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Abstract

A local-global principle for adjoint groups over function fields of p-adic curves
By Jack Barlow

Let k be a number field and G a semisimple simply connected linear algebraic group
over k. The Kneser conjecture states that the Hasse principle holds for principal
homogeneous spaces under G. Kneser’s conjecture is a theorem due to Kneser for all
classical groups, Harder for exceptional groups other than E8, and Chernousov for
E8. It has also been proved by Sansuc that if G is an adjoint linear algebraic group
over k, then the Hasse principle holds for principal homogeneous spaces under G.

Now let p ∈ N be a prime with p ̸= 2, and letK be a p-adic field. Let F be the function
field of a curve over K. Let ΩF be the set of all divisorial discrete valuations of F .
It is a conjecture of Colliot-Thélène, Parimala and Suresh that if G is a semisimple
simply connected linear algebraic group over F , then the Hasse principle holds for
principal homogeneous spaces under G. This conjecture has been proved for all groups
of classical type. In this thesis, we ask whether the Hasse principle holds for adjoint
groups over F , motivated by the number field case. We give a positive answer to this
question for a class of adjoint classical groups.
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Chapter 1

Introduction

Let k be a number field and G a semisimple simply connected linear algebraic
group over k. The Kneser conjecture states that the Hasse principle holds
for principal homogeneous spaces under G ( [13]). Kneser’s conjecture is a
theorem due to Kneser for all classical groups ( [14]), Harder for exceptional
groups other than E8 ( [10], [11], [12]) and Chernousov for E8 ( [4]). It has
also been proved that if G is an adjoint linear algebraic group over k, then
the Hasse principle holds for principal homogeneous spaces under G
( [20, Corollary 5.4]).

Now let p ∈ N be a prime with p 6= 2, and let K be a p-adic field. Let
F be the function field of a curve over K. Let Ω be the set of all divisorial
discrete valuations of F . It is a conjecture of Colliot-Thélène, Parimala and
Suresh that if G is a semisimple simply connected linear algebraic group over
F , then the Hasse principle holds for principal homogeneous spaces under
G ( [5]). This conjecture has been proved for all groups of classical type
( [19]). In this thesis we prove the following:

Theorem 1.0.1. Let p ∈ N be a prime with p 6= 2, and let K be a p-adic
field. Let F be a function field of a curve over K. Let q be a quadratic form
over F . Then the Hasse principle holds for principal homogeneous spaces
under PSO(q).

A by-product of Theorem 1.0.1 is the following:

Theorem 1.0.2. Let p ∈ N be a prime with p 6= 2, and let K be a p-adic
field. Let F be a function field of a curve over K. Let L/F be a quadratic
field extension, and let τ be the nontrivial automorphism of L/F . Then the
Hasse principle holds for principal homogeneous spaces under PGU(L, τ).

We have the following theorem for the symplectic case:
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Theorem 1.0.3. Let p ∈ N be a prime with p 6= 2, and let K be a p-adic
field. Let F be a function field of a curve over K. Let G be an absolutely
simple adjoint linear algebraic group over F of classical type Cn. Then the
Hasse principle holds for principal homogeneous spaces under G.

Absolutely simple adjoint linear algebraic groups over F of classical type
Cn are described by the group of similitudes of central simple algebras with
symplectic involution. To prove Theorem 1.0.3, a main step is to prove the
following:

Theorem 1.0.4. Let A and B be central simple algebras over F with
deg(A) = deg(B). Let σ be a symplectic involution on A and let τ be a
symplectic involution on B. If (A, σ) ' (B, τ) locally over all divisorial
discrete valuations of F , then (A, σ) ' (B, τ) over F .

The proofs of Theorems 1.0.1, 1.0.2, 1.0.3 and 1.0.4 reduce to a Hasse
principle for similarity of hermitian forms.

1.1 The Plan

Here we give a brief description of the contents of the thesis:

Chapters 2-4 consist of preliminaries. In chapter 2, we give an overview
of the foundations of the theory of central simple algebras, involutions and
hermitian forms. In Chapter 3, we study a few elementary notions in group
cohomology and look at profinite groups and Galois cohomology. In Chapter
4, we introduce linear algebraic groups and give a classification of absolutely
simple, adjoint, classical linear algebraic groups. We go on to review some
of the patching techniques of Harbater, Hartmann and Krashen.

Chapter 5 consists of the proofs of our main theorems. In Section 5.1, we
analyze similarities of quadratic forms over two dimensional complete fields
and approximate similarity factors along branches. In Section 5.2, we use
the results of Section 5.1 to prove a Hasse principle for similarity of quadratic
forms over semi-global fields and deduce as a corollary a Hasse principle for
similarity of hermitian forms over quadratic extensions of semi-global fields.
In Section 5.3, we look at the case of a quaternion division algebra D over
a two dimensional complete field with canonical involution τ . We use the
results of Section 5.1 to approximate similarity factors of hermitian forms
over (D, τ) along branches. In Section 5.4, we use the results of Section 5.3 to
prove a Hasse principle for similarity of hermitian forms over central simple
algebras over semi-global fields with symplectic involution. We combine all
of the results of Sections 5.1-5.4 to prove our main theorems in Section 5.5.
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Chapter 2

Central Simple Algebras,
Involutions and Hermitian
Forms

2.1 Central Simple Algebras

Definition. A central simple algebra over a field F is a finite dimensional
algebra A 6= {0} with center F = F · 1 which has no two-sided ideals except
{0} and A.

Theorem 2.1.1. (Wedderburn Structure Theorem). Let A be a central
simple algebra over a field F . Then there exists an integer n ≥ 1 and a
central division algebra D over F such that A ' Mn(D). Moreover, D is
uniquely determined up to isomorphism.

Proof. See for instance [6, p. 22].

Notation. For any algebra A over a field F and any field extension K/F ,
we write AK for the K-algebra obtained from A by extending scalars to K:

AK = A⊗F K.

Theorem 2.1.2. (Wedderburn). Let A be an algebra over a field F . Then
A is central simple if and only if there is a field K containing F such that
AK 'Mn(K) for some n.

Proof. See for instance Scharlau [21, Chapter 8].

Definition. The fields K containing F such that AK 'Mn(K) for some n
are called splitting fields of A. If K is a splitting field of A, we also say that
A splits over K or K splits A.
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Definition. Let A be a central simple algebra over a field F and let K be a
splitting field of A. Let φ : AK

∼→ Mn(K) be an isomorphism and let a ∈ A.
We define the reduced norm of a, denoted NrdA(a), to be

NrdA(a) := det(φ(a⊗ 1)) ∈ F.

Remark. The reduced norm NrdA(a) ∈ F is independent of the choices of
the splitting field K and isomorphism φ : AK

∼→ Mn(K).

Theorem 2.1.3. If A is a central simple F -algebra, its dimension over F
is a square.

Proof. See for instance [6, p. 24].

Definition. Let A be a central simple algebra over a field F . We define the
degree of A, denoted degF (A) or simply deg(A), to be the integer
deg(A) :=

√
dimFA.

2.1.1 The Brauer Group

It turns out that to gain an understanding of the finite dimensional
central division algebras over a field F , it is best to consider the more general
central simple algebras over F . Essentially, this is because central simple
algebras are closed under the tensor product operation, whereas finite
dimensional central division algebras in general are not (e.g. if H is
Hamilton’s quaternion algebra over R, then H⊗RH 'M4(R)). Now if A is a
central simple algebra over F , then by the Wedderburn Structure Theorem,
Theorem 2.1.1, we have an F -algebra isomorphism A ' Mn(D), for some
integer n ≥ 1 and some finite dimensional central division algebra D over
F which is uniquely determined up to F -algebra isomorphism. This promts
the following definition.

Definition. Let A ' Mn1(D1) and B ' Mn2(D2) be two central simple
algebras over a field F (where D1 and D2 are finite dimensional central
division algebras over F ). We call A and B similar, and write A ∼ B, if
there is an F -algebra isomorphism D1 ' D2.

Remark. Since D1 and D2 above are uniquely determined up to F -algebra
isomorphism, it is clear to see that ∼ is an equivalence relation on the set
of central simple algebras over F . We write [A] to denote the equivalence
class of A under the equivalence relation of similarity.

Definition. For any algebra A over a field F , we define the opposite algebra
Aop by

Aop = {aop | a ∈ A},
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with the operations defined as follows:

aop + bop = (a+ b)op, aopbop = (ba)op, α · aop = (α · a)op

for a, b ∈ A and α ∈ F .

Definition. The Brauer group of a field F , denoted Br(F ), is the set of
equivalence classes of central simple F -algebras under the equivalence
relation of similarity, with the tensor product acting as the group operation
in the following way:

[A] · [B] := [A⊗F B].

The pair (Br(F ), ·) is an abelian group with [F ] = 1 ∈ Br(F ) and
[A]−1 = [Aop] for all [A] ∈ Br(F ).

Remark. If D is a finite dimensional central division algebra over F , then
D ∈ [D] ∈ Br(F ). Conversely, if A is a central simple algebra over F , then
A ' Mn(D′) for some integer n ≥ 1 and some finite dimensional central
division algebra D′ over F , which is uniquely determined up to F -algebra
isomorphism, and we have [A] = [D′] ∈ Br(F ). Therefore there is a
one-to-one correspondence between the set of finite dimensional central
division algebras over F (where two F -algebra isomorphic algebras are
considered equal) and the set of elements of Br(F ), the bijection taking a
finite dimensional central division algebra D over F to its similarity class
[D] ∈ Br(F ).

Theorem 2.1.4. The Brauer group is a torsion abelian group.

Proof. See for instance [6, p. 54].

Notation. We denote the n-torsion subgroup of Br(F ) by nBr(F ).

Definition. Let A be a central simple algebra over a field F . Let D be the
central division algebra for which A ' Mn(D). We define the index of A
over F , denoted indF (A) or simply ind(A), to be ind(A) := deg(D).

Definition. The period (or exponent) of a central simple F -algebra A,
denoted per(A), is the order of its class [A] in Br(F ).

Theorem 2.1.5. (Brauer). Let A be a central simple F -algebra. Then the
period per(A) divides the index ind(A). Moreover, the period per(A) and
the index ind(A) have the same prime factors.

Proof. See for instance [6, pp. 54 and 55].
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2.1.2 Quaternion Algebras

Definition. Let F be a field with char(F ) 6= 2. Let a, b ∈ F ∗. We define
the quaternion algebra A = (a, b)F to be the F -algebra on two generators
i, j with the defining relations

i2 = a, j2 = b, ij = −ji.

Proposition 2.1.6. Let k := ij ∈ A = (a, b)F . Then {1, i, j, k} form an
F -basis for A (so that dimFA = 4).

Proof. See [16, p. 51, Proposition 1.0].

Proposition 2.1.7. (a, b)F is a central simple algebra over F .

Proof. See [16, p. 52, Proposition 1.1].

Theorem 2.1.8. Let A be a central simple F -algebra. Then deg(A) = 2 if
and only if A is isomorphic to a quaternion algebra over F .

Proof. See [16, p. 74, Theorem 5.1].

2.1.3 Ramifications of Central Simple Algebras

Let R be a commutative regular local ring with field of fractions F = ff(R).
Let m be the maximal ideal of R.

Definition. An R-algebra A is called an Azumaya algebra over R if A is
free of positive finite rank as an R-module, and the algebra A ⊗R (R/m) is
a central simple algebra over R/m.

Definition. Let A be a central simple algebra over F . We say that A is
unramified on R if there exists an Azumaya algebra A over R such that
A ∼= A ⊗R F .

Now let X be a regular integral scheme with function field F , and x ∈X
a point. Let OX ,x be the local ring of X at x. Let A be a central simple
algebra over F .

Definition. We say that A is unramified at x ∈ X if A is unramified on
OX ,x. If A is not unramified at x, we say that A is ramified at x.
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2.2 Involutions

Definition. An involution on a central simple algebra A over a field F is a
map σ : A→ A subject to the following conditions:

(a) σ(x+ y) = σ(x) + σ(y) for x, y ∈ A.

(b) σ(xy) = σ(y)σ(x) for x, y ∈ A.

(c) σ2(x) = x for x ∈ A.

Remark. The center F = F · 1 is preserved under σ. The restriction of σ
to F is therefore an automorphism which is either the identity or of order 2.

