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 Abstract 

 Transcriptome Analysis of Primary Prostate Tumor Foci and Corresponding Lymph Node 

 Metastases Identifies Pathways Associated with Metastatic Disease 

 By Emma Klein 

 Prostate cancer (PCa) is a highly heterogeneous disease, and mortality is mainly due to 

 metastases. However, the molecular underpinnings that lead to the initial steps of metastasis 

 have not been well characterized. We performed genomic analysis of primary prostate tumor 

 foci (PTF) and corresponding lymph node metastases (LNM). PTF and LNM from patients with 

 high-risk PCa were analyzed by RNAseq and Whole-Exome Sequencing (WES). Computational 

 pipelines were developed with Linux, R, and Python scripting. Through the RNA-seq pipeline, 

 differentially expressed genes between PTF, LNM, benign LNs, and normal prostate were 

 identified. A median of 57 million paired-end reads were obtained per sample. Comparing PTF 

 to LNM, 8110 transcripts were differentially expressed (p-adj < 0.01). PTF were enriched relative 

 to LNM in gene sets associated with Notch signaling, TGFb signaling, hypoxia, and the epithelial 

 to mesenchymal transition. Comparing PTF from metastatic patients to non-metastatic patients, 

 581 transcripts were differentially expressed (p-adj < 0.01). PTF from metastatic patients were 

 enriched in cell cycle progression, MYC targets, ER stress, androgen response, and DNA repair. 

 LNM gene sets were enriched in endoplasmic reticulum (ER) stress and oxidative 

 phosphorylation. We also identified a set of 193 genes with significantly increased expression in 

 primary tumors over benign LNs and in LNM over primary tumors. This gene set was 

 significantly enriched in genes related to oxidative phosphorylation and included oncogenes 

 such as  PIK3CB, NCOA2,  and  SCHLAP1  . The WES pipeline  revealed genomic variant and tumoral 

 heterogeneity information. The top mutated genes include  SPOP, EYA1,  and  NCOR2  . These 

 somatic mutations may drive cancer proliferation via dysregulation of the AR signaling pathway. 

 Through WES analysis, we identified mutations associated with PCa metastasis. The top 

 mutated genes associated with metastasis are  SOGA1,  LRRC4C, TP53, COL5A1, PCDHA13  , and 

 SLC16A14  . Our results are vital to the investigation  of prostate cancer metastasis, as genomic 

 changes drive oncogenic progression. By understanding the mechanism of metastasis, we may 

 be able to improve clinical strategies to target PCa. 
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 1.  Introduction 

 1.1 Prostate Cancer Biology 

 Prostate cancer (PCa) is the most common cancer diagnosed in males and second highest 

 cause of cancer-associated death in the United States (1). According to the American Cancer 

 Society, 1 in 8 men are diagnosed with PCa and the mortality rate is 1 in 41. It is estimated that 

 there will be approximately 288,300 new cases and 34,700 deaths from PCa in 2023 (2). 

 Therefore, it is essential to investigate the mechanism of PCa progression in order to optimize 

 patient treatment and understand disease pathogenesis. 

 Cancer is partly driven by somatic mutations – these are genomic alterations that emerge 

 during the lifetime of an individual. A single abnormal cell with acquired genetic mutations can 

 spark the creation of a neoplasm (3). When a single cell acquires mutations beneficial for tumor 

 growth, it may encounter multiple rounds of selection and clonal expansion. As a result, 

 cancerous cells proliferate and heterogeneous tumors are formed. Heterogeneous tumors include 

 populations of cancerous cells with variable combinations of somatic mutations. This is a 

 distinctive hallmark of PCa, as every tumor has a unique mutational signature. 

 Previous studies have aimed to create molecular and genetic profiles of primary prostate 

 cancer. Multiple genomic alterations have been identified such as mutations, rearrangements, 

 gene fusions, and DNA copy-number changes. Schultz et al. presented a primary PCa molecular 

 analysis for the The Cancer Genome Atlas (TCGA). Based on 333 primary prostate carcinomas, 

 they identified seven subtypes characterized by ETS fusions or mutations in  SPOP, FOXA1,  and 

 IDH1  (4). Other studies focus on metastatic, castration-resistant  prostate cancer (mCRPC) 

 through bone or soft tissue biopsies. Robinson et al. classified genomic aberrations in mCPRC 
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 pertaining to the  AR, PI3K, Wnt  , Cell-Cycle, and DNA Repair pathways. They found that nearly 

 90% of mCRPC harbor clinically-actionable molecular alterations (5). Despite the importance of 

 genomic profiles in PCa, the molecular underpinnings that lead to the initial steps of metastasis 

 have not been well characterized. Mortality is mainly due to PCa metastasis, so it is essential to 

 understand the key drivers of tumor progression. 

 Prostate cancer cells spread through the bloodstream or lymphatic system, forming bone 

 and lymph node (LN) metastases. PCa metastasis is a key component of diagnosis and defines a 

 patient's stage of cancer. Staging is critical because it allows cancer care teams to categorize 

 patient cases and optimize treatment plans. The most widely used staging system for PCa is the 

 AJCC TNM staging system (6). The TNM system includes 5 parameters – the extent of the main 

 primary tumor (PT), whether the cancer has spread to LNs, whether the cancer has metastasized 

 to other parts of the body, prostate-specific antigen (PSA) level, and grade group. 

 Epithelial cells in the prostate express high levels of AR (androgen receptor), which 

 drives hormone dependency in PCa. AR activates transcription of PSA, a serine protease, which 

 is elevated in PCa patients. PSA blood tests are commonly used to screen for PCa in men without 

 symptoms. High PSA levels indicate a higher likelihood of PCa. Furthermore, the grade group is 

 determined based on the gleason score of a prostate biopsy. The Gleason System assigns grades 

 based on tissue comparisons between cancer and normal prostate cells. Abnormal cells are 

 assigned higher grades, while cells similar to normal prostate tissue are assigned low grades. 

