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Abstract

The Laplace and Heat Operators on Quantum Graphs
By Kenny Jones

This thesis analyzes the Laplace and heat operators on quantum graphs. The thesis is
separated into four chapters,

● Chapter 1: Introduction to quantum graphs, the Laplace operator, and summary
of the main results.

● Chapter 2: Strategies for bounding the spectral gap of a quantum graph, including
a sharp upper bound for the spectral gap using the diameter and total number of
vertices as parameters.

● Chapter 3: Bounds for the heat kernel of a quantum graph. The main results
include a bound for small time and identifying a class of edges that can be bound
by a Neumann interval.

● Chapter 4: Finds two mean value formulas for the heat equation on a quantum
graph. Proves an additional bound for the mean value formula using the one
dimensional free heat kernel.
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CHAPTER 1

Introduction

1. Motivation

Quantum graphs where first used in the 1930’s to study free electrons in molecules.
Since then quantum graphs have been used to understand a plethora of physical objects
including crystal lattices, carbon-nanotubes, waveguides, and much more. They are also
used to better understand other areas of mathematics and physics. Quantum graphs have
been used to model quantum chaos, Anderson localization, and many dynamic systems.

Quantum graphs, or metric graphs as they are often called, can serve as a mathematical
approximation for networks where there is a well defined distance function between nodes
in the network. The implications of this are endless from understanding the dynamics of
traffic on roads, to the spread of viruses, to electricity in robotics. This paper will mostly
involve understanding the Laplace and heat operators on quantum graphs. The Laplace
operator is often associated with the energy of a system. The eigenvalues of the laplace
operator give the allowable energy states for a domain with no potential energy. The heat
operator is used to understand diffusion of a system. Understanding these two operators on
quantum graphs has many implications in nano-technology and quantum circuitry.

Although quantum graphs are often used to better understand physical systems the
author would argue that they are interesting objects in and of themselves. They are a
thought-provoking marriage of graphs and partial differential equations with many surprising
and fascinating characteristics.

2. Introduction to Quantum Graphs

Let G be an arbitrary quantum graph, G is defined by a finite or countably infinite set
of vertices V (G) and edges E(G), G = {V (G),E(G)}. We will use the simpler notation V
and E, when there can be no confusion about G. Each edge e ∈ E(G) is a one dimensional
line segment connected to points v1, v2 ∈ V (G), alternatively we can think of v1 and v2 as
being the end points of e. The structure of G is determined by how edges are connected
to vertices. Multiple edges can be connected to the same vertex and both end points of
an edge can be connected to the same vertex, known as a loop. Below is an example of a
quantum graph.
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Figure 1. A quantum graph with edges in black and vertices in blue.

The cardinality of the sets V and E will be denoted ∣V ∣ and ∣E∣, respectively. For e ∈ E
and v ∈ V , v and e are said to be adjacent if v is connected to e, expressed as e ∼ v. Two
edges e1, e2 ∈ E are adjacent if e1 and e2 are connected to the same vertex, we use the same
notation e1 ∼ e2. All edges are adjacent to themselves.

Definition 2.1. We call G a metric graph if for all e ∈ E, e can be assigned a positive
length, `(e), where `(e) ∈ (0,∞].

All quantum graphs in this paper are assumed to be metric graphs and `(e) will always
be the one dimensional lebesgue measure of e. Each edge e can be identified with the line
segment [0, `(e)], which introduces a coordinate system along e. When using a coordinate
system, a point along e will be denoted xe or simply x if e is clear. Edges have no direction,
so the orientation of any coordinate system is arbitrary. Occasionally, it is useful to split an
edge into two directed bonds. Let e be connected to v1 and v2. Then e can be split into two

bonds
Ð→
b v1,v2 and

Ð→
b v2,v1 , where

Ð→
b v1,v2 has the direction from v1 to v2 and

Ð→
b v2,v1 has the

direction from v2 to v1. Two bonds
Ð→
b v,w and

Ð→
b u,x are consecutive if w = u, meaning

Ð→
b v,w

ends at the vertex
Ð→
b u,x begins. This technique is fully explained in Chapter 3 section 2.

The total length of the graph G, or L(G), can be found by summing all edge lengths
for edges contained in G,

(2.1) L(G) = ∑
e∈G

`(e).

For all vertices v ∈ V , the number of edges connected to v is called the degree of v
denoted dv. If both endpoints of e are connected to v, i.e. e is a loop, then we count this
edge twice in the degree. If dv = 2, then v is called an artificial vertex. Artificial vertices do
not affect the underlying topology of G and are often added or removed for convenience or
as part of a technique to better understand the graph G. However, one must be careful when
adding or deleting artificial vertices because G is defined by its set of edges and vertices,
changing these sets technically changes the graph G to some new graph G′.

We will now introduce the metric used for all quantum graphs in this paper, first we
must define a path along G.
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Definition 2.2. A path along a quantum graph is an ordered sequence of consecutive

bonds, {
Ð→
b 1,2,

Ð→
b 2,3, ...,

Ð→
b N−2,N−1,

Ð→
b N−1,N}.

A bond can be repeated any multiple of times along a path. Let p be a path consisting

of the bonds {
Ð→
b 1,2,

Ð→
b 2,3, ...,

Ð→
b N−2,N−1,

Ð→
b N−1,N}. The length of p, expressed `(p), can be

found by summing the lengths of all bonds along p.

Definition 2.3. The length of a path can be calculated by

(2.2) `(p) = ∑
Ð→
b ∈p

`(
Ð→
b )

Let q1 and q2 be two points contained on edges of G, not necessarily the same edge. If
q1, q2 ∉ V (G), then we can insert artificial vertices at q1 and q2, this creates a new graph G′.
Note that q1, q2 ∈ V (G′). Using definition 2.2 we can define a path from q1 to q2 along G′.

We will define the distance function d(q1, q2) to be the length of the shortest path
between q1 and q2,

Definition 2.4. Let P (q1, q2) be the set of all paths between q1 and q2, then the
distance between q1 and q2 is

(2.3) d(q1, q2) = min
p∈P (q1,q2)

`(p)

The distance d(q1, q2) on the new graph G′ defines the distance between points q1 and q2

on the original graph G. This distance function defines a topology on the graph G, making
G a topological space. Thus, we can define a function f(q) for a point q ∈ G. For q ∉ V (G),
f(q) acts locally as if it is on a one dimension line segment. At vertices we impose vertex
conditions, in this paper the standard Kirchoff-Neumann vertex conditions will be used,

(2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f is continuous on G

and

∑e∼v df(v)/dxe = 0.

