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Abstract 
 

Identification of Kidney Transplant Recipients at High-Risk for Post-Transplant 
Hospitalization using Natural Language Processing 

By Michael D. Arenson 
 

Post-discharge rehospitalization after kidney transplant is a common and preventable 
problem that is both costly to patients and healthcare systems and is associated with poor 
outcomes. There is epidemiological evidence that up to 50% of surgical readmissions may be 
preventable (e.g. through discharge planning, patient education, and/or follow-up 
communication). Predictive analytics have previously been used to identify patients at risk of 
rehospitalization with limited success. 
 
The vast amount of free-text data in the form of clinical notes that exist in the electronic 
medical record (EMR) has been untapped in the field of kidney-transplant. To date EMR 
free-text clinical notes have not been included in predictive models of 30-day 
rehospitalization (30DR) post-kidney transplant. Unstructured data describes any source of 
data that is not easily placed in a traditional numeric dataset. Analyzing free-text requires 
Natural language processing (NLP), which is a subfield of Artificial Intelligence that uses 
computer algorithms to analyze human language. Here, NLP was used to analyze EMR free-
text documentation of kidney transplant recipients with the ultimate goal of reducing 
readmission post-kidney transplant. 
 
This was a retrospective observational analysis of first-time recipients of kidney transplant at 
a large institution in the Southeast between January 2005 and December 2015. Both 
structured and unstructured data in the form of clinical notes written in the EMR were 
analyzed. Eight clinical notes were characterized and mined for possible new predictive 
features that might be useful to improve predictive accuracy of 30DR post-kidney transplant. 
Predictive models using unstructured, free-text clinical notes were built using machine-
learning, unsupervised approaches. These predictive models did not meaningfully improve 
predictive accuracy above structured data alone. However, the results generated a number of 
new hypotheses regarding potentially novel predictors to be examined in future research 
applying more human-driven approaches. 
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INTRODUCTION 
 

In the field of transplantation, organs are a scarce resource. According to the 

National Kidney Foundation, currently more than 100,000 individuals are waitlisted each 

year for kidney transplant.1 The average time on the waitlist is 3.5 years. Each year 7,500 

patients on the waitlist will either become too sick or pass away before making it to the top 

of the list. As such, once a patient receives a kidney transplant there is a moral obligation to 

set both the transplant and the patient up for a healthy future. Rehospitalization after kidney 

transplant, however, is common, costly to both the patient and the healthcare system, and 

associated with worse outcomes and racial disparities.2,3 

Predictive analytics, or the use of electronic algorithms to forecast future events in 

real time, makes it possible to harness the power of big data to improve the health of 

patients and lower the cost of health care.4 However, this opportunity raises policy, ethical, 

and legal challenges. New technologies have become available that can harness the power of 

large data sets to help identify which medical interventions will benefit which patients. The 

power of predictive analytics, however, comes with great responsibilities; Responsibilities 

that we are only now beginning to understand.5 

Throughout time, technology has served those that wielded it. We have learned over 

time through many mistakes and pitfalls in research – from the Nuremberg Code (1947) to 

the U.S. Common Rule (1991) – how to more ethically engage in the research and 

development of these technologies. Predictive analytics has already fallen into pitfalls of its 

own.6,7 With predictive analytics, however, some of those ethical challenges are different 

from past technologies in scale, if not entirely in scope. Predictive analytics does push the art 

of what is possible. A wide range of data from many sources is now available, and insights 

can be made dynamically, practically in real-time.  
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While this thesis aims to move the field of predictive analytics in kidney transplant 

forward, it does not touch on the ethical dimensions of the research. The transplant field has 

historically had to grapple with ethical challenges given scarcity of organs and high cost of 

transplant surgeries.8 As the field of transplant continues to experiment with artificial 

intelligence and predictive analytics, it will have to grapple with new ethical challenges that 

pertain to, for example, predicting rehospitalization after kidney transplant. Efforts have 

begun and should continue.9  
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BACKGROUND 
 

Post-discharge rehospitalization after kidney transplant is a common and preventable 

problem that is both costly to patients and healthcare systems and is associated with poor 

outcomes. More than 50% of patients are hospitalized in the year following kidney-

transplantation, and post-transplant hospitalization is associated with higher rates of graft 

loss3,10, lower patient survival, and poor quality of life.11 These poor outcomes are 

significantly more pronounced in disadvantaged groups. The causes of post-transplant 

hospitalization are multifactorial and include post- transplant complications such as 

infections, and non-transplant related factors such as patients’ comorbidities.12 

There is epidemiological evidence that up to 50% of surgical readmissions may be 

preventable (e.g. through discharge planning, patient education, and/or follow-up 

communication).13 In the field of kidney transplant, the number of preventable readmissions 

may be lower, and leading reasons for rehospitalization are surgical complications (15%), 

rejection (14%), intravascular volume overload or depletion (11%), and systemic and surgical 

wound infections (11% and 2.5%).14 This reflects the broader surgical literature, which has 

shown that most readmissions are related to new post-discharge complications.15 

Predictive analytics have previously been used to identify patients at risk of 

rehospitalization with limited success due to reliance on static, structured data from national 

registries. Important risk factors for hospitalization following kidney transplantation include 

demographic, socioeconomic, clinical, transplant surgery, utilization factors, and timing of 

readmission.12,16–20 Research on post-transplant hospitalization risk prediction models are 

limited in their utility by static data that do not reflect dynamic aspects of the transplant 

process and typically rely on administrative data that do not capture important patient-

centered risk factors known to impact all levels of the End Stage Renal Disease (ESRD) care 
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trajectory.12,14,21–23 Thus, transplant risk prediction models do not capture the salient 

information that could identify those at highest risk for post-transplant hospitalization. 

Given the medical implications for patients and reimbursement considerations for transplant 

centers for rehospitalization, improvements in predictive accuracy would allow for improved 

patient outcomes and less waste of medical resources. 

Unstructured data describes any source of data that is not easily placed in a 

traditional numeric dataset. Examples include images, audio or video files, and free-text 

(such as those found in electronic medical record (EMR) notes or news website comments 

sections).  In the transplant field, the latter is one such untapped data source.24 Clinical free-

text notes authored by transplant team providers and stored in the EMR are a large, 

untapped data source that could provide novel, high-yield predictor variables. Analyzing 

free-text requires Natural language processing (NLP), which is a subfield of Artificial 

Intelligence that uses computer algorithms to analyze human language.  

NLP can be used to analyze EMR free-text documentation and has been 

experimented with in surgery.25,26 For example, analyzing physician documentation to predict 

mortality in patients admitted to the surgical intensive care unit25, predicting graft failure18, 

or automating identification of post-operative complications26.  There are many unstructured 

data sources that serve as potential high-yield targets for NLP in kidney transplant such as 

detailed social worker notes prior to discharge from transplant or physician-authored notes 

during the pre-transplant evaluation. As such, we hypothesized that incorporating 

unstructured data from clinical notes through the use of Natural Language Processing (NLP) 

into predictive models would improve predictive accuracy for post-discharge hospitalization 

of kidney transplant recipients.  
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Ultimately, predictive models could be incorporated into a point-of-care clinical 

dashboard used by the transplant team to assess in real-time a patient’s risk of 30DR. An 

example of one possible dashboard design can be found in Figure 1. In support of this 

overarching vision, our study had three aims. First, since NLP has been minimally 

experimented with in kidney transplant, we aimed to characterize kidney transplant-related 

clinical notes using NLP. For example, NLP might be used to identify the most common 

forms of support kidney transplant patients require – whether it be transportation or 

emotional support – which has not been included in prior predictive models. Second, we 

aimed to predict 30-day readmission (30DR) using NLP on individual clinical notes. And 

third, we aimed to maximize predictive accuracy from Aim 2 by combining multiple clinical 

notes. 
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METHODS 
 
Study Population and Data Sources 

This was a retrospective observational analysis of first-time recipients of kidney 

transplant at a large institution in the Southeast between January 2005 and December 2015. 

