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Abstract

A local-global principle for adjoint groups over function fields of p-adic curves
By Jack Barlow

Let k£ be a number field and G a semisimple simply connected linear algebraic group
over k. The Kneser conjecture states that the Hasse principle holds for principal
homogeneous spaces under G. Kneser’s conjecture is a theorem due to Kneser for all
classical groups, Harder for exceptional groups other than FEg, and Chernousov for
Eg. It has also been proved by Sansuc that if GG is an adjoint linear algebraic group
over k, then the Hasse principle holds for principal homogeneous spaces under G.

Now let p € N be a prime with p # 2, and let K be a p-adic field. Let F be the function
field of a curve over K. Let Q2r be the set of all divisorial discrete valuations of F.
It is a conjecture of Colliot-Thélene, Parimala and Suresh that if G is a semisimple
simply connected linear algebraic group over F', then the Hasse principle holds for
principal homogeneous spaces under G. This conjecture has been proved for all groups
of classical type. In this thesis, we ask whether the Hasse principle holds for adjoint
groups over F', motivated by the number field case. We give a positive answer to this
question for a class of adjoint classical groups.
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Chapter 1

Introduction

Let k be a number field and G a semisimple simply connected linear algebraic
group over k. The Kneser conjecture states that the Hasse principle holds
for principal homogeneous spaces under G ( [13]). Kneser’s conjecture is a
theorem due to Kneser for all classical groups ( [14]), Harder for exceptional
groups other than Eg ( [10], [11], [12]) and Chernousov for Eg ( [4]). It has
also been proved that if G is an adjoint linear algebraic group over k, then
the Hasse principle holds for principal homogeneous spaces under G

( [20, Corollary 5.4]).

Now let p € N be a prime with p # 2, and let K be a p-adic field. Let
F' be the function field of a curve over K. Let {2 be the set of all divisorial
discrete valuations of F. It is a conjecture of Colliot-Théléne, Parimala and
Suresh that if G is a semisimple simply connected linear algebraic group over
F, then the Hasse principle holds for principal homogeneous spaces under
G ( [5]). This conjecture has been proved for all groups of classical type
( [19]). In this thesis we prove the following:

Theorem 1.0.1. Let p € N be a prime with p # 2, and let K be a p-adic
field. Let F' be a function field of a curve over K. Let q be a quadratic form
over F. Then the Hasse principle holds for principal homogeneous spaces

under PSO(q).

A by-product of Theorem 1.0.1 is the following:

Theorem 1.0.2. Let p € N be a prime with p # 2, and let K be a p-adic
field. Let F be a function field of a curve over K. Let L/F be a quadratic
field extension, and let T be the nontrivial automorphism of L/F. Then the
Hasse principle holds for principal homogeneous spaces under PGU(L, T).

We have the following theorem for the symplectic case:



Theorem 1.0.3. Let p € N be a prime with p # 2, and let K be a p-adic
field. Let F' be a function field of a curve over K. Let G be an absolutely
simple adjoint linear algebraic group over F' of classical type C,,. Then the
Hasse principle holds for principal homogeneous spaces under G.

Absolutely simple adjoint linear algebraic groups over F' of classical type
C,, are described by the group of similitudes of central simple algebras with
symplectic involution. To prove Theorem 1.0.3, a main step is to prove the
following:

Theorem 1.0.4. Let A and B be central simple algebras over F with
deg(A) = deg(B). Let o be a symplectic involution on A and let T be a
symplectic involution on B. If (A, o) ~ (B,T) locally over all divisorial
discrete valuations of F, then (A,0) ~ (B, T) over F.

The proofs of Theorems 1.0.1, 1.0.2, 1.0.3 and 1.0.4 reduce to a Hasse
principle for similarity of hermitian forms.

1.1 The Plan

Here we give a brief description of the contents of the thesis:

Chapters 2-4 consist of preliminaries. In chapter 2, we give an overview
of the foundations of the theory of central simple algebras, involutions and
hermitian forms. In Chapter 3, we study a few elementary notions in group
cohomology and look at profinite groups and Galois cohomology. In Chapter
4, we introduce linear algebraic groups and give a classification of absolutely
simple, adjoint, classical linear algebraic groups. We go on to review some
of the patching techniques of Harbater, Hartmann and Krashen.

Chapter 5 consists of the proofs of our main theorems. In Section 5.1, we
analyze similarities of quadratic forms over two dimensional complete fields
and approximate similarity factors along branches. In Section 5.2, we use
the results of Section 5.1 to prove a Hasse principle for similarity of quadratic
forms over semi-global fields and deduce as a corollary a Hasse principle for
similarity of hermitian forms over quadratic extensions of semi-global fields.
In Section 5.3, we look at the case of a quaternion division algebra D over
a two dimensional complete field with canonical involution 7. We use the
results of Section 5.1 to approximate similarity factors of hermitian forms
over (D, ) along branches. In Section 5.4, we use the results of Section 5.3 to
prove a Hasse principle for similarity of hermitian forms over central simple
algebras over semi-global fields with symplectic involution. We combine all
of the results of Sections 5.1-5.4 to prove our main theorems in Section 5.5.



Chapter 2

Central Simple Algebras,
Involutions and Hermitian
Forms

2.1 Central Simple Algebras

Definition. A central simple algebra over a field F' is a finite dimensional
algebra A # {0} with center F' = F'- 1 which has no two-sided ideals except
{0} and A.

Theorem 2.1.1. (Wedderburn Structure Theorem). Let A be a central
simple algebra over a field F'. Then there exists an integer n > 1 and a
central division algebra D over F such that A ~ M,(D). Moreover, D is
uniquely determined up to isomorphism.

Proof. See for instance [6, p. 22]. O

Notation. For any algebra A over a field F' and any field extension K/F,
we write Ag for the K-algebra obtained from A by extending scalars to K:

A = AQRr K.

Theorem 2.1.2. (Wedderburn). Let A be an algebra over a field F. Then
A is central simple if and only if there is a field K containing F such that
Ag ~ M, (K) for some n.

Proof. See for instance Scharlau [21, Chapter 8]. O

Definition. The fields K containing F' such that Ax ~ M, (K) for some n
are called splitting fields of A. If K is a splitting field of A, we also say that
A splits over K or K splits A.



Definition. Let A be a central simple algebra over a field F' and let K be a
splitting field of A. Let ¢: A = M,,(K) be an isomorphism and let a € A.
We define the reduced norm of a, denoted Nrd4(a), to be

Nrd(a) := det(¢p(a® 1)) € F.

Remark. The reduced norm Nrd4(a) € F' is independent of the choices of
the splitting field K and isomorphism ¢: Ax = M, (K).

Theorem 2.1.3. If A is a central simple F-algebra, its dimension over F
1S a square.

Proof. See for instance [6, p. 24]. O

Definition. Let A be a central simple algebra over a field F'. We define the

degree of A, denoted degp(A) or simply deg(A), to be the integer
deg(A) = y/dimpA.

2.1.1 The Brauer Group

It turns out that to gain an understanding of the finite dimensional
central division algebras over a field F', it is best to consider the more general
central simple algebras over F. Essentially, this is because central simple
algebras are closed under the tensor product operation, whereas finite
dimensional central division algebras in general are not (e.g. if H is
Hamilton’s quaternion algebra over R, then HpH ~ M4(R)). Now if A is a
central simple algebra over F', then by the Wedderburn Structure Theorem,
Theorem 2.1.1, we have an F-algebra isomorphism A ~ M, (D), for some
integer n > 1 and some finite dimensional central division algebra D over
F which is uniquely determined up to F-algebra isomorphism. This promts
the following definition.

Definition. Let A ~ M, (D;) and B ~ M,,(D32) be two central simple
algebras over a field F' (where D; and Dy are finite dimensional central
division algebras over F'). We call A and B similar, and write A ~ B, if
there is an F-algebra isomorphism D; ~ Ds.

Remark. Since D; and Ds above are uniquely determined up to F-algebra
isomorphism, it is clear to see that ~ is an equivalence relation on the set
of central simple algebras over F. We write [A] to denote the equivalence
class of A under the equivalence relation of similarity.

Definition. For any algebra A over a field F', we define the opposite algebra
A°P by
AP = {a? | a € A},



with the operations defined as follows:
a’® + b = (a + b)°P, aPb®P = (ba)°?, a-a® = (a-a)®
fora,b € Aand a € F.

Definition. The Brauer group of a field F, denoted Br(F), is the set of
equivalence classes of central simple F-algebras under the equivalence
relation of similarity, with the tensor product acting as the group operation
in the following way:

[A]-[B] = [A@r B].

The pair (Br(F),) is an abelian group with [F] = 1 € Br(F') and
[A]7! = [A°P] for all [A] € Br(F).

Remark. If D is a finite dimensional central division algebra over F', then
D € [D] € Br(F). Conversely, if A is a central simple algebra over F', then
A ~ M,(D’) for some integer n > 1 and some finite dimensional central
division algebra D’ over F, which is uniquely determined up to F-algebra
isomorphism, and we have [A] = [D'] € Br(F'). Therefore there is a
one-to-one correspondence between the set of finite dimensional central
division algebras over F' (where two F-algebra isomorphic algebras are
considered equal) and the set of elements of Br(F), the bijection taking a
finite dimensional central division algebra D over F to its similarity class
[D] € Br(F).

Theorem 2.1.4. The Brauer group is a torsion abelian group.

Proof. See for instance [6, p. 54]. O
Notation. We denote the n-torsion subgroup of Br(F') by ,Br(F).

Definition. Let A be a central simple algebra over a field F. Let D be the
central division algebra for which A ~ M, (D). We define the index of A
over F', denoted indp(A) or simply ind(A), to be ind(A) := deg(D).

Definition. The period (or exponent) of a central simple F-algebra A,
denoted per(A), is the order of its class [A] in Br(F).

Theorem 2.1.5. (Brauer). Let A be a central simple F-algebra. Then the
period per(A) divides the index ind(A). Moreover, the period per(A) and
the index ind(A) have the same prime factors.

Proof. See for instance [6, pp. 54 and 55]. O



2.1.2 Quaternion Algebras

Definition. Let F' be a field with char(F) # 2. Let a,b € F*. We define
the quaternion algebra A = (a,b)r to be the F-algebra on two generators
i, j with the defining relations

Proposition 2.1.6. Let k == ij € A = (a,b)p. Then {1,i,j,k} form an
F-basis for A (so that dimpA = 4).

Proof. See [16, p. 51, Proposition 1.0]. O

Proposition 2.1.7. (a,b)r is a central simple algebra over F'.

Proof. See [16, p. 52, Proposition 1.1]. O

Theorem 2.1.8. Let A be a central simple F-algebra. Then deg(A) = 2 if
and only if A is isomorphic to a quaternion algebra over F'.

Proof. See [16, p. 74, Theorem 5.1]. O

2.1.3 Ramifications of Central Simple Algebras

Let R be a commutative regular local ring with field of fractions F' = ff(R).
Let m be the maximal ideal of R.

Definition. An R-algebra </ is called an Azumaya algebra over R if & is
free of positive finite rank as an R-module, and the algebra o/ @p (R/m) is
a central simple algebra over R/m.