Definition. Involutions which leave the center elementwise invariant are
called involutions of the first kind.

Remark. If A is a central simple algebra over a field F with an involution σ
of the first kind, then σ defines an isomorphism A ' Aop. Hence per(A) ≤ 2
and [A] ∈ 2Br(F ).

Definition. Involutions whose restriction to the center is an automorphism
of order 2 are called involutions of the second kind. Involutions of the second
kind are also called of unitary type (or simply unitary).

Definition. An isomorphism of algebras with involution f : (A, σ)
∼→(A′, σ′)

is an F -algebra isomorphism f : A
∼→A′ such that σ′ ◦ f = f ◦ σ.

Definition. Let A be a central simple algebra over a field F , and let σ be an
involution (of any kind) on A. An automorphism of (A, σ) is an isomorphism
of algebras with involution f : (A, σ) ' (A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. The set of automorphisms of (A, σ) is
denoted by AutF (A, σ):

AutF (A, σ) = {f ∈ AutF (A) | σ ◦ f = f ◦ σ}.

Definition. Let V be a finite dimensional vector space over a field F with
char(F ) 6= 2. A bilinear form b : V × V → F is called nonsingular if the
induced map

b̂ : V → V ∗ = HomF (V, F )

defined by
b̂(x)(y) = b(x, y) for x, y ∈ V

is an isomorphism of vector spaces.
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Definition. Let V be a finite dimensional vector space over a field F with
char(F ) 6= 2. For any f ∈ EndF (V ), let f t ∈ EndF (V ∗) be defined by
mapping φ ∈ V ∗ to φ ◦ f . The map f t is called the transpose of f .

Definition. Let V be a finite dimensional vector space over a field F with
char(F ) 6= 2. Let b : V × V → F be a nonsingular bilinear form. For any
f ∈ EndF (V ) we define σb(f) ∈ EndF (V ) by

σb(f) = b̂−1 ◦ f t ◦ b̂.

The map σb : EndF (V )→ EndF (V ) is then an involution of EndF (V ) which
is known as the adjoint involution with respect to the nonsingular bilinear
form b.

Notation. Let σ be an involution of the first kind on a central simple
algebra A over a field F with char(F ) 6= 2. If L is any field containing F ,
the involution σ extends to an involution of the first kind σL = σ ⊗ IdL on
AL = A ⊗F L. In particular, if L is a splitting field of A, we may identify
AL = EndL(V ) for some vector space V over L of dimension n = deg(A).
The involution σL is then the adjoint involution σb with respect to some
nonsingular symmetric or skew-symmetric bilinear form b on V
( [15, p. 13]).

Definition. An involution σ of the first kind is said to be of symplectic
type (or simply symplectic) if for any splitting field L and any isomorphism
(AL, σL) ' (EndL(V ), σb), the bilinear form b is skew-symmetric.

Definition. An involution σ of the first kind is said to be of orthogonal
type (or simply orthogonal) if for any splitting field L and any isomorphism
(AL, σL) ' (EndL(V ), σb), the bilinear form b is symmetric.

Definition. In a central simple F -algebra A with involution of the first kind
σ, the set of symmetric elements in A is defined as

Sym(A, σ) = {a ∈ A | σ(a) = a}.

Definition. In a central simple F -algebra A with involution of the first kind
σ, the set of skew-symmetric elements in A is defined as

Skew(A, σ) = {a ∈ A | σ(a) = −a}.

Theorem 2.2.1. Let F be a field with char(F ) 6= 2. Let A be a central
simple F -algebra of degree n, and let σ be an involution on A of the first
kind. Then σ is of symplectic type if and only if

dimF (Sym(A, σ)) =
n(n− 1)

2

(
and thus dimF (Skew(A, σ)) =

n(n+ 1)

2

)
.
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σ is of orthogonal type if and only if

dimF (Sym(A, σ)) =
n(n+ 1)

2

(
and thus dimF (Skew(A, σ)) =

n(n− 1)

2

)
.

Moreover, if σ is of symplectic type, then n is necessarily even.

Proof. See [15, Proposition 2.6].

Definition. Let F be a field with char(F ) 6= 2. Let A = (a, b)F be a
quaternion algebra over F with a, b ∈ F ∗. Let i, j ∈ A be the standard
generators of A with i2 = a, j2 = b and ij = −ji. The unique involution τ
on A with τ(i) = −i and τ(j) = −j is called the quaternion conjugation or
the canonical involution on A.

Remark. The canonical involution τ on A = (a, b)F is the only involution
of the first kind of symplectic type.

2.2.1 Similitudes of Algebras with Involution

Definition. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. A similitude of (A, σ) is an element g ∈ A
such that

σ(g)g ∈ F ∗.

Definition. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. Let g ∈ A be a similitude of (A, σ). The
scalar σ(g)g ∈ F ∗ is called the multiplier of g and is denoted µ(g).

Notation. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. The set of all similitudes of (A, σ) is a
subgroup of A∗ which we call Sim(A, σ):

Sim(A, σ) = {g ∈ A | σ(g)g ∈ F ∗}.

Remark. The map µ : Sim(A, σ)→ F ∗ given by µ(g) = σ(g)g for all
g ∈ Sim(A, σ) is a group homomorphism.

Definition. Let F be a field and let A be an F -algebra. For any b ∈ A∗,
we define the inner automorphism of A induced by b, denoted Int(b), to be
the F -algebra automorphism Int(b) : A→ A given by

Int(b)(a) = bab−1 for a ∈ A.

Theorem 2.2.2. Let A be a central simple algebra over a field F , and let
σ be an involution (of any kind) on A. Then

AutF (A, σ) = {Int(g) | g ∈ Sim(A, σ)}.
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There is therefore an exact sequence

1→ F ∗ → Sim(A, σ)
Int−→ AutF (A, σ)→ 1.

Proof. See [15, Theorem 12.15].

Definition. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. Let PSim(A, σ) be the group of projective
similitudes of (A, σ), defined as

PSim(A, σ) = Sim(A, σ)/F ∗.

Remark. By Theorem 2.2.2, the map Int : Sim(A, σ)→ AutF (A, σ) induces
a natural isomorphism PSim(A, σ) ' AutF (A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be a
symplectic involution on A. Then GSp(A, σ) := Sim(A, σ) and
PGSp(A, σ) := PSim(A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be
an orthogonal involution on A. Then GO(A, σ) := Sim(A, σ) and
PGO(A, σ) := PSim(A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be a
unitary involution on A. Then GU(A, σ) := Sim(A, σ) and
PGU(A, σ) := PSim(A, σ).

Definition. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. A similitude g ∈ Sim(A, σ) with multiplier
µ(g) = 1 is called an isometry of (A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be
an involution (of any kind) on A. The set of all isometries of (A, σ) is a
subgroup of Sim(A, σ) which we call Iso(A, σ):

Iso(A, σ) = {g ∈ A | σ(g)g = 1}.

Notation. Let A be a central simple algebra over a field F , and let σ be a
symplectic involution on A. Then Sp(A, σ) := Iso(A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be
an orthogonal involution on A. Then O(A, σ) := Iso(A, σ).

Notation. Let A be a central simple algebra over a field F , and let σ be a
unitary involution on A. Then U(A, σ) := Iso(A, σ).
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Now suppose A is a central simple algebra over a field F with even
degree deg(A) = 2m, and let σ be an involution of the first kind on A. Let
g ∈ Sim(A, σ), so that

σ(g)g = µ(g) ∈ F ∗. (∗)
Taking the reduced norm of both sides of (∗), we obtain

NrdA(g) = ±µ(g)m.

Theorem 2.2.3. If σ is a symplectic involution on A, then

NrdA(g) = µ(g)m for all g ∈ GSp(A, σ).

Proof. See [15, Proposition 12.23].

Definition. Let A be a central simple algebra over a field F with even
degree deg(A) = 2m, and with an orthogonal involution σ. A similitude
g ∈ GO(A, σ) is called proper if NrdA(g) = +µ(g)m. A similitude
g ∈ GO(A, σ) is called improper if NrdA(g) = −µ(g)m.

Notation. Let A be a central simple algebra over a field F with even degree
deg(A) = 2m, and with an orthogonal involution σ. The set of all proper
similitudes of (A, σ) is a subgroup of GO(A, σ) which we call GO+(A, σ):

GO+(A, σ) = {g ∈ GO(A, σ) | NrdA(g) = +µ(g)m}.

Remark. We have [GO(A, σ) : GO+(A, σ)] ≤ 2.

Notation. Let A be a central simple algebra over a field F with even degree
deg(A) = 2m, and with an orthogonal involution σ. The set of all improper
similitudes of (A, σ) is a coset of GO+(A, σ) in GO(A, σ) which we call
GO−(A, σ):

GO−(A, σ) = {g ∈ GO(A, σ) | NrdA(g) = −µ(g)m}.

Remark. It is possible for GO−(A, σ) to be empty.

Definition. Let A be a central simple algebra over a field F with even degree
deg(A) = 2m, and with an orthogonal involution σ. Let PGO+(A, σ) be the
group of proper projective similitudes of (A, σ), defined as

PGO+(A, σ) = GO+(A, σ)/F ∗.

Definition. Let A be a central simple algebra over a field F with even
degree deg(A) = 2m, and with an orthogonal involution σ. A proper
similitude g ∈ GO+(A, σ) with multiplier µ(g) = 1 is called a proper
isometry of (A, σ).

Notation. Let A be a central simple algebra over a field F with even degree
deg(A) = 2m, and with an orthogonal involution σ. The set of all proper
isometries of (A, σ) is a subgroup of GO+(A, σ) which we call O+(A, σ):

O+(A, σ) = GO+(A, σ) ∩O(A, σ) = {g ∈ A | NrdA(g) = σ(g)g = 1}.
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2.3 Hermitian Forms

Definition. Let A be a central simple algebra over a field F with an
involution σ (of any kind). Let M be a finitely generated right A-module.
A bi-additive map

h : M ×M → A

is called an hermitian form over (A, σ) if h satisfies the following conditions:

(1) h(m1a1,m2a2) = σ(a1)h(m1,m2)a2 for allm1,m2 ∈M and a1, a2 ∈ A,

(2) h(m2,m1) = σ(h(m1,m2)) for all m1,m2 ∈M .

If (2) is replaced by

(2′) h(m2,m1) = −σ(h(m1,m2)) for all m1,m2 ∈M ,

the map h is called a skew-hermitian form over (A, σ).

Let A be a central simple algebra over a field F with an involution σ (of
any kind). Let M be a finitely generated right A-module. Let
M∗ = HomA(M,A) be the dual space of M . Then M∗ can be viewed as a
right A-module given by (f · a)(m) = σ(a)f(m) for all f ∈M∗, m ∈M,
a ∈ A. Let h : M ×M → A be an hermitian form over (A, σ). Then h
induces a right A-module homomorphism h̃ : M →M∗ given by
h̃(m1)(m2) = h(m1,m2) for all m1,m2 ∈M .

Definition. If the map h̃ above is a right A-module isomorphism, we say
that h is a regular (or nonsingular) hermitian form.

Remark. The hermitian form h is nonsingular if and only if the only
element m ∈M such that h(m,m′) = 0 for all m′ ∈M is m = 0. The same
definition of nonsingular can be made for skew-hermitian forms.

Theorem 2.3.1. Let A be a central simple algebra over a field F with an
involution σ (of any kind). Let M be a finitely generated right A-module.
Let h : M × M → A be a nonsingular hermitian or skew-hermitian form
over (A, σ). Then there exists a unique involution σh on EndA(M) such
that σh(α) = σ(α) for all α ∈ F and

h(m1, f(m2)) = h(σh(f)(m1),m2) for m1,m2 ∈M, f ∈ EndA(M).

Proof. See [15, Proposition 4.1].

Definition. The involution σh in Theorem 2.3.1 is called the adjoint
involution with respect to h.
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Definition. Let A be a central simple algebra over a field F with an
involution σ (of any kind). Let M and M ′ be finitely generated right
A-modules. Let h : M ×M → A and h′ : M ′ ×M ′ → A be hermitian forms
over (A, σ). We say that h and h′ are equivalent, denoted h ' h′, if there
exists a bijective A-linear mapping φ : M →M ′ such that

h′(φ(m1), φ(m2)) = h(m1,m2) for all m1,m2 ∈M.