 Scores are generated by summing the grades of the two predominant lesions in the prostate. 

 Grade groups include ranges of Gleason scores based on severity level. 

 Stages of PCa include Stage I, IIA, IIB, IIC, IIIA, IIIB, IIIC, IVA, and IVB. As stage 

 number increases, symptoms and severity increase (7). According to the American Cancer 
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 Society, the five-year survival rate is almost 100% for Stages I-IVA because PCa is still localized 

 and regional. Earlier stages include cancer that has not spread outside of the prostate or 

 cancerous cells that spread to nearby regions. However, the 5-year survival rate of Stage IVB 

 patients is 31%. During Stage IVB, tumors infiltrate other parts of the body such as the bones, 

 liver, or lungs (8). It is evident that most PCa mortality is driven by metastases (Fig. 1). The 

 staging system facilitates the optimization of patient treatment and understanding of PCa 

 progression. 

 Figure 1. Overview of PCa metastasis.  Most common  sites of metastases are pelvic lymph nodes and 
 bone. Adapted from Nature Reviews Disease Primers (Nat Rev Dis Primers) (13) 

 1.2 Symptoms & Treatment 

 The prostate is a component of the male reproductive system and located below the 

 bladder (Fig. 2). It is a small organ, comparable to the size of a golf ball (9). Seminal fluid is 

 created within the prostate and then secreted into the urethra. This fluid combines with sperm to 

 form semen, which is released during ejaculation. Since the prostate is in front of the rectum, 

 prostate health can be evaluated through a digital rectal exam (DRE).  The American Cancer 

 Society recommends prostate exams for men over 50 years old, every three to five years. Early 
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 detection is essential for the best prognosis and treatment strategies. Since early stages of PCa 

 are not usually linked with symptoms, it is important to routinely schedule prostate exams. 

 However, advanced PCa can be linked with a myriad of potential symp  toms, mainly associated 

 with the urinary tract. Specifically, advanced PCa symptoms include painful urination, weak 

 urine streams, blood in semen, bone pain, fatigue, and leg swelling (10). 

 Figure 2. Prostate Anatomy.  Five regions of the prostate  include the central zone (green), periurethral 
 region (dark blue), transition zone (dark green), peripheral zone (dark yellow), and fibromuscular region 
 (light yellow). Adapted from Nature Reviews Disease Primers (Nat Rev Dis Primers) (11) 

 There are many treatments used for PCa, which may cure patients with localized cancer. 

 Most patients with stage IV PCa cannot be cured with current treatments, but their symptoms can 

 be mediated and metastasis slowed. Early detection is essential for the best prognosis and 

 treatment strategies, as localized PCa is treated with the highest efficacy. Treatment options 

 significantly vary between patients based on disease pathology and staging. If PCa is localized, 

 surgery is a very common treatment option. Patients undergo surgical procedures to directly 

 remove malignant regions of the prostate and some of the surrounding LNs. Radiation therapy is 

 often used to target localized PCa; high energy rays destroy cancer cells through DNA damage. 

 Furthermore, systemic therapies are also used to eliminate cancer cells. These treatments include 
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 medications, which can be administered intravenously or through oral consumption (swallowing 

 a pill or capsule). There are several types of systemic treatments including  androgen deprivation 

 therapy, targeted therapy, chemotherapy, and immunotherapy (12). 

 1.3 Genomic Sequencing & Informatics 

 Sequencing technologies that identify the order of nucleic acid sequences in biological 

 samples have revolutionized biomedical research. There are several types of genomic 

 sequencing, such as Sanger Sequencing, Next Generation DNA Sequencing (NGS), and 

 Long-Read Sequencing. Through the past few decades, sequencing technologies have become 

 more efficient, more accurate, and cheaper. Whole-Genome Sequencing (WGS) uses an entire 

 DNA sample in order to construct a donor’s entire genome. WGS cuts the DNA into fragments 

 using sonication, amplifies them with PCR, and then sequences all the fragments. Whole-Exome 

 Sequencing (WES) follows a similar process but only includes the exons, protein-coding regions, 

 of the genome. 

 Furthermore, RNA-seq is used to investigate the transcriptome, as it includes the 

 sequencing of RNA transcripts. This method is helpful to understand genomic expression based 

 on RNA transcript levels. Single-cell sequencing (scRNA-seq) conducts RNA sequencing on 

 each individual cell in a sample. As a result, data can be clustered based on cell type, facilitating 

 the analysis of individual cell gene expression. These sequencing technologies are commonly 

 used in cancer genomics. Informatics tools are essential to the analysis of sequencing data. 

 Through computational methods, sequencing data can be mapped to the human genome and 

 transformed into interpretable genomic expression data. As a result, biological patterns and 

 genomic variation can be uncovered. 
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 2.  Methodology 

 2.1 Main Objectives 

 Mortality is mainly due to metastases of highly heterogeneous tumors. However, the 

 molecular underpinnings that lead to the initial steps of metastasis have not been well 

 characterized. In order to optimize future treatments, it is essential to investigate the mechanism 

 of PCa, as it proliferates and spreads throughout the human body. The main objective of this 

 study is to identify potential key driver mutations and important genomic expression changes 

 involved in PCa metastasis. 

