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Abstract

Transcriptome Analysis of Primary Prostate Tumor Foci and Corresponding Lymph Node
Metastases ldentifies Pathways Associated with Metastatic Disease

By Emma Klein

Prostate cancer (PCa) is a highly heterogeneous disease, and mortality is mainly due to
metastases. However, the molecular underpinnings that lead to the initial steps of metastasis
have not been well characterized. We performed genomic analysis of primary prostate tumor
foci (PTF) and corresponding lymph node metastases (LNM). PTF and LNM from patients with
high-risk PCa were analyzed by RNAseq and Whole-Exome Sequencing (WES). Computational
pipelines were developed with Linux, R, and Python scripting. Through the RNA-seq pipeline,
differentially expressed genes between PTF, LNM, benign LNs, and normal prostate were
identified. A median of 57 million paired-end reads were obtained per sample. Comparing PTF
to LNM, 8110 transcripts were differentially expressed (p-adj < 0.01). PTF were enriched relative
to LNM in gene sets associated with Notch signaling, TGFb signaling, hypoxia, and the epithelial
to mesenchymal transition. Comparing PTF from metastatic patients to non-metastatic patients,
581 transcripts were differentially expressed (p-adj < 0.01). PTF from metastatic patients were
enriched in cell cycle progression, MYC targets, ER stress, androgen response, and DNA repair.
LNM gene sets were enriched in endoplasmic reticulum (ER) stress and oxidative
phosphorylation. We also identified a set of 193 genes with significantly increased expression in
primary tumors over benign LNs and in LNM over primary tumors. This gene set was
significantly enriched in genes related to oxidative phosphorylation and included oncogenes
such as PIK3CB, NCOA2, and SCHLAP1. The WES pipeline revealed genomic variant and tumoral
heterogeneity information. The top mutated genes include SPOP, EYA1, and NCOR2. These
somatic mutations may drive cancer proliferation via dysregulation of the AR signaling pathway.
Through WES analysis, we identified mutations associated with PCa metastasis. The top
mutated genes associated with metastasis are SOGA1, LRRC4C, TP53, COL5A1, PCDHA13, and
SLC16A14. Our results are vital to the investigation of prostate cancer metastasis, as genomic
changes drive oncogenic progression. By understanding the mechanism of metastasis, we may
be able to improve clinical strategies to target PCa.
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1. Introduction

1.1 Prostate Cancer Biology

Prostate cancer (PCa) is the most common cancer diagnosed in males and second highest
cause of cancer-associated death in the United States (1). According to the American Cancer
Society, 1 in 8 men are diagnosed with PCa and the mortality rate is 1 in 41. It is estimated that
there will be approximately 288,300 new cases and 34,700 deaths from PCa in 2023 (2).
Therefore, it is essential to investigate the mechanism of PCa progression in order to optimize
patient treatment and understand disease pathogenesis.

Cancer is partly driven by somatic mutations — these are genomic alterations that emerge
during the lifetime of an individual. A single abnormal cell with acquired genetic mutations can
spark the creation of a neoplasm (3). When a single cell acquires mutations beneficial for tumor
growth, it may encounter multiple rounds of selection and clonal expansion. As a result,
cancerous cells proliferate and heterogeneous tumors are formed. Heterogeneous tumors include
populations of cancerous cells with variable combinations of somatic mutations. This is a
distinctive hallmark of PCa, as every tumor has a unique mutational signature.

Previous studies have aimed to create molecular and genetic profiles of primary prostate
cancer. Multiple genomic alterations have been identified such as mutations, rearrangements,
gene fusions, and DNA copy-number changes. Schultz et al. presented a primary PCa molecular
analysis for the The Cancer Genome Atlas (TCGA). Based on 333 primary prostate carcinomas,
they identified seven subtypes characterized by ETS fusions or mutations in SPOP, FOXA 1, and
IDH1 (4). Other studies focus on metastatic, castration-resistant prostate cancer (mCRPC)

through bone or soft tissue biopsies. Robinson et al. classified genomic aberrations in mCPRC



pertaining to the AR, PI3K, Wnt, Cell-Cycle, and DNA Repair pathways. They found that nearly
90% of mCRPC harbor clinically-actionable molecular alterations (5). Despite the importance of
genomic profiles in PCa, the molecular underpinnings that lead to the initial steps of metastasis
have not been well characterized. Mortality is mainly due to PCa metastasis, so it is essential to
understand the key drivers of tumor progression.

Prostate cancer cells spread through the bloodstream or lymphatic system, forming bone
and lymph node (LN) metastases. PCa metastasis is a key component of diagnosis and defines a
patient's stage of cancer. Staging is critical because it allows cancer care teams to categorize
patient cases and optimize treatment plans. The most widely used staging system for PCa is the
AJCC TNM staging system (6). The TNM system includes 5 parameters — the extent of the main
primary tumor (PT), whether the cancer has spread to LNs, whether the cancer has metastasized
to other parts of the body, prostate-specific antigen (PSA) level, and grade group.

Epithelial cells in the prostate express high levels of AR (androgen receptor), which
drives hormone dependency in PCa. AR activates transcription of PSA, a serine protease, which
is elevated in PCa patients. PSA blood tests are commonly used to screen for PCa in men without
symptoms. High PSA levels indicate a higher likelihood of PCa. Furthermore, the grade group is
determined based on the gleason score of a prostate biopsy. The Gleason System assigns grades
based on tissue comparisons between cancer and normal prostate cells. Abnormal cells are
assigned higher grades, while cells similar to normal prostate tissue are assigned low grades.
Scores are generated by summing the grades of the two predominant lesions in the prostate.
Grade groups include ranges of Gleason scores based on severity level.