Definition. Let A be a central simple algebra over a field F with an
involution σ of the first kind. Let M be a finitely generated right A-module.
Let h : M×M → A be a nonsingular hermitian form over (A, σ). A bijective
A-linear mapping φ : M →M for which there exists λ ∈ F ∗ such that

h(φ(m1), φ(m2)) = λh(m1,m2) for all m1,m2 ∈M

is called a similitude of h. The set of all similitudes of h form a group which
we call Sim(h).

Definition. Let A be a central simple algebra over a field F with an
involution σ of the first kind. Let h be an hermitian form over (A, σ).
An element λ ∈ F ∗ satisfying λh ' h is called a similarity factor of h. The
group of similarity factors of h is defined to be the collection of all similarity
factors of h:

GF (h) := {λ ∈ F ∗ | λh ' h}.
Definition. Let F/F0 be a quadratic field extension. Let A be a central
simple algebra over F with an involution σ of the second kind such that
σ(x) = x for all x ∈ F0. Let M be a finitely generated right A-module. Let
h : M ×M → A be a nonsingular hermitian form over (A, σ). A bijective
A-linear mapping φ : M →M for which there exists λ ∈ F ∗0 such that

h(φ(m1), φ(m2)) = λh(m1,m2) for all m1,m2 ∈M

is called a similitude of h. The set of all similitudes of h form a group which
we call Sim(h).

Definition. Let F/F0 be a quadratic field extension. Let A be a central
simple algebra over F with an involution σ of the second kind such that
σ(x) = x for all x ∈ F0. Let h be an hermitian form over (A, σ). An element
λ ∈ F ∗0 satisfying λh ' h is called a similarity factor of h. The group of
similarity factors of h is defined to be the collection of all similarity factors
of h:

GF0(h) := {λ ∈ F ∗0 | λh ' h}.
Remark. Let A be a central simple algebra over a field F with an
involution σ (of any kind). Let M be a finitely generated right A-module.
Let h : M ×M → A be a nonsingular hermitian over (A, σ), and let
σh : EndA(M) → EndA(M) be the adjoint involution with respect to h.
Then we have

Sim(EndA(M), σh) = Sim(h).
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2.3.1 Hermitian Forms over Division Algebras and
Quadratic Forms

Let F be a field with char(F ) 6= 2. Let D be a central division algebra over
F with an involution σ (of any kind). Let V ' Dn be a right D-vector space
of dimension n. Let h : V ×V → D be an hermitian form over (D,σ). Then
there exist a1, . . . , an ∈ D∗ such that σ(ai) = ai for 1 ≤ i ≤ n and for all
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Dn we have

h(x,y) =
n∑
i=1

σ(xi)aiyi.

In this case, we write h = 〈a1, . . . , an〉.

Definition. We define the rank of h, denoted Rank(h), to be the integer
Rank(h) := dimDV = n.

Example. If D = F and σ = IdF is the identity map on F , then
h : V ×V → F is a symmetric bilinear pairing on V and the map qh : V → F
given by qh(x) = h(x, x) for all x ∈ V is a quadratic form over F . Conversely,
let q : V → F be a quadratic form over F . Then the associated symmetric
bilinear pairing B : V × V → F given by

B(x, y) =
q(x+ y)− q(x)− q(y)

2
for all x, y ∈ V

is an hermitian form over (F, IdF ).

Definition. The determinant of a nonsingular quadratic form q over F ,
denoted d(q), is defined to be d(q) = det(Mq) · (F ∗)2 ∈ F ∗/(F ∗)2, where Mq

is the symmetric matrix associated with q.

Definition. Let q be a nonsingular quadratic form over F of dimension n.
We define the discriminant of q by

disc(q) = (−1)
n(n−1)

2 d(q) ∈ F ∗/(F ∗)2.

Definition. Let q : V → F be a quadratic form over F . Let v ∈ V with
v 6= 0. We say that v is an isotropic vector if q(v) = 0. We say that v is
anisotropic if q(v) 6= 0.

Definition. Let q : V → F be a quadratic form over F . We say that q is
isotropic if there exists an isotropic vector v ∈ V . Otherwise, we say that q
is anisotropic.

Theorem 2.3.2. Let q : V → F be a quadratic form over F with dim(q) = 2.
The following four statements are equivalent:
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(1) q is regular and isotropic.

(2) q is regular, with d(q) = −1 · (F ∗)2.

(3) q ' 〈1,−1〉.

(4) q corresponds to the equivalence class of the binary quadratic form xy.

Proof. See [16, p. 9, Theorem 3.2].

Definition. The isometry class of a quadratic form q over F with dim(q) = 2
satisfying the conditions in Theorem 2.3.2 is called the hyperbolic plane and
is denoted by H.

Definition. Let q1 : V1 → F and q2 : V2 → F be quadratic forms over F .
Define q1 ⊥ q2 : V1 ⊕ V2 → F by setting

(q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2) for all v1 ∈ V1, v2 ∈ V2.

Then q1 ⊥ q2 is a quadratic form over F , and we call q1 ⊥ q2 the orthogonal
sum of q1 and q2.

Definition. Let q be a quadratic form over F . We say that q is hyperbolic
if q is isometric to an orthogonal sum of hyperbolic planes, that is, q ' m ·H
for some m ∈ N.

Definition. Let q1 : V1 → F and q2 : V2 → F be regular quadratic forms
over F . We call q1 and q2 Witt equivalent, and write q1 ∼ q2, if there exist
r, s ∈ N such that q1 ⊥ r ·H ' q2 ⊥ s ·H.

Remark. It is clear to see that ∼ is an equivalence relation on the set of
isometry classes of regular quadratic forms over F . For a regular quadratic
form q over F , we write [q] to denote the equivalence class of (the isometry
class of) q under the equivalence relation of Witt equivalence.

Definition. The Witt group of F , denoted W (F ), is the set of equivalence
classes of (isometry classes of) regular quadratic forms over F under the
equivalence relation of Witt equivalence, with the orthogonal sum acting as
the group operation in the following way:

[q1] + [q2] := [q1 ⊥ q2].

The pair (W (F ),+) is an abelian group with [H] = 0 ∈W (F ) and
−[q] = [−q] for all [q] ∈W (F ).

Theorem 2.3.3. (Witt’s Decomposition Theorem). Any regular quadratic
form q over F splits into an orthogonal sum

q ' qh ⊥ qa,

where qh is hyperbolic and qa is anisotropic. Furthermore, the isometry
classes of qh and qa are uniquely determined.
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Proof. See [16, p. 12, Theorem 4.1].

Definition. The splitting q ' qh ⊥ qa of Theorem 2.3.3 is called the Witt
decomposition of q.

Remark. It follows from Witt’s Decomposition Theorem, Theorem 2.3.3,
that the elements of W (F ) are in one-to-one correspondence with the
isometry classes of all anisotropic regular quadratic forms over F . If q and
q′ are regular quadratic forms over F , then q and q′ represent the same
element in W (F ) ([q] = [q′] ∈ W (F )) if and only if their anisotropic parts
are equivalent (qa ' q′a). Thus W (F ) can be thought of as a group consisting
of isometry classes of anisotropic regular quadratic forms over F .

2.3.2 Quadratic Forms over Complete Discretely Valuated
Fields

Let (F, v) be a nondyadic complete discretely valuated field with
valuation ring A = {x ∈ F | v(x) ≥ 0} ∪ {0}. Let π ∈ A be a uniformizer
of A, and let the group of units of the ring A be denoted by U . Then
every element y ∈ F ∗ can be written uniquely in the form y = uπv(y) for
some u ∈ U . Thus any 1-dimensional reqular quadratic form over F can be
written as 〈u〉 or 〈uπ〉 for some u ∈ U . Hence an arbitrary regular quadratic
form q over F can be written as

q ' q1 ⊥ q2π

where q1 = 〈u1, . . . , un1〉, q2 = 〈v1, . . . , vn2〉 with ui, vi ∈ U .

Let m = {x ∈ F | v(x) ≥ 1} ∪ {0} be the unique maximal ideal of A,
and let F = A/m be the residue class field of A. By assumption, (F, v)
is nondyadic and so char

(
F
)
6= 2. For a ∈ A, let a = a + m ∈ F . Let

q1 = 〈u1, . . . , un1〉 and q2 = 〈v1, . . . , vn2〉.

Theorem 2.3.4. (Springer). We have a group isomorphism

(δ1, δ2) : W (F )→W
(
F
)
⊕W

(
F
)
,

where δ1 : W (F ) → W
(
F
)

is given by δ1(q) = q1 and δ2 : W (F ) → W
(
F
)

is given by δ2(q) = q2.

Proof. See [16, p. 147, Corollary 1.6].

Definition. The map δ1 : W (F )→W
(
F
)

given by δ1(q) = q1 is called the
first residue homomorphism, and q1 is called the first residue form of q. The
map δ2 : W (F ) → W

(
F
)

given by δ2(q) = q2 is called the second residue
homomorphism, and q2 is called the second residue form of q.
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Theorem 2.3.5. Suppose that q = q1 ⊥ q2π, where q1 = 〈u1, . . . , un1〉,
q2 = 〈v1, . . . , vn2〉 with ui, vi ∈ U . Then the following are equivalent:

(1) q is isotropic;

(2) q1 or q2 is isotropic;

(3) q1 or q2 is isotropic.

Proof. See [16, p. 148, Proposition 1.9].
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Chapter 3

Galois Cohomology

3.1 Profinite Groups and Galois Groups

Definition. Let (Λ,≤) be a partially ordered set. We say that (Λ,≤) is
directed if for all α, β ∈ Λ there exists γ ∈ Λ such that α ≤ γ and β ≤ γ.

Definition. A filtered inverse system of groups (Gα, φαβ) consists of:

(a) a directed partially ordered set (Λ,≤);

(b) for all α ∈ Λ there exists a group Gα;

(c) if α, β ∈ Λ with α ≤ β then there exists a group homomorphism
φαβ : Gβ → Gα;

(d) if α, β, γ ∈ Λ with α ≤ β ≤ γ then φαγ = φαβ ◦ φβγ .

Definition. Let (Gα, φαβ) be a filtered inverse system of groups. The
inverse limit of (Gα, φαβ), denoted lim←−Gα, is defined to be

lim←−Gα :=

{
(gα) ∈

∏
α∈Λ

Gα

∣∣∣∣∣ φαβ(gβ) = gα for all α ≤ β

}
.

Definition. A group G is called profinite if G = lim←−Gα for some filtered
inverse system of groups (Gα, φαβ) where Gα is a finite group for all α.

Remark. A profinite group G = lim←−Gα has a natural topology: give Gα
the discrete topology for all α, give

∏
αGα the product topology and then

the profinite group G ⊆
∏
αGα is given the subspace topology.

Let K/F be a Galois extension. Then the Galois groups of finite Galois
subextensions of K/F together with the group homomorphisms
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φLM : Gal(M/F ) → Gal(L/F ) (where L/F and M/F are finite Galois
subextensions of K/F such that F ⊆ L ⊆ M ⊆ K) form a filtered inverse
system of groups (Gal(L/F ), φLM ).

Proposition 3.1.1. Let K/F be a Galois extension and let
(Gal(L/F ), φLM ) be the filtered inverse system of groups defined above. Then

lim←−Gal(L/F ) = Gal(K/F ).

Proof. See [6, Proposition 4.1.3].

Remark. Since |Gal(L/F )| = [L : F ] <∞ for all finite Galois subextensions
L/F of K/F , it follows from Proposition 3.1.1 that Gal(K/F ) is a profinite
group.

3.2 Cohomology of Profinite Groups

Definition. Let Γ be a profinite group and let A be a discrete topological
space. A left action by Γ on A is called continuous if for all a ∈ A, the
stabilizer of a in Γ

StabΓ(a) = {σ ∈ Γ | σ · a = a} ≤ Γ

is an open subgroup of Γ.

Definition. Let Γ be a profinite group and let A be a discrete topological
space. We call A a Γ-set if A is equipped with a continuous left action by
Γ.

Definition. Let Γ be a profinite group and let A be a group which is also
a Γ-set. We call A a Γ-group if Γ acts by group homomorphisms, that is,

σ(a1a2) = σ(a1)σ(a2) for all σ ∈ Γ, a1, a2 ∈ A.