 PCa is characterized by intratumoral heterogeneity (ITH) on multiple levels (13). Primary 

 prostate cancers are known to be multifocal, which underlies the rationale for the Gleason 

 scoring system. As aforementioned, Gleason scores sum the most predominant tumor grade with 

 the second most predominant tumor grade in a radical prostatectomy specimen (14-17). Previous 

 studies have found that over 70% of patients have multifocal disease representing multiple tumor 

 grades (16). Furthermore, different primary tumor foci are composed of genetically distinct 

 clones, suggesting independent carcinogenesis events within the prostate gland (21-24,25). ITH 

 has been identified even within single primary tumor foci in the prostate (26), suggesting 

 co-mingling of independent clones with branching and divergent evolution. 

 ITH is a poorly understood phenomenon that is critically important for understanding 

 tumor progression and the development of drug resistance, as different sub-clones can respond 

 differently to microenvironmental changes and selection pressure from therapies. Recent studies 

 have indicated that independent foci and biopsies can have markedly different performance in 

 commercially available biomarker panels (27). Thus, understanding ITH is essential for 
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 biomarker development and validation, prognosis, and therapeutic decision-making for precision 

 medicine. 

 Mortality from prostate cancer is due to metastases, and thus, understanding the 

 mechanisms of metastasis is also essential for improving patient outcomes. The heterogeneity of 

 metastases is poorly understood, and there is some disagreement in the literature between 

 opposing models of PCa metastasis. Some data using copy number analyses support a 

 monoclonal model of metastasis, in which most metastatic lesions derive from a single clone 

 despite the multiclonal nature of the primary tumor (28). Additional studies have shown limited 

 genomic diversity in multiple metastases from the same men (29). However, conflicting studies 

 support polyclonal seeding of metastases based on whole genome sequencing of 51 tumors from 

 10 patients (30). Some of the differences between these studies may be due to varying degrees of 

 detail and granularity in the methods employed to molecularly characterize PCa metastases. In 

 addition, it is not clear if the genomic variability observed in metastases in some studies are due 

 to mutations that occur at the metastatic site or if polyclonal populations from different primary 

 foci seeded those metastases. Most studies that have analyzed ITH have examined a limited 

 number of patients and used only the index lesion of the primary tumor. 

 In this project, we aimed to address this gap in our understanding of heterogeneity in PCa 

 metastasis and to leverage unique resources of many patients from a clinical trial that includes 

 both radical prostatectomy and extensive dissection of all pelvic LNs. Since metastasis to 

 surrounding LNs is one of the first steps in metastatic spread, understanding ITH in pelvic LNs 

 will provide unique insights into the initial mechanisms and heterogeneity of PCa metastasis. 

 Additionally, we aimed to analyze multiple primary foci beyond the index lesion, greatly 

 increasing the richness of the dataset that we will generate in these studies. 
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 Specifically, three main aims were identified to study PCa disease progression. Aim 1 is 

 to perform RNA-seq analysis of multiple primary foci and corresponding LNs to identify gene 

 expression changes and pathways associated with LN metastasis. RNA-seq analysis can be used 

 to define tumor heterogeneity and enable identification of RNA gene expression patterns. 

 Transcriptomics may help discriminate primary foci that can support metastasis from those that 

 remain indolent and localized. Aim 2 is to perform whole exome sequencing (WES) of multiple 

 primary foci and corresponding LN to identify somatic mutations associated with LN metastasis. 

 WES analysis can also help define intratumoral heterogeneity in the earliest steps of the 

 metastatic process. Lastly, Aim 3 is to determine RNA and DNA signatures associated with the 

 presence and degree of uptake of [18F]-fluciclovine in LN metastases. Aim 3 is not included in 

 the scope of this project. 

 It is essential to investigate PCa disease progression in order to optimize treatment and 

 patient prognosis. This study uses an integrated functional and clinical genomics approach to 

 reveal genes driving aggressive metastatic PCa. 

 2.2 Experimental Design 

 The Emory, Harvard, & University of Washington Prostate Cancer Biomarker Center, led 

 by Dr. Sanda, conducted a clinical trial (NCT01808222) to determine if [18F]-fluciclovine PET 

 imaging can detect significant occult metastatic disease in patients with high risk PCa (Fig. 3). 

 These patients had negative or equivocal conventional imaging such as CT, MR, and bone scan. 

 In this study, 56 PCa patients within high or very high risk groups (T3a, Gleason score 8-10, or 

 PSA greater than 20 ng/ml) were selected based on criteria that correspond to a 50-80% PSA 

 failure rate in the first 5 years after prostatectomy. 
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 Patients underwent radical prostatectomies and extended pelvic lymph node dissections. 

 The surgical plan generally involves nodal dissection of left and right obturator, external iliac, 

 and internal iliac nodes for the high-risk patients. Each group of nodes is removed as a packet, 

 labeled separately, and sent to pathology for routine histopathologic examination. If either 

 conventional imaging or [18F]-fluciclovine PET imaging demonstrates potential other pelvic or 

 extrapelvic nodal disease, the surgeon may choose to extend the nodal dissection to other sites. 

 When this is complete, the additional nodes are labeled to indicate the site and they are also 

 submitted for pathology review. In this trial, 56 patients underwent radical prostatectomies. Of 

 these, 30/56 (54%) of patients had metastases. Of those, 7 had only one positive lymph node, and 

 23 had two or more positive lymph nodes. A total of 92 positive LNs were identified out of a 

 total of 2480 excised LNs of which 58 positive LNs were > 4mm in diameter. 

 Figure 3. Summary of EDRN Fluciclovine Trial 

 This project uses tissue from the aforementioned clinical trial, in which patients with 

 aggressive prostate cancer underwent radical prostatectomies and pelvic LN dissections. Multiple 
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 samples were collected from each patient, so it would be possible to track changes in genomic 

 expression as the cancer metastasizes from the prostate to the LNs. Patient samples include PT, 

 normal LN, and metastatic LN. This experimental design is advantageous so that comparisons 

 can be made between and within patients, using their own genomes as a baseline. 