Patients were included if they were adults (>18 years at time of transplant), solitary kidney 

transplant (KTx) recipients, transplanted once between 1/1/2005 – 12/30/2015 at the 

institution, and received follow-up care at the study institution during that time. The only 

exclusion criteria were whether patients were missing substantial amounts of structured data, 

but there were not any patients excluded subsequent to inclusion. 

Both structured and unstructured data in the form of clinical notes written in the 

EMR were analyzed. Baseline models were constructed using all available structured 

variables. These included features such as age, race, dialysis vintage, comorbidities and other 

variables known to be associated with 30DR.14,21,27 In total, 80 variables were included in the 

structured (i.e. baseline) model. 

 

Study Outcome 

The outcome of interest was 30-day rehospitalization within thirty days of discharge 

from transplant (30DR). Rehospitalization was defined as the first unplanned hospital 

admission post-discharge from the patient’s index hospitalization at the time of transplant. 

We assumed a hospitalization was unplanned if the patient was admitted through the 

institution’s emergency department. 

 

Data Variables and Definitions 
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A full list of structured variables and unstructured data sources can be found in Figure 2. 

The data were collected from local electronic medical records and included data at the time 

of ESRD diagnosis, date of waitlisting prior to transplant, and transplant. Comprehensive 

baseline recipient and donor socio-demographics, transplant characteristics, laboratory, and 

other transplant-related data were collected up to the time of discharge post-transplant.  

 

Unstructured Data Characteristics 

Unstructured data comprised free-text clinical notes written in the EMR. We pulled 

eight note types available from the local institution’s EMR database. Only notes written prior 

to discharge after transplant were included since post-discharge information would not be 

available for a patient prospectively.  All documented clinical pre-kidney transplant discharge 

events were captured, including hospitalizations. Due to their file size, only those progress 

notes written in between the times of admission for transplant surgery and subsequent 

discharge were analyzed. With the exception of Selection Committee and Progress notes, all 

other note types were analyzed if they were written at the earliest a year prior to the date of 

the patient’s transplant surgery and at the latest up to the time of discharge. Analysis relied 

on combining data sourced from both structured and unstructured data. 

 

Statistical Analysis 

Description of demographics and other structured variables was performed using SAS. 

Characterization of transplant-related clinical notes (Aim 1) was performed using R and 

methods described in Silge and Robinson’s book, “Text Mining with R”.28 Free-text from 

multiple clinical notes of the same type were merged into one long free-text file for each 

patient. For example, if a patient had multiple social work notes, they were combined into 
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one large composite social work text file. Next, text was preprocessed by cleaning the text of 

words that occur one time, numbers, punctuation, and “stop words”. Stop words are usually 

the most common words in a language or words that do not provide much meaning. For 

example, “the”, “is”, “because”, or “about”. There is not a single universal list of stop words, 

and the stop words may change depending on the analysis. 

The process of turning free-text into structured data (i.e. turning text into a format 

that can be analyzed using tabular spreadsheet-like datasets with individual cells) is called 

tokenization. A token is a meaningful unit of text, such as a word, that we are interested in 

using for analysis, and tokenization is the process of splitting text into tokens. The token 

that is stored in each row is most often a single word but can also be an n-gram (i.e. strings 

of length n), sentence, or paragraph. When text is organized in a format with one token per 

row, tasks like removing stop words or calculating word frequencies are natural applications 

of familiar operations performed with structured data. Exploring term frequency on its own 

can give us insight into how language is used. In addition to considering words as individual 

units, many interesting text analyses are based on the relationships between words. For 

example, whether certain words tend to follow others immediately, or if they tend to co-

occur within the same documents. The one-token-per-row framework can be extended from 

single words to n-grams and other meaningful units of text, as well as to many other analysis 

priorities.  

In addition to term frequency, there are many approaches that have been used to 

analyze tokenized data. In this analysis we used two: Term Frequency-Inverse Document 

Frequency (TF-IDF)29, and Latent Dirichlet Allocation (LDA)28. TF-IDF is intended to 

measure how important a token is to a document in a collection (or “corpus”) of documents. 

For example, the importance of one token in a novel in a corpus of novels or, for the 
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purposes of this research, to one type of clinical note in a collection of different types of 

notes. TF-IDF is calculated using the equation below and is composed of two terms: Term 

Frequency (TF) and Inverse Document Frequency (IDF).  

 

𝑇𝐹 − 𝐼𝐷𝐹	 = 	𝑇𝐹	(𝑡, 𝑑)𝑥	𝐼𝐷𝐹(𝑡) 

 

𝑇𝐹 − 𝐼𝐷𝐹	 = 	𝑇𝐹	(𝑡, 𝑑)	𝑥	𝑙𝑜𝑔
𝑛

𝑑𝑓(𝑡) 

 

TF is a normalized measure of how frequently a token occurs in a document. It is 

the number of times a token (e.g. a single word) appears in a document divided by the total 

number of words in the document. Since every document is different in length, it is possible 

that a term would appear much more times in long documents than shorter ones. Thus, the 

term frequency is often divided by the total number of tokens in the document (i.e. 

normalized). 

The second part of the equation describes the IDF, which describes how unique a 

token is to a specific document compared to all of the other documents in the collection. If 

only term frequency was used to characterize documents, however, commonly occurring 

words such as “is”, “the”, or even “kidney” or “transplant” would be identified but may not 

provide as much insight into how NLP can be leveraged. Thus, to put more weight on the 

rarer words in a collection of documents, IDF is calculated by taking the log of the total 

number of documents in the collection divided by the number of documents with the token 

of interest in it. 
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In addition to TF-IDF, topic modeling is a method for unsupervised classification of a 

collection of documents. Topic modelling refers to the task of identifying topics that best 

describes a set of documents. These topics will only emerge during the topic modelling 

process (therefore called latent). And one popular topic modelling technique is known as 

Latent Dirichlet Allocation (LDA). It treats each document as a mixture of topics, and each 

topic as a mixture of words. This allows documents to “overlap” each other in terms of 

content, rather than being separated into discrete groups, in a way that mirrors typical use of 

natural language.  

Each clinical note was vectorized using both methods and subsequently analyzed 

using logistic regression. Predictive models were developed using combined structured and 

unstructured data beginning at ESRD diagnosis and ending at discharge from transplant 

event. Prior to establishing the predictive models, free-text data were pre-processed using 

natural language processing (NLP). 

To account for missing data, logistic regressions was used in an Ensemble logistic 

regression method by averaging the probabilities of 30DR from each data source for each 

patient (Figure 3). Creating a predictive model often entails putting all data into one dataset 

and running a Concatenated logistic regression model. In contrast, the Ensemble approach 

uses multiple models by applying logistic regression (or any other classifier) to each unique 

source of data separately and then takes the average of the all of the logistic regression 

outputs.30 Ensemble methods, with respect to classification algorithms are relatively new 

techniques. Ensemble is a more sophisticated approach for increasing model accuracy as 

compared to the traditional practice of parameter tuning on a single model. 

Ensembling has been shown to address three challenges in the traditional 

Concatenation approach.31 First, many tasks in medical domains inherently consist of small 
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sample data with lengthy documents. This is particularly true in the field of kidney transplant 

where often the total number of patients receiving a transplant numbers in the hundreds. 

