE spectra of compound 85

HMQC spectra of compound 85

COSY spectra of compound 86

X-Ray database in the biomimetic synthesis of
 fused polypyrans

X-Ray data of compound 51

Table 1. Crystal data and structure refinement for 51.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=65.78^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)

T101
C9 H14 O5
202.20

173(2) K
1.54178 Å

Orthorhombic
P2(1)2(1)2(1)
$a=6.1075(1) \AA \quad \alpha=90^{\circ}$.
$b=7.7931(2) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=19.7674(4) \AA \quad \gamma=90^{\circ}$.
$940.86(3) \AA^{3}$
4
$1.427 \mathrm{Mg} / \mathrm{m}^{3}$
$0.994 \mathrm{~mm}^{-1}$
432
$0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$
7.24 to 65.78°.
$-6<=\mathrm{h}<=6,-9<=\mathrm{k}<=8,-23<=1<=22$
4082
$1490[\mathrm{R}(\mathrm{int})=0.0169]$
94.9 \%

Semi-empirical from equivalents
0.9071 and 0.6363

Full-matrix least-squares on F^{2}
1490 / 0 / 184
1.787
$\mathrm{R} 1=0.0254, \mathrm{wR} 2=0.0677$
$\mathrm{R} 1=0.0260, \mathrm{wR} 2=0.0681$

Absolute structure parameter	$0.13(17)$
Extinction coefficient	$0.0166(13)$
Largest diff. peak and hole	0.147 and $-0.174 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right.$) for 51 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U} i \mathrm{j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$2463(2)$	$2599(2)$	$6839(1)$	$23(1)$
$\mathrm{C}(2)$	$4585(2)$	$1567(2)$	$6756(1)$	$24(1)$
$\mathrm{C}(3)$	$5080(2)$	$1160(2)$	$6017(1)$	$25(1)$
$\mathrm{C}(4)$	$3130(2)$	$281(2)$	$5698(1)$	$23(1)$
$\mathrm{C}(5)$	$1073(2)$	$1338(2)$	$5803(1)$	$25(1)$
$\mathrm{C}(6)$	$2854(3)$	$-1592(2)$	$5916(1)$	$26(1)$
$\mathrm{C}(7)$	$2980(2)$	$-1461(2)$	$4760(1)$	$28(1)$
$\mathrm{C}(8)$	$2607(3)$	$4400(2)$	$6550(1)$	$31(1)$
$\mathrm{C}(9)$	$1791(3)$	$2644(2)$	$7576(1)$	$31(1)$
$\mathrm{O}(1)$	$728(2)$	$1611(1)$	$6509(1)$	$25(1)$
$\mathrm{O}(2)$	$6316(2)$	$2510(2)$	$7061(1)$	$33(1)$
$\mathrm{O}(3)$	$3453(2)$	$131(1)$	$4969(1)$	$28(1)$
$\mathrm{O}(4)$	$2561(2)$	$-2508(1)$	$5286(1)$	$32(1)$
$\mathrm{O}(5)$	$2916(2)$	$-1907(2)$	$4184(1)$	$37(1)$

Table 3. Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{5 1 .}$

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.4633(16)$	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$	110.15(11)
$\mathrm{C}(1)-\mathrm{C}(9)$	$1.5143(18)$	$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	113.32(11)
$\mathrm{C}(1)-\mathrm{C}(8)$	1.518(2)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	111.48(12)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.534(2)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	108.17(11)
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.4213(18)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	112.30(11)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5245(19)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{H}(7)$	110.5(9)
$\mathrm{C}(2)-\mathrm{H}(7)$	0.983(18)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(7)$	107.3(9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.512(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(7)$	107.0(10)
$\mathrm{C}(3)-\mathrm{H}(8)$	0.997(17)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	109.76(11)
$\mathrm{C}(3)-\mathrm{H}(9)$	0.965(18)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(8)$	108.1(9)
$\mathrm{C}(4)-\mathrm{O}(3)$	$1.4581(15)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(8)$	111.8(8)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5162(19)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(9)$	111.8(10)
$\mathrm{C}(4)-\mathrm{C}(6)$	1.531(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(9)$	108.6(9)
$\mathrm{C}(5)-\mathrm{O}(1)$	1.4275 (15)	$\mathrm{H}(8)-\mathrm{C}(3)-\mathrm{H}(9)$	106.8(13)
$\mathrm{C}(5)-\mathrm{H}(10)$	0.985(17)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	109.99(11)
$\mathrm{C}(5)-\mathrm{H}(11)$	1.012(17)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	106.92(10)
$\mathrm{C}(6)-\mathrm{O}(4)$	1.4470 (16)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.46(12)
$\mathrm{C}(6)-\mathrm{H}(12)$	0.946(18)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	102.50(11)
$\mathrm{C}(6)-\mathrm{H}(13)$	0.979(16)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	113.62(12)
$\mathrm{C}(7)-\mathrm{O}(5)$	$1.1898(16)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	112.84(12)
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.3401(19)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	109.70(11)
$\mathrm{C}(7)-\mathrm{O}(4)$	$1.3462(17)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(10)$	110.7(9)
$\mathrm{C}(8)-\mathrm{H}(4)$	0.951(19)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(10)$	108.9(9)
$\mathrm{C}(8)-\mathrm{H}(5)$	0.98(2)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(11)$	107.5(8)
$\mathrm{C}(8)-\mathrm{H}(6)$	0.976(18)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(11)$	108.7(10)
$\mathrm{C}(9)-\mathrm{H}(1)$	1.003(18)	$\mathrm{H}(10)-\mathrm{C}(5)-\mathrm{H}(11)$	111.4(13)
$\mathrm{C}(9)-\mathrm{H}(2)$	1.02(2)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(4)$	103.98(10)
$\mathrm{C}(9)-\mathrm{H}(3)$	0.947(19)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{H}(12)$	105.7(10)
$\mathrm{O}(2)-\mathrm{H}(14)$	0.82(2)	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(12)$	111.1(11)
		$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{H}(13)$	107.7(9)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(9)$	104.19(11)	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(13)$	110.6(11)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(8)$	111.14(11)	$\mathrm{H}(12)-\mathrm{C}(6)-\mathrm{H}(13)$	116.8(12)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(8)$	110.84(12)	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(3)$	124.98(13)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	106.75(10)	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(4)$	123.71(14)