Where df(v)/dxe refers to the outward derivative of f away from the vertex v along the
edge e. If dv = 1, the second vertex condition becomes a Neumann boundary condition,
df(v)/dxe = 0. If dv = 2, v is an artificial vertex, the second condition implies that the func-
tion is differentiable at v. We will sometimes refer to the first condition as the “continuity
vertex condition” and the second condition as the “net flow vertex condition.”

In order to be considered a quantum graph we equip G with a differential operator. This

paper will focus on the Laplace operator−∆, or −d2/dx2, and the heat operator ∂2

∂x2 − ∂t.

3. The Laplacian and Its Spectrum

A function f on a quantum graph can be thought of as existing on each edge e,
fe ∶= [0, `(e)] → C. Using this we can define the following functional spaces for the set
E(G)

(3.1) L2(E) = ⊕
e∈E(G)

L2([0, `(e)]),

(3.2) Hk(E) = ⊕
e∈E(G)

Hk([0, `(e)]).
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Where

(3.3) L2([0, `(e)]) = {fe ∣∫
`(e)

0
∣f(x)∣2dx <∞},

(3.4) Hk([0, `(e)]) = {fe ∈ L2([0, `(e)]) ∣∫
`(e)

0
(∣f(x)∣2 +

k

∑
n=1

∣d
nf(x)
dxn

∣2)dx <∞}.

Along each edge, the Laplacian can be defined as

(3.5) −∆fe ∶= fe → −d
2fe
dx2

.

On each edge the domain of the Laplacian is H2([0, `(e)]). In order to make −∆ self-
adjoint on G, we further restrict the domain to functions which satisfy the vertex conditions
(2.4).

(3.6) D(−∆(G)) = {f ∈H2(E) ∣ f satisfies the vertex conditions}
For a proof that −∆(G) is self-adjoint acting on D(−∆(G)) we refer the reader to

Theorem 1.4.4 of [5]. We can associate −∆(G) with its quadratic form

(3.7) h[f, f] ∶= ∑
e∈E
∫
e
∣dfe
dx

∣2dx,

the domain for h is defined as

(3.8) D(h) =H1(G) = {f ∈H1(E) ∣ f is continuous on G}.
Through out this paper we will assume all quantum graphs are compact and contain a

finite number of edges and vertices. The spectrum of −∆(G) will be referred to as σ(−∆(G)),
or σ(−∆) when G is clear. The following comes from [5], Theorem 3.1.1.

Theorem 3.1. If G is a compact quantum graph, then σ(−∆) only contains isolated
eigenvalues with finite multiplicity and as j →∞, λj →∞.

Proof. Restricting ourselves to D(−∆(G)), −∆(G) is self adjoint. This implies the
resolvent (−∆− iI)−1 continuously maps L2(E)→ D(−∆(G)) ⊂H2(E). By the Sobolev em-
bedding theorem the embedding of H2(E)→ L2(E) is compact, which implies the resolvent
is compact. �

The above theorem implies that for all λj ∈ σ(−∆(G)), there exists a function ψj ∈
D(−∆(G)) such that

(3.9) (−∆ − λj)ψj = 0.

We will refer to λj and ψj as eigenvalue, eigenfunction pairs. Because −∆(G) is self-
adjoint on D(−∆(G)) all eigenvalues must be real. We order the eigenvalues such that
λj ≤ λj+1 for all j ∈ {0,1,2, ...}. It is well known that all eigenfunctions are contained in
C∞(G) and for eigenvalues such that λi ≠ λj , the eigenfunctions ψi and ψj are orthogonal,
meaning

(3.10) ∫
G
ψjψi = 0.

We can ensure that all eigenfunctions are orthogonal. Let n be the dimension of the
eigenspace associated with the eigenvalue λj , call this space Sj . By the Gram-Schmidt pro-
cess we can choose n functions {φ1, φ2, ..., φn} in Sj such that each function φj is orthogonal
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to φi, i ≠ j. We then choose {φ1, φ2, ..., φn} to be the eigenfunctions associated with the
eigenspace Sj .

Finding the values for eigenvalues, and bounding eigenvalues, frequently makes use of
the Rayleigh quotient. The Rayleigh quotient on G is defined as

(3.11) R(f) ∶=
∑e∈E ∫e ∣

dfe
dx

∣2dx
∑e∈E ∫e ∣fe∣2dx

.

Because all of the eigenfunctions can be made to be orthogonal and the set {ψj}∞j=0 is

a basis for L2(E), we can use the min-max formula to express all eigenvalues

(3.12) λj−1 = min
X⊂D(−∆(G))
dim(X)=j

{max
f∈X

{R(f)}}.

The first non-trivial eigenvalue λ1 is known as the spectral gap. In physics, the spectral
gap has the interpretation as the smallest non-zero energy for a domain, or the first excited
state. In the next chapter, we will further examine the spectral gap and provide common
techniques and strategies for bounding the spectral gap.

4. Main Results

The topics in this paper can be separated into three main categories:

● Bounding the spectral gap
● Bounding the heat kernel
● Mean value formula for the heat equation

The main result for bounding the spectral gap is a sharp upper bound on the spectral
gap using the diameter and ∣V ∣ for a graph. The diameter of a graph is defined as

(4.1) D(G) = max
q,q0∈G

{d(q0, q)},

where d(q0, q) is the distance between points q0, q ∈ G. We also provide an algorithm for
finding graphs with spectral gap arbitrarily close to our upper bound.

Theorem 4.1. Let G be a quantum graph with ∣V ∣ vertices and diameter D. Then the
spectral gap is bounded by

(4.2) λ1(G) ≤ (π(∣V ∣ + 2)
2D

)2.

If the diameter can be realized at two vertices then

(4.3) λ1(G) ≤ (π(∣V ∣)
2D

)2.

Furthermore, for all ε > 0, there exists a quantum graph G∗ such that D(G∗) = D and
∣V (G∗)∣ = ∣V ∣ and

(4.4) λ1(G∗) ≥ (π(∣V ∣)
2D

)2 − ε.

In the next chapter, we focus on bounding the heat kernel. Let KG(t, q, q0) be the heat
kernel for G. There are two main results for bounding the heat kernel. The first is a short
time estimate that utilizes the bond scattering matrix for G. The bound presented below
is along the diagonal of the heat kernel, i.e. q0 = q, however the theorem is extended to off
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diagonal results.