Thus only a few thousand patients with EMR clinical notes are available, often sporadically 

missing note types, and consisting of millions of words. Given the length of these notes, 

complex deep learning methods cannot be applied to these kinds of domains, making the 

Ensemble method a good alternative.  

In constructing our cohort, only patients with structured data were included. Patients 

who were missing clinical notes did not exclude a patient from the cohort since we used the 

Ensemble method. In total, 61 predictive risk models were built for the outcome of interest 

(30DR). These included one baseline model comprised of structured-only data. For each of 

the eight note-types, we created a (1) model with TF-IDF words as input, a (2) model with 

LDA topic vectors as input, and (3) a model with both TF-IDF + LDA features. Thus each 

note-type yielded 3 separate models (Aim 2). Finally, in attempting to maximize predictive 

accuracy (Aim 3) we combined features from and analyzed twelve separate combinations of 

notes (e.g. combining Progress + Consultation note features) and created three models (TF-

IDF, LDA, and TF-IDF + LDA) for each of the combinations as previously described for 

individual notes.  

Once the separate structured and unstructured models were selected, internal 

validation and area under the curve (AUC) was used to determine and compare model 

accuracy.  We used 5-fold cross-validation to test the performance of each model. The area 

under the receiver operating curve (ROC) was recorded for the testing set. The average ROC 

curve was calculated for all 5 cross-validation testing set. In order to identify the most 

heavily weighted predictor variables, we used a neural network-based feature selection 
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algorithm called Wx, which has also been used in next-generation sequencing data.32 

Statistical analyses were performed using SAS (Cary, NC), R, and Python. 
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RESULTS 
 

Of 2109 patients with locally performed kidney transplants whose data were 

accessible since January 2005, 2060 transplant patients met eligibility criteria for inclusion in 

the final cohort (Figure 4). Of the final cohort, 633 (30.7%) experienced 30DR. Although 

18 were missing all clinical notes, they were still included in the cohort because they had 

structured data. We pulled eight note types available from the local institution’s EMR 

database. These notes were written at various timepoints throughout the transplant process. 

Only notes recorded prior to post-KTx discharge were analyzed: Social Work (n=1118), 

Selection Committee (n=2033), Echo Report (n=1110), History and Physical (H&P) 

(n=1422), Consultants (n=1354), Progress (n=1415), Operative (n=1472), and Discharge 

Summaries (n=517). 

All structured variables, including demographic and clinical characteristics of the 

patient population, can be found in Table 1. Variables were chosen based on statistical 

significance of p≤0.05 in the analysis or previous identification in the literature of 

contributing to rehospitalization. 

Using two NLP approaches (TFIDF and LDA) we identified three main themes. 

First, that NLP can be used to identify potentially novel predictive variables not previously 

identified in structured data. Second, that NLP confirms the relevance of other predictive 

variables. And third, that broad KTx-related topics are shared amongst many clinical note 

types, making some note types high-yield and others less so for predicting outcomes. 

 

Recipient, donor, and transplant characteristics 

The study population was predominately African American or black (47%) and male 

(58%). The most common cause of ESRD amongst subjects associated with 30DR in the 
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study population was diabetes (223 [35.2%] vs. 321 [22.5%]), hypertension (162 [26%] vs. 

415 [25%]), and primary glomerulonephritis (116 [18%] vs. 307 [22%]). Also significantly 

associated with 30DR were: ever carrying a diagnosis prior to transplant of Infectious or 

parasitic diseases (n=177 [27.5%]), endocrine, nutritional and metabolic disease, or immunity 

disorders (n=583 [90.7%]), mental disorders (n=215 [33.4%]), and diseases of the nervous 

system and sense organs (n=285 [44.3%]). In addition, 30DR was associated with the 

number of days from referral end to evaluation end (314.4 days [S.D. 378.1], n=449 vs. 250.8 

days [S.D. 393.7], n=1,130), number of days from evaluation start to evaluation end (326.4 

days [S.D. 353.0], n=460 vs. 262.8 days [S.D. 305.8], n=1,186), and number of days from 

evaluation end to waitlist start (-104.9 days [S.D. 300.7], n=460 vs. -68.1 days [259.3], 

n=1,186). 

For donor factors, the recipients with deceased donors, positive hepatitis C and B 

status, and those that were considered high risk by CDC Guidelines were more likely to be 

readmitted within 30 days. For transplant factors, the post-KTx length of stay (5 [4-7] vs. 4 

[4-6]), HLA B and HLA DR mismatches, ABO incompatibility, White Blood Cell count at 

time of transplant, and Hemoglobin A1C at transplant were significantly associated with 

30DR. 

 

NLP used to identify novel variables not previously identified in structured data 

Frequency of words amongst all notes and within each note could possibly indicate 

novel predictive features overall and for each note type. For example, Figure 5 illustrates 

three example graphs for three different note types: (A) Consultation, (B) Selection 

Conference, and (C) Discharge Summary notes. Terms are plotted by frequency and 

according to those that appear in patients who were readmitted within 30-days and not. In 
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the Consultation note, words such as, “disseminated”, “dialyvite”, “chemotherapy”, “juven”, 

“bela” (i.e. belatacept), and “ablation” are associated with patients who experienced 30DR. 

These terms indicate infection, dialysis, cancer, supplemental nutrition, immunosuppression, 

and arrhythmia or other heart conditions, respectively, which are largely related to health and 

well-being post-kidney transplant.33 In contrast, words such as “bupropion” (an anti-

depressant), “bmt” (i.e. bone marrow transplant), and “esbl” (i.e. Extended spectrum beta-

lactamases), can be found associated with patients not experiencing 30DR. The literature has 

not previously identified these as predictive features. Similarly, in (B) Selection Conference 

notes, other terms such as, “hbv” (Hepatitis B infection), “adenocarcinoma”, and “fna” (fine 

needle aspiration, oftentimes performed for a biopsy of abnormal tissue) are reasonably 

associated with 30DR. 

Patterns emerge comparing Figure 5(B) Selection Conference notes, which is one 

of the first notes recorded for many patients in the transplant process and Figure 5(C) 

Discharge Summary notes, which is the last note recorded in a patient’s transplant odyssey. 

For example, early in the process while the patient is being evaluated for transplant suitability 

5(B), ‘abscesses’ are protective of 30DR. At discharge 5(C), only days post-transplant 

surgery, ‘abscess’ flips to the opposite side, becoming associated with 30DR. 

Focusing only on Figure 5(C), one sees words that suggest similar risk factors for 

30DR. The words ‘lymphoma’, “amikacin”, “pna” (shorthand for pneumonia) which, as has 

been seen in Figure 5(A) and 5(B), indicate cancer and infection are associated with 30DR. 

Also found is the word, “aphasia”, which means the patient has language troubles (either 

speaking or comprehending). This is usually a sign of stroke. In 5(C), “fluoxetine” can be 

seen, which is another antidepressant that seems to be associated with patients not 
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readmitted within 30-days, as well as “amputation” for reasons that are not immediately 

apparent. 

 

NLP confirms the relevance of other variables 

In addition to elucidating potentially novel variables, TF-IDF can also confirm the 

importance of other variables that would not otherwise be captured with structured data, 

alone. For example, bigrams (i.e. word pairs) can identify common forms of support that 

patients require. Amongst all available notes for all patients, we searched for bigrams where 

the second word is “support”. We found that the three words most frequently preceding the 

word “support” are “care”, “transportation”, and “emotional” (Table 2).  

