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Abstract 

Examining the Development and Functional Role of Spatial-Numerical Associations 

By Lauren S. Aulet 

 

Spatial-numerical associations (SNAs) have been documented across development and 

species. Yet the functional significance of such ubiquitous associations remains unclear. 

To test the prominent hypothesis that SNAs are related to mathematical proficiency, we 

examined the relation between SNAs and math proficiency in 5- to 8-year-old children. 

We found evidence of SNAs with two paradigms, a magnitude comparison task and the 

place-the-number task, a novel paradigm for examining SNAs with minimal task 

demands, with a significant correlation between the two, suggesting they measure a stable 

SNA (e.g., left-to-right oriented mental number line). Although there were no 

correlations between children’s SNAs on the place-the-number task and any measure of 

math ability, children’s SNAs on the magnitude comparison task were negatively 

correlated with their performance on a measure of cross-modal arithmetic, suggesting that 

children with stronger SNAs were less competent at cross-modal arithmetic, an effect that 

held when controlling for age and general cognitive abilities. Despite some evidence for a 

negative relation between SNAs and math ability in adulthood, we argue that the effect 

here may reflect task demands specific to the magnitude comparison task and not an 

impediment of the mental number line. Moreover, we suggest that differences in task 

demands could account for contradictory findings in the literature. We conclude with a 

discussion of the multi-faceted nature of the mental number line and how these different 

features may relate to mathematical ability. 
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Examining the Development and Functional Role of Spatial-Numerical Associations 

Interest in the spatial nature of numerical representations can be traced back to as 

early as 1880 to Francis Galton’s work on ‘number forms’ (Galton, 1880). However, it 

was not until the discovery of the SNARC (Spatial Association of Response Codes) 

effect that there was an empirical account of these representations (Dehaene, Bossini, & 

Giraux, 1993). In this paradigm, participants made parity judgments (odd/even) to Arabic 

numerals using left and right response keys. Participants responded significantly faster to 

smaller numbers when using the left key and to larger numbers when using the right key, 

providing evidence of a left-to-right spatial representation of number, the so-called 

mental number line. In the 25 years since this discovery, many researchers have aimed to 

understand the ontogenic and phylogenic origins of these spatial-numerical associations 

(SNAs). Because early work regarding the mental number line dealt primarily with 

symbolic numerical stimuli and was shown to be shaped by reading direction (Dehaene et 

al., 1993; Shaki, Fischer, & Petrusic, 2009), it was initially hypothesized that SNAs arose 

from experience with linguistic conventions (i.e., reading/writing). Although cultural 

experience certainly modulates the directionality of SNAs (McCrink, Shaki, & 

Berkowitz, 2014; Zebian, 2005), recent research has provided evidence for the existence 

of SNAs in nonhuman animals (Drucker & Brannon, 2014; Rugani, Vallortigara, Priftis, 

& Regolin, 2015) and preliterate children (de Hevia, Addabbo, Girelli, & Macchi-Cassia, 

2014; Opfer, Thompson, & Furlong, 2010) using non-symbolic stimuli. Nevertheless, 

despite accumulating evidence for the prevalence of SNAs, there are open questions 

regarding both their developmental trajectory and functional significance. 

Development of SNAs 
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Assessing SNAs developmentally has proven difficult, as most paradigms utilize 

relatively advanced numerical judgments (e.g., parity), bimanual responses, and/or 

reaction time data, which are generally unsuitable for use with young children. To 

combat these difficulties, several researchers have devised alternative paradigms to assess 

SNAs in children. For example, when making magnitude judgments (i.e., is the presented 

Arabic numeral larger or smaller than 5?), as opposed to parity judgments, van Galen and 

Reitsma (2008) found evidence of SNAs in 7- to 9-year old children. Patro and Haman 

(2012) further addressed these concerns by using a non-symbolic magnitude comparison 

task and unimanual responses. In this paradigm, 2- to 4-year-olds judged which of two 

simultaneously presented arrays contained more items by selecting the array with larger 

numerosity. They found evidence for SNAs, with significantly faster responses when the 

target array was on the right than on the left. They also showed a similar, although 

weaker, effect when children had to select the array which was smaller in numerosity, 

such that children exhibited marginally faster responses when the target array was on the 

left than on the right. This provided further support for the existence of SNAs prior to 

extensive experience with reading or mathematics. Even with some evidence for spatial 

organization of number throughout development, however, it is unclear how reliable 

these effects are given the limited research in this area thus far. Moreover, and critically, 

little is known about functional significance of these associations. Are SNAs simply 

reflective of how numerical representations are organized in the mind and brain? Or do 

they provide support for quantitative reasoning, particularly in the domain of 

mathematics? 

Functional Significance of SNAs 
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One prominent hypothesis is that SNAs may be related to mathematical 

reasoning, such that stronger SNAs would be accompanied by better math abilities 

(Opfer, Thompson, & Furlong, 2010; Fischer & Shaki, 2014). Yet previous research in 

fact found evidence for negative relations in adults, such that stronger SNAs are 

associated with poorer math ability. Importantly, however, this has only been observed in 

extreme populations, with participants with math difficulties showing stronger SNAs than 

controls (Hoffman et al., 2014) and controls showing stronger SNAs than professional 

mathematicians (Cipora et al., 2016). Furthermore, although there is some evidence for a 

negative relation, several studies have reported no relationship between SNA and math 

competence (Bull, Cleland, & Mitchell, 2013; Cipora & Nuerk, 2013). Nevertheless, 

considering the early emergence of SNAs and the known relations between spatial and 

mathematical skills during development (Lauer & Lourenco, 2016; Mix & Cheng, 2012; 

Uttal et al., 2013; Veridine, Golinkoff, Hirsh-Pasek, & Newcombe et al., 2017), it is 

important to examine the potential functional role of SNAs at this time. Given the 

abstract nature of numerical and mathematical concepts, spatial instantiation of these 

concepts would likely be of maximum utility when these difficult concepts are initially 

being acquired (Barsalou, 2008; Lakoff & Núñez, 2000). 