Stages of PCa include Stage I, IIA, IIB, IIC, IIIA, IIIB, IIIC, IVA, and IVB. As stage

number increases, symptoms and severity increase (7). According to the American Cancer



Society, the five-year survival rate is almost 100% for Stages I-IVA because PCa is still localized
and regional. Earlier stages include cancer that has not spread outside of the prostate or
cancerous cells that spread to nearby regions. However, the 5-year survival rate of Stage [VB
patients is 31%. During Stage IVB, tumors infiltrate other parts of the body such as the bones,
liver, or lungs (8). It is evident that most PCa mortality is driven by metastases (Fig. 1). The
staging system facilitates the optimization of patient treatment and understanding of PCa

progression.

Figure 1. Overview of PCa metastasis. Most common sites of metastases are pelvic lymph nodes and
bone. Adapted from Nature Reviews Disease Primers (Nat Rev Dis Primers) (13)
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1.2 Symptoms & Treatment

The prostate is a component of the male reproductive system and located below the
bladder (Fig. 2). It is a small organ, comparable to the size of a golf ball (9). Seminal fluid is
created within the prostate and then secreted into the urethra. This fluid combines with sperm to
form semen, which is released during ejaculation. Since the prostate is in front of the rectum,
prostate health can be evaluated through a digital rectal exam (DRE). The American Cancer

Society recommends prostate exams for men over 50 years old, every three to five years. Early



detection is essential for the best prognosis and treatment strategies. Since early stages of PCa
are not usually linked with symptoms, it is important to routinely schedule prostate exams.
However, advanced PCa can be linked with a myriad of potential symptoms, mainly associated
with the urinary tract. Specifically, advanced PCa symptoms include painful urination, weak

urine streams, blood in semen, bone pain, fatigue, and leg swelling (10).

Figure 2. Prostate Anatomy. Five regions of the prostate include the central zone (green), periurethral
region (dark blue), transition zone (dark green), peripheral zone (dark yellow), and fibromuscular region
(light yellow). Adapted from Nature Reviews Disease Primers (Nat Rev Dis Primers) (11)
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There are many treatments used for PCa, which may cure patients with localized cancer.
Most patients with stage IV PCa cannot be cured with current treatments, but their symptoms can
be mediated and metastasis slowed. Early detection is essential for the best prognosis and
treatment strategies, as localized PCa is treated with the highest efficacy. Treatment options
significantly vary between patients based on disease pathology and staging. If PCa is localized,
surgery is a very common treatment option. Patients undergo surgical procedures to directly
remove malignant regions of the prostate and some of the surrounding LNs. Radiation therapy is
often used to target localized PCa; high energy rays destroy cancer cells through DNA damage.

Furthermore, systemic therapies are also used to eliminate cancer cells. These treatments include



medications, which can be administered intravenously or through oral consumption (swallowing
a pill or capsule). There are several types of systemic treatments including androgen deprivation

therapy, targeted therapy, chemotherapy, and immunotherapy (12).

1.3 Genomic Sequencing & Informatics

Sequencing technologies that identify the order of nucleic acid sequences in biological
samples have revolutionized biomedical research. There are several types of genomic
sequencing, such as Sanger Sequencing, Next Generation DNA Sequencing (NGS), and
Long-Read Sequencing. Through the past few decades, sequencing technologies have become
more efficient, more accurate, and cheaper. Whole-Genome Sequencing (WGS) uses an entire
DNA sample in order to construct a donor’s entire genome. WGS cuts the DNA into fragments
using sonication, amplifies them with PCR, and then sequences all the fragments. Whole-Exome
Sequencing (WES) follows a similar process but only includes the exons, protein-coding regions,
of the genome.

Furthermore, RNA-seq is used to investigate the transcriptome, as it includes the
sequencing of RNA transcripts. This method is helpful to understand genomic expression based
on RNA transcript levels. Single-cell sequencing (scRNA-seq) conducts RNA sequencing on
each individual cell in a sample. As a result, data can be clustered based on cell type, facilitating
the analysis of individual cell gene expression. These sequencing technologies are commonly
used in cancer genomics. Informatics tools are essential to the analysis of sequencing data.
Through computational methods, sequencing data can be mapped to the human genome and
transformed into interpretable genomic expression data. As a result, biological patterns and

genomic variation can be uncovered.



2. Methodology

2.1 Main Objectives

Mortality is mainly due to metastases of highly heterogeneous tumors. However, the
molecular underpinnings that lead to the initial steps of metastasis have not been well
characterized. In order to optimize future treatments, it is essential to investigate the mechanism
of PCa, as it proliferates and spreads throughout the human body. The main objective of this
study is to identify potential key driver mutations and important genomic expression changes
involved in PCa metastasis.

PCa is characterized by intratumoral heterogeneity (ITH) on multiple levels (13). Primary
prostate cancers are known to be multifocal, which underlies the rationale for the Gleason
scoring system. As aforementioned, Gleason scores sum the most predominant tumor grade with
the second most predominant tumor grade in a radical prostatectomy specimen (14-17). Previous
studies have found that over 70% of patients have multifocal disease representing multiple tumor
grades (16). Furthermore, different primary tumor foci are composed of genetically distinct
clones, suggesting independent carcinogenesis events within the prostate gland (21-24,25). ITH
has been identified even within single primary tumor foci in the prostate (26), suggesting
co-mingling of independent clones with branching and divergent evolution.

ITH is a poorly understood phenomenon that is critically important for understanding
tumor progression and the development of drug resistance, as different sub-clones can respond
differently to microenvironmental changes and selection pressure from therapies. Recent studies
have indicated that independent foci and biopsies can have markedly different performance in

commercially available biomarker panels (27). Thus, understanding ITH is essential for



biomarker development and validation, prognosis, and therapeutic decision-making for precision
medicine.

