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Abstract

Applications of Closed-loop Control in Biomedical Interventions: From Neural
Modulation to Diabetes Management

By Malvern Madondo

Dynamic adaptation of interventions to an individual’s real-time medical condition
has enormous potential in healthcare. Existing biomedical interventions, such as
deep brain stimulation (DBS) for neurodegenerative disorders and insulin therapy for
Type 1 diabetes (T1D), typically rely on predetermined treatment plans known as
open-loop control. However, these static approaches often overlook the continuous
changes in an individual’s physiological state. This lack of real-time adaptation can
lead to suboptimal treatment outcomes and an inability to manage fluctuating patient
conditions effectively.

To address these limitations, we develop a closed-loop control framework that
continuously adjusts treatment based on real-time physiological signals. We character-
ize neuromodulation and blood glucose regulation as control problems, leveraging a
combination of machine learning (ML) and optimal control (OC) theory. Our approach
integrates neural networks with classic OC techniques like Pontryagin’s Maximum
Principle and Hamilton-Jacobi-Bellman equations, enabling adaptive control that is
robust to physiological variations – a highly desirable outcome in clinical settings. We
utilize established models (Hodgkin-Huxley for neurons, Bergman’s Minimal model
for glucose-insulin) to simulate and optimize these closed-loop control strategies in
a virtual environment, i.e., in silico. Additionally, we define relevant cost functions
that quantify clinical objectives to guide the optimization process. We explore var-
ious control strategies, including using neural networks to learn optimal treatment
adjustments in real-time, overcoming the limitations of open-loop approaches and
potentially leading to improved clinical outcomes.
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Chapter 1

Introduction

Machine Learning (ML) and Optimal Control (OC) theory play pivotal roles across

diverse disciplines, shaping advancements in healthcare, robotics, finance, aerospace,

manufacturing, and energy management. ML, a subfield of Artificial Intelligence (AI),

involves the development of algorithms and models capable of learning from data and

making data-driven predictions or decisions, without requiring explicit programming

for each specific task [16, 43]. OC involves determining the sequence of control actions

that optimizes a predefined objective function for a given dynamical system. These

controls achieve the desired system behavior while adhering to system dynamics and

constraints [35, 54].

In biomedical applications like deep brain stimulation (DBS) and blood glucose

regulation, the synergy between ML and OC presents opportunities for adaptive

solutions in managing neurodegenerative disorders and metabolic conditions. In-

dividuals grappling with medication-resistant neurodegenerative disorders, such as

Parkinson’s disease (PD), and those managing Type 1 diabetes (T1D) often rely

on predetermined or fixed treatment regimens (open-loop control). However, these

static approaches may not adequately adapt to their changing physiological needs or

responses to therapy [23, 30, 45, 66].
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Closed-loop systems, where interventions dynamically adapt to real-time changes

in a patient’s clinical state, become pivotal in addressing the central challenge of

guiding individuals toward wellness [2, 23]. This intricate process targets optimal

health outcomes, weighing factors such as minimal side effects, time, cost, and other

relevant criteria [11, 38, 44, 97]. This dissertation, grounded in well-established ML

and OC theory ideas, seeks to develop closed-loop biomedical systems for real-time

optimization of neuromodulation (used interchangeably with DBS) and glycemic

control. This enables adaptive interventions/therapy (also called dynamic treatment

regimens), potentially improving efficacy, reducing side effects, and significantly

enhancing patients’ quality of life.

1.1 Problem Statement

Neurological disorders, such as PD, and metabolic disorders like T1D present sub-

stantial challenges for both patients and healthcare providers. Existing open-loop

treatments often yield suboptimal outcomes [23, 66]. In DBS, a common open-loop

approach continuously delivers fixed stimulation, relying on manual determination of

settings. This approach lacks adaptability and real-time responsiveness, leading to

suboptimal outcomes and necessitating multiple clinical visits [21]. In the context of

blood glucose control for T1D, the intricacies of insulin administration require closed-

loop systems like artificial pancreas systems for effective glycemic control [11, 45].

Utilizing ML and OC theory, this research seeks to develop closed-loop solutions for

both DBS and glycemic control. By addressing the limitations observed in current

clinical interventions, we strive to advance computational approaches in biomedical

interventions.
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1.2 Research Overview

We leverage ML and OC theory to in silico biomedical interventions, specifically

emphasizing neuromodulation for neurodegenerative disorders and closed-loop blood

glucose control.

As a computational exploration devoid of direct patient involvement, our research

employs computational models such as the Hodgkin-Huxley (HH) model [49] for neu-

ronal dynamics and Bergman’s minimal (BM) model [12] for glucose-insulin dynamics.

This in silico approach not only ensures efficiency and cost-effectiveness but also

minimizes risks associated with real-world interventions. While datasets, prevalent in

many ML applications, provide valuable insights, our model-based approach allows

for a more controlled and customizable simulation, capturing intricate dynamics. This

approach facilitates the development of patient-specific insights and enables us to

explore a wide range of scenarios, optimizing closed-loop systems for neurodegenerative

disorders and glycemic control.

1.2.1 Limitations

We aim to highlight the potential of ML and OC theory for improving current

interventions across diverse biomedical applications. However, it is important to clarify

that our research excludes direct involvement in clinical trials, patient intervention

data collection, or the use of medical devices such as pulse generators or insulin pumps.

Instead, we rely on simulations based on established models. While this approach

allows for controlled experiments, it may not fully capture the variability inherent in

real-world biological systems or patient responses. Additionally, certain computational

model parameters are adopted or estimated from existing literature, introducing

a factor that might influence the broader applicability of our findings. Therefore,

our research primarily serves as a proof-of-concept for future work integrating these
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advanced techniques into clinical applications.

1.2.2 Contributions

Addressing the optimization challenges in biomedical interventions offers exciting

research opportunities at the intersection of computational health, ML, and control

systems. Our exploration of numerical approaches integrating ML and OC aims

to develop adaptive closed-loop policies capable of delivering real-time therapeutic

remedies in response to dynamic changes in a patient’s clinical state. Through this

endeavor, we hope to unravel the mutual relationship between dynamical systems,

learning, and control.

Our main contributions include the following:

• We seek to improve neuromodulation and glycemic control with closed-loop

systems that adapt in real time. This ensures optimal responses to changing

physiological states and robustness against unexpected shocks or disturbances

in system dynamics.

• We address the limitations of conventional open-loop control methods, which

lack adaptability to changing conditions. By framing neuromodulation and

glycemic control as control problems, we simulate their dynamics in silico using

established computational models. We also define relevant cost functions that

quantify clinical objectives to guide the optimization process.

• We explore various control strategies, including neural network-based value

function approximation, to enhance adaptability and responsiveness, overcoming

the limitations of open-loop approaches.

Overall, building on well-established ML and OC theory ideas, we develop closed-

loop solutions for real-time interventions within these biomedical applications. This

dissertation incorporates content derived from the author’s published work [69] and
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nonproprietary projects conducted during research internships at IBM Research and

Eli Lily. This includes applications of reinforcement learning, a subclass of ML, to T1D

management, and a neural ordinary differential equation (neural ODE [28]) approach

to glycemic control, respectively.

1.3 Dissertation Outline

We now summarize the contents of the central chapters of this dissertation:

Chapter 2 provides a mathematical foundation for solving control problems in

neuromodulation and glycemic control. We explore closed-loop system formulation,

review OC theory, and discuss value function approximation using neural networks.

We conclude with a brief commentary on choosing computational models, suitable

performance criteria, and method(s) to address the identified control problem.

Chapter 3 introduces a neural network-based approach for closed-loop neu-

romodulation. We simulate neuronal dynamics with the HH model and develop

a learning-based control scheme based on Pontryagin’s Maximum Principle and

Hamilton-Jacobi-Bellman equations.

Chapter 4 extends our exploration to glucose-insulin dynamics, applying Bergman’s

minimal model. We demonstrate control schemes on a virtual patient model, ranging

from simplistic Proportional-Integral-Derivative (PID) controllers to advanced schemes

utilizing neural ODEs, such as reinforcement learning.

We conclude with a summary of this dissertation and a discussion of potential

research directions in Chapter 5.
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Chapter 2

Hitchhiker’s Guide to Solving Control

Problems

2.1 Introduction

Control problems are widespread in various fields such as biomedicine, economics, en-

gineering, and manufacturing, where system dynamics must be regulated for improved

performance or outcomes. In biomedicine, control problems encapsulate a wide range

of applications. In this work, we consider numerical approaches for deterministic,

finite-dimensional optimal control problems in two medical applications: neuromodu-

lation for deep brain stimulation (DBS) [31, 34, 41, 120] and blood glucose control for

Type 1 diabetes (T1D) management [2, 45, 91]. We can tackle such problems using a

variety of arsenal from Machine Learning (ML) and Optimal Control (OC) theory.

Our starting point will be to translate neuromodulation and glycemic control

(blood glucose regulation) into mathematical terms, formulating them into control

problems defined over a finite time-horizon T > 0 and characterized by a standard
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objective functional,

J(t, z,u;ψ) =

∫ T

t

L (s, z(s),u(s)) ds+G (z(T )) , (2.1)

and constrained by a nonlinear dynamical system,

dz

dt
(t) = f(t, z(t),u;ψ), z(t) = x, t ∈ [0, T ]. (2.2)

Here, the function f : [0, T ] × Rd × Ra → Rd models the evolution of the states

z(t) ∈ Rd in response to the control inputs u : [0, T ] → U ⊂ Ra. x ∈ Rd denotes

the initial state of the system. The parameter ψ ∈ η represents problem-specific

physiological properties. The function L : [0, T ] × Rd × Ra → R represents the

intermediate or running cost, and G : Rd → R represents the terminal cost in the

control objective in Equation (2.1). These costs represent penalties specific to each

application. For instance, the running cost may include penalties for deviations of

the current blood glucose from a target glucose value or the energy consumed when

delivering electrical stimulation for DBS. The terminal cost often encodes the desired

behavior on termination, e.g., reaching a specific state.

2.1.1 Control Formulation

In clinical settings, when an individual with a health condition (characterized by

pathological dynamics) seeks treatment, their current state serves as the starting

point x, and the physician endeavors to transition it, via a set of controls u, to a

more satisfactory or “healthy" state [2, 59, 72, 99]. The primary goal is to determine

the optimal control strategy for the biological system, guided by the cost function J ,

which incorporates penalties for excessive control inputs or undesired states at specific

times.

In mathematical terms, we aim to find an optimal control/policy that minimizes
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the overall cost, i.e.,

Φ(t, z(t);ψ) = inf
u
J (t, z,u;ψ) ,

s.t.
dz

dt
(t) = f (t, z(t),u(t);ψ) , t ∈ [0, T ]

z(t) = x.

(2.3)

This is widely known as the value function. It contains all the information about

the solution and represents the minimum cost-to-go for any initial state (t,x). The

control achieving this minimum value is referred to as the optimal control, u∗t , and

the corresponding state trajectory is known as the optimal trajectory, z∗. Solving

Equation (2.3) globally remains a challenging task, especially when the state dimension

d ≥ 4. This phenomenon is commonly referred to as the Curse of Dimensionality

(CoD), where computational costs grow exponentially with the state dimension [60].

We outline the dynamics and cost function considered for neuromodulation in

Chapter 3 and for glycemic control in Chapter 4, presenting a general framework

integrating ML and OC. This framework aims to determine control inputs that optimize

problem-specific objectives, accounting for system dynamics and constraints. For

brevity, we only consider aspects of ML and OC theory relevant to formulating closed-

loop solutions integrating state feedback to these applications. We refer to [35, 54]

for a detailed introduction to control theory. This text covers various aspects of

control problems and different strategies for solving them. We recommend [98, 126]

for a detailed overview of ML techniques and neural networks. [42, 56, 73] provide a

detailed introduction to computational neuroscience, including mathematical models

of neuronal dynamics, and [30] provides a comprehensive commentary on artificial

pancreas or closed-loop systems in glucose-insulin control.
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2.1.2 Ties to Biomedical Applications

Biomedical applications like neuromodulation and glycemic control target complex

biological systems often modeled using differential equations (Equation (2.2)). While

substantial effort goes into creating mathematical models (f) for these systems, our

research leverages existing models and modifies them as needed to gain insights specific

to the application (details in corresponding chapters, see an overview in Table 2.1).

Translating control theory to biomedicine comes with several challenges [6, 11, 67].

First, mathematical models representing underlying pathologies in neuromodulatory

and glucose-insulin systems are often approximations, and their parameters can vary

significantly between patients. Additionally, defining a universally applicable cost

function is difficult due to the diverse responses individual patients may exhibit to

controls.

Furthermore, control inputs must adhere to problem-specific constraints to ensure

safety and feasibility. For instance, pulse generators in DBS systems may limit

the maximum stimulation delivered to prevent adverse effects. Similarly, insulin

pumps incorporate safety features to prevent excessive dosing and mitigate the risk

of hypoglycemia. The set of admissible controls, U , is typically treated as constant

and independent of the state z and time t. This assumption is crucial for simplifying

the modeling process and facilitating the application of control strategies within these

systems.

In both DBS and glycemic control, external inputs (such as electrical current

and insulin) evolve the dynamical system towards a terminal state at a given time.

These controls can be open-loop, involving predetermined and independent of the

system’s state, or closed-loop, adjusted based on real-time feedback from the system.

Closed-loop control is particularly significant as it adapts to individual needs and

changes in system dynamics. This motivates our work in extending its application to

biomedicine.
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z u f

DBS membrane potential, gating variables stimuli/electrical current Hodgkin-Huxley model [49]
T1D BG level (optionally, insulin-on-board) insulin dose Bergman’s Minimal model [12]

Table 2.1: Overview for each biomedical application – neuromodulation in DBS
(Chapter 3) and glycemic control in T1D management (Chapter 4)

2.2 Closed-loop Control in Biomedical Systems

Extensive research efforts have focused on developing closed-loop algorithms that

continuously monitor system states, such as neuronal activity in DBS or blood glucose

levels in T1D management, and adjust control inputs to maintain desired physiological

conditions or achieve therapeutic goals. We refer to [38, 48, 97] for approaches in DBS

and to [11, 30, 45] for a detailed exposition on glycemic control.