 As highlighted above, SNAs have been difficult to assess in children, impeding 

study of their potential utility in the critical early stages of mathematical development. As 

a result, only a few studies have assessed the relation between SNAs and math ability in 

childhood. And like the work on SNAs and math ability in adulthood, the findings thus 

far are mixed. Using the same paradigm as van Galen and Reitsma (2008), Hoffman, 

Hornung, Martin, and Schiltz (2013) had 5-year-olds complete color and magnitude 
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judgments on Arabic numerals. Children also complete measures of numerical 

competence (verbal counting, digit writing, or number line estimation). Although 

children showed evidence of SNAs when judging the color of Arabic numerals, 

replicating van Galen and Reitsma (2008), with younger children, individual performance 

did not correlate with any measure of numerical competence. When SNAs were indexed 

using a magnitude judgment task, there was a correlation between children’s SNAs and 

some of the measures of numerical competence (verbal counting and Arabic digit 

writing). However, the SNA effect on this task was not significant at the group-level, 

raising questions about the reliability of children’s SNAs in this study and, thus, the 

reported correlations with numerical competence.  

In other work, Bachot, Gevers, Fias, and Roeyers (2005) examined a group of 16 

children from ages 7 to 12 years with visuospatial deficits, some of whom also had 

dyscalculia, an arithmetic disorder. They found that these children did not exhibit SNAs 

on a symbolic magnitude comparison task, whereas a control group of children, matched 

for age and gender, did exhibit display evidence of SNAs. However, children with 

visuospatial and math deficits were not differentiated and thus, it is unclear whether the 

lack of a significant SNA was driven by poor math ability or by more general 

visuospatial deficits. In another study with a larger sample (N = 429), Schneider, 

Grabner, and Paetsch (2009) found evidence of SNAs in 5th and 6th graders, but no 

relation between SNA strength and mathematical achievement, assessed by a measure of 

conceptual knowledge of decimals/fractions and by the grade received in their 

mathematics class. Given the age of these children (M = 11.3 years) and their relatively 
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advanced mathematical ability, however, it is unclear whether this finding is informative 

regarding the role of SNAs in mathematical development.  

Altogether, the findings on the relation between SNAs and math abilities are 

inconclusive and difficult to interpret for multiple reasons. First, it is unclear which SNA 

paradigms are developmentally appropriate and, further, what, if any, comparisons can be 

made across these different paradigms. Thus far, there lacks strong evidence that these 

tasks measure the same construct, as evident by the inconsistent findings. Furthermore, 

although previous research has operated under the broad assumption that SNAs may be 

related to math ability, few targeted predictions have been made regarding the specific 

age at which this relation would be most expected and what specific components of math 

ability might benefit. Consequently, the variability in age range examined and math 

measures administered has only furthered the difficulty in drawing conclusions from the 

literature in this area. Even in cases where a potential link between SNAs and math 

ability has been found, it remains possible that this connection can be accounted for by 

more general cognitive abilities such as working memory. Overall, the limitations of 

previous work in this area necessitate a comprehensive examination of the validity of our 

developmental paradigms for assessing SNAs and their potential relation to math 

performance.  

Present Study 

 In the present study, we assessed performance on two SNA tasks and multiple 

measures of mathematical competence in children from ages 5 to 8 years. This age range 

was selected because it is a time when children understand number concepts but have not 

yet mastered basic arithmetic. Because previous research suggests that not all SNA 
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paradigms may be related (Cheung, Ayzenberg, Diamond, Yousif, & Lourenco, 2015; 

Hoffman et al., 2013), one possibility is that the inconsistent findings in the literature 

may be due to differences in the SNA paradigms used. Thus, we included two different 

SNA tasks, one non-symbolic and one symbolic, to assess whether they are in fact 

evaluating the same construct. The first SNA task, a non-symbolic magnitude comparison 

task, was implemented based on previous research suggesting this task can measure 

SNAs in children as young as preschool age (Patro & Haman, 2012). Patro and Haman 

(2012) compared performance on ‘More’ and ‘Less’ conditions of this task across 

participants, but, here, all children completed both conditions. The second SNA task was 

a novel paradigm, the place-the-number task (adapted from Aulet, Yousif, & Lourenco, 

2017), implemented to examine SNAs with reduced task demands. In contrast to the 

magnitude comparison task, this task was designed to evaluate SNAs for symbolic 

numbers (Arabic numerals). With the inclusion of non-symbolic and symbolic SNA 

paradigms, we not only aimed to assess the relation between these two tasks, but also to 

non-symbolic and symbolic measures of mathematical ability.  

Because there has been little research on the link between SNAs and math ability 

thus far, it is possible that inconsistent findings regarding this relation are a result of 

differences in the math measures used. Mathematical skill is not monolithic; thus, it is 

necessary first to make predictions regarding what component(s) of math ability are most 

likely to be related to SNAs.  As there are different mechanisms by which SNAs could 

facilitate mathematical understanding, different hypotheses have been put forth to explain 

this potential connection. For this reason, in the present study, children were administered 

three tasks implemented to target specific areas of an emerging math competency. One 
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possibility is that grounding numerical concepts in a common visuospatial organization 

may support children’s understanding of number as an abstract concept (Cipora, Patro, & 

Nuerk, 2015). To this end, children completed a cross-modal arithmetic task (adapted 

from Barth, Beckmann, & Spelke, 2008) to assess the extent to which children’s 

numerical representations are modality independent. Another, though not mutually 

exclusive, possibility is that since approximate arithmetic operations are associated with 

spatial-directional biases (i.e., ‘operational momentum’; Knops, Viarouge, & Dehaene, 

2009), the strength of children’s SNAs may relate to their performance on tasks relying 

on these operations. Thus, children completed an approximate symbolic arithmetic task 

(adapted from Gilmore, McCarthy, & Spelke, 2007). We also included a standardized 

measure of exact symbolic arithmetic, namely the Woodcock Johnson Calculation subtest 

(WJ; Woodcock, McGrew, & Mather, 2001a), as a general measure of symbolic 

mathematical understanding. Lastly, because previous work reporting a relation between 

SNAs and math ability (e.g., Hoffman et al., 2013) did not control for age or general 

intelligence, the specificity of this potential relation remains unclear. To ensure that any 

relation found was not the result of general cognitive abilities, we included several 

control measures assessing verbal proficiency (WJ - Picture Vocabulary subtest; 

Woodcock, McGrew, & Mather, 2001b), verbal working memory (WJ - Auditory 

Working Memory subtest; Woodcock et al., 2001b), and spatial short-term memory 

(Kaufman Assessment Battery for Children; Kaufman & Kaufman, 1983). 