Mortality from prostate cancer is due to metastases, and thus, understanding the
mechanisms of metastasis is also essential for improving patient outcomes. The heterogeneity of
metastases is poorly understood, and there is some disagreement in the literature between
opposing models of PCa metastasis. Some data using copy number analyses support a
monoclonal model of metastasis, in which most metastatic lesions derive from a single clone
despite the multiclonal nature of the primary tumor (28). Additional studies have shown limited
genomic diversity in multiple metastases from the same men (29). However, conflicting studies
support polyclonal seeding of metastases based on whole genome sequencing of 51 tumors from
10 patients (30). Some of the differences between these studies may be due to varying degrees of
detail and granularity in the methods employed to molecularly characterize PCa metastases. In
addition, it is not clear if the genomic variability observed in metastases in some studies are due
to mutations that occur at the metastatic site or if polyclonal populations from different primary
foci seeded those metastases. Most studies that have analyzed ITH have examined a limited
number of patients and used only the index lesion of the primary tumor.

In this project, we aimed to address this gap in our understanding of heterogeneity in PCa
metastasis and to leverage unique resources of many patients from a clinical trial that includes
both radical prostatectomy and extensive dissection of all pelvic LNs. Since metastasis to
surrounding LN is one of the first steps in metastatic spread, understanding ITH in pelvic LNs
will provide unique insights into the initial mechanisms and heterogeneity of PCa metastasis.
Additionally, we aimed to analyze multiple primary foci beyond the index lesion, greatly

increasing the richness of the dataset that we will generate in these studies.



Specifically, three main aims were identified to study PCa disease progression. Aim 1 is
to perform RNA-seq analysis of multiple primary foci and corresponding LNs to identify gene
expression changes and pathways associated with LN metastasis. RNA-seq analysis can be used
to define tumor heterogeneity and enable identification of RNA gene expression patterns.
Transcriptomics may help discriminate primary foci that can support metastasis from those that
remain indolent and localized. Aim 2 is to perform whole exome sequencing (WES) of multiple
primary foci and corresponding LN to identify somatic mutations associated with LN metastasis.
WES analysis can also help define intratumoral heterogeneity in the earliest steps of the
metastatic process. Lastly, Aim 3 is to determine RNA and DNA signatures associated with the
presence and degree of uptake of [18F]-fluciclovine in LN metastases. Aim 3 is not included in
the scope of this project.

It is essential to investigate PCa disease progression in order to optimize treatment and
patient prognosis. This study uses an integrated functional and clinical genomics approach to

reveal genes driving aggressive metastatic PCa.

2.2 Experimental Design

The Emory, Harvard, & University of Washington Prostate Cancer Biomarker Center, led
by Dr. Sanda, conducted a clinical trial (NCT01808222) to determine if [18F]-fluciclovine PET
imaging can detect significant occult metastatic disease in patients with high risk PCa (Fig. 3).
These patients had negative or equivocal conventional imaging such as CT, MR, and bone scan.
In this study, 56 PCa patients within high or very high risk groups (T3a, Gleason score 8-10, or
PSA greater than 20 ng/ml) were selected based on criteria that correspond to a 50-80% PSA

failure rate in the first 5 years after prostatectomy.



Patients underwent radical prostatectomies and extended pelvic lymph node dissections.
The surgical plan generally involves nodal dissection of left and right obturator, external iliac,
and internal iliac nodes for the high-risk patients. Each group of nodes is removed as a packet,
labeled separately, and sent to pathology for routine histopathologic examination. If either
conventional imaging or [18F]-fluciclovine PET imaging demonstrates potential other pelvic or
extrapelvic nodal disease, the surgeon may choose to extend the nodal dissection to other sites.
When this is complete, the additional nodes are labeled to indicate the site and they are also
submitted for pathology review. In this trial, 56 patients underwent radical prostatectomies. Of
these, 30/56 (54%) of patients had metastases. Of those, 7 had only one positive lymph node, and
23 had two or more positive lymph nodes. A total of 92 positive LNs were identified out of a

total of 2480 excised LNs of which 58 positive LNs were > 4mm in diameter.

Figure 3. Summary of EDRN Fluciclovine Trial
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This project uses tissue from the aforementioned clinical trial, in which patients with

aggressive prostate cancer underwent radical prostatectomies and pelvic LN dissections. Multiple



samples were collected from each patient, so it would be possible to track changes in genomic
expression as the cancer metastasizes from the prostate to the LNs. Patient samples include PT,
normal LN, and metastatic LN. This experimental design is advantageous so that comparisons
can be made between and within patients, using their own genomes as a baseline.

Emory University Hospital (EUH) pathology surgical services has Formalin-Fixed
Paraffin-Embedded (FFPE) tissue samples from the previous clinical trial, consisting of prostate
and lymph node dissections from 56 cases. For 30 (54%) of cases, the cancer had metastasized to
the surrounding lymph nodes. Of these 56 cases, 7 did not give consent (4 metastatic and 3
non-metastatic) and were removed from the study. For the patients in which the cancer did not
metastasize (n=23), we identified at least 3 FFPE prostate tissue samples and 1 LN (benign) for
examination. For the cases in which the cancer did metastasize (n=26), we identified at least 4
prostate samples, 1 benign LN and 1 metastatic LN. All available FFPE blocks were collected
from EUH pathology services and coded to remove any PHI. For 3 of the cases, the met LN
blocks were not available, and were removed from the study.