Proposition 4.2. Let G be an arbitrary quantum graph with minimum edge length a0.
For q ∈ G, let v0 be the closest non-artificial vertex with degree d0. For t < a2

0/2log(m),

(4.5) K(t, q, q) = 1√
4πt

[1 + ( 2

d0
− 1)e−d(v0,q)

2/t +O(me−a
2
0/t)].

The next bound involves identifing a class of edges called direct path bounded edges. For
any edge in this class the heat kernel can be bounded by a Neumann interval with length
`(e), where q and q0 have the same relative spacing on the Neumann interval as on e.

Theorem 4.3. Let q, q0 ∈ e, where e is direct path bounded. Let e have vertices vl and
vr with `1 ∶= ∣vl − q0∣ and `2 ∶= ∣vr − q0∣. If every path from q0 to q0 containing both vr and vl
has length equal to or greater than max{2`1,2`2}. Then

(4.6) KG(t, q, q0) ≤KI(t, q, q0),
for all t > 0. Where KI(t, q, q0) is the heat kernel for a Neumann interval of length `, and
q, q0 have the same relative positions as on e. If G is not the Neumann interval then the
inequality is strict.

The last section finds two mean value formulas for the heat equation on a quantum
graph and a bound for the mean value formula. The main result from the chapter is given
below. Let Q(q0, t0,C) ∶= {(x, t) ∈ G × (0, t0) ∣ K(t0 − t, q0, q) ≥ C} for some C > 0, q0 ∈ G,
and t0 ∈ (0,∞). We refer to Q(q0, t0,C) as the heat ball.

Theorem 4.4. Let G be a compact quantum graph and let u(q, t) satisfy the heat equa-
tion, then

(4.7) u(q0, t0) = ∫
∂Q

−uKxn1ds.

Where ∂Q is the boundary of the heat ball Q(q0, t0,C) for some C > 0.



CHAPTER 2

The Spectral Gap

1. Introduction to the Spectral Gap

Let −∆ ∶= −d2/dx2 be the Laplace operator which acts on the L2 space of functions on
the edges of G. −∆ has the quadratic form

(1.1) h[f, f] ∶= ∣∣f ′∣∣2.
The domain for h are functions which are H1 along each edge of G and are continuous

on G, we will refer to this space of functions as H1(G).

Definition 1.1. The spectral gap is the first non-trivial eigenvalue of the Laplace op-
erator, −d2/dx2, which we will call λ1.

Using the Rayleigh quotient we can find an explicit expression for λ1,

(1.2) λ1 = inf {∫G
∣f ′∣2

∫G ∣f ∣2
∶ f ∈ D(−∆(G)),∫

G
f = 0}.

For many simple graphs we can exploit symmetries of the graph to find the first eigen-
value. All quantum graphs can be thought of as being constructed by connecting simpler
sub-graphs. For example, a star graph is a graph with a single central vertex of degree dv
and dv edges connected to the central vertex; all graphs are the union of connected star
graphs. Understanding simple graphs builds an understanding of how size and shape affect
the spectral gap. It is also a common strategy to utilize simple graphs to bound the spectral
gap.

Below is a list of several common graphs and there exact spectral gap.

1) Path Graph I(L): Consists of a single edge of length L and two degree 1 vertices.
Because both vertices are degree one the second vertex condition forces the path graph to
coincide with a Neumann interval of length L, as pointed out in (2.4). Hence,

(1.3) λ1(I(L)) =
π2

L2
.

2) Symmetric Star Graph S(L,E): The symmetric star graph has a single central vertex
and ∣E∣ edges of equal length L

∣E∣ .

(1.4) λ1(S(L,E)) = π
2E2

4L2
.

7
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Figure 1. A symmetric star graph with 6 edges.

3) Symmetric Flower Graph F(L,E): A symmetric flower graph also has a single central
vertex and ∣E∣ edges of length L

∣E∣ . However, all edges of a flower graph are loops, meaning

both end points are attached to the central vertex.

(1.5) λ1(F (L,E)) = π
2E2

L2
.

Figure 2. A symmetric flower graph with 5 edges.
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3) Symmetric Pumpkin Graph K(L,E): A symmetric pumpkin graph has two vertices
and ∣E∣ edges. The vertices are the end points for each edge in K(L,E), all edges have
length L

∣E∣ .

(1.6) λ1(F (L,E)) = π
2E2

L2
.

Figure 3. A symmetric pumpkin graph with 4 edges.

Our goal is to bound the spectral gap, λ1. However, it is easy to show that for an
arbitrary quantum graph one can not bound the spectral gap from above or below. Consider
trying to bound the spectral gap from below. Let {I(n)}∞n=1 be a sequence of path graphs
with length n ∈ {1,2, ...}, then

(1.7) λ1(I(n)) =
π2

n2
.

Clearly, the spectral gap of this sequence converges to zero.

Bounding the spectral gap from above is also impossible. Consider the sequence of
symmetric star graphs {S(L,n)}∞n=1, each graph in the sequence has the same total length
L, and the number of edges increases for each graph in the sequence. We can compute the
spectral gap for the nth graph in the sequence as

(1.8) λ1(S(L,n)) =
π2n2

L2
.

The spectral gap for this sequence diverges.

These examples show that it is easy to find graphs with arbitrarily large spectral gaps
or spectral gaps arbitrarily close to zero. However, if we fix a characteristic of the graph,
i.e. L or ∣E∣, it may be possible to create a bound. In the path graph sequence {I(n)}∞n=1,
fixing L would have excluded this sequence. In the second example, {S(L,n)}∞n=1, fixing
∣E∣ would have excluded the sequence. The most natural parameters to use to bound the
spectral gap are:

(1) L := total length of G.
(2) ∣V ∣ := total number of vertices of G.
(3) ∣E∣:= total number of edges of G.
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(4) D := the diameter of G.

Definition 1.2. The diameter of a graph G, denoted D(G) or simply D if G is under-
stood, is defined as the largest distance between two points in G,

(1.9) D(G) ∶= sup{d(q1, q2) ∶ q1, q2 ∈ G}.

Many results have been proven using one or several of the parameters above. Using only
the length as a parameter the following lower bound for the spectral gap was first proven
by Serge Nicaise [17],

(1.10) λ1 ≥
π2

L2
.

This makes intuitive sense as you would expect diffusion to be slowest on an interval.
This result was extended by Leonid Friedlander [9] to be a lower bound for all eigenvalues
of G,

(1.11) λn(G) ≥ (π(n + 1)
2L

)2,

for n ≥ 2. No upper bound can be found fixing the total length of a graph, this follows from
the sequence of symmetric star graphs, {S(L,n)}∞n=1.