$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(4)$	$111.30(10)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(4)$	$110.6(12)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(5)$	$111.4(11)$
$\mathrm{H}(4)-\mathrm{C}(8)-\mathrm{H}(5)$	$104.9(16)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(6)$	$113.2(11)$
$\mathrm{H}(4)-\mathrm{C}(8)-\mathrm{H}(6)$	$109.2(14)$
$\mathrm{H}(5)-\mathrm{C}(8)-\mathrm{H}(6)$	$107.2(15)$
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{H}(1)$	$107.1(9)$
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{H}(2)$	$113.8(10)$
$\mathrm{H}(1)-\mathrm{C}(9)-\mathrm{H}(2)$	$110.5(15)$
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{H}(3)$	$108.7(9)$
$\mathrm{H}(1)-\mathrm{C}(9)-\mathrm{H}(3)$	$112.3(14)$
$\mathrm{H}(2)-\mathrm{C}(9)-\mathrm{H}(3)$	$104.4(16)$
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	$114.05(10)$
$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{H}(14)$	$108.3(14)$
$\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(4)$	$110.52(10)$
$\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(6)$	$110.02(11)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 51. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$21(1)$	$25(1)$	$24(1)$	$-3(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(2)$	$21(1)$	$21(1)$	$28(1)$	$0(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(3)$	$19(1)$	$24(1)$	$33(1)$	$-1(1)$	$4(1)$	$0(1)$
$\mathrm{C}(4)$	$22(1)$	$26(1)$	$20(1)$	$-1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(5)$	$24(1)$	$32(1)$	$21(1)$	$-5(1)$	$-2(1)$	$4(1)$
$\mathrm{C}(6)$	$30(1)$	$26(1)$	$23(1)$	$-4(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(7)$	$19(1)$	$35(1)$	$29(1)$	$-4(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(8)$	$38(1)$	$23(1)$	$33(1)$	$-1(1)$	$0(1)$	$5(1)$
$\mathrm{C}(9)$	$30(1)$	$36(1)$	$26(1)$	$-4(1)$	$2(1)$	$-6(1)$
$\mathrm{O}(1)$	$19(1)$	$33(1)$	$23(1)$	$-5(1)$	$0(1)$	$-1(1)$
$\mathrm{O}(2)$	$20(1)$	$40(1)$	$41(1)$	$-12(1)$	$-4(1)$	$-3(1)$
$\mathrm{O}(3)$	$35(1)$	$27(1)$	$22(1)$	$-2(1)$	$6(1)$	$-1(1)$
$\mathrm{O}(4)$	$37(1)$	$28(1)$	$30(1)$	$-7(1)$	$4(1)$	$-9(1)$
$\mathrm{O}(5)$	$31(1)$	$53(1)$	$27(1)$	$-14(1)$	$2(1)$	$-3(1)$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 51.

	x		y	z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{H}(1)$	$3000(30)$	$3230(20)$	$7831(8)$	$36(4)$
$\mathrm{H}(2)$	$330(40)$	$3250(30)$	$7661(9)$	$52(5)$
$\mathrm{H}(3)$	$1560(30)$	$1510(20)$	$7727(7)$	$26(4)$
$\mathrm{H}(4)$	$1200(30)$	$4920(30)$	$6537(8)$	$39(5)$
$\mathrm{H}(5)$	$3480(30)$	$5150(30)$	$6839(9)$	$49(5)$
$\mathrm{H}(6)$	$3250(30)$	$4440(20)$	$6099(9)$	$40(5)$
$\mathrm{H}(7)$	$4370(30)$	$470(20)$	$6990(7)$	$24(4)$
$\mathrm{H}(8)$	$6370(30)$	$390(20)$	$5970(7)$	$22(4)$
$\mathrm{H}(9)$	$5440(30)$	$2210(20)$	$5788(8)$	$30(4)$
$\mathrm{H}(10)$	$1240(20)$	$2440(20)$	$5564(8)$	$27(4)$
$\mathrm{H}(11)$	$-220(30)$	$670(20)$	$5626(7)$	$25(4)$
$\mathrm{H}(12)$	$4160(30)$	$-2030(20)$	$6107(8)$	$31(4)$
$\mathrm{H}(13)$	$1510(30)$	$-1730(20)$	$6182(7)$	$26(4)$
$\mathrm{H}(14)$	$7480(40)$	$2140(30)$	$6915(9)$	$43(5)$

Table 6. Torsion angles [${ }^{\circ}$] for 51.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$178.91(10)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$-68.57(14)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$56.23(14)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$55.46(14)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$167.99(12)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-67.21(15)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-175.59(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-54.01(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	$171.11(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$53.32(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	$-74.65(15)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$-176.90(11)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$-57.24(16)$
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$71.16(15)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(4)$	$-12.40(13)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(4)$	$-131.03(11)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(4)$	$102.24(12)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	$62.99(15)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$-177.48(12)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$63.10(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$-60.92(14)$
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(4)$	$173.18(13)$
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(4)$	$-6.29(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(7)$	$132.85(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(7)$	$-107.18(12)$
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(7)$	$11.70(14)$
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(6)$	$177.93(13)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(6)$	$-2.60(16)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{C}(7)$	$9.68(15)$

[^2]Table 7. Hydrogen bonds for $\mathbf{5 1}\left[\AA\right.$ and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(2)-\mathrm{H}(14) \ldots \mathrm{O}(1) \# 1$	$0.82(2)$	$2.18(2)$	$2.9905(15)$	$170.4(19)$

Symmetry transformations used to generate equivalent atoms:
\#1 x+1,y,z

X-Ray data of compound 52

Table 8. Crystal data and structure refinement for 52.

Identification code	RT102_0m
Empirical formula	C14 H21 O7.50
Formula weight	309.31
Temperature	173(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	C2
Unit cell dimensions	$a=20.8592(17) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=6.4610(5) \AA \quad \beta=118.081(4)^{\circ}$.
	$\mathrm{c}=12.5333(13) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	1490.3(2) \AA^{3}
Z	4
Density (calculated)	$1.379 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.953 \mathrm{~mm}^{-1}$
F(000)	660
Crystal size	$0.56 \times 0.12 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	8.84 to 58.72°.
Index ranges	$-21<=\mathrm{h}<=22,-6<=\mathrm{k}<=7,-13<=1<=13$
Reflections collected	2732
Independent reflections	$1546[\mathrm{R}(\mathrm{int})=0.0234]$
Completeness to theta $=58.72^{\circ}$	85.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9107 and 0.6173
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1546 / 1 / 199
Goodness-of-fit on F^{2}	1.072
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0357, \mathrm{wR} 2=0.0799$
R indices (all data)	$\mathrm{R} 1=0.0420, \mathrm{wR} 2=0.0825$
Absolute structure parameter	0.1(3)
Largest diff. peak and hole	0.152 and -0.139 e. \AA^{-3}