 Emory University Hospital (EUH) pathology surgical services has Formalin-Fixed 

 Paraffin-Embedded (FFPE) tissue samples from the previous clinical trial, consisting of prostate 

 and lymph node dissections from 56 cases. For 30 (54%) of cases, the cancer had metastasized to 

 the surrounding lymph nodes. Of these 56 cases, 7 did not give consent (4 metastatic and 3 

 non-metastatic) and were removed from the study. For the patients in which the cancer did not 

 metastasize (n=23), we identified at least 3 FFPE prostate tissue samples and 1 LN (benign) for 

 examination. For the cases in which the cancer did metastasize (n=26), we identified at least 4 

 prostate samples, 1 benign LN and 1 metastatic LN. All available FFPE blocks were collected 

 from EUH pathology services and coded to remove any PHI. For 3 of the cases, the met LN 

 blocks were not available, and were removed from the study. 

 All collected FFPE blocks were sent to Winship Cancer Tissue and Pathology Shared 

 Resource Core (CTPSR) for sectioning. Seven sections, at 5 µm each, were made from each 

 FFPE block. One section from each block was stained with Hematoxylin and Eosin (H&E) for 

 cancer cell identification. The H&E stained sections were analyzed by a GU pathologist to 

 identify regions of interest for macrodissection and sequencing. For the non-metastatic patients, 

 two prostate samples and one benign lymph node sample were selected for sequencing. For 

 metastatic patients, three prostate samples, one met lymph node, and one benign lymph node 

 were selected. Six metastatic patients were omitted from the study, as all corresponding lymph 

 node metastases were under 4mm. 
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 The pathologist also used the H&E stained sections to identify and mark the cancerous 

 regions within the tissue samples. This served as a template to identify and mark the same region 

 on the six unstained sections from the same block. The identified regions from all 6 sections were 

 macrodissected, and the tissue collected into a shearing microtube provided in the Covaris 

 truXTRAC FFPE total NA kit. The FFPE tissue samples were then sent to Emory Integrated 

 Genomics Core (EIGC) for RNA and DNA isolation using the aforementioned Covaris kit. QC 

 analysis was also performed by EIGC on all RNA and DNA extractions. For any sample whose 

 RNA was below a concentration of 5 ng/ul, and/or DNA under 500 ng, more sections of the 

 tissue block were made. Macrodissection of the identified area was performed again, for isolation 

 of more RNA and DNA. If the necessary amount could not be isolated, another FFPE block from 

 the same patient was selected and used for RNA/DNA extraction. Once the total RNA and DNA 

 collected were above the given threshold, the samples underwent sequencing. 

 The final patient count included 36 individuals with high risk PCa. A total of 165 tissue 

 samples (51 Met PT, 46 Non-Met PT, 19 LN Met, 39 Normal LN, 10 Normal Prostate) were 

 sequenced via RNA-seq and and 144 tissue samples were sequenced via WES (Fig. 4). RNAseq 

 and WES were performed at HudsonAlpha, part of Discovery Life Sciences. 

 Figure 4.  Sample distribution across 40 PCa patients 
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 2.3 RNA-seq Pipeline 

 The RNA-seq pipeline was constructed with Linux shell programming, R scripting, and 

 Gene Set Enrichment Analyses (GSEA) (Fig. 5). Raw FASTQ files served as input to analyze 

 RNA-seq data from patient samples. First, FastQC was used for quality control checks of the 

 high throughput data to eliminate poor quality reads (31). Next, the reads were trimmed with 

 TrimGalore to remove adapter sequences and poor quality reads. Genome mapping with the 

 trimmed reads was conducted with STAR mapper (32). Trimmed reads were mapped to the 

 human transcriptome based on the GRCh38 reference. STAR Aligner determines locations in the 

 human genome associated with read data. This alignment strategy is highly accurate and 

 outperforms other aligners in mapping speed. 

 Figure 5.  Full flowchart of the constructed RNA-seq  pipeline. Linux scripting (gray), R scripting (blue), and 
 Webgestalt (green) were used as computational tools. 

 The STAR alignment algorithm includes two main steps: (1) Seed searching and (2) 

 Clustering, stitching, and scoring. In seed searching, STAR aligns reads with the longest 

 sequence that matches one or more locations on the reference genome. Seeds are different parts 

 of a particular read that are mapped separately to different genomic locations. This alignment 

 method is sequential – STAR continues to search for unmapped sections of each read that 

 matches the reference genome. STAR uses an uncompressed suffix array to search for the longest 
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 matches. Separate seeds are combined to create a full read by clustering, stitching, and scoring. 

 The output of STAR aligner is read counts per gene. 

 Through R scripting, DESeq2 was used to determine differences in RNA expression 

 among the samples (33). The DESeq2 package includes negative binomial generalized linear 

 models and read count normalization. Through DESeq2, we aimed to identify differentially 

 expressed genes between sample groups (Fig. 6). Each patient sample is associated with a 

 specific site, type, and group. 

 Figure 6.  Group divisions of PCa patient samples.  Site (orange) is the sample location, Type (green) 
 represents type of sample, and Group (blue) is the sample group based on patient status. 

 Several comparisons were analyzed based on group, site, and type of tumor. DESeq2 

 objects were created for each comparison based on specific subsets of the data. There are 7 total 

 comparisons across each of the main 4 categories: primary tumor foci (PTF), normal lymph 

 nodes (LN), metastatic lymph nodes (LNM), and normal prostate (NP). Specifically, the 

 comparisons 1-5 are based on overlap between the 4 aforementioned categories (Fig. 7a). 