Other bounds rely on the procedure of graph surgeries, changes to the original graph
G that monotonically affect the spectral gap. These surgeries are used in sequence to
transform an arbitrary graph into a graph where the spectral gap is able to be calculated.
If each surgery in the sequence monotonically increases the spectral gap, then the resulting
graph must have a larger first eigenvalue and you can bound the spectral gap from above.
If each surgery in the sequence decreases the spectral gap, then the first eigenvalue of the
resulting graph is a lower bound.

In order to introduce these surgeries we need the following definitions:

Definition 1.3. A pendant sub-graph is a sub-graph of G that is connected to the
larger graph at a single vertex.

Definition 1.4. We identify two vertices by joining them to make a single vertex. If
v1 and v2 are identified to make a new vertex v0, then any edge with either v1 or v2 as an
endpoint now has v0 as an endpoint. Any edge connecting v1 and v2 becomes a loop at v0.

Let G be the original graph and G′ the graph after performing a surgery. We will state
each surgery such that λ(G′) ≤ λ(G). We point out that the reverse action must increase
the spectral gap. The following Lemma largely follows work found in [13], for a more in
depth look at graph surgeries we point the reader to [15].

Lemma 1.5. Assume G and G′ are compact, connected, and finite quantum graphs.
Then for the following

(1.12) λ1(G′) ≤ λ1(G)
(1) If G′ is the result of connecting a pendant sub-graph to G.
(2) If G is the result of identifying two vertices of G′.
(3) If G′ is the result of lengthening an edge of G
(4) If G′ is the result of scaling G by C ≥ 1, then

(1.13) C−2λ1(G′) = λ1(G)
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Proof. Results (1) and (3) rely on finding a test function on the new graph G′ that
is orthogonal to the constants and has a Rayleigh quotient smaller than λ1(G).

1) Attaching a pendant: Assume the pendant is attached at some vertex v. Let ψ1

be the eigenfunction of G associated with the eigenvalue λ1(G). We can extend ψ1 to a

function ψ̃ ∈ H1(G′) by setting ψ̃ = ψ1(v) on the pendant, which we label G′ ∖ G. Let

φ = ψ̃ − ∫G′∖G ψ1(v), clearly, φ ∈ H1(G′) and it is easy to calculate that ∫G′ φ = 0. Using

∫G ψ = 0 and setting α = ∫G′∖G ψ1(v), we calculate the Rayleigh quotient of φ as

∫G′ ∣∣φ′∣∣2

∫G′ ∣∣φ∣∣2
= ∫G ∣∣ψ′1∣∣2

∫G ∣∣ψ̃ − α∣∣2 + ∫G′∖G ∣∣ψ̃(v) − α∣∣2
,(1.14)

= ∫G ∣∣ψ′1∣∣2

∫G ψ2
1 − 2ψ1α + α2 + ∫G′∖G ∣∣ψ̃(v) − α∣∣2

,(1.15)

= ∫G ∣∣ψ′1∣∣2

∫G ψ2
1 + α2 + ∫G′∖G ∣∣ψ̃(v) − α∣∣2

,(1.16)

≤ ∫G
∣∣ψ′1∣∣2

∫G ∣∣ψ1∣∣2
,(1.17)

= λ1(G).(1.18)

2) Identifying two vertices: Let G be the result of identifying two vertices of G′. If

f ∈H1(G) then there exists some function f̃ ∈H1(G′) such that for any edge e ∈ G and its

natural counterpart ẽ ∈ G′ we have f(xe) = f̃(xẽ). Where f and f̃ have the same Rayleigh
quotient. Thus, there is a natural identification between the functions in H1(G) and a
subset of functions in H1(G′). The result follows.

3)Lengthening an edge: This is solved in the same way as attaching a pendant, with
the exception that G′ ∖G represents the new added length of the edge.

4) Scaling the graph: Let G be an arbitrary quantum graph and construct G′ by scaling
G by C ≥ 1. Let f ∈H1(G′) and e ∈ G′. Let ẽ ∈ G be the natural counterpart of e. Then we

can identify f with a function f̃ ∈ H1(G) by setting f̃ = f(C−1xe) along ẽ. We can make
the reverse identification by scaling by C. It is easy to calculate the Rayleigh quotient for
the function f̃ ∈H1(G) as

(1.19)
∫G ∣∣f̃ ′∣∣2

∫G ∣∣f̃2∣∣
= ∫G

∣∣f(C−1xe)′∣∣2

∫G ∣∣f(C−1xe)∣∣
= C−2 ∫G′ ∣∣f ′∣∣2

∫G′ ∣∣f2∣∣
.

�

Using these graph surgeries we transform an arbitrary quantum graph into an extremal
graph, a graph where the first eigenvalue is either maximized or minimized given a set of
parameters. The next theorem is an example of this technique. We use the parameters ∣L∣
and ∣E∣ to derive an upper bound on the spectral gap, the theorem can be found in [13].

Theorem 1.6. Let G be a quantum graph with L > 0 and ∣E∣ > 1. Then,

(1.20) λ1(G) ≤ π
2∣E∣2

L2
.
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If ∣E∣ = 1, then G is either a loop or path graph, thus

(1.21) λ1(G) =
⎧⎪⎪⎨⎪⎪⎩

π2

L2 , G is a path graph
4π2

L2 , G is a loop

Proof. Let G be a quantum graph and let G1 be the graph created by identifying all
vertices of G, i.e. G1 is a flower graph. Then by Lemma 1.5

(1.22) λ1(G) ≤ λ1(G1).
Let F be a symmetric flower graph with total length L and ∣E∣ edges. If λ1(G1) ≤ λ1(F ),

then the proof is complete. Let e1 and e2 be the two longest edges of G1 (if the two longest
edges are not unique choose any two longest edges). Then `(e1)+`(e2) ≥ 2L/∣E∣. Each petal
of G1 is a pendant, consider a new graph G2 constructed from G1 by removing all petals
except for e1 and e2, then Lemma 1.5 implies

(1.23) λ1(G1) ≤ λ1(G2).
Let G3 be a graph constructed from G2 by un-identifying the central vertex, i.e. chang-

ing the two petals into a single loop of length `(e1) + `(e2). Again, by Lemma 1.5 we
have

(1.24)
4π2

(`(e1) + `(e2))2
= λ1(G3) ≤ λ1(G2).