Table 9. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 52. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$-3737(2)$	$-1039(5)$	$-2037(3)$	$38(1)$
$\mathrm{C}(2)$	$-4427(2)$	$-1887(6)$	$-3120(3)$	$45(1)$
$\mathrm{C}(3)$	$-4914(2)$	$-2578(5)$	$-2590(3)$	$36(1)$
$\mathrm{C}(4)$	$-4592(2)$	$-1511(6)$	$-1385(3)$	$39(1)$
$\mathrm{C}(5)$	$-5729(2)$	$-2320(5)$	$-3399(3)$	$39(1)$
$\mathrm{C}(6)$	$-5482(2)$	$-5751(6)$	$-3056(3)$	$41(1)$
$\mathrm{C}(7)$	$-3638(2)$	$1266(5)$	$-2147(3)$	$39(1)$
$\mathrm{C}(8)$	$-2926(2)$	$2136(5)$	$-1166(3)$	$41(1)$
$\mathrm{C}(9)$	$-2411(2)$	$1937(5)$	$-1705(3)$	$38(1)$
$\mathrm{C}(10)$	$-2898(2)$	$2219(5)$	$-3053(3)$	$37(1)$
$\mathrm{C}(11)$	$-2907(2)$	$4497(6)$	$-3376(4)$	$56(1)$
$\mathrm{C}(12)$	$-2735(2)$	$860(6)$	$-3880(3)$	$54(1)$
$\mathrm{C}(13)$	$-1399(2)$	$-288(6)$	$-1224(3)$	$44(1)$
$\mathrm{C}(14)$	$-1107(2)$	$-2400(6)$	$-820(4)$	$64(1)$
$\mathrm{O}(1)$	$-3825(1)$	$-1423(4)$	$-979(2)$	$43(1)$
$\mathrm{O}(2)$	$-6004(1)$	$-4382(3)$	$-3703(2)$	$43(1)$
$\mathrm{O}(3)$	$-4844(1)$	$-4813(3)$	$-2385(2)$	$42(1)$
$\mathrm{O}(4)$	$-5575(1)$	$-7563(4)$	$-3077(3)$	$60(1)$
$\mathrm{O}(5)$	$-3622(1)$	$1673(3)$	$-3263(2)$	$46(1)$
$\mathrm{O}(6)$	$-2083(1)$	$-105(3)$	$-1393(2)$	$44(1)$
$\mathrm{O}(7)$	$-1062(1)$	$1124(4)$	$-1353(2)$	$51(1)$
$\mathrm{O}(1 \mathrm{~S})$	-5000	$-6138(5)$	-5000	$56(1)$

Table 10. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for 52.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.443(4)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(7)$	1.519(4)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	1.540 (5)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(13)-\mathrm{O}(7)$	1.208(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.519(4)	$\mathrm{C}(13)-\mathrm{O}(6)$	1.345(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.483(5)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{O}(3)$	1.462(4)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.501(5)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(5)$	1.523(4)	$\mathrm{O}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S})$	1.00(6)
$\mathrm{C}(4)-\mathrm{O}(1)$	1.434(3)		
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	109.5(3)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	106.2(2)
$\mathrm{C}(5)-\mathrm{O}(2)$	1.430(4)	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	112.3(3)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	109.6
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{H}(1)$	109.6
$\mathrm{C}(6)-\mathrm{O}(4)$	1.185(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	109.6
$\mathrm{C}(6)-\mathrm{O}(3)$	1.339(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	105.0(3)
$\mathrm{C}(6)-\mathrm{O}(2)$	1.340(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	110.7
$\mathrm{C}(7)-\mathrm{O}(5)$	1.439(4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	110.7
$\mathrm{C}(7)-\mathrm{C}(8)$	1.522(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	110.7
$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	110.7
$\mathrm{C}(8)-\mathrm{C}(9)$	1.519(4)	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.8
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	108.4(3)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	109.6(3)
$\mathrm{C}(9)-\mathrm{O}(6)$	1.453(4)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	103.3(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.517(5)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(5)$	102.3(2)
$\mathrm{C}(9)-\mathrm{H}(9)$	1.0000	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	116.8(3)
$\mathrm{C}(10)-\mathrm{O}(5)$	1.449(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	116.3(3)
$\mathrm{C}(10)-\mathrm{C}(12)$	1.514(5)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	105.7(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.524(5)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110.6
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110.6
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.6
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.6

$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.7	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(3)$	105.0(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	110.8	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	110.8	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	110.8	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	110.8	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.8	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{O}(3)$	124.4(3)	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{O}(2)$	124.2(3)	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{O}(2)$	111.5(3)	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(1)$	109.5(3)	$\mathrm{O}(7)-\mathrm{C}(13)-\mathrm{O}(6)$	123.6(3)
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	104.9(2)	$\mathrm{O}(7)-\mathrm{C}(13)-\mathrm{C}(14)$	124.7(3)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	114.3(3)	$\mathrm{O}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	111.7(3)
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{H}(7)$	109.3	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7)$	109.3	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	109.3	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	103.6(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	111.0	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	111.0	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	111.0	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	106.5(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	111.0	$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)$	110.1(2)
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.0	$\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(3)$	110.4(2)
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	113.1(3)	$\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{C}(10)$	111.5(2)
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$	107.4(3)	$\mathrm{C}(13)-\mathrm{O}(6)-\mathrm{C}(9)$	116.9(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	104.0(3)		
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{H}(9)$	110.7		
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	110.7	Symmetry transformations used to generate equivalent atoms:	
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	110.7		
$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(12)$	106.6(3)		
$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	105.5(3)		
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(9)$	116.3(3)		
$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	107.8(3)		
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)$	110.9(3)		
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.3(3)		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5		