Definition. Let A be a central simple algebra over F. We say that A is
unramified on R if there exists an Azumaya algebra &/ over R such that
A d® R F.

Now let 2 be a regular integral scheme with function field F', and x € &
a point. Let Oz , be the local ring of 2™ at . Let A be a central simple
algebra over F.

Definition. We say that A is unramified at x € Z if A is unramified on
Og . If Ais not unramified at x, we say that A is ramified at x.



2.2 Involutions

Definition. An involution on a central simple algebra A over a field F' is a
map o: A — A subject to the following conditions:

(a) o(x+y) =0(x)+o(y) for x,y € A.
(b) o(zy) = o(y)o(x) for z,y € A.
(c) o%(z) =z for x € A.

Remark. The center F' = F -1 is preserved under o. The restriction of o
to F' is therefore an automorphism which is either the identity or of order 2.

Definition. Involutions which leave the center elementwise invariant are
called involutions of the first kind.

Remark. If A is a central simple algebra over a field F' with an involution o
of the first kind, then o defines an isomorphism A ~ A°P. Hence per(A) < 2
and [A] € 9Br(F).

Definition. Involutions whose restriction to the center is an automorphism
of order 2 are called involutions of the second kind. Involutions of the second
kind are also called of unitary type (or simply unitary).

Definition. An isomorphism of algebras with involution f: (A,o)=(A’,o")
is an F-algebra isomorphism f: A=A’ such that o' o f = foo.

Definition. Let A be a central simple algebra over a field F', and let o be an
involution (of any kind) on A. An automorphism of (A, o) is an isomorphism
of algebras with involution f: (4,0) ~ (A, 0).

Notation. Let A be a central simple algebra over a field F, and let o be
an involution (of any kind) on A. The set of automorphisms of (A, o) is
denoted by Autg(A,o):

Autp(A,0) ={f € Autp(A) |oco f= foo}.

Definition. Let V be a finite dimensional vector space over a field F' with
char(F') # 2. A bilinear form b: V x V. — F' is called nonsingular if the
induced map

~

b: V — V* =Homp(V, F)

defined by )
b(z)(y) = b(z,y) for v,y € V

is an isomorphism of vector spaces.



Definition. Let V be a finite dimensional vector space over a field F' with
char(F) # 2. For any f € Endp(V), let f* € Endp(V*) be defined by
mapping ¢ € V* to ¢ o f. The map f! is called the transpose of f.

Definition. Let V be a finite dimensional vector space over a field F' with
char(F) # 2. Let b: V x V — F be a nonsingular bilinear form. For any
f € Endp(V) we define o,(f) € Endp(V) by

op(f) = b1o fto b.

The map op,: Endp(V) — Endp (V) is then an involution of Endg (V') which
is known as the adjoint involution with respect to the nonsingular bilinear
form b.

Notation. Let o be an involution of the first kind on a central simple
algebra A over a field F' with char(F') # 2. If L is any field containing F,
the involution o extends to an involution of the first kind o7, = ¢ ® Id;, on
A = A®p L. In particular, if L is a splitting field of A, we may identify
Ar, = End (V) for some vector space V over L of dimension n = deg(A).
The involution oy, is then the adjoint involution o with respect to some
nonsingular symmetric or skew-symmetric bilinear form b on V'

([15, p. 13)).

Definition. An involution o of the first kind is said to be of symplectic
type (or simply symplectic) if for any splitting field L and any isomorphism
(Ar,or) ~ (Endr(V), 0p), the bilinear form b is skew-symmetric.

Definition. An involution o of the first kind is said to be of orthogonal
type (or simply orthogonal) if for any splitting field L and any isomorphism
(Ap,0r) ~ (Endp(V), 0p), the bilinear form b is symmetric.

Definition. In a central simple F-algebra A with involution of the first kind
o, the set of symmetric elements in A is defined as

Sym(A,0) ={a € A|o(a) =a}.

Definition. In a central simple F-algebra A with involution of the first kind
o, the set of skew-symmetric elements in A is defined as

Skew(A,0) ={a € A|o(a) = —a}.
Theorem 2.2.1. Let F' be a field with char(F) # 2. Let A be a central
simple F-algebra of degree n, and let o be an involution on A of the first
kind. Then o is of symplectic type if and only if

dimp(Sym(A4,0)) = n(nQ—l) <and thus dimp(Skew (A, 0)) = n(n;—l)) .



o is of orthogonal type if and only if

n(n+1)

dimp(Sym(A4,0)) = 5

(and thus dimp(Skew(A, o)) = ”(”2_1)> .

Moreover, if o is of symplectic type, then n is necessarily even.

Proof. See [15, Proposition 2.6]. O

Definition. Let F' be a field with char(F) # 2. Let A = (a,b)r be a
quaternion algebra over F with a,b € F*. Let i,57 € A be the standard
generators of A with i2 = a, j2 = b and ij = —ji. The unique involution 7
on A with 7(i) = —i and 7(j) = —j is called the quaternion conjugation or
the canonical involution on A.

Remark. The canonical involution 7 on A = (a,b)p is the only involution
of the first kind of symplectic type.

2.2.1 Similitudes of Algebras with Involution

Definition. Let A be a central simple algebra over a field F', and let o be
an involution (of any kind) on A. A similitude of (A, o) is an element g € A
such that

o(g)g € F*.

Definition. Let A be a central simple algebra over a field F', and let o be
an involution (of any kind) on A. Let g € A be a similitude of (A4, 0). The
scalar o(g)g € F* is called the multiplier of g and is denoted u(g).

Notation. Let A be a central simple algebra over a field F, and let o be
an involution (of any kind) on A. The set of all similitudes of (4, 0) is a
subgroup of A* which we call Sim(A, 0):

Sim(A,0)={ge€ A|o(g)g € F*}.

Remark. The map u: Sim(A, o) — F* given by u(g) = o(g)g for all
g € Sim(A, o) is a group homomorphism.

Definition. Let F' be a field and let A be an F-algebra. For any b € A*,
we define the inner automorphism of A induced by b, denoted Int(b), to be
the F-algebra automorphism Int(b): A — A given by

Int(b)(a) = bab~! for a € A.

Theorem 2.2.2. Let A be a central simple algebra over a field F', and let
o be an involution (of any kind) on A. Then

Autp(A,0) = {Int(g) | g € Sim(A,0)}.



10

There is therefore an exact sequence
1 F* — Sim(A,0) 2% Autp(A,0) — 1.

Proof. See [15, Theorem 12.15]. O

Definition. Let A be a central simple algebra over a field F', and let o be
an involution (of any kind) on A. Let PSim(A, ) be the group of projective
similitudes of (A, o), defined as

PSim(A, o) = Sim(A,0)/F*.

Remark. By Theorem 2.2.2, the map Int: Sim(A, o) — Autp(A, o) induces
a natural isomorphism PSim(A, o) ~ Autp(A, o).

Notation. Let A be a central simple algebra over a field F', and let o be a
symplectic involution on A. Then GSp(A4, o) = Sim(A, ) and
PGSp(A, o) = PSim(A4, o).

Notation. Let A be a central simple algebra over a field F', and let o be
an orthogonal involution on A. Then GO(A,0) = Sim(A4, o) and
PGO(A, o) := PSim(A4, o).

Notation. Let A be a central simple algebra over a field F', and let o be a
unitary involution on A. Then GU(A, o) := Sim(A4, o) and
PGU(A,0) := PSim(A4, o).

Definition. Let A be a central simple algebra over a field F', and let o be
an involution (of any kind) on A. A similitude g € Sim(A, o) with multiplier
wu(g) = 1is called an isometry of (A, o).

Notation. Let A be a central simple algebra over a field F, and let ¢ be
an involution (of any kind) on A. The set of all isometries of (A,0) is a
subgroup of Sim(A, o) which we call Iso(A, 0):

Iso(A,0) ={g € Alo(g)g=1}.

Notation. Let A be a central simple algebra over a field F', and let o be a
symplectic involution on A. Then Sp(A4, o) = Iso(4,0).

Notation. Let A be a central simple algebra over a field F, and let o be
an orthogonal involution on A. Then O(A,0) == Iso(4, o).

Notation. Let A be a central simple algebra over a field F', and let o be a
unitary involution on A. Then U(A, o) = Iso(4, o).
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Now suppose A is a central simple algebra over a field F' with even
degree deg(A) = 2m, and let o be an involution of the first kind on A. Let
g € Sim(A, o), so that

o(9)g = p(g) € F*. (%)
Taking the reduced norm of both sides of (), we obtain

Nrda(g) = +u(g)™.

Theorem 2.2.3. If o is a symplectic involution on A, then

Nrda(g) = u(g)™ for all g € GSp(4, ).

Proof. See [15, Proposition 12.23]. O

Definition. Let A be a central simple algebra over a field F with even
degree deg(A) = 2m, and with an orthogonal involution o. A similitude

g € GO(A4,0) is called proper if Nrd(g) = +u(g)™. A similitude

g € GO(A, o) is called improper if Nrda(g) = —u(g)™.

Notation. Let A be a central simple algebra over a field F' with even degree
deg(A) = 2m, and with an orthogonal involution o. The set of all proper
similitudes of (4, o) is a subgroup of GO(A, o) which we call GO* (4, 0):

GO™(4,0) = {g € GO(4,0) | Nrda(g) = +u(9)™}-
Remark. We have [GO(A4,0): GOT(A,0)] < 2.

Notation. Let A be a central simple algebra over a field F' with even degree
deg(A) = 2m, and with an orthogonal involution o. The set of all improper
similitudes of (A,0) is a coset of GOT(4,0) in GO(A, o) which we call
GO~ (4,0):

GO™(4,0) = {g € GO(A,0) | Nrda(g) = —p(9)™}.
Remark. It is possible for GO~ (A4, o) to be empty.

Definition. Let A be a central simple algebra over a field ' with even degree
deg(A) = 2m, and with an orthogonal involution o. Let PGO™ (A4, o) be the
group of proper projective similitudes of (A, o), defined as

PGO™(A,0) = GO (A,0)/F*.

Definition. Let A be a central simple algebra over a field F' with even
degree deg(A) = 2m, and with an orthogonal involution o. A proper
similitude g € GO' (A4, ) with multiplier u(g) = 1 is called a proper
isometry of (A, o).

Notation. Let A be a central simple algebra over a field F' with even degree
deg(A) = 2m, and with an orthogonal involution o. The set of all proper
isometries of (A, o) is a subgroup of GO (A, o) which we call O (A, o):

0T (4,0) =GO1(A,0)NO(A,0) = {9 € A|Nrda(g) = o(g9)g = 1}.
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2.3 Hermitian Forms

Definition. Let A be a central simple algebra over a field F' with an
involution o (of any kind). Let M be a finitely generated right A-module.
A bi-additive map

h: MxM— A

is called an hermitian form over (A, o) if h satisfies the following conditions:

(1) h(myia1, meas) = o(ay)h(mi, ms)as for all my, mo € M and ay, a2 € A,

(2) h(mg,m1) = o(h(my,my)) for all my,mg € M.
If (2) is replaced by

(2") h(mg,m1) = —o(h(my,ms)) for all my,ms € M,
the map h is called a skew-hermitian form over (A, o).