However, since any eigenfunction on the circle G3 can serve as a test function on the
two petal graph G2, as long as we insure that the eigenfunction is rotated in such a way as
to satisfy the central vertex condition this proves

(1.25) λ1(G2) ≤ λ1(G3),
which implies

(1.26) λ1(G) ≤ λ1(G3) =
4π2

(`(e1) + `(e2))2
≤ π

2∣E∣2

L2
.

�

The following section introduces pumpkin chain graphs and a more involved sequence
of surgeries that reduces any graph to a pumpkin chain while monotonically increasing the
spectral gap, thus giving us an upper bound on the spectral gap.

2. Diameter Bounds and Pumpkin Chains

In this section we will discuss diameter bounds for quantum graphs. Pumpkin chain
graphs play an important role in bounding the spectral gap using the diameter.

Definition 2.1. A pumpkin chain is a quantum graph constructed by placing symmet-
ric pumpkin graphs end to end. Each vertex is either an end point of the chain or connects
adjacent pumpkins.
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Figure 4. Pumpkin chain with 4 pumpkins and 5 vertices

Pumpkin chains are used when finding diameter bounds on the spectral gap for two
reasons. First, given a graph G with diameter D(G) there exists a sequence of surgeries
from Lemma 1.5 that converts G into a pumpkin chain with diameter D(G) such that
each step in the sequence either increases the spectral gap or leaves it unchanged. This
makes pumpkin chains a natural choice for creating upper bounds using the diameter as a
parameter. The second reason is that finding the first eigenfunction on a pumpkin chain can
be reduced to a Sturm-Liouville problem, making it possible to calculate the first eigenvalue.

The following pumpkin chain algorithm was first introduced by Kennedy et al, 2016
[13].

Lemma 2.2 (Lemma 5.4 of [13]). Given a compact, connected, non-empty metric graph
G, there exists a pumpkin chain K such that

(1) D(G) =D(K), `(G) ≥ `(K), and ∣V (G)∣ ≥ ∣V (K)∣ − 2.
(2) λ1(G) ≤ λ1(K).

If the combinatorial diameter is used, (1) is replaced by

(1′) D(G) =D(K), `(G) ≥ `(K), and ∣V (G)∣ ≥ ∣V (K)∣.

Proof. The pumpkin chain K can be constructed following the algorithm below, all
steps in the algorithm either increase λ1 or leave it unchanged by Lemma 1.5.

Step 1. Choose two points q, q0, ∈ G such that d(q, q0) =D(G). If q and q0 are not vertices,
insert artificial vertices at q and q0 (these extra vertices produce the shift by −2
in (1)). If d(q, q0) = D can be achieved for q, q0 ∈ V , then (1) is modified to (1′).
Let v0 = q and vD = q0.

Step 2. Choose the shortest path between v0 and vD, if this path is not unique, choose any
shortest path. Call this path Γ1. Note, `(Γ1) = D and Γ1 does not contain loops
or any point twice. In the example below, Γ1 is the central path.
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Figure 5. The initial graph G.

Step 3. Find the second shortest path, Γ2, such that Γ2 does not contain any point twice
(edge or vertex) and Γ2 * Γ1. If two or more paths have the same length and
satisfy the above conditions, choose one arbitrarily. If such a path does not exist,
skip to Step 5.

Step 4. Continue to find the next shortest path connecting v0 to vD such that the path
does not contain a point twice and

(2.1) Γk *
k−1

⋃
i=1

Γi,

for each k. Because G is compact, this process must terminate after a finite number
of steps. Let Γn be the last path, we have

(2.2) D = `(Γ1) ≤ `(Γ2) ≤ ⋅ ⋅ ⋅ ≤ `(Γn−1) ≤ `(Γn).
Step 5. Let G1 = ⋃ni=1 Γi. Any connected component of G/G1 must be attached to G1

by a single vertex (i.e., is a pendant of G). If this was not true, we could find a
non-self-intersecting path Γ∗ such that Γ∗ * G1, which would contradict step 4
terminating.

Figure 6. The graph G1, created by removing pendants of G.

Step 6. We now construct a new graph G2 by shortening edges of G1 so that all paths
connecting v0 to vD have length D. Starting with Γ1, if `(Γj) = D we do not
change the path and rename the path Γ∗j . If `(Γj) >D then we shorten edges of Γj

not contained in Γj ⋃j−1
i=1 Γ∗i until `(Γj) = D, and rename the new path Γ∗j . Note

that some paths may have become subsets. The new graph G2 = ∪ni=1Γ∗i .
Step 7. Let S = {d(v0, q)∣q ∈ V (G2)}. For each point q along Γ∗j , j ∈ {1,2, ..., n}, if d(v0, q) ∈

S we ensure there is a vertex at the point by adding an artificial vertex if needed.
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Figure 7. The graph G2, created from G1 by adding the artificial vertex
v1 and shortening edges such that `(e1) = `(e2) = `(e3) and `(e4) = `(e5) =
`(e6).

Step 8. The final step is to identify all vertices with the same distance from v0 i.e. if
d(v0, vi) = d(v0, vj) then we identify vi and vj .

Figure 8. The pumpkin chain K created from G2 by identifying vertices
v1, v2, and v3.

The construction of K involves cutting pendants, shortening edges, and identifying
vertices. From Lemma 1.5, these operations can only increase the spectral gap. Therefore,
λ1(G) ≤ λ1(K). �

Note that the algorithm used in Lemma 2.2 does not yield a unique result. For a
pumpkin chain, finding the first eigenvalue reduces to a Sturm-Liouville problem. Let K be
a pumpkin chain with diameter D and total number of vertices ∣V ∣. Let v1 and v∣V ∣ be the
end vertices of the pumpkin chain. Starting with the pumpkin with end point v1, we label
the kth pumpkin in the chain Gk and its edge multiplicity mk. We construct a function,
r(q) ∶ G → [0,D] such that for q ∈ G, r(q) = d(v1, q). And the function w(x) ∶ [0,D] → Z,
such that if q ∈ Gk then w(r(q)) =mk, the multiplicity of pumpkin Gk.

Lemma 2.3. Let K be a pumpkin chain, then there exists an eigenfunction, ψ1, of K
with eigenvalue λ1(K) such that for q ∈ G, ψ1(q) = φ(r(q)), where φ(x) ∶= [0,D]→ C.