Table 11. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 52. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$30(2)$	$46(2)$	$35(3)$	$-6(2)$	$13(2)$	$-2(2)$
$\mathrm{C}(2)$	$38(2)$	$56(2)$	$35(3)$	$-9(2)$	$13(2)$	$-11(2)$
$\mathrm{C}(3)$	$27(2)$	$40(2)$	$34(2)$	$-2(2)$	$8(2)$	$0(2)$
$\mathrm{C}(4)$	$36(2)$	$45(2)$	$35(2)$	$1(2)$	$16(2)$	$0(2)$
$\mathrm{C}(5)$	$33(2)$	$36(2)$	$43(3)$	$4(2)$	$13(2)$	$0(2)$
$\mathrm{C}(6)$	$45(2)$	$42(2)$	$36(3)$	$-2(2)$	$18(2)$	$0(2)$
$\mathrm{C}(7)$	$34(2)$	$46(2)$	$37(3)$	$-1(2)$	$17(2)$	$2(2)$
$\mathrm{C}(8)$	$42(2)$	$41(2)$	$35(3)$	$-1(2)$	$15(2)$	$-4(2)$
$\mathrm{C}(9)$	$33(2)$	$37(2)$	$32(3)$	$1(2)$	$6(2)$	$-7(2)$
$\mathrm{C}(10)$	$32(2)$	$40(2)$	$33(3)$	$2(2)$	$11(2)$	$-4(2)$
$\mathrm{C}(11)$	$58(2)$	$52(2)$	$42(3)$	$11(2)$	$11(2)$	$-2(2)$
$\mathrm{C}(12)$	$39(2)$	$71(2)$	$45(3)$	$-8(2)$	$15(2)$	$1(2)$
$\mathrm{C}(13)$	$28(2)$	$64(3)$	$34(3)$	$7(2)$	$9(2)$	$0(2)$
$\mathrm{C}(14)$	$47(2)$	$72(3)$	$78(3)$	$36(3)$	$33(2)$	$24(2)$
$\mathrm{O}(1)$	$32(1)$	$56(2)$	$31(2)$	$0(1)$	$8(1)$	$-6(1)$
$\mathrm{O}(2)$	$31(1)$	$41(1)$	$45(2)$	$-7(1)$	$8(1)$	$-2(1)$
$\mathrm{O}(3)$	$37(1)$	$35(1)$	$41(2)$	$1(1)$	$7(1)$	$5(1)$
$\mathrm{O}(4)$	$76(2)$	$32(2)$	$70(2)$	$-3(1)$	$34(2)$	$-7(1)$
$\mathrm{O}(5)$	$29(1)$	$66(2)$	$36(2)$	$3(1)$	$10(1)$	$-3(1)$
$\mathrm{O}(6)$	$28(1)$	$42(1)$	$53(2)$	$9(1)$	$13(1)$	$1(1)$
$\mathrm{O}(7)$	$35(1)$	$67(2)$	$46(2)$	$2(1)$	$16(1)$	$-11(1)$
$\mathrm{O}(1 \mathrm{~S})$	$61(2)$	$51(2)$	$51(3)$	0	$21(2)$	0

Table 12. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10\right.$ ${ }^{3}$) for 52.

	x	y	z	U(eq)
H(1)	-3302	-1804	-1966	46
H(2A)	-4666	-797	-3736	53
H(2B)	-4307	-3067	-3498	53
H(4A)	-4795	-100	-1467	46
H(4B)	-4695	-2302	-806	46
H(5A)	-5953	-1591	-2964	47
H(5B)	-5827	-1525	-4136	47
H(7)	-4053	2034	-2143	46
H(8A)	-2981	3601	-993	49
H(8B)	-2749	1324	-410	49
H(9)	-2030	3038	-1382	45
H(11A)	-3006	5347	-2822	84
H(11B)	-3287	4730	-4208	84
H(11C)	-2434	4880	-3305	84
H(12A)	-3072	1194	-4724	80
H(12B)	-2792	-597	-3724	80
H(12C)	-2235	1105	-3726	80
H(14A)	-650	-2312	-63	96
H(14B)	-1018	-3065	-1441	96
H(14C)	-1459	-3217	-689	96
H(1S)	-5440(30)	-7010(130)	-5200(60)	200(30)

Table 13. Torsion angles [${ }^{\circ}$] for $\mathbf{5 2}$.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$4.6(3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-115.0(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$-98.5(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$16.9(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$146.1(3)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$83.0(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$-33.2(3)$
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$-162.2(3)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	$-8.3(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	$-126.5(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	$111.1(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(5)$	$-174.4(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(5)$	$-56.7(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$68.2(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-174.1(3)$
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-29.0(3)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$91.0(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$	$-88.1(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$32.1(3)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)$	$92.7(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)$	$-23.5(3)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$-25.2(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$-141.4(3)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-151.7(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$92.1(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	$37.4(3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	$95.6(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	$-25.8(3)$
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)$	$175.4(4)$
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)$	$-4.7(4)$
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)$	$8.2(4)$
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(3)$	$178.7(4)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(3)$	$-1.2(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(6)$	130

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(6)$	$-118.0(3)$
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(6)$	$6.0(4)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{C}(10)$	$-108.2(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{C}(10)$	$14.9(3)$
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(7)$	$129.8(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(7)$	$5.5(3)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(7)$	$-111.1(3)$
$\mathrm{O}(7)-\mathrm{C}(13)-\mathrm{O}(6)-\mathrm{C}(9)$	$-2.3(5)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{O}(6)-\mathrm{C}(9)$	$175.6(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{C}(13)$	$97.9(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{C}(13)$	$-147.9(3)$

Symmetry transformations used to generate equivalent atoms:

Table 14. Hydrogen bonds for 52 [\AA° and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S}) \ldots \mathrm{O}(5) \# 1$	$1.00(6)$	$2.17(7)$	$3.018(3)$	$141(6)$

Symmetry transformations used to generate equivalent atoms:
\#1-x-1,y-1,-z-1

X-Ray data of compound 56

Table 15. Crystal data and structure refinement for 56.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=61.85^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

T103s
C18.25 H33 O6.25 Si
380.54

173(2) K
1.54178 A

Monoclinic
C2
$\mathrm{a}=41.999(9) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=8.997(3) \AA \quad \beta=96.268(10)^{\circ}$.
$\mathrm{c}=6.4620(13) \AA \quad \gamma=90^{\circ}$.
2427.2(10) \AA^{3}

4
$1.041 \mathrm{Mg} / \mathrm{m}^{3}$
$1.077 \mathrm{~mm}^{-1}$
826
$0.55 \times 0.12 \times 0.04 \mathrm{~mm}^{3}$
2.12 to 61.85°.
$-47<=\mathrm{h}<=46,-10<=\mathrm{k}<=9,-7<=\mathrm{l}<=7$
5209
$2598[\mathrm{R}(\mathrm{int})=0.0550]$
82.5 \%

Semi-empirical from equivalents
0.9582 and 0.5890

Full-matrix least-squares on F^{2}
2598/4/245
1.134
$R 1=0.1049, w R 2=0.2718$
$R 1=0.1488, w R 2=0.2946$
0.33(14)
0.0081 (16)
0.733 and -0.431 e. \AA^{-3}