Let A be a central simple algebra over a field F' with an involution o (of
any kind). Let M be a finitely generated right A-module. Let
M* = Homa (M, A) be the dual space of M. Then M* can be viewed as a
right A-module given by (f - a)(m) = o(a)f(m) for all f € M*, m € M,
a€ A. Let h: M x M — A be an hermitian form over (A, o). Then h
induces a right A-module homomorphism h: M — M* given by

h(m1)(msa) = h(mi,mg) for all my, mg € M.

Definition. If the map h above is a right A-module isomorphism, we say
that h is a regular (or nonsingular) hermitian form.

Remark. The hermitian form h is nonsingular if and only if the only
element m € M such that h(m,m’) =0 for all m’ € M is m = 0. The same
definition of nonsingular can be made for skew-hermitian forms.

Theorem 2.3.1. Let A be a central simple algebra over a field F with an
involution o (of any kind). Let M be a finitely generated right A-module.
Let h: M x M — A be a nonsingular hermitian or skew-hermitian form
over (A,o). Then there exists a unique involution o on Enda(M) such
that op(a) = o(a) for all « € F and

h(mi, f(m2)) = h(on(f)(my),ma) for mi,mg € M, f € Enda(M).

Proof. See [15, Proposition 4.1]. O

Definition. The involution o in Theorem 2.3.1 is called the adjoint
involution with respect to h.
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Definition. Let A be a central simple algebra over a field F' with an
involution o (of any kind). Let M and M’ be finitely generated right
A-modules. Let h: M x M — A and h': M’ x M’ — A be hermitian forms
over (A,0). We say that h and h' are equivalent, denoted h ~ b/, if there
exists a bijective A-linear mapping ¢: M — M’ such that

B (p(m1), ¢(m2)) = h(mq, ms) for all my, ms € M.

Definition. Let A be a central simple algebra over a field F' with an
involution o of the first kind. Let M be a finitely generated right A-module.
Let h: M x M — A be a nonsingular hermitian form over (A, o). A bijective
A-linear mapping ¢: M — M for which there exists A € F™* such that

h(d)(ml), qb(mg)) = )\h(ml,mg) for all mi,mo € M

is called a similitude of h. The set of all similitudes of A form a group which
we call Sim(h).

Definition. Let A be a central simple algebra over a field F' with an
involution o of the first kind. Let h be an hermitian form over (A, o).
An element A € F* satisfying Ah ~ h is called a similarity factor of h. The
group of similarity factors of h is defined to be the collection of all similarity
factors of h:

Gp(h) ={\€ F* | A\h ~ h}.

Definition. Let F'/Fy be a quadratic field extension. Let A be a central
simple algebra over F' with an involution o of the second kind such that
o(x) = x for all x € Fy. Let M be a finitely generated right A-module. Let
h: M x M — A be a nonsingular hermitian form over (4,0). A bijective
A-linear mapping ¢: M — M for which there exists A € F{j such that

h(d(m1), p(m2)) = Ah(mq, mg) for all my,mg € M

is called a similitude of h. The set of all similitudes of A form a group which
we call Sim(h).

Definition. Let F//Fj be a quadratic field extension. Let A be a central
simple algebra over F' with an involution o of the second kind such that
o(x) = x for all x € Fy. Let h be an hermitian form over (A, o). An element
A € Fy satisfying Ah ~ h is called a similarity factor of h. The group of
stmilarity factors of h is defined to be the collection of all similarity factors
of h:

Gry(h) ={\ € Fj | Ah >~ h}.

Remark. Let A be a central simple algebra over a field F' with an
involution o (of any kind). Let M be a finitely generated right A-module.
Let h: M x M — A be a nonsingular hermitian over (A, ), and let
op: Endga(M) — Enda(M) be the adjoint involution with respect to h.
Then we have

Sim(End4 (M), o) = Sim(h).
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2.3.1 Hermitian Forms over Division Algebras and
Quadratic Forms

Let F be a field with char(F') # 2. Let D be a central division algebra over
F with an involution o (of any kind). Let V' ~ D" be a right D-vector space
of dimension n. Let h: V x V — D be an hermitian form over (D, o). Then
there exist ay,...,a, € D* such that o(a;) = a; for 1 < i < n and for all
x=(r1,.-,Zn), Y= (Y1,---,Yn) € D™ we have

n

hxy) = olz)a:

i=1
In this case, we write h = {(aq,...,an).

Definition. We define the rank of h, denoted Rank(h), to be the integer
Rank(h) = dimpV = n.

Example. If D = F' and o = Idp is the identity map on F, then

h: V xV — Fis a symmetric bilinear pairing on V and the map ¢,: V — F
given by gi(x) = h(z,x) for all x € V is a quadratic form over F'. Conversely,
let g: V — F be a quadratic form over F. Then the associated symmetric
bilinear pairing B: V x V — F given by

q(z +y) —q(z) — q(y)
2

B(z,y) = forall z,y € V

is an hermitian form over (F,Idg).

Definition. The determinant of a nonsingular quadratic form ¢ over F,
denoted d(q), is defined to be d(q) = det(M,) - (F*)? € F*/(F*)?, where M,

is the symmetric matrix associated with q.

Definition. Let ¢ be a nonsingular quadratic form over F' of dimension n.
We define the discriminant of ¢ by

dise(g) = (—1)"" " d(q) € F*/(F*)*.

Definition. Let ¢q: V — F be a quadratic form over F. Let v € V with
v # 0. We say that v is an isotropic vector if q(v) = 0. We say that v is
anisotropic if q(v) # 0.

Definition. Let q: V — F be a quadratic form over F. We say that ¢ is
isotropic if there exists an isotropic vector v € V. Otherwise, we say that ¢
is anisotropic.

Theorem 2.3.2. Letq: V — F be a quadratic form over F with dim(q) = 2.
The following four statements are equivalent:
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(1) q is regular and isotropic.
(2) q is reqular, with d(q) = —1- (F*)2.

(3) q=~(1,-1).

(4) q corresponds to the equivalence class of the binary quadratic form xy.

Proof. See [16, p. 9, Theorem 3.2]. O

Definition. The isometry class of a quadratic form g over F' with dim(q) = 2
satisfying the conditions in Theorem 2.3.2 is called the hyperbolic plane and
is denoted by H.

Definition. Let ¢;: Vi — F and ¢9: Vo — F be quadratic forms over F.
Define q1 L q2: Vi & Vo — F by setting

(@1 L g2)(v1,v2) = qi(v1) + g2(v2) for all v € Vi, vp € V5.

Then g1 L ¢o is a quadratic form over F', and we call g1 L ¢o the orthogonal
sum of g1 and ¢s.

Definition. Let ¢ be a quadratic form over F'. We say that ¢ is hyperbolic
if ¢ is isometric to an orthogonal sum of hyperbolic planes, that is, ¢ ~ m-H
for some m € N.

Definition. Let ¢;: Vi — F and ¢o: Vo — F be regular quadratic forms
over F'. We call ¢q; and qo Witt equivalent, and write q; ~ go, if there exist
r,s € Nsuch that ¢ Lr-H~qg L s-H.

Remark. It is clear to see that ~ is an equivalence relation on the set of
isometry classes of regular quadratic forms over F. For a regular quadratic
form g over F', we write [g] to denote the equivalence class of (the isometry
class of) ¢ under the equivalence relation of Witt equivalence.

Definition. The Witt group of F', denoted W (F'), is the set of equivalence
classes of (isometry classes of) regular quadratic forms over F' under the
equivalence relation of Witt equivalence, with the orthogonal sum acting as
the group operation in the following way:

[@1] + [q2] = @1 L qo]-

The pair (W(F),+) is an abelian group with [H] =0 € W(F') and
—lg] = [=q] for all [¢] € W(F).

Theorem 2.3.3. (Witt’s Decomposition Theorem). Any regular quadratic
form q over F splits into an orthogonal sum

q>=qn L qa,

where qp 1s hyperbolic and q, s anisotropic. Furthermore, the isometry
classes of qp and q, are uniquely determined.
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Proof. See [16, p. 12, Theorem 4.1]. O

Definition. The splitting ¢ ~ ¢, L g, of Theorem 2.3.3 is called the Witt
decomposition of q.

Remark. It follows from Witt’s Decomposition Theorem, Theorem 2.3.3,
that the elements of W (F) are in one-to-one correspondence with the
isometry classes of all anisotropic regular quadratic forms over F. If ¢ and
q' are regular quadratic forms over F, then ¢ and ¢ represent the same
element in W(F) ([¢] = [¢/] € W(F)) if and only if their anisotropic parts
are equivalent (g, ~ ¢,,). Thus W (F) can be thought of as a group consisting
of isometry classes of anisotropic regular quadratic forms over F'.

2.3.2 Quadratic Forms over Complete Discretely Valuated
Fields

Let (F,v) be a nondyadic complete discretely valuated field with

valuation ring A = {z € F | v(z) > 0} U {0}. Let m € A be a uniformizer
of A, and let the group of units of the ring A be denoted by U. Then
every element y € F* can be written uniquely in the form y = un®®) for
some u € U. Thus any 1-dimensional reqular quadratic form over F' can be
written as (u) or (um) for some u € U. Hence an arbitrary regular quadratic
form g over F' can be written as

q>=q1 L gm

where ¢1 = (u1,...,Un, ), g2 = (V1,...,Vn,) With u;,v; € U.

Let m = {& € F | v(x) > 1} U {0} be the unique maximal ideal of A,
and let I = A/m be the residue class field of A. By assumption, (F,v)
is nondyadic and so char (F) #2 Forac A/ leta =a+m € F. Let
= (U1, ..., Un,) and gz = (U1, .., Uny).

Theorem 2.3.4. (Springer). We have a group isomorphism
(61,62): W(F) =W (F)a W (F),

where §1: W(F) — W (F) is given by 61(q) = q1 and d3: W(F) — W (F)
is given by d2(q) = 2.

Proof. See [16, p. 147, Corollary 1.6]. O

Definition. The map &;: W(F) — W (F) given by 81(q) = g1 is called the
first residue homomorphism, and @ is called the first residue form of q. The
map 82: W(F) — W (F) given by d2(q) = ¢z is called the second residue
homomorphism, and @ is called the second residue form of q.



Theorem 2.3.5. Suppose that ¢ = q1 L gom, where q1 = (uq, ..

N 7unl>?

g2 = (U1, ..., Uny) with u;,v; € U. Then the following are equivalent:

(1) q is isotropic;
(2) q1 or qa is isotropic;

(8) qi or Gz is isotropic.

Proof. See [16, p. 148, Proposition 1.9].

17
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Chapter 3

Galois Cohomology

3.1 Profinite Groups and Galois Groups

Definition. Let (A, <) be a partially ordered set. We say that (A, <) is
directed if for all o, 8 € A there exists v € A such that « <~ and 8 < ~.

Definition. A filtered inverse system of groups (Gu, o) consists of:

(a) a directed partially ordered set (A, <);
(b) for all & € A there exists a group Gg;

(c) if a, 8 € A with o < [ then there exists a group homomorphism
gbaﬂ: Gg — Ga;

(d) if a, 8,7 € A with a < 8 <y then oy = Pap 0 Pp--

Definition. Let (Gq, ¢ap) be a filtered inverse system of groups. The
inverse limit of (Gu, ¢ap), denoted @Ga, is defined to be

p—

}LnGa = {(ga) c H Go | $ap(98) = go for all a < 5} )

a€eA

Definition. A group G is called profinite if G = @Ga for some filtered
inverse system of groups (Gq, ¢a3) Where G, is a finite group for all c.