Proof. Let ψ be an eigenfunction of K associated with eigenvalue λ1. We construct a
new eigenfunction ψ1 by averaging the values of ψ along each pumpkin. Let S(x) = {q ∈ G ∣
d(v1, q) = x; x ∈ [0,D]}. The set S(x) is a single point if d(v1, q) = x and q is a vertex.
S(x) has mk points when d(v1, q) = x describes points belonging to the pumpkin Gk. Let
ψ1(x) = ∑q∈S(x) ψ(q)/∣S(x)∣. It is easy to verify that ψ1 is orthogonal to the constants with

Rayleigh quotient λ1(K). �



16

This proves that for a pumpkin chain K, there exists an eigenfunction ψ1 with eigenvalue
λ1(K) such that ψ1(q) is only dependent on d(v1, q). We can use the coordinate system
x ∈ [0,D] to indicate the longitudinal position along the graph K, and use the function
w(x) to indicate the multiplicity of the pumpkin at position x. This reduces the problem
to a one dimensional Sturm-Liouville problem of the form

(2.3) λ1 = inf {∫
D

0 ∣φ′(x)∣2w(x)

∫
D

0 ∣φ(x)∣2w(x)
∶ φ ∈H1([0,D]),∫

D

0
φ(x)w(x) = 0}.

3. Sharp Diameter Bound for Quantum Graphs

Kennedy et al. [13] proved that by fixing the diameter and total number of vertices the
spectral gap was bounded above by

(3.1) λ1(G) ≤ (π(∣V ∣ + 1)
D(G)

)2.

If the diameter can be realized at two vertices then the estimate improves to

(3.2) λ1(G) ≤ (π(∣V ∣ − 1)
D(G)

)2.

This estimate is sharp if ∣V ∣ = 2. The following theorem extends their work, creating a
smaller upper bound that is shown to be sharp for all ∣V ∣.

Theorem 3.1. Let G be a quantum graph with ∣V ∣ vertices and diameter D. Then the
first non-zero eigenvalue satisfies

(3.3) λ1(G) ≤ (π(∣V ∣ + 2)
2D

)2.

If the diameter can be realized at two vertices then

(3.4) λ1(G) ≤ (π(∣V ∣)
2D

)2.

And for all ε > 0, there exists a quantum graph G∗ such that D(G∗) = D and ∣V (G∗)∣ = ∣V ∣
with

(3.5) λ1(G∗) ≥ (π(∣V ∣)
2D

)2 − ε.

Proof. Let G have ∣V (G)∣ vertices and diameter D(G). Using the algorithm from
Lemma 2.2 we can construct a pumpkin chain K such that

(3.6) λ1(G) ≤ λ1(K).
Where K has diameter D and at most ∣V (G)∣ + 2 vertices. We label the pumpkins

K1, ...,K∣V (K)∣−1, where pumpkin Kj has length `j and multiplicity mj .
As in Lemma 2.3, we construct a coordinate system along K. Let v0 be an endpoint of

K, then d(v0, q) = x, x ∈ [0,D] defines the coordinate system along each edge. As before
in equation (2.3), w(x) is a weight function that returns the multiplicity of the pumpkin at
d(v0, q) = x ∈ [0,D]. Then for any function ψ ∈ H1(G), where ψ(q) is only dependent on
d(v0, q) the Rayleigh quotient for ψ can be expressed

(3.7) R(ψ) = ∫
D

0 ∣ψ′(x)∣2w(x)dx

∫
D

0 ∣ψ(x)∣2w(x)dx
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Let Kr be the longest pumpkin in K, i.e. `r ≥ `j for all j ∈ {1,2, ..., ∣V (K)∣ − 1}, with
endpoint v1 where d(v0, v1) = x1, and v1 is the closest vertex of Kr to v0. We construct the
following test function along K,

ψ1(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b1, x ≤ x1,

b1 cos[π(x − x1)/`r], x1 ≤ x ≤ x1 + `r/2,
b2 cos[π(x − x1)/`r], x1 + `r/2 ≤ x ≤ x1 + `1,
−b2, x ≥ x1 + `r.

Choosing b1 and b2 such that

(3.8) ∫
D

0
ψ1(x)w(x) = 0.

The numerator of the Rayleigh quotient for ψ1 is

(3.9) ∫
x2

x1

∣ψ′1(x)∣2mr =
π2mr

2lr
(b21 + b22),

and the denominator is bounded by

(3.10) ∫
x2

x1

∣ψ1(x)∣mr ≥
`rmr

2
(b21 + b22).

This implies

(3.11) λ1(K) ≤ π
2

`2r
.

We construct a second test function ψ2(x), where ψ2 is a quarter period cosine on the
two longest pumpkins in K and constant on all other pumpkins. Let Kt be a pumpkin in
K such that `t ≥ `j for all j ∈ {1,2, ..., ∣V (K)∣ − 1}, j ≠ r. Let Kt have endpoint v2 where
d(v0, v2) = x2, and v2 is the closest vertex of Kt to v0. Without loss of generality let x1 < x2,
and

ψ2(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b3, x ≤ x1,

b3 cos[π(x − x1)/2`2], x1 ≤ x ≤ x1 + `2,
0, x1 + `2 ≤ x ≤ x2,

−b4 sin[π(x − x2)/2`2], x2 ≤ x ≤ x2 + `2,
−b4, x ≥ x2 + `2.

Again, choosing b3 and b4 such that

(3.12) ∫
D

0
ψ2(x)w(x) = 0.

For ψ2 the numerator is

(3.13) ∫
D

0
∣ψ′2∣2w(x)dx = π2

8`t
(mrb

2
3 +mtb

2
4).

The denominator is bounded by

(3.14) ∫
D

0
∣ψ2∣2w(x)dx ≥ `t

2
(mrb

2
3 +mtb

2
4).

Which implies
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(3.15) λ1(K) ≤ π2

4`2t
.

Given the constraints (3.11) and (3.15), we can find the maximum value for λ1(K).
Since `t ≥ `j for j ∈ {1,2, , ..., ∣V (K)∣ − 1}, j ≠ r we have

(3.16) (∣V (K)∣ − 2)`t ≥D − `r.

Combining this with (3.15) gives the bound

(3.17) λ1(K) ≤ π
2(∣V (K)∣ − 2)2

4(D − `r)2
.

Thus,

(3.18) λ1(K) ≤ π2(min{1/`r,
(∣V (K)∣ − 2)

2(D − `r)
})2.

The maximum is achieved when `r = 2D/(∣V (K)∣ − 1) which proves 3.3, and 3.4 if no
vertices were added in constructing K from the original graph G.