Table 16. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 56. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x		y	z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{C}(1)$	$2929(2)$	$5980(19)$	$3896(14)$	$55(4)$
$\mathrm{C}(2)$	$2884(2)$	$4400(20)$	$3271(15)$	$63(4)$
$\mathrm{C}(3)$	$2533(2)$	$4008(18)$	$2799(14)$	$64(4)$
$\mathrm{C}(4)$	$2333(2)$	$5162(17)$	$1576(12)$	$51(4)$
$\mathrm{C}(5)$	$2417(2)$	$6734(17)$	$2343(15)$	$53(3)$
$\mathrm{C}(6)$	$1978(2)$	$4882(17)$	$1490(13)$	$54(4)$
$\mathrm{C}(7)$	$2105(2)$	$5200(20)$	$-1830(15)$	$74(5)$
$\mathrm{C}(8)$	$3283(2)$	$6510(20)$	$4019(15)$	$79(5)$
$\mathrm{C}(9)$	$3438(2)$	$5970(20)$	$2103(16)$	$67(4)$
$\mathrm{C}(10)$	$3378(2)$	$4300(20)$	$1603(16)$	$60(4)$
$\mathrm{C}(11)$	$3553(2)$	$3280(20)$	$3201(17)$	$74(5)$
$\mathrm{C}(12)$	$3463(3)$	$3950(20)$	$-553(16)$	$87(5)$
$\mathrm{C}(13)$	$3887(3)$	$7900(20)$	$-1147(16)$	$84(5)$
$\mathrm{C}(14)$	$3916(3)$	$9330(20)$	$3064(19)$	$85(5)$
$\mathrm{C}(15)$	$4410(3)$	$6978(16)$	$2291(17)$	$61(4)$
$\mathrm{C}(16)$	$4463(3)$	$5480(30)$	$1070(30)$	$136(10)$
$\mathrm{C}(17)$	$4638(3)$	$8160(20)$	$1630(20)$	$93(6)$
$\mathrm{C}(18)$	$4481(3)$	$6690(30)$	$4654(18)$	$101(7)$
$\mathrm{O}(1)$	$2753(2)$	$6982(11)$	$2417(9)$	$63(3)$
$\mathrm{O}(2)$	$2383(1)$	$5142(11)$	$-648(8)$	$55(2)$
$\mathrm{O}(3)$	$1856(2)$	$5092(12)$	$-675(9)$	$68(3)$
$\mathrm{O}(4)$	$2066(2)$	$5368(11)$	$-3670(9)$	$61(3)$
$\mathrm{O}(5)$	$3031(1)$	$4075(11)$	$1412(9)$	$62(3)$
$\mathrm{O}(6)$	$3770(2)$	$6239(13)$	$2473(11)$	$75(3)$
$\mathrm{Si}(1)$	$3988(1)$	$7590(5)$	$1662(4)$	$68(1)$
$\mathrm{O}(1 S)$	$4236(7)$	$2160(50)$	$7810(50)$	$84(10)$
$\mathrm{C}(1 \mathrm{~S})$	$4527(10)$	$1630(70)$	$7510(80)$	$80(15)$

Table 17. Bond lengths [\AA] and angles [${ }^{\circ}$] for 56.

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.456(15)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.48(2)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.553(14)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(13)-\mathrm{Si}(1)$	$1.840(11)$
$\mathrm{C}(2)-\mathrm{O}(5)$	$1.441(11)$	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.516(15)$	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2)$	1.0000	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.503(18)$	$\mathrm{C}(14)-\mathrm{Si}(1)$	$1.847(19)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(4)-\mathrm{O}(2)$	$1.474(9)$	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.509(12)$	$\mathrm{C}(15)-\mathrm{C}(17)$	$1.53(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.527(19)$	$\mathrm{C}(15)-\mathrm{C}(18)$	$1.545(17)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.425(11)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.59(3)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(15)-\mathrm{Si}(1)$	$1.857(11)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{O}(3)$	$1.449(10)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(7)-\mathrm{O}(4)$	$1.192(12)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.325(12)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.354(12)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.539(16)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900	$\mathrm{O}(6)-\mathrm{Si}(1)$	$1.642(10)$
$\mathrm{C}(9)-\mathrm{O}(6)$	$1.412(13)$	$\mathrm{O}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})$	$1.349(18)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.55(2)$	$\mathrm{O}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S})$	0.6433
$\mathrm{C}(9)-\mathrm{H}(9)$	$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 1)$	0.9800	
$\mathrm{C}(10)-\mathrm{O}(5)$	$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	0.9800	
$\mathrm{C}(10)-\mathrm{C}(12)$	$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3)$	0.9800	
$\mathrm{C}(10)-\mathrm{C}(11)$	$\mathrm{C}(1)-\mathrm{C}(8)$	$113.7(11)$	
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	$\mathrm{C}(11)-\mathrm{C}(2)$		
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$		

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	108.7	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(1)$	110.3(10)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	108.7	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.6
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{H}(1)$	108.7	$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.6
$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(1)$	111.7(11)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.6
$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(3)$	106.2(9)	$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.0(12)	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.1
$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{H}(2)$	108.9	$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$	107.8(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	108.9	$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	109.7(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	108.9	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	113.7(12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	114.7(12)	$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{H}(9)$	108.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.6	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	108.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.6	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	108.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.6	$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(12)$	103.1(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.6	$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	112.4(10)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.6	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)$	111.2(13)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	112.0(9)	$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	106.7(11)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(6)$	101.9(6)	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(9)$	110.1(12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	113.3(11)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	112.9(10)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	106.0(10)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.0(9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)$	111.0(10)	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	110.4(9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.6	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.6	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.6	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.6	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.1	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(4)$	105.0(6)	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.8	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.8	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.8	$\mathrm{Si}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.8	$\mathrm{Si}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.8	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{O}(2)$	126.7(9)	$\mathrm{Si}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{O}(3)$	121.9(9)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(3)$	111.4(8)	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5

$\mathrm{Si}(1)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(18)$	$109.7(12)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)$	$109.1(11)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(16)$	$109.0(14)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{Si}(1)$	$110.1(10)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{Si}(1)$	$110.0(7)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{Si}(1)$	$109.0(8)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	$110.9(8)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(4)$	$110.6(6)$
$\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(6)$	$109.2(7)$
$\mathrm{C}(2)-\mathrm{O}(5)-\mathrm{C}(10)$	$114.5(8)$
$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Si}(1)$	$130.5(10)$
$\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{C}(13)$	$110.5(6)$

$\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{C}(14)$	$110.1(5)$
$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(14)$	$108.8(8)$