All collected FFPE blocks were sent to Winship Cancer Tissue and Pathology Shared
Resource Core (CTPSR) for sectioning. Seven sections, at 5 um each, were made from each
FFPE block. One section from each block was stained with Hematoxylin and Eosin (H&E) for
cancer cell identification. The H&E stained sections were analyzed by a GU pathologist to
identify regions of interest for macrodissection and sequencing. For the non-metastatic patients,
two prostate samples and one benign lymph node sample were selected for sequencing. For
metastatic patients, three prostate samples, one met lymph node, and one benign lymph node
were selected. Six metastatic patients were omitted from the study, as all corresponding lymph

node metastases were under 4mm.
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The pathologist also used the H&E stained sections to identify and mark the cancerous
regions within the tissue samples. This served as a template to identify and mark the same region
on the six unstained sections from the same block. The identified regions from all 6 sections were
macrodissected, and the tissue collected into a shearing microtube provided in the Covaris
truXTRAC FFPE total NA kit. The FFPE tissue samples were then sent to Emory Integrated
Genomics Core (EIGC) for RNA and DNA isolation using the aforementioned Covaris kit. QC
analysis was also performed by EIGC on all RNA and DNA extractions. For any sample whose
RNA was below a concentration of 5 ng/ul, and/or DNA under 500 ng, more sections of the
tissue block were made. Macrodissection of the identified area was performed again, for isolation
of more RNA and DNA. If the necessary amount could not be isolated, another FFPE block from
the same patient was selected and used for RNA/DNA extraction. Once the total RNA and DNA
collected were above the given threshold, the samples underwent sequencing.

The final patient count included 36 individuals with high risk PCa. A total of 165 tissue
samples (51 Met PT, 46 Non-Met PT, 19 LN Met, 39 Normal LN, 10 Normal Prostate) were
sequenced via RNA-seq and and 144 tissue samples were sequenced via WES (Fig. 4). RNAseq
and WES were performed at HudsonAlpha, part of Discovery Life Sciences.

Figure 4. Sample distribution across 40 PCa patients

RNAseq WES Both
Primary Tumor 97 88 80
Foci (PTF)
Metastatic Lymph 19 19 19
Nodes (LNM)
Normal Prostate 10 0 0
tissue (NP)
Normal Lymph 39 37 33
Nodes (LN)
Total Samples 165 144 132
Metastatic 16 15 15
Patients
Non-Metastatic 20 20 20
Patients
Total Patients 36 35 35
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2.3 RNA-seq Pipeline

The RNA-seq pipeline was constructed with Linux shell programming, R scripting, and
Gene Set Enrichment Analyses (GSEA) (Fig. 5). Raw FASTQ files served as input to analyze
RNA-seq data from patient samples. First, FastQC was used for quality control checks of the
high throughput data to eliminate poor quality reads (31). Next, the reads were trimmed with
TrimGalore to remove adapter sequences and poor quality reads. Genome mapping with the
trimmed reads was conducted with STAR mapper (32). Trimmed reads were mapped to the
human transcriptome based on the GRCh38 reference. STAR Aligner determines locations in the
human genome associated with read data. This alignment strategy is highly accurate and

outperforms other aligners in mapping speed.

Figure 5. Full flowchart of the constructed RNA-seq pipeline. Linux scripting (gray), R scripting (blue), and
Webgestalt (green) were used as computational tools.

RNA-seq data QC check Trimming Genome Mapping

EA
(raw fastq files) (FastQC) (Trimgalore) (STAR aligner) DESeq2 6s

Linux scripting
R scripting
Webgestalt
The STAR alignment algorithm includes two main steps: (1) Seed searching and (2)
Clustering, stitching, and scoring. In seed searching, STAR aligns reads with the longest
sequence that matches one or more locations on the reference genome. Seeds are different parts
of a particular read that are mapped separately to different genomic locations. This alignment

method is sequential — STAR continues to search for unmapped sections of each read that

matches the reference genome. STAR uses an uncompressed suffix array to search for the longest
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matches. Separate seeds are combined to create a full read by clustering, stitching, and scoring.
The output of STAR aligner is read counts per gene.

Through R scripting, DESeq2 was used to determine differences in RNA expression
among the samples (33). The DESeq?2 package includes negative binomial generalized linear
models and read count normalization. Through DESeq2, we aimed to identify differentially
expressed genes between sample groups (Fig. 6). Each patient sample is associated with a

specific site, type, and group.

Figure 6. Group divisions of PCa patient samples. Site (orange) is the sample location, Type (green)
represents type of sample, and Group (blue) is the sample group based on patient status.

Lymph Primary
Metastatic Normal Tumor Normal Prostate
1 1 l Site
Type
Metastatic Metastatic Non-Metastatic Metastatic Non-Metastatic

Group

Several comparisons were analyzed based on group, site, and type of tumor. DESeq2
objects were created for each comparison based on specific subsets of the data. There are 7 total
comparisons across each of the main 4 categories: primary tumor foci (PTF), normal lymph
nodes (LN), metastatic lymph nodes (LNM), and normal prostate (NP). Specifically, the
comparisons 1-5 are based on overlap between the 4 aforementioned categories (Fig. 7a).
Comparison 6 is based on overlap within PTF samples — between metastatic and non-metastatic

patients (Fig. 7b). Lastly, comparison 7 compares all normal patient samples with all cancer

13



samples. In the normal category, patient samples include NP and LN, while all tumors and
metastases are in the cancer category (Fig. 7c¢).

Figure 7. Comparisons of PCa samples. (A) Comparisons (1-4) between the four categories, including
LNM (pink), PTF (green), LN (yellow), and NP (blue). A three-way comparison (5) was conducted between
LNM, PTF, and LN. (B) Comparison 6 compares samples within the PTF group between metastatic (dark
green) and non-metastatic (light green) patients. (C) Comparison 7 compares all cancer (orange) samples
to normal (purple) samples. Cancer samples include all tumors and metastases, while normal includes LN
and NP.