To prove the above estimate is sharp, given ε > 0, D, and ∣V ∣ we must find a graph G∗

such that D(G∗) =D, V (G∗) = ∣V ∣ with

(3.19) λ1(G∗) > (π∣V ∣
2D

)2 − ε.

Based off the calculations in Theorem 3.1, G∗ will be a pumpkin chain with ∣V ∣ − 1
pumpkins. One of the pumpkins should have length 2D/(∣V ∣ − 1), and all other pumpkins
will have length D/(∣V ∣ − 1).

For arbitrarily small values of δ > 0, to be specified later, we will choose edge multiplic-
ities that produce the eigenvalue λ1(G∗) = σ2

1 where

σ1 =
π

2(a + δ)
.

If δ is small, an interval of length a will contain slightly less than a quarter period of
cos(σ1x). Choosing an orientation and initial vertex v0, let d(v0, vj) = xj where vj is the
first vertex of pumpkin Kj , for j = 1, . . . , (∣V ∣−1). One of the segments has length 2a, which
we label by j0. (We do not assume the lengths are arranged in order.) The strategy is to
splice together functions of the form

(3.20) hj(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

cos(σ1(x − xj) + ηj), 1 ≤ j ≤ j0,
sin(σ1(x − xj) + ηj), j0 < j ≤ ∣V ∣ − 1.

Each phase shift ηj will be an integer multiple of σ1δ/2. First, we determine the phase
shift for given δ. Then multiply each hj by an amplitude term bj to satisfy the continuity
condition. In order to satisfy the net flow vertex condition, our edge multiplicities mj will
be determined.
We start with specifying ηj If j ≠ j0, then

ηj ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if j = 1,

σ1δ/2, if 1 < j <m,
σ1δ, if j =m.
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For the segment of length 2a, j = j0, the phase shifts,

ηj0 ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if j0 = 1,

σ1δ, if 1 < j0 <m,
2σ1δ, if j0 =m.

Let the edges of sub-pumpkin Kj have length `j . The full eigenfunction φ, is defined by
setting

φ(x) ∶= bjhj(x), for x ∈ [xj , xj + `j],
with bj defined by the continuity condition. The matching conditions at vertex xj are

bj−1hj−1(xj) = bjhj(xj),
bj−1mj−1h

′
j−1(xj) = bjmjh

′
j(xj),

(3.21)

for j = 2, . . . , (∣V ∣ − 1). Hence the edge multiplicities satisfy the condition

(3.22) mj−1h
′
j−1(xj) =mjh

′
j(xj), 2 ≤ j ≤m.

Choosing δ so that sin(σ1δ/2) and cos(σ1δ/2) are both rational, then by basic trigonometric
identities all of the values of h and h′/σ appearing in (3.22) will be rational. Hence, we can
find a set of integers m1, . . . ,m∣V ∣−1 satisfying 3.22.

We can find arbitrarily small values of δ satisfying the rational condition by choosing a
large integer n and setting

(3.23)
σ1δ

2
= πδ

4(a + δ)
= arctan( 2n

n2 − 1
) .

Let δ be small enough such that σ1δ < π/8, After choosing the corresponding integers
m1, . . . ,m∣V ∣−1 satisfying ((3.22)), we can then solve the coefficient equations ((3.21)) to

construct an eigenfunction φ with eigenvalue λ = σ2
1 . If σ1δ < π/8, φ will be strictly decreas-

ing, with a single zero at the midpoint of Kj0 .
To show that φ corresponds to eigenvalue λ1(K), assume there exists an eigenfunction

ψ associated to the eigenvalue λ < σ2
1 . On K1, ψ = b1 cos(

√
λx + α1) and since

√
λ < σ1 on

each Kj , j ≤ j0, ψ must take the form bj cos(
√
λx+αj). If we re-scale such that ψ(0) = φ(0),

for all x ≤ xj0 + a then ψ(x) > φ(x) i.e. ψ does not contain a zero on the interval [0, xj + a].
We can apply the same logic in reverse starting from ψ(D), and deduce ψ does not have
a zero on the interval [xj + a,D]. Clearly, this is a contradiction as ψ is continuous and
orthogonal to the constants. Thus, φ must correspond to λ1(K). �

Given a delta, the multiplicities can be calculated using (3.23). For ∣V ∣ = 5, D = 1
and choosing K2 to be the pumpkin with double length we find the multiplicities m1 = 1,
m2 = 1010, m3 = 1020, and m4 = 2 × 1010 correspond to the eigenvalue λ1(K) = (2.49998π)2

which is very close to our bound of λ1(K) ≤ (2.5π)2.



CHAPTER 3

The Heat Kernel

1. Introduction to the Heat Kernel

Let G be a compact connected quantum graph. Consider the initial value problem on
G for f(x) ∈H1(G), where along each edge e ∈ G

(1.1)

⎧⎪⎪⎨⎪⎪⎩

∆u(x, t) = ∂u(x,t)
∂t

,

u(x,0) = f(x).

Where u(x, t) must satisfy the vertex conditions,

(1.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(x, t) is continuous on G

and

∑e∼v
∂u(x,t)
∂xe

= 0,

for all t > 0.

We can find a solution for u(x, t) using the integral kernel,

(1.3) u(x, t) = et∆f.
The eigenfunctions of −∆ form a basis for L2(G), Let {ψn}∞n=0 be this basis of eigenfunctions
where ψi is the eigenfunction with eigenvalue λi. In this basis, f can be expressed

(1.4) f =
∞
∑
n=0

Anψn,

where

(1.5) An = ∫
G
f(y)ψn(y)dy.

Then et∆f is

et∆f =
∞
∑
n=0

Ane
−tλkψn(x),(1.6)

=
∞
∑
n=0

[∫
G
f(y)ψn(y)dy]e−tλkψn(x),(1.7)

= ∫
G
[
∞
∑
n=0

e−tλkψn(x)ψn(y)]f(y)dy.(1.8)

(1.9)

The bracketed summation inside the integral is the heat kernel on G and is the fun-
damental solution to the initial-boundary problem stated in 1.1 and 1.2. We will use the
notation

20
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(1.10) KG(t, q, q0) =
∞
∑
n=0

e−tλkψn(q)ψn(q0).

Where q and q0 are points along edges of G. If the eigenfunctions for −∆ are known then
the heat kernel can be represented explicitly. The eigenfunctions of −∆ on each edge of G
have the form

(1.11) ψn = Bn cos(
√
λnxe +Cn).

However, in general the constants in the above formula are unknown. In the next
section we will introduce another representation of the heat kernel, which we will use to
prove the main results for this chapter. For a more in depth introduction to heat kernels on
Riemannian manifolds we point the reader to [10].