$\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{C}(15) \quad 105.2(6)$
$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(15) \quad 112.0(5)$
$\mathrm{C}(14)-\mathrm{Si}(1)-\mathrm{C}(15) \quad 110.3(6)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{O}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S}) \quad 116.8$
$\mathrm{O}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 1) \quad 109.5$
$\mathrm{O}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2) \quad 109.5$
$\mathrm{H}(1 \mathrm{~S} 1)-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2) \quad 109.5$
$\mathrm{O}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3) \quad 109.5$
$\mathrm{H}(1 \mathrm{~S} 1)-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3) \quad 109.5$
H(1S2)-C(1S)-H(1S3) 109.5

Symmetry transformations used to generate equivalent atoms:

Table 18. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 56. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$37(6)$	$108(13)$	$18(4)$	$-3(6)$	$-1(4)$	$-13(6)$
$\mathrm{C}(2)$	$35(5)$	$127(15)$	$27(5)$	$-11(7)$	$8(4)$	$-9(6)$
$\mathrm{C}(3)$	$35(5)$	$132(14)$	$25(4)$	$-5(7)$	$7(4)$	$1(7)$
$\mathrm{C}(4)$	$41(5)$	$92(12)$	$19(4)$	$6(7)$	$1(4)$	$6(6)$
$\mathrm{C}(5)$	$33(5)$	$87(11)$	$42(5)$	$-1(7)$	$14(4)$	$-5(5)$
$\mathrm{C}(6)$	$36(5)$	$101(12)$	$23(4)$	$16(6)$	$-4(4)$	$-3(6)$
$\mathrm{C}(7)$	$44(6)$	$149(16)$	$31(5)$	$-11(8)$	$8(4)$	$8(8)$
$\mathrm{C}(8)$	$34(6)$	$166(17)$	$38(5)$	$2(8)$	$4(4)$	$-12(7)$
$\mathrm{C}(9)$	$28(5)$	$132(15)$	$42(6)$	$13(8)$	$5(4)$	$3(7)$
$\mathrm{C}(10)$	$28(5)$	$107(14)$	$45(6)$	$0(7)$	$4(4)$	$-14(6)$
$\mathrm{C}(11)$	$36(6)$	$127(15)$	$58(7)$	$-11(8)$	$0(5)$	$-6(6)$
$\mathrm{C}(12)$	$48(6)$	$166(17)$	$52(6)$	$-32(9)$	$22(5)$	$-10(8)$
$\mathrm{C}(13)$	$60(7)$	$136(17)$	$56(6)$	$2(9)$	$14(6)$	$-1(8)$
$\mathrm{C}(14)$	$31(5)$	$156(17)$	$68(7)$	$17(9)$	$1(5)$	$10(7)$
$\mathrm{C}(15)$	$51(6)$	$71(11)$	$62(6)$	$1(7)$	$15(5)$	$10(6)$
$\mathrm{C}(16)$	$41(7)$	$240(30)$	$128(13)$	$-45(16)$	$4(8)$	$32(11)$
$\mathrm{C}(17)$	$39(6)$	$145(17)$	$96(9)$	$14(11)$	$15(6)$	$-14(8)$
$\mathrm{C}(18)$	$35(6)$	$210(20)$	$57(6)$	$-22(10)$	$5(5)$	$3(8)$
$\mathrm{O}(1)$	$39(4)$	$115(9)$	$33(3)$	$-2(4)$	$1(3)$	$-4(4)$
$\mathrm{O}(2)$	$32(3)$	$110(8)$	$24(3)$	$0(4)$	$6(2)$	$-4(4)$
$\mathrm{O}(3)$	$36(3)$	$137(9)$	$33(3)$	$10(5)$	$10(3)$	$-10(4)$
$\mathrm{O}(4)$	$54(4)$	$103(8)$	$28(3)$	$-3(4)$	$5(3)$	$2(4)$
$\mathrm{O}(5)$	$33(4)$	$120(9)$	$35(3)$	$-5(4)$	$14(3)$	$-3(4)$
$\mathrm{O}(6)$	$23(3)$	$141(10)$	$59(4)$	$-6(5)$	$3(3)$	$-15(4)$
$\mathrm{Si}(1)$	$32(1)$	$132(4)$	$41(2)$	$-2(2)$	$6(1)$	$-1(2)$

Table 19. Hydrogen coordinates $\left(\mathrm{x} 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 56.

	X	y	z	U(eq)
H(1)	2852	6120	5291	66
H(2)	2982	3756	4427	75
H(3A)	2516	3062	2011	77
H(3B)	2442	3838	4130	77
H(5A)	2301	7466	1395	64
H(5B)	2348	6873	3748	64
H(6A)	1935	3858	1949	65
H(6B)	1877	5593	2391	65
H(8A)	3291	7607	4084	95
$\mathrm{H}(8 \mathrm{~B})$	3404	6114	5301	95
H(9)	3349	6566	869	81
H(11A)	3551	3717	4590	111
H(11B)	3775	3160	2896	111
H(11C)	3447	2312	3155	111
H(12A)	3455	2876	-777	131
H(12B)	3679	4318	-697	131
H(12C)	3309	4441	-1586	131
H(13A)	3989	7139	-1928	125
H(13B)	3963	8886	-1519	125
H(13C)	3654	7848	-1490	125
H(14A)	3724	9815	2392	128
H(14B)	4101	9990	3032	128
H(14C)	3887	9095	4512	128
H(16A)	4442	5680	-426	205
H(16B)	4302	4749	1380	205
H(16C)	4678	5092	1516	205
H(17A)	4598	9106	2312	139
H(17B)	4603	8293	113	139
H(17C)	4860	7852	2028	139
H(18A)	4692	6226	4945	151
		326		

$\mathrm{H}(18 \mathrm{~B})$	4317	6027	5109	151
$\mathrm{H}(18 \mathrm{C})$	4478	7635	5406	151
$\mathrm{H}(1 \mathrm{~S})$	4180	2689	7208	125
$\mathrm{H}(1 \mathrm{~S} 1)$	4690	2099	8500	119
$\mathrm{H}(1 \mathrm{~S} 2)$	4572	1846	6088	119
$\mathrm{H}(1 \mathrm{~S} 3)$	4531	550	7736	119

Table 20. Torsion angles [${ }^{\circ}$] for 56.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(5)$	$67.9(11)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(5)$	$-50.8(12)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-51.1(10)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-169.9(8)$
$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-80.2(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$42.0(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	$76.6(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	$-168.7(9)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-42.2(10)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$-70.1(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$52.2(9)$
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$180.0(7)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(3)$	$-13.3(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(3)$	$-133.8(10)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(3)$	$99.2(10)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$-77.7(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$44.9(15)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$	$-169.5(13)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-47.6(15)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)$	$175.4(7)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)$	$54.6(11)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$-73.4(11)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$165.8(9)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$51.5(11)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-69.3(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	$-62.7(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$63.3(10)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$-172.9(9)$
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(4)$	$171.3(16)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(4)$	$-7.2(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(7)$	$134.3(12)$
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(7)$	$12.8(16)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(7)$	$-103.4(12)$
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(6)$	$179.2(15)$