Remark. A profinite group G = @Ga has a natural topology: give G,
the discrete topology for all «, give [[, G the product topology and then
the profinite group G C [],, G4 is given the subspace topology.

Let K/F be a Galois extension. Then the Galois groups of finite Galois
subextensions of K/F' together with the group homomorphisms
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¢rm: Gal(M/F) — Gal(L/F) (where L/F and M/F are finite Galois
subextensions of K/F such that FF C L C M C K) form a filtered inverse
system of groups (Gal(L/F), ¢ru)-

Proposition 3.1.1. Let K/F be a Galois extension and let
(Gal(L/F), ¢rar) be the filtered inverse system of groups defined above. Then

Im Gal(L/F) = Gal(K/F).
Proof. See [6, Proposition 4.1.3]. O

Remark. Since |Gal(L/F)| = [L: F] < oo for all finite Galois subextensions
L/F of K/F, it follows from Proposition 3.1.1 that Gal(K/F) is a profinite

group.

3.2 Cohomology of Profinite Groups

Definition. Let I' be a profinite group and let A be a discrete topological
space. A left action by I' on A is called continuous if for all a € A, the
stabilizer of ¢ in T’

Stabr(a) ={c€l'|oc-a=a} <T
is an open subgroup of I'.

Definition. Let I' be a profinite group and let A be a discrete topological
space. We call A a I'-set if A is equipped with a continuous left action by
r.

Definition. Let I' be a profinite group and let A be a group which is also
a ['-set. We call A a I'-group if I' acts by group homomorphisms, that is,

o(araz) = o(ar)o(az) for all o € I, aj,a2 € A.
Definition. Let I' be a profinite group. A I'-module is an abelian I'-group.
Definition. Let I' be a profinite group and let A be a I'-set. We define
HYI, A=A ={ac A|oa=aforall o0 €T'}.
Remark. If A is a T-group, then H(T', A) < A is a subgroup of A.

Definition. Let I" be a profinite group and let A be a I'-group. Let
a: ' — A be a continuous map and for o € T, let o, = (o) € A. We call
a a 1-cocycle of I with values in A if

aor = ago(ay) for all o, 7 € T
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Notation. Let ' be a profinite group and let A be a I'-group. The set of
all 1-cocycles of T with values in A is denoted by Z1(T', A).

Definition. Let I' be a profinite group and let A be a I'-group. The
1-cocycle a: I' — A given by a, = 1 for all ¢ € T is a distinguished element
in Z1(T', A) which is called the trivial 1-cocycle.

Definition. Let I' be a profinite group and let A be a I'-group. Let
a:T'— Aand o: T' — A be 1-cocycles. We say that a and o/ are
cohomologous or equivalent if there exists a € A such that

o = aaso(a)~! for all o €T.

Notation. Let I' be a profinite group and let A be a I'-group. The set
of equivalence classes of 1-cocycles of I' with values in A is denoted by
HY(T', A). Then HY(T, A) is a pointed set whose distinguished element is
the cohomology class of the trivial 1-cocycle.

Remark. If A is a I-module, then Z!(T', A) is an abelian group, where the
group operation is given by (a - )y = ay3, for all a, 3 € Z1(I', A) and
o € I'. This group operation is compatible with the equivalence relation on
1-cocycles and thus makes H'(I', A) an abelian group.

3.3 Principal Homogeneous Spaces

Definition. Let I' be a profinite group and let A be a I'-group. Let P be a
nonempty I'-set equipped with a right action by A. We call P a (T, A)-set
if

o(pa) = o(p)o(a) for all o € T, p € P and a € A.

Definition. Let I' be a profinite group, let A be a I'-group and let P be a
(T, A)-set. We say that P is a principal homogeneous space under A (or an
A-torsor) if the action of A on P is simply transitive, that is, for all p,q € P
there exists a unique a € A such that ¢ = pa.

Notation. Let I' be a profinite group and let A be a I'-group. We will denote
the collection of all principal homogeneous spaces under A by PHS(T', A).

Example. Let I" be a profinite group and let A be a I'-group. Given any
1-cocycle of I with values in A, we may construct a corresponding principal
homogeneous space under A by defining a map ¢: Z(I', A) — PHS(T, A)
given by ¢(a) = P, for all « € Z!(T', A), where P, is the set A equipped
with a left action e by I' given by

cea=ay0(a)forallcel, ac A
and a right action * by A given by
a*b=ab for all a,b € A.
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Definition. Let I' be a profinite group and let A be a I'-group. Let P and
Q@ be principal homogeneous spaces under A. A map ¢: P — @ is called a
morphism of principal homogeneous spaces under A if

(1) ¢p(op) = o¢(p) forall o € T', p € P and
(2) ¢(pa) = ¢(p)a for all pe P, a € A.

Theorem 3.3.1. Let I' be a profinite group and let A be a I'-group. Let
: ZYT, A) — PHS(T, A) be the map defined in the example above. Then
Y induces a bijection between H'(I', A) and the set of isomorphism classes
of principal homogeneous spaces under A.

Proof. See for instance [15, Proposition 28.14]. O
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Chapter 4

Linear Algebraic Groups and
Patching Techniques

4.1 First Definitions

Some general references for the contents of this section are

( [15, Chapters VI and VII]) and ( [2]).

Definition. Let F' be a field. A linear algebraic group over F is an affine
algebraic variety G over F' endowed with the structure of a group such that

the multiplication map
w:GxG—->G

(91,92) = 9192
and the inverse map
i:G— G

gr—g "

are morphisms of varieties.

Example. Let F be a field. The additive group G, over F is the affine line
A}; endowed with the group operation u(z,y) = = + y, the identity element
0 and the inverse map i(z) = —=z.

Example. Let F' be a field. The multiplicative group G, over F' is the
affine open set F* C A! endowed with the multiplication map p(x,y) = zy,

the identity element 1 and the inverse map i(z) = z~!.

Example. Let F' be a field and let n € N. The general linear group GL,
over F' is the set of invertible n x n matrices over I’ endowed with the mul-
tiplcation map given by matrix multiplication u(A, B) = AB, the identity
element being the n x n identity matrix I,, and the inverse map given by
the inverse matrix i(A4) = AL
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Notation. Let F be a field and let F; be the separable closure of F'. Let G
be a linear algebraic group over F. Then G(Fj) is a Gal(Fy/F)-group, and
we define

HY(F,G) = H'(F,G(F,)) = H (Gal(F,/F),G(F})).

Definition. Let F' be a field. Let G; and G> be linear algebraic groups
over F'. A morphism of linear algebraic groups ¢: G1 — Go is a group
homomorphism which is also a morphism of varieties.

Definition. Let F be a field and let F; be the separable closure of F. A
linear algebraic group T over F' is called a torus if there exists n € N such
that

T(Fs) ~Gr,.

Let K/F be a field extension. We say that the torus 7' is split over K if

Definition. Let F be a field and let G be a linear algebraic group over F.
A subtorus T' C G is said to be maximal if T is not contained in a larger
subtorus of G.

Definition. Let F be a field and let F be the algebraic closure of F. Let G
be a linear algebraic group over F. We say that G is semisimple if G # {1}
and G X F' has no nontrivial solvable connected normal subgroups.

Definition. Let F' be a field and let G be a semisimple linear algebraic
group over F'. We say that G is split if it contains a split maximal torus.

Definition. Let V' be a finite-dimensional R-vector space, let o € V with
a # 0 and let s € End(V). We say that s is a reflection with respect to o if

(1) s(a) = —a and
(2) there exists a hyperplane W C V such that s|y = Id.

Remark. If s € End(V) is a reflection with respect to « € V, then there
exists a unique f € V* with f|w = 0 and f(«) = 2 such that

s(v) =v— f(v)a forallveV.

Definition. Let V be a finite-dimensional R-vector space with V' # 0, and
let @ C V be a finite subset of V. We call ® a root system if the following
conditions hold:

(a) 0 ¢ .
(b) ® spans V.
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(¢c) f « € ® and zax € @ for x € R, then = = +1.

(d) For each o € ® there exists a reflection s, € End(V') with respect to
a such that s, (®) = ®.

(e) For all a, f € ® we have s4(3) — = nq, - a for some ny g € Z.

Remark. The reflection s, € End(V) with respect to o € ® in (d) is
uniquely determined by « (see Bourbaki [3, Chapter VI, §1, Lemme 1]).

Definition. Let V be a finite-dimensional R-vector space with V' # 0, and
let ® C V be a root system. The elements of ® are called roots.

Definition. Let V be a finite-dimensional R-vector space with V' # 0, and
let ® C V be a root system. For a € ®, we define o* € V* by

Sq(v) =v—a*(v)a for all v e V.
Such «o* are called coroots.

Definition. Let V be a finite-dimensional R-vector space with V' # 0, and
let ® C V be a root system. We define the root lattice, denoted A,, to be
the additive subgroup of V' generated by all roots a € ®.

Definition. Let V be a finite-dimensional R-vector space with V' # 0, and
let ® C V be a root system. We define the weight lattice, denoted A, to be

A={veV |a"(v) €Z for a € O}.
Remark. By definition, we have A, C A.

Let F be a field and let G be a split semisimple linear algebraic group
over F' with a split maximal torus T" over F'. Using the adjoint representation
Ad: G — GL(Lie(G)), one can define a root system ®(G) C T* ®z R such
that A, CT* C A, where A, is the root lattice, T is the character group of
T and A is the weight lattice ( [15, Theorem 25.1 and Proposition 25.2]).

Definition. We say that GG above is simply connected if the character group
T* = A. We say that G is adjoint if the character group T* = A,..

Definition. Let F' be a field and let F§ be the separable closure of F'. Let
G be a semisimple linear algebraic group over F'. We say that G is simply
connected if the split group G X g F is simply connected. We say that G is
adjoint if the split group G X F} is adjoint.

Definition. Let F' be a field and let F; be the separable closure of F'. Let G
be a semisimple linear algebraic group over F'. We say that G is absolutely
stmple if G X g Fy has no nontrivial connected normal subgroups.
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4.2 Classification of Absolutely Simple, Adjoint,
Classical Linear Algebraic Groups

Let F be a field with char(F) # 2, and let G be an absolutely simple linear
algebraic group over F' of classical type. Then, for an arbitrary integer
n > 1, to the group G is associated a central simple algebra with possible
additional structure:

(1) 'A,: Central simple F-algebras of degree n + 1;

(2) 2A,: Central simple algebras of degree n + 1 over a quadratic
extension of F' with involution of the second kind leaving F
elementwise invariant;

(3) By: Quadratic forms over F' of dimension 2n + 1;
(4) Cy: Central simple F-algebras of degree 2n with symplectic involution;

(5) Dy: Central simple F-algebras of degree 2n with orthogonal
involution.