We will now highlight a few select methods for solving control problems like

Equation (2.3). Control strategies can generally be categorized based on their scope,

with prominent categories including the following:

1. Local solution methods. These methods compute solutions based on a

fixed initial state x or within specific regions of the state space, ensuring

computational efficiency. However, when faced with a different initial state or

unexpected changes in the system’s state due to shocks or disturbances, these

methods may require re-computation or adaptation of the control policy. In

clinical applications, local methods may be suitable for open-loop control, where

clinicians predetermine interventions based on the individual’s current condition.

2. Global solution methods. In contrast, approaches in this category aim for

control solutions applicable across the entire space and yield them in closed-loop

or feedback form. This is ideal in many real-world applications as it enables

real-time adaptation to changes in system dynamics, eliminating the need for

any re-computations. However, these methods are prone to the CoD, limiting

their utility in clinical scenarios.
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3. Semi-global solution methods. These methods combine aspects of both local

and global solution methods. They tailor solutions to specific regions of the

state space while maintaining broader applicability. This is crucial for clinical

interventions, providing a balance between computational efficiency and the

ability to find near-optimal solutions in varying clinical scenarios. Chapter 3

illustrates the merits of the semi-global solution approach in neuromodulation,

also extended to glycemic control in Chapter 4.

2.2.1 Classical Control Approaches

Traditional control theory offers a systematic framework for designing algorithms

that can improve the performance of dynamical systems in real-time. Two closely

related approaches to solving Equation (2.3) involve: applying Pontryagin’s Maxi-

mum Principle [84] and solving the Hamilton-Jacobi-Bellman equation [54, 124]. A

critical component of both approaches is the Hamiltonian function, denoted by H.

This function combines the system dynamics in Equation (2.2), the cost function in

Equation (2.1), and the control input, u, as follows,

H(t, z,p,u;ψ) = −L (t, z,u)− p⊤
[
f (t, z,u;ψ)

]
, (2.4)

where p is an adjoint variable associated with the state z at time t. For a wide variety

of control problems, Equation (2.4) admits a closed-form solution [81], making it ideal

for the biomedical applications under consideration.

Pontryagin’s Maximum Principle

The Pontryagin’s Maximum Principle (PMP) is a local solution method that provides

first-order necessary conditions for the optimal control and state trajectory [26, 39,
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62, 81, 84]. The optimality conditions for every s ∈ [0, T ] are given by the following:


∂sp(s) = ∇zH

(
s, z∗(s),p(s),u∗(s);ψ

)
,

∂sz
∗(s) = −∇pH

(
s, z∗(s),p(s),u∗(s);ψ

)
z∗(t) = x, p(T ) = ∇zG

(
z∗(T )

)
,

(2.5)

while the optimal control can be recovered in closed-form as u∗(s) = u∗ (s, z∗(s),p(s);ψ) [81,

84].

A major appeal of the PMP is that it is not affected by the Curse of Dimensionality,

remaining computationally efficient even as the dimensionality of the system increases.

As such, it can be practically applied to problems with large state spaces. However,

solving Equation (2.5) yields a solution based on the local behavior of the system,

i.e., constrained to specific initial data, (s,x). If this data changes or external shocks

disrupt the optimized trajectory, recomputing the solution with the new data becomes

necessary, potentially hindering its adaptability in dynamic environments.

Hamilton-Jacobi-Bellman equation

Global solution methods like the Hamilton-Jacobi-Bellman (HJB) equation consider the

entire system dynamics, offering robustness and adaptability to varying conditions [124].

This broader applicability makes HJB and similar approaches particularly suitable for

biomedical applications where system behaviors may vary widely and require holistic

control strategies.

The HJB equation provides necessary and sufficient conditions for optimality in

control theory [54, 124]. It is typically formulated as a nonlinear, second-order partial

differential equation, involving the value function Φ, Hamiltonian H, and terminal
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cost G(T ):

 −∂sΦ
(
s, z;ψ

)
+ supuH

(
s, z,∇zΦ

(
s, z;ψ

)
,u;ψ

)
= 0, ∀s ∈ [0, T )

Φ
(
T,z(T );ψ

)
= G (z(T )) .

(2.6)

With ready access to the value function, Φ, and its gradient, ∇zΦ, the optimal control,

u∗, can be efficiently computed and recovered online feedback form as

u∗ (s, z∗(s),∇zΦ(s, z∗(s);ψ);ψ) ∈ argmax
u

H
(
s, z∗(s),∇zΦ

(
s, z∗(s);ψ

)
,u(s);ψ

)
.

(2.7)

The HJB equation is closely related to Dynamic Programming or Bellman’s Prin-

ciple of Optimality in Reinforcement Learning (RL) [13]. This connection underscores

the foundation of various RL techniques, including value iteration [10], policy itera-

tion [51], policy gradient [111], and Q-learning [109, 119]. Indeed, OC theory and RL

have a lot in common [14, 89, 110] and we leverage these ties in the next chapters.

We provide a concise review of RL in Subsection 2.3.

2.2.2 Learning-based Control

A key assumption is that a closed-form solution (eqn. (2.7)) to the optimal control prob-

lem exists, which is true for many control problems including our specific applications in

neuromodulation and glycemic control. This provides a framework for deriving optimal

control from the value function Φ, assuming smoothness and differentiability [81, 115].

However, solving the HJB equation (2.6) for high-dimensional systems (d ≥ 4) becomes

computationally infeasible, necessitating function approximation [60, 81].

Neural networks have achieved wide success in different applications, largely

due to their universal function approximation capabilities and general advances in

ML [36, 46, 60, 62, 79, 81, 83]. We consider a two-stage approach that involves offline

approximation of the value function Φ with a neural network, followed by an online
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computation of the optimal control using the feedback form (2.7) [60, 81].

Value Function Approximation with Neural Networks

We parameterize the value function as

Φθ(y) = w
⊤NN(y;θNN), (2.8)

for space-time inputs y = (s, z(s);ψ) ∈ Rd+pψ+1, where d is the dimension of state

vector z, and pψ represents the dimension of the problem-specific parameters, ψ,

influencing the dynamics (e.g., conductances in the Hodgkin-Huxley model [49]).

NN(y;θNN) : Rd+pψ+1 → Rm can be any standard neural network architecture, such

as a feedforward or residual neural network, with (d+ pψ + 1) input features and m

output features. θ contains all trainable weights: w ∈ Rm and θNN ∈ Rp, where p

denotes the number of network parameters.

Training a neural network is equivalent to learning the values of θ that approxi-

mately solve a control problem of the form:

min
θ

Eψ∼η,x∼ρ

{
J (t, z,u;ψ) + γ1PHJB,ψ(z) + γ2cHJB(T )

}
,

s.t.
dz

dt
(t) = f

(
t, z(t),u(t);ψ

)
, z(t) = x,

(2.9)

where the precise definition of the cost function J depends on the task (neuromodu-

lation or glycemic control). This objective functional penalizes deviations from the

HJB equation along the state trajectories with the penalty term,

PHJB,ψ(z) =

∫ T

t

∣∣∣H(
s, z,∇zΦθ

(
s, z(s);ψ

)
;ψ

)
− ∂sΦθ

(
s, z(s);ψ

)∣∣∣ds
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and an additional penalty at terminal time, cHJB(T ), defined as

cHJB =
∣∣Φθ(T,z(T );ψ)−G(z(T ))∣∣.

The hyperparameters γ1, γ2 ≥ 0 balance minimization of the HJB penalization along

the state trajectories and at the final time, respectively. In the learning process, the

optimal control is computed through the feedback form provided in Equation (2.7),

hence, incorporating the model information [60, 81, 115].

2.3 Reinforcement Learning and Optimal Control

We note that the control formulation and strategies discussed so far share significant

common ground with Reinforcement Learning (RL) methods, particularly in their

aim to find optimal policies for maximizing long-term rewards or achieving specific

goals [89, 110]. RL is a sub-field of ML that involves a decision-making agent interacting

over time with an environment to achieve a goal [109]. At each timestep, t, the agent

chooses an action, ut, given the current state of the environment, zt, and receives

an evaluative numerical reward r. The environment then transitions to a new state,

z′, and this process repeats until the end of the time-horizon T or some termination

criteria are specified. Throughout, the agent aims to maximize its long-term cumulative

reward (expected return) over the trajectory rather than simply choosing actions that

yield immediate rewards.

Both OC and RL rely on policies to dictate system behavior based on its current

state [89]. In OC, the control policy finds the optimal control input for a given state.

Similarly, the RL agent’s policy, often denoted as π, selects actions based on the

observed environment. This policy can be deterministic (mapping states directly to

actions) or stochastic (mapping states to action probabilities). Central to learning in

RL is the trade-off between exploitation and exploration. An agent learns to exploit
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actions that were most effective in maximizing rewards in past experiences while

balancing the exploration of new options to make better long-term strategies [109].

2.3.1 Value Functions in RL

The value function serves as a critical foundation in RL. It estimates the expected

cumulative cost when starting in state z under policy π:

Φπ(z) = Eπt(zt;θ),ψ∼η

[
N∑
k=0

rk | zk = z
]

= Eπt(zt;θ),ψ∼η

[
J (sk, z,u;ψ) := ∆s

N∑
i=k

L(si, zi,ui) +G(zN)

]
,

(2.10)

where the immediate reward, rt, is carefully designed to match the negated running

cost L in Equation (2.1) as follows

rk =


−∆sL(sk, zk,uk), k < N

−∆sL(sN , zN ,uN)−G(zN), k = N

.

with step size ∆s = (T − t)/N .

Equation (2.10) is known as the state-value function for policy π and it is

analogous to the OC value function Φ in Equation (2.3). Both functions represent

the long-term value of being in a particular state under a specific control policy.

To align with the OC problem setup outlined in Section 2.1.1, our objective shifts

from maximizing the expected return, as typically done in standard RL settings, to

minimizing the cost function J . Thus, the state-value function Φπ estimates the

expected negated long-term cost achievable from a specific state z under policy π. In

this setting, the policy π aims to minimize the total long-term cost J by accumulating

negated immediate rewards, denoted by rt.

By itself, the state-value function may lack sufficient information for decision-
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making as it only evaluates states without considering actions [109]. This potentially

creates uncertainty regarding the optimal action to take in a given state to maximize

long-term rewards. In light of this, the state-action value function, or Q-function,

denoted Qπ(u, z), is more informative as it evaluates the expected return of taking an

action u in state z, and then following policy π [109, 119]:

Qπ(z,u) = Eπt(zt;θ)

[
N∑
k=0

rk | zk = z,uk = u

]
. (2.11)

The optimal value function for a policy π is given by

Q∗
π(z,u) = max

π
Qπ(z,u). (2.12)

Given Q∗
π, the optimal action (control) can be obtained via

u∗ ∈ argmax
u

Q∗
π(z,u). (2.13)

The goal of an RL agent is to find a near-optimal policy π, i.e., Qπ(z,u) ≈ Q∗
π(z,u).

Interestingly, both RL and OC involve approximating the value function, often

utilizing neural networks for function approximation. This overlap underscores the

potential for cross-pollination of ideas and techniques between the two fields, paving

the way for advancements in both domains [14, 89, 98, 110]. In RL, the value function

traditionally assumes a tabular representation, known as the lookup table, where each

state or state-action pair has an entry [111, 109]. However, as many real-world problems

have enormous state and/or action spaces, this approach becomes inadequate as the

state dimension increases–a characteristic of the Curse of Dimensionality. Consequently,

differentiable function approximators like neural networks have become popular in

the deep RL community due to their ability to obtain compact representations that

generalize across state or state-action pairs [64]. In these settings, the policy π is
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parameterized with a neural network and the main objective is to learn the network

weights θ such that ut ∼ π(zt;θ) [75].

2.3.2 Strategies for solving RL problems

The landscape of algorithms in RL is vast. RL algorithms generally fall into the

following broad categories:

1. model-based approaches – require explicit knowledge of the underlying dynamics

f , Equation (2.2). They can either (a) learn a model of the environment offline

from historical data, and then simulate state trajectories and compute a control

policy u ∼ π online without further interactions (commonly seen in control

algorithms, 2.2), or (b) learn the system dynamics online through continuous

interactions with the environment, extracting valuable information about the

underlying dynamics from the collected data (occurs prominently in some RL

algorithms).

2. model-free approaches – learn directly from data or interactions with the envi-

ronment without explicitly modeling the system dynamics f . These approaches

typically learn online and update their policy based on experiences gained during

interactions.

A comprehensive taxonomy of these methods exceeds our scope, with each cate-

gory presenting numerous challenges that researchers strive to address. Importantly,

implementing model-based RL becomes increasingly challenging and computationally

expensive for complex systems, rendering it less practical. Conversely, while model-

free RL methods alleviate some computational burdens, they often face difficulties in

effectively learning from data or interactions, especially in environments with high

dimensionality or sparse rewards. Overcoming these challenges remains a focal point in
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RL research. We refer to the following reviews for an in-depth discussion of challenges

and approaches in RL [7, 63].

We now discuss some of the popular RL methods, particularly of interest to our

applications. Two primary approaches exist for solving RL problems: those based

on value functions and those based on policy search. Additionally, a hybrid method

known as the actor-critic approach combines elements of both value functions and

policy search.

Value Function-based Methods – directly estimate the value-function and include

methods such as Q-learning [119]. Q-learning seeks to learn the value function using

temporal difference [109, 119], an update rule based on the Bellman Equation [10].

However, Q-learning relies on tabular representations, making it impractical for real-

world problems with large state spaces. A modern improvement, Deep Q-Learning [75],

addresses this issue by using neural networks to approximate the Q-function, Qπ(z,u),

enabling it to handle problems with high-dimensional state spaces efficiently.

Policy Search Methods – directly aim to find an optimal policy without explicitly

estimating the value function. One prominent example is the REINFORCE algo-

rithm [122], a type of policy gradient method. These methods adjust the parameters

θ of the policy π(zt;θ) directly using optimization algorithms, such as stochastic

gradient descent, to improve the expected return. Policy gradient methods are par-

ticularly advantageous in scenarios with high-dimensional or continuous state spaces

where traditional value-based methods like Q-learning struggle due to the Curse of

Dimensionality.

Actor-Critic Methods – offer a hybrid approach combining elements of the value

function and policy search methods. They maintain and update both a value function

(the critic) and a policy (the actor) iteratively. The actor learns by using feedback
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from the critic to improve its policy, while the critic estimates the value of selected

actions. This approach has been shown to optimize policies efficiently in complex

environments. Popular policy gradient methods include Deep Deterministic Policy

Gradient (DDPG)[105, 64] and Proximal Policy Optimization (PPO) [101].

2.4 Conclusion

By bridging the gap between mathematical theory and practical applications in

biomedicine, this chapter sets the stage for the subsequent exploration of ML and

OC methodologies in specific biomedical contexts. We framed neuromodulation

(deep brain stimulation) and glycemic control (blood glucose regulation) as control

problems, identifying key elements like system dynamics and cost functions. We

emphasized the transition from traditional open-loop control, where interventions

(stimulation or insulin dosing) are predetermined or fixed, to closed-loop control

methods. This approach allows for adaptive interventions that can dynamically

respond to changing physiological states in real-time, which is highly desirable in these

biomedical applications.

We provided an overview of various control methods, including local, global,

and semi-global solution approaches, showcasing their applicability and potential

benefits in addressing specific challenges within neuromodulation and glycemic control.

Additionally, we gave a succinct overview of some of the relevant concepts in Machine

Learning (ML), including value function approximation using neural networks. We

also introduced Reinforcement Learning (RL), highlighting its shared elements with

Optimal Control(OC) such as value functions and the use of neural networks for

function approximation. Both ML and RL offer valuable tools for tackling biomedical

control problems.

In subsequent chapters, we will explore each biomedical application separately,
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drawing on a range of techniques from both ML/RL and OC theory. By combining

insights from these disciplines, we aim to develop effective control strategies tailored

to the unique challenges posed by neuromodulation and glycemic control.
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Chapter 3

Closed-loop Neuromodulation via

Machine Learning and Optimal

Control

In this chapter, we frame the biomedical challenge of finding optimal stimulation

parameters as a control problem, consequently setting the stage for developing adaptive

feedback control systems using Machine Learning (ML) and Optimal Control (OC).

We simulate neuronal activity with the biophysically-accurate Hodgkin-Huxley (HH)

model [49]. We consider a model-based approach that leverages neural networks in

combination with classical control approaches such as the Pontryagin’s Maximum

Principle (PMP) [84] and Hamilton-Jacobi-Bellman (HJB) equations [10, 54, 124] to

learn optimal stimulation strategies/policies and achieve closed-loop feedback control.

3.1 Introduction

The dynamic modulation of neuronal dynamics through ML and OC is a thriving area

of research as exemplified by multiple studies including [17, 31, 68, 69, 76, 77, 90, 117].

It strives to neutralize pathological neural behavior, with the ultimate goal of alleviating
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motor symptoms associated with neurological conditions such as Parkinson’s disease,

epilepsy, and chronic pain [57, 72, 48, 121].

In clinical settings, Deep Brain Stimulation (DBS) remains the gold standard

procedure for modulating pathological neural activity [21, 40, 57, 72, 121, 102, 125].

Currently, DBS operates on an open-loop paradigm, where highly trained clinicians

iteratively select and adjust stimulation parameters based on observed patient symp-

toms through a trial-and-error process [17, 44, 65, 86]. However, this approach is not

responsive to changes in a patient’s clinical state and rarely yields optimal parameter

settings, which necessitates follow-up visits for parameter adjustment [4, 48, 67, 116].

A key clinical objective is to maximize the therapeutic benefit of stimulation i.e.,

alleviating motor symptoms, while reducing stimulation side effects. Closed-loop DBS

seeks to achieve this by learning optimal stimulation parameters and adjusting them

in real-time according to the patient’s electrophysiological state [6, 15, 23, 48, 66, 97].

Central to closed-loop DBS are algorithms that can be deployed in implantable DBS

devices to precisely modulate neural activity in response to physiological signals and

restore function [58, 82, 107]. These algorithms act in response to neuronal signals,

such as local field potentials, recorded from specific brain regions.

3.2 Problem Formulation

We seek to find an optimal control (policy) that minimizes a cost functional J in

Equation (2.1) and satisfies the HH-based nonlinear system dynamics,

dz

dt
(t) = f

(
t, z(t);ψ

)
+ e1u(t),

z(0) = x, e1 = [1, 0, 0, 0]⊤, t ∈ [0, T ],

(3.1)

where

• z(t) = [Vm,m, n, h]
⊤ ∈ R4 denotes the state variable, with x being the initial
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state of the system. z comprises the neuron’s membrane potential (Figure 3.1a),

Vm, and three gating variables (Figure 3.1b) representing probabilities of sodium

activation (m), potassium activation (n), and sodium inactivation (h),

• the control variable u(t) : [0, T ] → U ⊂ R represents the external electrical

current/stimulus provided as input by a controller at any given time t,

• the function f : [0, T ] × R4 → R4 describes the evolution of the state z in

response to controls u, as per the HH model (3.2),

• ψ = [ḡNa, ḡK, ḡl] ∼ η consists of three terms representing the maximum con-

ductance of the sodium, ḡNa, potassium, ḡK, and leak currents, ḡl, respectively.

These are selected randomly throughout the parameter space, η, following

Equation (3.8), to simulate varying pathological conditions,

• the cost functional J is the sum total of the running cost L : [0, T ]×R4×R→ R

and the terminal cost G : R4 → R. Details for both are provided in 3.2.2.

The goal is to approximate the value function, Φ, such that solutions can be computed

readily for new contexts.

3.2.1 Neuronal Dynamics

The state dynamics, f , evolve according to the HH model, which considers currents

flowing through the neuronal membrane via various ion channels, including sodium

(Na), potassium (K), and leak channels (denoted l, encompassing all other ions with

slower dynamics like chloride ions) [41, 55, 71, 118]. The HH model characterizes the

electrophysiological activity of neurons through a system of first-order differential
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equations, expressed as follows:

f
(
t, z(t);ψ

)
=

− 1
Cm

(ψ0z
3
1z3(z0 − ENa) + ψ1z

4
2(z0 − EK) + ψ2(z0 − El))

αm

(
z0
)
(1− z1)− βm

(
z0
)
z1

αn

(
z0
)
(1− z2)− βn

(
z0
)
z2

αh

(
z0
)
(1− z3)− βh

(
z0
)
z3


.

(3.2)

Here, Cm is the membrane capacitance, and the variables ENa, EK, and El represent

the equilibrium potentials of the corresponding ion channels. The functions αj and βj ,

j ∈ {1, 2, 3} defined in Table 3.1, are voltage-dependent rate functions for each of the

gating variables z1, z2, and z3 (often labeled as m,n, and h, respectively.)

j αj

(
z0
)

βj
(
z0
)

z1
2.5− 0.1z0

exp(2.5− 0.1z0)− 1
4 exp(− z0

18
)

z2
0.1− 0.01z0

exp(1− 0.1z0)− 1
0.125 exp(− z0

80
)

z3 0.07 exp(− z0
20
)

1

exp(3− 0.1z0) + 1

Table 3.1: Parameters of the gating variables z1, z2, and z3 in the HH equations. The
functions α and β depend only on the voltage, z0.

Pathological Activity

The HH model realistically captures the electrical activity of neurons, including spiking

behavior, through a system of nonlinear differential equations [24, 49]. The real intrigue

of the HH model arises when we consider pathological activity, which stems from

deviations from normative neuronal behavior. The rapid depolarization (membrane

potential becomes more positive) and subsequent repolarization (membrane potential

becomes more negative) of the neuron’s membrane potential results in the propagation

of a spike (known as the action potential) in Figure 3.1. Depolarization is driven by Na
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ion influx via activated sodium channels, while repolarization is driven by potassium

channel activation and sodium channel inactivation [25, 49, 55].

The general flow of ions like Na and K across the neuron’s membrane plays a

crucial role in transmitting electrical signals. On the other hand, pathological activity

contributes to abnormal patterns of electrical signaling in neurons, marked by rapid

and repetitive firing of action potentials in Figure 3.2. This behavior can manifest in

various neurological disorders such as Parkinson’s disease, epilepsy, and chronic pain.

We refer to [42, 56, 73] for detailed explanations of neuronal dynamics.
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Figure 3.1: Evolution of the membrane potential Vm and gating variables m,n, and h
of normal HH equations, with no controls/stimuli, i.e., u(t) = 0, ∀ t > 0, and initial
state x = [0, 0, 0, 0]⊤.

Neuronal dynamics governed by the HH equations exhibit complex behavior

influenced by a range of parameters, ψ. Controlling these dynamics, especially in

pathological states, is challenging due to inherent electrophysiological variability

and parameter uncertainty. To overcome these challenges, one approach leverages

amortization [3, 103, 114], solving Equation (2.1) across a broad parameter distribution

(ψ ∼ η), aiming to achieve robust control despite parameter uncertainty. However, as

this approach is under development, we will primarily present results for the standard

approach with fixed parameters.
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3.2.2 Neuromodulation Cost Function

We now turn to the design choice of what loss to optimize so that the controller

learns an optimal intervention. For the biomedical application under consideration,

we seek to control pathological neuronal activity in order to effectively restore normal

functioning. In mathematical terms, we aim to find an optimal control (stimulus)

u∗ : [0, T ] → R that drives the system toward a reference/target state, z∗, while

incurring the minimum possible cost. This characterization of the cost function is

prevalent in many DBS control applications [8, 34, 38, 41, 77]. Figure 3.1 shows the

state trajectory of typical HH neuronal activity. Figure 3.2 shows the evolution of the

HH model under pathological conditions.

For a given parameter vector ψ ∼ η, the cost function for the control problem (2.1)

comprises the running cost, L : [0, T ]× R4 × R→ R, given by

L(s, z(s),u(s)) =
λ1
2
∥u(s)∥2 + λ2

2
∥z(s)− z∗(s)∥2, t ≤ s ≤ T, (3.3)

with coefficients λ1 = 1 and λ2 = 200 weighting the importance of the energy and

tracking term, respectively. The terminal cost, G : R4 → R, is defined as

G(z) =
1

2
∥z(T )− z∗(T )∥2. (3.4)

While the terminal cost, G, penalizes the distance between the final state z(T ) and the

given target terminal state of the system z∗(T ), L accumulates the cost of controlling

the system and expending energy at each time step. Both these costs can be used to

specify desired clinical objectives or target solutions.

Closed-Form Solution With this choice of the objective functional, we can now

derive the feedback form for the optimal control, based on (2.7).

The explicit feedback form for the neuromodulation problem can be obtained by
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Figure 3.2: Evolution of the membrane potential and gating variables of pathological
HH equations, with no controls/stimuli, i.e., u = 0, ∀ t > 0, and initial state x =
[0, 0, 0, 0]⊤.

taking the gradient of the Hamiltonian with respect to the control variable u and

setting the resulting expression to zero as follows,

∂H
∂u

= λ1u(s)
⊤ + p(s)⊤e1 = 0, ∀s ∈ [t, T ]

⇒ u(s) = − 1

λ1
e⊤1∇zΦ

(
s, z∗(s);ψ

)
,

(3.5)

based on Equations (2.4) and (3.3), with the adjoint state p(s) given by

p(s) = ∇zΦ
(
s, z∗(s);ψ

)
. (3.6)

The adjoint equation plays a crucial role in establishing the connection between the

PMP approach (Section 2.2.1) and the HJB equation (Section 2.2.1) [26, 39]. Provided

that the value function Φ and its gradient ∇zΦ are available, the optimal controls can

be easily recovered in real-time for any space-time inputs (s, z) and a given parameter

ψ. This is ideal for clinical applications such as DBS where swiftly computing controls

for different times or states in real time is highly desirable.
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3.3 Model-based Approach to Neuromodulation

In this section, we explore computational methods to determine controls aligning

with our objective function (2.1). We begin by considering a local solution method

resembling the standard open-loop DBS approach. This involves an iterative All-

at-once Interior Point Method where system dynamics, the cost function, and all

constraints across the entire time horizon are solved simultaneously. However, as an

open-loop approach akin to the local methods discussed in Section 2.2, this approach

necessitates recomputation of the solution whenever ψ and/or x changes, rendering

prior solutions obsolete. Although global solution methods eliminate the need for

recomputing controls and provide real-time solutions, they are susceptible to the Curse

of Dimensionality, posing challenges in high-dimensional spaces.

To address these challenges, we adopt a semi-global solution approach that combines

the function-approximating abilities of neural networks with well-established control

theory techniques. This hybrid approach, stemming from [81], is tailored to effectively

handle high-dimensional control problems in this setting. Several research efforts,

including [46, 60, 62, 81, 94, 115], have demonstrated the utility of this approach in

various applications.

3.3.1 Value Function Approximation with Neural Networks

The main idea involves approximating the solution to the parametric control problem

in (2.1) offline using a neural network, followed by computing the control online using

the feedback form given by Equation (2.7). We build on Section 2.2.2 formulation,

parameterizing the value function based on Equation (2.8).

We represent NN(y;θNN) : Rd+pψ+1 → Rm with a residual neural network (ResNet)
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architecture [47]:

a0 = σ (K0y + b0)

ai+1 = ai + hσ (Ki+1ai + bi+1)

NN(y;θNN) = aM−1 + hσ (KMaM−1 + bM) .

(3.7)

where 0 ≤ i ≤ M − 2, with M being the depth of the network. The parameter

θNN = (K0, . . . ,KM, b0, . . . , bM) comprises the weight matrix K0 ∈ Rm×(d+pψ+1), and

{K0, . . . ,KM} ∈ Rm×m and the bias vector, bi ∈ Rm ∀i.

The activation function σ : R→ R is applied element-wise and adds non-linearity to

the network, allowing it to represent complex features in the data. Common activation

functions include hyperbolic tangent, sigmoid, or rectified linear units (ReLU). We

opt for σ(x) = log (exp(x) + exp(−x)), the anti-derivative of the hyperbolic tangent.

h > 0 is a fixed step size. While we can approximate the value function offline using

a neural network, finding the appropriate network architecture and weights, θ, can

be quite challenging. The choice of these hyperparameters largely depends on the

problem and approach.

Learning Problem

We aim to find network weights θ such that the parameterized value function Φθ

globally represents the value function for every given space-time input y. However,

achieving this for reasonable problem sizes (d ≥ 4) becomes impractical due to the

Curse of Dimensionality. Therefore, we adopt a model-based, semi-global solution

approach, enforcing this property in a subset of the space-time domain [62, 115].

To learn the parameters θ of the NN, we begin by sampling parameters ψ from

the parameter space η and initial states x from a distribution ρ. Subsequently, we

approximately solve the minimization problem defined in Equation (2.9).
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Figure 3.3: Perturbed variables in different pathological settings of the HH model.

3.4 Numerical Experiments

In this section, we examine two stimulation strategies: a baseline controller that

applies the all-at-once Interior Point Method (IPM) to solve the control problem in

an open-loop manner, i.e., with no system feedback, and a controller that leverages

neural networks for optimized controls over a broad state space (semi-global method).

3.4.1 Neuromodulatory Effects

The HH model, Equation (3.1), is known to be stiff which may lead to increased

computational costs as small step sizes would be required to accurately capture

the system dynamics [20, 42, 55]. We simulate the HH model for both normal and

pathological conditions, based on parameters in Table 3.2. We source the default

values for simulating normative neuronal behavior from Hodgkin and Huxley [49],

listed under the “normal" neuronal activity category in Table 3.2. To characterize

pathological activity, we also obtain the corresponding default values and randomly

distort them by sampling from a distribution η as specified in Table 3.2 and outlined
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below:

ψ =
[
ḡNa ∼ N (µNa, σ

2
Na), ḡK ∼ N (µK, σ

2
K), ḡl ∼ N (µl, σ

2
l )
]
, (3.8)

where µq and σ2
q , for ion channel q ∈ [Na,K, l], are the mean and variance of the

corresponding parameter distribution.

Perturbing the HH parameters ψ has the effect of distorting the ion flow across

the neural membrane, generating abnormal spikes or causing the rapid and repetitive

firing of action potentials (Figure 3.3). This approach draws inspiration from a study

by [77] that proposed a machine learning-based deep brain stimulator for controlling

epileptic seizures. While our application differs from that study, the idea of simulating

pathological conditions by manipulating the parameters of the HH model aligns with

our objectives.

Parameter Normal Pathological

Cm 1.0 1.0
ḡNa 120.0 N (380.0, 102)
ḡK 36.0 N (36.0, 12)
ḡl 0.3 N (0.3, 0.322)
ENa 115.0 115
EK −12.0 −12.0
El 10.613 10.613

Table 3.2: Nominal parameter values of the HH model under normal and pathological
conditions.

3.4.2 Optimal Control of Neuronal Dynamics

We aim to develop control strategies for disrupted neuronal systems. These strategies

should achieve two primary goals: 1) restore the system’s normal function, and 2)

minimize the energy needed for control while mitigating the risk of the system entering

pathological states. Such strategies would be invaluable in countering pathological

neural activity in closed-loop DBS devices [66, 74, 82, 85, 97, 102].
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Figure 3.4: This figure compares action potentials generated by a neuron in normal
and pathological states. Control strategies aim to regulate the pathological dynamics
and restore the action potential profile towards a more normative pattern.

All-at-once Optimization for a Single Initial State

We provide a comparable local solution method that solves the OC problem for a fixed

parameter ψ and initial state z(0) = x and serves as our baseline. The All-at-Once

Interior Point Method (IPM) [80] aims to find the optimal control u∗(t) by solving

the following optimization problem. ∀ t ∈ [0, T ]:

min
u(t),z(t)

J (t, z,u;ψ)

s.t.
dz

dt
(t) = f

(
t, z(t),u(t);ψ

)
, z(t) = x

g (z(t),u(t)) + s = 0, s ≥ 0,

h (z(T )) = 0,

This formulation introduces slack variables s and equality constraints, g (z(t),u(t))

and h (z(T )). The IPM is solved iteratively, where at each iteration, the first-order

necessary conditions are considered, and barrier parameters are updated [80].

Figure 3.5 demonstrates how the all-at-once Interior Point method can restore
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normal behavior to a pathological HH system. The method applies control stimuli

(3.5c) to drive the action potentials (3.5a) and gating variables (3.5b) towards their

normal operating range.
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Figure 3.5: Local solution all-at-once Interior Point Method restores normal behavior
to a pathological HH system.

NeuralHJB: Neural Network-based Control

We implement a simple recurrent neural network (NN) controller architecture with 2

hidden layers of 64 neurons each. This network is trained using the ADAM optimizer

and a learning rate of 0.005. This design choice balances expressive power with

computational efficiency, making it suitable for real-world applications. During training,

the optimal control is computed through the feedback form provided in Equation (2.7).

This approach leverages crucial information about the system dynamics and derivatives

guided by control theory, leading to a more informed and effective control strategy.

The offline step is perhaps the most computationally expensive as it requires

learning the parameters or weights of the neural network that effectively approximate

Φ. After offline training, the online step uses the neural network to generate real-time

controls in feedback form. The online step is usually less computationally expensive

than offline training, making it suitable for real-time applications. Figure 3.6 showcases

how the semi-global approach applies the learned controls or stimuli to nudge the

pathological dynamics back to a healthy state.
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Figure 3.6: NeuralHJB, a semi-global solution approach combining neural networks
and HJB equations, effectively steers pathological HH system towards normal behavior.

Suboptimality The local solution method directly finds the control strategy that

minimizes the cost function for a fixed initial state x = [0, 0, 0, 0]. We establish the

solution obtained using this baseline approach as a benchmark for optimality. To

assess the performance of the NeuralHJB approach, we evaluate its solution for the

given initial state and quantify its suboptimality compared to the baseline solution.

Ideally, we want suboptimality to be close to zero, indicating that the approach is

nearly optimal or that its performance is very close to the best achievable by the local

solution method.

Figure 3.7 compares the suboptimality (normalized cost difference) of the Neu-

ralHJB approach in two settings: standard (fixed HH parameters ψ) and amortized

(ψ ∼ η), for various initial conditions (represented by x+ ξ, where ξ in [−40, 40]. We

note that the NeuralHJB approach in the standard setting achieves lower subopti-

mality than the amortized setting. While our initial experiments with the amortized

NeuralHJB solver did not yield optimal results, its inherent adaptability – stemming

from both universal approximation properties and flexibility of learning across diverse

parameters (ψ ∼ η) – suggest the amortized approach as a promising avenue for

further research and performance improvement.

Table 3.3 compares the performance of both methods based on the cost function.

The local method, considered the optimal solution or ground truth, achieves the
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Figure 3.7: Suboptimality comparison between NeuralHJB approach and local solution
method across various initial conditions x+ ξ, where ξ in [−40, 40], for standard (fixed
ψ) and amortized (ψ ∼ η) controls.

minimum cost by definition. We observe that the NN-based controller achieves near-

optimal performance, which is particularly impressive considering it tackles a control

problem for a larger state space compared to the baseline method.

running cost (L) terminal cost (G) total

IPM 45725.6861 0.0279 45725.7140
NN 46890.1119 0.0088 46890.1207

Table 3.3: Running and terminal costs for single instance shown in figures 3.5 and 3.6.

Robustness to Shocks Beyond performance metrics, a critical factor for controlling

pathological neural behavior is the control strategy’s robustness to unexpected changes

or disturbances in the system dynamics. This is especially important for real-world

applications where unforeseen states may arise and require immediate response. Since

the local solution method employs non-adaptive open-loop DBS strategies, limiting its

ability to respond to shocks, we will only evaluate the robustness of the semi-global

NN approach to assess its suitability for real-time applications.

We introduce minor perturbations or shocks to the HH system (Equation (3.1))

and observe in Figure 3.8 that the semi-global NN method maintains optimal behavior

despite shocks/perturbations in the system dynamics, demonstrating its robustness.
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Figure 3.8: The semi-global NeuralHJB approach effectively recovers the optimal
trajectory after the system is disrupted.

3.5 Summary

This chapter bridges the gap between neuronal dynamics, optimal control theory, and

machine learning to address a critical challenge in deep brain stimulation (DBS). Build-

ing on elements from the Chapter 2, we cast neuromodulation as a control problem,

aiming to normalize pathological neuronal activity. Leveraging the biophysically-

accurate Hodgkin-Huxley (HH) model, we present a model-based approach for learn-

ing control policies. We define a cost function for DBS that balances the energy

consumption of the control strategy with maintaining the desired neuronal states.

We highlighted current limitations in conventional open-loop DBS control strategies,

exemplified by an all-at-once optimization scheme that solves the control problem

for a fixed initial state x. While offering optimal solutions for a specific initial

state, this approach requires recomputing the solution for any changes in state or

parameters. In contrast, global solution methods yield solutions in real-time but

require sampling the entire state space, becoming computationally expensive for high-

dimensional problems. To leverage the strengths of both approaches, we highlight

NeuralHJB, a semi-global control method that combines the theoretical foundation

of the Hamilton-Jacobi-Bellman (HJB) equation with the flexibility and learning
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capabilities of neural networks [46, 60, 81]. The HJB equation provides crucial insights

into the value function, while neural networks effectively learn and optimize this

function for real-time control in high dimensions.

Our findings demonstrate the effectiveness of the NeuralHJB approach. It exhibits

near-optimal performance for fixed parameters and remains effective across a broad

range of parameter values ψ ∈ η. Additionally, it shows robustness to unexpected

shocks or disturbances in the system dynamics. Overall, the application of closed-loop

control using the NeuralHJB approach suggests the potential for achieving real-time

therapeutic outcomes through DBS with minimal energy consumption.
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Chapter 4

Glucose-Insulin Control

4.1 Introduction

Glycemic control is a critical aspect of diabetes therapy. It involves regulating blood

glucose (BG) levels to prevent undesirable complications associated with hypoglycemia

(BG levels below 70 mg/dL) and hyperglycemia (BG levels above 180 mg/dL) [37, 78].

For individuals with Type 1 Diabetes (T1D), the inability to produce insulin necessi-

tates exogenous administration to maintain normal BG concentration. Traditional

approaches (open-loop control) rely on predetermined insulin dosing regimens based on

factors like estimated meal carbohydrates (commonly known as ”carb" counting) and

anticipated physical exercise. This static approach generally requires consistent meal

intake, restricting dietary flexibility [1, 112]. Additionally, it cannot adjust insulin

dosing in real-time based on fluctuations in BG levels [2]. This inflexibility can lead

to suboptimal glycemic control, increasing the risk of hypoglycemia or hyperglycemia.

This chapter focuses on closed-loop control strategies within artificial pancreas

(AP) systems, aiming to overcome the limitations of traditional open-loop control

for T1D management. AP systems integrate three key components: 1) a continuous

glucose monitor (CGM) sensor that measures BG levels every few minutes, 2) an
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insulin pump that delivers insulin dose subcutaneously, and 3) a control algorithm

that computes the appropriate insulin dose to be delivered by the pump based on

BG data. We focus on the control algorithm, seeking strategies that achieve tighter

glycemic control and reduce the risk of long-term complications associated with low

BG (hypoglycemia) and high BG (hyperglycemia).

We explore two distinct approaches for closed-loop glycemic control within AP

systems: 1) classical control methods, focusing on the widely used Proportional-

Integral-Derivative (PID) controllers [5, 61, 87], and 2) neural network-based con-

trollers, encompassing a model-based approach from Section 3.3 and a data-driven

approach inspired by Reinforcement Learning (RL). To evaluate these algorithms, we

simulate virtual patients whose glucose-insulin dynamics are modeled by established

models like Bergman’s Minimal Model [12].

4.2 Problem Setup

Similar to the neuromodulation control problem (Chapter 3.2), we seek to find an

optimal control (insulin dosing) that minimizes a cost functional J in Equation (2.1).

The control problem is constrained by some glucose-insulin dynamics, based on

Bergman’s Minimal Model [12], as

dz

dt
(t) = f

(
t, z(t);ψ

)
+ e1p5u(t),

z(t) = x, e1 = [1, 0, 0]⊤, t ∈ [0, T ],

(4.1)

where z(t) = [I(t), X(t), BG(t)]⊤ ∈ R3 denotes the state variable, with I(t), X(t), and

BG(t) representing plasma insulin, remote insulin, and plasma glucose concentration,

respectively. x denotes the initial state of the system. u(t) : [0, T ]→ R is the control

variable (external insulin dose) provided as input by a controller at time t. p5 is

a parameter relating the rate of insulin delivery to the resulting increase in insulin
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concentration. ψ ∈ E represents the environment and includes extraneous information

relevant to simulating the dynamics such as meal size and the amount appearing in

the glucose compartment at the given time. The function f : [0, T ]×R3 → R3 governs

the evolution of the glucose-insulin dynamics.

4.2.1 Glucose-Insulin Dynamics

The glucoregulatory system is nonlinear. The complexity of the system is further

exacerbated by varying physiological, pathological, or pharmacokinetic processes

in diabetic individuals. Various mathematical models have been constructed to

characterize glucose-insulin dynamics and aid in the understanding of BG regulation.

These models range from structurally simplistic models like Bergman’s Minimal

Model [12] to complex semi-mechanistic Integrated Glucose Insulin models [53, 100,

104]. Additionally, physiologically-based models like the FDA-approved UVA/Padova

T1D simulator [70] have also been developed.

To capture the essential dynamics of glucose-insulin interaction, we will leverage

Bergman’s Minimal Model as a foundation for the function f . This model is given by

the following:

f
(
t, z(t);ψ

)
=


−p6z0(t)

−p2z1(t) + p3 · [z0(t)− Ib]

−p1z2(t)− p4z1(t)z2(t) + p1Gb +Ra(t)

 . (4.2)

The physiological meaning and corresponding values of the parameters in the above

equations is summarized in Table 4.1. Ra(t) represents the rate of appearance of

glucose and is computed as follows:

Ra(t) =
C(t)

VGτ 2G
te

− t
τG ,
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where C(t), VG and τ represent the amount of carbohydrates consumed, distribution

volume, and the peak time of meal absorption, respectively [113].

Parameter Significance

p1 (min−1) rate of glucose clearance from plasma
p2 (min−1) rate constant for the disappearance of the insulin effect.
p3 (min−1mU−1) sensitivity of insulin effect on active insulin
p4 (mL−1min−1mU−1) insulin-dependent glucose uptake
p5 (mL−1) inverse of insulin distribution volume
p6 (min−1) rate of plasma insulin clearance
C (g) meal size/carbs consumed
Ib (mU) basal plasma insulin concentration
Gb (mg/dL) basal plasma glucose concentration
VG (dL) glucose distribution volume
τG (min) peak time of meal absorption

Table 4.1: Physiological Significance of Parameters in the Bergman’s Minimal Model.

4.2.2 Cost Function Formulation

Given a mathematical model for the interaction between BG and insulin, we seek to

determine a control policy that achieves optimal glycemic control. To accomplish this,

we define a cost function J which penalizes deviations from target BG levels. This

will encourage the policy to maintain glucose levels within a safe and healthy range. J

can consider other factors such as penalizing excessive insulin doses and risk for hypo-

and hyperglycemia. Often the magnitude of the insulin dosage is of key interest. Too

large a dose may not be desirable due to the increased risk of hypoglycemia, whereas

inadequate doses may not be effective in curbing hyperglycemia.

To this end, for a given parameter vector ψ ∈ η, the glycemic control cost function

J comprises the running cost,

L
(
t, z,u

)
=

1

2
∥u(t)∥2 + ℓrisk (z(t)) . (4.3)

Here, ℓrisk(z) is a numerical measure of the overall quality of glycemia based on the



43

Figure 4.1: Blood Glucose Risk Index, adapted from [29]

Blood Glucose Risk Index (BGRI) metric provided by [29] as follows

ℓrisk
(
z(t)

)
=

1

n

n∑
i=1

rl(zi) +
1

n

n∑
i=1

rh(zi), (4.4)

where

rl(z) = 10Q(z) if Q(z) < 0 and 0 otherwise, (4.5)

rh(z) = 10Q(z) if Q(z) > 0 and 0 otherwise, (4.6)

with Q(z) = 1.509 × [(ln(z))1.084 − 5.381]. ℓrisk(z) penalizes glucose levels that pro-

gressively deviate from the target range (associated with increased risk for hypo- and

hyperglycemia), i.e., a BG reading of 40 mg/dL carries a higher risk compared to a BG

reading of 65 mg/dL, despite both being below the lower bound of the normoglycemic

target, 70 mg/dL. This categorization also applies to BG values above 180 mg/dL [29].

Figure 4.1 captures the risk index associated with BG values. We also define a terminal

cost, G : R3 → R ,

G
(
z(T )

)
=

1

2
∥z(T )− z∗(T )∥2, (4.7)
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Overall, we seek to minimize J over all admissible controls u ∈ U by finding a

solution u∗(t) that incurs the minimal cost, 0 ≤ t ∈≤ T

J(t, z,u;ψ) =
1

2
∥u(t)∥2 + ℓrisk (z(t)) +

1

2
∥z(T )− z∗(T )∥2, (4.8)

as defined by the value function Φ in Equation (2.1).

4.3 Classical PID Control

Closed-loop glycemic control systems such as AP, often rely on Proportional-Integral-

Derivative (PID) controllers to compute insulin dosing, given CGM measurements of

BG. These controllers adjust insulin delivery based on deviations from a target BG level.

They have widely been used to regulate BG since the early AP systems [2, 11, 30, 45, 52]

and in various control systems including neuromodulation [38]. We briefly describe

the idea behind PID controllers, including applications and limitations in glycemic

control.

A PID controller comprises a weighted proportional, integral, and derivative term.

The controller measures any deviations between the current state z and a target state

z∗. It then adjusts the control (insulin) based on this difference (proportional term),

cumulative deviation of BG values from the target (integral term), and the rate of

changes in BG levels over time (derivative term). Overall, the control input u(t) is

computed as follows,

u(t) = Kpe(t) +Ki

∫ t

0

e(s)ds+Kd
de(t)

dt
, (4.9)

where e(t) = z(t) − z∗(t) is the error term. Kp, Ki, and Kd are hyperparameters

weighting the proportional, integral, and derivative terms, respectively. These pa-

rameters need to be tuned beforehand and optimizing them can be a complex and
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time-consuming process [87].

While PID controllers are relatively straightforward and generalize easily to various

control systems, they face limitations in managing BG [11]. The nonlinear and time-

varying nature of glucose-insulin dynamics poses a great challenge. This is further

complicated by variations in how individuals respond to insulin and external factors like

meal intake and physical activity. As a result, PID controllers can struggle to adapt to

rapid changes in BG levels, potentially leading to suboptimal control and an increased

risk of hypoglycemia or hyperglycemia [87]. Nonetheless, some improvements to PID

controllers, incorporating additional information such as meals and insulin-on-board,

have been widely applied to commercial glucose-insulin control products such as the

Medtronic 670G [108].

4.4 Neural Network-based Glycemic Control

As an alternative to traditional control schemes such as those based on PID con-

trol, we consider deep learning approaches leveraging trainable neural networks to

approximately solve the glycemic control problem. We consider two approaches: 1) a

model-based, semi-global solution approach, termed NeuralHJB, with details outlined

in Section 3.3, and 2) a data-driven approach inspired by Reinforcement Learning

(RL) and utilizing neural ODEs [28].

4.4.1 Model-based Control via NeuralHJB

As in the previous chapter 3, we approximate the value function Φ derived from the

HJB equations using a neural network, extending the NeuralHJB approach to glycemic

control. As before, we approximately solve the minimization problem detailed in

Equation (2.9) to learn the weights θ of the neural network. We also leverage the

closed-form solution in Equation (2.7), which incorporates the system dynamics and
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objective function of the glycemic control problem (Section 4.2.2).

4.4.2 Data-driven Control

Beyond model-based control, we explore a data-driven approach inspired by RL. In

this framework, we utilize a neural network to directly approximate the value function

Φ, incorporating dynamics based on Bergman’s Minimal model (4.2). This approach

does not rely explicitly on control theory. Instead, it adopts a data-driven scheme

where the network learns through experience [33].

Vanilla NeuralODE Control Policy

We leverage neural Ordinary Differential Equations, NeuralODEs [28], trained on data

containing current and historical states. Providing state history adds context and

helps the controller learn the prevailing glycemic trends and the influence of controls

on BG levels. The control(insulin dose) is computed by a network π as

ut = πθ(t, z(t);H), (4.10)

where z(t) is the state at time t, and H : [zi,mi,ui] ∀i ∈ [t− n− 1, . . . , t− 1, 0] is

the state and meal history of the individual n time steps before simulation at time

t = 0. H can alternatively track cumulative experiences gained by the network during

training. θ are the learnable parameters of the NeuralODE controller. NeuralODEs

are ideal in this setting as they can provide continuous insulin delivery adjustments in

real-time for more precise control, enabling the implementation of closed-loop control

strategies.

The learning objective for the NeuralODE controller is to find the optimal policy

π∗ that minimizes the loss defined by Equation (2.10). We note that while the

conventional approach in RL is to maximize rewards, these rewards can be typically
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Algorithm 1 Glycemic Control using a NeuralODE policy
1: Initialize training dataset H : [z,m,u]
2: Randomly initialize NeuralODE controller πθ
3: Sample random patient parameters ψ
4: for i← 1 to N do
5: Sample random meal schedule M for simulation period T
6: Initialize random patient state z0 = x
7: Initialize running cost R0 ← 0
8: for t← 1 to T do
9: Compute CGM measurement/observation zt ← zt + ϵ

10: Compute insulin dose ut = πθ(t, zt;H)
11: Update patient state: zt+1 = f(t, zt;ψ) using ut

12: Compute reward: Rt ← Rt + L(t, z,u)
13: Append (zt,M t,ut) to training dataset H
14: end for
15: Train NeuralODE controller πθ
16: Compute loss J = mean(R) +G(zT )
17: Update weights θ ← θ − αJ
18: if i mod nval ≡ 0 then
19: Perform validation
20: Save parameters θ for lowest J
21: end if
22: end for
23: Return: best policy parameters πθ

designed such that maximizing them leads to minimizing the loss (or negative reward)

J in Equation (4.8). As discussed in Chapter 2.3.2, there are several options for

minimizing J using RL methods (see Chapter 2.3.2). The NeuralODE controller

closely resembles policy search methods that directly learn a policy mapping a current

state z to an insulin dose u at time t. Algorithm 1 outlines the overall learning scheme

for the NeuralODE controller.

4.5 Numerical Experiments

This section involves simulating glucose-insulin dynamics using the structurally sim-

plistic Bergman model to capture the essential characteristics of glucose-insulin inter-

action. Our experimental setup includes comparing the performance of traditional PID
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controllers against more advanced techniques, such as the model-based NeuralHJB

controller, and the data-driven NeuralODE controller.

For each simulation, we generate meal schedules with random amounts of carbohy-

drates. Various scenarios can be considered, e.g., glycemic control in reduced meal

schedules or sparse meal settings, or over longer simulation horizons (6, 12, 72 hours, or

even days). For demonstrative purposes, we will conduct our experiments on a 24-hr,

3 meal setting. Another challenge lies in how long insulin stays active after injection.

In the real-world, there are many types of insulin, including rapid-acting insulin with

an onset of action of 15 minutes after injection and a duration of action of 5 hours.

This can pose a challenge when devising control strategies. Myopic controllers would

keep applying insulin not accounting for its long-term delayed effect. This solidifies

the case for data-driven approaches that take treatment history into account when

determining how much insulin to apply at any given time [33].

4.5.1 Pathological Glucose-Insulin Dynamics

Focusing on the Bergman model highlighted in Equation (4.2), several key parameters

differentiate between diabetic and non-diabetic settings. These parameters reflect the

physiological processes of glucose-insulin interaction, and their values are typically

altered in diabetic individuals.

Overall, the following parameters are perturbed to influence BG levels and simulate

pathological dynamics, inspired by similar approaches in [4, 92]:

• p1 is the rate at which glucose is removed for energy production. We decrease

this rate to simulate a scenario where the body struggles to utilize glucose

effectively due to impaired metabolic processes. This means glucose stays in the

body longer, leading to higher BG levels linked to hyperglycemia.

• p2 indicates the rate constant for the disappearance of the insulin effect. Lowering
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Parameter Non-diabetic Diabetic

p1 0.068 0.024
p2 0.24 0.037
p3 1.2× 10−5 1.2× 10−4

p4 1.0 1.0
p5 0.098 0.098
p6 0.142 0.142
Ib 11.0 0
Gb 82.0 82.0
VG 117.0 117.0
τG 55.0 55.0

Table 4.2: Nominal values for simulating a non-diabetic and diabetic virtual patient
using the Bergman’s Minimal Model.

this rate signifies a faster decline in the effectiveness of insulin on glucose uptake

over time. This indirectly leads to less efficient glucose removal and potentially

higher BG levels (hyperglycemia).

• p3 reflects the sensitivity of the effect of insulin on active insulin concentrations.

We increase this to promote a stronger effect of insulin on glucose uptake, leading

to a decrease in BG levels and potentially, hypoglycemia.

• Ib, the basal insulin level, indicating insulin secretion by the pancreas. We

set this to 0 in the diabetic setting as the pancreas for individuals with T1D

produces little or no insulin. This lack of basal insulin secretion contributes

significantly to the hyperglycemia problem. Hence, individuals with T1D rely

on external insulin administration to compensate for the missing basal insulin

and manage BG levels.

With these modifications, we perturb normal dynamics (Figure 4.2a) and obtain the

pathological activity we associated with diabetic conditions (Figure 4.2b). While the

Bergman Minimal Model is an invaluable tool for studying glucose-insulin interactions,

it has limitations. The model primarily focuses on the impact of insulin on glucose

dynamics and assumes a steady equilibrium in glucose-insulin interactions in the
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(a) non-diabetic BG dynamics (b) diabetic BG dynamics

Figure 4.2: Simulations of normal and pathological BG dynamics in a non-diabetic
and diabetic virtual patient during a 24-hr, 3-meal scenario.

absence of external glucose., neglecting other aspects that might influence BG levels.

However, the body’s glucose demands are influenced by various factors such as

physical activity and stress, which are not accounted for in this model. Consequently,

the Bergman model’s scope is restricted as it primarily considers only glucose and

insulin interactions concerning meal intake. Despite these limitations, this simplified

framework aligns well with our research objectives.

4.5.2 Glycemic Control

Each controller’s performance is assessed using the cost function J in Equation (4.8),

which comprises the control’s energy expenditure (e.g., insulin amounts applied) and

the risk of hypoglycemic and hyperglycemic events measured by the BGRI metric in

Equation (4.4). We seek controllers that maintain BG within the normal glycemic

range (70− 180 mg/dL). To this end, we prioritize the time-in-range (TIR) metric,

which measures the portion of time the controller keeps BG within the normal healthy

range. TIR serves as a critical metric for evaluating the effectiveness of diabetes

management strategies, with higher percentages indicating better glycemic control

and reduced risk of hypo- and hyperglycemic events.

Each controller is evaluated on the pathological setting with parameters defined in

Table 4.2, illustrated in Figure 4.2b. While the PID controller in Figure 4.3 effectively
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regulates BG within the normal range and near the set target of 120 mg/dL, this

approach may not perfectly translate to real-world scenarios. BG levels naturally

fluctuate within a healthy range, and overly tight control might not be necessary or

even desirable. For this reason, the NeuralHJB and NeuralODE controllers, with

their more comprehensive cost functions (refer to Equation (4.8)), emerge as strong

candidates for real-world applications. As shown in Figures 4.4 and 4.5 respectively,

these controllers effectively manage the pathological BG events observed in Figure 4.2b.

(a) Blood Glucose (b) Insulin

Figure 4.3: PID controls pathological BG dynamics within a healthy range close to a
target BG.

(a) Blood Glucose (b) Insulin

Figure 4.4: NeuralHJB controller regulates pathological BG dynamics.
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(a) Blood Glucose (b) Insulin

Figure 4.5: NeuralODE controls pathological BG dynamics, taking into account state
history from the past hour.

Time-In-Range and Glycemic Risk Index

Our analysis of TIR revealed a clear advantage for the PID controller, which maintained

BG within the target range 100% of the simulation period. While the NeuralODE

controller (94.79% TIR) and the NeuralHJB controller (93.75% TIR) achieved slightly

lower TIR, they offer a key benefit. These controllers utilize a more complex cost

function that goes beyond simply keeping BG close to a target of 120 mg/dL (like

the PID controller). This allows them to manage BG fluctuations within a healthy

range more naturally, reducing the risk of hypo- and hyperglycemic events. Figure 4.6

illustrates the risk associated with each controller. The PID controller exhibits a lower

BGRI compared to the neural network-based controllers, indicating tighter glycemic

control (see Figure 4.3a).

Approach TIR(%)

PID 100
NeuralHJB 93.75
NeuralODE 94.79

Table 4.3: TIR for all strategies.
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(a) PID (b) NeuralHJB (c) NeuralODE

Figure 4.6: Blood Glucose Risk Index and Time-In-Range (TIR) for each control
strategy.

4.6 Summary

Managing blood glucose (BG) is central in Type 1 diabetes (T1D) management. This

chapter explored various closed-loop control methods to enhance glycemic control

for individuals with T1D through artificial pancreas (AP) systems. These systems

represent a substantial advancement over traditional open-loop BG management

approaches, which rely on predetermined insulin dosing and lack adaptability to the

dynamic fluctuations of BG levels.

Leveraging the Bergman’s Minimal Model [12], we simulated the pathological BG

activity associated with diabetic conditions. We considered various control strategies,

including the widely used proportional-integral-derivative (PID) controller that adjusts

the insulin applied based on deviations of BG measurements from a predetermined

target [87]. Additionally, we implemented two controllers leveraging the function

approximation capabilities of neural networks:

• a model-based NeuralHJB controller inspired by [69, 81, 115] pairing neural

networks with control theory to optimize insulin delivery,

• a data-driven NeuralODE controller based on [28, 33] that aims to learn the

underlying dynamics of the glucose-insulin system to generate optimal controls,

We evaluated the performance of each controller on a cost function incorporating such
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metrics as energy utilized in applying insulin, the subsequent risk for hypoglycemia

and hyperglycemia (computed using the BG Risk Index [29]), as well as deviations

from a preset target BG value. We also computed the percentage of time spent by each

method within a specified target range for BG levels (time-in-range). Our simulation

results provide insights into the efficacy and limitations of each approach in optimizing

BG levels and minimizing the risk of hypo- and hyperglycemic events.
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Chapter 5

Conclusion and Research Outlook

This work focuses on applying Optimal Control(OC) theory and Machine Learning(ML)

to control problems in two biomedical applications: neuromodulation in Deep Brain

Stimulation (DBS) and glucose-insulin control in Type 1 Diabetes (T1D) management.

In these settings, the integration of ML and OC facilitates the development of practical

closed-loop systems that continuously analyze system dynamics, dynamically adjusting

interventions–whether neurostimulation or insulin delivery–in real time. These closed-

loop systems hold the potential to not only improve treatment outcomes for individuals

living with neurological and metabolic conditions like T1D but also enhance the overall

clinical experience in these applications.

In tackling the control problems in these applications, we leverage well-established

models to simulate normal and pathological activity. We define cost functions that

employ solution-specific knowledge such as penalties on the control signal or deviations

from desired or target states. We then develop control strategies seeking to optimize

these cost functions for each application. We summarize each application below and

conclude with insights into potential research directions.
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5.1 Dissertation Summary

Chapter 2 lays the groundwork for formulating deterministic finite-horizon optimal

control problems. We frame two biomedical applications – neuromodulation in DBS

and glycemic control in T1D management – as control problems. This chapter

identifies key elements for control design, such as system dynamics and cost functions.

Recognizing the limitations of predetermined or fixed interventions (stimulation or

insulin dosing) in traditional open-loop control, the chapter motivates closed-loop

control, which allows for dynamic and adaptive interventions. We then explore various

control methods categorized as local, global, and semi-global approaches. Additionally,

the chapter introduces established techniques like Pontryagin’s Maximum Principle

and Hamilton-Jacobi-Bellman (HJB) equations for finding optimal control solutions.

Finally, the chapter introduces reinforcement learning (RL), highlighting its connection

to OC concepts like value functions and the use of neural networks for function

approximation. Overall, this chapter sets the stage for applying these control methods

to the biomedical applications covered in subsequent chapters.

Chapter 3 explores a model-based approach for closed-loop control of DBS. This

approach, called NeuralHJB, seeks to improve upon the limitations of predetermined

open-loop DBS by dynamically adjusting stimulation based on real-time neuronal

activity. We leverage a biophysically-accurate model of neuronal dynamics, the

Hodgkin-Huxley (HH) model [49]. We specify a cost function for DBS including

penalties on energy consumption by the control and deviations from target states.

Building on established works [81], the NeuralHJB approach combines the function

approximation capabilities of neural networks with HJB equations characterizing the

value function. It involves pre-computing the control solution offline for a broad range

of parameters characterizing diverse neuronal activity and online adaptation of the

control policy to specific settings. Numerical experiments demonstrate NeuralHJB’s

effectiveness in restoring normal neuronal function in pathological conditions and
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its ability to handle unexpected shocks or changes in neuronal dynamics. Although

the NeuralHJB approach did not achieve optimal results in the amortized setting,

its universal approximation properties suggest the potential for broader adaptability

across a wide range of HH parameter configurations. Improving its performance would

be interesting for further research.

Chapter 4 builds on the closed-loop control framework from Chapter 3 to address

glycemic control problems in T1D management. In these settings, traditional open-

loop control typically relies on pre-determined insulin dosing and lacks adaptability

to fluctuating BG levels. We utilize Bergman’s Minimal Model, a well-established

mathematical model, to simulate the complex dynamics between glucose levels and

insulin action [12]. We consider various control algorithms for closed-loop systems

(often referred to as artificial pancreas systems in T1D management), ranging from the

straightforward Proportional-Integral-Derivative controller to more advanced learning-

based approaches. These approaches leverage neural networks to optimize insulin

dosing and include the model-based NeuralHJB approach and a data-driven Neu-

ralODE controller [28, 33]. Numerical experiments assess controller performance using

clinically relevant Blood Glucose Risk Index and Time-in-Range metrics, evaluating

accuracy in maintaining the desired BG range and percentage of time spent within it,

respectively.

5.2 Research Outlook

Limitations of the research presented in this dissertation can be dealt with in many

ways. We now highlight a few possible directions to expand upon our work.
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5.2.1 Large-scale Dynamics

This research introduces learning-based control methods, such as NeuralHJB and

NeuralODE controllers, for closed-loop neuromodulation and glucoregulatory sys-

tems, showing promising results in simulated environments to improve treatment

efficacy. However, the simplified biophysical models used (Hodgkin-Huxley [49] for

neuromodulation and Bergman’s Minimal Model [12] for glycemic control) may not

capture the full range of physiological responses, suggesting the need for more complex

models [19, 70, 93, 100].

Moreover, controlling large-scale dynamics faces computational challenges due to

the Curse of Dimensionality. Our semi-global NeuralHJB approach addresses this by

combining HJB equations with neural networks, enabling efficient approximation of

the value function in high-dimensional state spaces for effective closed-loop control.

An extension involves using mean-field approximation techniques, like neural mass

models [96, 106, 117], to reduce the dimensionality of the system, potentially enhancing

the NeuralHJB approach’s efficiency in handling high-dimensional systems.

5.2.2 Integrating External Factors

Future advancements in closed-loop neuromodulation and glycemic control may extend

beyond the core physiological measures addressed in this study, such as membrane

potential and blood glucose levels. For instance, in DBS, incorporating simulated local

field potentials derived from multi-contact electrodes could offer a higher-resolution

perspective on neural activity, facilitating the development of more precise control

strategies compared to single-neuron membrane potentials [4, 65, 67, 88]. Similarly, in

glycemic control, the integration of sensor data from activity trackers, dietary intake

monitors, and advanced continuous glucose monitors may enable more comprehensive

insulin dosing strategies [32, 50, 92]. By incorporating these external factors, future

closed-loop systems have the potential to enhance adaptability and efficiency, thereby
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improving treatment outcomes in both neuromodulation and glycemic control.

5.2.3 Other Biomedical Applications

In addition to neuromodulation and glycemic control, our research has the potential

to benefit other applications, including mechanical ventilation in respiratory ther-

apy and cardiac management in cardiovascular medicine. In mechanical ventilation,

closed-loop control systems can optimize ventilator settings based on real-time phys-

iological data, such as respiratory rate and oxygen saturation [22, 27]. This allows

for dynamic adjustments to ventilator settings, ensuring adequate gas exchange while

minimizing ventilator-induced lung injury [18]. Similarly, in cardiac management,

closed-loop algorithms can be applied to implantable devices such as pacemakers and

cardioverter-defibrillators, ensuring timely interventions based on real-time cardiac

activity monitoring to regulate heart rhythm effectively [9, 95, 123].

Overall, this research applies closed-loop control to neuromodulation and glycemic

control. We address the limitations of open-loop control (predetermined, non-

responsive interventions) by integrating principles from OC theory and ML techniques.

We frame these applications as control problems, simulating relevant dynamics in

silico using established models. This allows us to define cost functions that optimize

clinically relevant objectives. A pivotal aspect of this research is the incorporation of

value function approximation with neural networks. This enables real-time, adaptive

control strategies, overcoming the limitations of open-loop approaches and paving

the way for improved therapeutic outcomes. These findings lay the groundwork for

broader application of closed-loop control in biomedicine.



60

Bibliography

[1] Mary D Adu, Usman H Malabu, Aduli EO Malau-Aduli, and Bunmi S Malau-

Aduli. Enablers and barriers to effective diabetes self-management: A multi-

national investigation. PloS one, 14(6):e0217771, 2019.

[2] A Ml Albisser, BS Leibel, TG Ewart, Z Davidovac, CK Botz, W Zingg, H Schip-

per, and R Gander. Clinical control of diabetes by the artificial pancreas. Diabetes,

23(5):397–404, 1974. URL https://doi.org/10.2337/diab.23.5.397.

[3] Brandon Amos et al. Tutorial on amortized optimization. Foundations and

Trends® in Machine Learning, 16(5):592–732, 2023.

[4] Daria Nesterovich Anderson, Braxton Osting, Johannes Vorwerk, Alan D Dorval,

and Christopher R Butson. Optimized programming algorithm for cylindrical

and directional deep brain stimulation electrodes. Journal of neural engineering,

15(2):026005, 2018.

[5] Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis,

design, and technology. IEEE transactions on control systems technology, 13(4):

559–576, 2005.

[6] Mattia Arlotti, Manuela Rosa, Sara Marceglia, Sergio Barbieri, and Alberto

Priori. The adaptive deep brain stimulation challenge. Parkinsonism & related

disorders, 28:12–17, 2016.

https://doi.org/10.2337/diab.23.5.397


61

[7] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing

Magazine, 34(6):26–38, 2017.

[8] Vivek R Athalye, Jose M Carmena, and Rui M Costa. Neural reinforcement:

re-entering and refining neural dynamics leading to desirable outcomes. Current

opinion in neurobiology, 60:145–154, 2020.

[9] Temur Baykuziyev, Muhammad Jaffar Khan, Arunabha Karmakar, Muham-

mad Arif Baloch, and Jafar Khan. Closed-loop pharmacologic control of blood

pressure: A review of existing systems. Cureus, 15(9), 2023.

[10] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[11] B Wayne Bequette. A critical assessment of algorithms and challenges in

the development of a closed-loop artificial pancreas. Diabetes technology &

therapeutics, 7(1):28–47, 2005.

[12] Richard N Bergman, Lawrence S Phillips, Claudio Cobelli, et al. Physiologic

evaluation of factors controlling glucose tolerance in man: measurement of insulin

sensitivity and beta-cell glucose sensitivity from the response to intravenous

glucose. The Journal of clinical investigation, 68(6):1456–1467, 1981.

[13] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, vol-

ume 1. Athena scientific, 2012.

[14] Dimitri P Bertsekas. Reinforcement learning and optimal control. Athena

Scientific Belmont, MA, 2019.

[15] M Beudel and P Brown. Adaptive deep brain stimulation in parkinson’s disease.

Parkinsonism & related disorders, 22:S123–S126, 2016. URL https://pubmed.

ncbi.nlm.nih.gov/26411502/.

https://pubmed.ncbi.nlm.nih.gov/26411502/
https://pubmed.ncbi.nlm.nih.gov/26411502/


62

[16] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine

learning, volume 4. Springer, 2006.

[17] Alexandre Boutet, Radhika Madhavan, Gavin JB Elias, Suresh E Joel, Robert

Gramer, Manish Ranjan, Vijayashankar Paramanandam, David Xu, Jurgen

Germann, Aaron Loh, et al. Predicting optimal deep brain stimulation parame-

ters for parkinson’s disease using functional mri and machine learning. Nature

communications, 12(1):1–13, 2021. URL https://www.nature.com/articles/

s41467-021-23311-9.

[18] Richard D Branson, Jay A Johannigman, Robert S Campbell, and Kenneth

Davis Jr. Closed-loop mechanical ventilation. Respiratory Care, 47(4):427–51,

2002.

[19] Michael Breakspear. Dynamic models of large-scale brain activity. Nature

neuroscience, 20(3):340–352, 2017. URL https://www.nature.com/articles/

nn.4497.

[20] Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire

model as an effective description of neuronal activity. Journal of neurophysiology,

94(5):3637–3642, 2005.

[21] Jeff M Bronstein, Michele Tagliati, Ron L Alterman, Andres M Lozano, Jens

Volkmann, Alessandro Stefani, Fay B Horak, Michael S Okun, Kelly D Foote,

Paul Krack, et al. Deep brain stimulation for parkinson disease: an expert

consensus and review of key issues. Archives of neurology, 68(2):165–165, 2011.

[22] JX Brunner. History and principles of closed-loop control applied to mechanical

ventilation. Nederlandse Vereniging voor Intensive Care, 6(4):6–9, 2002.

[23] Romain Carron, Antoine Chaillet, Anton Filipchuk, William Pasillas-Lépine,

https://www.nature.com/articles/s41467-021-23311-9
https://www.nature.com/articles/s41467-021-23311-9
https://www.nature.com/articles/nn.4497
https://www.nature.com/articles/nn.4497


63

and Constance Hammond. Closing the loop of deep brain stimulation. Frontiers

in systems neuroscience, 7:112, 2013.

[24] William A Catterall. Structure and function of voltage-gated ion channels.

Annual review of biochemistry, 64(1):493–531, 1995.

[25] William A Catterall, Indira M Raman, Hugh PC Robinson, Terrence J Sejnowski,

and Ole Paulsen. The hodgkin-huxley heritage: from channels to circuits. Journal

of Neuroscience, 32(41):14064–14073, 2012.

[26] Aurelian Cernea and Hélène Frankowska. A connection between the maximum

principle and dynamic programming for constrained control problems. SIAM

journal on control and optimization, 44(2):673–703, 2005.

[27] Robert L Chatburn and Eduardo Mireles-Cabodevila. Closed-loop control

of mechanical ventilation: description and classification of targeting schemes.

Respiratory care, 56(1):85–102, 2011.

[28] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

Neural ordinary differential equations. Advances in neural information processing

systems, 31, 2018.

[29] William Clarke and Boris Kovatchev. Statistical tools to analyze continuous

glucose monitor data. Diabetes technology & therapeutics, 11(S1):S–45, 2009.

[30] Claudio Cobelli, Eric Renard, and Boris Kovatchev. Artificial pancreas: past,

present, future. Diabetes, 60(11):2672–2682, 2011.

[31] Isuru Dasanayake and Jr-Shin Li. Constrained minimum-power control

of spiking neuron oscillators. In 2011 50th IEEE Conference on De-

cision and Control and European Control Conference, pages 3694–3699.



64

IEEE, 2011. URL https://folk.ntnu.no/skoge/prost/proceedings/

cdc-ecc-2011/data/papers/1392.pdf.

[32] Eyal Dassau, Howard Zisser, Rebecca A Harvey, Matthew W Percival, Benyamin

Grosman, Wendy Bevier, Eran Atlas, Shahar Miller, Revital Nimri, Lois Jo-

vanovič, et al. Clinical evaluation of a personalized artificial pancreas. Diabetes

care, 36(4):801–809, 2013.

[33] Souradeep Dutta, Taisa Kushner, and Sriram Sankaranarayanan. Robust data-

driven control of artificial pancreas systems using neural networks. In Computa-

tional Methods in Systems Biology: 16th International Conference, CMSB 2018,

Brno, Czech Republic, September 12-14, 2018, Proceedings 16, pages 183–202.

Springer, 2018.

[34] M Ellinger, Melinda Evrithiki Koelling, Damon A Miller, Frank L Severance,

and John Stahl. Exploring optimal current stimuli that provide membrane

voltage tracking in a neuron model. Biological cybernetics, 104:185–195, 2011.

[35] Lawrence C Evans. An introduction to mathematical optimal control theory

version 0.2. Lecture notes available at http://math. berkeley. edu/˜ evans/control.

course. pdf, 1983.

[36] Ioannis Exarchos and Evangelos A. Theodorou. Stochastic optimal con-

trol via forward and backward stochastic differential equations and impor-

tance sampling. Automatica J. IFAC, 87:159–165, 2018. ISSN 0005-1098.

doi: 10.1016/j.automatica.2017.09.004. URL https://doi.org/10.1016/j.

automatica.2017.09.004.

[37] International Diabetes Federation. Diabetes atlas. IDF Diabetes Atlas, 7th edn.

Brussels, Belgium: International Diabetes Federation, 33(2), 2015.

https://folk.ntnu.no/skoge/prost/proceedings/cdc-ecc-2011/data/papers/1392.pdf
https://folk.ntnu.no/skoge/prost/proceedings/cdc-ecc-2011/data/papers/1392.pdf
https://doi.org/10.1016/j.automatica.2017.09.004
https://doi.org/10.1016/j.automatica.2017.09.004


65

[38] John E Fleming, Eleanor Dunn, and Madeleine M Lowery. Simulation of closed-

loop deep brain stimulation control schemes for suppression of pathological

beta oscillations in parkinson’s disease. Frontiers in neuroscience, 14:166,

2020. URL https://www.frontiersin.org/articles/10.3389/fnins.2020.

00166/full.

[39] Wendell H. Fleming and H. Mete Soner. Controlled Markov Processes and

Viscosity Solutions, volume 25 of Stochastic Modelling and Applied Probability.

Springer, New York, second edition, 2006. ISBN 978-0387-260457; 0-387-26045-5.

[40] Eliana Della Flora, Caryn L Perera, Alun L Cameron, and Guy J Maddern.

Deep brain stimulation for essential tremor: a systematic review. Movement

disorders, 25(11):1550–1559, 2010.

[41] Flavio Fröhlich and Sašo Jezernik. Feedback control of hodgkin–huxley nerve

cell dynamics. Control engineering practice, 13(9):1195–1206, 2005.

[42] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,

populations, plasticity. Cambridge university press, 2002.

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[44] P Gorzelic, SJ Schiff, and Alok Sinha. Model-based rational feedback controller

design for closed-loop deep brain stimulation of parkinson’s disease. Journal of

neural engineering, 10(2):026016, 2013. URL https://iopscience.iop.org/

article/10.1088/1741-2560/10/2/026016/meta.

[45] Ahmad Haidar. The artificial pancreas: How closed-loop control is revolutionizing

diabetes. IEEE Control Systems Magazine, 36(5):28–47, 2016.

https://www.frontiersin.org/articles/10.3389/fnins.2020.00166/full
https://www.frontiersin.org/articles/10.3389/fnins.2020.00166/full
https://iopscience.iop.org/article/10.1088/1741-2560/10/2/026016/meta
https://iopscience.iop.org/article/10.1088/1741-2560/10/2/026016/meta


66

[46] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial

differential equations using deep learning. Proceedings of the National Academy

of Sciences, 115(34):8505–8510, 2018.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[48] Franz Hell, Carla Palleis, Jan H Mehrkens, Thomas Koeglsperger, and Kai

Bötzel. Deep brain stimulation programming 2.0: future perspectives for target

identification and adaptive closed loop stimulation. Frontiers in neurology, 10:

314, 2019.

[49] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Journal

of physiology, 117(4):500–544, 1952. URL https://physoc.onlinelibrary.

wiley.com/doi/pdfdirect/10.1113/jphysiol.1952.sp004764.

[50] Roman Hovorka. Continuous glucose monitoring and closed-loop systems. Dia-

betic medicine, 23(1):1–12, 2006.

[51] Ronald A Howard. Dynamic Programming and Markov Processes. John Wiley,

1960.

[52] Mingzhan Huang, Jiaxu Li, Xinyu Song, and Hongjian Guo. Modeling impulsive

injections of insulin: towards artificial pancreas. SIAM Journal on Applied

Mathematics, 72(5):1524–1548, 2012.

[53] Petra M Jauslin, Hanna E Silber, Nicolas Frey, Ronald Gieschke, Ulrika SH

Simonsson, Karin Jorga, and Mats O Karlsson. An integrated glucose-insulin

model to describe oral glucose tolerance test data in type 2 diabetics. The

Journal of Clinical Pharmacology, 47(10):1244–1255, 2007.

https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.1952.sp004764


67

[54] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation,

2004.

[55] Werner M Kistler, Wulfram Gerstner, and J Leo van Hemmen. Reduction of the

hodgkin-huxley equations to a single-variable threshold model. Neural compu-

tation, 9(5):1015–1045, 1997. URL https://infoscience.epfl.ch/record/

97776/files/Gerstner97.pdf.

[56] Christof Koch. Biophysics of computation: information processing in single

neurons. Oxford university press, 2004.

[57] Thomas Koeglsperger, Carla Palleis, Franz Hell, Jan H Mehrkens, and Kai

Bötzel. Deep brain stimulation programming for movement disorders: current

concepts and evidence-based strategies. Frontiers in neurology, 10:410, 2019.

[58] Joachim K Krauss, Nir Lipsman, Tipu Aziz, Alexandre Boutet, Peter Brown,

Jin Woo Chang, Benjamin Davidson, Warren M Grill, Marwan I Hariz, Andreas

Horn, et al. Technology of deep brain stimulation: current status and future

directions. Nature Reviews Neurology, 17(2):75–87, 2021.

[59] Alexis M Kuncel and Warren M Grill. Selection of stimulus parameters for deep

brain stimulation. Clinical neurophysiology, 115(11):2431–2441, 2004.

[60] Karl Kunisch and Daniel Walter. Semiglobal optimal feedback stabilization of

autonomous systems via deep neural network approximation. ESAIM: Control,

Optimisation and Calculus of Variations, 27:16, 2021.

[61] Yongho Lee, Sunwon Park, Moonyong Lee, and Coleman Brosilow. Pid controller

tuning for desired closed-loop responses for si/so systems. Aiche journal, 44(1):

106–115, 1998.

https://infoscience.epfl.ch/record/97776/files/Gerstner97.pdf
https://infoscience.epfl.ch/record/97776/files/Gerstner97.pdf


68

[62] Xingjian Li, Deepanshu Verma, and Lars Ruthotto. A neural network approach

for stochastic optimal control. arXiv preprint arXiv:2209.13104, 2022.

[63] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274, 2017.

[64] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[65] Simon Little and Peter Brown. What brain signals are suitable for feedback

control of deep brain stimulation in parkinson’s disease? Annals of the New

York Academy of Sciences, 1265:9–24, 2012. URL https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC3495297/.

[66] Simon Little, Alex Pogosyan, Spencer Neal, Baltazar Zavala, Ludvic Zrinzo,

Marwan Hariz, Thomas Foltynie, Patricia Limousin, Keyoumars Ashkan, James

FitzGerald, et al. Adaptive deep brain stimulation in advanced parkinson disease.

Annals of neurology, 74(3):449–457, 2013.

[67] Andres M Lozano, Nir Lipsman, Hagai Bergman, Peter Brown, Stephan

Chabardes, Jin Woo Chang, Keith Matthews, Cameron C McIntyre, Thomas E

Schlaepfer, Michael Schulder, et al. Deep brain stimulation: current challenges

and future directions. Nature Reviews Neurology, 15(3):148–160, 2019.

[68] Meili Lu, Xile Wei, Yanqiu Che, Jiang Wang, and Kenneth A. Loparo. Applica-

tion of reinforcement learning to deep brain stimulation in a computational model

of parkinson’s disease. IEEE transactions on neural systems and rehabilitation

engineering : a publication of the IEEE Engineering in Medicine and Biology

Society, 28:339–349, 1 2020. ISSN 1558-0210. doi: 10.1109/TNSRE.2019.2952637.

URL http://www.ncbi.nlm.nih.gov/pubmed/31715567.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495297/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495297/
http://www.ncbi.nlm.nih.gov/pubmed/31715567


69

[69] Malvern Madondo, Deepanshu Verma, Lars Ruthotto, and Nicholas Au Yong.

Learning control policies of hodgkin-huxley neuronal dynamics. Machine Learn-

ing for Health (ML4H) Findings Collection, 2023.

[70] Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Ko-

vatchev, and Claudio Cobelli. The uva/padova type 1 diabetes simulator: new

features. Journal of diabetes science and technology, 8(1):26–34, 2014. URL

https://doi.org/10.1177/1932296813514502.

[71] Michael Mascagni. The backward euler method for numerical solution of the

hodgkin–huxley equations of nerve conduction. SIAM journal on numerical

analysis, 27(4):941–962, 1990.

[72] Anders Christian Meidahl, Gerd Tinkhauser, Damian Marc Herz, Hayriye

Cagnan, Jean Debarros, and Peter Brown. Adaptive deep brain stimulation for

movement disorders: the long road to clinical therapy. Movement disorders, 32

(6):810–819, 2017.

[73] Paul Miller. An introductory course in computational neuroscience. MIT Press,

2018.

[74] Khalid B Mirza, Caroline T Golden, Konstantin Nikolic, and Christofer Touma-

zou. Closed-loop implantable therapeutic neuromodulation systems based on

neurochemical monitoring. Frontiers in neuroscience, 13:808, 2019.

[75] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning.

nature, 518(7540):529–533, 2015.

[76] Ali Nabi and Jeff Moehlis. Single input optimal control for globally coupled

neuron networks. Journal of neural engineering, 8(6):065008, 2011.

https://doi.org/10.1177/1932296813514502


70

[77] S Nambi Narayanan and Sutha Subbian. Hh model based smart deep brain stim-

ulator to detect, predict and control epilepsy using machine learning algorithm.

Journal of Neuroscience Methods, 389:109825, 2023.

[78] David M Nathan. Long-term complications of diabetes mellitus. New England

journal of medicine, 328(23):1676–1685, 1993.

[79] T Nguyen-Thien and T Tran-Cong. Approximation of functions and their deriva-

tives: A neural network implementation with applications. Applied Mathematical

Modelling, 23(9):687–704, 1999.

[80] Jorge Nocedal and Stephen J Wright. Interior-point methods for nonlinear

programming. Numerical Optimization, pages 563–597, 2006.

[81] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,

and Lars Ruthotto. A neural network approach for real-time high-dimensional

optimal control, 2021.

[82] Mahboubeh Parastarfeizabadi and Abbas Z Kouzani. Advances in closed-loop

deep brain stimulation devices. Journal of neuroengineering and rehabilita-

tion, 14(1):1–20, 2017. URL https://jneuroengrehab.biomedcentral.com/

articles/10.1186/s12984-017-0295-1.

[83] Marcus Pereira, Ziyi Wang, Tianrong Chen, Emily Reed, and Evangelos

Theodorou. Feynman-kac neural network architectures for stochastic control us-

ing second-order fbsde theory. In Learning for Dynamics and Control, pages 728–

738. PMLR, 2020. URL https://proceedings.mlr.press/v120/pereira20a.

html.

[84] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Rout-

ledge, 2018.

https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0295-1
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0295-1
https://proceedings.mlr.press/v120/pereira20a.html
https://proceedings.mlr.press/v120/pereira20a.html


71

[85] J Blair Price, Aaron E Rusheen, Abhijeet S Barath, Juan M Rojas Cabrera,

Hojin Shin, Su-Youne Chang, Christopher J Kimble, Kevin E Bennet, Charles D

Blaha, Kendall H Lee, et al. Clinical applications of neurochemical and elec-

trophysiological measurements for closed-loop neurostimulation. Neurosurgical

focus, 49(1):E6, 2020.

[86] Rajamannar Ramasubbu, Stefan Lang, and Zelma HT Kiss. Dosing of electrical

parameters in deep brain stimulation (dbs) for intractable depression: a review

of clinical studies. Frontiers in Psychiatry, 9:302, 2018.

[87] Y Ramprasad, Gade Pandu Rangaiah, and Samavedham Lakshminarayanan.

Robust pid controller for blood glucose regulation in type i diabetics. Industrial

& engineering chemistry research, 43(26):8257–8268, 2004. URL https://pubs.

acs.org/doi/pdf/10.1021/ie049546a.

[88] NJ Ray, N Jenkinson, S Wang, P Holland, JS Brittain, C Joint, JF Stein, and

T Aziz. Local field potential beta activity in the subthalamic nucleus of patients

with parkinson’s disease is associated with improvements in bradykinesia after

dopamine and deep brain stimulation. Experimental neurology, 213(1):108–113,

2008. URL https://pubmed.ncbi.nlm.nih.gov/18619592/.

[89] Benjamin Recht. A tour of reinforcement learning: The view from continuous

control, 2018.

[90] Vincent Renault, Michèle Thieullen, and Emmanuel Trélat. Optimal control

of infinite-dimensional piecewise deterministic markov processes and applica-

tion to the control of neuronal dynamics via optogenetics. arXiv preprint

arXiv:1607.05574, 2016.

[91] David Rodbard. Continuous glucose monitoring: a review of successes, challenges,

and opportunities. Diabetes technology & therapeutics, 18(S2):S2–3, 2016.

https://pubs.acs.org/doi/pdf/10.1021/ie049546a
https://pubs.acs.org/doi/pdf/10.1021/ie049546a
https://pubmed.ncbi.nlm.nih.gov/18619592/


72

[92] Anirban Roy. Dynamic modeling of free fatty acid, glucose, and insulin during

rest and exercise in insulin dependent diabetes mellitus patients. PhD thesis,

University of Pittsburgh, 2008.

[93] Jonathan E Rubin and David Terman. High frequency stimulation of the subtha-

lamic nucleus eliminates pathological thalamic rhythmicity in a computational

model. Journal of computational neuroscience, 16(3):211–235, 2004. URL https:

//link.springer.com/article/10.1023/B:JCNS.0000025686.47117.67.

[94] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu

Fung. A machine learning framework for solving high-dimensional mean field

game and mean field control problems. Proceedings of the National Academy of

Sciences, 117(17):9183–9193, 2020.

[95] Kiichi Sagawa. Closed-loop physiological control of the heart. Annals of

Biomedical Engineering, 8:415–429, 1980.

[96] Lena Salfenmoser and Klaus Obermayer. Nonlinear optimal control of a mean-

field model of neural population dynamics. Frontiers in Computational Neuro-

science, 16, 2022.

[97] Sabato Santaniello, Giovanni Fiengo, Luigi Glielmo, and Warren M Grill. Closed-

loop control of deep brain stimulation: a simulation study. IEEE Transactions

on Neural Systems and Rehabilitation Engineering, 19(1):15–24, 2010.

[98] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[99] Karen Schneck, Lai San Tham, Ali Ertekin, and Jesus Reviriego. Toward better

understanding of insulin therapy by translation of a pk-pd model to visualize

insulin and glucose action profiles. The Journal of Clinical Pharmacology, 59(2):

258–270, 2019.

https://link.springer.com/article/10.1023/B:JCNS.0000025686.47117.67
https://link.springer.com/article/10.1023/B:JCNS.0000025686.47117.67


73

[100] Karen B Schneck, Xin Zhang, Robert Bauer, Mats O Karlsson, and Vikram P

Sinha. Assessment of glycemic response to an oral glucokinase activator in a

proof of concept study: application of a semi-mechanistic, integrated glucose-

insulin-glucagon model. Journal of pharmacokinetics and pharmacodynamics,

40:67–80, 2013. URL https://doi.org/10.1007/s10928-012-9287-8.

[101] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[102] Prasad Shirvalkar, Tess L Veuthey, Heather E Dawes, and Edward F Chang.

Closed-loop deep brain stimulation for refractory chronic pain. Frontiers in

computational neuroscience, 12:18, 2018.

[103] Rui Shu. Amortized optimization, 2017. URL https://ruishu.io/2017/11/

07/amortized-optimization/.

[104] Hanna E Silber, Petra M Jauslin, Nicolas Frey, and Mats O Karlsson. An

integrated model for the glucose-insulin system. Basic & clinical pharmacology

& toxicology, 106(3):189–194, 2010.

[105] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. Deterministic policy gradient algorithms. In International

conference on machine learning, pages 387–395. Pmlr, 2014.

[106] Rosa Q So, Alexander R Kent, and Warren M Grill. Relative contributions

of local cell and passing fiber activation and silencing to changes in thalamic

fidelity during deep brain stimulation and lesioning: a computational modeling

study. Journal of computational neuroscience, 32(3):499–519, 2012. URL

https://link.springer.com/article/10.1007/s10827-011-0366-4.

[107] Scott Stanslaski, Jeffrey Herron, Tom Chouinard, Duane Bourget, Ben Isaacson,

Vaclav Kremen, Enrico Opri, William Drew, Benjamin H Brinkmann, Aysegul

https://doi.org/10.1007/s10928-012-9287-8
https://ruishu.io/2017/11/07/amortized-optimization/
https://ruishu.io/2017/11/07/amortized-optimization/
https://link.springer.com/article/10.1007/s10827-011-0366-4


74

Gunduz, et al. A chronically implantable neural coprocessor for investigating the

treatment of neurological disorders. IEEE transactions on biomedical circuits

and systems, 12(6):1230–1245, 2018.

[108] Michael P Stone, Pratik Agrawal, Xiaoxiao Chen, Margaret Liu, John Shin,

Toni L Cordero, and Francine R Kaufman. Retrospective analysis of 3-month

real-world glucose data after the minimed 670g system commercial launch.

Diabetes technology & therapeutics, 20(10):689–692, 2018.

[109] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[110] Richard S Sutton, Andrew G Barto, and Ronald J Williams. Reinforcement

learning is direct adaptive optimal control. IEEE control systems magazine, 12

(2):19–22, 1992.

[111] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems, 12, 1999.

[112] Paula M Trief, Donald Cibula, Elaine Rodriguez, Bridget Akel, and Ruth S

Weinstock. Incorrect insulin administration: a problem that warrants attention.

Clinical Diabetes, 34(1):25–33, 2016.

[113] Kamuran Turksoy, Sediqeh Samadi, Jianyuan Feng, Elizabeth Littlejohn, Laurie

Quinn, and Ali Cinar. Meal detection in patients with type 1 diabetes: a new

module for the multivariable adaptive artificial pancreas control system. IEEE

journal of biomedical and health informatics, 20(1):47–54, 2015.

[114] Deepanshu Verma, Xingjian Li, Nickolas Winovich, Lars Ruthotto, and Bart

Van Bloemen Waanders. Advances and challenges in solving high-dimensional



75

hjb equations arising in optimal control. In 2023 Joint Mathematics Meetings

(JMM 2023). AMS, 2023.

[115] Deepanshu Verma, Nick Winovich, Lars Ruthotto, and Bart van Bloemen

Waanders. Neural network approaches for parameterized optimal control. arXiv

preprint arXiv:2402.10033, 2024.

[116] Jens Volkmann, Jan Herzog, Florian Kopper, and Güntner Deuschl. Introduction

to the programming of deep brain stimulators. Movement disorders: official

journal of the Movement Disorder Society, 17(S3):S181–S187, 2002.

[117] Minh Vu, Bharat Singhal, Shen Zeng, and Jr-Shin Li. Data-driven control

of neuronal networks with population-level measurement. Research Square

(Preprint), 2023.

[118] Jiang Wang, Liangquan Chen, and Xianyang Fei. Bifurcation control of the

hodgkin–huxley equations. Chaos, Solitons & Fractals, 33(1):217–224, 2007.

[119] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:

279–292, 1992.

[120] Gihan Weerasinghe, Benoit Duchet, Christian Bick, and Rafal Bogacz. Optimal

closed-loop deep brain stimulation using multiple independently controlled

contacts. PLoS Computational Biology, 17(8):e1009281, 2021.

[121] Thomas Wichmann and Mahlon R DeLong. Deep brain stimulation for move-

ment disorders of basal ganglia origin: restoring function or functionality?

Neurotherapeutics, 13:264–283, 2016.

[122] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8:229–256, 1992.



76

[123] Eileen A Woodruff, James F Martin, and Madonna Omens. A model for the

design and evaluation of algorithms for closed-loop cardiovascular therapy. IEEE

transactions on biomedical engineering, 44(8):694–705, 1997.

[124] Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems

and HJB equations, volume 43. Springer Science & Business Media, 1999.

[125] Ying Yu, Xiaomin Wang, Qishao Wang, and Qingyun Wang. A review of

computational modeling and deep brain stimulation: applications to parkinson’s

disease. Applied mathematics and mechanics, pages 1–22, 2020. URL https:

//doi.org/10.1007/s10483-020-2689-9.

[126] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep

learning. arXiv preprint arXiv:2106.11342, 2021.

https://doi.org/10.1007/s10483-020-2689-9
https://doi.org/10.1007/s10483-020-2689-9


77

Index

Bergman’s Minimal Model, 41

Blood Glucose Risk Index, 43

closed-loop, 9, 23, 39

control problem, 14

cost function, 8, 27, 42

Curse of Dimensionality, 8, 12, 17, 30

data-driven approach, 45

DBS, 9, 10

dynamical system, 7, 9

dynamics, 8, 40, 47

feedback form, 10

function approximation, 17, 20

Global solution, 10

glucose-insulin, 45

glycemic control, 6, 9, 40, 42

Hamilton-Jacobi-Bellman, 12, 22

Hamiltonian, 11

Hodgkin-Huxley, 22

Local solution, 10

model-based, 18, 30, 45

model-free, 18

neural network, 14, 18, 29, 34, 45

NeuralHJB, 35, 48, 51

NeuralODE, 46, 51

neuromodulation, 6, 9, 27

open-loop, 9, 23, 39

Optimal Control, 6

other applications, 59

pathological dynamics, 7, 34, 48

Pontryagin’s Maximum Principle, 11,

22

Proportional-Integral-Derivative, 40, 44

Q-function, 17

Reinforcement Learning, 15, 45

running cost, 7, 27, 42

semi-global solution, 11, 29, 30, 45



78

state-action value function, 17

state-value function, 16

suboptimality, 35

T1D management, 10, 39

terminal cost, 7, 27, 43

time-in-range metric, 50

value function, 8, 17, 30, 44


	Introduction
	Problem Statement
	Research Overview
	Limitations
	Contributions

	Dissertation Outline

	Hitchhiker's Guide to Solving Control Problems
	Introduction
	Control Formulation
	Ties to Biomedical Applications

	Closed-loop Control in Biomedical Systems
	Classical Control Approaches
	Learning-based Control

	Reinforcement Learning and Optimal Control
	Value Functions in RL
	Strategies for solving RL problems

	Conclusion

	Closed-loop Neuromodulation via Machine Learning and Optimal Control
	Introduction
	Problem Formulation
	Neuronal Dynamics
	Neuromodulation Cost Function

	Model-based Approach to Neuromodulation
	Value Function Approximation with Neural Networks

	Numerical Experiments
	Neuromodulatory Effects
	Optimal Control of Neuronal Dynamics

	Summary

	Glucose-Insulin Control
	Introduction
	Problem Setup
	Glucose-Insulin Dynamics
	Cost Function Formulation

	Classical PID Control
	Neural Network-based Glycemic Control
	Model-based Control via NeuralHJB
	Data-driven Control

	Numerical Experiments
	Pathological Glucose-Insulin Dynamics
	Glycemic Control

	Summary

	Conclusion and Research Outlook
	Dissertation Summary
	Research Outlook
	Large-scale Dynamics
	Integrating External Factors
	Other Biomedical Applications


	Bibliography
	Index