A.
Metastatic Lymph
Primary Tumor
Normal Lymph
Normal Prostate 2
B. C.
. Primary Tumor (Metastatic) Cancer
Primary Tumor (Non-Metastatic) B Normal
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The output includes variation between group read counts for each gene: baseMean,
log2FoldChange, log fold change standard error, stat, p-value, and adjusted p-value (p-adj).
DESeq2 detects outliers and removes those genes from the analysis, based on a normalized count
threshold value. The DESeq?2 stat value is the Wald statistic for significance testing. This value is
helpful to identify genes that are differentially expressed between the two compared groups.
Genes are considered differentially expressed genes (DEG) if there is significant variation in
RNA transcript level or normalized read count data. DEGs can reveal genomic variation and
particular expression patterns in each comparison.

Gene set enrichment analysis (GSEA) is a computational method to identify DEGs. In
this case, GSEA input files were generated from the DESeq?2 results. There is one RNK file for
each comparison with two columns — ensembl gene ID and DESeq?2 stat. WebGestalt
(WEB-based Gene SeT AnaLysis Toolkit) was used to conduct several GSEA for each
comparison (34). WebGestalt is a functional analysis webtool, which utilizes gene rank values to
explore genomic enrichment patterns. Four main GSEA methods were applied to each of the
seven comparisons. These databases include geneontology (GO), KEGG, Hallmark50, and
Wikipathway cancer. The GO database includes a wide array of gene ID with associated
biological functions (35). KEGG PATHWAY database consists of pathway maps across various
categories such as metabolism, genetic information processing, and human diseases (36). The
community-contributed Hallmark50 database includes 50 gene sets related to cancer progression.
Similarly, the Wikipathway cancer database includes various biological pathways linked with
cancer. Each database provides additional parameters to reveal genomic variation across the

comparisons.
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2.4 WES Pipeline

The WES pipeline was constructed with Linux, R, and Python scripting (Fig. 8). The
initial input is raw FASTQ files from the WES output. Similar to the RNA-seq pipeline, FastQC
was used for quality control checks of the high throughput data and eliminated poor quality
reads. Next, the reads were trimmed with TrimGalore to remove adapter sequences. Genome
mapping was conducted with the Burrows-Wheeler Alignment (BWA) algorithm from the GATK
package (37). BWA is a software package for mapping WES data, which aligns short reads with
a reference genome. To be consistent with the RNA-seq pipeline, the GRCh38 human genome
reference was used for the mapping process. The output of BWA is SAM files (Sequence
Alignment/Map), which are text files that contain alignment information. Next, Samtools was
used to convert SAM files into Binary Alignment Map (BAM) files (38). BAM files are
essentially compressed SAM files that can serve as the input for Picard.

Genome Analysis Toolkit (GATK) and Picard Tools were used to calibrate read group
qualities and mark duplicates (39). Afterwards, the Mutect2 algorithm in the GATK package was
used to call mutations to detect SN'Vs and indels in the sample data. First, a panel of normals was
run through Mutect? to identify all the germline and technical variation. This step filters out
polymorphisms and sequencing errors based on normal tissue, and calls somatic mutations in
tumor samples. Mutect2 produces Variant Call Format (VCF) files, which includes genomic
variant information. VCF files were filtered with R scripts in order to exclude insignificant
variants. Resulting filtered VCEF files had sufficient read depth, coverage, allele frequency values,
and high significance levels based on F-tests. Funcotator is a functional annotator that marks
genomic variants based on read depth, allele frequency, and F-tests. This tool uses VCEF files as

input and outputs mutation annotation format (MAF) output files. These MAF files were
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analyzed with the R package, maftools, for variant analysis (40). Maftools identified recurrent
mutations and patterns to build mutational profiles. BAM files were also analyzed using a python
copy number calling pipeline (CNVKkit) (41). This script outputs copy number (CN) changes with
CN ratios and CN segments. Through CNVkit, CN variant files can serve as input for HATCHet,
an algorithm to compute tumor heterogeneity (42). As a result, copy number aberrations (CNAs)
and whole-genome duplications (WGDs) can be used to investigate tumor evolution and
metastatic seeding patterns (43).

Figure 8. Full flowchart of the constructed WES pipeline. Linux scripting (gray), R scripting (blue), and
Python scripting (purple) were used as computational tools to build the pipeline.

Linux scripting

WES data QC check Trimming Genome Mapping GATK Mutect2
R scripting (raw fastq files) (FastQC) (Trimgalore) (BWA & samtools) (Panel of Normals)
Python scripting
VCF filtering GATK Funcf:tator maftools CNVKit HATCHet (Tumor
& F-test Annotation Heterogeneity)

3. Results

3.1 RNA-seq Analysis

GSEA results include enrichment plots and genomic expression tables. Four databases
were used for GSEA, including GO, KEGG, Hallmark50, and Wikipathway Cancer. As a result,
there are four GSEA results for each comparison (Fig. 9-15). Furthermore, ORA results include
similar bar plots. Darker colors represent a false discovery rate (FDR) less than or equal to 0.05,
which indicates significant differential expression. Various plots were generated through R
scripting to further investigate the comparisons. Principal Component Analysis (PCA) plots
cluster the patient samples based on their similarity (Fig. 16). Heatmaps were created to visualize

differential gene expression across different samples (Fig. 17).