While exploring term frequency on its own can provide insight into how language is 

used in a collection of natural language, TF-IDF is an unsupervised process that identifies 

words that are unique to each note out of the collection of different types of notes. The top 

thirty words in Figure 6 are, as measured by TF-IDF, the most important to each note. For 

example, out of the top 30 words identified in the Selection Committee note, “adenosine”, 

“thallium”, “cardio”, “dobutamine”, “peak”, “velocity”, “transthoracic”, and “scintigraphic” 

can be found which pertain to heart health and evaluation. In the same note, “nutrition” and 

“dietary” indicate the importance of nutrition in the evaluation process. Each of these terms 

are the variables most unique to that note and thus can possibly be used as predictive 

features in addition to other structured features that indicate a patient’s cardiac and dietary 

status. 

Also, there are very few structured data that indicate a patient’s mental well-being 

despite knowing that it is likely an important predictor of 30DR. But, in the Social Work 

note, the words “educated”, “activities”, “mood”, and “mental” pertain to patients’ social 
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history and mental health and might be used as predictive features. Also found in the Social 

Work TF-IDF terms are the words, “budd” and “terrace”. Separately, these do not make 

sense, but Budd Terrace is a nursing facility that patients are often discharged to if they are 

not able to care for themselves upon discharge. Therefore, it not only makes sense that they 

would have a similar TF-IDF rank, but that this would be a term unique to social work 

notes. 

 

 

 

Kidney transplant topics are shared amongst many of the clinical note types 

While TF-IDF identifies words that are unique to each note, LDA identifies 

overarching topics. This is done by extracting probabilities that each word is generated from 

each topic, called β (“beta”), from the model (note this is different than betas used in 

regression modeling). For example, the term “nutrition” might have a large probability of 

being generated from one topic but a very low probability of being generated from a 

different topic. This allows one to identify the terms that are most common within each 

topic. Figure 7 shows the 20 terms with the highest beta for each topic. Since each topic is 

generated in an unsupervised manner, the concept or title of each topic requires 

interpretation and as such will be examined further in the Discussion section below.  

Some words in Figure 7, such as “patient”, “transplant”, “start”, or other dose 

measurements such as “mg” or “ml” are common within multiple topics. This is an 

advantage of topic modeling as opposed to looking only at individual note types, because 

topics used in natural language could have some overlap in terms of words. While this 

should not be surprising, it is useful to know to what degree clinical notes overlap. For 
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example, Selection Committee notes are more correlated to Operative notes than they are to 

Social Work notes. This makes sense, since Selection Committee and Operative notes are 

both authored by a transplant surgeon. However, in the quest to reduce readmissions, social 

issues may not be adequately addressed in the evaluation stage, decreasing chances of 

identifying social problems and preventing readmission downstream. 

In addition to estimating each topic as a mixture of words, LDA also models each 

document as a mixture of topics (Figure 8). We can examine the probabilities that each 

document is generated from each topic, called γ (“gamma”). Each of these values is an 

estimated proportion of words from that document that are generated from that topic. For 

example, the model estimates that only about 37.2% of the words in Progress notes were 

generated from Topic 2. In contrast, 100% of the words in the Echo note were generated by 

Topic 3. Many of the notes were drawn from a mix of topics, such as Progress, 

Consultation, and H&P notes. 

 

Predictive model performance of structured and unstructured data 

There were 80 structured variables included in the model (Table 1). When added to 

structured data the AUC did not improve statistically significantly after including data from 

individual clinical note types (Table 3). For the structured model, the AUC was estimated as 

0.6523 (95%CI 0.6218, 0.6829) for 30DR.  

Layering of data sources does not augment predictive accuracy much more than 

adding single notes data to the baseline model, alone (Table 4). The best performing model 

included Structured data and the following clinical notes: Consultations, H&P, Progress, and 

Selection Conference notes (AUC 0.6744, 95%CI: 0.6587, 0.6900). This is neither a 
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statistically significant nor a meaningful improvement over structured data alone, as it only 

improves predictive accuracy by 2.21%.  

The top predictive terms from the best predictive model in Table 4 can be seen in 

Table 5. All of the top 20 predictors with the exception of one are structured variables. The 

highest-ranking unstructured variable contributing to the highest performing model was the 

term “mg”. In a sensitivity analysis, multiple different NLP techniques were evaluated, such 

as Word2Vec and Doc2Vec, as well as classifiers other than logistic regression (i.e. Random 

Forrest). Description of these techniques is outside the scope of this paper, however, the 

NLP techniques employed here as well as using logistic regression had the highest predictive 

performance. 
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DISCUSSION 
 

Our study both confirms predictive features described in prior literature and, using 

natural language processing, generates a number of new hypotheses about factors 

throughout the transplant process that may be predictive of 30DR (from ESRD diagnosis to 

post-transplant discharge). To date, studies on readmission among kidney transplant 

recipients have mostly focused on risk factor identification. Important risk factors for 

hospitalization previously identified include demographic factors (older age and AA race), 

socioeconomic factors (lower education and Medicaid insurance), clinical factors (high BMI 

and various comorbidities), transplant surgery factors (longer length of stay, receipt of a 

deceased (vs. living) donor, older donor age, and surgical complications), utilization factors 

(pre-transplant hospitalization), and adherence to medication.3,10,12,14,16,17 Many of these risk 

factors are reproduced in our study in structured data. Our study lends further support to 

these previously identified predictive features.  

To our knowledge, there has only been one other study that has published a post-

transplant specific predictive model.21 In this study, Taber et al. first designed a model 

including fixed transplant predictors that remained modestly predictive (AUC 0.63; 95% CI: 

0.58–0.69). The predictive accuracy significantly improved to 0.73; 95% CI, 0.67–0.79 after 

including post-transplant but pre-discharge dynamic factors such as the systolic blood 

pressure slope during transplant admission. Thus, the development of more accurate 

predictive models of readmission after kidney transplantation will require the collection of 

more granular data than those usually available in transplant registries. These data include 

socio-economic data (e.g. familial support, transportation issues) and clinical data such as 

labs values or vitals.  
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Natural language processing (NLP) employs computational techniques to learn, 

understand, and produce human language content. NLP can be used to analyze and learning 

from the enormous quantity of human language content that is now available in the EMR 

and healthcare systems.34 Recently, Srinivas et al. successfully applied this type of approach 

to the prediction of graft loss and mortality after kidney transplantation and reported a high 

accuracy of their models of 0.87; 95% CI, 0.81–-0.94 for 1-year graft loss and 0.84; 95% CI, 

0.80–0.89 for 3-year mortality.27 Using NLP algorithms, Srinivas et al. parsed Banff lesion 

scores from pathology reports in text form. Lesion scores transcribed as g0, t0, i2, t2, v0 

were extracted and transferred to analytic databases. 

However, the extraction of these predictors was based on previously reported risk factors 

and clinical input of transplant experts. This process is time-consuming and complex which 

makes it difficult to generalize outside of a single institution due to different reporting 

techniques. In other words, identifying novel predictive features in this way requires a 

supervised approach. However, using an unsupervised approach as described above 

identified potentially novel text variables such as “juven” (risk factor) or “fluoxetine” 

(protective). These would otherwise be less likely to be identified as a predictor.  

For these reasons, we leveraged machine learning techniques to generate predictive 

features in an unsupervised manner. This approach requires minimal input from clinical 

experts, instead relying on computer algorithms to identify important predictive features. 

While many potential predictors were identified, the approach did not yield an overall higher 

predictive accuracy and perhaps reinforces the need for a more balanced machine-human 

partnership. Using a machine-learning NLP approach to generate previously unrecognized 

important words or topics but using a more human-driven decision regarding which 

predictive features to extract from clinical notes and include in predictive models. Given the 
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success in improving predictive accuracy that Srinivas et al. demonstrates (albeit with a much 

more finite outcome like graft failure), this seems like the next important step for this 

research. 

In characterizing the clinical notes as we have done for our first aim, we have 

generated a number of new hypotheses about potential predictive features to extract using 

NLP. For example, terms and their synonyms in Figure 5 that are both found in higher 

frequency in patients with and without 30DR should be extracted and used as predictive 

features. Specifically, terms that are associated with infection, dialysis, cancer, supplemental 

nutrition, immunosuppression, and arrhythmia or other heart conditions. Some terms 

require further exploration and understanding. For example, it is unclear why the word, 

“amputation” in Consultation notes might be found more often in patients who did not 

experience 30DR. Also, multiple notes identify antidepressant medications as being 

protective or 30DR. Identifying patients discharged on antidepressants may is another 

example of a potentially novel variable to include in future models (identified either by using 

structured or unstructured data). Novel variables also arise from exploring the TF-IDF for 

each note separately. For example, identifying which patients are being discharged to “budd 

terrace” or another acute care facility could be a predictive feature of 30DR.  

In the case of topic models, novel predictive features take the form of vectors of 

words. These vectors are included in predictive models, but their usefulness might lie more 

in identifying the highest yield clinical notes to include. The notes that had the largest 

predictive accuracy were those that incorporated multiple topics. That is, the consultation, 

H&P, progress, and selection-conference notes. In contrast, the notes that were described by 

only one topic had less predictive ability. This demonstrates that notes that incorporate 

multiple sources of data (e.g. physical exam, labs, imaging) are more useful for predicting 



 23 

readmission. When attempting to calculate using NLP the real-time risk of a patient prior to 

discharge, these “multifaceted” notes should be prioritized. 

The question remains why all of these new potential variables led to minimal to no 

improvement in predictive accuracy. The preventability of readmission post-kidney 

transplant is unknown, but studies have shown variability (from only 8% of readmissions 

being preventable to 50%).5,6 This contradicts literature in general surgery, which indicates 

major differences between general surgery and transplant. As seen in Table 5, the 

unstructured data did not rank high on predictive importance. The only variable that did was 

the word, “mg”, which could be a proxy for patients who are prescribed a lot of medications 

either postoperatively or at time of discharge, both of which would indicate severity of 

disease.  

 

Limitations 

 Our study has some limitations. First, we restricted our cohort to patients receiving 

only one transplant from our transplant center between 2005–2015. Our cohort was meant 

to include only first-time kidney transplant recipients, however, 163 (7.9%) of patients were 

found to have had a prior transplant after linking to national-level United States Renal 

Database System (USRDS) registry. Given that patients with multiple transplants are at 

higher risk of 30DR than patients with only one, this could bias the results of our study. The 

reason for only selecting patients using local institution’s data, however, is because a 

predictive model that can be integrated into clinical care must be able to use data in real-

time. Conversely, USRDS data have a lag time of two years. Although linking local data to 

national-level registries such as USRDS would avoid the inclusion of subjects with multiple 
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transplants, the predictive model would not be built to use the data available in real-time. 

Thus, any clinical dashboard using this predictive model would be clinically irrelevant. 

 This speaks to a larger limitation of missing data. As academic medical centers have 

transitioned from paper to electronic medical charts, the available free text data is limited. 

While software exists that can translate scanned paper documents into electronic free-text 

data, the data are almost certain to be too messy to analyze and contain many errors and 

typos. As the databases for EMR have developed, the scaffolding has been built in a 

patchwork approach. Thus, some clinical note types were written in the EMR before others 

or were transferred from one database storage type to another. At each stage, clinical notes 

loose information within the document, go missing after transfer, or were never transferred 

to the EMR in the first place. This is a missing data problem that can introduce bias in 

multiple forms. For example, patients receiving a transplant many years ago may not have as 

much free-text data, limiting the availability of free text data for that patient. In order to 

address this, we initiated our cohort 2005 when there was a clear change in the availability of 

free-text notes in the EMR database. However, the difference in the number of missingness 

in the eight notes analyzed for this study indicate the challenge of analyzing EMR data. 

 Another limitation is the size of our cohort. The transplant field treats a relatively 

small number of patients. The transplant center providing the data for our cohort is one of 

the largest transplant centers in the U.S., and yet an n of 2060 is quite small when attempting 

to use machine learning techniques. Increasing the n for the purposes of analyzing free-text 

clinical notes is a challenge, however, because doing so would require multiple transplant 

centers to create a repository of notes. Such a database for kidney transplant patients does 

not currently exist. Given the vast amount of free-text data in the transplant field, however, 
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this should perhaps be a long-term goal. It would require a further research into how free-

text notes are written and organized in EMR’s at transplant centers around the country. 

 

Future Directions 

 Many of the NLP techniques used in this study are also used by industry leaders in 

machine learning. For example, the Google search employs a TF-IDF technique, albeit 

much more advanced. As this study is the first to explore NLP in kidney-transplant patients, 

there remains room for improvement and refinement. Looking at word frequency, for 

example, does not account for the context in which those words appear. For example, a 

word can often be preceded by negating words like, “not” or “never”. If a social worker 

writes, “the patient denies alcohol use”, and we assume that alcohol use is a risk factor for 

30DR, the analysis employed in this study would possibly erroneously associate the word 

“alcohol” as predictive of 30DR, even though the patient denied using it. Increasing the 

sophistication of NLP techniques may be worthwhile. In addition, looking at other forms of 

basic NLP analysis such as sentiment of words (i.e. words that are positive versus negative, 

or that connote joy). For example, a patient with more negative words in their post-

transplant notes may have a higher likelihood of being readmitted. Furthermore, using 

industry developed tools such as Amazon Comprehend Medical or ClarityNLP developed by 

Georgia Tech to search for specific words/phrases identified might provide a more 

systematic, scalable search algorithm that can be used at multiple transplant centers. 
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CONCLUSIONS 
 

In this work, I have characterized eight clinical notes and mined them for possible 

new predictive features that might be useful to improve predictive accuracy of 30DR. 

Predictive models using unstructured, free-text clinical notes were built using machine-

learning, unsupervised approaches. These predictive models did not meaningfully improve 

predictive accuracy above structured data alone. However, the results generated a number of 

new hypotheses regarding potentially novel predictors to be examined in future research 

applying more human-driven approaches. The vast amount of free-text data in the form of 

clinical notes that exist in the EMR has been untapped in the field of kidney-transplant. As 

we become more reliant on Big Data and machine learning methods, Natural language 

processing is possibly the key to leveraging these notes for research that will ultimately help 

the patient, the physicians, and the hospital improve outcomes. 
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TABLES / FIGURES 
 
Figure 1: Conceptual mock-up of clinical dashboard identifying kidney transplant patients at 
high-risk of 30-day readmission 
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Figure 2: List of all Structured Data Variables and all Unstructured Data Sources by Time 
Collected in Transplant Process 
 
  Recipient  Donor  Transplant Process 

 

Variables included 
in Predictive 

Model 
Demo-

graphics Clinical Social  
Demo-

graphics Clinical  

ESRD 
Diagnosis, 
Dialysis, & 

Referral 

Evaluation 
& 

Waitlisting 
Transplant 
Operation 

Post-
Transplant 

Structured Data                       
  Age at Transplant •       •             
  Race •                     
  Ethnicity •                     
  Gender •                     
  Religion •                     
  Language •                     
  Primary Cause of ESRD •                   
  Karnofsky Status   •                   
  Prior Transplant   •                   
  EBV Status   •       •           
  CMV Status   •       •           

  
Toxoplasmosis 
Status   •       •           

  Hepatitis C Status   •       •           
  Blood Type (ABO)   •       •           
  Alcohol Use     •                 
  Smoking Status     •                 