Definition. Let Γ be a profinite group. A Γ-module is an abelian Γ-group.

Definition. Let Γ be a profinite group and let A be a Γ-set. We define

H0(Γ, A) := AΓ = {a ∈ A | σa = a for all σ ∈ Γ}.

Remark. If A is a Γ-group, then H0(Γ, A) ≤ A is a subgroup of A.

Definition. Let Γ be a profinite group and let A be a Γ-group. Let
α : Γ → A be a continuous map and for σ ∈ Γ, let ασ = α(σ) ∈ A. We call
α a 1-cocycle of Γ with values in A if

αστ = ασσ(ατ ) for all σ, τ ∈ Γ.
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Notation. Let Γ be a profinite group and let A be a Γ-group. The set of
all 1-cocycles of Γ with values in A is denoted by Z1(Γ, A).

Definition. Let Γ be a profinite group and let A be a Γ-group. The
1-cocycle α : Γ→ A given by ασ = 1 for all σ ∈ Γ is a distinguished element
in Z1(Γ, A) which is called the trivial 1-cocycle.

Definition. Let Γ be a profinite group and let A be a Γ-group. Let
α : Γ→ A and α′ : Γ→ A be 1-cocycles. We say that α and α′ are
cohomologous or equivalent if there exists a ∈ A such that

α′σ = aασσ(a)−1 for all σ ∈ Γ.

Notation. Let Γ be a profinite group and let A be a Γ-group. The set
of equivalence classes of 1-cocycles of Γ with values in A is denoted by
H1(Γ, A). Then H1(Γ, A) is a pointed set whose distinguished element is
the cohomology class of the trivial 1-cocycle.

Remark. If A is a Γ-module, then Z1(Γ, A) is an abelian group, where the
group operation is given by (α · β)σ = ασβσ for all α, β ∈ Z1(Γ, A) and
σ ∈ Γ. This group operation is compatible with the equivalence relation on
1-cocycles and thus makes H1(Γ, A) an abelian group.

3.3 Principal Homogeneous Spaces

Definition. Let Γ be a profinite group and let A be a Γ-group. Let P be a
nonempty Γ-set equipped with a right action by A. We call P a (Γ, A)-set
if

σ(pa) = σ(p)σ(a) for all σ ∈ Γ, p ∈ P and a ∈ A.

Definition. Let Γ be a profinite group, let A be a Γ-group and let P be a
(Γ, A)-set. We say that P is a principal homogeneous space under A (or an
A-torsor) if the action of A on P is simply transitive, that is, for all p, q ∈ P
there exists a unique a ∈ A such that q = pa.

Notation. Let Γ be a profinite group and let A be a Γ-group. We will denote
the collection of all principal homogeneous spaces under A by PHS(Γ, A).

Example. Let Γ be a profinite group and let A be a Γ-group. Given any
1-cocycle of Γ with values in A, we may construct a corresponding principal
homogeneous space under A by defining a map ψ : Z1(Γ, A) → PHS(Γ, A)
given by ψ(α) = Pα for all α ∈ Z1(Γ, A), where Pα is the set A equipped
with a left action • by Γ given by

σ • a = ασσ(a) for all σ ∈ Γ, a ∈ A

and a right action ∗ by A given by

a ∗ b = ab for all a, b ∈ A.
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Definition. Let Γ be a profinite group and let A be a Γ-group. Let P and
Q be principal homogeneous spaces under A. A map φ : P → Q is called a
morphism of principal homogeneous spaces under A if

(1) φ(σp) = σφ(p) for all σ ∈ Γ, p ∈ P and

(2) φ(pa) = φ(p)a for all p ∈ P, a ∈ A.

Theorem 3.3.1. Let Γ be a profinite group and let A be a Γ-group. Let
ψ : Z1(Γ, A) → PHS(Γ, A) be the map defined in the example above. Then
ψ induces a bijection between H1(Γ, A) and the set of isomorphism classes
of principal homogeneous spaces under A.

Proof. See for instance [15, Proposition 28.14].
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Chapter 4

Linear Algebraic Groups and
Patching Techniques

4.1 First Definitions

Some general references for the contents of this section are
( [15, Chapters VI and VII]) and ( [2]).

Definition. Let F be a field. A linear algebraic group over F is an affine
algebraic variety G over F endowed with the structure of a group such that
the multiplication map

µ : G×G→ G

(g1, g2) 7→ g1g2

and the inverse map
i : G→ G

g 7→ g−1

are morphisms of varieties.

Example. Let F be a field. The additive group Ga over F is the affine line
A1
F endowed with the group operation µ(x, y) = x+ y, the identity element

0 and the inverse map i(x) = −x.

Example. Let F be a field. The multiplicative group Gm over F is the
affine open set F ∗ ⊆ A1 endowed with the multiplication map µ(x, y) = xy,
the identity element 1 and the inverse map i(x) = x−1.

Example. Let F be a field and let n ∈ N. The general linear group GLn
over F is the set of invertible n× n matrices over F endowed with the mul-
tiplcation map given by matrix multiplication µ(A,B) = AB, the identity
element being the n × n identity matrix In and the inverse map given by
the inverse matrix i(A) = A−1.
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Notation. Let F be a field and let Fs be the separable closure of F . Let G
be a linear algebraic group over F . Then G(Fs) is a Gal(Fs/F )-group, and
we define

H1(F,G) := H1(F,G(Fs)) = H1(Gal(Fs/F ), G(Fs)).

Definition. Let F be a field. Let G1 and G2 be linear algebraic groups
over F . A morphism of linear algebraic groups φ : G1 → G2 is a group
homomorphism which is also a morphism of varieties.

Definition. Let F be a field and let Fs be the separable closure of F . A
linear algebraic group T over F is called a torus if there exists n ∈ N such
that

T (Fs) ' Gn
m.

Let K/F be a field extension. We say that the torus T is split over K if

T (K) ' Gn
m.

Definition. Let F be a field and let G be a linear algebraic group over F .
A subtorus T ⊆ G is said to be maximal if T is not contained in a larger
subtorus of G.

Definition. Let F be a field and let F be the algebraic closure of F . Let G
be a linear algebraic group over F . We say that G is semisimple if G 6= {1}
and G×F F has no nontrivial solvable connected normal subgroups.

Definition. Let F be a field and let G be a semisimple linear algebraic
group over F . We say that G is split if it contains a split maximal torus.

Definition. Let V be a finite-dimensional R-vector space, let α ∈ V with
α 6= 0 and let s ∈ End(V ). We say that s is a reflection with respect to α if

(1) s(α) = −α and

(2) there exists a hyperplane W ⊆ V such that s|W = Id.

Remark. If s ∈ End(V ) is a reflection with respect to α ∈ V , then there
exists a unique f ∈ V ∗ with f |W = 0 and f(α) = 2 such that

s(v) = v − f(v)α for all v ∈ V.

Definition. Let V be a finite-dimensional R-vector space with V 6= 0, and
let Φ ⊆ V be a finite subset of V . We call Φ a root system if the following
conditions hold:

(a) 0 /∈ Φ.

(b) Φ spans V .



24

(c) If α ∈ Φ and xα ∈ Φ for x ∈ R, then x = ±1.

(d) For each α ∈ Φ there exists a reflection sα ∈ End(V ) with respect to
α such that sα(Φ) = Φ.

(e) For all α, β ∈ Φ we have sα(β)− β = nα,β · α for some nα,β ∈ Z.

Remark. The reflection sα ∈ End(V ) with respect to α ∈ Φ in (d) is
uniquely determined by α (see Bourbaki [3, Chapter VI, §1, Lemme 1]).

Definition. Let V be a finite-dimensional R-vector space with V 6= 0, and
let Φ ⊆ V be a root system. The elements of Φ are called roots.

Definition. Let V be a finite-dimensional R-vector space with V 6= 0, and
let Φ ⊆ V be a root system. For α ∈ Φ, we define α∗ ∈ V ∗ by

sα(v) = v − α∗(v)α for all v ∈ V.

Such α∗ are called coroots.

Definition. Let V be a finite-dimensional R-vector space with V 6= 0, and
let Φ ⊆ V be a root system. We define the root lattice, denoted Λr, to be
the additive subgroup of V generated by all roots α ∈ Φ.

Definition. Let V be a finite-dimensional R-vector space with V 6= 0, and
let Φ ⊆ V be a root system. We define the weight lattice, denoted Λ, to be

Λ := {v ∈ V | α∗(v) ∈ Z for α ∈ Φ}.

Remark. By definition, we have Λr ⊆ Λ.

Let F be a field and let G be a split semisimple linear algebraic group
over F with a split maximal torus T over F . Using the adjoint representation
Ad: G → GL(Lie(G)), one can define a root system Φ(G) ⊆ T ∗ ⊗Z R such
that Λr ⊆ T ∗ ⊆ Λ, where Λr is the root lattice, T ∗ is the character group of
T and Λ is the weight lattice ( [15, Theorem 25.1 and Proposition 25.2]).

Definition. We say that G above is simply connected if the character group
T ∗ = Λ. We say that G is adjoint if the character group T ∗ = Λr.

Definition. Let F be a field and let Fs be the separable closure of F . Let
G be a semisimple linear algebraic group over F . We say that G is simply
connected if the split group G×F Fs is simply connected. We say that G is
adjoint if the split group G×F Fs is adjoint.

Definition. Let F be a field and let Fs be the separable closure of F . Let G
be a semisimple linear algebraic group over F . We say that G is absolutely
simple if G×F Fs has no nontrivial connected normal subgroups.
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4.2 Classification of Absolutely Simple, Adjoint,
Classical Linear Algebraic Groups

Let F be a field with char(F ) 6= 2, and let G be an absolutely simple linear
algebraic group over F of classical type. Then, for an arbitrary integer
n ≥ 1, to the group G is associated a central simple algebra with possible
additional structure:

(1) 1An: Central simple F -algebras of degree n+ 1;

(2) 2An: Central simple algebras of degree n+ 1 over a quadratic
extension of F with involution of the second kind leaving F
elementwise invariant;

(3) Bn: Quadratic forms over F of dimension 2n+ 1;

(4) Cn: Central simple F -algebras of degree 2n with symplectic involution;

(5) Dn: Central simple F -algebras of degree 2n with orthogonal
involution.

Case 1: Linear Algebraic Groups Of Type 1An

Let G be an absolutely simple, simply connected linear algebraic group of
type 1An over F , and let G be the corresponding absolutely simple,
adjoint linear algebraic group of type 1An over F . Then G = SL(A) and
G = PGL(A) for some central simple F -algebra A of degree n + 1. Then
H1(F,PGL(A)) classifies F -isomorphism classes of central simple F -algebras
B such that deg(A) = deg(B).

Case 2: Linear Algebraic Groups Of Type 2An

Let G be an absolutely simple, simply connected linear algebraic group of
type 2An over F , and let G be the corresponding absolutely simple, adjoint
linear algebraic group of type 2An over F . Then G = SU(A, σ) and
G = PGU(A, σ) for some central simple algebra A of degree n + 1 whose
center Z(A) is a quadratic extension of F , with involution σ of the second
kind such that σ(x) = x for all x ∈ F .

Now H1(F,PGU(A, σ)) classifies F -isomorphism classes of tuples (B, τ)
consisting of a central simple algebra B whose center Z(B) ∼= Z(A) is a
quadratic extension of F such that deg(A) = deg(B), with involution τ of
the second kind such that τ(x) = x for all x ∈ F . The trivial element in
this set is the class of (A, σ).
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Now suppose [(A, τ)] = 1 ∈ H1(F,PGU(A, σ)), so that (A, τ) ' (A, σ).
Write A as A ∼= Mm(D) for some m ∈ N and D a central division algebra
over Z(A). Let h1 be the hermitian form on D corresponding to σ, so that σ
is the adjoint involution with respect to h1, and let h2 be the hermitian form
on D corresponding to τ , so that τ is the adjoint involution with respect to
h2. Then the condition that (A, τ) ' (A, σ) is equivalent to the condition
that h1 ' λh2 for some λ ∈ F .