Case 1: Linear Algebraic Groups Of Type ‘A,

Let G be an absolutely simple, simply connected linear algebraic group of
type A, over F, and let G be the corresponding absolutely simple,

adjoint linear algebraic group of type 'A,, over F. Then G = SL(A) and
G = PGL(A) for some central simple F-algebra A of degree n + 1. Then
H!(F,PGL(A)) classifies F-isomorphism classes of central simple F-algebras

B such that deg(A) = deg(B).

Case 2: Linear Algebraic Groups Of Type 24,

Let G be an absolutely simple, simply connected linear algebraic group of
type 2A,, over I, and let G be the corresponding absolutely simple, adjoint
linear algebraic group of type 2A,, over F. Then G = SU(A, o) and

G = PGU(A, o) for some central simple algebra A of degree n 4+ 1 whose
center Z(A) is a quadratic extension of F', with involution o of the second
kind such that o(x) = = for all x € F.

Now H'(F,PGU(A,0)) classifies F-isomorphism classes of tuples (B, T)
consisting of a central simple algebra B whose center Z(B) = Z(A) is a
quadratic extension of F' such that deg(A4) = deg(B), with involution 7 of
the second kind such that 7(x) = z for all x € F. The trivial element in
this set is the class of (A, o).
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Now suppose [(A,7)] =1 € HY(F,PGU(A4,0)), so that (A,7) ~ (4,0).
Write A as A = M,,(D) for some m € N and D a central division algebra
over Z(A). Let hy be the hermitian form on D corresponding to o, so that o
is the adjoint involution with respect to hi, and let hs be the hermitian form
on D corresponding to 7, so that 7 is the adjoint involution with respect to
hs. Then the condition that (A,7) ~ (A, 0) is equivalent to the condition
that hy ~ \hs for some A € F.

Case 3: Linear Algebraic Groups Of Type B,

Let G be an absolutely simple, simply connected linear algebraic group of
type B, over F, and let G be the corresponding absolutely simple, adjoint
linear algebraic group of type B,, over F. Then G = Spin(q) and G = O™ (q)
for some quadratic form ¢ over F' of dimension 2n + 1. Then

HY(F,0%(q)) = HY(F,S0(q)) classifies isometry classes of quadratic forms
¢’ over F such that dim(q) = dim(q’) and disc(q) = disc(¢’).

Case 4: Linear Algebraic Groups Of Type C,

Let G be an absolutely simple, simply connected linear algebraic group of
type C, over F, and let G be the corresponding absolutely simple,

adjoint linear algebraic group of type C,, over F. Then G = Sp(A4,0) and
G = PGSp(4,0) for some central simple F-algebra A of degree 2n with
symplectic involution o.

Now H'(F,PGSp(A, o)) classifies F-isomorphism classes of central
simple F-algebras B such that deg(A) = deg(B), with symplectic involution
7. The trivial element in this set is the class of (A, o).

Now suppose [(A,7)] =1 € H(F,PGSp(A, o)), so that (A,7) ~ (A, o).
Write A as A = M, (D) for some m € N and D a central division algebra
over F. Let hy be the hermitian form on D corresponding to o, so that o is
the adjoint involution with respect to hi, and let he be the hermitian form
on D corresponding to 7, so that 7 is the adjoint involution with respect to
ho. Then the condition that (A,7) ~ (A, o) is equivalent to the condition
that hi ~ \hs for some \ € F.

Case 5: Linear Algebraic Groups Of Type D,

Let G be an absolutely simple, simply connected linear algebraic group of
type D,, over F, and let G be the corresponding absolutely simple, adjoint
linear algebraic group of type D,, over F. Then G = Spin(A4, o) and

G = PGO™(A, o) for some central simple F-algebra A of degree 2n with
orthogonal involution o.
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Now H'(F,PGO™(A,0)) classifies F-isomorphism classes of triples
(B, T,n) consisting of a central simple F-algebra B with orthogonal
involution 7 such that deg(A) = deg(B), with an F-algebra isomorphism
n: Z(C(A,0)) — Z(C(B,T)) of the centers of the Clifford algebras. The
trivial element in this set is the class of (4, o, 1d).

Now suppose [(4,7,1)] =1 € H(F,PGO"(4,0)), so that

(A,7,m) ~ (A,o0,1d). Write A as A = M,,(D) for some m € N and D a
central division algebra over F. Let h; be the hermitian form on D
corresponding to o, so that o is the adjoint involution with respect to h;, and
let hg be the hermitian form on D corresponding to 7, so that 7 is the adjoint
involution with respect to he. Then the condition that (A, 7,7n) ~ (4, 0,1d)
is equivalent to the condition that there is a similitude ¢: hy ~ Aho for some
A € F* such that ¢ [z(c(a,0)): Z(C(A,0)) — Z(C(A, 7)) coincides with 7.

4.3 Semi-Global Fields and Patching

Definition. A semi-global field is the function field of a smooth, projective,
geometrically integral curve over a complete discretely valuated field.

Let K be a complete discretely valuated field with valuation ring 7" and
a parameter t € T. Let X be a smooth, projective, geometrically integral
curve over K, and let ' = K(X) be the function field of the curve X (so
that F' is a semi-global field).

Definition. A regular two dimensional integral scheme 2 which is proper
over T with function field F' is called a reqular proper model of F'.

By Abhyankar ( [1]) and Lipman ( [17]), there exists a regular proper
model 2~ of F' with special fibre Xy such that Xy is a union of regular
curves with normal crossings. Let &2 C X be a finite set of closed points
of 2 containing all the nodal points of Xy and at least one point on each
component. Let % be the set of irreducible components of Xy \ &. Then
U = {Uy,Us,...,U;} is a finite set.

Notation. For P € &, let Oy p be the local ring at P. So Oy p is a two
dimensional regular local ring. Let mp be the maximal ideal of Og p, and

let (9/3; denote the completion of O p at the maximal ideal mp. Define
Fp = H(O%JJ)

Notation. For U € %, let Ry be the set of rational functions which are
regular on U:
Ry ={f € F| f is regular on U}.

Let ﬁ; be the (t)-adic completion of Ry. Define Fyy = ff (ﬁ;)
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Notation. For P € &, each height one prime ideal p of (9/5(; that contains
t determines a branch of Xy at P (i.e. an irreducible component of the
pullback of Xy to Spec Oz p). We let R, denote the completion of the

local ring @; at p. Define F, = H(Rp>. Since t € p, the contraction

of p C O/aﬁ to the local ring O g p defines an irreducible component of
Spec Ox, p and hence an irreducible component of Xy containing P. This
in turn is the closure of a unique connected component U of X\ &, and
we say that p lies on U. We call Fyy p := F, a branch field.

Remark. For P and U as above, there are natural inclusions Fp — Fy p
and FU — FU, P.

4.4 Local-Global Principles for Linear Algebraic
Groups

Notation. Let F, 2, %, % be as in Section 4.3, and let G be a linear
algebraic group over F. We define

I_H%"g’d}/(F,G) = ker (Hl(F,G)% H Hl(anG)>

e PVU

Theorem 4.4.1. Let F, 2", P, % be as in Section 4.3, and let
B = {(P,U) € & x % | P isin the closure of U}. Let G be a linear

algebraic group over F'. Then we have a bijection

[[cEn\ [] G¢Evr) / [] GEFr) = My »u(F.G).
vew (PU)eR Pc

Proof. See [9, Corollary 3.6]. O

Notation. Let F' be any field and let Qp be the set of all discrete valuations
on F'. For v € Qp, let F, denote the completion of F' at v. Let GG be a linear
algebraic group over F. We define

I(F,G) =ker | HY(F.G) - [[ H' (FG)

vEQR

Definition. Let I’ be any field and let G be a linear algebraic group over
F. We say that the Hasse principle holds for G if III(F, G) is trivial.

Theorem 4.4.2. Let F, 2", P, % be as in Section 4.3, and let G be a linear
algebraic group over F'. Then we have an injection

HI:%’,,@,@/(Fv G) — I-H(F7 G)



Proof. See [9, Proposition 8.2].
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Chapter 5

Main Theorems

5.1 Quadratic Forms Over Two Dimensional
Complete Fields

Let R be a complete two dimensional regular local ring, let F' = ff(R), and

J—_

suppose 2 € R*. Let m = (7, ) be the maximal ideal of R. Let R(.) denote

—_—

the completion of the localization of R at the prime ideal (7), and let Rs)
denote the completion of the localization of R at the prime ideal (§). Define

— —

F,=ff (R(,,)) and Fy = ff (R(l;)). Then F and Fj are complete discretely
valued fields. Further the residue field x(m) of Fj is the field of fractions of

R/(m) and hence a local field. Similarly the residue field x(d) of Fj is the
field of fractions of R/(0) and hence a local field.

Let ¢ be a quadratic form over F'. Suppose
q~q L gm L g3 L qumd,

where q1 = <U1, cee 7un1>7 q2 = <'U1, CIEa 7vn2>7 q3 = <w17 o 7wn3>7
qq = (61, ...,0p,) with u;, v, w;, 0; € R*. In this section we analyze elements
Ain F' with A\q ~ q.

Suppose k = R/m is a finite field. Then the order of k*/k*? is 2. For
any 0 € R, let f denote the image of 6 in k.

We begin with the following
Lemma 5.1.1. There exists B € F such that B(F})? = (F})?,
B(F§)? = t(F7)? and B(1,—t) ~ (1,—t) over F.
Proof. Consider the quadratic field extension k( (f)) /k. Since k is a

finite field, the field norm map Nk< (Z))/k: k‘( (t)) — k is surjective.
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In particular, there exists s € k ( t ) such that N = s) =t. Let

b v (®) (/) () B

P(z) = 22 +T2z+1 € k2] be the minimal polynomial of s over k. Then P(z)

splits over k (1 / (f)) as P(z) = (z—s)(z—sg) for some s € k (\ / (f)) Note

that s # sg, for if s = sg, then s € k (\ / (f)) is equal to its k-conjugate,

so s € kand N = s) = s® € (k*)?, which contradicts the fact that
NG () (k™)

N = =1¢ (k)%
k(@”“@ ¢ (k%)

Let R be the integral closure of R in F (\/Z) Since R is a complete two
dimensional local ring, so is R. Let m be the maximal ideal of R. Now t € R*,
and by assumption, 2 € R*. Hence R = R [(\/i)] and R/ﬁl =k <\/(f)).
Let P(z) = 22+ rz+t € R[z] be alift of P(z). Since R is Henselian and P(z)
is monic, the factorization P(z) = (z—s)(z—s¢) € k (w / (E)) [z] can be lifted
to a factorization P(z) = (z — 5)(z — so) € R[(V1)] [2], where § € R[(V1)]
isalift of s €k (,/ (f)) and $o € R [(Vt)] is a lift of s € k (\/ (f)) Then
P(z)=22+rz+t=(2—-5)(2— ), s0t =355 € NF(\/E)/F (F (V1)).

Let 8 = 02 +rand +tn? € F. Then B = 62(1 + 6 2rmd + 6 %tn?) € Fy.
But 1+ 6 2rnd + 6 2tr? € (F*)2. Therefore 3(F*)? = (F*)2. Similarly,
B=tr?(1+trtrs + ¢t~ 177262) € F5. But
1+t a7 trd + ¢t 177262 € (F})?. Therefore B(F})? = t(F})>.