  
Whether Patients’ address zipcode change 
within 1 year prior to transplant •                 

  
Donor Type (Living vs. 
Deceased)       •             

  Hepatitis B Core Status         •           
  Hepatitis B Surface Antigen Status       •           
  Hepatitis B Surface Antibody Status       •           
  HCC High Risk           •           
  CDC High Risk           •           
  # of days from referral start to evaluation start         •       
  # of days from referral end to evaluation end         •       
  # of days from evaluation start to evaluation end           •     
  # of days from evaluation end to waitlist start           •     
  T Cell cross match                   •   
  B Cell cross match                   •   
  HLA A mismatches                   •   
  HLA B mismatches                   •   

  
HLA DR 
mismatches                   

• 
  

  Kidney Received On (Ice vs. Pump)               •   
  EBV Infection Risk                   •   
  CMV Infection Risk                   •   
  Blood Type Compatibility                 •   
  Albumin at Transplant*                 •   
  Albumin at Discharge Post Transplant*                 • 
  Change in Albumin from Transplant to Discharge               • 
  Creatinine at Transplant*                 •   
  Creatinine at Discharge Post Transplant*                 • 
  Blood Nitrogen Urea at Transplant*               •   
  Blood Nitrogen Urea at Discharge Post Transplant*               • 
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White Blood Cell at 
Transplant*                 •   

  White Blood Cell at Discharge Post Transplant*               • 

  
Hemoglobin A1C at 
Transplant*                 

• 
  

  Hemoglobin at Transplant*                 •   
  Hemoglobin at Discharge Post Transplant*                 • 
  Change in Hemoglobin from Transplant to Discharge               • 

  
Prograf level  at Discharge Post 
Transplant*                 • 

Unstructured Data                       
  Social Work               • • • • 

  
Selection 
Committee                 •     

  Echo Report                 •     
  H & P                 • •   
  Consultants                 • • • 
  Progress                 • • • 
  Operative                 • •   

  
Discharge 
Summary                 • • • 

*Also included are minimum and maximum values of each laboratory value at specified timepoint. 
 
Structured data variables (n=80) are highlighted in blue. Unstructured data sources, highlighted in 
yellow, are identified as opposed to all unstructured data variables due to space constraints. Variables 
in the Recipient and Donor columns were administrative data collected early in the transplant 
process or at time of transplant. HCC coding is a payment model designated by the Centers for 
Medicare and Medicaid Services (HCC, Hierarchical Condition Category). CDC high risk guidelines 
developed by Centers for Disease Control in 1994 to notify and protect candidates (CDC, Centers 
for Disease Control). Length of Hospital stay from the day of transplant to the day of discharge. Risk 
describes risk of active infection; Comprised of High (donor +, recipient -), Intermediate (donor -, 
recipient +), and Low Risk (donor -, recipient -). 
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Figure 3: Traditional Concatenation vs. Ensemble logistic regression method. 
 

 
 
Ensemble methods combine multiple models into one usually more accurate than the best of its 
components. Ensembles are useful with all modeling algorithms, not just logistic regression. Building 
an ensemble consists of two steps:(1) constructing varied models and (2) combining their estimates. 
Ensembling depends heavily on the quality of the individual models (e.g. without overfitting). 
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Figure 4: Inclusion and Exclusion Flowchart 
 

 
 
Only patients with structured data were included in the analysis (n=2060, years 2005-2015). Thus, 
both the number of patients with structured data and our n=2060. Patients did not have to have any 
clinical notes to be included in the analysis. Number of patients without any clinical notes were 
n=18. The clinical note with the most patients represented was the Selection Committee note 
(n=2033) and the least being the Discharge Summary (n=517).  
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Table 1: Baseline characteristics of kidney transplant recipients from Emory Transplant 
center, stratified by readmission within 30 days post -transplant, 2005–2015 
 

Characters 
Study 

Population 
n=2060 

Within 30 Days 
Readmission 

n=633 (30.7%) 

Not Within 30 
Days 

Readmission 
n=1427 (69.3%) 

P- 

Value 

RECIPIENT FACTORS   

Demographic   

Age, years, Median (IQR) 51 (40-60) 50 (40-60) 51 (40-60) 0.95 

Race, n (%) 0.14 

         Caucasian or White 900 (43.7) 271 (42.8) 629 (44.1)   

         African American or Black 970 (47.1) 315 (49.8) 655 (45.9)   

         Others  71 (3.5) 15 (2.4) 56 (3.9)   

         Unknown, Unavailable or 
Unreported 119 (5.8) 32 (5.1) 87 (6.1)   

Ethnicity, n (%) 0.26 

         Non-Hispanic or Latino 1587 (77.0) 474 (74.9) 1113 (78.0)   

         Hispanic or Latino 68 (3.3) 21 (3.3) 47 (3.3)   

         Unknown, Unavailable, 
Unreported 405 (19.7) 138 (21.8) 267 (18.7)   

Gender, n (%) 0.45 

          Male 1194 (58.0) 359 (56.7) 835 (58.5)   

          Female 866 (42.0) 274 (43.3) 592 (41.5)   

Clinical   

Primary cause of ESRD, n (%) <.0001 

 Diabetes 544 (26.4) 223 (35.2) 321 (22.5) 

  
 Primary GN 423 (20.5) 116 (18.3) 307 (21.5) 

 Secondary  107 (5.2) 26 (4.1) 81 (5.7) 

 Cystic/Hereditary/Congenital 
Disease 211 (10.2) 45 (7.1) 166 (11.6) 
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 Hypertension 577 (28.0) 162 (25.6) 415 (29.1) 

 Neoplasms/Tumor 15 (0.7) 4 (0.6) 11 (0.8) 

 Other  181 (8.8) 56 (8.9) 125 (8.8) 

 Missing 2 (0.1) 1 (0.2) 1 (0.1) 

Prior transplants status, n (%)       <.0001 

  Yes 163 (7.9) 63 (10.0) 100 (7.0)   

  No 1,711 (83.1) 465 (73.5) 1,246 (87.3)   

  Unknown 186 (9.0) 105 (16.6) 81 (5.7)   

Karnofsky Status 0.0001 

         Required Considerable 
Assistance 740 (35.9) 269 (42.5) 471 (33.0)   

         Normal Activities With Little 
Effort 293 (14.2) 75 (11.9) 218 (15.3)   

         Unknown, Unavailable or 
Unreported 1027 (49.9) 289 (45.7) 738 (51.7)   

Blood Subtype, n (%) <.0001 

        O 852 (41.4) 234 (37.0) 618 (43.3) 

  

        A 617 (30.0) 168 (26.5) 449 (31.5) 

        B 306 (14.9) 93 (14.7) 213 (14.9) 

        AB 99 (4.8) 33 (5.2) 66 (4.6) 

       Unknown, Unavailable or 
Unreported 186 (9.0) 105 (16.6) 81 (5.7) 

Comorbidities (all diagnoses prior to transplant) 
(If a diagnosis is not present, it is assumed that the subject did not have the condition. Therefore, 
there is no missing value) 

Infectious and parasitic diseases 511 (24.8%) 177 (27.5%) 334 (23.6%) 0.05 

Neoplasms 717 (34.8%) 218 (33.9%) 499 (35.2%) 0.56 

Endocrine, nutritional and metabolic 
disease, and immunity disorders 1,795 (87.1%) 583 (90.7%) 1,212 (85.5%) 0.001 

Diseases of the blood and blood-
forming organs 1,412 (68.5%) 433 (67.3%) 979 (69.1%) 0.43 

Mental disorders 609 (29.6%) 215 (33.4%) 394 (27.8%) 0.009 
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Diseases of the nervous system and 
sense organs 775 (37.6%) 285 (44.3%) 490 (34.6%) <.0001 