Case 3: Linear Algebraic Groups Of Type Bn

Let G be an absolutely simple, simply connected linear algebraic group of
type Bn over F , and let G be the corresponding absolutely simple, adjoint
linear algebraic group of type Bn over F . Then G = Spin(q) and G = O+(q)
for some quadratic form q over F of dimension 2n+ 1. Then
H1(F,O+(q)) ∼= H1(F,SO(q)) classifies isometry classes of quadratic forms
q′ over F such that dim(q) = dim(q′) and disc(q) = disc(q′).

Case 4: Linear Algebraic Groups Of Type Cn

Let G be an absolutely simple, simply connected linear algebraic group of
type Cn over F , and let G be the corresponding absolutely simple,
adjoint linear algebraic group of type Cn over F . Then G = Sp(A, σ) and
G = PGSp(A, σ) for some central simple F -algebra A of degree 2n with
symplectic involution σ.

Now H1(F,PGSp(A, σ)) classifies F -isomorphism classes of central
simple F -algebras B such that deg(A) = deg(B), with symplectic involution
τ . The trivial element in this set is the class of (A, σ).

Now suppose [(A, τ)] = 1 ∈ H1(F,PGSp(A, σ)), so that (A, τ) ' (A, σ).
Write A as A ∼= Mm(D) for some m ∈ N and D a central division algebra
over F . Let h1 be the hermitian form on D corresponding to σ, so that σ is
the adjoint involution with respect to h1, and let h2 be the hermitian form
on D corresponding to τ , so that τ is the adjoint involution with respect to
h2. Then the condition that (A, τ) ' (A, σ) is equivalent to the condition
that h1 ' λh2 for some λ ∈ F .

Case 5: Linear Algebraic Groups Of Type Dn

Let G be an absolutely simple, simply connected linear algebraic group of
type Dn over F , and let G be the corresponding absolutely simple, adjoint
linear algebraic group of type Dn over F . Then G = Spin(A, σ) and
G = PGO+(A, σ) for some central simple F -algebra A of degree 2n with
orthogonal involution σ.
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Now H1(F,PGO+(A, σ)) classifies F -isomorphism classes of triples
(B, τ, η) consisting of a central simple F -algebra B with orthogonal
involution τ such that deg(A) = deg(B), with an F -algebra isomorphism
η : Z(C(A, σ)) → Z(C(B, τ)) of the centers of the Clifford algebras. The
trivial element in this set is the class of (A, σ, Id).

Now suppose [(A, τ, η)] = 1 ∈ H1(F,PGO+(A, σ)), so that
(A, τ, η) ' (A, σ, Id). Write A as A ∼= Mm(D) for some m ∈ N and D a
central division algebra over F . Let h1 be the hermitian form on D
corresponding to σ, so that σ is the adjoint involution with respect to h1, and
let h2 be the hermitian form on D corresponding to τ , so that τ is the adjoint
involution with respect to h2. Then the condition that (A, τ, η) ' (A, σ, Id)
is equivalent to the condition that there is a similitude φ : h1 ' λh2 for some
λ ∈ F ∗ such that φ �Z(C(A,σ)) : Z(C(A, σ))→ Z(C(A, τ)) coincides with η.

4.3 Semi-Global Fields and Patching

Definition. A semi-global field is the function field of a smooth, projective,
geometrically integral curve over a complete discretely valuated field.

Let K be a complete discretely valuated field with valuation ring T and
a parameter t ∈ T . Let X be a smooth, projective, geometrically integral
curve over K, and let F = K(X) be the function field of the curve X (so
that F is a semi-global field).

Definition. A regular two dimensional integral scheme X which is proper
over T with function field F is called a regular proper model of F .

By Abhyankar ( [1]) and Lipman ( [17]), there exists a regular proper
model X of F with special fibre X0 such that X0 is a union of regular
curves with normal crossings. Let P ⊆ X0 be a finite set of closed points
of X containing all the nodal points of X0 and at least one point on each
component. Let U be the set of irreducible components of X0 \P. Then
U = {U1, U2, . . . , Ul} is a finite set.

Notation. For P ∈P, let OX ,P be the local ring at P . So OX ,P is a two
dimensional regular local ring. Let mP be the maximal ideal of OX ,P , and

let OX ,P

∧
denote the completion of OX ,P at the maximal ideal mP . Define

FP := ff(OX ,P

∧
).

Notation. For U ∈ U , let RU be the set of rational functions which are
regular on U :

RU := {f ∈ F | f is regular on U}.

Let RU
∧

be the (t)-adic completion of RU . Define FU := ff
(
RU
∧)

.
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Notation. For P ∈P, each height one prime ideal ρ of OX ,P

∧
that contains

t determines a branch of X0 at P (i.e. an irreducible component of the
pullback of X0 to Spec OX ,P

∧
). We let R̂ρ denote the completion of the

local ring OX ,P

∧
at ρ. Define Fρ := ff

(
R̂ρ

)
. Since t ∈ ρ, the contraction

of ρ ⊆ OX ,P

∧
to the local ring OX ,P defines an irreducible component of

Spec OX0,P and hence an irreducible component of X0 containing P . This
in turn is the closure of a unique connected component U of X0 \P, and
we say that ρ lies on U . We call FU,P := Fρ a branch field.

Remark. For P and U as above, there are natural inclusions FP ↪→ FU,P
and FU ↪→ FU,P .

4.4 Local-Global Principles for Linear Algebraic
Groups

Notation. Let F,X ,P,U be as in Section 4.3, and let G be a linear
algebraic group over F . We define

XX ,P,U (F,G) := ker

(
H1(F,G)→

∏
x∈P∪U

H1(Fx, G)

)
.

Theorem 4.4.1. Let F,X ,P,U be as in Section 4.3, and let
B = {(P,U) ∈ P × U | P is in the closure of U}. Let G be a linear
algebraic group over F . Then we have a bijection∏

U∈U

G(FU )

∖ ∏
(P,U)∈B

G(FU,P )

/ ∏
P∈P

G(FP )
∼−→ XX ,P,U (F,G).

Proof. See [9, Corollary 3.6].

Notation. Let F be any field and let ΩF be the set of all discrete valuations
on F . For v ∈ ΩF , let F̂v denote the completion of F at v. Let G be a linear
algebraic group over F . We define

X(F,G) := ker

H1(F,G)→
∏
v∈ΩF

H1
(
F̂v, G

) .

Definition. Let F be any field and let G be a linear algebraic group over
F . We say that the Hasse principle holds for G if X(F,G) is trivial.

Theorem 4.4.2. Let F,X ,P,U be as in Section 4.3, and let G be a linear
algebraic group over F . Then we have an injection

XX ,P,U (F,G) ↪→X(F,G).
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Proof. See [9, Proposition 8.2].
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Chapter 5

Main Theorems

5.1 Quadratic Forms Over Two Dimensional
Complete Fields

Let R be a complete two dimensional regular local ring, let F = ff(R), and
suppose 2 ∈ R∗. Let m = (π, δ) be the maximal ideal of R. Let R(π)

∧
denote

the completion of the localization of R at the prime ideal (π), and let R(δ)

∧

denote the completion of the localization of R at the prime ideal (δ). Define

Fπ := ff
(
R(π)

∧)
and Fδ := ff

(
R(δ)

∧)
. Then Fπ and Fδ are complete discretely

valued fields. Further the residue field κ(π) of Fπ is the field of fractions of
R/(π) and hence a local field. Similarly the residue field κ(δ) of Fδ is the
field of fractions of R/(δ) and hence a local field.

Let q be a quadratic form over F . Suppose

q ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ,

where q1 = 〈u1, . . . , un1〉, q2 = 〈v1, . . . , vn2〉, q3 = 〈w1, . . . , wn3〉,
q4 = 〈θ1, . . . , θn4〉 with ui, vi, wi, θi ∈ R∗. In this section we analyze elements
λ in F with λq ' q.

Suppose k = R/m is a finite field. Then the order of k∗/k∗2 is 2. For
any θ ∈ R, let θ̄ denote the image of θ in k.

We begin with the following

Lemma 5.1.1. There exists β ∈ F such that β(F ∗π )2 = (F ∗π )2,
β(F ∗δ )2 = t(F ∗δ )2 and β〈1,−t〉 ' 〈1,−t〉 over F .

Proof. Consider the quadratic field extension k
(√(

t
))
/k. Since k is a

finite field, the field norm map N
k
(√

(t)
)
/k

: k
(√(

t
))
→ k is surjective.



31

In particular, there exists s ∈ k
(√(

t
))

such that N
k
(√

(t)
)
/k

(s) = t. Let

P (z) = z2 + rz+ t ∈ k[z] be the minimal polynomial of s over k. Then P (z)

splits over k
(√(

t
))

as P (z) = (z−s)(z−s0) for some s0 ∈ k
(√(

t
))

. Note

that s 6= s0, for if s = s0, then s ∈ k
(√(

t
))

is equal to its k-conjugate,

so s ∈ k and N
k
(√

(t)
)
/k

(s) = s2 ∈ (k∗)2, which contradicts the fact that

N
k
(√

(t)
)
/k

(s) = t /∈ (k∗)2.

Let R̃ be the integral closure of R in F
(√
t
)
. Since R is a complete two

dimensional local ring, so is R̃. Let m̃ be the maximal ideal of R̃. Now t ∈ R∗,
and by assumption, 2 ∈ R∗. Hence R̃ = R

[(√
t
)]

and R̃/m̃ = k
(√(

t
))

.

Let P (z) = z2+rz+t ∈ R[z] be a lift of P (z). Since R̃ is Henselian and P (z)

is monic, the factorization P (z) = (z−s)(z−s0) ∈ k
(√(

t
))

[z] can be lifted

to a factorization P (z) = (z − s̃)(z − s̃0) ∈ R
[(√

t
)]

[z], where s̃ ∈ R
[(√

t
)]

is a lift of s ∈ k
(√(

t
))

and s̃0 ∈ R
[(√

t
)]

is a lift of s0 ∈ k
(√(

t
))

. Then

P (z) = z2 + rz + t = (z − s̃)(z − s̃0), so t = s̃s̃0 ∈ NF(
√
t)/F

(
F
(√
t
))

.

Let β = δ2 + rπδ + tπ2 ∈ F . Then β = δ2(1 + δ−2rπδ + δ−2tπ2) ∈ Fπ.
But 1 + δ−2rπδ + δ−2tπ2 ∈ (F ∗π )2. Therefore β(F ∗π )2 = (F ∗π )2. Similarly,
β = tπ2(1 + t−1π−1rδ + t−1π−2δ2) ∈ Fδ. But
1 + t−1π−1rδ + t−1π−2δ2 ∈ (F ∗δ )2. Therefore β(F ∗δ )2 = t(F ∗δ )2.

It remains to show that β〈1,−t〉 ' 〈1,−t〉. To this end, let

β′ =
β

π2
=

(
δ

π

)2

+ r

(
δ

π

)
+ t ∈ F.

Let α = δ/π ∈ F , so that β′ = α2+rα+t. Then β′ = P (α) = (α−s̃)(α−s̃0).
Now α ∈ F and s̃, s̃0 ∈ F

(√
t
)

are F -conjugates. Thus

α− s̃, α− s̃0 ∈ F
(√
t
)

are F -conjugates, and

β′ = (α − s̃)(α − s̃0) ∈ NF(
√
t)/F

(
F
(√
t
))

= DF (〈1,−t〉) = GF (〈1,−t〉)
(since 〈1,−t〉 is a Pfister form over F ). So β′ ∈ GF (〈1,−t〉), and thus
β = β′π2 ∈ GF (〈1,−t〉) also. Therefore β〈1,−t〉 ' 〈1,−t〉 as required.

Now let q be a quadratic form over F . Suppose

q ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ,

where q1 = 〈u1, . . . , un1〉, q2 = 〈v1, . . . , vn2〉, q3 = 〈w1, . . . , wn3〉,
q4 = 〈θ1, . . . , θn4〉 with ui, vi, wi, θi ∈ R∗.

Lemma 5.1.2. Let q′1 = 〈u′1, . . . , u′n1
〉, q′2 = 〈v′1, . . . , v′n2

〉,
q′3 = 〈w′1, . . . , w′n3

〉, q′4 = 〈θ′1, . . . , θ′n4
〉 be quadratic forms over F with
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u′i, v
′
i, w
′
i, θ
′
i ∈ R∗. Then

q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ ' q′1 ⊥ q′2π ⊥ q′3δ ⊥ q′4πδ over F

if and only if qi ' q′i over F for all i.