$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(6)$	$-2.2(17)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(7)$	$10.2(16)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(5)-\mathrm{C}(10)$	$61.3(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(5)-\mathrm{C}(10)$	$-176.3(12)$
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(2)$	$-177.3(13)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(2)$	$62.9(16)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(2)$	$-61.3(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Si}(1)$	$-99.8(12)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Si}(1)$	$136.0(10)$
$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{C}(13)$	$-46.9(13)$
$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{C}(14)$	$73.3(11)$
$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{C}(15)$	$-167.9(10)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{O}(6)$	$-179.4(9)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{O}(6)$	$-58.4(12)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{O}(6)$	$61.0(11)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(13)$	$60.5(12)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(13)$	$-178.5(12)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(13)$	$-59.0(13)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(14)$	$-60.7(10)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(14)$	$60.3(13)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(14)$	$179.7(11)$

[^3]
2.5 References

1. Murata, M.; Yasumoto, T. Nat. Prod. Rep. 2000, 17, 293. (b) Deranas, A. H.; Norte, M.; Fernandez, J. J. Toxicon 2001, 39, 1101. (c) Nakata, T. Chem. Rev. 2005, 105, 4314. (d) Inoue, M. Chem. Rev. 2005, 105, 4379.
2. Fernandez, J. J.; Souto, M. L.; Norte, M. Bioorg. Med. Chem. 1998, 6, 2237. and references therein.
3. (a) Nicolaou, K. C.; Rutjes, F. P. J. T.; Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller, E. J. Am. Chem. Soc. 1995, 117, 1173. (b) Nicolaou, K. C.; Rutjes, F. P. J. T.; Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller, E. J. Am. Chem. Soc. 1995, 117, 10252. (c) Matsuo, G.; Kawamura, K.; Hori, N.; Matsukura, H.; Nakata, T. J. Am. Chem. Soc. 2004, 126, 14374. (d) Kadota, I.; Takamura, H.; Nishii, H.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9246.
4. (a) Nicolaou, K. C.; Yang, Z.; Shi, G.; Gunzner, J. L.; Agrios, K. A.; Gartner, P. Nature 1998, 392, 264. (b) Nicolaou, K. C.; Gunzner, J. L.; Shi, G.-q.; Agrios, K. A.; Gartner, P.; Yang, Z. Chem. Eur. J. 1999, 5, 646.
5. (a) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294, 1904. (b) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551.
6. (a) Fuwa, H.; Sasaki, M.; Satake, M.; Tachibana, K. Org. Lett. 2002, 4, 2981. (b) Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. J. Am. Chem. Soc. 2002, 124, 14983. (c) Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 46. (d) Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Satake, M.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 11893. (e) Johnson, H. W. B.; Majumder, U.; Rainier, J. D. J. Am. Chem. Soc. 2005, 127, 848.
7. (a) Tsukano, C.; Sasaki, M. J. Am. Chem. Soc. 2003, 125, 14294. (b) Tsukano, C.; Ebine, M.; Sasaki, M. J. Am. Chem. Soc. 2005, 127, 4326.
8. (a) Fujiwara, K.; Murai, A. Bull. Chem. Soc. Jpn. 2004, 77, 2129. (b) Kadota, I.; Yamamoto, Y. Acc. Chem. Res. 2005, 38, 423. (c) Sasaki, M.; Fuwa, H. Synlett. 2004, 11, 1851. (d) Marmsater, F. P.; West, F. G. Chem. Eur. J. 2002, 8, 4346.
9. (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K. J. Am. Chem. Soc. 1986, 108, 2468. (b) Nicolaou, K. C.; Prasad, C. V. C.; Hwang, C.-K.; Duggan, M. E.; Veale, C. A. J. Am. Chem. Soc. 1989, 111, 5321.
10. (a) Fujiwara, K.; Saka, K.; Takaoka, D.; Murai, A. Synlett 1999, 1037. (b) Fujiwara, K.; Sato, D.; Watanabe, M.; Morishita, H.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2004, 45, 5243.
11. Sasaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K. Tetrahedron Lett. 1998, 39, 9027. (b) Sasaki, M.; Fuwa, H. Synlett 2004, 1851.
12. Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540.
13. (a) Fujiwara, K.; Morishita, H.; Saka, K.; Murai, A. Tetrahedron Lett. 2000, 41, 507. (b) Matsuo, G.; Hinou, H.; Koshino, H.; Suenaga, T.; Nakata, T. Tetrahedron Lett. 2000, 41, 903. (c) Mori, Y.; Mitsuoka, S.; Furukawa, H. Tetrahedron Lett. 2000, 41, 4161.
14. (a) Mori, Y.; Nogami, K.; Hayashi, H.; Noyori, R. J. Org. Chem. 2003, 68, 9050. (b) Mori, Y.; Hayashi, H. Tetrahedron 2002, 58, 1789.
15. (a) Inoue, M.; Sasaki, M.; Tachibana, K. Tetrahedron Lett. 1997, 38, 1611. (b) Inoue, M.; Sasaki, M.; Tachibana, K. Tetrahedron 1999, 55, 10949. (c) Inoue, M.; Sasaki, M.; Tachibana, K. Angew. Chem. Int. Ed. 1998, 37, 965. (d) Inoue, M.; Sasaki, M.; Tachibana, K. J. Org. Chem. 1999, 64, 9416.
16. (a) Hori, N.; Matsukura, H.; Matsuo, Nakata, G.; T. Tetrahedron Lett. 1999, 40, 2811. (b) Matsuo, G.; Hori, N.; Nakata, T. Tetrahedron Lett. 1999, 40, 8859. (c) Hori, N.; Matsukura, H.; Nakata, T. Org. Lett. 1999, 1, 1099. (d) Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron 2002, 58, 1853.
17. (a) Clark, J. S.; Kettle, J. G. Tetrahedron Lett. 1997, 38, 123. (b) Clark, J. S.; Kettle, J. G. Tetrahedron Lett. 1997, 38, 127. (c) Clark,J. S.; Kettle, J. G. Tetrahedron 1999, 55, 8231.