Method 

Participants 
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 Sixty-six children (28 female) between the ages of 5 and 8 years of age (M = 

74.65 months, SD = 9.62) from the greater Atlanta area participated in this study. One 

child was excluded from the analyses for failing to complete multiple tasks. Caregivers 

provided written informed consent on behalf of their children. All children received 

stickers throughout the session to maintain motivation, as well as a small gift at the end 

of the session for participating. Experimental procedures were approved by the local 

ethics committee. 

Tasks and Procedure 

Place-the-number Task  

 In this task (adapted from Aulet, Yousif, & Lourenco, 2017), children viewed an 

Arabic numeral (1-9) presented in black font within a rectangle (white fill with black 

outline; 918 × 495 pixels). At the start of a trial, the number appeared within the rectangle 

(the “whiteboard”) and children were instructed to press a virtual button located at the 

bottom of the screen, which resembled a whiteboard eraser with the word “START” 

written on it. At this time, the “whiteboard” disappeared and an image of a dry-erase 

marker appeared on the center of the screen. Children then tapped this image, at which 

time the “whiteboard” reappeared. They were instructed to tap the location on the screen 

where the number had previously appeared. The number spawned at the tapped location. 

Adjustments to responses could be implemented by tapping and dragging the number to a 

new location. When satisfied with the placement of the number, children pressed a button 

located at the bottom of the screen to confirm their response and proceed immediately to 

the next trial. At the start of the task, children received the following instructions: “In this 

game, you’ll see a number written on the whiteboard. Your job is to remember exactly 
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where it was. We will erase the number by pressing the eraser button. Then, we can tap 

the marker button to pick up the marker. Now your job is to tap the screen to put the 

number back exactly where it was on the whiteboard.”  

Presentation of numbers and duration of response window were untimed. 

Children completed 72 trials total (each numeral, 1-9, presented 8 times each).  To ensure 

children remained focused, these trials were split into four blocks consisting of 18 trials 

each (each number presented twice; random order), administered at fixed points in the 

session (see General Procedure below for more details). At the beginning of the 

remaining three blocks, the experimenter stated: “Remember, your job is to place the 

number back exactly where it was.”  Following the completion of each block, children 

were given a sticker.  

 As a measure of children’s spatial-numerical associations, the primary variable of 

interest was children’s bias along the horizontal axis. For each trial, we calculated the 

difference between the x-coordinate of the children’s final placement and x-coordinate of 

the number’s original location, such that a negative value represents a more leftward 

placement in comparison to the original location, and a positive value represented a more 

rightward placement. For each participant, we then calculated the mean bias for each 

number and calculated a slope by regressing these values onto their corresponding 

numerical value. Thus, in this paradigm, a positive slope represents the canonical left-to-

right mental number line. 

Magnitude Comparison Task 

 Because of previous research suggesting that children perform differently on 

magnitude comparison tasks when asked to select the numerically larger array compared 
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to when asked to select the numerically smaller array (Patro & Haman, 2012), we had all 

children complete both ‘More’ and ‘Less’ conditions of this task (order counterbalanced 

across children).  In the ‘More’ condition, they were asked to judge which of two dot 

arrays was larger in numerosity. In the ‘Less’ condition, they were asked to judge which 

of two arrays was smaller in numerosity.  SNAs on this task were measured by a 

congruency score: the difference in accuracy on congruent and incongruent trials 

(congruent trials were those where the array containing more dots was presented on the 

right). 

Dot arrays were generated with a script created by Gebuis and Reynvoet (2011). 

For each pair of arrays, this script generates the non-numerical properties of the arrays 

according to one of four possible configurations: (1) larger number has a larger average 

dot diameter and a larger convex hull, (2) larger number has a larger average dot diameter 

but a smaller convex hull, (3) larger number has a smaller average dot diameter and a 

smaller convex hull and (4) larger number has a smaller average dot diameter but a larger 

convex hull. The configuration for each pair was chosen at random. These arrays (5.4 x 

5.4 in) were arranged horizontally on screen, each below an image of a Star Wars 

character (BB-8 and R2D2). 

Prior to beginning the practice trials, children were told: “BB-8 and R2D2 are on 

a quest to explore the galaxy. In this game, you will see that both BB-8 and R2D2 have 

found some stars. In this game, your job will be to pick which has more (/less) stars.” 

Children were then shown an example of a trial and asked to indicate which had more 

(/less) stars to ensure they understood the concept of more (/less) before proceeding. In 

each condition, children completed three practice trials, during which they were given 
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corrective feedback. In the practice trials, the two arrays differed by a 1:2 ratio (i.e., 

arrays of 4 and 8, 5 and 10, and 8 and 16). In all test trials, the two arrays differed by a 

4:5 ratio (i.e., arrays of 4 and 5, 8 and 10, 12 and 15, 16 and 20). Each ratio pair was 

presented a total of four times; twice in the congruent and twice in the incongruent 

positions. Children completed 16 test trials per condition, for a total of 32 test trials. 

Based on previous research (Mazzocco, Feigenson, & Halberda, 2011), arrays were 

visible for 1200 ms before being occluded; arrays remained occluded until children made 

a response. All responses were made on the touchscreen. After the children made a 

response, there was a 1500 ms ISI before proceeding to the next trial.  

Cross-modal Arithmetic Task 

 In this task (adapted from Barth et al., 2008), we assessed children’s ability to 

add/subtract a sequence of sounds to/from an array of dots. First, children were 

familiarized with an example animation where the appearance (addition condition) or 

disappearance (subtraction condition) of blue dots, one-by-one, was paired with a sound. 

After this animation, children were shown a new array of blue dots that was subsequently 

occluded by a matching blue occluder. They were told that if they listened carefully, then 

they could hear more blue dots “appear” (or ”disappear”), at which time they heard a 

sequence of sounds. The experimenter then asked the children whether there would be 

more or less dots behind the occluder. If children answered correctly (“more” for addition 

and “less” for subtraction) in these demonstrations, then the experimenter proceeded to 
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the practice trials. If children answered incorrectly, then the experimenter repeated the 

previous animations again1.  

 Children were given two practice trials in which they were shown an array of blue 

dots (7.6 x 5.6 in) on the left side of the screen, which was then occluded. After 

occlusion, children heard a sequence of sounds, representing the 

appearance/disappearance of blue dots. While the blue occluder remained on screen, an 

array of red dots appeared (7.6 x 5.6 in) on the right side of the screen, and was then 

covered by a matching red occluder. Children were then asked whether blue or red had 

more dots. After their response, the experimenter removed the occluders to reveal both 

arrays, providing children corrective feedback. In both practice trials, blue and red dots 

differed by a 1:2 ratio (one practice trial with more blue dots and one with more red). The 

timing of these practice trials was controlled by the experimenter to ensure maximum 

comprehension. In all stages of this task, the blue arrays/occluders and red 

arrays/occluders were matched for luminance.  

Following the practice trials, children completed 12 test trials (randomly ordered). 

In these trials, blue and red dots differed by one of three ratios: 4:5, 4:6, or 4:7. Children 

completed four trials of each ratio (two trials where blue array was more numerous and 

two where red array was more numerous). Element size was held constant across all 

arrays/trials. Thus, an array which was larger in numerosity was also larger in total 

surface area. However, because the task required the addition/subtraction of elements 

across modality, reliance on non-numerical cues alone could not result in successful 

                                                           
1     If children answered incorrectly a second time, then the experimenter discontinued testing of this task. 

This only occurred for one child, who was removed from all analyses for failing to complete multiple tasks. 
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(above chance) performance on this task. In accordance with the original task (Barth et 

al., 2008), the same individual sound (duration = 15 ms) was used in all sound sequences. 

The sounds in each sequence were presented in an irregular rhythm. Total duration of the 

sequences ranged from approximately 1 to 3 s. In the addition condition, final set sizes 

ranged from 16 to 54 (M = 35). In the subtraction condition, final set sizes ranged from 7 

to 30 (M = 16).  

At the start of each test trial, an array of blue dots (against a solid black 

background) appeared and remained visible for 3 s. Then, the blue array was occluded 

and remained occluded for 6 s while the sequence of sounds played. Following this 

presentation, an array of red dots appeared and remained visible for 3 s and then was 

occluded. Children could only respond to select which array was more numerous once 

both arrays were occluded. Responses were made using the touchscreen. Immediately 

after children made their response, the experimenter pressed a key to proceed to the next 

trial. After children completed the addition condition, the same procedure was completed 

for the subtraction condition. All children completed the addition condition prior to the 

subtraction condition. Recent research suggests that the presentation of relatively difficult 

trials at the start of a task negatively impacts performance on subsequent (easier) trials 

(Odic, Hock, & Halberda, 2014). Thus, to avoid such carryover effects, the order was set 

as fixed, with addition prior to subtraction given evidence of better performance on 

addition than subtraction (Barth et al., 2008).  

Approximate Symbolic Arithmetic Task   

 In this task (adapted from Gilmore et al., 2007), children were asked to solve 

approximate addition or subtraction problems, presented verbally with corresponding 
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visual displays (i.e., images of cartoon children with corresponding Arabic numerals). An 

example problem is: “Sarah has twenty candies in her bag, and then she gets twenty-five 

more. John has thirty candies. Which one of them has more candies?” Following the 

reading of the quantities, the corresponding visual displays containing the Arabic 

numerals were occluded to discourage exact calculation. After the experimenter finished 

presenting the problem, children responded by pointing to, or naming, the character who 

they believed had more candies. Children completed two conditions: addition and 

subtraction. Within each condition, children completed 12 trials, with comparisons within 

each trial consisting of one of three possible ratios: 4:5, 4:6, or 4:7 (equal number of 

ratios across trials). In the addition condition, final set sizes ranged from 12 to 58 (M = 

30). In the subtraction condition, final set sizes ranged from 10 to 56 (M = 28). 

Numerosities were matched as closely as possible across the three ratios. Trials were 

randomly ordered. As with the cross-modal arithmetic task, the order was fixed (Odic et 

al., 2014), such that the addition condition was administered before the subtraction 

condition. This task was untimed.  

Exact Symbolic Arithmetic Test 

Children completed the Woodcock Johnson Calculation subtest, a standardized 

assessment of symbolic arithmetic ability (WJ; Woodcock et al., 2001a). Specifically, the 

WJ – Calculation test measures participants’ ability to perform exact computation using 

addition, subtraction, multiplication, and division with whole numbers, rational numbers, 

and variables. This test is untimed and administered in paper-and-pencil format following 

a standard protocol, such that testing was discontinued once the child answered six 
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consecutive questions incorrectly. This test has good internal consistency, as measured by 

a split half procedure (Calculation, r = .85; McGrew, Woodcock, & Schrank, 2007).  

Control Measures 

Children completed two subtests from the Woodcock Johnson (WJ; Woodcock et 

al., 2001a; 2001b) that served as controls for general cognitive functioning: verbal 

proficiency (WJ –  Picture Vocabulary) and verbal working memory (WJ – Auditory 

Working Memory). Additionally, children also completed the Spatial Memory subtest 

from the Kaufman Assessment Battery for Children (K-ABC; Kaufman & Kaufman, 

1983) as an assessment of spatial short-term memory and to serve as another non-math 

control measure. Each test has good internal consistency, as measured by a split half 

procedure (Picture Vocabulary, r = .81; Auditory Working Memory, r = .96; K-ABC-

Spatial Memory, r = .80; Kaufman & Kaufman, 1983; McGrew et al., 2007).  

General Procedure 

All computerized tasks were presented on a Hewlett Packard Compaq Elite 8300 

23” all-in-one desktop computer. Children sat approximately 40 cm from the screen for 

all computerized tasks. For ease of administration, a fixed order of tasks was used such 

that tasks requiring similar materials were administered consecutively, with computerized 

tasks preceding paper-and-pencil tasks. Of the computerized tasks, all children first 

completed the magnitude comparison task, followed by the cross-modal arithmetic and 

approximate symbolic arithmetic tasks (order-counterbalanced). Of the paper-and-pencil 

tasks, all children first completed WJ – Calculation. Then, children completed all control 

measures in a randomized order. All three control measures were untimed (for details on 

the procedure for each task, see Kaufman & Kaufman, 1983; McGrew et al., 2007). 
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Children completed four blocks of the place-the-number task, administered at fixed 

points in the session: at the start of the session (block 1), after completion of the 

magnitude comparison task (block 2), after the completion of cross-modal arithmetic and 

approximate symbolic arithmetic tasks (block 3), and after the completion of all 

standardized tasks (block 4). 

Results 

SNA Tasks 

Place-the-number Task 

Of the total sample (N = 65), five children were excluded from the analyses of the 

place-the-number task for failing to complete all four blocks of this task due to time 

constraints or fussiness (see Table 1 for descriptive data on all measures). In all analyses 

of this task, data from all four blocks were combined2. Furthermore, two children were 

excluded from these analyses due to poor accuracy (> 2.5 SD from the group mean), 

where accuracy was calculated as the absolute distance between the number’s original 

location and the child’s final placement. The remaining children (N = 58) had a mean 

accuracy of 63.02 pixels (SD = 24.32).  

As described above, to test for an SNA on this task, the variable of interest was 

children’s bias along the horizontal axis3. As is typical in SNA paradigms (Fias et al., 

                                                           
2     Comparisons of performance across blocks were not conducted due to insufficient data per block (18 

trials; 2 trials per numeral).  

3     Analysis of children’s bias along the vertical axis yielded no evidence of a significant SNA, p > .7. 

Previous research suggests SNAs in the vertical axis may be less reliable (Holmes & Lourenco, 2012). 

However, it is also possible that the rectangular space used here constrained bias in the vertical dimension. 
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1996), for each child, a slope was calculated by regressing mean bias for each number 

onto the corresponding numerical value. Children’s slopes were significantly greater than 

zero, t(57) = 2.02, p < .05, d = .26 (see Figure 1), and the majority of children (37 of 58) 

exhibited a positive slope (binomial test, p < .05), consistent with the canonical left-to-

right mental number line.  

Magnitude Comparison Task 

Of the total sample, all children (N = 65) were included in analyses of the ‘More’ 

condition. One child was excluded from the analyses of the ‘Less’ condition due to 

experimenter error. Children’s accuracy revealed performance above the chance level of 

.50 in both conditions (‘More’: M = .71, SD = .15, t[64] = 11.41, p < .001, d = 1.42; 

‘Less’: M = .70, SD = .12, t(63) = 13.72, p < .001, d = 1.71), with no significant 

difference between conditions, t(63) = .008, p > .99. Furthermore, a zero-order 

correlational analysis showed that children’s accuracy in these two conditions was 

significantly correlated, r(62) = .27, p < .05. Consequently, all further analyses utilizing 

this task were conducted using composite scores. For each child, we calculated overall 

accuracy (percent total trials correct across both conditions). To assess children’s SNAs 

on this task, we calculated a total congruency score as the difference between correct 

congruent and incongruent trials (see Figure 2), such that a positive congruency score 

represented a stronger SNA (greater accuracy on congruent than incongruent trials). 

Children exhibited average congruency scores significantly greater than zero, M = .60, 

SD = 2.23, t(63) = 2.13, p < .05, d = .27, here, again, suggesting a significant left-to-right 

mental number line 

Relation Between SNA Tasks 
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 To test the relation between the two SNA tasks (place-the-number and magnitude 

comparison), we conducted a correlational analysis between children’s slopes on the 

place-the-number task and total congruency scores on the magnitude comparison task, 

while controlling for accuracy on the two tasks to account for differences in task 

demands. There was a significant correlation between children’s performance on the two 

SNA tasks, rp(53) = .30, p < .05, suggesting that these two tasks tap a common construct 

(see Figure 3). Further, they remained significantly correlated after additionally 

controlling for age, rp(52) = .30, p < .05.  To ensure that these correlations were not the 

result of undue influence from a subset of data points, we examined the data for outliers. 

No data points qualified as bivariate outliers using the criterion of 2.5*SD from the mean. 

Math Tasks 

Cross-modal Arithmetic Task 

Nine children were excluded from the analyses for failing to complete one or both 

conditions of this task (see below for exclusion criteria). With the remaining sample (N = 

56), performance was significantly above the chance level of .50 (M = .66, SD = .11), 

t(55) = 10.50, p < .001, d = 1.41. Of this sample, 51 children exhibited above chance 

performance.  

A repeated measures analysis of variance (ANOVA) with operation (addition and 

subtraction) and ratio (4:5, 4:6, and 4:7) as within-subject variables found a marginal 

effect of operation, F(1, 55) = 3.81, p = .06, η²  = .03, suggesting that children may have 

had greater difficulty with subtraction. There was also a significant effect of ratio, F(2, 

110) = 7.11, p < .01, η²  = .06, and a linear contrast analysis revealed that performance 

improved as ratio decreased, F(1, 55) =  11.64, p < .01, η²  = .07. There was no 
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interaction between operation and ratio, p > .94.  Although the effect of 

operation/condition was only marginal, we conducted subsequent analyses on each 

condition separately for completeness and consistency with previous research.  

Addition. Five children were excluded from analyses of the addition condition 

(three failed to provide correct responses during the second repetition of the practice 

phase; two always chose the left array). Of the remaining sample (N = 60), performance 

was significantly above the chance level of .50 (M = .68, SD = .13), t(59) = 10.62, p < 

.001, d = 1.37, consistent with the original findings of Barth et al. (2008). Moreover, 

performance was above chance at each ratio, ps < .001 (see Figure 4). A repeated 

measures ANOVA revealed that although there was no significant effect of ratio (p > 

.13), a linear contrast analysis yielded a marginal linear trend, such that performance 

improved as ratio decreased, F(1, 59) = 3.67, p = .06, η² = .03.  

Subtraction. Nine children were excluded from analyses of the subtraction 

condition (five were not administered the task after failure to complete the addition task; 

three children always chose the right array; one child was excluded due to experimenter 

error). As in the addition task, the remaining children (N = 56) performed above chance 

on the subtraction task, M = .64, SD = .16, t(55) = 6.37, p < .001, d = .85. Again, 

performance was above chance at all three ratios (see Figure 5). A repeated measures 

ANOVA revealed a significant main effect of ratio, F(2, 110) = 5.12, p < .01, η² = .04, 

and a linear contrast analysis further revealed a significant linear trend, F(1, 55) = 7.67, p 

< .01, η² = .05, such that performance improved as ratio decreased, consistent with 

previous findings and the addition condition. 

Approximate Symbolic Arithmetic Task  
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Thirteen children were excluded from the analyses for failing to complete one or 

both conditions of this task (see below for exclusion criteria). With the remaining sample 

(N = 53), performance was significantly above the chance level of .50 (M = .76, SD = 

.15), t(52) = 12.56, p < .001, d = 1.72. Of this sample, 50 children exhibited above chance 

performance. A repeated measures analysis of variance (ANOVA) with operation 

(addition and subtraction) and ratio (4:5, 4:6, and 4:7) as within-subject variables found a 

significant effect of operation, F(1, 52) = 4.66, p < .05, η² = .02, such that children were 

more accurate for addition than subtraction. There marginal effect of ratio, F(2, 104) = 

3.02, p = .05, η² = .02. A linear contrast analysis showed a significant linear trend, such 

that performance improved as ratio decreased, F(1, 55) = 11.64, p < .01, η² = .07. There 

was no interaction between operation and ratio, p > .13. Due to the significant effect of 

operation, we conducted subsequent analyses on each condition separately. 

Addition. Three children were excluded from analyses of the addition task for 

always choosing the left array. With the remaining sample (N = 62), performance on this 

task was significantly above the chance level of .50, M = .77, SD = .19, t(61) = 11.14, p < 

.001, d = 1.42. Performance was above chance at all three ratios (see Figure 6). A 

repeated measures ANOVA revealed a significant main effect of ratio, F(2, 122) = 3.64, 

p < .05, η²  = .02, though there was not a significant linear trend (p > .27). 

Subtraction. Twelve children were excluded from analyses of the subtraction task 

for always choosing the right array. With the remaining sample (N = 53), performance on 

this task was significantly above chance, M = .73, SD = .17, t(52) = 9.76, p < .001, d = 

1.34. Performance was above chance at all three ratios (see Figure 5). A repeated 

measures ANOVA showed no effect of ratio and no significant linear trend (ps > .11). 
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Exact Symbolic Arithmetic Test 

Children’s raw scores on the Woodcock Johnson Calculation Subtest ranged from 

0 to 14 (M = 6.71, SD = 4.21). Because several children (N = 9) received a score of zero 

on this test we were unable to calculate a standardized score for these children.  Of the 

children who received standardized scores, the mean score (M = 115.20, SD = 11.95) is 

classified as high average (Schrank, Mather, & Woodcock, 2004). 

Relation Between Math Tasks 

 To assess the relation between the math tasks, we first conducted a series of zero 

order correlations (see Table 2). Because the difference in accuracy between cross-modal 

addition and subtraction did not reach statistical significance (p = .06; η² = .03), 

correlation analyses were conducted with a measure of overall accuracy across these 

conditions, which also served to maximize power. Further, because several children did 

not receive a standardized score on the WJ – Calculation subtest, correlation analyses 

utilized the raw scores on this measure, controlling for age separately.  

Performance on the cross-modal arithmetic task4 and the addition condition of the 

approximate symbolic arithmetic task were significantly positive correlated, r(52) = .34, 

p <.05, such that children who performed better on cross-modal arithmetic also 

performed better on approximate symbolic addition. Further, performance on these tasks 

remained significantly correlated after controlling for age, rp(51) = .29, p < .05. This 

relation likely reflects the common calculation type (approximate, as opposed to exact, 

                                                           
4     Correlations were also conducted for cross-modal addition and subtraction conditions separately (See 

Table 2). These were not reported in the main text due to reduced power when evaluating these conditions 

separately. 
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arithmetic) across the two tasks, despite differences in numerical format (non-symbolic 

vs. symbolic). We also found a significant correlation between approximate symbolic 

arithmetic and WJ – Calculation, r(51) = .64, p < .001, such that children who performed 

better on approximate symbolic arithmetic also performed better on WJ – Calculation, a 

measure of exact symbolic arithmetic. Subsequent analyses, however, revealed only a 

marginal relation between these two measures after controlling for age, rp(50) = .27, p < 

.06, suggesting that this relation is likely largely explained by age. 

Control Measures 

Mean scores and other descriptive data on all control measures are presented in 

Table 1. 22 

Is There a Relation Between Children’s SNAs and Math Performance? 

The primary aim of the present study was to examine the potential links between 

individual differences in the strength of children’s SNAs and their mathematical 

performance. To test this possibility, we first conducted zero order correlations between 

children’s SNAs and performance on each math tasks. We found no significant 

relationship between children’s slopes on the place-the-number task and accuracy on any 

of the math tasks (ps > .15). In particular, there were no correlations between place-the-

number and cross-modal arithmetic, regardless of whether the analyses were conducted 

with the measure of overall accuracy or split by condition (addition vs. subtraction). 

Further, there were no significant correlations between place-the-number and 

approximate symbolic arithmetic or exact symbolic arithmetic (WJ – Calculation). Thus, 

when using the place-the-number task to evaluate SNAs, there is no apparent relation 

between SNA strength and mathematical ability.  
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When we used congruency scores on the magnitude comparison task as a measure 

of SNAs, we found a significant correlation with performance on only one measure of 

math ability: cross-modal arithmetic, r(53) = - .33, p < .05 (all other ps > .07). This 

negative correlation revealed that stronger SNAs were related to poorer non-symbolic 

arithmetic with stimuli in different modalities (visual and auditory). To ensure that this 

effect was not the result of undue influence from a subset of data points, we examined the 

data for outliers. No points qualified as bivariate outliers using the criterion of 2.5*SD 

from the mean. 

In the Introduction, we suggested that poor math understanding could be 

accompanied by stronger SNAs in adults (Cipora et al., 2016; Hoffman et al., 2014). 

However, it remains unclear to what extent such a relation is or could be accounted for by 

more general cognitive factors. In a subsequent analysis, we examined the relation 

between children’s congruency scores on the magnitude comparison task and their 

accuracy on cross-modal arithmetic when controlling for age, verbal proficiency (WJ – 

Picture Vocabulary), working memory (WJ – Auditory Working Memory), and short-

term memory (K-ABC). We found that the relation between SNAs as measured by 

congruency scores on the magnitude comparison task remained significantly correlated 

with cross-modal arithmetic5, rp(48) = -.30, p < .05, even when controlling for these 

general factors. 

                                                           
5     Partial correlations were also conducted separately for cross-modal addition and subtraction conditions. 

We found no significant relations between either condition and congruency scores on the magnitude 

comparison task after controlling for age and general cognitive ability. These were not reported in the main 

text due to reduced power when evaluating these conditions separately. 
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General Discussion 

Our findings demonstrate stability in the strength of children’s SNAs across two 

paradigms, a magnitude comparison task and the place-the-number task, despite robust 

differences in the nature of these tasks. Of particular interest, we found evidence for a 

relation between children’s performance on these tasks, even though the tasks varied in 

the type of numerical stimuli used (non-symbolic vs. symbolic) and in numerical salience 

(explicit vs. implicit). This correlation is important as it provides evidence for the 

construct validity of these tasks. This is especially critical given that previous studies 

have rarely examined the relation between paradigms (for exception, see Cheung et al., 

2015 for an assessment with adults). Importantly, the relation found here suggests that the 

SNAs exhibited on these tasks reflect an integral aspect of number representations, as 

opposed to a transient association generated on-line in response to the demand 

characteristics of each paradigm (for review of this position, see Abrahamse, van Dijck, 

& Fias, 2016). 

Because previous research regarding the relation between SNAs and 

mathematical skill in adulthood is inconclusive, it is important to shed light on this link 

during early childhood when math skills are initially being acquired. Specifically, we 

hypothesized that the spatial grounding provided by SNAs would facilitate understanding 

of number as an abstract concept and, thus, stronger SNAs would relate to better 

performance on math, such as cross-modal arithmetic (Barsalou, 2008; Lakoff & Núñez, 

2000). Although we found no link in the case of one SNA task (place-the-number), our 

results with a second SNA task (magnitude comparison) suggest the opposite. Stronger 

SNAs on magnitude comparison were associated with worse performance on cross-modal 
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arithmetic, even after controlling for age, verbal proficiency, working memory and short-

term memory. As discussed in the Introduction, previous research on this relation in 

adults has also found a negative relation between SNA strength and mathematical ability. 

Given this support from previous work, it is certainly possible that this finding reflections 

a true link, such that having a stronger spatial representation for number hinders 

children’s ability to represent and compare numerosity across modalities, at least at this 

stage in development. 

 Importantly, however, we do not find any correlation between SNAs on the 

place-the-number task and math skill. In light of this, we suggest an alternative 

interpretation: the negative correlation observed between SNAs and mathematical ability, 

as measured by the magnitude comparison task and cross-modal arithmetic (the only 

significant correlation between SNAs and math found here), is a reflection of demands of 

the magnitude comparison task. In this task, the strength of children’s SNAs are not 

orthogonal to accuracy. In other words, a complete bias towards the left array in the 

‘Less’ condition and the right array on the ‘More’ condition, consistent with a left-to-

right mental number line, would result in 50% total accuracy on the task. Thus, this may 

not be a ‘pure’ measure of children’s SNAs, but rather, a reflection of their ability to 

suppress such an SNA when doing so is required to complete the task. That is, weak 

inhibitory control may result in an inability to inhibit an SNA on the magnitude 

comparison task, and also, in poorer performance on the cross-modal arithmetic task (for 

review of the link between inhibitory control and mathematics achievement, see Cragg & 

Gilmore, 2014).  
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Critically, previous research corroborates this explanation. Hoffman, Pigat, & 

Schiltz (2014) found that participants with weaker inhibitory control, as measured by a 

Stroop paradigm, exhibited stronger SNARC effects. Further, inhibitory control 

explained a significant amount of the variance in SNARC strength even when controlling 

for age and other general factors such as processing speed and working memory, perhaps 

explaining why the relation found in the present study remains significant after 

controlling for working memory. Conversely, on our place-the-number task, evaluation 

of children’s SNAs are essentially orthogonal to accuracy. A child with a strong, 

consistent SNA might place all small numbers slightly leftward and all large numbers 

slightly rightward of their original location, and yet, can still maintain a high level of 

overall accuracy due to the relatively small bias in terms of absolute distance. 

Consequently, we urge future research to remain cautious in interpreting relations 

between SNAs and math performance unless they are using a measure with minimal task 

demands. For those who continue to use tasks such as the classic magnitude comparison 

task, it may be crucial to account for individual differences in inhibitory control when 

evaluating SNAs. 

Is there truly no relation between SNA strength and math ability? In the 

Introduction, we highlighted the need to examine this potential relation when math 

concepts are initially being acquired. With this in mind, one possibility is that a relation 

may nevertheless exist in younger children than those tested in the present study. 

Furthermore, even for their age group, the children in the present study had relatively 

advanced mathematical abilities, evidenced by their higher than average scores on the WJ 

– Calculation subtest. Consequently, future work should examine this relation in younger 
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children, such as preschoolers, to test this relation truly at the onset of emerging 

mathematical ability.  Given the need to assess this link in younger children, the construct 

validity confirmed here between the non-symbolic (magnitude comparison) and symbolic 

(place-the-number) SNA paradigms is critical, as younger children will not yet be 

familiar with symbolic numerals, necessitating the sole use of non-symbolic measures. 

Nonetheless, many other components of the mental number line, besides 

directionality, may be related to math competence (for review, see Cipora et al., 2015). 

For example, another aspect of interest is the dynamic nature of the mental number line, 

as evidenced by operational momentum effects, in which participants systematically 

overestimate the results of addition and multiplication problems and underestimate the 

results of subtraction and division problems (Katz & Knops, 2014; Knops, Viarouge, & 

Dehaene, 2009; McCrink, Dehaene, & Dehaene-Lambertz, 2007). Particularly, it is 

argued that these arithmetic biases are a result of spatial overestimation, akin to 

representational momentum (Freyd & Finke, 1984).  Representational momentum is a 

perceptual phenomenon where participants, when shown a moving object that then 

vanishes or is occluded, misjudge the object’s final location to be slightly further along 

its trajectory. Likewise, it has been suggested that arithmetic over/underestimations are a 

result of overestimations of “movement” along a mental number line, such that addition 

and multiplication cause rightward shifts in attention and subtraction and division cause 

leftward shifts in attention. Evidence utilizing eye-tracking has further supported this 

claim, showing that arithmetic involving these operations result in saccades in the 

corresponding direction (Holmes, Ayzenberg, & Lourenco, 2016; Klein, Huber, Nuerk, & 

Moeller, 2014). Given the known relation between mental rotation, another kind of 
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dynamic representation, and mathematical ability (Cheng & Mix, 2014; Thompson, 

Nuerk, Moeller, & Cohen Kadosh, 2013), there is good reason to predict a relation 

between operational momentum and mathematical ability, such that one’s ability to 

dynamically manipulate the mental number line may lead to greater fluency when 

completing arithmetic calculations. Further, previous research has found evidence for 

operational momentum for non-symbolic number already present in infancy (Macchi 

Cassia et al., 2016; McCrink & Wynn, 2009), making this an optimal SNA to examine 

during early mathematical development. 

Another critical feature of the mental number line is the extent to which numbers 

are mapped to space in a linear or logarithmic fashion. Many have argued that these 

mappings reflect the precision of underlying non-symbolic numerical representations, as 

in the approximate number system (Dehaene, Izard, Spelke, & Pica, 2008; Laski & 

Siegler, 2007). Most commonly, these mappings are measured by a number line 

estimation task, where participants designate the position of a numerical value on a 

number line (Siegler & Opfer, 2003). For linear representations, a change in numerical 

distance corresponds to an equivalent change in spatial distance; in other words, across 

the entire range of the number line, numerical values are represented with consistent 

spatial intervals. Conversely, for logarithmic representations, often observed in young 

children, the spatial distance between two small numbers is larger than the spatial 

distance between two respective larger numbers (e.g., children will designate the numbers 

5 and 15 as being spatially further apart than 75 and 85). Not only has the linearity of 

one’s number line been shown to correlate positively with math proficiency, as measured 

by a variety of math tasks (Booth & Siegler, 2006, 2008; Siegler & Booth, 2004), but 
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causal evidence has also been put forth, showing that after children received training to 

increase the linearity of their numerical representations, their math performance 

improved compared to children who received non-numerical (control) training (Ramani 

& Siegler, 2008; Siegler & Ramani, 2009). However, others have argued that this 

linearity does not reflect greater precision of underlying numerical representations, but 

rather reflects measurement skills or proportional reasoning. Thus, from this perspective, 

these findings do not reflect a relation between SNAs and math performance, but rather, a 

more direct relation between two measures of mathematical ability (Barth, Slusser, 

Cohen, & Paladino, 2011; Cohen & Blanc-Goldhammer, 2011; Cohen & Quinlan, 2017; 

Cohen & Sarnecka, 2014; Rouder & Geary, 2014; Slusser, Santiago, & Barth, 2013).  

In conclusion, our results do not provide strong support for a relation between the 

directional nature of SNAs and mathematical ability in 5- to 8- year-old children (Cipora 

et al., 2015). Contrary to our initial prediction, the one significant relation, between SNAs 

on the magnitude comparison task and cross-modal arithmetic, suggest a negative relation 

between SNAs and math ability. While we have suggested that this link is likely due to 

individual differences in inhibitory control, consistent with previous research (Hoffman 

et al., 2014), we acknowledge the speculative nature of this claim given that the present 

study did not include a direct measure of inhibitory control. As a result, we urge future 

research to provide insight on this connection. Lastly, given the multi-faceted nature of 

the mental number line, it is of the utmost importance to consider the ways in which these 

different aspects of number-space interactions may differentially relate to mathematical 

performance. 
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Table 1. Descriptive statistics for all measures administered. For all Woodcock-Johnson 

tasks (WJ: normed, M = 100, SD = 15), values represent standardized scores.  

 

      

 

 

 

 

 

 

 

 

 

 

Type Task N Mean SD

SNA Place-the-number

Accuracy 58 63.02 24.32

Slope (Horizontal bias) 58 1.07 4.06

Magnitude Comparison

Accuracy 64 0.70 0.10

Congruency Score 64 0.59 2.23

Math Cross-modal Arithmetic

Total Accuracy 56 0.66 0.11

Addition Accuracy 60 0.68 0.13

Subtraction Accuracy 56 0.64 0.16

Approximate Symbolic Arithmetic

Total Accuracy 53 0.76 0.15

Addition Accuracy 62 0.76 0.19

Subtraction Accuracy 53 0.73 0.17

WJ - Calculation 54 115.20 11.95

Control WJ - Picture Vocabulary 65 108.81 10.23

WJ - Auditory Working Memory 65 116.66 16.11

K-ABC - Spatial Memory 65 11.11 3.10
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Table 2. Above the dark gray diagonal are zero-order correlations. Below the dark gray 

diagonal are partial correlations, controlling for age.   

 
*p < .05, **p < .01, ***p < .001 

 

 

 

 

 

 

 

 

Task 1 2 3 4 5 6 7

Cross-modal Arithmetic 1 Total .20 .34* .03 .13

2 Addition .22 .20 .29* .03 .09

3 Subtraction .21 .12 .26 .02 .09

Approximate Symbolic Arithmetic 4 Total 0.14 .15 .07 .64***

5 Addition 0.34* .29* .25 .44** .53***

6 Subtraction -0.06 -.04 -.04 .21 .45**

 WJ - Calculation 7 0.06 .02 .03 .27 .12 0.18
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Figure 1. SNA on the place-the-number task. Regressing the group mean bias for each 

numeral on their corresponding value revealed numerical value to be a significant 

predictor of mean bias for each number, R2 = .53, t(8) = 2.78, p < .05, providing evidence 

of an SNA on a novel task for children. 
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Figure 2.  Mean accuracy (i.e., proportion correct) on the magnitude comparison task as a 

function of condition (Total, More, and Less) and trial type (incongruent or congruent). 

Children had significantly greater total accuracy on congruent than incongruent trials, 

t(63) = 2.13, p < .05, d = .27, providing evidence for a significant SNA. Error bars 

represent +/- 1 SEM. 
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Figure 3.  Partial correlation scatterplot between both SNA tasks (magnitude comparison 

and place-the-number), when controlling for overall accuracy on both tasks, rp(53) = .30, 

p < .05. No data points qualified as bivariate outliers using the criterion of 2.5*SD from 

the mean. 
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Figure 4. Mean accuracy (i.e., proportion correct) on the cross-modal arithmetic task as a 

function of operation (addition and subtraction) and ratio (4:5, 4:6, and 4:7). Error bars 

represent +/- 1 SEM. Black dashed line denotes chance performance.  
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Figure 5. Mean accuracy (i.e., proportion correct) on approximate symbolic arithmetic as 

a function of operation (addition and subtraction) and ratio (4:5, 4:6, and 4:7). Error bars 

represent +/- 1 SEM. Black dashed line denotes chance performance. 