It remains to show that 8(1, —t) ~ (1, —t). To this end, let

2
ﬁ’=%=<5> +r<5>+t€F.
T T T

Let a = §/7 € F,sothat 8/ = a®4+ra+t. Then ' = P(a) = (a—3)(a—5p).
Now a € F' and 5,50 € F (\/f) are F'-conjugates. Thus

a—3§, a—syEF (\/Z) are F-conjugates, and

B = (= 3)a— ) € Nppyr (F (VD) = Dr({L—8) = Gr((1,~1)
(since (1, —t) is a Pfister form over F'). So 8 € Gp((1,—t)), and thus

B = B'r? € Gp((1,—t)) also. Therefore 3(1,—t) ~ (1, —t) as required. [

Now let g be a quadratic form over F. Suppose
q~q L gmr L g3 L qumd,

where q1 = <U1,-~-,Un1>, q2 = <U17' . 'avn2>a q3 = <w17'-->wn3>7
qq = <91,. . -;0n4> with u;, v, ws, 0; € R*.

Lemma 5.1.2. Let ¢}

/

= (u},..., n1> g = (v’l,...,v;m},
/
gy = (Wi, ... wy,), ¢4 =

(01,....60,,) be quadratic forms over F with
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w), v, wi, 0, € R*. Then

@1 Lgom L g3d L qumd ~q) L ¢hm L ¢46 L qymd over F
if and only if ¢; ~ ¢, over F for all i.

Proof. The “if” part is clear. For the converse, first note that F is a

complete discretely valued field with parameter w. Let x(m) := ﬁ(ﬂ\)/ () be

— _—

the residue field of F. For a € R(;), let @ = a+ (7) € Ry /(7) = k(7). For
1 < i <4, let g; be the residue form of ¢; over Fy, so that g; is a quadratic
form over k(m). Now

q1 L gm L g36 L qumd~q) L ghm L ¢50 L ¢ymd over F
= (1 L ¢30) L (g2 L qud)m =~ (¢} L ¢46) L (g5 L q4d)m over F.

By Springer’s theorem ( [16, p. 147, Corollary 1.6]), we obtain
qTJ.@S:qTJ_%gand@J_qjgng_ngover k().

Now r(7) is a complete discretely valuated field with parameter 6 and residue
field k = F/m. For 1 < i < 4, let g; be the residue form of g; over k(7), so
that g; is a quadratic form over k. Then we can apply Springer’s theorem

again to obtain g; ~ ¢/ over k for all i. Since k = F/m, it follows that ¢; ~ ¢/
over F for all i as required. O

Remark 5.1.3. For 1 < i < 4, let ¢; and ql/- be as above. The proof of
Lemma 5.1.2 shows that

q1 L gem L g36 L qumd~q) L ghm L ¢50 L ¢ymd over Fy
if and only if ¢; ~ ¢ over F for all 7. Thus

@1 Lgom L g3d L qamd ~q) L ghm L ¢30 L ¢ymd over F
if and only if

@1 Lgom L g3d L qamd ~q) L ghm L q30 L ¢ymd over Fy.

As a consequence, for w € R* and r,s € Z, it § = wn"§® satisfies 8¢ ~ ¢
over Fy, then 0q ~ q over F. Similarly, if § = wn"§*® satisfies 8¢ ~ ¢ over
Fs, then g ~ q over F.

We can use Lemma 5.1.2 to analyze when A\ € F™* satisfies A\q ~ ¢ over
F for the three cases A = w, A =7 and A = §, where w € R*.

Proposition 5.1.4. Let w € R*. We have
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(i) wq ~ q over F' < wq; ~ q; over F for all i;
(i) mq ~ q over F <= q1 ~ q2 and q3 ~ q4 over F;

(iii) dq ~ q over F' <= q1 ~ q3 and q3 ~ q4 over F.
Proof. (i) We have

wq~q < wq L wgr L wgd L wgnd~q L gpr L gzd L gnd
<— wq; ~ g; for all i,
where the second equivalence follows from Lemma 5.1.2.
(ii) We have
Tq~q < q@ Lqam Lqd Lgmd~q Lgmr Lgd L qrd
< q1 ~ q2 and @3 >~ qu,
where the second equivalence follows from Lemma 5.1.2.
(iii) We have
0g~q < wqz L wgnm L wgd L wgnd~q L gr L g30 L guné

<— wq1 =~ q3 and wqgy =~ qq,

where the second equivalence follows from Lemma 5.1.2.

The goal of this section is to prove the following:

Proposition 5.1.5. Suppose there exists \x € Fy such that \rq ~ q over
F., and suppose there exists \s € Fs such that \sq ~ q over Fs. Then there
exists B € F such that B(F})? = M (F2)?, B(FF)? = Xs(FF)? and Bq ~ ¢

over F'.

Proof. From the unit structure of E(Tr\) and E@ (cf. [19, Remark 7.1]), we
have \; = w/n"§% and \s = wn"25%2, where w,w’ € R* and
r1,T2,81,82 € Z. Since we are interested in the square classes, we assume
that 1,79, s1,s2 € {0,1}.

Suppose there exists 3/ € F such that §/(F})? = (F})?, p/(F§)? =
M5 (F7)? and /g ~ g over F. Let 8= 'Ar € F. Then

BIFR)? = B'Ax(F7)? = An(F)%,

BUES)? = B'Ax(F})? = A7 \NsAn(F5)? = Ns(F)?
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and 8q ~ B'A\rq ~ A\rq ~ q over F by Remark 5.1.3. Therefore, we may
assume that A\; = 1. By multiplicativity, it is enough to consider the cases
)\5:11), )\5:7rand)\5:5.

Case 1: \s = w.

Forae R, leta=a+me R/m=k%k. Let g1 = (u1,...,Un,),
G = (UL,...,Uny), @3 = (Wi,...,Wny) and gz = (O1,...,0p,). If
As = w € (R*)?, then 8 = 1 € F has the required properties. So suppose
that \s = w ¢ (R*)2. Since k = R/m is a finite field, |k*/(k*)?| = 2. So
k*/(k*)? = {1,%}. By lifting from k to R, we may assume that \; = tu? for
some u € R*.

For 1 <i <4, let (¢;), denote the anisotropic part of ¢;. If ¢; is
hyperbolic over F, the group of similarity factors of ¢; is Gr(¢;) = F*. Thus
for A € R*, by Proposition 5.1.4 (i),

ANEGR(q) = NeGr(q1)NGF(q2) NGr(g3) NGF(qa)
= M€ Gr((q1)a) NGF((g2)a) N GFr((g3)a) NGF((ga)a)
— X € Gr((@)a) NGr((@)a) N Gr((@3)a) N Gr((@a)a),

where the third equivalence follows because R is complete. But the only
anisotropic forms over the finite field k are (1), (¢) and (1, —t) ( [16, p. 37]).
Thus, for 1 < i < 4, (g)q = (1), (#) or (I,—t), or dim((g;)s) = 0. Now
As € Gp(q) by Remark 5.1.3. Hence, by the above equivalences,
As =1t € Gr((G7)a) for all i. But # ¢ (k*)?, so t ¢ Gr((1)) and t ¢ G((F)).
Therefore, for each i, either (g;), = (1, —t) or dim((g;)s) = 0.

By Lemma 5.1.1, there exists 5 € F' such that
BEZ)? = (F7)* = Ac(F)?, B(E})? = t(Fy)? = As(Fy)? and
Be€Gr((1,-t) = Gr((¢i)a) for 1 < i < 4. It follows from the above
equivalences that 8 € Gp(q), so Sq ~ q as required.

Case 2: \s = .

Let B =247 € F. Then 8 = §2(1+6"%n) € F,. But 1+6 27 € (F¥)2.
Therefore B(F¥)? = (F¥)? = A\ (F¥)2. Similarly, 3 = 7(1 + 7~ 16%) € F;.
But 1+ 7162 € (Ff)%. Therefore B(F})? = m(F})? = M\s(F})2.

It remains to show that Sq ~ ¢. To this end, first note that since
Asq = mq =~ q, we have q; ~ g2 and ¢3 ~ q4. Then

q~q1 L gm L g L qmd
~q1 L qm L g3d L gzmd
~ (1, m)q1 L (1,7)qs30.

Now 3 = 6247 € Dp({1,7)) = Gp((1,7)) (since (1, 7) is a Pfister form over
F ( [16, p. 319, Theorem 1.8])). Hence 8 € Gr(q), so 8q ~ q as required.
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Case 3: \; = 6.

Let 3 = 0%+ 072 € F. Then 3 = §%(1 + 6 'x2) € Fy. But
1+ 07172 € (F})2. Therefore B(F¥)? = (F)? = \(F?)2. Similarly,
B =0r*(1+728) € Fs. But 14+ 72§ € (F§)?. Therefore
BES)? = 6(F5)? = As(Fy)*.
It remains to show that 8¢ ~ ¢. To this end, first note that since
Asq = 0q >~ q, we have 1 ~ g3 and g2 ~ q4. Then

¢=q L gm L g3d L gumd
~q1 L gm L qid L gmd
~ (1,0)q1 L (1,06)qar.

Now 8 = 62+ 072 € Dp((1,6)) = Gr({(1,8)) (since (1,8) is a Pfister form
over F' ( [16, p. 319, Theorem 1.8])). Hence 8 € Gp(q), so Bq ~ q as
required. O

5.2 Semi-Global Fields - Quadratic Forms Case

Let p € N be a prime with p # 2, and let K be a p-adic field. Let X be
a geometrically integral curve over K, and let ' = K(X) be the function
field of the curve X. Suppose g and ¢’ are quadratic forms over F with
dim(q) = dim(¢’) and disc(q) = disc(¢’). Write ¢ = (a1,a9,...,a,) and
q = (b1,ba,...,b,) with a;,b; € F*. By Abhyankar ( [1]) and Lipman
( [17]), there exists a regular integral model .2~ with special fibre Xy such
that for all ¢, sup(a;) Usup(b;) U Xy is a union of regular curves with normal
crossings. Let &2 C Xj be a finite set of closed points of 2~ containing all
the nodal points of sup(a;) U sup(b;) U Xp and at least one point on each
component. Let % be the set of irreducible components of Xy \ &?. Then
U ={U,Us,..., Uy} is a finite set.

Notation. For P € &, let Oy p be the local ring at P. So O4 p is a two
dimensional regular local ring. Let mp be the maximal ideal of O 4 p, and

let @ denote the completion of Oy p at the maximal ideal mp. Define
Fp =1f(Og p).

Notation. For U € %, let Ry be the set of rational functions which are

regular on U:
Ry ={f € F | f isregular on U}.

Let t € K be a parameter and let Ry be the (¢)-adic completion of Ry.
Define Fy = ff (é;)
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Notation. For P € &, each height one prime ideal p of O/y/; that contains
t determines a branch of Xy at P (i.e. an irreducible component of the
pullback of Xy to Spec Oy p). We let R, denote the complete local ring of

@ at p. Define F, = ff <Rp>. Since t € p, the contraction of p C O/ﬁ
to the local ring Oy p defines an irreducible component of Spec Ox, p and
hence an irreducible component of X containing P. This in turn is the

closure of a unique connected component U of Xy \ &, and we say that p
lies on U. We call Fy p == F), a branch field.

We begin by proving the following local-global principle for similarities
in the patching set up:

Proposition 5.2.1. Suppose for allU € % there exists Ay € Fy; such that
q ~ A\uq over Fy, and suppose for all P € & there exists A\p € F}, such
that ¢ ~ Apq’ over Fp. Then there exists A\ € F such that ¢ ~ \q' over F.

Proof. By assumption, for all U € % there exists A\y € F}; such that
q¢ ~ A\yq over Fy, and for all P € & there exists Ap € F} such that
q ~ Apq' over Fp. So for all U € % we have an isomorphism ¢y : ¢ ~ A\yq’
over Fyy, and for all P € & we have an isomorphism ¢p: ¢ ~ Apq’ over Fp.
Then for all P € 2, U € % the map ¢p' du: ¢ ~ Ap' \yq is a similitude of
q over the branch field Fy; p with similarity factor )\JZIAU € Fy p. For each
Pe P, Ue€ define \yp = \p' \y € Fyyp.

Let P € 2 be a closed point. Let Rp := O/ﬁ. Then Rp is a com-
plete two dimensional regular local ring with Fp = ff(Rp). Then, by the

choice of 2, the maximal ideal mp = (7wp,dp) for some wp,dp such that
) ) o s .
ai = uipmpt Ot and by = wipm fP0AY for some units u;p, w;p € R} and

stip, $ip, Tip, Sip € Z. In particular we have
q~q L gm L g30 L qamo,

¢ ~q Lagym L gsd L gymd,

where ¢1 = (U1,...,Un,), @2 = (Vi,...,Vny), @3 = (Wi,..., Wny),
q4 = <917' . 'a9n4>7 qll = <u117 7u/n1>7 QQ = <’Uia"' 7U;L2>7
g5 = (Wi, ... ,w%S), q, = (0,.. .,01’14> with u;, v, w;, 0;, ul, v}, wi, 0, € R*.

Let m denote the completion of the localization of Rp at the prime
ideal (7p), and let m denote the completion of the localization of Rp
at the prime ideal (dp). Define (Fp)r, = ff (m) and (Fp)s, =

().

Claim. For all P € &, U € % we may write A\yp = Bpz* where Bp € Fp
is such that ¢ ~ Bpq’ over Fp and z € F&P.
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Proof of Claim. Fix P € &?. There are two cases:

Case 1: There is only one U € % with P in the closure of U. Then
either Fyp = (Fp)zp or Fyp = (Fp)s,. From the unit structure of
m and (lm (cf. [19, Remark 7.1]), we have A\yp = wn'pdhz>
where w € Rp, r,s € Z and z € I p. Let fp = wrpop € Fp. Then
Aup = Bpz2. Since Au,p is a similarity for ¢ over Fyy p, we have that Sp
is a similarity for ¢ over Fy p also. Thus, by (5.1.3), we have that fp is a
similarity for ¢ over F'p and the claim is proved in this case.

Case 2: There exist U;,Us € % with Uy # Uy such that P is in the
closure of Uy and P is in the closure of Us. Then by reordering the U; if
necessary, we have Fy, p = (Fp)rp and Fy, p = (Fp)s,. Then Ay, p €
(Fp)xp is such that (Ay, p)g ~ q over (Fp)z, and Ay, p € (Fp)sp 1S
such that (Ay,,p)g ~ q over (Fp)s,. Thus, by Proposition 5.1.5, there
exists fp € Fp such that Sp((Fp)i,)* = vy, p((Fp)i,)? Br((Fp);, ) =
)\U27P((FP)EP)2 and Bpq ~ q over Fp. Hence Ay, p = Bpzi for some
z1 € Ffjhp and Ay, p = szg for some zo € Fl’j%P. This completes the
proof of the claim.

By the claim, for all P € & we have an isomorphism ap: ¢ ~ Bpq over
Fp. By [9, Corollary 3.4], for all P € &2, U € % we can factorize z € I} p
as z = zpzy for some zp € F5 and 2z € Fy;. Then for all Pe &2, U c %
we have A\yp = ,szl%z?]. Then for all U € % we have an isomorphism
¢y = ¢y o miiq = )\Uz(}2q' over Fy, and for all P € & we have an
isomorphism ¢» = ¢p om,, o ap: q ~ )\pzl%ﬁpq’ over Fp. Then for all
Pe P, UeW themap (¢p) 1) q =~ ()\pz}%ﬁp)_l)\Uzlqu is a similitude
of g over the branch field Fy; p with similarity factor

()\pZIQ;ﬁp)_l)\UZ[}2 = )\]_31)\(]2[}22];2ﬁ1;1 = AU,P)‘E}P =1¢ Fyp. (%)

Therefore for all P € &, U € % the map (¢})"'¢); is an isometry of
q over Fyyp. Now by rearranging (x), for all P € &, U € % we have
)\Uzljz = )\PZ}%,BP € FyNnFp = F. For each P € &, U € % define
A= )\UZI;Q = Apz3Bp € F. Then for all U € % the map @t q =~ A over
Fy is an isomorphism, and for all P € & the map ¢p: ¢ =~ A¢' over Fp is
an isomorphism.

Case 1: dim(q) is even. Then disc(q) = disc(q’) = disc(\q'), so
[A¢'] € H(F,SO(q)). Now SO(q) is a rational, connected group and there-



38

fore the map

U: H'(F,SO(q)) — [[ H'(Fu,50(q)) [] H'(Fp,SO(q))
veud PeP

has trivial kernel ( [8]). Since for all P € &, U € % the maps ¢};: ¢ ~ \¢’
over Fiy and ¢/p: ¢ =~ \¢’ over Fp are isomorphisms, we have U([\¢']) = 0,
and thus [A\¢'] =0 = [¢]. Therefore ¢ ~ A\¢’ over F as required.

Case 2: dim(q) is odd. For all P € &, U € % we have q ~ \¢' over Fy
and ¢ ~ \¢' over Fp. Since dim(q) = dim(q’) is odd and disc(q) = disc(q’),
it follows that for all P € &2, U € % we have q ~ ¢’ over Fy and ¢ ~ ¢
over Fp. Hence ¢ ~ ¢’ over F ( [8]). O

Let Qr be the set of all divisorial discrete valuations of F'. For v € Qp,
let F, denote the completion of F' at v.

Theorem 5.2.2. Suppose for all divisorial discrete valuations v € Qp there
exists A\, € F, such that ¢ ~ M\,q' over F,. Then there exists \ € F such
that g ~ \q' over F.

Proof. Choose a regular integral model 2~ with special fibre X such that

for all j, sup(a;) Usup(b;) U X is a union of regular curves with normal
d
crossings. Write Xy = |J X; where the X; are irreducible components. For
i=1
1 <14 < d, let v; be the discrete valuation on F' corresponding to X;. So for
1 <i<d, we have ¢ ~ \,,¢’ over F,,.

Since F,, is the completion of F' at the discrete valuation v;, we have
Ay, = )\;Zx? for some | € F*. Hence replacing A, by X, , we assume that
Ay, € F*.

Since ¢ ~ \,,q’ over Fvi, by [9, Proposition 5.8], there exists a nonempty
open set U; C X; such that ¢ ~ X, ¢’ over Fy,. Let % = {U1,...,Uq} and

d
let Z = Xy \ U U;. Then for each P € &, by (5.1.5), there exists A\p € Fp
i=1
such that ¢ ~ Apq’ over Fp. Then applying Proposition 5.2.1 to the patch
{%, P}, it follows that there exists A € F such that ¢ ~ \¢ over F as

required. ]

Let L/F be a quadratic field extension, and let 7 be the nontrivial
automorphism of L/F. Let h; and hg be hermitian forms over (L, 7).

Corollary 5.2.3. Suppose for all divisorial discrete valuations v € Qp there
exists A\, € F, such that hi ~ A\yhs. Then there exists A € F such that
h1 ~ Ahg over L.
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Proof. Let g denote the trace form of h (cf. [21, p. 348]). By assumption,
for all divisorial discrete valuations v € Qp there exists A\, € Fv such that
hi >~ Ayhge. Then, by Jacobson, for all v € Q we have g, ~ \,qn, over Fv
( [21, p. 348, Theorem 1.1]). Then, by Theorem 5.2.2, there exists A € F
such that g, >~ Agp, over F'. Thus, by Jacobson, we have h; ~ Ahy over L
as required ( [21, p. 348, Theorem 1.1]). O

5.3 Quaternion Division Algebras Over Two
Dimensional Complete Fields

Let R be a complete two dimensional regular local ring, let F' = ff(R), and
suppose 2 € R*. Let m = (m,0) be the maximal ideal of R. Suppose

k = R/m is a finite field with char(k) # 2. Let D be a quaternion division
algebra over F' which is unramified on R except possibly at (7) and (8). Let
7 be the canonical involution on D. Let h be an hermitian form over (D, 7).
Then h = (ay,...,a,) where a; € F*. Suﬂ)gse a; = u;m0% with

u; € R, ri,s; € Z for 1 < i < n. Let R(;) denote the completion of the

—_—

localization of R at the prime ideal (), and let R(5) denote the completion
of the localization of R at the prime ideal (§). Define F = ff (E;) and

Fs =ff (E@) Then F; and Fj are complete discretely valued fields.

Proposition 5.3.1. Suppose there exists Ay € F such that Agh ~ h over
F, and suppose there exists \s € Fs such that Ash >~ h over Fs. Then there
exists B € F such that B(FF)? = X\e(F2)?, B(FF)? = \s(FF)? and Bh ~ h
over F.

Proof. First note that since D is a division algebra over F, it follows that
D ®p F is a division algebra over F; and D ®p Fj is a division algebra over
Fs ( [18, Proposition 5.8]). Now since D is unramified on R except possibly
at (m) and (6), we have that D = (u,v7), (u,vd), (um,vd) or (u,vmwd) where
u,v € R* [22, Lemma 3.6]. Let N = (1,—a, —b,ab) be the norm form of
D, so that a € {u,ur} and b € {vm,vd,vwd}. Let ¢ = (a1,...,a,) @ N
denote the trace form of h (cf. [21, p. 352]). Then g, = (b1,...,bsn) where
b € F*, b; = v;w"idY with v; € R*, z;,y; € {0,1} for 1 <i < 4n.

By assumption, there exists \; € F; such that A\ h ~ h over F. Then,
by Jacobson, we have A:(qn)r, =~ (qn)r, over Fr ( [21, p. 352, Theorem
1.7]). By assumption, there exists Ay € Fj such that Ash ~ h over Fs. Then,
by Jacobson, we have As;(qn)r, =~ (qn)F; over Fj ( [21, p. 352, Theorem 1.7]).
Therefore, by Proposition 5.1.5, there exists 5 € F' such that
B(F:)? = M(F2)?, B(F})? = Ns(FF)? and Bg, ~ g, over F. Then, by
Jacobson, we have Sh ~ h over F as required ( [21, p. 352, Theorem
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1.7]). O

5.4 Semi-Global Fields - Symplectic Involution
Case

Let p € N be a prime with p # 2, and let K be a p-adic field. Let X be
a geometrically integral curve over K, and let F' = K(X) be the function
field of the curve X. Let A be a central simple algebra over F', and let o be
a symplectic involution on A. Let h; and hs be two hermitian forms over
(A,0). Choose a regular integral model 2~ with special fibre X with the
following properties:

(1) ramg (A) U Xy is a union of regular curves with normal crossings.