Diseases of the circulatory system 2,055 (99.8%) 642 (99.8%) 1,413 (99.7%) 0.59 

Diseases of the respiratory system 850 (41.3%) 279 (43.4%) 571 (40.3%) 0.19 

Diseases of the digestive system 1,261 (61.2%) 414 (64.4%) 847 (59.8%) 0.05 

Diseases of the genitourinary system 2,059 (99.95%) 642 (99.8%) 1,417 (100.0%) 0.14 

Complications of pregnancy, 
childbirth, and the puerperium 31 (1.5%) 6 (0.9%) 25 (1.8%) 0.15 

Diseases of the skin and subcutaneous 
tissue 338 (16.4%) 108 (16.8%) 230 (16.2%) 0.75 

Diseases of the musculoskeletal 
system and connective tissue 735 (35.7%) 244 (38.0%) 491 (34.7%) 0.15 

Congenital anomalies 5001 (24.3%) 138 (21.5%) 363 (25.6%) 0.04 

Certain conditions originating in the 
perinatal period 8 (0.4%) 4 (0.6%) 4 (0.3%) 0.25 

Social (status up to transplant date) 

Alcohol Use, n (%) (1,624 subjects with non-missing value) 0.0002 

Deny 1,103 (67.9) 360 (74.4) 743 (65.2)   

Past 93 (5.7) 30 (6.2) 63 (5.5)   

Current 428 (26.4) 94 (19.4) 334 (29.3)   

Smoking Status, n (%) (1,227 subjects with non-missing value) 0.59 

Never smoked 708 (57.7) 179 (54.9) 529 (58.7)   

Former smoker 421 (34.3) 121 (37.1) 300 (33.3)   

Light tobacco smoker 4 (0.3) 2 (0.6) 2 (0.2)   

Current someday 25 (2.0) 6 (1.8) 19 (2.1)   

Current everyday 69 (5.6) 18 (5.5) 51 (5.7)   

DONOR FACTORS   

Demographic   

Age, years, Median (IQR) 39 (25-49) 39 (23-49) 39 (27-49) 0.41 
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Type of Transplant Donor 0.002 

        Deceased 1386 (67.3) 458 (72.4) 928 (65.0)   

        Living 643 (31.2) 164 (25.9) 479 (33.6)   

        Pediatric 31 (1.5) 11 (1.7) 20 (1.4)   

TRANSPLANT FACTORS   

Length of Hospital Stay, Days, 
Median (IQR) 4 (4-6) 5 (4-7) 4 (4-6) <.0001 

ABO compatible, n (%) <.0001 

  Yes 1,930 (93.7) 570 (90.1) 1,360 (95.3) 

    No 24 (1.2) 4 (0.6) 20 (1.4) 

  unknown 106 (5.2) 59 (9.3) 47 (3.3) 

Labs (peri-transplant)   

Creatinine at Discharge Post Transplant (g/dL) 0.09 

Missing n (%) 17 (0.83) 5 (0.79) 12 (0.84)   

Median (IQR), [mean of Min-Max] 1.9 (1.3-3.7), [1.1-
11.0] 

2.0 (1.3-4.2), 
[1.1-11.2] 

1.9 (1.3-3.5), 
[1.0-10.9]   

White Blood Cell at Transplant (10E3MCL) 0.001 

Missing n (%) 54 (2.6) 18 (2.8) 36 (2.5)   

 Median (IQR), [mean of Min-Max] 
7.85 (5.8-10.4), 7.5 (5.5-9.7), 7.9 (5.9-10.6), 

[3.11-16.24]   
[3.0-16.7] [2.6-17.8] 

Hemoglobin A1C at Transplant (Percent) <.0001 

Missing n (%) 1037 (50.3) 194 (46.5) 743 (52.1)   

Median (IQR), [Min-Max] 
5.4 (4.9-6.3), 5.6 (5.0-7.1), 

[5.1-7.8] 
5.3 (4.9-6.0), 

[5.0-7.3]   
 [5.1-7.4] 

Hemoglobin at Discharge Post Transplant (GMDL) 0.05 

Missing n (%) 14 (0.7) 4 (0.6) 10 (0.7)   

Median (IQR), [mean of Min-Max] 9.5 (8.6-10.6), 
[7.9-14.8] 

9.4 (8.6-10.4), 
[7.5-14.8] 

9.6 (8.6-10.7), 
[8.1-14.8]   
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Transplant Milestones 

# of days from referral start to 
evaluation start, mean (S.D.) 
(n=number of subjects with non-
missing data) 

113.5 (953.4) 
89.6 (246.4) 

123.1 (1117.3) 
(n=1,130) 0.34 

(n=449) 

# of days from referral end to 
evaluation end, mean (S.D.) 
(n=number of subjects with non-
missing data) 

268.7 (389.9) 
314.4 (378.1) 250.8 (393.7) 

0.005 
(n=449) (n=1,130) 

# of days from evaluation start to 
evaluation end, mean (S.D.) 
(n=number of subjects with non-
missing data) 

280.3 (320.6) 
326.4 (353.0) 262.8 (305.8) 

0.001 
(n=460) (n=1,186) 

# of days from evaluation end to 
waitlist start, mean (S.D.) (n=number 
of subjects with non-missing data) 

-78.2 (271.6) 
-104.9 (300.7) -68.1 (259.3) 

0.03 
(n=460) (n=1,186) 

# of days from waitlist start to waitlist 
end, mean (S.D.) (n=number of 
subjects with non-missing data) 

798.9 (676.8) 
817.2 (719.9) 788.6 (655.3) 

0.58 
(n=521) (n=1,300) 

# of days from waitlist start to 
transplant, mean (S.D.) (n=number of 
subjects with non-missing data) 

799.1 (677.5) 
819.8 (721.9) 787.7 (655.4) 

0.52 
(n=521) (n=1,300) 

 
HCC coding is a payment model designated by the Centers for Medicare and Medicaid Services 
(HCC, Hierarchical Condition Category). CDC high risk guidelines developed by Centers for Disease 
Control in 1994 to notify and protect candidates (CDC, Centers for Disease Control). Length of 
Hospital stay from the day of transplant to the day of discharge. Risk describes risk of active 
infection; Comprised of High (donor +, recipient -), Intermediate (donor -, recipient +), and Low 
Risk (donor -, recipient -). (n=2060, years 2005-2015) 
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Figure 5: Frequency of words in three types of notes graphed by 30DR vs. non-30DR 
patients. 
 
(A) Words Frequently Associated with 30DR in Consultation Notes 
 

 
(B) Words Frequently Associated with 30DR in Selection Conference Notes 
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(C) Words Frequently Associated with 30DR in Discharge Summaries 
 

 
 
Graphs of three different note type examples plotting words according to term frequency. The x-axis 
are patients who did not experience 30DR. The y-axis are patients that did experience 30DR. Words 
on the grey dashed are terms that appear equally as frequent in patients notes that experienced 30DR 
as those that did not. The words appearing closest to the top-right occur more frequently. If a word 
appears closer to the top left of the graph, the word appears more often in patients notes who were 
readmitted within 30-days. (n=2060, years 2005-2015) 
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Table 2: Most Common Words that Precede the Word "Support" Amongst All Notes as 
Identified by Term Frequency 
 

First Word Frequency 
care 1756 

transportation 823 
emotional 536 

social 325 
family 149 
offer 99 

strong 79 
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Figure 6: Top 30 TF-IDF features for Operative, Selection Conference, and Social Work 
notes 
 

 
 