17



Figure 9. GSEA Results for C1. Enrichment plots for LNM vs. LN for 4 different pathways. Blue bars signify
enrichment in LNM. Orange bars signify enrichment in LN. (A) KEGG Pathway (b) Wikipathway Cancer (C)

Hallmark50 (D) Geneontology (GO)
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Figure 10. GSEA Results for C2. Enrichment plots for LNM vs. PTF for 4 different pathways. Blue bars
signify enrichment in PTF. Orange bars signify enrichment in LNM. (A) KEGG Pathway (b) Wikipathway
Cancer (C) Hallmark50 (D) Geneontology (GO)
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Figure 11. GSEA Results for C3. Enrichment plots for LN vs. PTF for 4 different pathways. Blue bars signify
enrichment in PTF. Orange bars signify enrichment in LN. (A) KEGG Pathway (b) Wikipathway Cancer (C)
Hallmark50 (D) Geneontology (GO)
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Figure 12. GSEA Results for C4. Enrichment plots for NP vs. PTF for 4 different pathways. Blue bars signify
enrichment in PTF. Orange bars signify enrichment in NP. (A) KEGG Pathway (b) Wikipathway Cancer (C)

Hallmark50 (D) Geneontology (GO)

A.

Ribosome

Oxidative phosphorylation

Protein processing in endoplasmic reticu...
Parkinson dissase

Thermogenesis

Alzheimer disease

Proteasome

Non-aleoholic fatty liver disease (NAFLD)
Spliceosome

B.
Metabolic reprogramming in colon cancer
Fatty Acid Bela Oxidation
4-hy iten, Dy and Reti...

Tumor suppressor activity of SMARCB1
PI3K-AKT-mTOR signaling pathway and therap...
Motch Signaling I
Target Of Rapamycin (TOR) Signaling |
Bladder Cancer I
Wit Signaling Pathway (Netpath)

Protein export Glycolysis and Gluconecgenesis
Focal adhesion Call Cycle
Inflammatory bowel disease (IBD) Imatinie and Chronic Myeloid Leukemia
Retinel metabolism Non-small cell lung cancer
Dilated cardiomyopathy (DCM) TGF-beta Signaling Pathway
Intestinal immune network for IgA production MFAPS-mediated ovarian cancer cell motility and invasiveness
Hypertrophic cardiomyopathy (HCM) ncRNAs involved in STATS signaling in hepatocellular carcinon
Hippo signaling pathway Cylokines and Inflammalory Response
Cytokine-cytokine receptor interaction Type Il interferon signaling (IFNG)
African trypanosomiasis Cancer immunatherapy by PD-1 blockade
Malaria TGF-beta Receptor Signaling
25 -20 45 -0 05 00 05 10 15 20 25 30 35 40 20 A5 A0 05 0.0 05 10 15 2.0 25
Normalized Enrichment Score Normalized Enrichment Score
C. D.
androgen response translational initiation
MYC targets, variant 1 protein largeting
unfolded protein response; ER stress cytoplasmic translation
mTORC signaling 4 i b izati
MYC targets, variant 2 translational elongation
fatty acid metabolism mitochondrial transport
protein secretion protein folding
adipocyte development ANA catabolic process
cholesterol homeostasis leoside triphosphate baolic process
DNA repair nucleoside monophosphate metabolic process
interferon alpha response muscle cell proliferation
IL2 STATS signaling cell communication by electrical coupling
IL6 STAT3 signaling during acute phase response smaothened signaling pathway
KRAS signaling, upregulated genes heart morphogenesis
muscle differentiation aorgan growth
intarferon gamma response muscle tissue development
inflammation cilium organization
| negative chemolaxis
UV response: downregulated genes animal ergan formation
TMFA signaling via NF_B pericardium development
T - - T - : - - - - - - - r T T T T 1 T T T T T T d
30 25 20 A5 A .?h i mg.iied Eg,rui:bh mgts%o I‘31 0 15 20 25 30 25 20 1.5 10 " om"ialﬁu o Eg-’?c Inw n(:gwa 0 15 20 25 30 35
BN FDR = 0.05 FDR > 0.05

21



Figure 13. GSEA Results for C5. Enrichment plots for the three-way comparison (LN vs. LNM vs. PTF) for
3 different pathways. Wikipathway Cancer is excluded because it did not provide significant enrichment
patterns. (FDR > 0.05) (A) KEGG Pathway (B) Hallmark50 (C) Geneontology (GO)
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Figure 14. GSEA Results for C6. Enrichment plots for the PTF comparison between metastatic and

non-metastatic patients for 4 different pathways. Blu
while orange bars signify enrichment in metastatic PT
Hallmark50 (D) Geneontology (GO)
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Figure 15. GSEA Results for C7. Enrichment plots for the comparison between all normal vs. all cancer
for 4 different pathways. The normal category includes NP and LN, while all tumors and metastases are
in the cancer category. Blue bars signify enrichment in cancer, while orange bars signify enrichment in
normal. (A) KEGG Pathway (b) Wikipathway Cancer (C) Hallmark50 (D) Geneontology (GO)
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Figure 16. Principal Component Analysis (PCA) plots. PCA plots cluster samples based on gene

expression similarity.
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Figure 17. Hierarchical Clustering. Heatmaps of differential gene expression. Only includes gene
expression with padj<0.01. (A) PTF metastatic vs. non-metastatic (B) Normal vs. all cancer
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3.2 WES Analysis

Maftools determines mutational patterns to build genomic profiles. Significant mutations

were identified based on an allele frequency (AF) difference > 0.05 and false discovery rate
(FDR) < 0.1. This filtering identified 1927 mutations in 91 patient samples within the
aforementioned threshold values. Mutations affected several biological pathways such as
RTK-RAS, WNT, and PI3K (Fig. 18). Variant information is highlighted, including variant

classification, type, SNV class, and variants per sample (Fig. 19). Most variants are missense

SNVs, and there is a high frequency of C>T mutations. The top mutated genes are also indicated,

based on the number of samples across each site (Fig. 20). The top three mutated genes include

SPOP, EYAI, and NCOR2 (Fig. 21). Missense mutations are most common in the MATH domain

of SPOP, which is involved in receptor binding and oligomerization.