 Comparison 6 is based on overlap within PTF samples – between metastatic and non-metastatic 

 patients (Fig. 7b). Lastly, comparison 7 compares all normal patient samples with all cancer 
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 samples. In the normal category, patient samples include NP and LN, while all tumors and 

 metastases are in the cancer category (Fig. 7c). 

 Figure 7. Comparisons of PCa samples. (A)  Comparisons  (1-4) between the four categories, including 
 LNM (pink), PTF (green), LN (yellow), and NP (blue). A three-way comparison (5) was conducted between 
 LNM, PTF, and LN.  (B)  Comparison 6 compares samples  within the PTF group between metastatic (dark 
 green) and non-metastatic (light green) patients.  (C)  Comparison 7 compares all cancer (orange) samples 
 to normal (purple) samples. Cancer samples include all tumors and metastases, while normal includes LN 
 and NP. 

 A. 

 B.  C. 
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 The output includes variation between group read counts for each gene: baseMean, 

 log2FoldChange, log fold change standard error, stat, p-value, and adjusted p-value (p-adj). 

 DESeq2 detects outliers and removes those genes from the analysis, based on a normalized count 

 threshold value. The DESeq2 stat value is the Wald statistic for significance testing. This value is 

 helpful to identify genes that are differentially expressed between the two compared groups. 

 Genes are considered differentially expressed genes (DEG) if there is significant variation in 

 RNA transcript level or normalized read count data. DEGs can reveal genomic variation and 

 particular expression patterns in each comparison. 

 Gene set enrichment analysis (GSEA) is a computational method to identify DEGs. In 

 this case, GSEA input files were generated from the DESeq2 results. There is one RNK file for 

 each comparison with two columns – ensembl gene ID and DESeq2 stat. WebGestalt 

 (WEB-based Gene SeT AnaLysis Toolkit) was used to conduct several GSEA for each 

 comparison (34). WebGestalt is a functional analysis webtool, which utilizes gene rank values to 

 explore genomic enrichment patterns. Four main GSEA methods were applied to each of the 

 seven comparisons. These databases include geneontology (GO), KEGG, Hallmark50, and 

 Wikipathway cancer. The GO database includes a wide array of gene ID with associated 

 biological functions (35). KEGG PATHWAY database consists of pathway maps across various 

 categories such as metabolism, genetic information processing, and human diseases (36). The 

 community-contributed Hallmark50 database includes 50 gene sets related to cancer progression. 

 Similarly, the Wikipathway cancer database includes various biological pathways linked with 

 cancer. Each database provides additional parameters to reveal genomic variation across the 

 comparisons. 
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 2.4 WES Pipeline 

 The WES pipeline was constructed with Linux, R, and Python scripting (Fig. 8). The 

 initial input is raw FASTQ files from the WES output. Similar to the RNA-seq pipeline, FastQC 

 was used for quality control checks of the high throughput data and eliminated poor quality 

 reads. Next, the reads were trimmed with TrimGalore to remove adapter sequences. Genome 

 mapping was conducted with the Burrows-Wheeler Alignment (BWA) algorithm from the GATK 

 package (37). BWA is a software package for mapping WES data, which aligns short reads with 

 a reference genome. To be consistent with the RNA-seq pipeline, the GRCh38 human genome 

 reference was used for the mapping process. The output of BWA is SAM files (Sequence 

 Alignment/Map), which are text files that contain alignment information. Next, Samtools was 

 used to convert SAM files into Binary Alignment Map (BAM) files (38). BAM files are 

 essentially compressed SAM files that can serve as the input for Picard. 

 Genome Analysis Toolkit (GATK) and Picard Tools were used to calibrate read group 

 qualities and mark duplicates (39). Afterwards, the Mutect2 algorithm in the GATK package was 

 used to call mutations to detect SNVs and indels in the sample data. First, a panel of normals was 

 run through Mutect2 to identify all the germline and technical variation. This step filters out 

 polymorphisms and sequencing errors based on normal tissue, and calls somatic mutations in 

 tumor samples. Mutect2 produces Variant Call Format (VCF) files, which includes genomic 

 variant information. VCF files were filtered with R scripts in order to exclude insignificant 

 variants. Resulting filtered VCF files had sufficient read depth, coverage, allele frequency values, 

 and high significance levels based on F-tests. Funcotator is a functional annotator that marks 

 genomic variants based on read depth, allele frequency, and F-tests. This tool uses VCF files as 

 input and outputs mutation annotation format (MAF) output files. These MAF files were 
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 analyzed with the R package, maftools, for variant analysis (40). Maftools identified recurrent 

 mutations and patterns to build mutational profiles. BAM files were also analyzed using a python 

 copy number calling pipeline (CNVkit) (41). This script outputs copy number (CN) changes with 

 CN ratios and CN segments. Through CNVkit, CN variant files can serve as input for HATCHet, 

 an algorithm to compute tumor heterogeneity (42). As a result, copy number aberrations (CNAs) 

 and whole-genome duplications (WGDs) can be used to investigate tumor evolution and 

 metastatic seeding patterns (43). 

 Figure 8. Full flowchart of the constructed WES pipeline.  Linux scripting (gray), R scripting (blue), and 
 Python scripting (purple) were used as computational tools to build the pipeline. 