These words are, as measured by TF-DIF, the most important to each of the three example notes: 
Operative (“Op”), Selection Conference (“SC”), and Social Work (“SW”) notes. The transplant team 
uses different language across note types. The words above are those that most frequently appear in 
one document but least frequently appear in all other documents. Thus, they are characteristic of one 
document more than any other and denote the importance of that word to that particular document. 
(n=2060, years 2005-2015) 
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Figure 7: Top 20 Terms in Topic Model using LDA with k=8 Topics  
 

 
The researcher chooses how many topics, k, they want to create, but the topics are generated in an 
unsupervised manner. Beta is the probability of a word appearing in any given topic. The 20 words 
with the highest beta for each topic (k=8) is above. The central theme of each topic is up to the 
researcher’s interpretation. See Discussion section for interpretation. 
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Figure 8: Gamma for Each Topic by Note Type 

 
Each note broken down by the gamma of each topic. Notes include Echocardiography (Echo), 
Progress (Prog), Social Work (SW), Consultation (Con), Operative (Op), History & Physical (HP), 
Discharge (Dc), and Selection Committee (SC) notes. The topic with the highest gamma is identified 
for each document. The gammas for some documents are entirely comprised of one topic, whereas 
the gamma for other documents are spread out across many topics. Gamma is the words in a topic 
generated from a given document. 
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Table 3: Individual Clinical Notes Added to Structured Variables to Create Predictive Model 
 
 LDA Ensemble  TFIDF Ensemble  LDA + TFIDF 

Ensemble 
Datasets  
(Added to 
Structured) 

AUC  95% CI  AUC  95% CI  AUC  95% CI 

Structured Only 0.6523  (0.6218, 
0.6829) 

 0.6523  (0.6218, 
0.6829) 

 0.6523  (0.6218, 
0.6829) 

Consultations 0.6597  (0.6367, 
0.6826) 

 0.6609  (0.6398, 
0.6819) 

 0.6617  (0.6428, 
0.6807) 

Discharge 
Summary 0.6535  (0.6238, 

0.6831) 
 0.6551  (0.6249, 

0.6853) 
 0.6543  (0.6252, 

0.6834) 

Echo 0.65  (0.6202, 
0.6798) 

 0.6504  (0.6215, 
0.6794) 

 0.6469  (0.6178, 
0.6761) 

H & P 0.6552  (0.6290, 
0.6815) 

 0.6622  (0.6369, 
0.6876) 

 0.6585  (0.6347, 
0.6822) 

Operative 0.6494  (0.6218, 
0.6771) 

 0.6421  (0.6155, 
0.6686) 

 0.6362  (0.6104, 
0.6620) 

Progress 0.6633  (0.6386, 
0.6880) 

 0.6635  (0.6406, 
0.6865) 

 0.6668  (0.6463, 
0.6873) 

Selection 
Conference 0.6575  (0.6282, 

0.6868) 
 0.6617  (0.6350, 

0.6883) 
 0.6587  (0.6323, 

0.6850) 

Social Worker 0.6482  (0.6193, 
0.6770) 

 0.6459  (0.6175, 
0.6743) 

 0.6411  (0.6137, 
0.6684) 
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Table 4: Adding Multiple Note Types to Predictive Models for Hospital Readmission after 
Kidney Transplants 
 
 LDA Ensemble  TFIDF Ensemble  LDA + TFIDF 

Ensemble 
Datasets  
(Added to 
Structured) 

AUC  95% CI  AUC  95% CI  AUC  95% 
CI 

Structured Only 0.6523  (0.6218, 
0.6829) 

 0.6523  (0.6218, 
0.6829) 

 0.6523  (0.6218, 
0.6829) 

Consultations + H&P 0.6586  (0.6366, 
0.6807) 

 0.6642  (0.6427, 
0.6856) 

 0.6601  (0.6388, 
0.6814) 

Progress + 
Consultations 0.6664  (0.6446, 

0.6882) 
 0.6661  (0.6473, 

0.6850) 
 0.668  (0.6489, 

0.6871) 
Progress + Discharge 
Summary 0.663  (0.6385, 

0.6875) 
 0.6649  (0.6413, 

0.6884) 
 0.6667  (0.6464, 

0.6870) 

Progress + Echo 0.6595  (0.6326, 
0.6863) 

 0.6595  (0.6356, 
0.6834) 

 0.6598  (0.6361, 
0.6835) 

Progress + H&P 0.662  (0.6377, 
0.6863) 

 0.6679  (0.6465, 
0.6893) 

 0.6657  (0.6442, 
0.6871) 

Progress + Operative 0.6571  (0.6325, 
0.6817) 

 0.6498  (0.6279, 
0.6717) 

 0.6475  (0.6259, 
0.6691) 

Progress + Selection 
Conference 0.6676  (0.6454, 

0.6899) 
 0.6713  (0.6513, 

0.6913) 
 0.6714  (0.6553, 

0.6875) 
Progress + Social 
Worker 0.6574  (0.6324, 

0.6823) 
 0.6553  (0.6331, 

0.6775) 
 0.6544  (0.6337, 

0.6751) 
Progress + 
Consultations + 
Selection Conference 

0.6707  (0.6526, 
0.6888) 

 0.6738  (0.6583, 
0.6892) 

 0.6734  (0.6635, 
0.6834) 

Consultations + H&P 
+ Progress + 
Selection Conference 

0.6683  (0.6519, 
0.6847) 

 0.6744  (0.6587, 
0.6900) 

 0.6704  (0.6593, 
0.6815) 

Consultations + 
Discharge_Summary 
+ Echo + Progress + 
Selection Conference 

0.6672  (0.6486, 
0.6859) 

 0.6724  (0.6563, 
0.6884) 

 0.6699  (0.6589, 
0.6810) 

Consultations + 
Discharge Summary 
+ Echo + H&P + 
Operative + Progress 
+ Selection 
Conference + Social 
Worker 

0.6574  (0.6400, 
0.6749) 

 0.6608  (0.6454, 
0.6763) 

 0.6535  (0.6397, 
0.6674) 

Best Score 0.6707    0.6744    0.6734   
Improvement 1.84%     2.21%     2.11%    
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Table 5: Ranking top predictive features for higher readmission of kidney transplant 
recipients (2005-2015) in highest performing predictive model from Table 4 
 

Rank Data Source Feature 
1 Structured Albumin minimum at Discharge 
2 Structured Creatinine maximum prior to transplant 
3 Structured Recipient CMV infection risk: High 
4 Structured Albumin minimum at time of transplant 
5 Structured Hepatitis C Status of Recipient 
6 Structured Creatinine prior to transplant 
7 Structured Race (Recipient) 
8 Structured Creatinine maximum at Discharge 
9 Structured Prograf maximum at Discharge 
10 Structured Recipient EBV infection risk: High 
11 Structured Donor Type (Living vs. Deceased) 
12 Structured Hemoglobin minimum at Discharge 
13 Structured # of days from referral start to evaluation start 
14 Structured Recipient HCC Risk 
15 Structured Albumin maximum at Discharge 
16 Structured Albumin at Discharge 
17 Structured Donor Blood Type (ABO) 
18 Structured Recipient White Blood Cell count at time of Transplant 

19 TFIDF: Progress 
Notes "mg" 

20 Structured Change in Albumin from Transplant to Discharge 
 
 
HCC coding is a payment model designated by the Centers for Medicare and Medicaid Services 
(HCC, Hierarchical Condition Category). CDC high risk guidelines developed by Centers for Disease 
Control in 1994 to notify and protect candidates (CDC, Centers for Disease Control). Length of 
Hospital stay from the day of transplant to the day of discharge. Risk describes risk of active 
infection; Comprised of High (donor +, recipient -), Intermediate (donor -, recipient +), and Low 
Risk (donor -, recipient -). (n=2060, years 2005-2015) 
 
 
  