Proof. The “if” part is clear. For the converse, first note that Fπ is a
complete discretely valued field with parameter π. Let κ(π) := R(π)

∧
/(π) be

the residue field of Fπ. For a ∈ R(π)

∧
, let a = a+ (π) ∈ R(π)

∧
/(π) = κ(π). For

1 ≤ i ≤ 4, let qi be the residue form of qi over Fπ, so that qi is a quadratic
form over κ(π). Now

q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ ' q′1 ⊥ q′2π ⊥ q′3δ ⊥ q′4πδ over F

=⇒ (q1 ⊥ q3δ) ⊥ (q2 ⊥ q4δ)π ' (q′1 ⊥ q′3δ) ⊥ (q′2 ⊥ q′4δ)π over Fπ.

By Springer’s theorem ( [16, p. 147, Corollary 1.6]), we obtain

q1 ⊥ q3 δ ' q′1 ⊥ q′3 δ and q2 ⊥ q4 δ ' q′2 ⊥ q′4 δ over κ(π).

Now κ(π) is a complete discretely valuated field with parameter δ and residue
field k = F/m. For 1 ≤ i ≤ 4, let q̃i be the residue form of qi over κ(π), so
that q̃i is a quadratic form over k. Then we can apply Springer’s theorem

again to obtain q̃i ' ˜
q′i over k for all i. Since k = F/m, it follows that qi ' q′i

over F for all i as required.

Remark 5.1.3. For 1 ≤ i ≤ 4, let qi and q′i be as above. The proof of
Lemma 5.1.2 shows that

q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ ' q′1 ⊥ q′2π ⊥ q′3δ ⊥ q′4πδ over Fπ

if and only if qi ' q′i over F for all i. Thus

q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ ' q′1 ⊥ q′2π ⊥ q′3δ ⊥ q′4πδ over F

if and only if

q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ ' q′1 ⊥ q′2π ⊥ q′3δ ⊥ q′4πδ over Fπ.

As a consequence, for w ∈ R∗ and r, s ∈ Z, if θ = wπrδs satisfies θq ' q
over Fπ, then θq ' q over F . Similarly, if θ = wπrδs satisfies θq ' q over
Fδ, then θq ' q over F .

We can use Lemma 5.1.2 to analyze when λ ∈ F ∗ satisfies λq ' q over
F for the three cases λ = w, λ = π and λ = δ, where w ∈ R∗.

Proposition 5.1.4. Let w ∈ R∗. We have
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(i) wq ' q over F ⇐⇒ wqi ' qi over F for all i;

(ii) πq ' q over F ⇐⇒ q1 ' q2 and q3 ' q4 over F ;

(iii) δq ' q over F ⇐⇒ q1 ' q3 and q2 ' q4 over F .

Proof. (i) We have

wq ' q ⇐⇒ wq1 ⊥ wq2π ⊥ wq3δ ⊥ wq4πδ ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ

⇐⇒ wqi ' qi for all i,

where the second equivalence follows from Lemma 5.1.2.

(ii) We have

πq ' q ⇐⇒ q2 ⊥ q1π ⊥ q4δ ⊥ q3πδ ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ

⇐⇒ q1 ' q2 and q3 ' q4,

where the second equivalence follows from Lemma 5.1.2.

(iii) We have

δq ' q ⇐⇒ wq3 ⊥ wq4π ⊥ wq1δ ⊥ wq2πδ ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ

⇐⇒ wq1 ' q3 and wq2 ' q4,

where the second equivalence follows from Lemma 5.1.2.

The goal of this section is to prove the following:

Proposition 5.1.5. Suppose there exists λπ ∈ Fπ such that λπq ' q over
Fπ, and suppose there exists λδ ∈ Fδ such that λδq ' q over Fδ. Then there
exists β ∈ F such that β(F ∗π )2 = λπ(F ∗π )2, β(F ∗δ )2 = λδ(F

∗
δ )2 and βq ' q

over F .

Proof. From the unit structure of R(π)

∧
and R(δ)

∧
(cf. [19, Remark 7.1]), we

have λπ = w′πr1δs1 and λδ = wπr2δs2 , where w,w′ ∈ R∗ and
r1, r2, s1, s2 ∈ Z. Since we are interested in the square classes, we assume
that r1, r2, s1, s2 ∈ {0, 1}.

Suppose there exists β′ ∈ F such that β′(F ∗π )2 = (F ∗π )2, β′(F ∗δ )2 =
λ−1
π λδ(F

∗
δ )2 and β′q ' q over F . Let β = β′λπ ∈ F . Then

β(F ∗π )2 = β′λπ(F ∗π )2 = λπ(F ∗π )2,

β(F ∗δ )2 = β′λπ(F ∗δ )2 = λ−1
π λδλπ(F ∗δ )2 = λδ(F

∗
δ )2
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and βq ' β′λπq ' λπq ' q over F by Remark 5.1.3. Therefore, we may
assume that λπ = 1. By multiplicativity, it is enough to consider the cases
λδ = w, λδ = π and λδ = δ.

Case 1: λδ = w.

For a ∈ R, let a = a+ m ∈ R/m = k. Let q1 = 〈u1, . . . , un1〉,
q2 = 〈v1, . . . , vn2〉, q3 = 〈w1, . . . , wn3〉 and q4 = 〈θ1, . . . , θn4〉. If
λδ = w ∈ (R∗)2, then β = 1 ∈ F has the required properties. So suppose
that λδ = w /∈ (R∗)2. Since k = R/m is a finite field, |k∗/(k∗)2| = 2. So
k∗/(k∗)2 = {1, t}. By lifting from k to R, we may assume that λδ = tu2 for
some u ∈ R∗.

For 1 ≤ i ≤ 4, let (qi)a denote the anisotropic part of qi. If qi is
hyperbolic over F , the group of similarity factors of qi is GF (qi) = F ∗. Thus
for λ ∈ R∗, by Proposition 5.1.4 (i),

λ ∈ GF (q) ⇐⇒ λ ∈ GF (q1) ∩GF (q2) ∩GF (q3) ∩GF (q4)

⇐⇒ λ ∈ GF ((q1)a) ∩GF ((q2)a) ∩GF ((q3)a) ∩GF ((q4)a)

⇐⇒ λ ∈ Gk((q1)a) ∩Gk((q2)a) ∩Gk((q3)a) ∩Gk((q4)a),

where the third equivalence follows because R is complete. But the only
anisotropic forms over the finite field k are 〈1〉, 〈t〉 and 〈1,−t〉 ( [16, p. 37]).
Thus, for 1 ≤ i ≤ 4, (qi)a = 〈1〉, 〈t〉 or 〈1,−t〉, or dim((qi)a) = 0. Now
λδ ∈ GF (q) by Remark 5.1.3. Hence, by the above equivalences,
λδ = t ∈ Gk((qi)a) for all i. But t /∈ (k∗)2, so t /∈ Gk(〈1〉) and t /∈ Gk(〈t〉).
Therefore, for each i, either (qi)a = 〈1,−t〉 or dim((qi)a) = 0.

By Lemma 5.1.1, there exists β ∈ F such that
β(F ∗π )2 = (F ∗π )2 = λπ(F ∗π )2, β(F ∗δ )2 = t(F ∗δ )2 = λδ(F

∗
δ )2 and

β ∈ GF (〈1,−t〉) = GF ((qi)a) for 1 ≤ i ≤ 4. It follows from the above
equivalences that β ∈ GF (q), so βq ' q as required.

Case 2: λδ = π.

Let β = δ2 +π ∈ F . Then β = δ2(1+δ−2π) ∈ Fπ. But 1+δ−2π ∈ (F ∗π )2.
Therefore β(F ∗π )2 = (F ∗π )2 = λπ(F ∗π )2. Similarly, β = π(1 + π−1δ2) ∈ Fδ.
But 1 + π−1δ2 ∈ (F ∗δ )2. Therefore β(F ∗δ )2 = π(F ∗δ )2 = λδ(F

∗
δ )2.

It remains to show that βq ' q. To this end, first note that since
λδq = πq ' q, we have q1 ' q2 and q3 ' q4. Then

q ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ

' q1 ⊥ q1π ⊥ q3δ ⊥ q3πδ

' 〈1, π〉q1 ⊥ 〈1, π〉q3δ.

Now β = δ2 +π ∈ DF (〈1, π〉) = GF (〈1, π〉) (since 〈1, π〉 is a Pfister form over
F ( [16, p. 319, Theorem 1.8])). Hence β ∈ GF (q), so βq ' q as required.
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Case 3: λδ = δ.

Let β = δ2 + δπ2 ∈ F . Then β = δ2(1 + δ−1π2) ∈ Fπ. But
1 + δ−1π2 ∈ (F ∗π )2. Therefore β(F ∗π )2 = (F ∗π )2 = λπ(F ∗π )2. Similarly,
β = δπ2(1 + π−2δ) ∈ Fδ. But 1 + π−2δ ∈ (F ∗δ )2. Therefore
β(F ∗δ )2 = δ(F ∗δ )2 = λδ(F

∗
δ )2.

It remains to show that βq ' q. To this end, first note that since
λδq = δq ' q, we have q1 ' q3 and q2 ' q4. Then

q ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ

' q1 ⊥ q2π ⊥ q1δ ⊥ q2πδ

' 〈1, δ〉q1 ⊥ 〈1, δ〉q2π.

Now β = δ2 + δπ2 ∈ DF (〈1, δ〉) = GF (〈1, δ〉) (since 〈1, δ〉 is a Pfister form
over F ( [16, p. 319, Theorem 1.8])). Hence β ∈ GF (q), so βq ' q as
required.

5.2 Semi-Global Fields - Quadratic Forms Case

Let p ∈ N be a prime with p 6= 2, and let K be a p-adic field. Let X be
a geometrically integral curve over K, and let F = K(X) be the function
field of the curve X. Suppose q and q′ are quadratic forms over F with
dim(q) = dim(q′) and disc(q) = disc(q′). Write q = 〈a1, a2, . . . , an〉 and
q′ = 〈b1, b2, . . . , bn〉 with ai, bi ∈ F ∗. By Abhyankar ( [1]) and Lipman
( [17]), there exists a regular integral model X with special fibre X0 such
that for all i, sup(ai)∪ sup(bi)∪X0 is a union of regular curves with normal
crossings. Let P ⊆ X0 be a finite set of closed points of X containing all
the nodal points of sup(ai) ∪ sup(bi) ∪ X0 and at least one point on each
component. Let U be the set of irreducible components of X0 \P. Then
U = {U1, U2, . . . , Ul} is a finite set.

Notation. For P ∈P, let OX ,P be the local ring at P . So OX ,P is a two
dimensional regular local ring. Let mP be the maximal ideal of OX ,P , and

let OX ,P

∧
denote the completion of OX ,P at the maximal ideal mP . Define

FP := ff(OX ,P

∧
).

Notation. For U ∈ U , let RU be the set of rational functions which are
regular on U :

RU := {f ∈ F | f is regular on U}.

Let t ∈ K be a parameter and let RU
∧

be the (t)-adic completion of RU .

Define FU := ff
(
RU
∧)

.
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Notation. For P ∈P, each height one prime ideal ρ of OX ,P

∧
that contains

t determines a branch of X0 at P (i.e. an irreducible component of the
pullback of X0 to Spec OX ,P

∧
). We let R̂ρ denote the complete local ring of

OX ,P

∧
at ρ. Define Fρ := ff

(
R̂ρ

)
. Since t ∈ ρ, the contraction of ρ ⊆ OX ,P

∧

to the local ring OX ,P defines an irreducible component of Spec OX0,P and
hence an irreducible component of X0 containing P . This in turn is the
closure of a unique connected component U of X0 \P, and we say that ρ
lies on U . We call FU,P := Fρ a branch field.

We begin by proving the following local-global principle for similarities
in the patching set up:

Proposition 5.2.1. Suppose for all U ∈ U there exists λU ∈ F ∗U such that
q ' λUq

′ over FU , and suppose for all P ∈ P there exists λP ∈ F ∗P such
that q ' λP q′ over FP . Then there exists λ ∈ F such that q ' λq′ over F .

Proof. By assumption, for all U ∈ U there exists λU ∈ F ∗U such that
q ' λUq

′ over FU , and for all P ∈ P there exists λP ∈ F ∗P such that
q ' λP q

′ over FP . So for all U ∈ U we have an isomorphism φU : q ' λUq
′

over FU , and for all P ∈P we have an isomorphism φP : q ' λP q′ over FP .
Then for all P ∈P, U ∈ U the map φ−1

P φU : q ' λ−1
P λUq is a similitude of

q over the branch field FU,P with similarity factor λ−1
P λU ∈ FU,P . For each

P ∈P, U ∈ U define λU,P := λ−1
P λU ∈ FU,P .

Let P ∈ X be a closed point. Let RP := OX ,P

∧
. Then RP is a com-

plete two dimensional regular local ring with FP = ff(RP ). Then, by the
choice of X , the maximal ideal mP = (πP , δP ) for some πP , δP such that

ai = uiPπ
riP
P δsiPP and bi = wiPπ

r′iP
P δ

s′iP
P for some units uiP , wiP ∈ R∗P and

stiP , siP , r
′
iP , s

′
iP ∈ Z. In particular we have

q ' q1 ⊥ q2π ⊥ q3δ ⊥ q4πδ,

q′ ' q′1 ⊥ q′2π ⊥ q′3δ ⊥ q′4πδ,
where q1 = 〈u1, . . . , un1〉, q2 = 〈v1, . . . , vn2〉, q3 = 〈w1, . . . , wn3〉,
q4 = 〈θ1, . . . , θn4〉, q′1 = 〈u′1, . . . , u′n1

〉, q′2 = 〈v′1, . . . , v′n2
〉,

q′3 = 〈w′1, . . . , w′n3
〉, q′4 = 〈θ′1, . . . , θ′n4

〉 with ui, vi, wi, θi, u
′
i, v
′
i, w
′
i, θ
′
i ∈ R∗.

Let (RP )(πP )

∧

denote the completion of the localization of RP at the prime

ideal (πP ), and let (RP )(δP )

∧

denote the completion of the localization of RP

at the prime ideal (δP ). Define (FP )πP := ff
(

(RP )(πP )

∧)
and (FP )δP :=

ff
(

(RP )(δP )

∧)
.

Claim. For all P ∈P, U ∈ U we may write λU,P = βP z
2 where βP ∈ FP

is such that q ' βP q′ over FP and z ∈ F ∗U,P .
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Proof of Claim. Fix P ∈P. There are two cases:

Case 1: There is only one U ∈ U with P in the closure of U . Then
either FU,P = (FP )πP or FU,P = (FP )δP . From the unit structure of

(RP )(πP )

∧

and (RP )(δP )

∧

(cf. [19, Remark 7.1]), we have λU,P = wπrP δ
s
P z

2

where w ∈ R∗P , r, s ∈ Z and z ∈ F ∗U,P . Let βP = wπrP δ
s
P ∈ FP . Then

λU,P = βP z
2. Since λU,P is a similarity for q over FU,P , we have that βP

is a similarity for q over FU,P also. Thus, by (5.1.3), we have that βP is a
similarity for q over FP and the claim is proved in this case.

Case 2: There exist U1, U2 ∈ U with U1 6= U2 such that P is in the
closure of U1 and P is in the closure of U2. Then by reordering the Ui if
necessary, we have FU1,P = (FP )πP and FU2,P = (FP )δP . Then λU1,P ∈
(FP )πP is such that (λU1,P )q ' q over (FP )πP and λU2,P ∈ (FP )δP is
such that (λU2,P )q ' q over (FP )δP . Thus, by Proposition 5.1.5, there
exists βP ∈ FP such that βP ((FP )∗πP )2 = λU1,P ((FP )∗πP )2, βP ((FP )∗δP )2 =

λU2,P ((FP )∗δP )2 and βP q ' q over FP . Hence λU1,P = βP z
2
1 for some

z1 ∈ F ∗U1,P
and λU2,P = βP z

2
2 for some z2 ∈ F ∗U2,P

. This completes the
proof of the claim.

By the claim, for all P ∈P we have an isomorphism αP : q ' βP q over
FP . By [9, Corollary 3.4], for all P ∈P, U ∈ U we can factorize z ∈ F ∗U,P
as z = zP zU for some zP ∈ F ∗P and zU ∈ F ∗U . Then for all P ∈ P, U ∈ U
we have λU,P = βP z

2
P z

2
U . Then for all U ∈ U we have an isomorphism

φ′U := φU ◦ mz−1
U

: q ' λUz
−2
U q′ over FU , and for all P ∈ P we have an

isomorphism φ′P := φP ◦ mzP ◦ αP : q ' λP z
2
PβP q

′ over FP . Then for all
P ∈P, U ∈ U the map (φ′P )−1φ′U : q ' (λP z

2
PβP )−1λUz

−2
U q is a similitude

of q over the branch field FU,P with similarity factor

(λP z
2
PβP )−1λUz

−2
U = λ−1

P λUz
−2
U z−2

P β−1
P = λU,Pλ

−1
U,P = 1 ∈ FU,P . (∗)

Therefore for all P ∈ P, U ∈ U the map (φ′P )−1φ′U is an isometry of
q over FU,P . Now by rearranging (∗), for all P ∈ P, U ∈ U we have
λUz

−2
U = λP z

2
PβP ∈ FU ∩ FP = F . For each P ∈ P, U ∈ U define

λ := λUz
−2
U = λP z

2
PβP ∈ F . Then for all U ∈ U the map φ′U : q ' λq′ over

FU is an isomorphism, and for all P ∈ P the map φ′P : q ' λq′ over FP is
an isomorphism.

Case 1: dim(q) is even. Then disc(q) = disc(q′) = disc(λq′), so
[λq′] ∈ H1(F,SO(q)). Now SO(q) is a rational, connected group and there-
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fore the map

Ψ: H1(F,SO(q))→
∏
U∈U

H1(FU ,SO(q))
∏
P∈P

H1(FP , SO(q))

has trivial kernel ( [8]). Since for all P ∈P, U ∈ U the maps φ′U : q ' λq′
over FU and φ′P : q ' λq′ over FP are isomorphisms, we have Ψ([λq′]) = 0,
and thus [λq′] = 0 = [q]. Therefore q ' λq′ over F as required.

Case 2: dim(q) is odd. For all P ∈ P, U ∈ U we have q ' λq′ over FU
and q ' λq′ over FP . Since dim(q) = dim(q′) is odd and disc(q) = disc(q′),
it follows that for all P ∈ P, U ∈ U we have q ' q′ over FU and q ' q′

over FP . Hence q ' q′ over F ( [8]).

Let ΩF be the set of all divisorial discrete valuations of F . For v ∈ ΩF ,
let F̂v denote the completion of F at v.

Theorem 5.2.2. Suppose for all divisorial discrete valuations v ∈ ΩF there
exists λv ∈ F̂v such that q ' λvq

′ over F̂v. Then there exists λ ∈ F such
that q ' λq′ over F .

Proof. Choose a regular integral model X with special fibre X0 such that
for all j, sup(aj) ∪ sup(bj) ∪ X0 is a union of regular curves with normal

crossings. Write X0 =
d⋃
i=1

Xi where the Xi are irreducible components. For

1 ≤ i ≤ d, let vi be the discrete valuation on F corresponding to Xi. So for
1 ≤ i ≤ d, we have q ' λviq′ over F̂vi .

Since Fvi is the completion of F at the discrete valuation vi, we have
λvi = λ′vix

2
i for some λ′vi ∈ F

∗. Hence replacing λvi by λ′vi , we assume that
λvi ∈ F ∗.

Since q ' λviq′ over F̂vi , by [9, Proposition 5.8], there exists a nonempty
open set Ui ( Xi such that q ' λ′viq

′ over FUi . Let U = {U1, . . . , Ud} and

let P = X0 \
d⋃
i=1

Ui. Then for each P ∈P, by (5.1.5), there exists λP ∈ FP
such that q ' λP q

′ over FP . Then applying Proposition 5.2.1 to the patch
{U ,P}, it follows that there exists λ ∈ F such that q ' λq′ over F as
required.

Let L/F be a quadratic field extension, and let τ be the nontrivial
automorphism of L/F . Let h1 and h2 be hermitian forms over (L, τ).

Corollary 5.2.3. Suppose for all divisorial discrete valuations v ∈ ΩF there
exists λv ∈ F̂v such that h1 ' λvh2. Then there exists λ ∈ F such that
h1 ' λh2 over L.
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Proof. Let qh denote the trace form of h (cf. [21, p. 348]). By assumption,
for all divisorial discrete valuations v ∈ ΩF there exists λv ∈ F̂v such that
h1 ' λvh2. Then, by Jacobson, for all v ∈ ΩF we have qh1 ' λvqh2 over F̂v
( [21, p. 348, Theorem 1.1]). Then, by Theorem 5.2.2, there exists λ ∈ F
such that qh1 ' λqh2 over F . Thus, by Jacobson, we have h1 ' λh2 over L
as required ( [21, p. 348, Theorem 1.1]).

5.3 Quaternion Division Algebras Over Two
Dimensional Complete Fields

Let R be a complete two dimensional regular local ring, let F = ff(R), and
suppose 2 ∈ R∗. Let m = (π, δ) be the maximal ideal of R. Suppose
k = R/m is a finite field with char(k) 6= 2. Let D be a quaternion division
algebra over F which is unramified on R except possibly at (π) and (δ). Let
τ be the canonical involution on D. Let h be an hermitian form over (D, τ).
Then h = 〈a1, . . . , an〉 where ai ∈ F ∗. Suppose ai = uiπ

riδsi with
ui ∈ R∗, ri, si ∈ Z for 1 ≤ i ≤ n. Let R(π)

∧
denote the completion of the

localization of R at the prime ideal (π), and let R(δ)

∧
denote the completion

of the localization of R at the prime ideal (δ). Define Fπ := ff
(
R(π)

∧)
and

Fδ := ff
(
R(δ)

∧)
. Then Fπ and Fδ are complete discretely valued fields.

Proposition 5.3.1. Suppose there exists λπ ∈ Fπ such that λπh ' h over
Fπ, and suppose there exists λδ ∈ Fδ such that λδh ' h over Fδ. Then there
exists β ∈ F such that β(F ∗π )2 = λπ(F ∗π )2, β(F ∗δ )2 = λδ(F

∗
δ )2 and βh ' h

over F .

Proof. First note that since D is a division algebra over F , it follows that
D⊗F Fπ is a division algebra over Fπ and D⊗F Fδ is a division algebra over
Fδ ( [18, Proposition 5.8]). Now since D is unramified on R except possibly
at (π) and (δ), we have that D = (u, vπ), (u, vδ), (uπ, vδ) or (u, vπδ) where
u, v ∈ R∗ [22, Lemma 3.6]. Let N = 〈1,−a,−b, ab〉 be the norm form of
D, so that a ∈ {u, uπ} and b ∈ {vπ, vδ, vπδ}. Let qh = 〈a1, . . . , an〉 ⊗ N
denote the trace form of h (cf. [21, p. 352]). Then qh = 〈b1, . . . , b4n〉 where
bi ∈ F ∗, bi = viπ

xiδyi with vi ∈ R∗, xi, yi ∈ {0, 1} for 1 ≤ i ≤ 4n.

By assumption, there exists λπ ∈ Fπ such that λπh ' h over Fπ. Then,
by Jacobson, we have λπ(qh)Fπ ' (qh)Fπ over Fπ ( [21, p. 352, Theorem
1.7]). By assumption, there exists λδ ∈ Fδ such that λδh ' h over Fδ. Then,
by Jacobson, we have λδ(qh)Fδ ' (qh)Fδ over Fδ ( [21, p. 352, Theorem 1.7]).
Therefore, by Proposition 5.1.5, there exists β ∈ F such that
β(F ∗π )2 = λπ(F ∗π )2, β(F ∗δ )2 = λδ(F

∗
δ )2 and βqh ' qh over F . Then, by

Jacobson, we have βh ' h over F as required ( [21, p. 352, Theorem
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1.7]).

5.4 Semi-Global Fields - Symplectic Involution
Case

Let p ∈ N be a prime with p 6= 2, and let K be a p-adic field. Let X be
a geometrically integral curve over K, and let F = K(X) be the function
field of the curve X. Let A be a central simple algebra over F , and let σ be
a symplectic involution on A. Let h1 and h2 be two hermitian forms over
(A, σ). Choose a regular integral model X with special fibre X0 with the
following properties:

(1) ramX (A) ∪X0 is a union of regular curves with normal crossings.