 3.  Results 

 3.1 RNA-seq Analysis 

 GSEA results include enrichment plots and genomic  expression tables. Four databases 

 were used for GSEA, including GO, KEGG, Hallmark50, and Wikipathway Cancer. As a result, 

 there are four GSEA results for each comparison (Fig. 9-15). Furthermore, ORA results include 

 similar bar plots. Darker colors represent a false discovery rate (FDR) less than or equal to 0.05, 

 which indicates significant differential expression. Various plots were generated through R 

 scripting to further investigate the comparisons. Principal Component Analysis (PCA) plots 

 cluster the patient samples based on their similarity (Fig. 16). Heatmaps were created to visualize 

 differential gene expression across different samples (Fig. 17). 
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 Figure 9. GSEA Results for C1.  Enrichment plots for LNM vs. LN for 4 different pathways. Blue bars signify 
 enrichment in LNM. Orange bars signify enrichment in LN. (A) KEGG Pathway (b) Wikipathway Cancer (C) 
 Hallmark50 (D) Geneontology (GO) 

 A.  B. 

 C.  D. 
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 Figure 10. GSEA Results for C2.  Enrichment plots for LNM vs. PTF for 4 different pathways. Blue bars 
 signify enrichment in PTF. Orange bars signify enrichment in LNM. (A) KEGG Pathway (b) Wikipathway 
 Cancer (C) Hallmark50 (D) Geneontology (GO) 

 A.  B. 

 C.  D. 
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 Figure 11. GSEA Results for C3.  Enrichment plots for LN vs. PTF for 4 different pathways. Blue bars signify 
 enrichment in PTF. Orange bars signify enrichment in LN. (A) KEGG Pathway (b) Wikipathway Cancer (C) 
 Hallmark50 (D) Geneontology (GO) 

 A.  B. 

 C.  D. 
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 Figure 12. GSEA Results for C4.  Enrichment plots for NP vs. PTF for 4 different pathways. Blue bars signify 
 enrichment in PTF. Orange bars signify enrichment in NP. (A) KEGG Pathway (b) Wikipathway Cancer (C) 
 Hallmark50 (D) Geneontology (GO) 

 A.  B. 

 C.  D. 
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 Figure 13. GSEA Results for C5.  Enrichment plots for the three-way comparison (LN vs. LNM vs. PTF) for 
 3 different pathways. Wikipathway Cancer is excluded because it did not provide significant enrichment 
 patterns. (FDR > 0.05) (A) KEGG Pathway (B) Hallmark50 (C) Geneontology (GO) 

 A. 

 B. 

 C. 
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 Figure 14. GSEA Results for C6.  Enrichment plots for the PTF comparison between metastatic and 
 non-metastatic patients for 4 different pathways.  Blue bars signify enrichment in non-metastatic PTF, 
 while orange bars signify enrichment in metastatic PTF. (A) KEGG Pathway (b) Wikipathway Cancer (C) 
 Hallmark50 (D) Geneontology (GO) 

 A.  B. 

 C.  D. 
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 Figure 15. GSEA Results for C7.  Enrichment plots for the comparison between all normal vs. all cancer 
 for 4 different pathways. The normal category includes NP and LN, while all tumors and metastases are 
 in the cancer category. Blue bars signify enrichment in cancer, while orange bars signify enrichment in 
 normal. (A) KEGG Pathway (b) Wikipathway Cancer (C) Hallmark50 (D) Geneontology (GO) 

 A.  B. 

 C.  D. 
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 Figure 16. Principal Component Analysis (PCA) plots.  PCA plots cluster samples based on gene 
 expression similarity. 

 A.  B. 

 C.  D. 

 E.  F 

 G. 

 (A)  LN vs. LNM 
 (B)  PTF  vs. LN 
 (C)  PTF vs. LNM 
 (D)  PTF vs. NP 
 (E)  Three-way (LN vs. LNM vs. PTF) 
 (F)  PTF (non-metastatic vs. metastatic) 
 (G)  Normal vs. all cancer 
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 Figure 17. Hierarchical Clustering.  Heatmaps of  differential  gene expression. Only includes gene 
 expression with padj<0.01. (A) PTF metastatic vs. non-metastatic (B) Normal vs. all cancer 

 A. 

 B. 
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 3.2 WES Analysis 

 Maftools determines mutational patterns to build genomic profiles. Significant mutations 

 were identified based on an allele frequency (AF) difference > 0.05 and false discovery rate 

 (FDR) < 0.1. This filtering identified 1927 mutations in 91 patient samples within the 

 aforementioned threshold values. Mutations affected several biological pathways such as 

 RTK-RAS, WNT, and PI3K (Fig. 18). Variant information is highlighted, including variant 

 classification, type, SNV class, and variants per sample (Fig. 19). Most variants are missense 

 SNVs, and there is a high frequency of C>T mutations. The top mutated genes are also indicated, 

 based on the number of samples across each site (Fig. 20). The top three mutated genes include 

 SPOP  ,  EYA1  , and  NCOR2  (Fig. 21). Missense mutations  are most common in the MATH domain 

 of  SPOP,  which is involved in receptor binding and  oligomerization. 

 Figure 18. Affected Pathways.  Maftools output displays  proportions of affected biological pathways. 
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 Figure 19. WES Variant Summary.  Maftools output displays variant information across patient samples. 

 Figure 20. Top Mutated Genes.  Maftools output displays  mutations across patient samples. 
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 Figure 21. Mutation Loci.  (A)  SPOP  mutation sites  (B)  EYA1  mutation sites (C)  NCOR2  mutation sites 

 A. 

 B. 

 C. 
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 Furthermore, metastatic samples have a higher frequency of missense mutations 

 compared to non-metastatic samples. Specific mutations are enriched in metastatic samples; the 

 top three mutated genes in metastases include  SOGA1,  LRRC4C,  and  TP53  (Fig. 22). 

 Figure 22. Enrichment in Metastases.  (A) Mutations  in  EYA1  and  SPOP  are enriched in metastatic 
 samples (B) Mutations associated with metastasis. Top 3 genes include  SOGA1, LRRC4C,  and  TP53. 

 A. 

 B. 
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 Mutational allele frequency clustering identified clonally independent tumor foci. 