Figure 18. Affected Pathways. Maftools output displays proportions of affected biological pathways.
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Figure 19. WES Variant Summary. Maftools output displays variant information across patient samples.
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Figure 21. Mutation Loci. (A) SPOP mutation sites (B) EYA1 mutation sites (C) NCOR2 mutation sites
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Furthermore, metastatic samples have a higher frequency of missense mutations

compared to non-metastatic samples. Specific mutations are enriched in metastatic samples; the

top three mutated genes in metastases include SOGA 1, LRRC4C, and TP53 (Fig. 22).

Figure 22. Enrichment in Metastases. (A) Mutations in EYA1 and SPOP are enriched in metastatic
samples (B) Mutations associated with metastasis. Top 3 genes include SOGA1, LRRC4C, and TP53.
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Mutational allele frequency clustering identified clonally independent tumor foci.

PCMO034 and PCMO003 display distinctive primary clones, which appear to be independent from

the metastases (Fig. 23). However, most primary tumor foci seem to be clonally related to the

metastases (Fig. 24). The CNVKkit pipeline was executed with sample BAM files in order to

identify copy number changes. This tool allows for detection and visualization of copy number

variation (CNV). The output includes .cns files and scatter plots, which displays the

genome-wide copy ratio (Fig. 25). This analysis is currently ongoing and will continue with

HATCHet as the next step.

Figure 23. Mutational Allele Frequency Clustering identifies clonally independent tumor foci.
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Figure 24. Most Primary Tumor Foci are Clonally related
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3.2 Integrative DNA/RNA Analysis

Based on the GSEA results from the RNA-seq pipeline, it is clear that some pathways are
enriched in metastatic clones compared to non-metastatic clones. The Hallmark50 Gene Set
analysis reveals that metastatic clones were enriched in the G2M checkpoint (Fig. 26). This
checkpoint stops the proliferation of damaged cells — it allows DNA repair to occur before
moving to the mitotic stage of the cell cycle. However, non-metastatic clones were enriched in
epithelial mesenchymal transition (EMT). EMT is a process in which epithelial cells gain
mesenchymal features, such as migratory capabilities (44). These cells may become invasive and
contribute to cancer metastasis. Hierarchical clustering of genes associated with G2M and EMT
display the aforementioned patterns (Fig. 27). G2M is upregulated in metastatic clones, while

EMT is downregulated.

Figure 26. Hallmark50 Metastatic Enrichment Patterns. Barplots displays enriched G2M checkpoint in
metastatic clones, and enriched EMT in non-metastatic clones.
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Figure 27. Hierarchical Clustering of EMT and G2M Genes. (A) G2M genes are upregulated in metastatic
clones (B) EMT genes are downregulated in metastatic clones
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4. Discussion

4.1 RNA-seq Pipeline

A median of 57 million paired-end reads were obtained per sample, with a median of 10
million total read counts per sample across the transcriptome, and 44,289 transcripts were
detected in at least 5% of samples. Comparing PTF to LNM, 8110 transcripts were differentially
expressed (p-adj < 0.01). PTF were enriched relative to LNM in gene sets associated with Notch
signaling, hormone signaling, TGFb signaling, hypoxia, and the epithelial to mesenchymal
transition. Comparing PTF from metastatic patients to non-metastatic patients, 581 transcripts
were differentially expressed (p-adj < 0.01). PTF from metastatic patients were enriched in cell
cycle progression, MYC targets, ER stress, androgen response, and DNA repair. LNM gene sets
were enriched in endoplasmic reticulum (ER) stress and oxidative phosphorylation.

The top 500 upregulated genes in malignant tissues were significantly enriched in genes
related to androgen and estrogen signaling as expected. We also identified a set of 193 genes
whose expression was significantly increased in primary tumor over benign LNs and in LNM
over primary tumors. This gene set was significantly enriched in genes related to oxidative
phosphorylation and included oncogenes such as PIK3CB, NCOA2, and SCHLAPI. Based on the
PCA plots, the primary tumor samples are closer together in a tighter cluster compared to the
metastatic samples. This result was expected since there is more variation in the metastatic
samples due to tumor heterogeneity. The heatmaps facilitate the visualization of differential gene
expression, in which there is distinct clustering of metastatic samples. In the Hallmark50 GSEA,
it is clear that genes associated with the G2M checkpoint are upregulated in metastatic clones,

while genes associated with EMT are downregulated.
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4.2 WES Pipeline

Most identified variants are missense mutations, which includes SNPs across different
SNV classes. Frequently mutated genes were determined; the top three mutated genes are SPOP,
EYAI, and NCORI. The SPOP gene encodes for Speckle-type POZ Protein (SPOP), which is
essential for ubiquitination and subsequent proteasomal degradation (45). One of the many
substrates of SPOP is the androgen receptor (AR). Therefore, functional SPOP is necessary for
the degradation of AR. Mutated SPOP may fail to ubiquitinate AR and allow for an increase of
AR in the cell (46). As a result, AR signaling increases and encourages PCa proliferation. Results
from the WES pipeline support this mechanism by identifying mutations in SPOP. We discovered
mutations in the MATH binding domain of SPOP, which may alter protein-protein interactions
with AR. These mutations could facilitate the survival and metastasis of cancer cells.
Furthermore, past literature reveals important interactions between SPOP and c-JUN (47).
Overexpression of the c-JUN protein leads to accelerated cell proliferation and induced gene
expression. Mutated SPOP can bind to c-JUN, which stabilizes the complex and may further
inhibit AR degradation.