(2) There exists a finite set of closed points P ⊆ X0 containing all the
nodal points of ramX (A) ∪ X0 and at least one point on each com-
ponent, such that for each P ∈ P, we have A ⊗F FP ∼= Mn(DP ),
where DP is a central division algebra over FP and for 1 ≤ i ≤
2, (hi)FP corresponds under Morita equivalence to (h̃i)P over DP ,
where (h̃i)P is an hermitian form for the canonical involution such

that (h̃i)P = 〈ai1 , . . . , ain〉 where aij ∈ F ∗P , aij = uPijπ
rij
P δ

sij
P with

uPij ∈ O
∗
X ,P , rij , sij ∈ Z for 1 ≤ i ≤ 2, 1 ≤ j ≤ n where mP =

(πP , δP ) is the maximal ideal of OX ,P , the local ring at P .

Let U be the set of irreducible components of X0 \P. Then
U = {U1, U2, . . . , Ul} is a finite set.

Proposition 5.4.1. Suppose for all U ∈ U there exists λU ∈ F ∗U such that
h1 ' λUh2 over FU , and suppose for all P ∈ P there exists λP ∈ F ∗P such
that h1 ' λPh2 over FP . Then there exists λ ∈ F such that h1 ' λh2 over
F .

Proof. By assumption, for all U ∈ U there exists λU ∈ F ∗U such that
h1 ' λUh2 over FU , and for all P ∈P there exists λP ∈ F ∗P such that
h1 ' λPh2 over FP . So for all U ∈ U we have an isomorphism
φU : h1 ' λUh2 over FU , and for all P ∈ P we have an isomorphism
φP : h1 ' λPh2 over FP . Then for all P ∈P, U ∈ U the map
φ−1
P φU : h1 ' λ−1

P λUh1 is a similitude of h1 over the branch field FU,P
with similarity factor λ−1

P λU ∈ FU,P . For each P ∈ P, U ∈ U define
λU,P := λ−1

P λU ∈ FU,P .

Claim. For all P ∈P, U ∈ U we have λU,P = βP z
2 for some βP ∈ FP is

such that h1 ' βPh1 over FP and z ∈ F ∗U,P .
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Proof of Claim. Fix P ∈P. Let RP := OX ,P

∧
. Then RP is a complete two

dimensional regular local ring with FP = ff(RP ). By the choice of X , the
maximal ideal mP at P is generated by (πP , δP ) such that A⊗FP 'Mn(DP )
for some division algebra DP over FP of index at most 2 which is unramified
at P except possibly at (π) and (δ), and under Moirta equivalence hi cor-
responds to hermitian forms (h̃i)P over DP such that (h̃i)P = 〈ai1 , . . . , ain〉
where aij ∈ F ∗P , aij = uPijπ

rij
P δ

sij
P with uPij ∈ O

∗
X ,P , rij , sij ∈ Z for

1 ≤ i ≤ 2, 1 ≤ j ≤ n.

Let (RP )(πP )

∧

denote the completion of the localization of RP at the

prime ideal (πP ), and let (RP )(δP )

∧

denote the completion of the localiza-

tion of RP at the prime ideal (δP ). Define (FP )πP := ff
(

(RP )(πP )

∧)
and

(FP )δP := ff
(

(RP )(δP )

∧)
. There are two cases:

Case 1: There is only one U ∈ U with P in the closure of U . Then
either FU,P = (FP )πP or FU,P = (FP )δP . From the unit structure of

(RP )(πP )

∧

and (RP )(δP )

∧

(cf. [19, Remark 7.1]), we have λU,P = wπrP δ
s
P z

2

where w ∈ R∗P , r, s ∈ Z and z ∈ F ∗U,P . Let βP = wπrP δ
s
P ∈ FP . Then

λU,P = βP z
2. Since λU,P is a similarity for h1 over FU,P , we have that βP

is a similarity for h1 over FU,P also. Let qh1 denote the trace form of h1.
Then βP is a similarity for qh1 over FU,P . Thus, (5.1.3), we have that βP
is a similarity for qh1 over FP , and hence βP is a similarity for h1 over FP ,
which proves the claim in this case.

Case 2: There exist U1, U2 ∈ U with U1 6= U2 such that P is in the
closure of U1 and P is in the closure of U2. Then by reordering the Ui if
necessary, we have FU1,P = (FP )πP and FU2,P = (FP )δP . Then
λU1,P ∈ (FP )πP is such that (λU1,P )h1 ' h1 over (FP )πP and λU2,P ∈ (FP )δP
is such that (λU2,P )h1 ' h1 over (FP )δP . Thus, by Proposition 5.3.1, there
exists βP ∈ FP such that βP ((FP )∗πP )2 = λU1,P ((FP )∗πP )2,
βP ((FP )∗δP )2 = λU2,P ((FP )∗δP )2 and βPh1 ' h1 over FP . Hence

λU1,P = βP z
2
1 for some z1 ∈ F ∗U1,P

and λU2,P = βP z
2
2 for some z2 ∈ F ∗U2,P

.
This completes the proof of the claim.

By the claim, for all P ∈ P we have an isomorphism αP : h1 ' βPh1

over FP . By [9, Corollary 3.4], for all P ∈ P, U ∈ U we can factorize
z ∈ F ∗U,P as z = zP zU for some zP ∈ F ∗P and zU ∈ F ∗U . Then for all

P ∈ P, U ∈ U we have λU,P = βP z
2
P z

2
U . Then for all U ∈ U we have an

isomorphism φ′U := φU ◦mz−1
U

: h1 ' λUz
−2
U h2 over FU , and for all P ∈ P

we have an isomorphism φ′P := φP ◦ mzP ◦ αP : h1 ' λP z
2
PβPh2 over FP .

Then for all P ∈P, U ∈ U the map (φ′P )−1φ′U : h1 ' (λP z
2
PβP )−1λUz

−2
U h1
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is a similitude of h1 over the branch field FU,P with similarity factor

(λP z
2
PβP )−1λUz

−2
U = λ−1

P λUz
−2
U z−2

P β−1
P = λU,Pλ

−1
U,P = 1 ∈ FU,P . (∗)

Therefore for all P ∈ P, U ∈ U the map (φ′P )−1φ′U is an isometry of
h1 over FU,P . Now by rearranging (∗), for all P ∈ P, U ∈ U we have
λUz

−2
U = λP z

2
PβP ∈ FU ∩ FP = F . For each P ∈ P, U ∈ U define

λ := λUz
−2
U = λP z

2
PβP ∈ F . Then for all U ∈ U the map φ′U : h1 ' λh2

over FU is an isomorphism, and for all P ∈ P the map φ′P : h1 ' λh2 over
FP is an isomorphism. Thus h1 ' λh2 over F as required.

Let ΩF be the set of all divisorial discrete valuations of F . For v ∈ ΩF ,
let F̂v denote the completion of F at v.

Theorem 5.4.2. Suppose for all divisorial discrete valuations v ∈ ΩF there
exists λv ∈ F̂v such that h1 ' λvh2 over F̂v. Then there exists λ ∈ F such
that h1 ' λh2 over F .

Proof. Choose a regular integral model X with special fibre X0 such that
ramX (A) ∪ X0 is a union of regular curves with normal crossings. Write

X0 =
d⋃
i=1

Xi where the Xi are irreducible components. For 1 ≤ i ≤ d, let vi

be the discrete valuation on F corresponding to Xi. So for 1 ≤ i ≤ d, we
have h1 ' λvih2 over F̂vi .

Since for any λ ∈ Fv, λ = λ′a2 for some a ∈ Fv, without loss of generality
we assume that λvi ∈ F ∗ for all i. Hence by [9, Proposition 5.8], for each i,
there exists a proper nonempty set Ui of Xi such that h1 ' λvih2 over F̂Ui .

Let P = X0 \ ∪Ui. Let P ∈ P. By the choice of X , A is unramified
at P which is unramified at P except possibly at (πP ) and hence A⊗ FP '
Mn(DP ) for some division algebra DP over FP which is unramified at P
except possibly at (πP ) and (δP ). Since A is of period at most 2, by [19,
Proposition 5.7], ind(DP ) is at most 2. Let (h̃i) =< ai1 , · · · , ain > for some
aij ∈ F ∗P . By blowing up if necessary X at the closed points in P, we

may assume that aij = uPijπ
rij
P δ

sij
P with uPij ∈ O

∗
X ,P , rij , sij ∈ Z for

1 ≤ i ≤ 2, 1 ≤ j ≤ n. Then for each P ∈ P, by (5.3.1), there exists
λP ∈ FP such that h1 ' λPh2 over FP . Then applying Proposition 5.4.1 to
the patch {U ,P}, it follows that there exists λ ∈ F such that h1 ' λh2

over F as required.

5.5 The Main Theorems

Let p ∈ N be a prime with p 6= 2, and let K be a p-adic field. Let X be a
geometrically integral curve over K, and let F = K(X) be the function field
of the curve X.
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Theorem 5.5.1. Let G be an absolutely simple, adjoint linear algebraic
group over F of classical type 2An, so that G = PGU(A, σ) for some central
simple algebra A of degree n+ 1 whose center Z(A) is a quadratic extension
of F , with involution σ of the second kind such that σ(x) = x for all x ∈ F .
Then the Hasse principle holds for principal homogeneous spaces under G
in the case when (A, σ) = (L, τ) where L/F is a quadratic field extension
and τ is the nontrivial automorphism of L/F .

Proof. First note that in the case when (A, σ) = (L, τ) where L/F is a
quadratic field extension and τ is the nontrivial automorphism of L/F , the
tuple (A, σ) reduces to an hermitian form h1 over (L, τ) and G = PGU(h1).
Now H1(F,PGU(h1)) classifies similarity classes of nonsingular hermitian
forms over (L, τ). The trivial element in this set is the similarity class of
h1. Then the condition that [h2] = 1 ∈ H1(F,PGU(h1)) is equivalent to the
condition that h1 ' λh2 for some λ ∈ F . So by Corollary 5.2.3, the Hasse
principle holds for principal homogeneous spaces under PGU(h1).

Theorem 5.5.2. Let G be an absolutely simple, adjoint linear algebraic
group over F of classical type Cn. Then the Hasse principle holds for
principal homogeneous spaces under G.

Proof. Let G be an absolutely simple, adjoint linear algebraic group of type
Cn over F . Then G = PGSp(A, σ) for some central simple F -algebra A of
degree 2n with symplectic involution σ.

Now H1(F,PGSp(A, σ)) classifies F -isomorphism classes of central
simple F -algebras B such that deg(A) = deg(B), with symplectic involution
τ . The trivial element in this set is the class of (A, σ).

Now suppose [(A, τ)] = 1 ∈ H1(F,PGSp(A, σ)), so that (A, τ) ' (A, σ).
Write A as A ∼= Mm(D) for some m ∈ N and D a central division algebra
over F . Let h1 be the hermitian form on D corresponding to σ, so that σ is
the adjoint involution with respect to h1, and let h2 be the hermitian form
on D corresponding to τ , so that τ is the adjoint involution with respect to
h2. Then the condition that (A, τ) ' (A, σ) is equivalent to the condition
that h1 ' λh2 for some λ ∈ F . So by Theorem 5.4.2, the Hasse principle
holds for principal homogeneous spaces under PGSp(A, σ).

Theorem 5.5.3. Let G be an absolutely simple, adjoint linear algebraic
group over F of classical type Dn, so that G = PGO+(A, σ) for some central
simple F -algebra A of degree 2n with orthogonal involution σ. Then the
Hasse principle holds for principal homogeneous spaces under G in the case
when A is split.

Proof. First note that in the case when A is split, the tuple (A, σ) reduces
to a quadratic form q over F and G = PSO(q). Now H1(F,PSO(q)) clas-
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sifies similarity classes of nonsingular quadratic forms q′ over F such that
dim(q′) = dim(q) and disc(q′) = disc(q). The trivial element in this set is
the similarity class of q. Then the condition that
[q′] = 1 ∈ H1(F,PSO(q)) is equivalent to the condition that q ' λq′ for
some λ ∈ F . So by Theorem 5.2.2, the Hasse principle holds for principal
homogeneous spaces under PSO(q).
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