(2) There exists a finite set of closed points & C X containing all the
nodal points of ram g (A) U Xy and at least one point on each com-
ponent, such that for each P € &, we have A ®p Fp = M,(Dp),
where Dp is a central division algebra over Fp and for 1 < i <
2, (hi)F, corresponds under Morita equivalence to (ﬁz) p over Dp,
where (h;)p is an hermitian form for the canonical involution such
that (ﬂi)p = (@i, --.,a;,) where a;; € Fp, a;; = uPi]_TF;Ljdj;j with
up, S OEZ',P’ Tij Si; € Z for1 <i<2 1< j<n where mp =
(mp,dp) is the maximal ideal of O p, the local ring at P.

Let % be the set of irreducible components of Xy \ &2. Then
U ={U1,Us,..., Uy} is a finite set.

Proposition 5.4.1. Suppose for all U € % there exists \y € Fy; such that
hi ~ Agha over Fyr, and suppose for all P € & there exists A\p € Fj, such
that h1 ~ Apho over Fp. Then there exists A € F such that hi >~ \ho over
F.

Proof. By assumption, for all U € % there exists Ay € F}; such that

hi >~ Ayhg over Iy, and for all P € & there exists Ap € F}5 such that

h1 ~ Apho over Fp. So for all U € % we have an isomorphism

ou: h1 ~ Ayhe over Fy, and for all P € & we have an isomorphism
¢p: h1 >~ Aphg over Fp. Then for all P € &, U € % the map

¢1_31¢U: hi ~ A;l)\Uhl is a similitude of h; over the branch field Fy p
with similarity factor A;l)\U € Fyp. For each P €¢ &, U € % define
)\U,P = )\1_31)\(] S FU’p.

Claim. For all P € &, U € % we have \yp = Bpz? for some fp € Fp is
such that A1 ~ Bphy over Fp and z € F&P.
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Proof of Claim. Fix P € &. Let Rp := @ Then Rp is a complete two
dimensional regular local ring with Fp = ff(Rp). By the choice of 2, the
maximal ideal mp at P is generated by (7wp, dp) such that AQ Fp ~ M, (Dp)
for some division algebra Dp over Fp of index at most 2 which is unramified
at P except possibly at (7) and (§), and under Moirta equivalence h; cor-

responds to hermitian forms (h;)p over Dp such that (h;)p = (a;y,...,a;,)
Ti: Si; .
where a;; € Fp, a;; = uPl.]_TrPJcSP] with up;, S (925-713, Tij, Si; € Z for

I<i<2, 1<j<n.
Let m denote the completion of the localization of Rp at the

prime ideal (7wp), and let m denote the completion of the localiza-
tion of Rp at the prime ideal (0p). Define (Fp)s, = H(%) and

(Fp)s, =1t (m). There are two cases:

Case 1: There is only one U € % with P in the closure of U. Then
either Fyp = (Fp)zp or Fyp = (Fp)s,. From the unit structure of
m and m (cf. [19, Remark 7.1]), we have A\yp = wrpdhz>
where w € Rp, r,s € Z and z € FL*,’P. Let Bp = wnpdp € Fp. Then
Aup = Bpz?. Since Au,p is a similarity for h; over Fy p, we have that Sp
is a similarity for h; over Fy p also. Let gp, denote the trace form of h;.
Then Sp is a similarity for g, over Fyyp. Thus, (5.1.3), we have that Sp
is a similarity for g, over Fpp, and hence Bp is a similarity for hy over Fp,
which proves the claim in this case.

Case 2: There exist Uy,Us € % with Uy # Us such that P is in the
closure of U; and P is in the closure of Uy. Then by reordering the U; if
necessary, we have Fy, p = (Fp)r, and Fy, p = (Fp)sp. Then

)\Ul,P S (Fp)wp is such that ()\Ul,P)hl ~ hy over (FP)ﬂ'P and )\U27p S (Fp)gp
is such that (Ay,,p)h1 =~ hi over (Fp)s,. Thus, by Proposition 5.3.1, there
exists 8p € Fp such that Sp((Fp):,)? = Av,,p((Fp)i,)?,

ﬁp((Fp)§P)2 = )\U27P((Fp)gp)2 and fphy ~ hy over Fp. Hence

Av,p = 5}32% for some z1 € F(?LP and Ay, p = sz% for some z9 € F[jQ’P.
This completes the proof of the claim.

By the claim, for all P € & we have an isomorphism ap: h; ~ Bphy
over Fp. By [9, Corollary 3.4], for all P € &2, U € % we can factorize
z € F&P as z = zpzy for some zp € Fp and zy € Fy;. Then for all
Pc P Uec% wehave \yp = 51321%22” Then for all U € % we have an
isomorphism ¢y, = ¢y o m, o hy ~ )\Uzljzhg over Fy, and for all P € &2
we have an isomorphism ¢ = ¢p om,, oap: hy ~ )\pzl%ﬁphg over Fp.
Then for all P € &, U € % the map (¢p) " 1¢};: hy ~ ()\pz%gﬂp)*lx\(]zlfhl
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is a similitude of hy over the branch field Fy; p with similarity factor
(Apzpfp)Auzg® = Ap' \uz®2p?Bp' = AupAplp =1 € Fup. (%)

Therefore for all P € &, U € % the map (¢)" ¢} is an isometry of
hi over Fy p. Now by rearranging (x), for all P € &2, U € % we have
)\UZZ}Q = )\pzl%ﬁp € FynNFp = F. For each P € &, U € % define
A= )\UzEZ = )\PZ%;BP € F. Then for all U € % the map qbgjz hi =~ A\ho
over Fyr is an isomorphism, and for all P € &7 the map ¢/5: hy ~ Ahg over
F'p is an isomorphism. Thus hy; ~ Aho over F' as required. ]

Let Qr be the set of all divisorial discrete valuations of F'. For v € Qp,
let F, denote the completion of F' at v.

Theorem 5.4.2. Suppose for all divisorial discrete valuations v € Qp there
exists Ay € F such that hy ~ A,ha over F Then there exists A € F such
that h1 ~ A\hg over F'.

Proof. Choose a regular integral model 2~ with special fibre X such that
ramz (A) U Xp is a union of regular curves with normal crossings. Write
d

Xo = U X; where the X; are irreducible components. For 1 < i < d, let v;
i=1

be the discrete valuation on F' corresponding to X;. So for 1 < i < d, we

have hy >~ Ay, hg over F,,.

Since for any A € F,, A\ = Xa? for some a € F,, without loss of generality
we assume that \,, € F'* for all i. Hence by [9, Proposition 5.8], for each 1,
there exists a proper nonempty set U; of X; such that hy >~ Ay, ha over Fy,.

Let & = Xy \ UU;. Let P € &2. By the choice of 2", A is unramified
at P which is unramified at P except possibly at (rp) and hence A ® Fp ~
M, (Dp) for some division algebra Dp over Fp which is unramified at P
except possibly at (mp) and (dp). Since A is of period at most 2, by [19,
Proposition 5.7], ind(Dp) is at most 2. Let (h;) =< a4, - - - ,a;, > for some
a;; € Fj. By blowing up if necessary 2" at the closed points in &, we

J
may assume that a;; = uPijﬂ;fj(S;Zj with up;, e O?[,P? Tij, Si; € L for
1<i<2 1< j<mn Then for each P € &, by (5.3.1), there exists
Ap € Fp such that h; ~ Aphe over Fp. Then applying Proposition 5.4.1 to
the patch {%, 27}, it follows that there exists A € F' such that hy ~ Ahg
over F' as required. ]

5.5 The Main Theorems

Let p € N be a prime with p # 2, and let K be a p-adic field. Let X be a
geometrically integral curve over K, and let F' = K(X) be the function field
of the curve X.
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Theorem 5.5.1. Let G be an absolutely simple, adjoint linear algebraic
group over F of classical type 2A,,, so that G = PGU(A, o) for some central
simple algebra A of degree n+ 1 whose center Z(A) is a quadratic extension
of F, with involution o of the second kind such that o(x) = = for allx € F.
Then the Hasse principle holds for principal homogeneous spaces under G
in the case when (A,o0) = (L,T) where L/F is a quadratic field extension
and T is the nontrivial automorphism of L/ F.

Proof. First note that in the case when (A,0) = (L,7) where L/F is a
quadratic field extension and 7 is the nontrivial automorphism of L/F', the
tuple (A, o) reduces to an hermitian form hy over (L,7) and G = PGU(hy).
Now H'(F,PGU(hy)) classifies similarity classes of nonsingular hermitian
forms over (L, 7). The trivial element in this set is the similarity class of
hi. Then the condition that [he] = 1 € H'(F,PGU(h)) is equivalent to the
condition that h; ~ Ahs for some A € F. So by Corollary 5.2.3, the Hasse
principle holds for principal homogeneous spaces under PGU(hy). O

Theorem 5.5.2. Let G be an absolutely simple, adjoint linear algebraic
group over F' of classical type Cy,. Then the Hasse principle holds for
principal homogeneous spaces under G.

Proof. Let G be an absolutely simple, adjoint linear algebraic group of type
C,, over F. Then G = PGSp(A, o) for some central simple F-algebra A of
degree 2n with symplectic involution o.

Now H'(F,PGSp(A4,0)) classifies F-isomorphism classes of central
simple F-algebras B such that deg(A) = deg(B), with symplectic involution
7. The trivial element in this set is the class of (A, o).

Now suppose [(4,7)] =1 € H(F,PGSp(A, 7)), so that (A4,7) ~ (4,0).
Write A as A = M,,(D) for some m € N and D a central division algebra
over F'. Let hi be the hermitian form on D corresponding to o, so that o is
the adjoint involution with respect to hi, and let he be the hermitian form
on D corresponding to 7, so that 7 is the adjoint involution with respect to
hs. Then the condition that (A,7) ~ (A, 0) is equivalent to the condition
that h; >~ Ahg for some A € F. So by Theorem 5.4.2, the Hasse principle
holds for principal homogeneous spaces under PGSp(A4, o). O

Theorem 5.5.3. Let G be an absolutely simple, adjoint linear algebraic
group over F of classical type D,,, so that G = PGO™ (A, o) for some central
simple F-algebra A of degree 2n with orthogonal involution o. Then the
Hasse principle holds for principal homogeneous spaces under G in the case
when A is split.

Proof. First note that in the case when A is split, the tuple (A, o) reduces
to a quadratic form q over F and G = PSO(q). Now H!(F,PSO(q)) clas-
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sifies similarity classes of nonsingular quadratic forms ¢’ over F such that
dim(q’) = dim(q) and disc(q¢’) = disc(g). The trivial element in this set is
the similarity class of g. Then the condition that

[¢'] =1 € HY(F,PSO(q)) is equivalent to the condition that ¢ ~ A\¢’ for
some A € F. So by Theorem 5.2.2, the Hasse principle holds for principal
homogeneous spaces under PSO(q). O
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