18. McDonald, F. E.; Bowman, J. L. J. Org. Chem. 1998, 63, 3680.
19. (a) Rainier, J. D.; Allwein, S. P. J. Org. Chem. 1998, 63, 5310. (b) Rainier, J. D.; Allwein, S. P.; Tetrahedron Lett. 1998, 39, 9601. (c) Rainier, J. D.; Allwein, S. P.; Cox, J. M. Org. Lett. 2000, 2, 231. (d) Rainier, J. D.; Allwein, S. P.; Cox, J. M. J. Org. Chem. 2001, 66, 1380.
20. (a) Marmsäter, F. P.; West, F. G. J. Am. Chem. Soc. 2001, 123, 5144. (b) Marmsäter, F. P.; Vanecko, J. A.; West, F. G. Tetrahedron 2002, 58, 2027. 21. (a) Nakanishi, K. Toxicon 1985, 23, 473. (b) Shimizu, Y. Natural Toxins: Animal, Plant, and Microbial ed. by Harris, J. B.; Clarendon Press, Oxford 1986, 123. (c) Lee, M. S.; Repeta, D. J.; Nakanishi, K.; Zagorski, M. G. J. Am. Chem. Soc. 1986, 108, 7855. (d) Chou, H.-N.; Shimizu, Y. J. Am. Chem. Soc., 1987, 109, 2184. (e) Lee, M. S.; Qin, Q.-W.; Nakanishi, K.; Zagorski, M. G. J. Am. Chem. Soc. 1989, 111, 6234.
21. (a) Baldwin, J. E.; Thomas, R.C.; Kruse, L. I.; Silberman, L. J. Org. Chem. 1977, 42, 3846. (b) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L. I.; Silberman, L.; Thomas, R.C. J. Chem. Soc., Chem. Commun. 1976, 736. (c) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 738.
22. (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K.; Somers, P. K. J. Chem. Soc., Chem. Commun., 1985, 1359. (b) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330. (c) Nicolaou, K. C.; Shi, G.-Q.; Gumzner, J. L.; Gartner, P.; Wallace, P. A.; Ouellette, M. A.; Shi, S.; Bunnage, M. E.; Agrios, K. A.; Veale, C. A., Hwang, C.-K.; Hutchinson, J.; Prasad, C. V. C.; Ogilvie, W.W.; Yang, Z. Chem. Eur. J., 1999, 5, 628.
23. (a) Suzuki, T.; Sato, O.; Hirama, M. Tetrahedron Lett. 1990, 31, 4747. (b) Oishi, T.; Maeda, K.; Hirama, M. Chem. Commun.1997, 1289.
24. (a) Mori, Y.; Yaegashi, K.; Furukawa, H.; J. Am. Chem. Soc. 1996, 118, 8158. (b) Mori, Y.; Furuta, H.; Takase, T.; Mitsuoka, S.; Furukawa, H. Tetrahedron Lett. 1999, 40, 8019. (c) Furuta, H.; Takase,T.; Hayashi, H.; Noyori, R.; Mori, Y. Tetrahedron, 2003. 59, 9767. (d) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem.Soc. 1997,119, 4557. (e) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Org. Chem. 1998, 63, 6200.
25. Bartlett, P. A.; Ting, P. C. J. Org. Chem. 1986, 51, 2230.
26. (a) McDonald, F. E.; Bravo, F.; Wang, X.; Wei, X.; Toganoh, M.; Rodríguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K. I. J. Org. Chem. 2002, 67, 2515. (b) Valentine, J. C.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I. J. Am. Chem. Soc. 2005, 127, 4586, and references therein. (c) Valentine, J. C.; McDonald, F. E. Synlett 2006, 12, 1816. (d) McDonald, F. E.; Tong, R.; Valentine, J. C.; Bravo, F. Pure Appl. Chem., 2007, 79, 281.
27. Bravo, F.; McDonald, F. E.; Neiwert, W. A.; Do, B.; Hardcastle, K. I. Org. Lett. 2003, 5, 2123.
28. Ferraboschi, P.; Grisenti, P.; Casati, S.; Santaniello, E. Synlett 1994, 754.
29. (a) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. (b) Wang, X.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.
31.(a) Yadav, J. S.; Praveen Kumar, T. K.; Maniyan, P. P. Tetrahedron Lett. 1993, 34, 2965. (b) Descotes, G.; Menet, A.; Collonges, F. Tetrahedron 1973, 29, 2931.
30. (a) Chan, K.; Cohen, N.; De Noble, J. P.; Specian, A. C.; Saucy, G. J. Org. Chem. 1976, 41, 3497. (b) Denmark, S. E.; Jones, T. K. J. Org. Chem. 1982, 47, 4595. (c) Miller, C. H.; Hatzenellenbogen, J. A.; Bowlus, S. B. Tetrahedron Lett. 1973, 24, 1737.
31. Bravo, F.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I. Org. Lett. 2004, 6. 4487.
32. Morimoto, Y.; Nishikawa, Y.; Ueba, C.; Tanaka, T. Angew. Chem. Int. Ed. 2006, 45, 810.
33. Tong, R.; Valentine, J. C.; McDonald, F. E.; Cao, R.; Fang, X.; Hardcastle, K. I. J. Am. Chem. Soc. 2007, 129, 1050.
34. (a) Hayashi, N.; Fujiwara, K.; Murai, A. Chem. Lett. 1996, 341. (b) Hayashi, N.; Fujiwara, K.; Murai, A. Tetrahedron Lett. 1996, 37, 6173.
35. (a) Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.; Yasumoto, T. Angew. Chem. Int. Ed. 1996, 35, 1675. (b) Zheng, W. J.; DeMattei, J. A.; Wu, J. P.; Duan, J. J. W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946.
36. (a) Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 4245. (b) Corey, E. J.; Kirst, H. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1970, 92, 6314.
37. Kim, K. D.; Magriotis, P. A. Tetrahedron Lett. 1990, 31, 6173.
38. Labinger, J. A.; Hart, D. W.; Seibert, W. E.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 3851.
39. (a) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197. (b) Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12853.
40. Robinson, D. E. J. E.; Bull, S. D. Tetrahedron: Asymmetry 2003, 14, 1407. 43. (a) Taguchi, H.; Tanaka, S.; Yamamoto, H.; Nozaki, H. Tetrahedron Lett. 1973, 2465. (b) Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95, 4446. Tong, R.; McDonald, F. E.; Fang, X.; Hardcastle, K.I. Synthesis 2007, 2337.

[^0]: Rongbiao Tong

[^1]: ${ }^{1}$ Zwierzak, A.; Sulewska, A. Synthesis 1976, 835.

[^2]: Symmetry transformations used to generate equivalent atoms:

[^3]: Symmetry transformations used to generate equivalent atoms:

