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Abstract 

 

Macro-scale genomic studies of bacterial pathogens. 

 

By Robert A. Petit III 

 
The low cost of genome sequencing has led to a significant increase in publicly available 
datasets of bacterial pathogens. Taking advantage of this data requires new strategies 
for using computational resources and bioinformatics, as well as applying traditional 
organism-specific knowledge. With this understanding, I used public datasets to 
investigate two important bacterial pathogens Bacillus anthracis and Staphylococcus 
aureus. 
 
In my first research project, I focused on Bacillus anthracis, the etiologic agent of 
anthrax, which shares over 99% average nucleotide identity with Bacillus cereus Group 
(BCerG) bacteria. This closeness, coupled with sequencing error rates, can cause B. 
cereus to be falsely identified as B. anthracis. To address this issue, I developed a typing 
schema for fine-scale differentiation of these two species. I identified a set of 31-mers 
specific to B. anthracis and another set specific to all BCerG including B. anthracis. I 
determined the limits of detection of these k-mers on synthetic data and developed a 
model to predict the presence of true B. anthracis sequences. I then reanalyzed a New 
York subway metagenome dataset, which falsely identified evidence for B. anthracis. I 
found no evidence for anthrax but instead the presence of unsampled close relatives to 
B. anthracis. 
 
My second project concerned Staphylococcus aureus, a major antibiotic-resistant 
pathogen responsible for a wide spectrum of hospital and community-associated 
infections. S. aureus was well represented in genome sequencing studies submitted to 
public repositories but there were no tools available to make use of this useful data. To 
fill this void, I developed Staphopia, an analysis pipeline, database and application 
programming interface focused on S. aureus and processed over 44,000 publicly 
available S. aureus genomes. I found patterns in antibiotic resistance between S. aureus 
sequence types and a bias towards sequencing clinically relevant methicillin-resistant S. 
aureus strains.  
 
I conclude, with a discussion about future macro-scale comparative genomic studies 
consisting of tens of thousands of genomes. I also provide comments on the expected 
rewards and challenges associated with macro-scale studies. Overall, this body of work 
illustrates the importance of public datasets for bacterial pathogens and integrating 
organism specific knowledge into bacterial sequence analyses. 
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Chapter 1: Introduction 

Whole genome sequencing of bacterial pathogens has become a valuable investigative 

tool. This dissertation describes investigations of two species, Bacillus anthracis and 

Staphylococcus aureus.  The goal of this introduction is to cover basic concepts of 

bacterial sequence analysis. I provide details on bacterial genome sequencing including 

sample collection and sequencing technologies. This is followed up with an overview of 

analysis techniques to extract the wealth of information available from genomic 

sequences. I also highlight how bacterial genome sequencing has changed in recent 

years. I conclude with a brief overview of the remaining chapters of this dissertation. 

Terminology associated with bacterial sequence analysis used throughout this 

dissertation has been summarized in Box 1.1.  

 

Bacterial sequence analysis step by step 

The first step in bacterial genome sequencing is to collect a DNA sample, which is 

assumed a single strain in pure culture (referred to here as a “genomic sample”).  The 

alternative approach is to extract DNA directly from a complex environment such as a 

clinical specimen, without culture (a “metagenomic sample”).  After extraction, a DNA 

library must be created for sequencing. During the library preparation, the DNA is 

fragmented into a desired length and PCR adapters are attached to the ends of the 

fragments (Head et al., 2014). A DNA sequencing instrument then takes the DNA library 

and determines the per-base identity. This combined process of creating a DNA library 

and sequencing is often referred to as a “sequencing run” (Figure 1.1). Once the 

https://paperpile.com/c/mwksMk/dn2L
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sequencing run is completed, fragments of sequenced DNA, or reads, are output in a 

standard format called FASTQ. The total amount of DNA sequenced, and lengths of 

reads are dependent on the sequencing instrument (Table 1.1). Illumina technology can 

produce billions of short reads (100-300bp), while PacBio and Nanopore produces 10s 

to 100s of thousands of long (>5kb) reads. 

 

There are many different approaches to investigate the output of a sequencing run. 

These approaches fall into three general paradigms: de novo assembly, reference 

mapping and sequence decomposition (Box 1.2). I will provide a step by step 

description of a standard bacterial sequence analysis workflow building off these 

paradigms (Figure 1.2). I have also listed many bioinformatic tools for such a workflow 

in Table 1.2. 

 

Sequence Quality Control 

For each base sequenced, there is a probability that a sequenced base is an error 

(Figure 1.2). Depending on the technology, the per base error rate may be as a low as 

0.1% or as high as 15% (Table 1.1). It is important quality control (QC) the sequenced 

DNA to achieve an acceptable level of sequencing quality. The base-calling error 

probability is often reported as the Phred quality score (Ewing & Green, 1998; Ewing et 

al., 1998). The value of the Phred quality score (Q) is determined by the equation: Q = -

10 log10 P, where P is the base-call error probability reported by the sequencer. This 

produces Q-scores that are logarithmically linked to error probabilities (Table 1.3). 

With this understanding, reads can be filtered or trimmed based on the Q-score (Bolger, 

https://paperpile.com/c/mwksMk/OBsF+Hslr
https://paperpile.com/c/mwksMk/OBsF+Hslr
https://paperpile.com/c/mwksMk/wjCv+mg3m
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Lohse & Usadel, 2014; Bushnell, 2016). The next step is to correct any remaining 

erroneous reads. Using the context of the sequencing, probabilistic models can be 

applied to determining the likelihood a base is an error and correctable  (Kelley, Schatz 

& Salzberg, 2010; Bankevich et al., 2012; Song, Florea & Langmead, 2014; Heo et al., 

2016). The final QC step is to remove potential DNA “contaminating” sequences that 

have been introduced as part of the process of sequencing. Primers and controls used for 

the sequencing should be identified and removed from the reads (Bolger, Lohse & 

Usadel, 2014; Ondov et al., 2015; Bushnell, 2016). It is also important to filter out any 

potential biological contaminants such as human DNA (Haque et al., 2015; Bushnell, 

2016; Lu & Salzberg, 2018). This can be done through read mapping or sequence 

decomposition. Each of these Sequence QC steps are important for improving 

downstream analysis. 

 

Genome assembly  

Sequencing technologies are not at a point in which a whole bacterial chromosome can 

be sequenced. During library prep, the bacterial chromosome must be split into many 

pieces. Once sequenced, these fragments must be reassembled together through the de 

novo assembly process. Assembly algorithms identify overlaps between millions of reads 

and merge these overlaps into longer contiguous sequences known as “contigs” or 

“assemblies” (Bankevich et al., 2012; Koren et al., 2017). Assemblies can be further 

improved by correcting local assembly errors (Walker et al., 2014). Metagenomic 

sequences must use an assembler that account for multiple organisms (Peng et al., 2012; 

Li et al., 2015; Nurk et al., 2017). Once completed, a “draft” assembly is produced that 

https://paperpile.com/c/mwksMk/wjCv+mg3m
https://paperpile.com/c/mwksMk/zJUh+kF0s+kRdI+CPkh
https://paperpile.com/c/mwksMk/zJUh+kF0s+kRdI+CPkh
https://paperpile.com/c/mwksMk/zJUh+kF0s+kRdI+CPkh
https://paperpile.com/c/mwksMk/wjCv+7KOF+mg3m
https://paperpile.com/c/mwksMk/wjCv+7KOF+mg3m
https://paperpile.com/c/mwksMk/pJwX+mg3m+AQq7
https://paperpile.com/c/mwksMk/pJwX+mg3m+AQq7
https://paperpile.com/c/mwksMk/kF0s+yItc
https://paperpile.com/c/mwksMk/dvWR
https://paperpile.com/c/mwksMk/0Z3M+tHxg+U9JP
https://paperpile.com/c/mwksMk/0Z3M+tHxg+U9JP
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may consist of 10s to 100s of contigs. In the past to “complete” a genome into a single 

contiguous sequence, required further sequencing using expensive Sanger sequencing. 

As a consequence, many assembled genomes have remained in draft state. The 

introduction of long read technology has made it possible to produce single contig 

hybrid assemblies (Wick et al., 2017a). Hybrid assemblies use short and long read 

sequencings to create high quality assemblies of a few contigs and potentially a single 

contig. This has made it more common to create single contig assemblies (Loman, Quick 

& Simpson, 2015; Rhoads & Au, 2015; Bayliss et al., 2017). 

 

There are many statistics to determine the quality of the draft assembly (Bradnam et al., 

2013). A few common statistics are total assembled size in base pairs, GC content, and 

the N50 statistic. The total assembled size is the sum of the contig lengths. The GC 

content is determined by dividing the total number of Gs and Cs in the assembled 

contigs by the total assembled size. The total assembled size and GC content present the 

biological quality of the assembly because it should be similar to the genome size and 

GC content of the sequenced bacteria. The N50 statistic is a technical representation of 

the assembly quality. The N50 is determined by sorting the contigs from longest to 

shortest contig, then adding contigs together until the total length is more than 50% of 

the expected genome size, the length of the final contig to break 50% is determined as 

the N50. The larger the N50, the better the quality of an assembly is assumed to be. 

Another approach is to visualize assemblies to identify problematic regions (E.g repeat 

regions), potential mis assemblies or compare multiple assemblies (Wick et al., 2015). 

 

https://paperpile.com/c/mwksMk/zmKT
https://paperpile.com/c/mwksMk/gxsk+sRqt+LENZ
https://paperpile.com/c/mwksMk/gxsk+sRqt+LENZ
https://paperpile.com/c/mwksMk/DhxX
https://paperpile.com/c/mwksMk/DhxX
https://paperpile.com/c/mwksMk/UCYO
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Genome annotation 

An assembled genome alone is a blank canvas. Additional steps must be taken to 

identify genetic features such as antibiotic resistance and virulence factors. The process 

of scanning the assembly and labeling each relevant feature is called “genome 

annotation”. A common form of genome annotation is to predict the coordinates and 

function of genes across the bacterial genome. Gene prediction relies on ab initio 

methods which account for characteristics of bacterial genomes (Delcher et al., 1999; 

Besemer, Lomsadze & Borodovsky, 2001; Hyatt et al., 2010). These ab initio methods 

identify regions between start and stop codons called open reading frames (ORFs). Then 

using probabilistic models that can account for promoter regions and codon usage bias, 

ORFs can accurately be predicted as genes. After the genes are predicted, functions are 

assigned to translated proteins through sequence homology or conserved protein 

domains (Quevillon et al., 2005; Eddy, 2009; Camacho et al., 2009). Genome 

annotation is not limited to gene prediction, CRISPRs and RNA features including 

ribosomal, transfer and non-coding RNAs can also be predicted (Laslett & Canback, 

2004; Lagesen et al., 2007; Bland et al., 2007; Kolbe & Eddy, 2011). 

 

Genotyping bacteria based on genome sequence 

After sequencing a bacterial isolate, it is important to determine where it fits in the 

context of its species. This can be done by comparing its genetic relatedness to other 

members of the species to assign a subtype. Pulse-field gel electrophoresis (PFGE) has 

long been the standard molecular approach for subtyping bacterial strains (Tenover, 

Arbeit & Goering, 1997). PFGE uses DNA restriction patterns to ‘DNA fingerprint’ 

https://paperpile.com/c/mwksMk/xNYr+isfy+MqQg
https://paperpile.com/c/mwksMk/xNYr+isfy+MqQg
https://paperpile.com/c/mwksMk/jq7q+VzeD+ntoP
https://paperpile.com/c/mwksMk/GZmg+4Z4O+1dM8+aFvF
https://paperpile.com/c/mwksMk/GZmg+4Z4O+1dM8+aFvF
https://paperpile.com/c/mwksMk/ahdb
https://paperpile.com/c/mwksMk/ahdb
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bacterial isolates. This is time consuming process that can give varying results 

depending on the protocol. 

 

With the introduction of sequencing it became possible to develop alternative methods 

to subtype bacteria. One such method is multi-locus sequence typing (MLST) (Maiden et 

al., 1998). MLST selects 5-7 highly conserved genes within a bacterial species, based on 

the combination of alleles in these genes a sequence type (ST) is assigned. MLST has 

also been expanded to the core-genome (cgMLST, > 1500 loci) (Leopold et al., 2014) 

and the whole-genome (wgMLST, > 20k loci)  (Sheppard, Jolley & Maiden, 2012). Each 

of these approaches offer a different phylogenetic resolution (Alikhan et al., 2018). 

Although MLST is limited to a few genes it provides a good overview of a species level 

resolution. In cases in which samples are all from the same ST, for example an outbreak, 

cgMLST or wgMLST are required to investigate diversity within STs. 

 

Identifying Variation 

Illuminating genetic variation between bacterial strains is an important step in bacterial 

sequence analysis. The process of identifying variants can be broken up into two broad 

steps. The first step is map the bacterial sequences to a reference genome (Li & Durbin, 

2009b; Langmead & Salzberg, 2012). After mapping, single nucleotide polymorphisms 

(SNPs) and insertions and deletions (InDels) are determined (DePristo et al., 2011; 

Koboldt et al., 2012). There are a number of intermediate quality control steps that can 

be implemented to improve the accuracy of the variant calls (Van der Auwera et al., 

2013). Many of the approaches were originally developed for human genetics and had to 

https://paperpile.com/c/mwksMk/8IUh
https://paperpile.com/c/mwksMk/8IUh
https://paperpile.com/c/mwksMk/v706
https://paperpile.com/c/mwksMk/xqCk
https://paperpile.com/c/mwksMk/OcPU
https://paperpile.com/c/mwksMk/13gX+oJOa
https://paperpile.com/c/mwksMk/13gX+oJOa
https://paperpile.com/c/mwksMk/4M6h+vE3l
https://paperpile.com/c/mwksMk/4M6h+vE3l
https://paperpile.com/c/mwksMk/Xowb
https://paperpile.com/c/mwksMk/Xowb
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be adapted to be used for bacterial sequences. Recently, alternative approaches 

specifically designed for haploid organisms have been introduced (Treangen et al., 2014; 

Gardner, Slezak & Hall, 2015).  

 

Antimicrobial Resistance and Virulence Factors 

Bacterial pathogens present a significant threat to public health (van Oosten et al., 2015; 

O’Neill, 2016). The success of a bacterial pathogen will depend on its armory of 

virulence factors and its ability to resist treatment through mutations and genes that 

confer antimicrobial resistance (AMR). Associations with virulence factors and AMR can 

be identified by the presence of genes or SNPs with known associations (Gupta et al., 

2014; Inouye et al., 2014; Hunt et al., 2017). Often, AMR genes are carried on mobile 

genetic elements (MGE) (Stokes & Gillings, 2011), such as plasmids and transposable 

elements. Identification of these MGEs as a whole requires alternative approaches 

(Siguier et al., 2006; Carattoli et al., 2014; Antipov et al., 2016b; Rozov et al., 2017) A 

number of high quality databases have been specifically targeted towards antibiotic 

resistance and virulence factors (Zankari et al., 2012; Gupta et al., 2014; Joensen et al., 

2014; Carattoli et al., 2014; Chen et al., 2016a; Jia et al., 2017; Lakin et al., 2017a). 

 

Comparative genomic analyses 

The following section discusses methods used for comparative genomics. Comparative 

genomics makes use of genomic features to better understand evolutionary 

relationships between organisms. Comparative genomics can be applied at the species 

https://paperpile.com/c/mwksMk/GfD1+AtxO
https://paperpile.com/c/mwksMk/GfD1+AtxO
https://paperpile.com/c/mwksMk/4s4C+5XbE
https://paperpile.com/c/mwksMk/4s4C+5XbE
https://paperpile.com/c/mwksMk/AOVq+wnmT+31p0
https://paperpile.com/c/mwksMk/AOVq+wnmT+31p0
https://paperpile.com/c/mwksMk/VTE9
https://paperpile.com/c/mwksMk/F4Xt+dIUq+GJd7+KEtg
https://paperpile.com/c/mwksMk/ueFy+F4Xt+dDw8+wnmT+jCZJ+VV9t+SUWZ
https://paperpile.com/c/mwksMk/ueFy+F4Xt+dDw8+wnmT+jCZJ+VV9t+SUWZ
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level or as high as the kingdom level. For the purpose of this dissertation, I have focused 

on species level analyses.  

Phylogenetics 

Phylogenetic analysis provides a view into the evolutionary history of an organism. It 

can also be used in outbreaks to identify recent evolutionary changes and transmission 

events (Alam et al., 2015a; Klinkenberg et al., 2017). Phylogenetic trees are generally 

constructed from multiple sequence alignments (MSA) of genes or SNPs from the core-

genome. Creating the one true phylogeny for a large set of samples is a difficult problem 

due to the number of possible trees (Felsenstein, 1978). As an example, for 20 samples 

there are more than 1023 possible trees. This has required the use of heuristic methods 

to identify the most likely tree.  

 

Advancements in computation during the late 90s and early 2000s have made 

maximum likelihood estimation (MLE) the standard for tree construction (Price, Dehal 

& Arkin, 2009; Stamatakis, 2014; Nguyen et al., 2015b). MLE uses DNA (or amino acid) 

substitution models to determine the probability that a phylogenetic tree is possible. 

Millions of potential phylogenetic trees are tested, and the most probable tree is 

selected. Support for this tree is determined through a process called “bootstrapping” 

(Felsenstein, 1985). Bootstrapping randomly sub selects portions of the input alignment 

to determine how often the MLE tree is recapitulated. Bootstrapping is important for 

assigning a level of confidence for each branch in a phylogeny.  

 

https://paperpile.com/c/mwksMk/bpqI+1IRu
https://paperpile.com/c/mwksMk/h0WP
https://paperpile.com/c/mwksMk/eCSa+81BF+q8D0
https://paperpile.com/c/mwksMk/eCSa+81BF+q8D0
https://paperpile.com/c/mwksMk/0YcL
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An alternate approach to generating phylogenetic trees is to use Bayesian approaches. 

Bayesian algorithms require more information about samples but are useful for 

estimating divergence times and ancestral states (Pritchard, Stephens & Donnelly, 

2000; Ronquist et al., 2012; Bouckaert et al., 2014). For bacterial sequences it is 

important to identify and mask recombination events to improve the accuracy of a tree 

(Didelot & Wilson, 2015). Recent reviews provide an assessment of commonly used tree 

construction programs (Nascimento, Reis & Yang, 2017; Lees et al., 2018). 

Pan-genome 

The complete set of genes within a bacterial species is termed the bacterial pan-genome 

(Medini et al., 2005). The pan-genome can be partitioned into a core genome (genes 

shared across all strains) and an accessory genome (genes found in at least one strain 

but not all). The core genome is predicted to be stable and the phylogeny of individual’s 

core genes generally recapitulates the evolutionary history of the species. The accessory 

genome on the other hand, is much more variable in its origin and includes genes 

acquired through horizontal gene transfer (HGT) that promote adaptation to a local 

habitat. Determining the pan-genome for a species is a computationally difficult 

problem that worsens with sample size (Nguyen et al., 2015a). Due to this, in order to 

scale to 1,000s of genomes, viable pan-genome analysis approaches have used heuristic 

approaches (Zhao et al., 2012; Fouts et al., 2012; Sahl et al., 2014; Page et al., 2015b).  

 

Genome wide association studies 

Determining the genetic basis of a phenotype, such as antibiotic resistance or virulence, 

is important for bacteria. This can be done by performing laboratory manipulations or 

https://paperpile.com/c/mwksMk/yiYe+nRu8+1Ms6
https://paperpile.com/c/mwksMk/yiYe+nRu8+1Ms6
https://paperpile.com/c/mwksMk/YHot
https://paperpile.com/c/mwksMk/LGda+K1X5
https://paperpile.com/c/mwksMk/Z44h
https://paperpile.com/c/mwksMk/MkFq
https://paperpile.com/c/mwksMk/XzLY+enBq+Apjl+pW7P
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by using sequenced genomes. By using genome sequences, many genetic markers can be 

tested across many genomes for associations to a phenotype. This type of study is called 

a genome-wide association study (GWAS). A standard GWAS, will often use single-

nucleotide polymorphisms (SNPs) to test for associations with a phenotype. A simple 

form of GWAS is to independently test associations for each SNP through the use of 

regression (Purcell et al., 2007). The form of regression (logistic or linear) is dependent 

on how the phenotype is reported (categorical or continuous). After correcting for 

multiple tests using methods such as Bonferroni correction, significant associations can 

be determined. These significant associations can then be (and should be) validated in 

the lab. Recently algorithms specifically designed for bacterial samples that account for 

the strong population structure exhibited by bacteria have been developed (Feil & 

Spratt, 2001; Lees et al., 2016; Earle et al., 2016; Collins & Didelot, 2018).  

 

A deluge of bacterial sequences 

In this section I provide a brief history on DNA sequencing and highlight how bacterial 

genome sequencing has changed in recent years. I also discuss how this change has led 

to a deluge of data and an opportunity to conduct comparative genomic studies 

previously not possible. 

 

A brief history of DNA sequencing technologies  

Low throughput, or “first-generation”, DNA techniques were first developed in the 

1970s (Wu, 1972; Jay et al., 1974; Sanger, Nicklen & Coulson, 1977). Over the next two 

https://paperpile.com/c/mwksMk/Iys6
https://paperpile.com/c/mwksMk/kUsl+Zb0R+Xzbm+ygAH
https://paperpile.com/c/mwksMk/kUsl+Zb0R+Xzbm+ygAH
https://paperpile.com/c/mwksMk/SQWt+YuGB+q9Dk
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decades, the improvements in the technology allowed for the completed genome of a 

small bacteriophage φX174 (5kbp) in 1977, the slightly larger Epstein-Barr virus 

(180kbp) in 1984 and the first free-living organism, Haemophilus influenzae (1.8Mbp) 

in 1995 (Sanger et al., 1977; Baer et al., 1984; Fleischmann et al., 1995). “First-

generation” technologies, such as Sanger, are extremely accurate but limited to a single 

reaction per capillary or tube (Sanger, Nicklen & Coulson, 1977). In the late 1990s, 

“second-generation”, high-throughput DNA sequencing techniques were first 

introduced (Ronaghi et al., 1996; Brenner et al., 2000). These techniques were capable 

of producing thousands of reactions per tube. This allowed for millions of base pairs to 

be produced sequencing run. It would take until 2005 for technologies implementing 

these techniques to become commercially available. The “third generation” technologies 

introduced the sequencing of single DNA molecules  (Eisenstein, 2012; Rhoads & Au, 

2015) (Table 1.1).  The advantages of these technologies are long reads (1- 1000 kb) but 

they have lower yield per dollar than Illumina and higher per base error rates.  A recent 

review (Loman & Pallen, 2015) highlights each of the technologies by discussing 

milestones achieved over the course of twenty years following the release of the 

Haemophilus influenzae completed genome in 1995. 

 

Affordable high-throughput sequencing 

After the completion of the draft human genome in 2001, the National Human Genome 

Research Institute began recording the costs of sequencing (“DNA Sequencing Costs: 

Data”). At the turn of the century (2000) the price per megabase (1,000,000 bp) was 

$10,000. For a bacterium, such as Staphylococcus aureus with a genome size of 

https://paperpile.com/c/mwksMk/ng56+jMIq+jgUf
https://paperpile.com/c/mwksMk/YuGB
https://paperpile.com/c/mwksMk/51iU+pJ3P
https://paperpile.com/c/mwksMk/gxsk+SDZP
https://paperpile.com/c/mwksMk/gxsk+SDZP
https://paperpile.com/c/mwksMk/B0vy
https://paperpile.com/c/mwksMk/aqW8
https://paperpile.com/c/mwksMk/aqW8
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2.8Mbp, it would have cost almost $30,000 for 1x coverage of sequencing. After the 

introduction of massively-parallel sequencing technologies, the price of sequencing 

quickly fell from $1,000/Mbp in 2005 to $1/Mbp in 2009. In 2011, the cost per 

megabase dropped below $0.10, making the same S. aureus genome now $0.30 for 1x 

coverage. By 2017 the price per megabase was approximately $0.05. The rapid decline 

in sequencing costs has been driven by second-generation technologies. Third-

generation technologies deliver long reads but due to a low output have a higher per 

base cost. Another noticeable shift has been the time required to sequence a genome 

going from weeks to days, and now in real-time (Table 1.1). However, the overall 

decrease in costs has created a flood of bacterial sequences in public sequence 

databases.  

 

New opportunities in existing data 

As of spring 2018, more than 400Tb of bacterial sequencing had been generated and 

made publicly available in the NCBI SRA database. In this data, there was 30,334 

completed genomes, 138,427 assembled genomes and 733,815 sequenced bacterial 

samples. There were 19 human bacterial pathogens with more than 5,000 sequenced 

samples (Table 1.4). The rapid growth of bacterial sequencing has placed constant 

pressure on the field of bacterial genomics to adapt. This has created opportunities to 

produce scalable algorithms for analysis of 100s or 1000s of genomes (Treangen et al., 

2014; Page et al., 2015b). It has also forced the field to seek solutions from other fields 

such as human genomics (DePristo et al., 2011) or search engine optimization (Ondov et 

al., 2015). An important opportunity is the ability to reuse existing data to conduct a 

https://paperpile.com/c/mwksMk/pW7P+GfD1
https://paperpile.com/c/mwksMk/pW7P+GfD1
https://paperpile.com/c/mwksMk/4M6h
https://paperpile.com/c/mwksMk/7KOF
https://paperpile.com/c/mwksMk/7KOF
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secondary analysis testing a different hypothesis. For example, the human microbiome 

project (Human Microbiome Project Consortium, 2012) alone has led to over 500 

secondary analyses (“NIH Human Microbiome Project - Publications”).  

 

Outline for this dissertation 

Sequencing has become a powerful tool for investigating bacterial pathogens. As a 

consequence, numerous datasets have been made publicly available. This has created an 

opportunity to not only reuse datasets in ways they were not originally created for but 

also combine multiple datasets to further investigate a bacterial pathogen. In this 

dissertation I have taken advantage of two such opportunities.  

 

Chapter 2 demonstrates the use of sequence decomposition as a diagnostic tool for the 

fine-scale differentiation of Bacillus anthracis, the causative agent of anthrax, and 

Bacillus cereus, a common soil bacterium, in metagenomic sequences. The relatedness 

between B. anthracis and B. cereus at the chromosome level often makes the two 

indistinguishable to “generalist” approaches. This presents a significant biodefense 

problem in which B. cereus is commonly mistaken for B. anthracis in metagenomics 

sequencing. In this chapter, I describe a “specialist” approach that accounts for 

biological and technical nuances to more accurately distinguish B. anthracis from B. 

cereus within metagenomic sequences. 

 

Chapter 3 examines Staphylococcus aureus from the perspective of 40,000+ genomes. 

S. aureus is an opportunistic pathogen responsible for hospital and community 

https://paperpile.com/c/mwksMk/t6T3m
https://paperpile.com/c/mwksMk/0VA6r
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associated infections in humans. The work from this chapter introduces Staphopia as a 

community resource focused on S. aureus genomics. I provide a global overview of 

current S. aureus sequencing efforts. Patterns in S. aureus evolution, such as 

methicillin-resistant S. aureus (MRSA), are explored in the global S. aureus population. 

I also present a novel method to rationally select publicly available S. aureus genomes 

for comparative genomic studies. 

 

Chapter 4 provides a literature review describing barriers to horizontal gene transfer 

events in bacterial species. In order for an HGT event to become fixed in a new species it 

must overcome ecological processes that separate donor and recipient, genetic defense 

mechanisms that limit HGT, and evolutionary processes that eliminate novel DNA from 

genomes. I use S. aureus to demonstrate how barriers have influenced its recent 

evolutionary history. 

 

Chapter 5, the final chapter, summarizes the findings and limitations of this 

dissertation. I also provide a discussion on the future direction of bacterial sequence 

analysis. I introduce macro-scale bacterial genomics, in which tens of thousands of 

genomes are leveraged for comparative genomics. I highlight the rewards associated 

with macro-scale studies. I also dive into the challenges, some of which I have already 

faced, of dealing with macro-scale studies. I conclude the discussion with examples of 

emerging macro-scale studies and a few final remarks.  
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Appendix 

The following appendix contains boxes, tables and figures referenced in the text of this 
chapter. 
 
Box 1.1: Bacterial sequence analysis terminology 
 
Contig - A continuous sequence generated from the assembly of smaller DNA 
fragments 
 
Coverage - The average number of times any given nucleotide in a genome has been 
sequenced, calculated by dividing the total sequence output by the sequenced 
organism’s genome size. “10x” coverage means on average every base in a genome has 
been sequenced 10 times. 
 
European Nucleotide Archive (ENA) - A mirror of SRA maintained by the 
European Bioinformatics Institute (EMBL-EBI) 
 
FASTQ - The standard format for reporting sequenced reads and the corresponding 
per-base quality score (probability of error) 
 
Metagenomic Sample - Genetic material sequenced directly from an environmental 
sample. Culturing bacteria is not required for metagenomic sequencing. 
 
Paired-End Read - Two sequence reads sequenced from the opposite ends of the 
same fragment of genetic material. The genetic distance between the two reads is 
determined during library prep. 
 
Sample - Bacteria to be sequenced either from culture or the environment 
 
Scaffold - With the support of pair-end reads, contigs are overlapped with gaps of 
known distances 
 
Sequence Read - A fragment of sequenced genetic material produced by a sequencer 
often referred to only as a “read”. 
 
Sequence Read Archive (SRA) - A public repository for storage for whole genome 
sequencing projects. SRA is maintained by the National Center for Biotechnology 
Information (NCBI) 
 
Sequencing Run - The complete process of sequencing a sample. Steps include 
extracting and preparing the genetic material for sequencing then sequencing the 
genetic material.  
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Box 1.2: Bacterial sequence analysis paradigms 
 
De novo assembly 
During the sequencing process the DNA is split into many small fragments. 
Reassembling these fragments into contiguous sequences without prior knowledge (i.e. 
a reference genome) is called de novo assembly. De novo assembly has two common 
approaches, greedy and graph algorithms (Nagarajan & Pop, 2013). Greedy algorithms 
require pairwise calculation between all reads, thus do not perform well on large 
number of reads common for bacterial sequencing. Graph algorithms decompose reads 
into smaller subsequences (nodes) and identify overlaps between subsequences (edges). 
Contiguous sequences are then generated by navigating connected nodes in the graph. 
Currently the most commonly used de novo assemblers have made use of De Bruijn 
graphs (Compeau, Pevzner & Tesler, 2011). The use of paired-end reads can improve the 
accuracy and quality of de novo assembly. 
 
Reference mapping 
Reference mapping is the process of aligning sequence reads to a reference sequence. 
Most often a completed genome is used as a reference sequence, but de novo assemblies, 
genes and proteins can also be used as a reference sequence. Using alignment tools (Li & 
Durbin, 2009b; Langmead & Salzberg, 2012), each sequence read is mapped to a region 
of the reference sequence in which the most similarity is shared. After each read is 
mapped an alignment file called Sequence Alignment/Map (SAM) (Li et al., 2009b) is 
generated. The SAM file contains information about the quality of the alignment and 
location of alignment. Reference mapping is a powerful tool to identify novel mutations 
(single nucleotide polymorphisms and insertions/deletions) in a sequenced sample. The 
use of paired-end reads can improve the accuracy of reference mapping. Another form 
of reference mapping is the well-known BLAST algorithm (Altschul et al., 1990; 
Camacho et al., 2009). BLAST databases hosted by NCBI allow users to map their 
sequence of interest to millions publicly available sequences. 
 
Sequence decomposition 
Alignments are computationally expensive and become time consuming as database 
sizes increase (Kemena & Notredame, 2009). It has become necessary to implement 
alignment-free methods with sequence decomposition, or k-mers. A k-mer is any 
substring of length k that is contained in a string. In the context of DNA sequences, it 
refers to all subsequences of length k contained in a sequence. For example, k=31, a 
string of DNA will be split into substrings of 31 nucleotides, or 31-mers, and a count for 
each 31-mer will be output (Marçais & Kingsford, 2011a; Deorowicz et al., 2015). 
Sequence decomposition has many applications in sequence analysis including sequence 
error correction (Song, Florea & Langmead, 2014; Sheikhizadeh & de Ridder, 2015), de 
novo assembly (Bankevich et al., 2012; Peng et al., 2012; Koren et al., 2017; Nurk et al., 
2017) and taxonomic identification of metagenomic sequences (Wood & Salzberg, 2014; 
Koslicki & Falush, 2016; Breitwieser & Salzberg, 2018).  
  

https://paperpile.com/c/mwksMk/1ptiE
https://paperpile.com/c/mwksMk/mIH6H
https://paperpile.com/c/mwksMk/13gX+oJOa
https://paperpile.com/c/mwksMk/13gX+oJOa
https://paperpile.com/c/mwksMk/qZStM
https://paperpile.com/c/mwksMk/a3MU9+VzeD
https://paperpile.com/c/mwksMk/a3MU9+VzeD
https://paperpile.com/c/mwksMk/WxdM
https://paperpile.com/c/mwksMk/Hq9D+9bxm
https://paperpile.com/c/mwksMk/kRdI+6hh8
https://paperpile.com/c/mwksMk/0Z3M+kF0s+U9JP+yItc
https://paperpile.com/c/mwksMk/0Z3M+kF0s+U9JP+yItc
https://paperpile.com/c/mwksMk/2aSU+nPJi+SfnS
https://paperpile.com/c/mwksMk/2aSU+nPJi+SfnS
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Figure 1.1: A basic workflow for a sequencing run  
 
Image is reprinted from open access article Head et al. (Head et al., 2014). 
 

  

https://paperpile.com/c/mwksMk/dn2L
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Figure 1.2: A broad representation of a standard workflow for bacterial 
sequence analysis 
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Figure 1.3: Visualization of per-base sequence quality 
 
The quality of a sequencing run can be visualized using the FastQC tool 
(https://github.com/s-andrews/FastQC). Example reports available from FastQC are 
depicted below. Panel (A) presents a high quality sequencing run and (B) a low quality 
sequencing run. These visualizations can indicate where to trim reads based on the 
average Q-score. 
 

 

  

https://github.com/s-andrews/FastQC
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Table 1.1: Most commonly used sequencing technologies for bacteria 
 

Generation Make Method Runtime Output # of Reads Read Length Error Rate 

Second Illumina  Synthesis 1-6 days 15Gbp-1Tbp billions 100-300bp < 0.1% 

Third Oxford 

Nanopore  

Nanopore 1min - 48 

hours 

<5Gb 10k-1M > 1kb 5-15% 

Third Pacific 

Biosciences 

Single 

Molecule 

30min-20 

hours 

500Mb-10Gb 50k-500k 10-15kb 10-15% 
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Table 1.2: Bioinformatic tools for bacterial sequence analysis 
 

Sequence Quality Control 

Tool Description Link 

Ace k-mer based error correction https://github.com/sheikhizadeh/ACE/ 

BBDuk 
Quality trimming and contaminant 
removal 

https://jgi.doe.gov/data-and-tools/bbtools/bb-
tools-user-guide/bbduk-guide/ 

BLESS2 k-mer based error correction https://sourceforge.net/p/bless-ec/wiki/Home/ 

FastQC Visualize the sequencing quality https://github.com/s-andrews/FastQC 

Hammer k-mer based error correction http://bix.ucsd.edu/projects/hammer/ 

Lighter k-mer based error correction https://github.com/mourisl/Lighter 

Quake 
Corrects correct substitution 
sequencing errors http://www.cbcb.umd.edu/software/quake/ 

SPAdes k-mer based error correction http://cab.spbu.ru/software/spades/ 

Trimmomatic 
Quality trimming and contaminant 
removal https://github.com/timflutre/trimmomatic 

   

Genome Assembly and Annotation 

Tool Description Link 

Aragorn tRNA and tmRNA prediction http://mbio-serv2.mbioekol.lu.se/ARAGORN/ 

Bandage Visualize the quality of an assembly https://github.com/rrwick/Bandage 

BLAST+ Sequence similarity search https://blast.ncbi.nlm.nih.gov/Blast.cgi 

Canu Long read assembler https://github.com/marbl/canu 

CRISPR 
Recognition Tool CRISPR prediction http://www.room220.com/crt/ 

GeneMarkS Bacterial gene prediction http://opal.biology.gatech.edu/GeneMark/ 

HMMER Sequence homolog identification http://hmmer.org/ 

IDBA-UD Metagenomic de novo assembler https://github.com/loneknightpy/idba 

MEGAHIT Metagenomic de novo assembler https://github.com/voutcn/megahit 

metaSPAdes Metagenomic de novo assembler http://cab.spbu.ru/software/meta-spades/ 

Pilon 
Automatically improve draft 
assemblies https://github.com/broadinstitute/pilon 

Prodigal Bacterial gene prediction https://github.com/hyattpd/Prodigal 

Prokka 
A complete pipeline for prokaryotic 
genome annotation https://github.com/tseemann/prokka 

https://github.com/sheikhizadeh/ACE/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://sourceforge.net/p/bless-ec/wiki/Home/
https://github.com/s-andrews/FastQC
http://bix.ucsd.edu/projects/hammer/
https://github.com/mourisl/Lighter
http://www.cbcb.umd.edu/software/quake/
http://cab.spbu.ru/software/spades/
https://github.com/timflutre/trimmomatic
http://mbio-serv2.mbioekol.lu.se/ARAGORN/
https://github.com/rrwick/Bandage
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/marbl/canu
http://www.room220.com/crt/
http://opal.biology.gatech.edu/GeneMark/
http://hmmer.org/
https://github.com/loneknightpy/idba
https://github.com/voutcn/megahit
http://cab.spbu.ru/software/meta-spades/
https://github.com/broadinstitute/pilon
https://github.com/hyattpd/Prodigal
https://github.com/tseemann/prokka


 22 

RNAmmer rRNA prediction 
http://www.cbs.dtu.dk/cgi-
bin/sw_request?rnammer 

Shovill 
SPAdes wrapper for improved 
error correction and assemblies https://github.com/tseemann/shovill 

SPAdes De novo assembler http://cab.spbu.ru/software/spades/ 

Unicyler 
Hybrid assembler for short and 
long reads https://github.com/rrwick/Unicycler 

   

Sequence Typing 

Tool Description Link 

Ariba 
Gene identification via local 
assembly https://github.com/sanger-pathogens/ariba 

BLAST+ Sequence similarity search https://blast.ncbi.nlm.nih.gov/Blast.cgi 

MentaLiST k-mer based typing https://github.com/WGS-TB/MentaLiST 

SRST2 Gene identification via mapping https://github.com/katholt/srst2 

   

Identifying Variants 

Tool Description Link 

bedtools 
Collection of tools to analyze 
reference mapping formats https://github.com/arq5x/bedtools2 

Bowtie2 Sequence aligner 
http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml 

BWA Sequence aligner https://github.com/lh3/bwa 

GATK 
Collection tools for variant 
discovery https://software.broadinstitute.org/gatk/ 

kSNP k-mer based variant discovery https://sourceforge.net/projects/ksnp/ 

ParSNP 
SNP detection of closely related 
samples https://github.com/marbl/parsnp 

Picard Tools 
Collection of tools to analyze 
reference mapping formats https://github.com/broadinstitute/picard 

Samtools Tools for manipulating alignments https://github.com/samtools/samtools 

Snippy 
Variant discovery pipeline for 
bacterial samples https://github.com/tseemann/snippy 

   

Antimicrobial Resistance and Virulence Factors 

Tool Description Link 

ARG-ANNOT 
Uses a curated antibiotic resistance 
database 

http://en.mediterranee-
infection.com/article.php?laref=283%26titre=ar
g-annot 

http://www.cbs.dtu.dk/cgi-bin/sw_request?rnammer
http://www.cbs.dtu.dk/cgi-bin/sw_request?rnammer
https://github.com/tseemann/shovill
http://cab.spbu.ru/software/spades/
https://github.com/rrwick/Unicycler
https://github.com/sanger-pathogens/ariba
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/WGS-TB/MentaLiST
https://github.com/katholt/srst2
https://github.com/arq5x/bedtools2
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/lh3/bwa
https://software.broadinstitute.org/gatk/
https://sourceforge.net/projects/ksnp/
https://github.com/marbl/parsnp
https://github.com/broadinstitute/picard
https://github.com/samtools/samtools
https://github.com/tseemann/snippy
http://en.mediterranee-infection.com/article.php?laref=283%26titre=arg-annot
http://en.mediterranee-infection.com/article.php?laref=283%26titre=arg-annot
http://en.mediterranee-infection.com/article.php?laref=283%26titre=arg-annot
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Ariba 
Gene identification via local 
assembly https://github.com/sanger-pathogens/ariba 

SRST2 Gene identification via mapping https://github.com/katholt/srst2 

   

K-mer analysis 

Tool Description Link 

Braken 
Computes abundance of species 
from metagenomic sequences https://ccb.jhu.edu/software/bracken/ 

Jellyfish k-mer counter https://github.com/gmarcais/Jellyfish 

KMC2 k-mer counter http://sun.aei.polsl.pl/kmc 

Kraken 
Taxonomic classification of 
metagenomic sequences https://github.com/DerrickWood/kraken 

KrakenHLL 
Metagenomics classifier with 
unique k-mer counting https://github.com/fbreitwieser/krakenhll 

mash 
Fast genome and metagenome 
distance estimation https://github.com/marbl/Mash 

MetaPalette 
Metagenomic profiling and 
phylogenetic distances https://github.com/dkoslicki/MetaPalette 

   

Pan-Genome 

Tool Description Link 

LS-BSR 
Compares all coding regions to 
generate pan-genome https://github.com/jasonsahl/LS-BSR 

panX 
Pan-genome analysis with graphic 
interface http://pangenome.tuebingen.mpg.de/ 

ParSNP 
Core genome alignment of closely 
related samples https://github.com/marbl/parsnp 

PGAP-X 
Pan-genome analysis with graphic 
interface https://pgapx.ybzhao.com/ 

Roary 
Large-scale prokaryote pan 
genome analysis https://github.com/sanger-pathogens/Roary 

   

Phylogenetics 

Tool Description Link 

BEAST 
Rooted, time measured 
phylogenies http://beast.community/ 

ClonalFrameML Identifies recombinant regions 
https://github.com/xavierdidelot/ClonalFrame
ML 

FastTree 
Approximates a maximum 
likelihood phylogeny http://www.microbesonline.org/fasttree/ 

https://github.com/sanger-pathogens/ariba
https://github.com/katholt/srst2
https://ccb.jhu.edu/software/bracken/
https://github.com/gmarcais/Jellyfish
http://sun.aei.polsl.pl/kmc
https://github.com/DerrickWood/kraken
https://github.com/fbreitwieser/krakenhll
https://github.com/marbl/Mash
https://github.com/dkoslicki/MetaPalette
https://github.com/jasonsahl/LS-BSR
http://pangenome.tuebingen.mpg.de/
https://github.com/marbl/parsnp
https://pgapx.ybzhao.com/
https://github.com/sanger-pathogens/Roary
http://beast.community/
https://github.com/xavierdidelot/ClonalFrameML
https://github.com/xavierdidelot/ClonalFrameML
http://www.microbesonline.org/fasttree/
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IQ-Tree 
Implements ultrafast bootstrap 
approximation http://www.iqtree.org/ 

mashtree 
Rapidly creates neighbor joined 
tree from mash output https://github.com/lskatz/mashtree 

MrBayes 
Bayesian inference and model 
choice https://github.com/NBISweden/MrBayes 

PhyML Accurate and highly tunable http://www.atgc-montpellier.fr/phyml/ 

RAxML Accurate and highly tunable http://www.exelixis-lab.org/ 

   

Genome Wide Association Study (GWAS) 

Tool Description Link 

BugWAS 
Lineage effects and controls 
population structure https://github.com/sgearle/bugwas 

PLINK 
Linear and logistic regression 
based GWAS http://zzz.bwh.harvard.edu/plink/ 

ROADTRIPS 
Allows partial or completely 
unknown population structure 

http://www.stat.uchicago.edu/~mcpeek/softwar
e/ROADTRIPS/ 

  

http://www.iqtree.org/
https://github.com/lskatz/mashtree
https://github.com/NBISweden/MrBayes
http://www.atgc-montpellier.fr/phyml/
http://www.exelixis-lab.org/
https://github.com/sgearle/bugwas
http://zzz.bwh.harvard.edu/plink/
http://www.stat.uchicago.edu/%7Emcpeek/software/ROADTRIPS/
http://www.stat.uchicago.edu/%7Emcpeek/software/ROADTRIPS/
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Table 1.3: Probability of sequencing error for given Phred Quality scores  
 
Phred Quality 
Score 

Probability of Sequencing 
Error 

Base Call 
Accuracy 

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.9% 

40 1 in 10,000 99.99% 

50 1 in 100,000 99.999% 

60 1 in 1,000,000 99.9999% 
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Table 1.4: Publicly available bacterial genome sequencing projects 
 
As of May 2018, there were 733,815 sequenced samples, representing over 6,000 
bacterial species, available from the European Nucleotide Archive. Of these, 19 bacterial 
species had more than 5,000 sequenced samples. These bacterial species, each 
associated with human health, represented 76% (562,849) of the sequenced bacterial 
samples. 
 
Organism Sequenced Samples 

Salmonella enterica 144,551 

Escherichia coli 70,407 

Staphylococcus aureus 55,517 

Streptococcus pneumoniae 51,958 

Mycobacterium tuberculosis 44,269 

Campylobacter jejuni 27,619 

Streptococcus pyogenes 23,374 

Listeria monocytogenes 20,133 

Neisseria meningitidis 16,410 

Klebsiella pneumoniae 15,274 

Clostridioides difficile 12,903 

Streptococcus agalactiae 8,106 

Neisseria gonorrhoeae 8,043 

Enterococcus faecium 7,046 

Pseudomonas aeruginosa 6,412 

Vibrio cholerae 6,220 

Shigella sonnei 6,072 

Campylobacter coli 5,668 

Acinetobacter baumannii 5,026 
  



 27 

Chapter 2: Fine-scale differentiation between 

Bacillus anthracis and Bacillus cereus group 

signatures in metagenome shotgun data 
 

 

This work has been submitted to PeerJ for review. 
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Abstract 

Background  
It is possible to detect bacterial species in shotgun metagenome datasets through the 

presence of only a few sequence reads. However, false positive results can arise, as was 

the case in the initial findings of a recent New York City subway metagenome project. 

False positives are especially likely when species are separated by a small phylogenetic 

distance and both the pathogen and non-pathogen species are present in the same 

sample. Bacillus anthracis, the etiologic agent of anthrax, is a high-consequence 

pathogen that shares >99% average nucleotide identity with Bacillus cereus group 

(BCerG) genomes.  Our goal was to create an analysis tool that used k-mers to detect B. 

anthracis, incorporating information about the coverage of BCerG in the metagenome 

sample. 

Methods  
Using public complete genome sequence datasets, we identified 31-mer signatures that 

differentiated B. anthracis from other members of the B. cereus group (BCerG), and 

from 31-mers conserved in all BCerG genomes (including B. anthracis), but not in other 

Bacillus strains. We also created a set of 31-mers for detecting the lethal factor gene, the 

key genetic diagnostic of the presence of anthrax-causing bacteria.  We created synthetic 

sequence datasets based on existing genomes to test the accuracy of a k-mer based 

detection model. 

Results 
We found 239,503 B. anthracis-specific 31-mers (the Ba31 set), 10,183 BCerG 31-mers 

(the BCerG31 set), and 2,617 lethal factor k-mers (the lef31 set). We showed that false 

positive B. anthracis k-mers - which arise from random sequencing errors - are 

observable at high genome coverages of B. cereus. We also showed that there is a “gray 
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zone” below ~0.18x coverage of the B. anthracis genome sequence, in which we cannot 

expect with high probability to identify lethal factor k-mers. We created a linear 

regression model to differentiate the presence of B. anthracis-like chromosomes from 

sequencing errors given the BCerG background coverage. We showed that while shotgun 

datasets from the New York City subway metagenome project had no matches to lef31 

kmers and hence were negative for B. anthracis, some samples showed evidence of 

strains very closely related to the pathogen.  

Discussion 
This work shows how extensive libraries of complete genomes can be used to create 

organism-specific signatures to help interpret metagenomes. We contrast “specialist” 

approaches to metagenome analysis such as this work to “generalist” software that seeks 

to classify all organisms present in the sample and note the more general utility of a k-

mer filter approach when taxonomic boundaries lack clarity or high levels of precision 

are required. 

  

Introduction  

There is great interest in the use of shotgun metagenome data to detect pathogens in 

clinical and environmental samples. A large number of bioinformatic tools have been 

developed (McIntyre et al., 2017) that use different algorithmic approaches to rapidly 

parse and analyze sequence data files. Over the last 8-10 years, these data have been 

generated primarily by Illumina sequencing technology.  Typically, sequences from 

metagenomic data files are matched against public reference databases, such as NCBI 

RefSeq.  Consistency of matches across the tree of life is dependent therefore on the 

database entries being correctly labelled, having similar levels of representation across 

https://paperpile.com/c/mwksMk/8wiow
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species, and having species defined in a consistent manner.  However, we are beginning 

to understand how the skewed representation of taxa contained in the database 

sometimes affects sampling accuracy (Nasko et al., 2018a).  Furthermore, the 

classification of many bacterial species harks back to distinctions based on 

morphological, biochemical and virulence characteristics, made prior to the advent of 

DNA sequencing. Sometimes, unusually close species boundaries can confound 

metagenomic classifiers and result in false positive matches. In 2015, Afshinnekoo et al 

(Afshinnekoo et al., 2015) published initial findings from an extensive study of the New 

York Subway metagenome, which claimed that they had detected bacteria responsible 

for anthrax (Bacillus anthracis) and plague (Yersinia pestis). While these 

misidentifications were swiftly corrected by more targeted analyses (Mason, 2015), 

indistinct or fuzzy boundaries between species may yield many errors of this nature 

 

B. anthracis, the pathogen that is the focus of this work, is a Gram-positive bacterium 

that forms tough endospores allowing it to survive dormant in the environment for 

years. The 5.2 (Mbp) main chromosome shares an ANI (average nucleotide identity) 

(Konstantinidis & Tiedje, 2005a) in excess of 99% with other members of the collection 

of species known as the ‘Bacillus cereus group’ (BCerG)(Helgason et al., 2000). The 

most common species in this group are B. cereus, B. thuringiensis and B. mycoides 

(Helgason et al., 2000; Zwick et al., 2012). The recommended level of difference 

between bacterial species is an ANI of 95% (Konstantinidis & Tiedje, 2005a).  While 

BCerG strains are mostly opportunistic pathogens of invertebrates and are commonly 

found in soil, B. anthracis kills mammals (Carlson et al., 2018). Spores are generally 

found at high titers in soils where animals have recently died from anthrax. 

https://paperpile.com/c/mwksMk/1ZqLq
https://paperpile.com/c/mwksMk/O6XM2
https://paperpile.com/c/mwksMk/skpO6
https://paperpile.com/c/mwksMk/JQhlq
https://paperpile.com/c/mwksMk/2YmPA
https://paperpile.com/c/mwksMk/2YmPA+MpuQL
https://paperpile.com/c/mwksMk/JQhlq
https://paperpile.com/c/mwksMk/2q5UR
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Phylogeographic analysis has shown that B. anthracis is probably native to Africa, with 

only recent transfer of a limited number of lineages to other continents (Keim & 

Wagner, 2009). For these reasons, it would be an unusual outcome to find spores in the 

New York subway. 

 

What sets B. anthracis apart from other BCerG strains is the presence of two plasmids: 

pXO1 (181 kb), which carries the lethal toxin genes, and pXO2 (94 kb), which includes 

genes for a protective capsule. Without either of these plasmids, B. anthracis is 

considered attenuated in virulence and unable to cause classic anthrax (Dixon et al., 

1999). Plasmids from other BCerG genomes may be very similar to pXO1 and pXO2 but 

lack the important virulence genes. Rarely, BCerG strains carry pXO1 and appear to 

cause anthrax-like disease (Hoffmaster et al., 2004; Hoffmann et al., 2017);  pXO2-like 

plasmids are also quite common in BCerG and other Bacillus species(Pannucci et al., 

2002; Cachat et al., 2008).  

  

Shortly after the release of the NYC subway metagenome paper, we produced a blog post 

(Petit et al., 2015) that critically re-analyzed these data in the light of what was known 

about B. anthracis genomics. This work, and other critiques, led to reassessment of the 

data and revisions to the original manuscript. In this paper, we incorporate some of the 

results introduced informally on our blog and extend them to create a k-mer based 

approach - using recent public B. anthracis and BCerG data - to analyze in greater detail 

how to search for traces of B. anthracis in shotgun metagenome data. While elements of 

this method are necessarily specific to B. anthracis and the context of the BCerG group, 

https://paperpile.com/c/mwksMk/ULnFA
https://paperpile.com/c/mwksMk/ULnFA
https://paperpile.com/c/mwksMk/mUWBJ
https://paperpile.com/c/mwksMk/mUWBJ
https://paperpile.com/c/mwksMk/ptsvz+XYxn4
https://paperpile.com/c/mwksMk/Bcinp+SNrdR
https://paperpile.com/c/mwksMk/Bcinp+SNrdR
https://paperpile.com/c/mwksMk/zV4MW
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the general strategy has far broader utility and this work is a model for future 

“specialist” studies based on k-mer filtering.  

 

Methods 

Metagenome data and reference genome sequences 
Shotgun metagenomic data from the “NYC” study SRP051511 (Afshinnekoo et al., 2015) 

were downloaded from the Sequence Read Archive (SRA) with sra-tools (v2.8.2, 

https://github.com/ncbi/sra-tools). Reference genomes for different taxonomic groups 

were downloaded from the NCBI Nucleotide database in April 2018 with the following 

queries: 

 

All BCerG genomes = ‘txid86661[Organism:exp] AND "complete genome"[Title] 

AND refseq[filter] AND 3000000:7000000[Sequence Length]’ 

 

All Bacillus genomes = 'txid1386[Organism:exp] NOT txid86661[Organism:exp] 

"complete genome"[Title] AND 3000000:7000000[Sequence Length] AND 

refseq[filter]’ 

 

Bacillus anthracis genomes were included in the BCerG genome query. The lethal factor 

gene was extracted from completed pXO1 plasmids downloaded with the following 

query: 

 

https://paperpile.com/c/mwksMk/O6XM2
https://github.com/ncbi/sra-tools
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pXO1 plasmid = ‘pXO1[Title] AND 140000:200000[Sequence Length] ‘ 

 

Mapping metagenome data to B. anthracis plasmids and chromosomes 

B. anthracis positive samples and control samples were mapped against reference pXO1 

(CP009540) and pXO2 (NC_007323) plasmids and reference B. anthracis (CP009541) 

and B. cereus (NC_003909) completed genomes with BWA (v0.7.5a-r405, (Li & Durbin, 

2009b)). The aligned reads in SAM format were converted to sorted BAM and indexed 

with samtools (v1.1, (Li et al., 2009b)). The per base coverage was extracted with 

genomeCoverageBed from bedtools (v2.16.2, (Quinlan & Hall, 2010)). Coverage across 

the plasmids and chromosomes was plotted for multiple sliding windows with a custom 

Rscript. Mapped reads were extracted and saved in FASTQ with bam2fastq (v1.1.0, 

https://gsl.hudsonalpha.org/information/software/bam2fastq) and FASTA format with 

fastq_to_fasta from FASTX Toolkit (v0.0.13.2, (Gordon & Hannon, 2010)). Scripts, 

parameters, and output are available at this site (Petit et al., 2015): 

https://github.com/Read-Lab-Confederation/nyc-subway-anthrax-study. 

 

Custom 31-mer assay for B. anthracis and Bacillus cereus Group  

In preliminary analysis we found four BCerG genomes misclassified in the NCBI 

Taxonomy database as not being part of the BCerG (see the Results section). To create a 

rational method to assign taxonomy to genomes for this study we used mash (v2.0, 

(Ondov et al., 2015)) to reclassify mislabelled Bacillus genomes as B. anthracis, non-

anthracis BCerG, or non-BCerG. We identified Bacillus anthracis strain 2002013094 

(NZ_CP009902) as the most distant (Mash distance 0.000687) B. anthracis member 

https://paperpile.com/c/mwksMk/13gX
https://paperpile.com/c/mwksMk/13gX
https://paperpile.com/c/mwksMk/qZStM
https://paperpile.com/c/mwksMk/YsIwl
https://paperpile.com/c/mwksMk/WlL3M
https://paperpile.com/c/mwksMk/zV4MW
https://github.com/Read-Lab-Confederation/nyc-subway-anthrax-study
https://paperpile.com/c/mwksMk/7KOF
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from from B. anthracis str. Ames (NC_003997). We also identified Bacillus cytotoxicus 

NVH 391-98 (NC_009674) as the most distant (Mash distance 0.135333) BCerG 

member from B. anthracis str. Ames (NC_003997). We then determined the Mash 

distance of all Bacillus genomes from B. anthracis str. Ames. We used the Mash 

distance to reclassify each Bacillus genome as B. anthracis (Mash distance <= 

0.000687), non-anthracis BCerG (Mash distance <= 0.135333), or non-BCerG (Mash 

distance > 0.135333). A phylogeny of all completed Bacillus genomes was created with 

mashtree (v0.32, https://github.com/lskatz/mashtree). 

 

Sequence 31-mers were extracted and counted with Jellyfish (v2.2.3, (Marçais & 

Kingsford, 2011a)) and partitioned into two distinct sets characteristic of BCerG 

(BCerG31) and B. anthracis (Ba31) (Figure 2.1). The BCerG31 and Ba31 sets were 

initially comprised of 31-mers conserved within every member of BCerG (including B. 

anthracis) and those restricted to only B. anthracis, respectively. Any Ba31-mers found 

in non-anthracis BCerG members or non-BCerG genomes were filtered out. Likewise, 

any BCerG31-mers found in non-BCerG Bacillus genomes were filtered out.  31-mers 

found in rRNA were filtered out with a Jellyfish database created from the SILVA rRNA 

database (Quast et al., 2013). We further filtered the Ba31 and BCerG31 sets using the 

non-redundant nucleotide sequence database (NT v5, downloaded April 2017). We used 

BLASTN (v2.8.0, (Camacho et al., 2009)) to align Ba31 against non-anthracis BCerG 

sequences and BCerG31 against non-BCerG sequences. 31-mers with an exact match 

were filtered out. 

 

https://github.com/lskatz/mashtree
https://paperpile.com/c/mwksMk/Hq9D
https://paperpile.com/c/mwksMk/Hq9D
https://paperpile.com/c/mwksMk/qvLPF
https://paperpile.com/c/mwksMk/VzeD
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Finding the limits for lethal factor-based detection of B. anthracis 
We used B. anthracis whole genome shotgun sequencing projects to determine the limit 

of detection of lethal factor k-mers (lef31). We defined lef31 as the unique set of 31-mers 

identified in lef genes downloaded from the NCBI Nucleotide database (previously 

described) (Figure 2.1). B. anthracis projects were identified from the SRA with the 

following query: 

 

B. anthracis projects = ‘genomic[Source] AND random[Selection] AND 

txid86661[Organism:exp] AND paired[Layout]) AND wgs[Strategy] AND 

"Illumina HiSeq"’ 

 

In this work we have assumed a 95% ‘confidence limit’ for detection of the lethal factor 

k-mers, so that detection is held to fail if fewer than 95% of a set of random subsamples 

are found to contain at least one lethal factor k-mer. The threshold is then obtained 

through computational experiment. For each project, we started at 0.2x B. anthracis 

genome coverage and extracted 100 random subsamples of sequences, using Jellyfish as 

before to determine if at least one lethal factor k-mer was present. We then continued 

this process, reducing the coverage until fewer than 95% of the subsamples contained at 

least one lethal factor k-mer. The previous coverage was then recorded as the limit of 

detection of the lethal toxin for a given sample. 

 

Assessing Quality of B. anthracis and B. cereus Group specific 31-mers 
We used ART (vMountRainier-2016-06-05, (Huang et al., 2012)) to simulate 100 bp 

reads with the built-in Illumina HiSeq 2000 error model for each non-anthracis 

https://paperpile.com/c/mwksMk/YdHK5
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Bacillus genome. We simulated coverages ranging from 0.01x to 15x to determine if 

false positive Ba31 matches were uniform across non-anthracis BCerG members. We 

counted 31-mers for each simulated read set with Jellyfish as previously described. We 

then used the k-mer counts to determine the sensitivity and specificity of our B. 

anthracis and BCerG specific k-mers. We found the false positive Ba31 counts to be 

higher in non-B. anthracis genomes that were most closely related to B. anthracis 

(please see results section). A subset of non-B. anthracis BCerG genomes with a Mash 

distance less than 0.01 from B. anthracis, previously described, were selected as our 

model set. We further simulated coverages from 15x to 100x to match levels of coverage 

observed in the NYC dataset. We then applied linear regression, implemented in the R 

base stats package, on this subset to develop a predictive model with the observed Ba31 

count as our dependent variable and the observed BCerG k-mer coverage as our 

independent variable.  

 

Prediction of low coverage B. anthracis chromosome in shotgun 

sequencing datasets 

We used ART to simulate metagenomic mixtures of B. anthracis str. Ames 

(NC_003997) and B. cereus strain JEM-2 (NZ_CP018935). B. cereus strain JEM-2 was 

selected because it was the closest non-anthracis BCerG member to B. anthracis str. 

Ames (Mash distance 0.00873073). We used coverages between 0-100x for B. cereus 

and coverages between 0-0.2x for B. anthracis. A python script (subsample-ba-lod.py) 

was created to simulate mixtures for each pairwise combination of B. cereus and B. 

anthracis coverages. For each mixture the B. anthracis and BCerG 31-mers were 

counted with Jellyfish as previously described. This process was repeated 20 times per 
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pairwise combination of coverages. The model was applied to determine what level of B. 

anthracis coverage was required to differentiate observed Ba31-mers from sequencing 

errors. 

 

We counted B. anthracis, BCerG and lethal factor 31-mers for each sample in the NYC 

study. The model was applied to these counts to determine if observed B. anthracis k-

mers exceeded the level expected due to sequencing errors. 

 

We processed each of the subsampled mixtures and samples from the NYC study with 

KrakenHLL (v0.4.7, (Breitwieser & Salzberg, 2018)). The standard Kraken database 

(built April 2017) was used for this analysis. From the final Kraken report, the number 

of reads and unique k-mers identified for B. anthracis were extracted. We compared 

these results to our method. 

 

Output, figures, job parameters and scripts from this study are available in a git 

repository hosted at: https://github.com/rpetit3/anthrax-metagenome-study. 

 

Results 

NY subway metagenome sequences map to core regions of B. anthracis and 

B. cereus chromosome and plasmids but not to lethal factor gene 

In the original analysis of the subway metagenome (Afshinnekoo et al., 2015), two 

samples (P00134 (SRR1748707, SRR1748708), and P00497 (SRR1749083)) were 

reported to contain reads that mapped to Bacillus anthracis based on results obtained 

using the Metaphlan software (Segata et al., 2012). We found that 792,282 reads from 

https://paperpile.com/c/mwksMk/SfnS
https://github.com/rpetit3/anthrax-metagenome-study
https://paperpile.com/c/mwksMk/O6XM2
https://paperpile.com/c/mwksMk/8lTVz
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P00134 and 270,964 reads from P00497 mapped to the B. anthracis strain Sterne 

chromosome. The reads aligned along the entire length of the chromosome, forming a 

characteristic peak at the replication origin, a pattern often seen when other bacterial 

chromosomes have been recovered from metagenome samples (Brown et al., 2016). 

However, a similar number of reads from P00134 and P00497 (765,466 reads and 

265,776 reads, respectively) mapped to the B. cereus 10987 chromosome. We also found 

that P00134 and P00497 reads mapped to the both the pXO1 and pXO2 plasmids in 

conserved “backbone” regions (Rasko et al., 2007) but that no read mapped to the 

mobile element containing the lef lethal factor gene. These results showed that the close 

taxonomic relationship of B. anthracis and BcerG made identification of the biothreat 

agent by mapping reads alone unreliable.  In addition, the pXO1 and pXO2 plasmids 

were not reliable as positive markers for B. anthracis at low genome coverages (when 

the lef gene may not be sampled, see next section) because backbone sequences cross-

matched against plasmids found in BCerG strains. 

 

B. anthracis genome coverage below 0.18x is a “gray area” for detection, 

where lethal toxin genes may not be sampled 

The best test for presence of virulent B. anthracis (or virulent B. cereus strains 

containing pXO1) is detection of the lethal factor gene (2,346 bp) (Bragg & Robertson, 

1989). However, at low sequence coverage of the pathogen, it is not certain that reads 

from this gene will be present (given the 3:1 copy number ratio of pXO1 to B. anthracis 

chromosome (Read et al., 2002) the ratio of chromosome to lef is ~620:1). We identified 

2,617 31-mers present in 36 lef gene sequences and called this set “lef31”. To estimate 

the level coverage at which we would expect (with probability above some threshold 

https://paperpile.com/c/mwksMk/PT4P3
https://paperpile.com/c/mwksMk/7u86H
https://paperpile.com/c/mwksMk/U2pjt
https://paperpile.com/c/mwksMk/U2pjt
https://paperpile.com/c/mwksMk/Fkt91
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value, here 0.95) to observe lethal factor sequences, we randomly subsampled reads 

from 164 B. anthracis genome projects and tested for the presence of at least one lef31 

match (Figure 2.2). This analysis showed that below ~0.18x-fold B. anthracis genome 

coverage (approximately 9,360 100 bp paired end reads), we would have a < 95% 

chance of sampling lethal factor even if the lef gene were present.   

 

Conserved and specific 31-mer sets for B. anthracis and BCerG 

chromosomes 

The results of the previous section showed that at low genome coverage, the presence of 

B. anthracis chromosomal markers was more reliable than those based on the lethal 

factor gene. In metagenomic samples, in which sequencing coverage is expected to be 

low for rare organisms, the most reliable way to detect B. anthracis was to use 

chromosomal genetic signatures that distinguished the species from close relatives. We 

identified 239,503 31-mers conserved in 48 B. anthracis reference genomes that were 

not also detected in the remainder of the Bacillus genus (331 genomes), rRNA 

sequences, or the BLAST non-redundant nucleotide database.  We called this set “Ba31”.  

 

We created a second set of 31-mers specific to and conserved in all BCerG genomes 

(including B. anthracis). Surprisingly, our initial analysis produced zero 31-mers 

specific to all 139 BCerG strains and no other Bacillus. Inspection of the whole genome 

phylogeny (Figure 2.3) showed that 4 genomes (NZ_CP007512, NZ_CP017016, 

NZ_CP020437, NZ_CP025122) that fell within the BCerG clade based on phylogeny had 

not been classified as BCerG in the NCBI Taxonomy hierarchy. After reclassifying these 
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strains as BCerG, we identified 10,183 BCerG specific 31-mers, which we called 

“BCerG31”. 

 

High background levels of B. cereus strains produce false positive B. 

anthracis specific k-mers due to random sequence errors 

We defined ‘coverage’ of the k-mer sets as the sum of counts for k-mers detected divided 

by the number of k-mers in the k-mer set.  Ba31 and BCerG k-mer coverage had a linear 

relationship with genome coverage (Figure 2.4).  The coefficient was less than 1 (0.56 

and 0.61 for Ba31 and BCerG31 respectively), because some portions of the 

chromosomes were not well sampled by the k-mers.  

 

We simulated synthetic data representing subsamples of B. anthracis and B. cereus at 

different genome coverages using ART software with an error model based on Illumina 

short read data (Huang et al., 2012) (Figure 2.5).  We found a strong linear 

relationship between Ba31 coverage and BCerG31 coverage within B. anthracis genome 

subsamples (Pearson’s Correlation r=0.99, p < 0.001, Figure 2.6). As expected, the 

same relationship did not appear when we subsampled non-B. anthracis BCerG 

members. However, we did see a small number of Ba31 k-mers detected, which we 

suspected were due to random errors introduced by Illumina sequencing (Figure 2.5). 

The counts of false positive Ba31 k-mers scaled with the approximate genetic distance to 

B. anthracis (as measured by mash(Ondov et al., 2016)) (Figure 2.7). We simulated 

synthetic data for a group of BCerG strains most closely related to B. anthracis (Figure 

2.3). We developed a linear regression model to relate BCerG k-mer coverage and 

https://paperpile.com/c/mwksMk/YdHK5
https://paperpile.com/c/mwksMk/7ePEW
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sequencing errors based on this group (Figure 2.5). For every unit of BCerG31 k-mer 

coverage, we predicted 172 Ba31 false positive k-mer counts. 

 

A “specialist” model to interpret patterns of B. anthracis genetic signatures 

in metagenome samples 

In real metagenome samples B. anthracis, if present, may only account for a low 

proportion of the total reads and may also be mixed with higher proportions of closely 

related BCerG strains.  We sought to use the k-mer sets developed in the previous 

sections and knowledge of the lef gray zone coverage and BCerG false positive rate to 

interpret both synthetic and real metagenome datasets. The logic for assignment is 

shown Table 2.3 and Figure 2.8. 

 

For our synthetic dataset we mixed low coverage B. anthracis with higher coverages of 

BCerG sequence data (see methods). We calculated the BCerG31 and Ba31 coverages for 

each mixture.  Based on the BCerG sequence error model, we calculated the 99% count 

of Ba31 signatures predicted to be present by sequencing error under the assumption 

that there was no B. anthracis present and that all BCerG were drawn from the most 

closely related clade (Figure 2.3). We also reported whether the Ba31 coverage lay in or 

above the gray zone (Table 2.1, Figure 2.9). When B. anthracis was below 0.003x 

genome coverage (approximately 16,000 bp), we could not distinguish its presence from 

errors produced in the absence of B. cereus. As expected, we found that the level of 

BCerG coverage determined the lower limit to differentiate genuine Ba31 hits from 

sequencing errors. At 75x BCerG coverage the required B. anthracis coverage to 
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differentiate Ba31 matches from sequencing errors doubled to 0.006x. The threshold for 

accurate detection was further raised to 0.01x B. anthracis genome coverage at 100x 

BCerG coverage.   

 

In contrast, when the samples were classified using KrakenHLL(Breitwieser & Salzberg, 

2018), an accurate generalist program based on 31-mers, we found that all were 

predicted to contain B. anthracis, including negative controls (Table 2.1).  The B. 

anthracis calls were made because of the sequence errors from the high coverage BCerG 

genomes.  

 

Finally, we tested our model against the NYC dataset (Table 2.2).  All 1,458 samples 

were negative for lef31, in line with the conclusion reached from re-analysis of the 

dataset that B. anthracis was absent from the NY subway (Mason, 2015). We found that 

1,367 of the 1,458 samples had at least one BCerG31 k-mer match and, of these, 1,085 

contained at least one Ba31 match. We identified 34 samples with Ba31 counts above the 

99% threshold predicted by the BCerG coverage. These samples did not include the two 

(P00134 and P00497), previously flagged as B. anthracis positive (Afshinnekoo et al., 

2015) (Table 2.2). KrakenHLL also classified each these 34 samples as positive for B. 

anthracis. 

 

Discussion 

In this work we have described a significant update to a B. anthracis specific 31-mer set 

that was introduced in earlier blog posts (Petit et al., 2015; Minot et al., 2015) and we 

https://paperpile.com/c/mwksMk/SfnS
https://paperpile.com/c/mwksMk/SfnS
https://paperpile.com/c/mwksMk/skpO6
https://paperpile.com/c/mwksMk/O6XM2
https://paperpile.com/c/mwksMk/O6XM2
https://paperpile.com/c/mwksMk/zV4MW+TIwvb


 43 

have shown how this set can be used to interpret B. anthracis specific signatures in 

Illumina metagenome samples. We chose to use k-mer-based signatures for the ease 

and speed of computation, with the length of 31 nt selected as it was identified as the 

shortest likely to be unique across bacteria datasets (Koslicki & Falush, 2016).  

 

Some species present unusual challenges for metagenome identification. There is no 

consistently applied definition for the boundary that divides bacterial species based on 

DNA sequence identity and in some cases the presence or absence of mobile elements 

like plasmids and phages are required for speciation.  B. anthracis is closely related to 

non-biothreat species and acquires its enhanced virulence from genes on mobile 

plasmids.  Such species can be hard to model using “generalist” programs (such as 

Kraken) that attempt to classify every read in the dataset into one of thousands of 

taxonomic groups. We use a “specialist” approach aiming to solve a narrow problem that 

can be used to augment the predictions of generalist software. Specialist analyses can 

take advantage of unique features of the system and can also afford more effort in the 

curation of training data.  In this case, we designed 31-mer signature sets based on 

comparison of hundreds of complete Bacillus genomes and we incorporated knowledge 

of false positive k-mers likely to be produced by close relatives of B. anthracis.  We also 

used the fact that the presence of a specific gene (lef) was diagnostic for anthrax. In 

designing our k-mer sets we encountered some rare cases of taxonomic mis-assignment 

in public datasets and were able to take corrective action (Figure 2.3). Generalist 

programs also rely on the same taxonomy and reference sequence databases, but it is 

harder to detect small errors that lead to mis-assignments when done on a large scale 

(Nasko et al., 2018a). If we were to attempt approaches to specifically detect other 

https://paperpile.com/c/mwksMk/nPJi
https://paperpile.com/c/mwksMk/1ZqLq
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known B. cereus strains that contain pXO1(Hoffmaster et al., 2004; Klee et al., 2010), 

we would have to develop and test new k-mer sets based on their unique chromosomal 

SNPs.  

 

Even when a specialized algorithm has been developed, judgement is still required in 

interpreting results. In the case of the Bacillus genomes in particular, DNA extraction 

biases may affect results in ways we cannot assess without empirical experiments. We 

can’t tell what proportion of the DNA came from lysis-resistant spores and what 

proportion was from the more fragile vegetative state, and how this balance might vary 

between strains across environments. Similarly, using a different sequencing 

technology, such the Pacific Biosystems SMRT system, with a different error profile, 

would require recalibration of the model. 

 

Our reanalysis of the NYC data (Afshinnekoo et al., 2015) showed that there was no 

direct evidence for the lethal factor k-mers in the metagenome samples. This confirms 

other work (Mason, 2015; Minot et al., 2015; McIntyre et al., 2017), and together with 

the low prior probability of encountering B. anthracis in New York City, suggests that 

the samples taken were all negative for anthrax.  The two samples originally flagged as 

possibly positive (Table 2.2) fell under case 4 (Table 2.3), as did 1,049 out of the other 

1,456 samples. There were 373 samples with no Ba31 k-mer matches. These are all most 

likely true negatives, although, as we showed in the synthetic dataset, high BCerG 

coverage can mask the signal of low coverage B. anthracis (Table 2.1). To get a true 

negative would theoretically involve sequencing every cell in the sample (assuming 

perfectly efficient DNA preparation), which is impossible currently for all but the 

https://paperpile.com/c/mwksMk/bMjbB+XYxn4
https://paperpile.com/c/mwksMk/O6XM2
https://paperpile.com/c/mwksMk/8wiow+TIwvb+skpO6
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simplest communities. The limit of detection will be a complex calculation that involves 

the amount of DNA sequence generated and the complexity of the microbial community. 

Negative (and positive) calls ultimately have to be supported through sensitive detection 

assays such as PCR and/or culture. 

 

We identified 34 samples above the BCerG thresholds for our model (Table 2.2). All 

the samples fell under case 3 except a single sample which fell under case 2 (Table 2.3). 

An outlier of case 3 samples, P00981, taken from a metal handrail on the A train 

route(Afshinnekoo et al., 2015), had high Ba31 counts (n=20,079).  As we collect more 

genomes of B. cereus group we may see more Ba31 k-mers in BCerG genomes. These 

samples may contain members of yet unencountered lineages more closely related to B. 

anthracis than previously seen, or possibly the result of recent recombination between 

B. anthracis and B. cereus genomes (although the latter has not been reported). It 

important that these strains are isolated, sequenced and added to public databases to 

iteratively improve pathogen detection. The single case 2 sample, P00738 (Table 2.2), 

was also on a metal handrail from the A train route, although sampled 3 days earlier 

than P00981. This sample was possibly the most problematic because the Ba31 counts 

were in the gray zone, meaning there was not enough coverage to rule out lef being 

present.  Most likely, this sample contained another near-B. anthracis strain, but case 2 

samples should be a priority for retesting by culture and PCR methods. 

 

https://paperpile.com/c/mwksMk/O6XM2
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Conclusions 
If B. anthracis, or another BCerG strain containing pXO1, is present in a shotgun 

metagenome sample at high genome coverage, identification of lef k-mers is a strong 

signal for the likely presence of anthrax-causing bacteria. We showed that using a B. 

anthracis specific k-mer set alone to call the presence of B. anthracis produced many 

false positive calls because of common co-resident BCerG bacteria. We developed 

models to partition cases that contained evidence of possible low coverage B. anthracis, 

accounting for B. cereus coverage. However, in simulations, we showed that false 

negative results can arise when the BCerG coverage is high. Reanalysis of the NYC 

subway metagenome study confirmed the absence of B. anthracis containing lef but we 

found evidence in at least two samples of BCerG strains that contained what were 

considered B. anthracis specific sequences. Culturing strains such as these, genome 

sequencing and sharing to the public domain will help improve B. anthracis detection in 

metagenome shotgun samples. 
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Appendix 

The following appendix contains figures and tables referenced in the text of this chapter. 
 
 
Figure 2.1:  Flowchart of strategy for primer design 
 

We developed a strategy for selecting the Ba31 and BCerG31 (A) and lethal factor (B) k-

mer sets. In A) the outgroup is determined by the k-mer set. For Ba31, the outgroup was 

comprised of all the non-B. anthracis genomes; for BCerG31, it consisted of all non-B. 

cereus group genomes.  
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Figure 2.2: Limit of detection for lethal factor toxin k-mers (lef31). 
 
164 B. anthracis sequencing projects were subsampled to different levels of genome 

coverage, with 100 random subsamples obtained for each coverage level.  Our ability to 

detect the the lethal factor gene is assessed by considering the number of these 

subsamples for which we find at least one lef31 k-mer hit. Two thresholds - 95% and 

100% - were employed and are shown as colored series below. 

 

The figure thus shows the percentage of the B. anthracis sequencing projects for which 

95% (or 100%) of the random subsamples contain at least one lef31 k-mer. Panel (A) 

shows results with respect to Ba31 k-mer coverage while panel (B) shows the 

corresponding results for BCerG coverage. The vertical dashed lines show the coverage 

limits for detection at the respective threshold levels.  
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Figure 2.3: Unrooted phylogeny of BCerG genome assemblies used in the 
study after reclassifying BCerG strains 
 

An unrooted phylogenetic representation of 140 BCerG genomes using Mashtree (v0.32, 

https://github.com/lskatz/mashtree). Genomes reclassified as BCerG members with 

mash (v2.0, (Ondov et al., 2015)) are indicated with stars. The clade colored blue are B. 

cereus genomes closely related to B. anthracis that were used to model false positive 

results (Figure 2.5). 

 

 
 

  

https://github.com/lskatz/mashtree
https://paperpile.com/c/mwksMk/7KOF
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Figure 2.4: Ba31 and BCerG31 coverages have a linear relationship with 
genome coverage.  
 

We created synthetic FASTQ files of B. anthracis (A) and BCerG (B) at different genome 

coverages and counted Ba31 and BCerG31 k-mers. A linear model with an intercept of 0 

is displayed in each case. 
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Figure 2.5: Linear regression model fit of BCerG coverage and false 
positive Ba31 counts. 
 
We created random synthetic FASTQ files based on BCerG chromosomes from the clade 

closest to B. anthracis (blue in Figure 2.3) at different genome coverages and counted 

the false positive Ba31 k-mers. Shown is the fit of a linear regression model with an 

intercept of 0, with BCerG31 coverage as the independent variable and the Ba31 false 

positive count as the dependent variable. The solid line shows the predicted values from 

the model, and the dashed line reflects the upper 99% prediction interval for the 

parameters, which we use in the analyses above.  
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Figure 2.6: In B. anthracis genomes, Ba31 coverage is strongly correlated 
with BCerG31 coverage. 
 

We created synthetic B. anthracis FASTQ files at different genome coverages and 

counted BCerG31 and Ba31 k-mers.  A linear model with an intercept of 0 is displayed. 
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Figure 2.7: The genetic relatedness between B. anthracis and non-B. 
anthracis BCerG members affects Ba31 false positive matches. 
 

Synthetic FASTQ files for all BCerG genomes shown in Figure 2 were created and the 

counts of Ba31 false positive k-mers were plotted against BCerG k-mer coverage. Dots 

are colored by the Mash distance (Ondov et al., 2016) from the B. anthracis str. Ames 

(NC_003997) genome. 

 

 

 
  

https://paperpile.com/c/mwksMk/7ePEW
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Figure 2.8: A flowchart of potential outcomes of B. anthracis detection, 
given matches to the Ba31 set in a shotgun metagenome dataset 
 

This flowchart presents a visual representation of Table 2.3.  
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Figure 2.9: Limit of detection for B. anthracis k-mers (Ba31) in mixtures 
of low B. anthracis coverage and high B. cereus coverage. 
 

We created artificial mixtures of B. anthracis and B. cereus to determine the limit of 

detection for B. anthracis k-mers (Ba31). Each panel represents a different coverage of 

B. cereus and the points are the different B. anthracis coverages. The points are colored 

red if Ba31 matches could not be differentiated from sequencing errors. The error model 

is indicated by the solid line and the 99% prediction interval by the dashed line. The first 

B. anthracis coverage value that exceeded the error model is determined as the limit of 

detection of Ba31. 

 



 57 

  



 58 

Table 2.1: Artificial mixtures of low coverage B. anthracis and high 
coverage B. cereus 
 

This table shows some key results from more than 300 artificial mixtures of B. anthracis 

and B. cereus sequences created to test our specialized model (full table available at 

https://github.com/rpetit3/anthrax-metagenome-study/). The table includes three B. 

anthracis coverages for each B. cereus coverage. The B. anthracis simulated coverages 

represent the minimum B. anthracis coverage, the coverage at which B. anthracis was 

detectable, and the maximum B. anthracis coverage. The first two columns are the 

coverage in the artificial mixtures of B. cereus and B. anthracis genomes, respectively.  

The third column is the observed BCerG31 k-mer coverage. Columns 4-6 are the 

observed number of Ba31 k-mers, the expected number of Ba31 k-mers based on the 

BCerG31 coverage (see Figure 2.4) and the 99% prediction interval of the model. The 

seventh column summarizes whether the observed Ba31 is greater than the the 99% P.I. 

The eighth column is whether the Ba31 coverage is in the “gray zone” (< 0.18x coverage). 

“No” means the Ba31 exceeds the threshold (note it is possible for the Ba31 coverage to 

be at gray zone level but still have a positive match to a lef31k-mer). The final column 

shows whether KrakenHLL (Breitwieser & Salzberg, 2018) run on the sample predicted 

the presence of B. anthracis.   

 

This table shows that false positives k-mers resulting from high BCerG coverage limit 

the detection of B. anthracis k-mers (Ba31) in mixed cultures. Below 0.006x (75x-fold 

B. cereus) and 0.01x (100x-fold B. cereus) B. anthracis genome coverages, true positive 

Ba31 matches cannot be differentiated from false positive matches. KrakenHLL 

predicted B. anthracis to be present even when it was not because of the background 

BCerG genomes coverage. 

 

 

 

Artificial Genome Coverage  Ba31 Count    

https://github.com/rpetit3/anthrax-metagenome-study/blob/master/results/figures/supplementary-file-02-nyc-summary.txt
https://paperpile.com/c/mwksMk/SfnS
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B. cereus B. anthracis BCerG31 

Coverage 

Observed Model 

Fit 

Model Upper  

99 % P.I.1 

Exceeds 

99% P.I.1 

lef31 Gray 

Zone 

Kraken

HLL 

0x 0.001x 0.00002 10 1 331 No Yes Yes 

0x 0.003x 0.00245 346 1 332 Yes Yes Yes 

0x 0.2x 0.123 25,396 21 352 Yes No Yes 

1x 0x 0.593 99 102 433 No Yes Yes 

1x 0.003x 0.610 444 104 437 Yes Yes Yes 

1x 0.2x 0.727 25,627 125 456 Yes No Yes 

5x 0x 3.048 487 524 855 No Yes Yes 

5x 0.003x 3.060 919 526 857 Yes Yes Yes 

5x 0.2x 3.155 25,502 542 874 Yes No Yes 

10x 0x 6.115 1,050 1,051 1,382 No Yes Yes 

10x 0.004x 6.100 1,531 1,048 1,379 Yes Yes Yes 

10x 0.2x 6.450 26,346 1,074 1,405 Yes No Yes 

25x 0x 15.277 2,516 2,625 2,957 No Yes Yes 

25x 0.004x 15.174 3,075 2,608 2,939 Yes Yes Yes 

25x 0.2x 15.339 27,536 2,636 2,967 Yes No Yes 

50x 0x 30.381 5,058 5,221 5,552 No Yes Yes 

50x 0.005x 30.438 5,726 5,231 5,562 Yes Yes Yes 

50x 0.2x 30.595 29,766 5,257 5,589 Yes No Yes 

75x 0x 45.753 7,323 4,530 8,194 No Yes Yes 

75x 0.006x 45.699 8,351 7,853 8,184 Yes Yes Yes 

75x 0.2x 45.859 31,971 7,881 8,212 Yes No Yes 
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100x 0x 60.926 9,633 10,470 10,801 No Yes Yes 

100x 0.01x 60.958 11,020 10,475 10,807 Yes Yes Yes 

100x 0.2x 61.093 33,761 10,498 10,830 Yes No Yes 

1 Prediction Interval 
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Table 2.2:  Reanalysis of NYC subway metagenome sequencing 
 

We counted Ba31, BCerG31 and lef31 k-mers in 1,458 NYC subway metagenomic 

samples (Afshinnekoo et al., 2015). The table is a breakdown of samples that were 

within the gray zone and/or had Ba31 matches that exceed the 99% prediction interval. 

Columns 2-8 display the same data types as columns 3-9 in Table 2.1. The additional 

lef column shows whether lef31 matches were identified or not. The final column 

provides the outcome case of the sample (Table 2.3). This table presents 4 samples 

excerpted from the complete results for all samples available at 

https://github.com/rpetit3/anthrax-metagenome-study/. There is one sample within 

the gray zone (P00738), two from the original study (P00134 and P00497) and an 

outlier of samples which exceed the 99% prediction interval (P00981).  

 

  Ba31 Count      

Sample BCerG31 

Coverage 

Observed Model 

Fit 

Model Upper 

99% P.I.2 

Exceeds 

99% P.I.2 

Gray 

Zone 

Kraken

HLL 

lef Outcome 

Case 

P001341 19.71 2,755 3,387 3,718 No No Yes No 4 

P004971 4.05 953 696 1,027 No No Yes No 4 

P00981 1.32 20,079 226 558 Yes No Yes No 3 

P00738 0.002 396 1 331 Yes Yes Yes No 2 

 

1 Samples previously identified as containing B. anthracis 
2 Prediction Interval 

 

 

  

https://paperpile.com/c/mwksMk/O6XM2
https://github.com/rpetit3/anthrax-metagenome-study/blob/master/results/figures/supplementary-file-02-nyc-summary.txt
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Table 2.3: Potential outcomes of B. anthracis detection, given matches to 
the Ba31 set in a shotgun metagenome dataset 
 

This table discusses the interpretation of four cases when Ba31 k-mer matches are found 

in the dataset. Columns 1-3 are; lef31 match; whether Ba31 coverage is in the Gray Zone; 

and whether Ba31 coverage is above the 99% of the error model based on BCerG 

coverage. 

 

Case Lef31  Gray Zone Exceeds 99% P.I. Interpretation 

1 yes yes or no yes or no Evidence of lethal factor gene, could be B. anthracis or a B. 

cereus strain carrying the pXO1 plasmid. 

2 no yes yes Possible B. anthracis or closely related strain based on 

high Ba31 counts but genome coverage too low to 

guarantee seeing the lef gene.  Requires more sequence 

coverage and/or validation by PCR or other methods. 

3 no no yes Ba31 matches exceed what is expected by the BCerG error 

model but are at a level of genome coverage at which lethal 

factor should have been detected.  Most likely explanation 

is B. anthracis strain cured of pXO1 or unsequenced 

lineage closely related to B. anthracis. 

4 no yes or no no Most likely scenario is that BCerG background produced 

Ba31 k-mers through random errors but impossible to also 

rule out presence of low coverage B. anthracis 
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Chapter 3: Staphylococcus aureus viewed from 

the perspective of 40,000+ genomes 

 

 

This work has been accepted for publication at PeerJ. 
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Abstract 
Low-cost Illumina sequencing of clinically-important bacterial pathogens has generated 

thousands of publicly available genomic datasets. Analyzing these genomes and 

extracting relevant information for each pathogen and the associated clinical 

phenotypes requires not only resources and bioinformatic skills but organism-specific 

knowledge. In light of these issues, we created Staphopia, an analysis pipeline, database 

and Application Programming Interface, focused on Staphylococcus aureus, a common 

colonizer of humans and a major antibiotic-resistant pathogen responsible for a wide 

spectrum of hospital and community-associated infections.  

 

Written in Python, Staphopia’s analysis pipeline consists of submodules running open-

source tools. It accepts raw FASTQ reads as an input, which undergo quality control 

filtration, error correction and reduction to a maximum of approximately 100x 

chromosome coverage. This reduction significantly reduces total runtime without 

detrimentally affecting the results. The pipeline performs de novo assembly-based and 

mapping-based analysis. Automated gene calling, and annotation is performed on the 

assembled contigs. Read-mapping is used to call variants (single nucleotide 

polymorphisms and insertion/deletions) against a reference S. aureus chromosome 

(Type strain, N315, ST5). 

 

We ran the analysis pipeline on more than 43,000 S. aureus shotgun Illumina genome 

projects in the public ENA database in November 2017. We found that only a quarter of 

known multi-locus sequence types (STs) were represented but the top ten STs made up 

70% of all genomes. MRSA (methicillin-resistant S. aureus) were 64% of all genomes. 
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Using the Staphopia database we selected 380 high quality genomes deposited with 

good metadata, each from a different multi-locus sequence type, as a non-redundant 

diversity set for studying S. aureus evolution. In addition to answering basic science 

questions, Staphopia could serve as a potential platform for rapid clinical diagnostics of 

S. aureus isolates in the future. The system could also be adapted as a template for other 

organism-specific databases. 

 

Introduction 

Staphylococcus aureus is a common and deadly bacterial pathogen that has been 

frequently investigated by whole genome sequencing over the last decade. It was the 

subject of arguably the first large scale bacterial genomic epidemiology study using 

Illumina sequencing technology (Harris et al., 2010). The cumulative number of 

Illumina shotgun genome projects deposited in public repositories [the National Center 

for Biotechnology Information Short Read Archive (NCBI SRA) and the European 

Nucleotide Archive (ENA)] had grown to almost 50,000 by March 2018 (Figure 3.1). S. 

aureus is therefore on the front edge of a cohort of bacterial species that are acquiring 

broad whole genome shotgun coverage, offering possibilities of new types of large scale 

analysis. 

 

S. aureus is a Gram-positive bacterium with a chromosome of ~2.8 Mbp. Plasmid 

content varies between strains. A multi-locus sequence typing (MLST) scheme that 

assigns each strain a ‘sequence type’ (ST) based on seven genes has proven a robust way 

of describing individual strain genotypes and membership of larger ‘clonal complexes’ 

https://paperpile.com/c/mwksMk/EVxpy
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(CCs) (Planet et al., 2016). The accumulated public S. aureus genome datasets present 

an opportunity for investigating basic questions about how genetic variations that cause 

antibiotic resistance evolve within populations and how long genes traded by horizontal 

gene transfer persist in populations. However, there has been a problem of access, as 

few public tools fill the niche of providing fine scale access to very large datasets from a 

pathogen species. For example, PATRIC (Wattam et al., 2014) and BIGSdb (Jolley & 

Maiden, 2010) web based analysis sites focus on high quality annotation and complete 

genome MLST (cgMLST), respectively, while Aureowiki (Fuchs et al., 2017) and PanX 

(Ding, Baumdicker & Neher, 2018) provide very detailed information on a smaller 

number of strains. In this study we describe the creation of Staphopia, an integrated 

analysis pipeline, database and Application Programming Interface (API) to analyze S. 

aureus genomes. 

 

Materials & Methods 

Staphopia Analysis Pipeline 

The Staphopia Analysis Pipeline (StAP) processed FASTQ files from a single genome 

through quality control steps and bioinformatic analysis software. StAP ( 

https://github.com/staphopia/staphopia-ap/) consisted of custom Python3 scripts and 

open source software organized by the the Nextflow (Di Tommaso et al., 2017) (v0.28.2) 

workflow management platform (Figure 3.2). When available we used BioConda 

(Grüning et al., 2017) to install the open source software. Summary statistics of the 

original input and subsequent downstream results files were collected at each step of the 

pipeline. For portability, StAP was wrapped in a Docker container. The version of the 

https://paperpile.com/c/mwksMk/FRSN4
https://paperpile.com/c/mwksMk/hTee1
https://paperpile.com/c/mwksMk/DHNF9
https://paperpile.com/c/mwksMk/DHNF9
https://paperpile.com/c/mwksMk/E9gJW
https://paperpile.com/c/mwksMk/TkKiQ
https://github.com/staphopia/staphopia-ap/
https://paperpile.com/c/mwksMk/bklBR
https://paperpile.com/c/mwksMk/1w6oZ
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pipeline used in this work was Docker Image Tag: 112017 

(https://hub.docker.com/r/rpetit3/staphopia/).  

 

The input to StAP was either single or paired end FASTQ file (or files) generated from 

Illumina technology. StAP contained an option that allowed FASTQ data to be pulled 

from the ENA based on the experiment accession number (ena-dl v0.1, 

https://github.com/rpetit3/ena-dl). A MD5 hash (md5sum) was generated from the 

input FASTQ data and cross-referenced against a list generated from processed 

genomes to prevent reanalysis of the same input. BBduk (Bushnell, 2016) (v37.66) was 

used to filter out adapters associated with Illumina sequencing and trim reads based on 

quality. Read errors were corrected using SPAdes (Bankevich et al., 2012) (v3.11.1). 

Based on the corrected reads, low quality reads were filtered out and the total dataset 

was subsampled to a maximum of 281 Mbases (100x coverage of the N315 reference 

chromosome (Kuroda et al., 2001)) with illumina-cleanup (v0.3, 

https://github.com/rpetit3/illumina-cleanup/). This file (or files, if paired end) we 

termed “processed FASTQ” or “pFASTQ”. 

 

pFASTQ reads were assembled de novo using SPAdes (Bankevich et al., 2012) (v3.11.1). 

SPAdes also marked assembles as putative plasmids based on evidence such as relative 

read coverage (Antipov et al., 2016a). Summary statistics of the assembly are created 

using the assembly-summary script (https://github.com/rpetit3/assembly-summary). A 

BLAST+ nucleotide database was created from the assembled contigs to be used 

subsequently for sequence query matching. Open reading frames and their putative 

https://github.com/rpetit3/ena-dl
https://paperpile.com/c/mwksMk/mg3m
https://paperpile.com/c/mwksMk/kF0s
https://paperpile.com/c/mwksMk/tkSXk
https://github.com/rpetit3/illumina-cleanup/
https://paperpile.com/c/mwksMk/kF0s
https://paperpile.com/c/mwksMk/w46M0
https://github.com/rpetit3/assembly-summary
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functions were predicted and annotated using Prokka (Seemann, 2014) (v1.12) and its 

default database.  

 

The S. aureus type strain N315 (Kuroda et al., 2001) chromosome (ST5 MRSA; 

accession NC_002745.2; length 2,814,816 bp) was used as a reference for calling 

consensus SNPs and indels in the pFASTQ reads using the GATK (McKenna et al., 2010) 

(v3.8.0) pipeline. GATK pipeline also incorporated BWA (Li & Durbin, 2009a) (v0.7.17), 

SamTools (Li et al., 2009a) (v1.6) and PicardTools (v2.14.1, 

http://broadinstitute.github.io/picard/) software. Identified variants were annotated 

using the vcf-annotator script (v0.4, https://github.com/rpetit3/vcf-annotator). 

Jellyfish (Marçais & Kingsford, 2011b) (v2.2.6) was used to count k-mers of length 31 

base pairs (31-mers) in the pFASTQ file. We used Ariba (Hunt et al., 2017) (v2.10.2) to 

make antibiotic resistance and virulence predictions for paired-end reads only. 

Resistance phenotypes were predicted using the MegaRes reference database (Lakin et 

al., 2017b) and virulence using the Virulence Factor Database (Chen et al., 2016b) core 

dataset. Single-end reads  

 

MLST was determined by two or three methods depending on the whether the pFASTQ 

was paired end. All methods used the S. aureus MLST allele sequence database 

downloaded from https://pubmlst.org/saureus/ (November 2017). Alleles for each of 

the seven loci were aligned against the assembled genome using BLAST+ (Camacho et 

al., 2009) (v2.7.1+). Alleles and sequence type (ST) were determined based on perfect 

matches (100% nucleotide identity with no indels). We also used the MentaLiST (Feijao 

et al., 2018) (v0.1.3) software to call MLST based on k-mer matching of the alleles to the 

https://paperpile.com/c/mwksMk/YCZnP
https://paperpile.com/c/mwksMk/tkSXk
https://paperpile.com/c/mwksMk/wXD8C
https://paperpile.com/c/mwksMk/Aksv4
https://paperpile.com/c/mwksMk/bHMN6
https://github.com/rpetit3/vcf-annotator
https://paperpile.com/c/mwksMk/Ohu7m
https://paperpile.com/c/mwksMk/AOVq
https://paperpile.com/c/mwksMk/GqKVW
https://paperpile.com/c/mwksMk/GqKVW
https://paperpile.com/c/mwksMk/vAevs
https://paperpile.com/c/mwksMk/VzeD
https://paperpile.com/c/mwksMk/VzeD
https://paperpile.com/c/mwksMk/KKqmC
https://paperpile.com/c/mwksMk/KKqmC
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pFASTQ file. Unlike the BLAST+-based MLST method, MentaLiST did not require exact 

matches to alleles to predict a ST. If the pFASTQ was paired-end, Ariba (Hunt et al., 

2017) (v2.10.2) also determined MLST alleles and ST. The default ST call for each 

genome was determined in the following order: agreement between each method, 

agreement between MentaLiST and Ariba, agreement between MentaLiST and BLAST+, 

agreement between Ariba and BLAST+, Ariba alone without a novel or uncertainty call, 

MentaLiST alone, and finally BLAST+ alone. Core genome MLST (cgMLST) was 

determined with MentaLiST using the S. aureus cgMLST scheme (Leopold et al., 2014) 

available at at http://www.cgmlst.org.  

 

Evidence for SCCmec predictions were based on multiple approaches. The primary 

approach aligned SCCmec typing primers, downloaded from 

http://www.staphylococcus.net/, against the assembled genome using BLAST+ 

(v.2.7.1+, (Camacho et al., 2009)). Samples with a perfect match to at primer pairs for a 

given amplicon were assigned an SCCmec type following the Kondo et. al. algorithm 

(Kondo et al., 2007). Genes and proteins associated with SCCmec mere aligned against 

the assembled genome using BLASTN and TBLASTN. We also mapped the pFASTQ to 

each SCCmec cassette using BWA (Li & Durbin, 2009a) (v0.7.17). The overall cassette 

and mec region coverage statistics were determined as well as the per-base coverage 

determined for each cassette using genomeCoverageBed (Quinlan & Hall, 2010) 

(v2.26.0). The methods described above were based on the 11 SCCmec types currently 

listed in the http://www.sccmec.org (I - XI) and hence did not include recently 

described types XII and XIII (Wu et al., 2015; Kaya et al., 2018). We labelled a genome 

as “MRSA” only if each mecA typing primer (Kondo et al., 2007) had a perfect BLASTN 

https://paperpile.com/c/mwksMk/AOVq
https://paperpile.com/c/mwksMk/AOVq
https://paperpile.com/c/mwksMk/v706
http://www.staphylococcus.net/
https://paperpile.com/c/mwksMk/VzeD
https://paperpile.com/c/mwksMk/1cvRm
https://paperpile.com/c/mwksMk/Aksv4
https://paperpile.com/c/mwksMk/YsIwl
http://www.sccmec.org/
https://paperpile.com/c/mwksMk/LxwYP+7O2A3
https://paperpile.com/c/mwksMk/1cvRm
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match on the de novo assembly, a predicted mecA gene ortholog had a BLAST score 

ratio of at least 95%, or Ariba (Hunt et al., 2017), as previously described, predicted 

reads in the paired-end pFASTQ file matching a mecA target. 

 

Web Application, Relational Database and Application Programming 

Interface 

We used Django (v2.0), a Python web framework, to develop a PostgreSQL (v10.1) 

backed relational database for storing the results from the analysis pipeline (Figure 

3.3). A Django application was created for each module of the pipeline, automating the 

creation of database tables for the results. Python scripts building off Django were 

developed for insertion of results from each StAP module or the StAP as a whole. A web 

front-end was developed (staphopia.emory.edu) using the Bootstrap (v4.0) and jQuery 

(v3.2.1) web frameworks. We used the Django REST framework to develop an extensive 

application programming interface (API) that allowed users to create queries accessing 

multiple samples. We also developed an R package, Staphopia-R 

(https://github.com/staphopia/staphopia-r), to programmatically access the API. The 

API and its endpoints were documented to allow users to further develop their own 

packages in a language of their choice. The source code for our web application was 

made available at https://github.com/staphopia/staphopia-web/.  

 

Processing Public Data 
We used the Cancer Genomics Cloud (CGC) Platform, powered by Seven Bridges 

(http://www.cancergenomicscloud.org/), to process S. aureus genomes through StAP in 

November 2017. CGC allows users to create custom workflows based on Docker 

https://paperpile.com/c/mwksMk/AOVq
https://staphopia.emory.edu/
https://github.com/staphopia/staphopia-r
https://github.com/staphopia/staphopia-web/
http://www.cancergenomicscloud.org/
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containers, then execute these workflows on the Amazon Web Services (AWS) cloud 

platform. We obtained a list of publicly available S. aureus sequencing projects from the 

ENA web API using the following search term: 

 

 “tax_tree(1280) AND library_source=GENOMIC AND 

(library_strategy=OTHER OR library_strategy=WGS OR 

library_strategy=WGA) AND (library_selection=MNase OR 

library_selection=RANDOM OR library_selection=unspecified OR 

library_selection="size fractionation")”. 

 

We only processed projects which used Illumina sequencing technology. CGC opened 

AWS r3.xlarge instances (30.5GB RAM, 4 processors) that downloaded FASTQ files 

from the ENA using ena-dl for each genome and ran the StAP pipeline. Results files 

were returned to the CGC, then uploaded into the Staphopia database server. 

 

Metadata Collection 
We used the ENA API to download and store any information linked to the 

‘Experiment’, ‘Study’, ‘Run’ and ‘BioSample’ accessions into the database for each 

genome. We also determined each sample’s publication status using three approaches.  

 

The first approach identified existing links between SRA, a mirror of ENA, and PubMed 

using NCBI’s Entrez Programming Utilities web API(Entrez Programming Utilities 

Help, 2010). For any links identified, we used the corresponding PubMed ID to extract 

information corresponding to the publication and stored them in the database.  

https://paperpile.com/c/mwksMk/Q0sSE
https://paperpile.com/c/mwksMk/Q0sSE
https://paperpile.com/c/mwksMk/Q0sSE
https://paperpile.com/c/mwksMk/Q0sSE
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The second approach searched for accessions within the text of scientific articles. We 

searched PubMed using the term, “Staphylococcus aureus”, limited to the years 

between and including 2010 (the date of the first publicly available Illumina data 

upload), and 2017. The saved results, stored as XML, were then loaded into Paperpile, a 

subscription-based reference management tool, and the corresponding main-text PDFs 

were automatically downloaded. This process did not include supplementary 

information files, which required a manual operation. For those articles in which a PDF 

could not be automatically downloaded, attempts to manually acquire the PDF were 

made. Using the text search program ‘mdfind’, available on Apple OS X, each accession 

(BioSample, Experiment, Study and Run) in the Staphopia database was used as a 

separate query to search all the PDF files. Experiment accessions with a corresponding 

PubMed ID were then stored in the database. In cases where a Study, BioSample or Run 

accession was identified in PDF text, each associated Experiment accession was linked 

to the corresponding PubMed ID.  

 

In the third a collection of PubMed articles with primary descriptions of S. aureus 

genome sequencing studies was manually curated. For these studies, the PDF and all 

available supplementary information were downloaded. The process of text-mining the 

articles and linking Experiment information to PubMed ID was repeated as described in 

the second approach. 
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Creating non-redundant S. aureus diversity set 

Using available metadata, we selected a non-redundant diversity (NRD) set of genomes 

that were gold quality (please see results section), linked to a publication and each had a 

unique ST. When more than one strain from a ST was available, we randomly selected 

one individual giving priority to samples with collection date, site of isolation and 

location of isolation fields filled. 

 

Using predicted variants against N315, we extracted a list of genes that had complete 

sequence coverage (ie “core” genes) but no predicted indels. We extracted the reference 

gene sequence and created an alternative gene sequence with SNPs predicted in each 

sample. The alternative gene sequences were split into 31-mers. Presence on these 31-

mers in the pFASTQ file were cross-validated using the Jellyfish (Marçais & Kingsford, 

2011b) tool. These reconstructed gene sequences or all genomes were stored in the 

database and made available through the API for rapid phylogenetic comparisons.  

 

A set of 31-mer validated genes (please see results section) in which no more than 3 

samples contained unvalidated 31-mers were selected for phylogenetic analysis. The set 

of validated genes were extracted and concatenated into a single sequence for each 

sample and saved in multi-FASTA and PHYLIP formats. A guide tree was generated 

with IQ-Tree (Nguyen et al., 2015b) (v8.2.11, -fast option) for identification 

recombination events with ClonalFrameML (Didelot & Wilson, 2015)(v1.11). A 

recombination free alignment was created with maskrc-svg 

(https://github.com/kwongj/maskrc-svg). We used IQ-Tree to generate the final 

maximum likelihood tree with the GTR model and bootstrap support. Bootstrap support 

https://paperpile.com/c/mwksMk/Ohu7m
https://paperpile.com/c/mwksMk/Ohu7m
https://paperpile.com/c/mwksMk/eCSa
https://paperpile.com/c/mwksMk/YHot
https://github.com/kwongj/maskrc-svg
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was generated from 1000 UFBoot2 (Hoang et al., 2018) (ultrafast bootstrap) replicates. 

We annotated the tree using iTOL (Letunic & Bork, 2016). 

 

Results 

Design of the Staphopia Analysis Pipeline and processing 43,000+ 

genomes 

The Staphopia analysis pipeline (StAP; Figure 3.2) was written to automate processing 

of individual S. aureus genomes from Illumina shotgun data. The pipeline was designed 

as a series of modules running individual software packages, organized by the Nextflow 

(Di Tommaso et al., 2017) workflow language, which made it possible to run the entire 

pipeline or individual components as needed. The first step of the pipeline was to import 

single- or paired-end FASTQ files either as local files, or from the ENA database. We 

selected ENA over SRA due to ENA offering direct FASTQ downloads. Following 

quality-based trimming and down selection of the FASTQ to 281 Mbases (~100x 

coverage of the N315 reference chromosome (Kuroda et al., 2001), NC_002745.2), 

analyses were run on the raw processed FASTQ (pFASTQ) files directly, or on de novo 

genome assemblies constructed by the SPAdes program (see Methods for more details). 

We decided to down sample the input FASTQ files for two reasons: to manage the 

computational burden when running thousands of genome projects and also to achieve 

genome datasets with consistently sized pFASTQ input files. The threshold of ~100x 

coverage was chosen after preliminary studies showed that there was either small or no 

improvements in outcome for downstream assembly and remapping steps for input files 

> 100x but large increases in processing time and memory requirement. We created a 

https://paperpile.com/c/mwksMk/sMVB5
https://paperpile.com/c/mwksMk/JqOqI
https://paperpile.com/c/mwksMk/bklBR
https://paperpile.com/c/mwksMk/tkSXk
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Postgres database to store results from the StAP analysis and a web front end and a web 

API for mining the data. An R package (Staphopia-R) was written for interacting with 

the API and was used for most analysis presented in the results.  

 

In November 2017 there were 44,012 publicly-available shotgun sequencing projects 

with FASTQ files in ENA. Illumina technology was the dominant platform, accounting 

for 99% of samples (N=43,972). Eighty-one percent (N=35,580) of them had at least 

281 Mbases sequence data. We processed all Illumina genomes in parallel through the 

StAP using cloud servers (please see Methods section). On parallel r3.xlarge instances 

with 30.5 Gb RAM and 4 processors, the mean time to process a genome was 52 

minutes with an interquartile range of 47 to 56 minutes (Figure 3.4). 

 

Sequence and assembly quality trends 

We identified samples that were likely mixed-samples or not S. aureus whole genome 

shotgun projects and/or were of low technical quality and marked them to not be 

included in subsequent analysis. We removed genomes that failed to match to any 

known allele of the seven MLST loci (323 genomes), had a total assembly size that 

differed by more than 1Mb from a typical S. aureus chromosome (<1.8Mb or >3.8Mb; 

764 genomes), or had a GC content differing more than 5% (<28% or > 38%; 467 

genomes) of the expected 33% GC content. Failure to complete the StAP pipeline due to 

poor data quality, and coverages less than 20x were flagged in 101 and 142 genomes, 

respectively. In total, we removed 1,023 genome projects, leaving 42,949 for further 

analysis. 
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We placed genomes into an arbitrary ranking of 1-3 (“Bronze”, “Silver” and “Gold”) 

based on the pFASTQ coverage and average sequencing quality. Paired-end genomes 

that had read lengths exceeding 100bp, a coverage of 100x and an average per base 

quality score of at least 30 were given a Gold rank. The purpose of the Gold rank was to 

group together high-quality samples with near-identical coverage. Paired-end genomes 

with similar read length and quality cutoffs but a lower sequence coverage (between 50x 

and 100x) were classified as Silver. The remaining samples were given a rank of Bronze. 

Single-end reads were classified as Bronze no matter the read length, quality or 

coverage. More than 70% of the samples were of rank Gold (N=31,014). There were 

5,931 Silver and 6,004 Bronze rank samples. Each year since 2012, the number of Gold 

ranked genomes have exceeded Silver and Bronze (Figure 3.5). 

 

Changes in sequence quality and de novo genome assembly metrics over time reflected 

the development of Illumina technology. Mean per based quality scores increased from 

~ 32 in 2010 to > 35 in 2012 and have stayed at that level since. The mean sequence 

read length rose in steps from < 50 in 2010 to ~ 150 bp in 2017. Assembly metrics such 

as N50 (Earl et al., 2011), and mean and maximum contig length have gradually 

increased since 2010. Bronze ranked genome projects had similar (or sometimes even 

higher) mean per read quality scores than Gold and Silver since 2011. However, Silver 

and Gold assembly metrics such as N50 and mean contig size were generally quite 

similar and higher than Bronze. 

 

https://paperpile.com/c/mwksMk/5sa6B
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Genetic diversity measured by MLST 

We obtained a view into the genetic diversity of the sequenced S. aureus genomes by in 

silico MLST using Ariba (Hunt et al., 2017), MentaLiST (Feijao et al., 2018) (both taking 

pFASTQ as input, but using different algorithms) and BLASTN against assembled 

contigs. A sequence type (ST) was assigned to 42,337 (98.6%) genomes. Of these, 41,226 

(97.3%) calls were in agreement between MentaLiST, BLAST+ and (if paired-end) Ariba 

methods; 828 had agreement between two methods and a no-call on the other, and 189 

were supported by one program with no-calls from the other two. Of the remaining 612 

genomes not assigned to a known ST, 306 were predicted to be in a novel ST based on 

matches to known alleles of each of the 7 loci. The remaining 306 genomes had 1-6 

known S. aureus MLST alleles. 

 

The 42,337 genomes assigned to existing STs represented only 1,090 STs of 4,466 in the 

saureus.mlst.net database (November 2017). The abundance distribution was weighted 

toward common strains, with the top ten sequence types (STs 22, 8, 5, 239, 398, 30, 45, 

15, 36, and 105) representing 70% (N=29,851) of the genomes (Figure 3.6). 

 

The cgMLST (core genome MLST) set of 1861 loci (November 2017) were assigned to the 

genome set using MentaLiST. There were 38,677 distinct patterns, with only 1,850 

patterns found in more than one sample, the remaining 36,827 patterns were 

represented by a single genome. 

 

Antibiotic resistance genes 

Treatment of S. aureus infections has been complicated by the evolution of strains 

https://paperpile.com/c/mwksMk/AOVq
https://paperpile.com/c/mwksMk/KKqmC
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resistant to many commonly used antibiotics (Foster, 2017). In particular, methicillin-

resistant S. aureus (MRSA), carrying the mecA gene encoding the PBP2a protein that 

confers resistance to beta-lactam antibiotics, has become a global problem. We 

designated a genome as MRSA if each mecA typing primer (Kondo et al., 2007) had a 

perfect BLASTN match on the de novo assemblies (26,743 strains), a predicted mecA 

gene ortholog had a BLASTN score ratio of at least 95% (26,430 strains), or the Ariba 

(Hunt et al., 2017) algorithm predicted reads in the paired-end pFASTQ file matching a 

mecA target in the MegaRes (Lakin et al., 2017b) database (27,120 strains). The number 

of genomes having at least one of these criteria (27,628) was 64% of the total number. 

Of these, 95% (26,340) of the samples had agreement between each of the criteria. The 

top five most common STs had a large portion of MRSA strains (Figure 3.6), which 

reflects the selection bias of the research community in investigating these significant 

hospital and community pathogen strains over other S. aureus. 

 

The mecA gene is usually horizontally acquired as part of a mobile genetic element 

called “Staphylococcal Cassette Chromosome mec” (SCCmec) (Katayama, Ito & 

Hiramatsu, 2000). SCCmec elements have been classified into at least eleven classes 

that vary in composition of mec genes, ccr cassette recombinase genes and spacer 

regions (http://www.sccmec.org). Knowledge of the SCCmec type can be useful for 

high-level characterization of MRSA strain types (Kaya et al., 2018). We showed that ten 

of the eleven cassettes in the current schema map to at least one genome with highest 

coverage (an approximate method for assigning SCCmec type) (Table 3.1). Of the 

26,462 (26,185 paired-end) genomes with at least 50% cassette coverage, 96%, 96% and 

99% are MRSA based on primer BLASTN, protein BLASTN or MegaRes, respectively. 

https://paperpile.com/c/mwksMk/0naX8
https://paperpile.com/c/mwksMk/1cvRm
https://paperpile.com/c/mwksMk/AOVq
https://paperpile.com/c/mwksMk/GqKVW
https://paperpile.com/c/mwksMk/pdTxF
https://paperpile.com/c/mwksMk/pdTxF
https://paperpile.com/c/mwksMk/LxwYP


 79 

All type XI cassettes were mecA negative by primer BLASTN because these contained 

the mecC allele (García-Álvarez et al., 2011; Shore et al., 2011), which was sufficiently 

different to be outside the normal distance for a positive match. We found 53 genomes 

which matched to at least 50% of a SCCmec cassette but were not MRSA and had no 

reads mapping to the mec region of the cassette. 

 

In addition to mecA, we found numerous other classes of non-core genes using the 

MegaRes (Lakin et al., 2017b) class designations (Table 3.2). We did not consider 

SNPs/indels in core genes associated with resistance for this analysis. The most 

common class of resistance genes were beta-lactamases found in 37,758 genomes. 

Following this, the most common were the genes putatively conferring fosfomycin, 

macrolide-lincosamide-streptogramin (MLS), and aminoglycosides resistance (24,205, 

22,322, 17,968 genomes respectively). As with MRSA, the other common resistance 

genes were not distributed evenly among the top ST groups (Figure 3.6), reflecting 

sampling ascertainment bias and also possibly differences in geographic distribution 

and prevalence of healthcare-isolated strains in the most common genotypes. 

 

Publication, metadata and strain geographic distribution  

One challenge to using publicly available datasets through ENA or SRA is determining 

whether there is a published article describing the sequenced genome. We found 

through NCBI’s Entrez Tools (eLink) that 6,712 genomes were linked to 48 publications 

in PubMed (March 2018). We attempted to add to the number by using text-mining 

methods to find S. aureus accession numbers in PDFs of S. aureus genome publications, 

ascertaining an additional 5,209 genomes in 30 publications. Therefore, of the 42,949 

https://paperpile.com/c/mwksMk/zs8Lx+3msA0
https://paperpile.com/c/mwksMk/GqKVW
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samples deposited between 2010 and 2017, only 28% (N=11,921) could be linked to a 

publication (Figure 3.1). Since many genomes have been deposited in the last 1-3 

years, this reflected the often-significant time lag between depositing sequence data and 

final publication. 

 

We noted that collection of metadata from public sequencing projects was another 

challenge. When submitting genome sequences to databases only a limited number of 

metadata fields are required, leading to the bulk of the information needing to be 

extracted manually from a publication, if it can be found. Only 40% (N=17,034) 

genomes had a collection date, 35% (N=14,983) had a geographic location and 35% 

(N=14,768) had isolate source metadata. Using the available geographic data to geocode 

the sites of collection, we found that strains were from five continents and at least 40 

countries. There was a strong bias toward strains from Europe (N=7,314) and North 

America (N=5,882), reflecting where the funding for most of the early sequencing 

studies had originated. 

 

A non-redundant S. aureus diversity set 
The number of SNPs compared to the N315 reference strain varied from 6 to 141,893 

within our collection of 42,949 genomes. The stepped pattern of the distribution 

(Figure 3.7) reflected the organization of S. aureus into clonal complexes. Apart from 

CC5 strains closely related to N315, the majority of S. aureus had ~50-50,000 SNPs and 

~500-1500 indels called by the GATK pipeline (McKenna et al., 2010). There were a 

group of 240 most distant strains with > 55,000 SNP (Figure 3.7) that were found to 

https://paperpile.com/c/mwksMk/wXD8C
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be closer to the sister species, S. argenteus (Holt et al., 2011) based on ANI imputed by 

mash (Ondov et al., 2016), although 230 of these were assigned a S. aureus ST. 

 

Of the 6,904 S. aureus genomes of Gold rank linked to a publication we selected a group 

of 380 each having a distinct ST as a non-redundant diversity (NRD) set of genomes. Of 

the 2,756 annotated N315 genes (excluding RNAs), 1,113 genes had no indels when reads 

from each genome in the NRD dataset were mapped. Of these, 878 were “core” genes 

found in every genome. We reconstructed these genes for each of the NRD genomes 

starting with the N315 sequence and substituting predicted SNPs. These predicted 

sequences were then validated by decomposing into 31-mers and cross-checking 

whether each k-mer was present in pFASTQ files processed by Jellyfish (Marçais & 

Kingsford, 2011b). We concatenated the 878 genes for each member of the NRD set and 

created a tree based on the 44,377 variant SNP positions (Figure 3.8). The structure of 

the unrooted species tree resembles previous S. aureus phylogenies (Planet et al., 2016).  

 

Discussion 
The huge public library of genome sequence projects of S. aureus and other pathogens 

are a resource for microbiologists for testing genetic hypotheses in silico. Unfortunately, 

this has been a library of blank covers: most projects cannot be browsed to identify 

features such as ST, key SNPs and non-core genes. Staphopia makes the library 

searchable for a number of important attributes, and we have described example 

workflows in the results section. 

 

https://paperpile.com/c/mwksMk/8RR5l
https://paperpile.com/c/mwksMk/7ePEW
https://paperpile.com/c/mwksMk/Ohu7m
https://paperpile.com/c/mwksMk/Ohu7m
https://paperpile.com/c/mwksMk/FRSN4
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We used three strategies for analysis of raw sequence data: mapping reads to a reference 

chromosome to identify variants; de novo genome assembly, and direct analysis of the 

reads. Each has its strengths and weaknesses. Reference mapping retains quality 

information about variant calls but is limited to regions of the core genome and accuracy 

is reduced as genetic distance increases between the query and the reference. De novo 

assembly allows for discovery of novel accessory genes and is reference independent but 

could be affected by genomic contamination and with Illumina short read data, and 

small portions of the sequence could be lost in gaps between contigs. Direct analysis of 

reads based on k-mer decomposition approaches allows examination of sequence 

independent of mapping and assembly algorithms but are susceptible to false results 

arising from contamination and random sequence error. Using different approaches to 

cross-validate wherever possible builds confidence and we showed that MLST and 

MRSA/MSSA identification were robust with different underlying data types collected. 

 

There are many possible avenues for future extensions of the project. New tools for 

efficient direct querying of raw reads have recently become available (e.g BigSI (Bradley 

et al., 2017), and mash (Ondov et al., 2016)) and we plan to incorporate them in future 

iterations of the pipeline. Some of the principal improvements need to be in protein 

functional annotation. For speed and simplicity, we elected to map genes called from de 

novo assemblies against the included Prokka (Seemann, 2014) RefSeq database. This 

has the advantage of giving consistent proteins naming that can be linked to many 

functional annotation databases through UniProt cross-references. However, for fine 

resolution studies of sets of genomes from Staphopia, we recommend reprocessing with 

Roary (Page et al., 2015a) to incorporate paralog detection and to use more extensive 

https://paperpile.com/c/mwksMk/IuMOo
https://paperpile.com/c/mwksMk/IuMOo
https://paperpile.com/c/mwksMk/7ePEW
https://paperpile.com/c/mwksMk/YCZnP
https://paperpile.com/c/mwksMk/jLYTW


 83 

databases for homology matching. Even then, specific modules would need to be 

incorporated to improve naming of intrinsically hard to annotate protein families (e.g 

MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) 

(Foster et al., 2014)). 

 

A key problem highlighted in this study is the difficulty in tracing publications linked to 

public genome data and finding typical metadata on strains (date and place of isolation, 

body site). We were able here to link thousands of records to publications through 

searching text in PDFs. For this reason, we urge researchers publishing microbial 

genomes to quote the Project ID (i.e. the PRJN ID) of publicly submitted data in the full 

text of the publication. Extracting metadata from publications presented a more 

complicated process. Metadata is often available as spreadsheets, documents or PDFs 

which are not easily parsed. We believe that journals need to start to enforce machine 

readable standards for metadata associated with deposited strains. The routine usage of 

BioSample ID (https://www.ncbi.nlm.nih.gov/books/NBK169436/), which links strains 

to genomic information, would be a major step forward. 

 

Staphopia was designed with Illumina shotgun data in mind but increased use of 

alternative sequencing technologies in the future may necessitate new development. 

“Long read” technologies (e.g. PacBio, Oxford Nanopore) tend to have assemblies with 

fewer gaps, higher per base errors and lower coverage. A “gold standard” PacBio 

assembly will have a different quality profile to Illumina technology data (which itself is 

also evolving). Another challenge for automated assembly of public data will be to 

identify projects sequenced with multiple technologies and assembled as hybrids (e.g. as 

https://paperpile.com/c/mwksMk/dqSKC
https://www.ncbi.nlm.nih.gov/books/NBK169436/
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demonstrated by the Unicycler tool (Wick et al., 2017b)). To do this would mean altering 

the pipeline to perform hybrid assembly when experiments with multiple technologies 

are associated with a strain. Currently, within ENA (and SRA) a BioSample can be 

associated with multiple Experiments, but an Experiment can only be associated with a 

single BioSample. When a BioSample was linked to more than one Experiment, it was 

difficult to determine in an automated way if it is actually the same genomic DNA input 

to multiple experiments or, in rare cases, a mistaken assignment of a set of genetically 

non-identical isolates with the BioSample (e.g. all isolates from a study given the 

common strain name “USA300”). Because of this, Staphopia treated each ENA 

Experiment as a unique sample, rather than the BioSample. 

 

It is unclear at this time whether the approach of processing of every public dataset will 

be sustainable as sequencing data production grows in the future. It would only be 

possible if storage and processing costs fall faster than the accumulation of new data, 

and multi-genome database queries may still be prohibitively slow. An alternative 

strategy to processing all strains, would be to filter the isolates for redundancy, by 

removing isolates that are less than n SNPs from any member of a canonical genome set. 

However, there is still information in deep sequencing studies that can be captured from 

distributions of reads and kmer distribution, even if the consensus sequences of the 

strains are identical. Plasmid copy number may differ between clones grown under 

different conditions and the distribution of reads across the genome can itself be used to 

infer relative growth rate (Brown et al., 2016). No two shotgun genome sequencing 

projects are identical, and all have some potential value, especially if they have strong 

supporting metadata. 

https://paperpile.com/c/mwksMk/NYeJM
https://paperpile.com/c/mwksMk/PT4P3
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Conclusions 
● We analyzed 43,972 S. aureus public Illumina genome projects using the newly 

developed “Staphopia” analysis pipeline and database. 42,949 genomes were 

retained for subsequent analysis after filtering against low quality  

● The data quality was high overall: 36,945 (86%) were from paired end projects 

with greater than 50-fold coverage and 30 average base quality (“Gold” and 

“Silver” quality) 

● There has been a great concentration of effort on a sequencing a small number of 

sequence types: only 1,090 STs of 4,466 previously collected STs were recovered 

and 10 STs make up 70% of all genomes. 

● 26,340 to 27,628 genomes were predicted MRSA depending on the criteria used 

for classification. 

● We could link only 28% of the genomes to a PubMed referenced publication. 

● We identified 380 non-redundant highly quality published genomes as a 

reference subset for diversity within the species. 

● We identified 878 core genes that can be reliably used for rapid tree building 

based on SNPs compared to the reference N315 genome. 
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Links 
Code for most analysis described in the results section - 

https://github.com/staphopia/staphopia-paper 

 

Staphopia - https://staphopia.emory.edu 

R Package - https://github.com/staphopia/staphopia-r  

StAP - https://github.com/staphopia/staphopia-ap 

Web Package - https://github.com/staphopia/staphopia-web  

Docker Image - https://hub.docker.com/r/rpetit3/staphopia/ 

NRD Dataset - https://doi.org/10.6084/m9.figshare.6263435 

 

  

https://github.com/staphopia/staphopia-paper
https://staphopia.emory.edu/
https://github.com/staphopia/staphopia-r
https://github.com/staphopia/staphopia-ap
https://github.com/staphopia/staphopia-web
https://hub.docker.com/r/rpetit3/staphopia/
https://doi.org/10.6084/m9.figshare.6263435
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Appendix 

The following appendix contains boxes, tables and figures referenced in the text of this 
chapter. 
 
 
Figure 3.1: Cumulative submissions of Staphylococcus aureus genome 
projects 2010 - 2017 linked to publications. 
 

There were 42,949 S. aureus genome projects investigated in this study. Of these 

samples, we have linked 11,921 to a publication. 
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Figure 3.2: Staphopia Analysis Pipeline (StAP) Workflow 
 

The diagram describes basic operations of the pipeline on a single genome input 

(FASTQ file) before uploading into the Postgres relational database. Details of the 

programs used are in the methods and https://github.com/staphopia/staphopia-ap. 

Green arrows indicate input from de novo assembled contigs, blue arrows were 

operations performed on pFASTQ files. 

 
  

https://github.com/staphopia/staphopia-ap
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Figure 3.3: An overview of the Staphopia platform. 
 

This figure provides an overview of Staphopia. Samples are processed by the analysis 

pipeline and stored in the database. Metadata collected from linked publications are 

also stored in the database. This information is then made available through a web 

front-end or a web application programming interface (API). An R package has also 

been developed to programmatically access the web API. 
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Figure 3.4: StAP run time using Cancer Genomics Cloud (CGC) platform. 
 

Overall run time statistics were available for 31,587 of the completed CGC jobs. Mean 

run time was 51 minutes (median 52 minutes). There were 983 jobs that took more than 

80 minutes to complete. 
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Figure 3.5:  Sequencing quality ranks per year 2010-2017. 
 

Genome projects were grouped into three increasing quality ranks: Bronze, Silver and 

Gold. The rank was based on coverage, read length and per-read quality (please see 

results section). The highest rank, Gold, represented 72% (N=31,014) of the available S. 

aureus genome projects. The remaining genomes were almost evenly split between 

Silver (N=5,931) and Bronze (N=6,004). 
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Figure 3.6: Resistance genes to methicillin (MRSA), aminoglycoside, 
fosfomycin, and macrolide-lincosamide-streptogramin (MLS) antibiotic in 
the top 10 STs.  
 

The presence of resistance genes was predicted by Ariba (Hunt et al., 2017) using the 

reference MegaRes (Lakin et al., 2017b) database. The distribution MegaRes resistance 

classes for methicillin (A), aminoglycosides (B), fosfomycin(C) and macrolide-

lincosamide-streptogramin (D) are presented for the top 10 sequence types (ST). The 

top 10 STs represent 70% (N=29,851) of the genomes analyzed in this study.  

 

 

  

https://paperpile.com/c/mwksMk/AOVq
https://paperpile.com/c/mwksMk/GqKVW
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Figure 3.7: S. aureus SNP distance from reference S. aureus N315.  
 
For each genome, the number of SNPs found by mapping reads to the N315 reference 

using GATK (McKenna et al., 2010) was plotted, with genomes ordered from least to 

most SNPs. 240 genomes with > 55,000 SNPs (dotted line) that had best matches to S. 

argenteus using mash (Ondov et al., 2016) were indicated by silver bars, the rest were S. 

aureus (gold).  

  

 

  

https://paperpile.com/c/mwksMk/wXD8C
https://paperpile.com/c/mwksMk/7ePEW
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Figure 3.8: Unrooted phylogeny of the S. aureus Non-Redundant 
Diversity (NRD) dataset. 
 

An unrooted phylogenetic representation of the 380 genome non-redundant set (one 

representative per ST, all published and gold rank) using IQ-Tree (Nguyen et al., 2015b). 

The putatively recombinant positions predicted using ClonalFrameML (Didelot & 

Wilson, 2015) were removed from the alignment. Clonal complexes containing the top 

ten most common STs are indicated with colored circles. The tree was built from 878 

reconstructed core genes (please see Methods section) with 44,377 sites. Branches 

supported with probability > 0.9 are marked by red dots. The likelihood score for the 

tree was -1,890,510.  

 

https://paperpile.com/c/mwksMk/eCSa
https://paperpile.com/c/mwksMk/YHot
https://paperpile.com/c/mwksMk/YHot
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Table 3.1: Predicted SCCmec cassette type representation. 
 

There were 26,462 samples with reads mapped to at least 50% of a SCCmec cassette. 

The table is a breakdown of the SCCmec cassettes with the highest percent match for 

each sample. 

 

SCCmec Type Count 

I 689 

II 5,183 

III 2,807 

IV 14,526 

V 1,684 

VI 171 

VII 19 

VIII 468 

IX 0 

X 20 

XI 895 
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Table 3.2: Antibiotic resistance classes predicted by non-core genes. 
 

Number of genomes with genes of resistance classes predicted by Ariba using the 

reference MegaRes database naming scheme. 

 

Antibiotic Resistance Class Count 

Aminocoumarin 46 

Aminoglycoside 17,968 

Beta-lactam 37,758 

Fluoroquinolone 69 

Fosfomycin 24,205 

Fusidic Acid 346 

Glycopeptide 5,777 

Lipopeptide 44 

Macrolide-Lincosamide-Streptogramin (MLS) 22,322 

Multi-Drug Resistance 13,653 

Phenicol 852 

Rifampin 46 

Sulfonamide 36 

Tetracycline 8,638 

Trimethoprim 6,605 
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Chapter 4: The influence of horizontal gene 

transfer barriers on Staphylococcus aureus and 

the potential of gene transfer networks to identify 

novel barriers. 

 

 

Abstract  
Horizontal gene transfer (HGT) is widespread among bacteria. Multiple barriers must 

be overcome in order for a gene to be transferred by HGT and become fixed in a new 

species. These barriers include evolutionary forces, genetic defense mechanisms, and 

ecological processes. In this review, I discuss the influence barriers of HGT have had on 

the recent evolutionary history of the human pathogen Staphylococcus aureus. I 

describe how DNA sequencing technologies can be used to monitor gene flow within 

microbial communities in the form of a gene transfer network. Finally, I provide a few 

examples of how gene transfer networks can be used to implement medical practices 

that aim to limit the spread of antibiotic resistance genes by introducing barriers to 

HGT. 
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Introduction 
Horizontal gene transfer (HGT) is the exchange of genetic material from a donor 

genome to a recipient genome without reproduction. HGT events can occur across 

domains of life, for example between Archaea and Bacteria (Aravind et al., 1998; Nelson 

et al., 1999) or more rarely, from Bacteria to Eukarya (Dunning Hotopp et al., 2007; 

Moran et al., 2012). In particular, HGT events are a driving force in the evolution of 

bacteria (Koonin & Makarova, 2001; Jain et al., 2002; Beiko, Harlow & Ragan, 2005; 

Pál, Papp & Lercher, 2005; Chan et al., 2009; McDaniel et al., 2010; Chan, Beiko & 

Ragan, 2011). Because of HGT, an individual genome may contain genes identified as 

having originated from a different species (Lawrence & Ochman, 1998). As a 

consequence, this has led to much debate on how exactly to define a bacterial species 

(Wayne et al., 1987; Cohan, 2002; Konstantinidis & Tiedje, 2005b; Riley & Lizotte-

Waniewski, 2009).  

 

The focus of this review is gene exchange mediated by HGT between bacteria.  There are 

three classical mechanisms of bacterial HGT that have now been studied at molecular 

levels for more than 50 years (Box 4.1). Almost all bacterial species can undergo HGT 

by at least one of these mechanisms (Nakamura et al., 2004). Therefore, the simplest 

hypothesis to gene transfer in bacteria can be formulated as this: a given bacterial gene 

can move into any other bacterial species, with the same probability as another gene 

moving to a new donor species. This simple hypothesis is refuted because there are 

barriers that reduce the successful transfer of a gene, and these barriers are more 

efficient at limiting gene flow between some species than others (Thomas & Nielsen, 

2005). These barriers to HGT are summarized in Box 4.2 and include what I define as 

https://paperpile.com/c/mwksMk/yJ48Y+mMDzl
https://paperpile.com/c/mwksMk/yJ48Y+mMDzl
https://paperpile.com/c/mwksMk/hgZT3+gph77
https://paperpile.com/c/mwksMk/hgZT3+gph77
https://paperpile.com/c/mwksMk/UYC6P+Xmdgk+QklMi+J1985+MaQJv+lvWh5+HxrSH
https://paperpile.com/c/mwksMk/UYC6P+Xmdgk+QklMi+J1985+MaQJv+lvWh5+HxrSH
https://paperpile.com/c/mwksMk/UYC6P+Xmdgk+QklMi+J1985+MaQJv+lvWh5+HxrSH
https://paperpile.com/c/mwksMk/5S4i
https://paperpile.com/c/mwksMk/F4qUR+0kzzo+wzkKv+dxLhz
https://paperpile.com/c/mwksMk/F4qUR+0kzzo+wzkKv+dxLhz
https://paperpile.com/c/mwksMk/Lswix
https://paperpile.com/c/mwksMk/Z3UgW
https://paperpile.com/c/mwksMk/Z3UgW
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evolutionary forces, defense mechanisms against foreign DNA, and ecological processes.    

 

For a gene to transfer successfully between a donor and recipient, three steps are 

needed.  First the donor and recipient need to be co-resident in the same physical space.  

Second, DNA transfer has to have occurred.  Finally, the new gene in the recipient cell 

needs to become fixed in the population. During each of these steps multiple barriers to 

gene flow (Box 4.2) must be overcome. Genetic defense mechanisms, such as 

restriction enzymes and clustered regularly interspaced short palindromic repeats 

(CRISPRs), destroy transferred DNA as it enters the recipient cell (Pinedo & Smets, 

2005; Marraffini & Sontheimer, 2008). Once an immigrant gene has entered the 

recipient cell through transformation or transduction, it can integrate into the host 

genome either by site-specific recombination (which requires that the host has a target 

site) or through homologous recombination, (which requires that the host has a cognate 

with high nucleotide identity) (Matic, Rayssiguier & Radman, 1995). Therefore, in these 

cases, not all host species will be efficient recipients for transferred DNA. There also 

exist adaptive traits that allow plasmids and phage to circumvent commonly 

encountered host defenses (Read, Thomas & Wilkins, 1992; Maxwell, 2016). These 

examples would increase the chance that a gene will be successfully integrated while 

decreasing the chance of being identified as foreign DNA and degraded.   

 

Following gene acquisition, evolutionary forces can act as a barrier to the long-term 

fixation of the immigrant gene in its new population. A newly acquired gene must 

survive genetic drift and selection. Assuming the neutral theory of evolution applies to 

bacterial populations (Rocha, 2018), the survival of a gene that is effectively neutral to 

https://paperpile.com/c/mwksMk/oPvp0+Iw0VD
https://paperpile.com/c/mwksMk/oPvp0+Iw0VD
https://paperpile.com/c/mwksMk/6fJE8
https://paperpile.com/c/mwksMk/LQkB+VYN7
https://paperpile.com/c/mwksMk/ahCR
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the recipient will be dependent on genetic drift, or random chance. Long-established 

population genetics theory states that the strength of drift, in removing genes from the 

population, is increased while the gene is rare in the population (Gillespie, 2010).  

 

A gene that is deleterious to the recipient will be more likely than a neutral gene to be 

lost from the population. Conversely, a gene that offers a selective advantage to the 

recipient is more likely be maintained. Even if a gene offers a selective advantage, while 

it is rare in the population the force of selection may be weak in comparison to genetic 

drift and it may yet be lost through chance. Unsurprisingly, HGT events involving genes 

that confer strong selective advantages have been the most frequently reported in the 

early literature. Examples of these types of events include antibiotic resistance genes 

(Palmer, Kos & Gilmore, 2010), metabolic genes (Fournier & Gogarten, 2008), and 

virulence genes (Hacker et al., 1997).  

 

Before genetic barriers and selection come into play, the donor and recipient in the HGT 

event must arrive in the same space. How does this occur? Of all the barriers, we know 

the least about how ecological processes limit gene flow between species. Understanding 

the role of ecological processes on microbial communities presents a complex set of 

problems.  

 

In this review I discuss examples of how differential HGT barriers have shaped the 

evolutionary history of the human pathogen Staphylococcus aureus. First, I describe 

how a specific HGT event has overcome multiple barriers, and ultimately led to the 

global expansion of methicillin-resistant S. aureus (MRSA). I then contrast this with 

https://paperpile.com/c/mwksMk/o2oD8
https://paperpile.com/c/mwksMk/Vml98
https://paperpile.com/c/mwksMk/4xIVg
https://paperpile.com/c/mwksMk/Xv9bS
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another example in which barriers appear to be limiting the expansion of another key 

antibiotic resistance gene (vanA) into S. aureus. Finally, I open a discussion on the 

importance of monitoring gene flow within microbial communities and how emerging 

sequencing technologies can make this a possibility. 

 

MRSA - a case where human action can break down barriers to 

HGT 
Staphylococcus aureus, already introduced in Chapters 1 and 3, is estimated to 

colonize 20-50% of humans, both children and adults (Gorwitz et al., 2008). S. aureus 

most commonly colonizes the anterior nares as well as the skin of carriers (Kluytmans, 

van Belkum & Verbrugh, 1997). The bacterium is not limited to humans; it can also 

colonize pets and livestock (Price et al., 2012; Loeffler et al., 2013). S. aureus is 

primarily transmitted through skin-to-skin contact with a carrier (Miller & Diep, 2008) 

but it can also be acquired from environmental surfaces where it can survive for long 

periods of time (Dietze et al., 2001; Scott, Duty & Callahan, 2008). Carriers often 

remain asymptomatic, but as an opportunistic pathogen, S. aureus can cause a wide 

variety of diseases ranging from minor skin infections to life-threatening diseases. 

Treatment of S. aureus related infections has become challenging due to the emergence 

and evolution of strains resistant to almost all common antibiotics. More studies are still 

required to determine the correlation between increased resistance and pathogenicity 

(Watkins, David & Salata, 2012), but resistant strains have shown increased mortality 

rates due to prolonged and repeated infections (Cosgrove et al., 2003). 

 

https://paperpile.com/c/mwksMk/6qG5w
https://paperpile.com/c/mwksMk/tC9bf
https://paperpile.com/c/mwksMk/tC9bf
https://paperpile.com/c/mwksMk/lVsGQ+i9oXy
https://paperpile.com/c/mwksMk/XwaSY
https://paperpile.com/c/mwksMk/iZb4Q+qhSaT
https://paperpile.com/c/mwksMk/ybnWl
https://paperpile.com/c/mwksMk/l5MqX
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Methicillin-resistant S. aureus (MRSA) is the most widespread resistance phenotype of 

S. aureus. MRSA is the result of a horizontally transferred mobile genetic element 

named Staphylococcal Cassette Chromosome mec (SCCmec), harboring mecA, the gene 

responsible for methicillin resistance. The mecA gene is highly conserved in the 

resistome of other Staphylococcal species exhibiting methicillin resistance (Archer & 

Pennell, 1990). Based on sequence homology, Staphylococcus sciuri has been identified 

as a potential donor of mecA to early MRSA clones (Wu et al., 1996; Rolo et al., 2017). 

Although it is more commonly isolated from animals including pets, livestock and the 

soil, S. sciuri can colonize humans as well (Kloos, 1980; Kawano et al., 1996; Couto et 

al., 2000; Stepanović et al., 2001). Groups of close contact such as hospital personnel 

(Dulon et al., 2014), athletes (Benjamin, Nikore & Takagishi, 2007), prison inmates 

(Baillargeon et al., 2004), and military personnel (Zinderman et al., 2004) are often 

susceptible to MRSA outbreaks. In 2011, surveillance of 9 US states estimated 80,461 

invasive MRSA cases occurred nationwide (Dantes et al., 2013). These MRSA cases 

included multiple diagnoses such as bloodstream infections (80%), skin infections 

(22%), pneumonia (16%), and osteomyelitis (13%) among others. Between 2005 and 

2011, there was a large decrease (54%) of hospital associated MRSA (HA-MRSA) cases, 

but the number of community-acquired MRSA (CA-MRSA) cases remained relatively 

stable.  

 

MRSA has played a significant role in S. aureus epidemics and has been described as 

having occurred in “waves of resistance” (Chambers & Deleo, 2009). The first epidemic 

wave was due to penicillin-resistant strains. After the introduction of methicillin, MRSA 

first emerged in the United Kingdom in 1961 (Patricia Jevons, 1961). However, ancestral 

https://paperpile.com/c/mwksMk/LEO5S
https://paperpile.com/c/mwksMk/LEO5S
https://paperpile.com/c/mwksMk/5PzX+MgIv
https://paperpile.com/c/mwksMk/0jzcx+UxEfj+jtBYL+d7Du7
https://paperpile.com/c/mwksMk/0jzcx+UxEfj+jtBYL+d7Du7
https://paperpile.com/c/mwksMk/HxE9G
https://paperpile.com/c/mwksMk/pBQXT
https://paperpile.com/c/mwksMk/jXdue
https://paperpile.com/c/mwksMk/CMiZP
https://paperpile.com/c/mwksMk/Uhu5k
https://paperpile.com/c/mwksMk/nlJU0
https://paperpile.com/c/mwksMk/uuHUS


 104 

state reconstructions suggest methicillin resistance was already present in the S. aureus 

populations up to 14 years before methicillin was introduced (Harkins et al., 2017). 

These early strains of MRSA were later replaced by a second epidemic wave of resistance 

that occurred in the late 1960s. During this time MRSA strains were limited to 

healthcare facilities and often times would harbor additional resistance genes (Ito et al., 

2001). Beginning in the 1990s, the third epidemic wave of MRSA introduced novel 

SCCmec types with lower fitness penalties (Turlej, Hryniewicz & Empel, 2011). These 

novel MRSA strains expanded their habitat into human communities (CA-MRSA) 

(Vandenesch et al., 2003) and livestock (LA-MRSA) (Price et al., 2012) and have gone 

on to spread around the globe (Ayliffe, 1997). SCCmec are commonly acquired and lost 

in subtypes of S. aureus, suggesting limited genetic barriers to the transfer of SCCmec 

(Noto et al., 2008; Aanensen et al., 2016). When MRSA first emerged, both HGT and its 

role in the evolution of antibiotic resistance were not well understood. Also, measures to 

prevent the spread of antibiotic resistant pathogens, such as patient isolation or strict 

hospital hygiene practices, were not yet implemented.  Had these measures been 

implemented, early cases of MRSA would have been susceptible to both the effects of 

genetic drift and ecological barriers. For example, an isolated patient has an increased 

chance of becoming a dead-end host for the pathogen. Compounded with better hospital 

hygiene practices, transmission between caretakers and other patients, an ecological 

barrier, is limited. Instead, the unintended over-prescription of beta-lactam antibiotics 

offered positive selection for SCCmec to be maintained in the S. aureus population. 

Although SCCmec was maintained in the population it still had multiple evolutionary 

forces and ecological barriers to overcome.  

 

https://paperpile.com/c/mwksMk/9LXd
https://paperpile.com/c/mwksMk/Qxpbd
https://paperpile.com/c/mwksMk/Qxpbd
https://paperpile.com/c/mwksMk/WpcGJ
https://paperpile.com/c/mwksMk/6tlAZ
https://paperpile.com/c/mwksMk/lVsGQ
https://paperpile.com/c/mwksMk/PhNjy
https://paperpile.com/c/mwksMk/Qejg+0KoB
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Several lines of research point to SCCmec conferring a selective disadvantage to S. 

aureus in the absence of beta-lactam antibiotics (Andersson & Levin, 1999; Ender et al., 

2004). This presents an evolutionary barrier to the acquisition of SCCmec types in the 

community where antibiotic exposure is likely limited. As a consequence, CA-MRSA has 

selected for smaller SCCmec types which maintain methicillin resistance but confer 

fewer other resistances (Ma et al., 2002). Currently, eleven SCCmec types have been 

discovered and each type has multiple subtypes (Turlej, Hryniewicz & Empel, 2011). 

Another aspect of expansion into the community is transmission of CA-MRSA is 

expected to be difficult due to a lack of carrier contact (Uhlemann et al., 2014; Alam et 

al., 2015b). To circumvent this ecological barrier, CA-MRSA strains tend to exhibit 

elevated virulence levels in comparison to HA-MRSA, allowing increased infection rates 

among healthy individuals (Boyle-Vavra & Daum, 2007; Dantes et al., 2013; Stinear et 

al., 2014).   

 

The history of MRSA is a standout example of successful horizontal transfer of antibiotic 

resistance. It has routinely continued to circumvent barriers to the spread of SCCmec. 

Although, SCCmec was already within Staphylococcus aureus, humans are likely 

responsible for the widespread expansion of MRSA.  

 

VRSA - a case where barriers to HGT can have great public health 

consequences 
Vancomycin, a glycopeptide antibiotic, is commonly used to treat MRSA infections 

(Pakyz et al., 2008). Shortly after vancomycin began to be used for large-scale 

https://paperpile.com/c/mwksMk/I6ylb+sUjJl
https://paperpile.com/c/mwksMk/I6ylb+sUjJl
https://paperpile.com/c/mwksMk/wlM1x
https://paperpile.com/c/mwksMk/WpcGJ
https://paperpile.com/c/mwksMk/oSvkH+qjq85
https://paperpile.com/c/mwksMk/oSvkH+qjq85
https://paperpile.com/c/mwksMk/S8McB+Uhu5k+pXQ6a
https://paperpile.com/c/mwksMk/S8McB+Uhu5k+pXQ6a
https://paperpile.com/c/mwksMk/R0PC8
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prescription for MRSA in the late 1980s, limited reports of S. aureus isolates showing 

decreased susceptibility to the drug emerged. The first published case of reduced 

susceptibility to vancomycin was reported in 1997 (Hiramatsu et al., 1997). Based on 

Clinical and Laboratory Standards Institute (CLSI) recommendations this isolate, which 

presented minimum inhibitory concentration (MIC) of no more that 8 µg/ml was 

labeled as vancomycin-intermediate S. aureus (VISA).  Subsequent genetic studies 

showed that the evolution of VISA involves development of chromosomal mutations 

across more than 20 loci.  VISA cells typically had a thickened cell wall phenotype 

(Sieradzki & Tomasz, 2003; Alam et al., 2014a). An alternative to pathway to 

vancomycin emerged later in the form of vancomycin-resistant S. aureus (VRSA). 

VRSA, of relevance to this review, involved acquisition via HGT of a vanA gene cluster, 

which conferred high-level resistance to vancomycin (MIC ≥ 16 µg/ml), from either 

Enterococcus faecalis or E. faecium (Périchon & Courvalin, 2009). Since the first case 

report of VRSA in 2002, only 18 cases of VRSA in total have been reported (Saha et al., 

2008; Kos et al., 2012; Azimian et al., 2012; Melo-Cristino et al., 2013; Moravvej et al., 

2013; Limbago et al., 2014a; Rossi et al., 2014). The low number of VRSA cases seems 

like an anomaly in the light of the number of MRSA cases reported each year around the 

world. What are the barriers that are limiting the evolution of VRSA? 

 

The experience of MRSA suggests that genetic barriers to uptake and spread of genes 

within the S. aureus species may be limited (Noto et al., 2008). A few studies have 

shown instability of certain vanA plasmids in MRSA may act as a genetic barrier 

(Périchon & Courvalin, 2004, 2006). There may also be selective barriers against VRSA. 

Prolonged exposure to vancomycin offers positive selection for the transfer of vanA, but 

https://paperpile.com/c/mwksMk/qIKgR
https://paperpile.com/c/mwksMk/nJiMB+wVFix
https://paperpile.com/c/mwksMk/emeLO
https://paperpile.com/c/mwksMk/LxPuu+UMnCj+tbzCU+ExAFr+igwjD+LfCyP+2y2AL
https://paperpile.com/c/mwksMk/LxPuu+UMnCj+tbzCU+ExAFr+igwjD+LfCyP+2y2AL
https://paperpile.com/c/mwksMk/LxPuu+UMnCj+tbzCU+ExAFr+igwjD+LfCyP+2y2AL
https://paperpile.com/c/mwksMk/Qejg
https://paperpile.com/c/mwksMk/Z9Ide+Wonvq
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there is evidence that expression of the vanA operon is detrimental to fitness (Foucault, 

Courvalin & Grillot-Courvalin, 2009). With acquisition being a rare event and previous 

cases having been isolated, VRSA thus far has been highly susceptible to being lost from 

the population from genetic drift. Susceptibility to genetic drift is strengthened by 

improved detection and aggressive control measures are now in place to reduce the 

spread of resistant bacteria. Protocols for antibiotic usage, such as duration and dosage 

amounts, are likely to play a role in limiting selection for resistance. These measures 

were not in place when MRSA first emerged.  

 

Ecologically, S. aureus, E. faecalis, E. faecium occupy different body sites within the 

human microbiome. E. faecalis and E. faecium are commonly found in the intestines of 

healthy adults (Qin et al., 2010). S. aureus can colonize the intestines (Acton et al., 

2008) but in healthy individuals it is likely to be outcompeted by normal flora 

(Vesterlund et al., 2006). These observations suggest HGT between S. aureus and E. 

faecalis or E. faecium is restricted by this ecological barrier. In these cases the ecological 

separation between S. aureus and E. faecalis or E. faecium have broken down, for 

example through the use of a catheter (Centers for Disease Control and Prevention 

(CDC), 2002) or having undergone amputation (Melo-Cristino et al., 2013). Most of the 

described VRSA cases have been limited to a single sequence type (ST5) often associated 

with HA-MRSA strains (Limbago et al., 2014b). This genetic background, is 

outcompeted by USA300 (ST8) is thought to have kept VRSA from expanding. 

 

MRSA and VRSA are two almost opposite examples of the effects barriers to HGT can 

have on the evolution of a pathogen (Table 4.1). I believe that routinely sequencing 

https://paperpile.com/c/mwksMk/qWPjl
https://paperpile.com/c/mwksMk/qWPjl
https://paperpile.com/c/mwksMk/joJwt
https://paperpile.com/c/mwksMk/Ot8u9
https://paperpile.com/c/mwksMk/Ot8u9
https://paperpile.com/c/mwksMk/uqqHc
https://paperpile.com/c/mwksMk/y9WCh
https://paperpile.com/c/mwksMk/y9WCh
https://paperpile.com/c/mwksMk/igwjD
https://paperpile.com/c/mwksMk/4ZJq


 108 

reported VRSA cases along with suspected vanA donors would allow for extensive 

comparative genomic studies. These studies can offer clues to the next path of evolution 

for VRSA. 

 

Using high-throughput DNA sequencing to build gene transfer 

networks 
How can we use gene transfer networks to predict antibiotic resistance genes in 

pathogens from the environmental reservoir (the “resistome”) within a given time 

frame? Importantly, we need to build up a knowledge base of pathways of known HGT 

events. With this knowledge we can construct gene transfer networks. Similar to popular 

social networks, each member of a microbial community is interacting directly or 

indirectly with other members. A gene transfer network is the visual representation of 

HGT events between members of the community. From this network, clusters of 

bacteria frequently exchanging genes can be identified as well as the paths in which a 

specific bacterium can acquire a certain gene being transferred in the community 

(Eppstein, 1998; Girvan & Newman, 2002). This information could be useful to 

determine potential targets that may be most affected by HGT barriers. In order to 

construct a gene transfer network, high-throughput sequencing data must be generated 

for the community. With this sequencing data, the HGT events between donors and 

recipients can be predicted. Using the predicted HGT events, a directed network can be 

constructed to represent the HGT pathways within the community. 

 

High-throughput sequencing is now routinely used to sequence microbial communities 

https://paperpile.com/c/mwksMk/4PdmU+yb92L
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(Mason et al., 2012; Aagaard et al., 2013; Afshinnekoo et al., 2015). We can determine 

the species composition and their relative abundance within these communities through 

16S rRNA sequencing (Caporaso et al., 2011). The 16S sequences can be separated into 

operational taxonomic units (OTUs) based on sequence similarity. These OTUs are 

representative of the bacterial species present in the community. 16S sequencing alone 

is only useful to determine the taxonomic census of the community. Subjecting the 

community to random “shotgun” sequencing allows for functional analysis of the 

community (Thomas, Gilbert & Meyer, 2012; Lam et al., 2015). Metagenomic studies 

involve taking an environmental sample, extracting DNA and subjecting it to shotgun 

sequencing. The individual DNA reads can be assembled into longer contigs comprising 

DNA from the same species.  From these longer fragments, the genome context of 

individual genes in a species can be ascertained.  We are likely to have increasing 

information about genome context as long-read technologies become more commonly 

used for metagenomics.  

 

Current limitations to metagenomic studies include over representation of abundant 

species in the sequencing data. Species that are abundant in the population will also 

represent a larger proportion of the sequenced DNA. This can be a major problem 

because rare species are often missed or undetectable in the sequencing data. Without 

these rare species, gaps will be introduced in the gene transfer networks. If a detected 

HGT event is acquired from a rare species, the event will be without an accurate donor 

label. HGT events in which the rare species was the recipient will also not be detected.  

These rare species may be very important members of the community, as they are 

expected to be potential keystone species (Sogin et al., 2006). 

https://paperpile.com/c/mwksMk/4Hcrg+XpNSt+O6XM2
https://paperpile.com/c/mwksMk/ygoTQ
https://paperpile.com/c/mwksMk/CdzRy+xPUD
https://paperpile.com/c/mwksMk/4yGrK
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Recently DNA sequencing techniques have been applied to a single cell from the 

microbiome (Blainey, 2013; Shapiro, Biezuner & Linnarsson, 2013). Unlike 

metagenomic sequencing, whole genomes are ascertained, eliminating any ambiguity 

about gene origin. With the use of unique sample tags, the sequence reads will be easily 

associated to a particular cell and can then be treated the same way whole genome 

projects of a single organism are treated. Advanced cell sorting techniques allow for the 

selection of cells based on certain characteristics. Used in congruence with metagenomic 

sequencing, SSG can vastly increase the detection of rare species and the accuracy of 

OTU binning by generating reference genomes of the sample (Blainey & Quake, 2014). 

This would fill in missing HGT events associated with rare species. 

 

Taken together metagenomics and SSG would only offer a “snapshot” of a community at 

a single time point. For investigating community composition and functional analysis 

this is sufficient. In order to really begin to get an idea of the underlying ecological 

interactions of the community multiple snapshots (longitudinal) would be required. 

Longitudinal sequencing of microbial communities would more accurately detect the 

donor and recipients of HGT events. As the time points decrease between sequencing, 

HGT events that lead to introduction of a gene that is quickly lost by selection and/or 

drift, which are effectively evolutionary “dark matter”, will be detectable. These events, 

while often not evolutionarily meaningful, may be suggestive of an ecological 

interaction, which is meaningful.  

 

Based on sequence data we can infer HGT directly using comparative genomics. 

https://paperpile.com/c/mwksMk/jfZii+MxiVy
https://paperpile.com/c/mwksMk/ck3BL
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Comparative genomics allows recent HGT events to be detected, possibly before gene 

loss, through selection, takes place (Sjöstrand et al., 2014; Whidden, Zeh & Beiko, 2014). 

For samples that have been sequenced longitudinally, detecting HGT events is simple. 

At the first time point, OTU binning will create a representation of the species 

composition and the functional overview of the community. The same is done for the 

second time point. The genes from each species are compared between the two time 

points. HGT events can be inferred based on presence or absence of a gene between the 

two time points. The potential donor and recipients for each event can also be 

determined. This process would continue until each of the time points is compared. 

Once complete, a list of HGT events and the corresponding donor and recipient will 

have been recorded. 

 

Parametric methods take advantage of genomic signatures rather than alignments to 

known genes to detect HGT events. A given bacterial genome will contain patterns, or 

genomic signatures, that are reflective of background mutation and recombination 

rates. When a HGT event occurs, the transferred gene will retain the genomic signature 

of the donor. By analyzing short regions of the recipient genome, genomic signatures of 

the donor can be recognized. Parametric algorithms commonly use GC content, di- and 

tri- nucleotide usage, or protein structure features as genomic signatures (Lawrence & 

Ochman, 1998; Karlin, 1998; Mrázek & Karlin, 1999; Bohlin, Skjerve & Ussery, 2009; 

Azad & Lawrence, 2011; Retchless & Lawrence, 2012). Due to the process of 

amelioration (Lawrence & Ochman, 1997), parametric methods are only effective at 

identifying recent HGT events. Also, there must be a detectable difference between the 

genomic signatures to identify HGT events (Figure 4.1). As a consequence, HGT events 

https://paperpile.com/c/mwksMk/Oy5e2+l7WK5
https://paperpile.com/c/mwksMk/5S4i+aedJ+xtAc+hjod+OzlK+fgN3
https://paperpile.com/c/mwksMk/5S4i+aedJ+xtAc+hjod+OzlK+fgN3
https://paperpile.com/c/mwksMk/5S4i+aedJ+xtAc+hjod+OzlK+fgN3
https://paperpile.com/c/mwksMk/NR66H
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between closely related relatives would not be detected. 

 

Phylogenetic approaches use the evolutionary history of an organism to detect HGT 

events. This approach can be separated into two categories, explicit and implicit. 

Explicit algorithms seek out discrepancies between gene and species trees. Statistically 

significant discrepancies suggest an HGT event likely occurred. Implicit algorithms use 

sequence similarity and time since divergence to test for HGT events. If a gene is likely 

to have been horizontally transferred the best alignment score is expected to be from the 

donor and not the recipient. Although, certain algorithms may not always return an 

accurate best hit (Koski & Golding, 2001). Explicit algorithm limitations include 

potential to be time consuming and sensitivity to the selection of algorithm parameters 

(Than et al., 2007; Roure, Baurain & Philippe, 2013). While implicit algorithms, are 

limited to recent transfers that have a detectable difference. A thorough review of 

parametric and phylogenetic methods is available from Ravenhall et al (Ravenhall et 

al.). 

 

Once the HGT events have been accounted for, a directed network can be used to 

represent the gene transfer network. Two n x n matrices, where n is the number of 

species, can be constructed based on the HGT events. One binary matrix, or HGT event 

matrix, will represent whether or not an HGT event occurred between two species and 

whether the species was the donor or recipient. The other matrix, a weighted matrix, 

will represent the total number of HGT events that occurred between the two species. 

From these matrices a gene transfer network can be constructed. First, every species in 

the community is represented as a node in the network. Using the HGT event matrix, 

https://paperpile.com/c/mwksMk/kBRg8
https://paperpile.com/c/mwksMk/rLAgi+tpWME
https://paperpile.com/c/mwksMk/sWoD5
https://paperpile.com/c/mwksMk/sWoD5
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connections can be made between two species (nodes) from the donor species to the 

recipient species. The total number of HGT events is then used to label the connection. 

This process would continue until all species are accounted for. Once complete the gene 

transfer network will offer patterns of ecological interactions (Figure 4.2). Gene 

transfer networks have been used to show a majority of recent HGT events occur among 

closely related species and that the functional distribution of these genes is not random 

(Popa et al., 2011).  

  

Using gene transfer networks to predict and monitor future 

spread of antibiotic resistance 
A potential use for gene transfer networks is in predicting the lifespan of antibiotics. For 

example, teixobactin is a newly discovered antibiotic from soil that inhibits cell wall 

synthesis (Ling et al., 2015). It has been suggested that because this antibiotic binds to a 

highly conserved motif of lipid II, any mutations in this motif are likely to be 

deleterious. As a consequence, resistance to this antibiotic should be rare and require a 

lot of time to emerge. There may exist an undiscovered gene, which confers resistance to 

teixobactin. Metagenomic sequencing and SSG could be used together to map out the 

community landscape. By mapping out the genomic landscape of the community targets 

for teixobactin resistant genes could be predicted. If a gene were to be discovered and 

validated, the community could be monitored and regularly sequenced. From this, gene 

transfer networks for this gene could be constructed. From these networks and known 

barriers of transfer, time until widespread acquisition, or antibiotic lifespan, could be 

predicted. 

https://paperpile.com/c/mwksMk/qjxeq
https://paperpile.com/c/mwksMk/LvWqj
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Recently, VRSA was isolated in Brazil from a patient receiving vancomycin for treatment 

of a MRSA infection (Rossi et al., 2014). This case of VRSA presented a novel agent of 

HGT; the vanA gene cluster was captured by a plasmid that was readily transferred to 

another S. aureus. Although the vanA gene has an Enterococcal origin, the plasmid was 

not transferred back into a laboratory strain of E. faecalis. E. faecalis was implicated as 

the origin of vanA in previous VRSA cases; this observation suggests an undiscovered 

set of intermediate donors. This case of VRSA is also more closely related to USA300 

(CC8), a CA-MRSA clone that has seen intercontinental spread from United States 

(Glaser et al., 2016). Unlike previous cases, the novel plasmid did not affect in vitro 

fitness of the recipient strain. Fortunately, this case of VRSA did not overcome the 

genetic drift barrier and is presently being considered an isolated event. If this plasmid 

were to be maintained in the population, its characteristics would likely allow it to 

overcome selective and ecological barriers in much of the same way as CA-MRSA. If this 

case of VRSA is a precursor of what may be to come, it will be of major public health 

concern. Fortunately, because VRSA is a recent event, we have the potential to prevent it 

from becoming an epidemic. With routine monitoring and sequencing of MRSA isolates 

and the gut microbiome of patients from this region of Brazil, gene transfer networks 

could be used to predict the likelihood of S. aureus acquiring a similar HGT event. More 

importantly, it would offer the potential to implement medical practices that aim to 

increase ecological barriers with suspect donors. One could possibly imagine a medical 

intervention such as administering a specific probiotic that could outcompete known to 

competitively exclude either the suspect donors or S. aureus.  

 

https://paperpile.com/c/mwksMk/2y2AL
https://paperpile.com/c/mwksMk/r3Ln
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Conclusions 
HGT is essential to the the evolution and expansion of antibiotic resistance genes in 

bacterial pathogens. There are only small set of antibiotics classes currently in our 

arsenal to treat these pathogens. As a consequence, it is important to understand how 

barriers to HGT can be used to our advantage to prevent the evolution of resistant 

pathogens. Current infrastructure and costs do not allow for routine microbiome 

sequencing of patients, but as sequencing costs continue to fall, and technology 

improves, this may become a possibility in the near future. Until then we can continue 

to make efforts to disentangle the ecology of microbial communities through 

metagenomic sequencing and SSG, with the ultimate goal of implementing medical 

practices that are based on the ecology of the patient’s microbiome. 
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Appendix 
The following appendix contains boxes, tables and figures referenced in the text of this 
chapter. 
 
Box 4.1: Classical mechanisms of horizontal gene transfer in prokaryotes 
Transformation 

Originally discovered in 1928 (Griffith, 1928), transformation occurs when a 

bacterial cell acquires free-floating DNA from the environment. In order to uptake 

exogenous DNA bacterial cells must possess the required genes and be in a ‘competent’ 

state. Environmental cues, such as UV light, can switch a bacterium into a competent 

state (Michod, Wojciechowski & Hoelzer, 1988). 

 

Transduction 

Prophage excision from the host genome can, at a low rate result in packaging 

chromosome genes into the bacteriophage genome; these genes are then carried over to 

the next infected host. This process of horizontal gene transfer is referred to as 

transduction. Discovered in 1951 (Zinder & Lederberg, 1952), transduction takes two 

forms, generalized and specialized. In generalized transduction any gene present in the 

bacterial genome may by chance any packaged into the viral genome. In specialized 

transduction only, the genes on either side of a prophage may be excised. 

 

Conjugation 

Conjugation occurs when genetic material is transferred from one bacterial cell to 

another through a direct physical connection between the two bacterial cells through the 

action of an episomal genetic element. First discovered in 1946 (Tatum & Lederberg, 

1947), a donor cell transfers a conjugative or mobile genetic element to a recipient cell in 

the form of a plasmid or transposon. Transferred plasmids vary in size and composition  

https://paperpile.com/c/mwksMk/j6jGD
https://paperpile.com/c/mwksMk/lR4U
https://paperpile.com/c/mwksMk/mNPHc
https://paperpile.com/c/mwksMk/OFkaS
https://paperpile.com/c/mwksMk/OFkaS
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Reprinted by permission from Springer Nature: (Yoko Furuya & Lowy, 2006). 
  

https://paperpile.com/c/mwksMk/v9miW
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Box 4.2: Barriers to horizontal gene transfer between bacteria 
 

Evolutionary forces 

Evolutionary forces can play a significant role in reducing the number of successful HGT 

events. Natural selection is expected to remove recipients of a deleterious gene from the 

population. While transfer events that offer a neutral or selective advantage will initially 

be highly susceptible to genetic drift (stochastic loss during replication). This is due to 

selection being weaker force than genetic drift when only a few cells contain a mutant  

(Gillespie, 2010). Genes that offer a selective advantage are more likely to spread though 

the population and avoid removal by drift. 

 

Genetic mechanisms 

Bacteria have many defense mechanisms in place to deal with foreign DNA. Bacteria can 

use restriction modification systems as protection for foreign DNA (Wilson & Murray, 

1991). When certain unmethylated DNA fragments are detected, restriction 

endonucleases will cleave double stranded DNA at these points. The cleaved DNA is 

then further degraded by other endonucleases. Another defense mechanism for some 

bacteria, are clustered regularly interspaced short palindromic repeats (CRISPR), which 

can act as an adaptive immunity (Barrangou et al., 2007). CRISPRs retain DNA from 

previous bacteriophage infections, upon reinfection the bacteriophage DNA can be 

recognized and cleaved. For bacteria that undergo conjugation, surface exclusion 

(Achtman, Kennedy & Skurray, 1977) limits conjugative transfer if the recipient cell 

already contains the plasmid being transferred. Transferred genes have also been shown 

to be concentrated to ~1% of chromosomal regions (Oliveira et al., 2017) suggesting a 

link between recombination and horizontal gene transfer. 

 

Ecological processes 

The most complex limitations to HGT to understand are those that restrict the co-

residence of bacterial species. In general, ecological processes might come in the form of 

habitat disturbance, climatic variables, resource variation, competition, or cooperation, 

predation (Radford, Robinson & Watson, 2009). A given microbial community will be a 

very complex network of these ecological processes. Collectively these processes are 

https://paperpile.com/c/mwksMk/o2oD8
https://paperpile.com/c/mwksMk/r8P1K
https://paperpile.com/c/mwksMk/r8P1K
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https://paperpile.com/c/mwksMk/YyxE2
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https://paperpile.com/c/mwksMk/rtLrx
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driving gene exchange within the human microbiome (Smillie et al., 2011). There are 

also biogeographical limitations to the range of bacteria (Flores et al., 2011; Barberán et 

al., 2014). Adding to the complexity of ecological interactions, human interference can 

play significant roles in disrupting these interactions. The spread of a horizontally 

transferred antibiotic genes following the introduction of the drugs after WW2 is a 

classic example of how HGT “trade routes” allow delivery of genes with selective 

advantage to pathogens. 

  

https://paperpile.com/c/mwksMk/kYqqK
https://paperpile.com/c/mwksMk/czkvV+hi8wd
https://paperpile.com/c/mwksMk/czkvV+hi8wd
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Figure 4.1: A bar graph depicting the counts of GC content for human 
bacterial pathogens with a completed genome in NCBI’s Genome database.  
 

In order for parametric methods to successfully detect HGT events, there must be a 

detectable difference in the genomic signature. This graph indicates a number of species 

have a similar GC content. As a genomic signature, GC content is only useful for two 

organisms that are significantly different. 
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Figure 4.2: An example of a gene transfer network.  
Each circle (node) of the network represents a bacterial species from a microbial 

community. The arrows (edges) represent recent HGT events. Annotations of these HGT 

events appear next to the arrows. Arrows that have numbers next to them, indicate the 

number of predicted HGT events between the two species. For example, the yellow circle 

(labeled as or numbered 109) represents Peratoga mobilis str. SJ95. There are two 

outgoing arrows and two incoming arrows. The outgoing arrows represent P. mobilis 

str. SJ95 donating a heavy metal ATPase gene to Themoanaerobacter str X514 and 

Caldicellulosiruptor saccharolyticus str. DSM8903. The incoming arrows represent 

cases when P. moblis str. SJ95 acted as a recipient of a heavy metal ATPase gene from 

Themoanaerobacter str X514 and a recombinase gene from Clostridium thermocellum 

str ATCC27405. Image is reprinted from open access article Popa et al (Popa et al., 

2011). 
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Table 4.1: The influence of barriers to HGT on MRSA and VRSA 
 

 MRSA VRSA 

Genetic 
Mechanisms 

● Limited, SCCmec may be 
regularly gained and lost 
in populations 

● Plasmids harboring vanA were 
unstable 

● Novel plasmid was readily 
acquired 

Evolutionary 
Forces 

● Early hospital practices 
unintentionally selected 
for SCCmec 

● SCCmec types related to 
CA-MRSA are less 
detrimental to fitness 

 

● Isolated cases susceptible to 
genetic drift 

● Expression of vanA operon 
may be detrimental to fitness 

● Novel vanA harboring plasmid 
does not reduce fitness 

Ecological 
Processes 

● Early hospital practices 
aided in transmission 

● Improved practices have 
decreased the spread of 
SCCmec within hospitals 

● Transmission in the 
community is limited 

 

● Improved hospital practices 
reduce transmission 

● Donor Enterococcal species 
occupy different ecological 
niche 

● Limited to patients with 
extended hospital stays 

● A majority of past cases have 
an ecology similar to HA-
MRSA, recent case has a CA-
MRSA 
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Chapter 5: Summary and Future Directions 

Summary 

This dissertation has focused on the analysis of bacterial pathogens through the use of 

whole genome-sequencing. Genome sequencing has become cheap enough that it is now 

a common practice. The sheer amount of sequence data that is publicly available has 

created opportunities for secondary analyses. It has also created the opportunity to 

develop organism-specific bioinformatic approaches. I have taken advantage of such 

opportunities in two bacterial pathogens, Bacillus anthracis and Staphylococcus 

aureus. 

 

In Chapter 2, I demonstrated a novel approach for differentiating low coverages of B. 

anthracis from B. cereus in metagenomic sequencing.  I developed a model to account 

for the effect of sequencing errors and identified the limits of detection of B. anthracis 

and the lethal factor gene. Comparisons against “generalist” taxonomic classifiers 

showed my “specialist” approach was more accurate at differentiating B. anthracis from 

B. cereus in metagenomic sequencing. I applied my approach to the NYC dataset and 

identified a single sample as “Case 2”. This sample would require either further 

sequencing or PCR validation to determine the presence of B. anthracis or a close 

Bacillus cereus Group (BCerG) lineage. However, it is unlikely that B. anthracis was 

present due to existing measures already in place and no reported cases of anthrax on 

the NYC subway. This was the first B. anthracis typing schema to take account for 
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sequencing errors, the genetic background and ability to detect the lethal factor in 

metagenomic sequences.  

 

There is, however, still room for improvement in this approach. I purposely limited my 

dataset to high-quality completed genomes from the curated RefSeq database. There is 

now evidence that over time as more BCerG completed genomes have become available 

the misclassification of B. anthracis has decreased (Nasko et al., 2018b). Out of 

curiosity, I investigated a set of 3,400 uncurated assemblies from the Bacillus genus.  I 

found only about 80k 31-mers remained specific to B. anthracis. Although these 

assemblies were incomplete and may still contain errors, they do provide an idea of 

what to expect in the future. As the phylogeny between B. anthracis and B. cereus is 

filled in, I suspect of many of the 240k B. anthracis specific 31-mers I identified to not 

be specific for B. anthracis. It may even become clear that there were no B. anthracis 

specific 31-mers due to the close relationship of BCerG members. An alternative 

approach is to redefine BCerG as single species and treat current members as strains of 

BCerG. This would require the use of 51-mers over 31-mers because 51-mers provide 

strain-level resolution as opposed to species-level (Koslicki & Falush, 2016). My 

approach could easily be adapted to 51-mers but would require significantly more 

computational resources due to the increased k-mer space of 51-mers (451 possible k-

mers). 

 

In Chapter 3, I introduced Staphopia as a community resource focused on 

Staphylococcus aureus genomics. Through Staphopia, I provided analysis of over 

40,000 S. aureus genomes. I explored patterns of evolution in S. aureus in the global S. 

https://paperpile.com/c/mwksMk/ZS05t
https://paperpile.com/c/mwksMk/nPJi
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aureus population. I also presented a novel method to rationally select publicly available 

S. aureus genomes for comparative genomic studies. I developed a comprehensive 

analysis pipeline, a web platform, an application programming interface (API) and an R 

package for Staphopia.  

 

The development of Staphopia has been a tremendous undertaking. I have generated 

over 50,000 lines of code, 10 TBs of analysis results, liked over 100 publications to 

sequencing projects and wrangled all of this into a usable resource for the community. 

This was a time-consuming process, causing much of the biological potential for 

Staphopia to remain unrealized. For example, Staphopia still lacks some analyses that 

are important for understanding the regulation of virulence, role of phage and mutation 

driven resistance in S. aureus. Algorithms to determine accessory gene regulator (agr) 

types (Shopsin et al., 2003), identification of S. aureus specific phage (Deghorain & Van 

Melderen, 2012), improved SCCmec typing (Enright et al., 2002), and antibiotic 

resistance associated with mutations (Gordon et al., 2014) are necessary for these 

analyses. There are also numerous studies that can be conducted using the data 

available in Staphopoia including sub-population divergence types, horizontal gene 

transfer events, and geographic patterns in evolution.  

 

The long-term viability of Staphopia is ultimately dependent on future funding support. 

However, even with adequate funding it is an open question whether the analysis 

methods I have applied to 40,000 genomes will scale to the amount of date that will 

appear in the near future. Future data growth would require Staphopia to be migrated to 

the cloud. This is a simple procedure, but to properly host Staphopia it would cost 10s of 

https://paperpile.com/c/mwksMk/F2iu
https://paperpile.com/c/mwksMk/CIid
https://paperpile.com/c/mwksMk/CIid
https://paperpile.com/c/mwksMk/AsuH
https://paperpile.com/c/mwksMk/1INY
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thousands of dollars per year. Without funding there are concerns for the eventual 

shutdown of Staphopia. As the sole developer of Staphopia, I have tried to develop 

Staphopia to prevent this. One of Staphopia’s strong points is its portability. Staphopia’s 

analysis pipeline is easily installed and run on small resources such as laptops to large-

scale cloud platforms. The PostgreSQL-backed Staphopia database can readily be 

distributed to others. I have also chosen to use open-source frameworks where possible 

so that Staphopia is more accessible to other developers. Essentially, I have tried to 

develop Staphopia so someone other than myself can acquire the data and pick up 

where I left off. I think adopting a philosophy as I have for Staphopia will be necessary 

in the future where maintaining large databases permanently will not be plausible.  

 

In Chapter 4, I provided a literature review which described barriers to horizontal gene 

transfer events. I used S. aureus to demonstrate how barriers have influenced its recent 

evolutionary history. I also described how of sequencing could be used to monitor gene 

flow and potential clinical applications of monitoring gene flow. 

Future Directions: Macro-scale bacterial genomics 

To date comparative genomic studies have been limited to 10s to 100s of bacterial 

genomes. As the deluge of sequencing continues, we will more commonly see 

comparative genomic studies consisting of 1,000s to 10,000s of genomes. For the 

remainder of the discussion I have defined these large scale studies as “macro-scale”. 

Macro-scale studies will present us with a new set of rewards and challenges. 
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Rewards of macro-scale genomics 

Statistical power 

Statistical power is defined as the likelihood a study will detect an effect when there is 

one to be detected. In the context of bacteria, an example is to test if a mutation has an 

effect on a phenotype with statistical significance. Dependent on the strength, or size, of 

the effect, this can require a large number of samples to provide enough statistical 

power. Effect size is often times referred to as small (d=0.2), medium (d=0.5) or large 

(d=0.8) (Cohen, 1988). The power to detect an effect size with a given sample size can 

be calculated by estimating mean differences between two groups (Shein-Chung Chow, 

2009). As an hypothetical example, a case control study of 50 cases and 50 controls has 

80% power to detect a medium effect size. At 100,000 genomes 200 cases have 80% 

power to detect a small effect size. If the power is increased to 90%, the 100-sample 

study can now only detect large effect size while at 100,000 genomes small effects can 

still be detected. The sample size of macro-scale studies would provide statistical power 

to detect small effect sizes with minimal cases. 

 

A better overview of a species 

Comparative genomic studies often investigate a closely related set of samples. As a 

consequence, the total extent sequenced genetic variation within a species may be 

limited. One measure of sequenced diversity within a species is to use sequence types 

(ST). PubMLST (https://pubmlst.org/saureus/) currently lists over 4,500 different STs 

in S. aureus. In Chapter 3, I showed that of these STs only 25% were represented in 

current S. aureus sequencing efforts. This suggests that 75% of the S. aureus diversity 

https://paperpile.com/c/mwksMk/WlAs
https://paperpile.com/c/mwksMk/QE9P
https://paperpile.com/c/mwksMk/QE9P
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has yet to be sequenced. This is likely not the case as many of these unsequenced STs 

probably fall in existing clonal complexes. Another method to determine the sequenced 

diversity is to create a pan-genome across all the samples. As the total extent of genetic 

variation within a species is approached the size of the pan-genome will plateau. Macro-

scale studies have the potential to offer a better view of a bacterial species as whole. 

Each sequenced genome will improve the overall view of a species. It will, however, be 

necessary to make an effort to sequence novel strains of a species.   

 

Rational sampling 

A direct product of broadening the view of a bacterial species is the concept of rational 

sampling. In the past comparative genomic studies have relied on what was available. 

This could involve including samples that may not be optimal for testing a hypothesis of 

interest. I showed in Chapter 3 that the current S. aureus sequencing effort has 

primarily focused on clinical isolates from a few sequence types and limited geographic 

locations. This is a classic case of oversampling a few groups within S. aureus. A 

consequence of this is that overrepresentation these groups can lead to biases in 

comparative genomic studies. As 100s of thousands of genomes become available, it will 

become possible to rationally sample the data to reduce these biases. This will shift the 

current trend of using all available genomes to using genomes that best test a 

hypothesis. 
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Challenges of macro-scale genomics 

Imperfect data 

Publicly available data is free and relatively easy to obtain, but the quality of sequencing 

and metadata is variable. Because macro-scale studies build off of multiple existing 

projects, setting standards that grade data quality is necessary. While sequencing data 

can be quantified, poor quality metadata is irretrievable. This is an important problem, 

because available metadata can dictate the ability to conduct comparative genomic 

studies, such as GWAS. The most prominent metadata issue I have had to deal with is 

missing data. Little information about a sample is required during submission to a 

public repository as a consequence it is instead reported in an associated publication. It 

can be difficult to determine if a sample is even linked to a publication and there is not a 

standard method for reporting results in publications. This requires each sample to be 

manually linked to a publication and the publication uniquely processed. Another 

prominent issue has been inconsistent naming. For example, for S. aureus sequencing 

projects, humans as a host are represented by different derivatives of the common 

name, human, and the scientific name Homo sapiens. Programmatically “human” is not 

the same as “Human”, likewise “Homo sapiens” is not the same as “H. sapiens”, so each 

of these differences must be discovered and accounted for. A controlled vocabulary for 

metadata fields, such as host, and would fix this type of issue. There are existing 

proposals for metadata standardization (Field et al., 2008; Hirwade, 2011; McQuilton et 

al., 2016), but their subsequent adoption and enforcement remains to be seen (Ten 

Hoopen et al., 2017).  

 

https://paperpile.com/c/mwksMk/Matj+JQ1P+zXAV
https://paperpile.com/c/mwksMk/Matj+JQ1P+zXAV
https://paperpile.com/c/mwksMk/RDGy
https://paperpile.com/c/mwksMk/RDGy
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Evolving sequencing technologies 

Over the course of developing Staphopia, I have witnessed 3 shifts in sequencing 

technology usage. At the beginning Roche 454 pyrosequencing was the dominant 

technology for bacterial genome sequencing. It was quickly replaced by Illumina short-

read sequencing. While Illumina still represents over 99% of S. aureus sequencing, 

usage of long-read technologies (PacBio and Nanopore) is becoming more common. 

Each of these technologies requires different approaches of bioinformatic analysis. 

Staphopia is based on Illumina data but will need to develop a completely different 

workflow for long-read projects. Long-read technologies require different algorithms for 

sequence error correction, assembly and variant identification. Although, I do foresee 

process of adapting to new technologies to be a “temporary” problem for sequencing 

bacterial isolates. Recently, a 2.2Mb read from the human genome was generated from 

an Oxford Nanopore MinION (Payne et al., 2018). Long-read technologies are 

improving but the ~10-15% per-base error rate is a significant limitation. Overcoming 

this error rate requires increased coverage or additional Illumina sequencing. If high-

quality megabase length reads were to become the norm, it is likely long-read 

technologies would become the first choice for sequencing a bacterial isolate solely on 

the ability to assemble complete chromosomes. 

 

Data management and distribution 

When dealing with 1000s of genomes, data management becomes a significant issue. 

Without proper planning this can quickly become a logistical nightmare dealing with 

millions of files. Over the course of my graduate studies, I have put a lot of thought into 

https://paperpile.com/c/mwksMk/RMc9


 131 

data management. The most basic step to managing data is to create a consistent 

directory structure that allows programmatic access. This is especially important to 

efficiently navigate through millions of directories. Another step that be taken is to make 

use of a database management system (DBMS) as I did in the case of Staphopia. In my 

case, I used PostgreSQL, a relational database, which aims to present data as connected 

tables of information. Usage of DBMS forces the user to really think about how best to 

organize the data and provides a starting point for distributing the data. 

 

Generating scientific data and distributing it to the community is an important aspect of 

the scientific process. Distributing the amount of data produced by macro-scale studies 

will not fit with the current framework. In chapters 2 and 3 of this dissertation I 

produced over 20 TB of new data. I have taken multiple steps to ensure the 

reproducibility of my studies, but this does not negate a significant financial and time 

cost to do so. Currently, it is my burden as the researcher to maintain the data from my 

studies. This is not an optimal solution because most labs are not set up to act as data 

hosts which can ensure long-term data availability. I think it will become necessary for 

the funding agency, the host institute or even the journal publishing the research to 

ensure long-term data availability. As more macro-scale studies emerge, this problem 

will need to be addressed a solution determined.  

 

Scalability 

There has been an arms race between producing biological sequences and the ability to 

analyze the sequences. In other words, we are producing more sequences than we can 
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analyze. This boils down to two limitations. The first is computational and the other 

algorithmic. The current computational solution for macro-scale studies is to throw 

more compute power at it. This has become easier with the use of cloud platforms but 

with a price that funding may not allow. Eventually, and this leads to the second 

limitation, new algorithms will need to be developed for macro-scale genomics. There is 

a definite need for algorithms that can process 1,000s to 10,000s of genomes. However, 

I think the storage requirements of such analyses are often overlooked. Computational 

analysis is often done only once, but the results must be stored for the duration of the 

study and potentially for future distribution. I think there will be a need for better 

compression algorithms that can reduce the overall storage requirements of macro-scale 

studies. This will be critical for maintenance and distribution of the study results. 

 

Emerging macro-scale genomic projects 

Macro-scale genomic projects are now an intrinsic part of microbiology and will 

continue to grow in importance. Recently the first bacterial genome study to include 

over 100,000 samples, determined the global population structure of the Salmonella 

genus (Alikhan et al., 2018). The 100k Pathogen Genome Project (Weimer, 2017), a 

partnership between the Food and Drug Administration (FDA) and UC Davis, will 

sequence 100,000 bacterial isolates from foodborne illnesses. The NCTC 3000 project 

from Public Health England, will sequence and assemble completed chromosomes for 

3,000 bacterial strains using PacBio long read technology. Another product of the FDA 

is GenomeTrakr (Safety & Nutrition). GenomeTrakr is a collaborative project consisting 

of 40 labs within the U.S. and 20 labs located outside the U.S. As of April 2017, 

https://paperpile.com/c/mwksMk/OcPU
https://paperpile.com/c/mwksMk/sjUR
https://paperpile.com/c/mwksMk/C9FA
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GenomeTrakr has sequenced more than 185,000 isolates and contributed more than 175 

completed genomes.  

 

There are also many macro-scale metagenomic projects that are being worked on. 

MetaSUB (http://metasub.org/) will include more than 15,000 metagenomic samples 

from over 60 subways and urban environments across the world.  The American Gut 

Project (AGP) (McDonald et al., 2018) is a crowdsourced project in which more than 

10,000 citizen-scientists have submitted fecal samples to the project. AGP is an 

extension of the Earth Microbiome Project (EMP) (Thompson et al., 2017) which 

currently has over 30,000 samples from many different biomes across the world. AGP 

and EMP are currently limited to 16S sequences but represent the first steps into macro-

scale metagenomic projects that crowdsource sampling to more efficiently characterize 

numerous environments.  

 

Final remarks 

One thing not reflected in this dissertation is my interest in teaching. During my 

dissertation I was a teaching assistant in multiple classes and even developed an 

advanced programming course for graduate students. During these courses I tried to 

make bioinformatics more approachable to others outside the field. I often see 

bioinformatics distancing itself from other fields. It most likely boils down to the fact 

that in bioinformatics there are so many methods to do similar analyses and often little 

indication on which is most suitable. This can present an overwhelming learning curve 

for people getting started in sequence analysis. It is for this reason, I chose to focus on 

http://metasub.org/
https://paperpile.com/c/mwksMk/Id9Kg
https://paperpile.com/c/mwksMk/89Q4O
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how to conduct a bacterial sequence analysis step-by-step in the introduction. I made an 

effort to call out appropriate literature reviews that can be used to delve further into 

specific topics of sequence analysis. I have also highlighted emerging challenges and 

projects that will present future opportunities for those interested in bacterial sequence 

analysis. It is my hope that having read this, you may one day recommend this to 

someone looking to begin their adventure into bacterial sequence analysis. 
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Appendix: Other Published Work 

Over the course of graduate school, I had the opportunity to take part in a number of 

projects. These projects provided valuable experiences in collaborative science and 

science for the public. These collaborations include members of the CDC, the Georgia 

Aquarium, University of Chicago and other Emory University colleagues. Many of these 

projects have led to 8 published works that fall into three groups: Staphylococcus 

aureus genomics, bioinformatic tool development, and Whale Shark genomics. 

Although, these were not directly related to my dissertation, the skills and knowledge 

gain have definitely indirectly influenced my dissertation work. 

 

The first group of published works are related to S. aureus genomics. The first 

publication demonstrated within household microevolution and transmission of S. 

aureus USA300 (Alam et al., 2015a). The next publication used genomics to redefine the 

clinical definition of S. aureus USA500 (Frisch et al., 2018). The final publication 

demonstrated how USA300 persisted on multiple body sites after infection (Read et al., 

2017b). These publications introduced me to a number or new bioinformatic approaches 

that were useful for my dissertation. In many of these works I worked alongside Tauqeer 

Alam. Working together has created a strong collaboration between us. It was also 

through this work that, Tim was able to introduce me to Santiago Castillo-Ramírez. Both 

Santiago and Tauqeer have been helpful in providing valuable feedback and 

improvements to this dissertation. 

 

https://paperpile.com/c/mwksMk/bpqI
https://paperpile.com/c/mwksMk/69JD
https://paperpile.com/c/mwksMk/jSP8
https://paperpile.com/c/mwksMk/jSP8
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The second group, are more in line with my background in bioinformatics and involve 

the development of novel tools. The first used machine learning to classify S. aureus 

DNA within sequencing datasets (Hogan et al., 2013). Another publication also used 

machine learning to differentiate vancomycin susceptible from vancomycin resistant S. 

aureus samples using sequencing (Rishishwar et al., 2013). The final publication, 

developed strain-level resolution of S. aureus in metagenomic sequencing (Joseph et al., 

2016). Similar to the previous group, these publications also introduced me to a number 

of new bioinformatic approaches as well as the thought process behind algorithm 

development. From these works I was introduced to Jim Hogan, a computer scientist 

from Queensland University of Technology, who I continued to work with for Chapter 2 

of this dissertation. 

 

The third group of published works were a valuable lesson in cross-discipline 

collaborations. Through a collaboration with Al Dove from the Georgia Aquarium we 

produced the first completed mitochondrial genome from the Whale Shark (Alam et al., 

2014b). We also produced the first draft assembly of the Whale Shark genome (Read et 

al., 2017a). These publications were a huge effort, especially from a lab that only deals 

with microbial genomes. One experience from this collaboration that stuck out to me, 

was the interactions between science, the general public, and businesses. Through 

funding gained from business partnerships, the Georgia Aquarium allowed me to set up 

a server for others to analyze the data we produced. This was eventually integrated into 

an undergraduate biology course here at Emory. 

 

https://paperpile.com/c/mwksMk/9d3I
https://paperpile.com/c/mwksMk/7KS8
https://paperpile.com/c/mwksMk/ceA7
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Collectively, these publications broadly represent my research interests in using 

bioinformatics to improve public health. Most importantly, I think these opportunities 

provided me with valuable experiences I would have otherwise missed out on. 
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