Furthermore, EYA I encodes a transcription factor (TF) that interacts with SIX1. The
EYA1-SIX1 complex plays a critical role in cell proliferation and gene regulation. Mutations in
EYAI may cause dysregulation and act as a tumor promoter with SIX1 (48). Previous literature
demonstrates that the EYA1-SIX1 complex activates STAT3 signaling. STAT (Signal transducer
and activator of transcription) proteins serve as TFs and influence various biological processes
including cell proliferation, apoptosis, mitosis, and differentiation (49). Consequently, STAT
proteins are highly regulated in normal cells in order to prevent overexpression of genes.

Elevated STAT-3 activity has been observed in many different cancers and is often associated
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with tumor progression. Since the EYA1-SIX1 complex activates STAT3 signaling, mutations in
EYA I may promote the proliferation of PCa through increased STAT3 activity. Our WES pipeline
further validates this hypothesis, as we located significant mutations in EYA/. Additionally, most
mutations in SPOP and EYAI were found in metastatic PCa patients.

The NCOR?2 gene encodes a nuclear co-repressor (NCOR?2) that mediates gene silencing.
NCOR?2 interacts with nuclear receptors, such as AR, to promote gene repression. Specifically, it
binds to histone deacetylases to alter histone modifications. Mutations in NCOR?2 could inhibit
the ability of NCOR2 to regulate and maintain the epigenome. This may change AR genomic
interactions and support PCa proliferation. When AR genomic binding is redirected via mutated
NCOR?2, alternative malignant pathways may be upregulated. Previous literature investigates the
role of NCOR?2 in androgen deprivation therapy (ADT). Long MD, et al. found that reduced
NCOR?2 expression accelerates ADT failure in PCa (50). This phenomenon aligns with our
findings that mutated NCOR?2 alters the AR signaling pathway and drives cancer progression.

Through WES analysis, we identified mutations associated with PCa metastasis. The top
six mutated genes are SOGA I, LRRC4C, TP53, COL5A1, PCDHAI3, and SLC16A14. These
mutations will be further analyzed using external, independent datasets. We aim to identify
similar mutational patterns in additional samples in order to increase the validity of our results.
This next step will be conducted with the Stand Up To Cancer dataset, which includes metastases
and primary cancers. Additionally, the WES pipeline is under construction, as we are currently
investigating intratumoral heterogeneity with HATCHet. Next steps will include additional
variant analyses with the CN'VKkit output. HATCHet can determine CNAs and WGDs for tumor

clones within patient samples.
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5. Conclusions

Through building RNA-seq and WES pipelines, raw sequencing data was transformed
into interpretable biological information. Mutational signatures were identified based on
transcriptional enrichment patterns across seven main comparisons. Signaling pathways
associated with ER stress, oxidative phosphorylation, metabolism, and cell cycle progression are
prominent in LNM of aggressive PCa. Furthermore, expression of PIK3CB, NCOA2, and
SCHLAPI are significantly increased in LNM. These results are vital to the investigation of
prostate cancer metastasis. We have identified enhanced signaling pathways and overexpression
of particular oncogenes. Based on the WES pipeline, cancer cell proliferation may be sparked by
mutations in SPOP, EYAI, and NCOR?2. Alterations in these genes may lead to AR upregulation
or misregulation. As a result, these genomic changes may drive oncogenic progression.
Furthermore, we identified several genes that are significantly enriched in metastases compared
to non-metastatic samples. These genes include SOGA I, LRRC4C, TP53, COL5A1, PCDHAIS3,
and SLC16A14. By understanding the mechanism of metastasis, we may be able to improve

clinical strategies to target PCa.
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6. Acronym Appendix

Abbreviation
AF

AJCC

AR

BAM
BWA

CN

CNA
CNVkit
DEGs
DRE
EIGC
EMT
EUH
FDR
FFPE
Funcotator
GATK
GO
GSEA
H&E
HATCHet
ITH
KEGG
LN

LNM
MAF
mCRPC

Description

Allele Frequency

American Joint Committee on Cancer
Androgen Receptor

Binary Alignment/Map
Burrows-Wheeler Alignment

Copy Number

Copy Number Aberrations

Copy Number Calling Pipeline
Differentially Expressed Genes
Digital Rectal Exam

Emory Integrated Genomics Core
Epithelial Mesenchymal Transition
Emory University Hospital

False Discovery Rate

Formalin-Fixed Paraffin-Embedded
Functional Annotator

Genome Analysis Toolkit
Geneontology

Gene Set Enrichment Analysis
Hematoxylin and Eosin

Holistic Allele-specific Tumor Copy-number Heterogeneity
Intratumoral Heterogeneity

Kyoto Encyclopedia of Genes and Genomes
Lymph Node

Lymph Node Metastasis

Mutation Annotation Format

Metastatic Castration-resistant Prostate Cancer
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NGS

NP

ORA

PCa

PCA

PCR

PET imaging
PHI

PSA

PTF

QC

SAM
scRNA-seq
SNV

STAR
TCGA
TNM Staging System
VCF
WebGestalt
WES

WGD
WGS

Next Generation Sequencing

Normal Prostate

Over-representation Analysis

Prostate Cancer

Principal Component Analysis
Polymerase Chain Reaction

Positron Emission Tomography imaging
Protected Health Information
Prostate-Specific Antigen

Primary Tumor Foci

Quality Control

Sequence Alignment/Map

Single cell RNA sequencing

Single Nucleotide Variant

Spliced Transcripts Alignment to a Reference
The Cancer Genome Atlas

Tumor Nodes Metastasis Staging System
Variant Call Format

WEB-based Gene SeT AnaLysis Toolkit
Whole-Exome Sequencing
Whole-Genome Duplications

Whole-Genome Sequencing
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