 PCM034 and PCM003 display distinctive primary clones, which appear to be independent from 

 the metastases (Fig. 23). However, most primary tumor foci seem to be clonally related to the 

 metastases (Fig. 24). The CNVkit pipeline was executed with sample BAM files in order to 

 identify copy number changes. This tool allows for detection and visualization of copy number 

 variation (CNV). The output includes .cns files and scatter plots, which displays the 

 genome-wide copy ratio (Fig. 25). This analysis is currently ongoing and will continue with 

 HATCHet as the next step. 

 Figure 23. Mutational Allele Frequency Clustering identifies clonally independent tumor foci. 

 31 



 Figure 24. Most Primary Tumor Foci are Clonally related 

 Figure 25. CNV Pipeline Scatter Plot.  Genome-wide  copy ratios across PCM034L2B. 
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 3.2 Integrative DNA/RNA Analysis 

 Based on the GSEA results from the RNA-seq pipeline, it is clear that some pathways are 

 enriched in metastatic clones compared to non-metastatic clones. The Hallmark50 Gene Set 

 analysis reveals that metastatic clones were enriched in the G2M checkpoint (Fig. 26). This 

 checkpoint stops the proliferation of damaged cells – it allows DNA repair to occur before 

 moving to the mitotic stage of the cell cycle. However, non-metastatic clones were enriched in 

 epithelial mesenchymal transition (EMT). EMT is a process in which epithelial cells gain 

 mesenchymal features, such as migratory capabilities (44). These cells may become invasive and 

 contribute to cancer metastasis. Hierarchical clustering of genes associated with G2M and EMT 

 display the aforementioned patterns (Fig. 27). G2M is upregulated in metastatic clones, while 

 EMT is downregulated. 

 Figure 26. Hallmark50 Metastatic Enrichment Patterns.  Barplots displays enriched G2M checkpoint in 
 metastatic clones, and enriched EMT in non-metastatic clones. 
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 Figure 27. Hierarchical Clustering of EMT and G2M Genes.  (A) G2M genes are upregulated in metastatic 
 clones (B) EMT genes are downregulated in metastatic clones 

 A. 

 B. 
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 4.  Discussion 

 4.1 RNA-seq Pipeline 

 A median of 57 million paired-end reads were obtained  per sample, with a median of 10 

 million total read counts per sample across the transcriptome, and 44,289 transcripts were 

 detected in at least 5% of samples. Comparing PTF to LNM, 8110 transcripts were differentially 

 expressed (p-adj < 0.01). PTF were enriched relative to LNM in gene sets associated with Notch 

 signaling, hormone signaling, TGFb signaling, hypoxia, and the epithelial to mesenchymal 

 transition. Comparing PTF from metastatic patients to non-metastatic patients, 581 transcripts 

 were differentially expressed (p-adj < 0.01). PTF from metastatic patients were enriched in cell 

 cycle progression, MYC targets, ER stress, androgen response, and DNA repair. LNM gene sets 

 were enriched in endoplasmic reticulum (ER) stress and oxidative phosphorylation. 

 The top 500 upregulated genes in malignant tissues were significantly enriched in genes 

 related to androgen and estrogen signaling as expected. We also identified a set of 193 genes 

 whose expression was significantly increased in primary tumor over benign LNs and in LNM 

 over primary tumors. This gene set was significantly enriched in genes related to oxidative 

 phosphorylation and included oncogenes such as  PIK3CB,  NCOA2  , and  SCHLAP1.  Based on the 

 PCA plots, the primary tumor samples are closer together in a tighter cluster compared to the 

 metastatic samples. This result was expected since there is more variation in the metastatic 

 samples due to tumor heterogeneity. The heatmaps facilitate the visualization of differential gene 

 expression, in which there is distinct clustering of metastatic samples. In the Hallmark50 GSEA, 

 it is clear that genes associated with the G2M checkpoint are upregulated in metastatic clones, 

 while genes associated with EMT are downregulated. 
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 4.2 WES Pipeline 

 Most identified variants are missense mutations, which includes SNPs across different 

 SNV classes. Frequently mutated genes were determined; the top three mutated genes are  SPOP, 

 EYA1,  and  NCOR1.  The  SPOP  gene encodes for Speckle-type  POZ Protein (SPOP), which is 

 essential for ubiquitination and subsequent proteasomal degradation (45). One of the many 

 substrates of SPOP is the androgen receptor (AR). Therefore, functional SPOP is necessary for 

 the degradation of AR. Mutated SPOP may fail to ubiquitinate AR and allow for an increase of 

 AR in the cell (46). As a result, AR signaling increases and encourages PCa proliferation. Results 

 from the WES pipeline support this mechanism by identifying mutations in  SPOP.  We discovered 

 mutations in the MATH binding domain of  SPOP,  which  may alter protein-protein interactions 

 with AR. These mutations could facilitate the survival and metastasis of cancer cells. 

 Furthermore, past literature reveals important interactions between  SPOP  and c-JUN (47). 

 Overexpression of the c-JUN protein leads to accelerated cell proliferation and induced gene 

 expression. Mutated SPOP can bind to c-JUN, which stabilizes the complex and may further 

 inhibit AR degradation. 

 Furthermore,  EYA1  encodes a transcription factor (TF)  that interacts with SIX1. The 

 EYA1-SIX1 complex plays a critical role in cell proliferation and gene regulation. Mutations in 

 EYA1  may cause dysregulation and act as a tumor promoter  with SIX1 (48). Previous literature 

 demonstrates that the EYA1-SIX1 complex activates STAT3 signaling. STAT (Signal transducer 

 and activator of transcription) proteins serve as TFs and influence various biological processes 

 including cell proliferation, apoptosis, mitosis, and differentiation (49). Consequently, STAT 

 proteins are highly regulated in normal cells in order to prevent overexpression of genes. 

 Elevated STAT-3 activity has been observed in many different cancers and is often associated 
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 with tumor progression. Since the EYA1-SIX1 complex activates STAT3 signaling, mutations in 

 EYA1  may promote the proliferation of PCa through  increased STAT3 activity. Our WES pipeline 

 further validates this hypothesis, as we located significant mutations in  EYA1.  Additionally, most 

 mutations in  SPOP  and  EYA1  were found in metastatic  PCa patients. 

 The  NCOR2  gene encodes a nuclear co-repressor (NCOR2)  that mediates gene silencing. 

 NCOR2 interacts with nuclear receptors, such as AR, to promote gene repression. Specifically, it 

 binds to histone deacetylases to alter histone modifications. Mutations in  NCOR2  could inhibit 

 the ability of NCOR2 to regulate and maintain the epigenome. This may change AR genomic 

 interactions and support PCa proliferation. When AR genomic binding is redirected via mutated 

 NCOR2, alternative malignant pathways may be upregulated. Previous literature investigates the 

 role of NCOR2 in androgen deprivation therapy (ADT). Long MD, et al. found that reduced 

 NCOR2 expression accelerates ADT failure in PCa (50). This phenomenon aligns with our 

 findings that mutated NCOR2 alters the AR signaling pathway and drives cancer progression. 

 Through WES analysis, we identified mutations associated with PCa metastasis. The top 

 six mutated genes are  SOGA1, LRRC4C, TP53, COL5A1,  PCDHA13  , and  SLC16A14  . These 

 mutations will be further analyzed using external, independent datasets. We aim to identify 

 similar mutational patterns in additional samples in order to increase the validity of our results. 

 This next step will be conducted with the Stand Up To Cancer dataset, which includes metastases 

 and primary cancers. Additionally, the WES pipeline is under construction, as we are currently 

 investigating intratumoral heterogeneity with HATCHet. Next steps will include additional 

 variant analyses with the CNVkit output. HATCHet can determine CNAs and WGDs for tumor 

 clones within patient samples. 
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 5.  Conclusions 

 Through building RNA-seq and WES pipelines, raw sequencing data was transformed 

 into interpretable biological information. Mutational signatures were identified based on 

 transcriptional enrichment patterns across seven main comparisons. Signaling pathways 

 associated with ER stress, oxidative phosphorylation, metabolism, and cell cycle progression are 

 prominent in LNM of aggressive PCa. Furthermore, expression of  PIK3CB, NCOA2,  and 

 SCHLAP1  are significantly increased in LNM. These  results are vital to the investigation of 

 prostate cancer metastasis. We have identified enhanced signaling pathways and overexpression 

 of particular oncogenes. Based on the WES pipeline, cancer cell proliferation may be sparked by 

 mutations in  SPOP, EYA1,  and  NCOR2.  Alterations in  these genes may lead to AR upregulation 

 or misregulation. As a result, these genomic changes may drive oncogenic progression. 

 Furthermore, we identified several genes that are significantly enriched in metastases compared 

 to non-metastatic samples. These genes include  SOGA1,  LRRC4C, TP53, COL5A1, PCDHA13, 

 and  SLC16A14  . By understanding the mechanism of metastasis,  we may be able to improve 

 clinical strategies to target PCa. 
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 6.  Acronym Appendix 

 Abbreviation  Description 

 AF  Allele Frequency 

 AJCC  American Joint Committee on Cancer 

 AR  Androgen Receptor 

 BAM  Binary Alignment/Map 

 BWA  Burrows-Wheeler Alignment 

 CN  Copy Number 

 CNA  Copy Number Aberrations 

 CNVkit  Copy Number Calling Pipeline 

 DEGs  Differentially Expressed Genes 

 DRE  Digital Rectal Exam 

 EIGC  Emory Integrated Genomics Core 

 EMT  Epithelial Mesenchymal Transition 

 EUH  Emory University Hospital 

 FDR  False Discovery Rate 

 FFPE  Formalin-Fixed Paraffin-Embedded 

 Funcotator  Functional Annotator 

 GATK  Genome Analysis Toolkit 

 GO  Geneontology 

 GSEA  Gene Set Enrichment Analysis 

 H&E  Hematoxylin and Eosin 

 HATCHet  Holistic Allele-specific Tumor Copy-number Heterogeneity 

 ITH  Intratumoral Heterogeneity 

 KEGG  Kyoto Encyclopedia of Genes and Genomes 

 LN  Lymph Node 

 LNM  Lymph Node Metastasis 

 MAF  Mutation Annotation Format 

 mCRPC  Metastatic Castration-resistant Prostate Cancer 
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 NGS  Next Generation Sequencing 

 NP  Normal Prostate 

 ORA  Over-representation Analysis 

 PCa  Prostate Cancer 

 PCA  Principal Component Analysis 

 PCR  Polymerase Chain Reaction 

 PET imaging  Positron Emission Tomography imaging 

 PHI  Protected Health Information 

 PSA  Prostate-Specific Antigen 

 PTF  Primary Tumor Foci 

 QC  Quality Control 

 SAM  Sequence Alignment/Map 

 scRNA-seq  Single cell RNA sequencing 

 SNV  Single Nucleotide Variant 

 STAR  Spliced Transcripts Alignment to a Reference 

 TCGA  The Cancer Genome Atlas 

 TNM Staging System  Tumor Nodes Metastasis Staging System 

 VCF  Variant Call Format 

 WebGestalt  WEB-based Gene SeT AnaLysis Toolkit 

 WES  Whole-Exome Sequencing 

 WGD  Whole-Genome Duplications 

 WGS  Whole-Genome Sequencing 
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