2. Bond Scattering Matrix and Heat Kernel Formula

Let G be a compact connected quantum graph. For any pair of vertices v,w (possibly

coinciding) connected by an edge e, we call a directed bond either of the ordered sets
Ð→
b vw ∶=

{v,w} and
←Ð
b vw ∶= {w, v} =

Ð→
b wv. We say that a bond

Ð→
b vw is incoming at w and outgoing

from v. Two bonds
Ð→
b vw and

Ð→
b uz are consecutive if w = u, i.e. if

Ð→
b vw is an incoming bond

and
Ð→
b wz is an outgoing bond for the same vertex w.

As in definition 2.2 from Chapter 1, we define a path along G as an ordered sequence of

consecutive bonds {
Ð→
b v1v2 ,

Ð→
b v2v3 . . . ,

Ð→
b vn−1vn}. For any path p, its length is denoted `(p)

which is calculated by summing the lengths of all bonds in p.
Fix two points q and q0 along edges of G and insert artificial vertices vq at q and vq0

at q0. Call P (q, q0) the collection of paths beginning at vq and ending at vq0 , this is clearly
a countable set. If q = q0 we include in P (q, q) the trivial path i.e. the empty sequence {},
and we say that the trivial path has length zero.

Assume the graph G, including the artificial vertices vq and vq0 , has m edges (hence
2m bonds). We fix an ordering on the set of bonds in G so that given any 2m × 2m matrix
A = {aik}, we can uniquely associate each row and each column of A with a bond. According
to the ordering on the bonds in G we can also identify any path p with an ordered sequence
of integers {i1, . . . , iq} ∈ {1, . . . ,2m}q, so that we can set

(2.1) αA(p) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if q = 0,1,

q−1

∏
`=1

ai`i`+1 if q ≥ 2.

In particular the bond scattering matrix B is a 2m × 2m orthogonal matrix with coeffi-
cients

(2.2) βik ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2/dv − 1 if k =
Ð→
b wv and i =

←Ð
b wv (bounce),

2/dv if k =
Ð→
b wv and i =

Ð→
b vu with

Ð→
b wv ≠

Ð→
b vu (transfer),

0 otherwise.

We will refer to βik as a scattering component of B.

Remark 2.1. Note that if a graph G′ is obtained from G by adding an artificial vertex,
then any path p in G corresponds to a path p′ in G′ and one has

αB(p) = αB′(p′).
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When the matrix B is understood, we will use the simpler notation α(p).

Definition 2.2. We will call KG(t, q, q0) a rational heat kernel if after inserting the
artificial vertices vq and vq0 all edges have rational length.

From [14], we quote the following

Proposition 2.3. For a compact quantum graph G, if αB(p) is defined as in (2.1) with
B as in (2.2), then the heat kernel for G is given by

(2.3) KG(t, q, q0) =
1√
4πt

∑
p∈P (q,q0)

αB(p)e−`(p)
2/4t.

In light of Proposition 2.3, we call the coefficients αB(p) the heat path coefficients when
B is the bond scattering matrix.

Example 2.4. For a single interval I of length `, with Neumann boundary conditions,
the eigenfunction expansion of the heat kernel is

KI(t, q, q0) =
1

`
+ 2

`

∞
∑
j=1

e−(
jπ
` )

2t cos( jπ
`
q) cos( jπ

`
q0).

The alternative formula given by Proposition 2.3 is actually the result obtained by the
method of images:

(2.4) KI(t, q, q0) =
1√
4πt

∑
k∈Z+

[e−(q−q0+2k`)2/4t + e−(q+q0+2k`)2/4t] .

3. Heat Kernel for Small Time

From (2.3), it is clear that for small enough time the contributions from the shortest
paths dominate the sum. The following proposition bounds the heat kernel for small time.

Proposition 3.1. Let G be an arbitrary quantum graph with minimum edge length a0

and m edges. For a point q ∈ G, let v0 be the closest non-artificial vertex with degree d0.
For t < a2

0/2log(m),

(3.1) K(t, q, q) = 1√
4πt

[1 + ( 2

dv0
− 1)e−d(v0,q)

2/t +O(me−a
2
0/t)].

Proof. Let e have vertices v0 and v1 and q ∈ e, with d(v0, q) ≤ d(v1, q). Let ∣E(G)∣ =m.
The set P (q, q) contains the trivial path, the path with a single reflection off of v0, and the
path with a single reflection off of v1. All other paths in P (q, q) contain a complete edge.
Let R(t, q) be the contribution to (2.3) from all paths containing a complete edge. We can
re-write (2.3) as

(3.2) K(t, q, q) = 1√
4πt

[1 + ( 2

dv0
− 1)e−d(v0,q)

2/t + ( 2

dv1
− 1)e−d(v1,q)

2/t +R(t, q)].

Suppose that p is a path in P (q, q) containing k complete edges, k ≥ 1. Then, `(p) ≥
ka0 + 2d(v0, q), where a0 is the shortest edge of G. The number of paths containing exactly
k edges is bounded by mk. Thus we can bound R(t, q),

(3.3) ∣R(t, q)∣ ≤
∞
∑
k=1

mke−(2d(v0,q)+ka0)
2/4t.

For t < a2
0/2log(m) and k ≥ 1, we can bound each term in the sum above by
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(3.4)
(ka0)2

4t
+ klog(m) ≥ −a

2
0

4t
+ ka

2
0

2t
+ klog(m).

Creating a new bound for R(t, q),

∣R(t, q)∣ ≤
∞
∑
k=1

mkea
2
0/4t−ka

2
0/2t,(3.5)

=
∞
∑
k=1

ea
2
0/4t(me−a

2
0/2t)k,(3.6)

= me−a
2
0/4t

1 −me−a20/2t
.(3.7)

�

Using a similar strategy, for points q1 ≠ q2

(3.8) K(t, q1, q2) ∼
c√
4πt

e−d(q1,q2)
2/4t.

Where c is the sum of α(p) coefficients for all minimum distance paths between q1 and q2,

(3.9) c = ∑
p∈P (q1,q2)
`(p)=d(q1,q2)

α(p).

We note that minimal paths can’t contain reflections, so for all α(p) in the above sum

(3.10) α(p) =∏
v∈p

2

dv
> 0.

4. Construction of the Graph G∗
n

In the following sections our goal is to show that for particular edges we can bound the
heat kernel coefficients associated with paths in P (q, q0). For these special edges, we can
use the bound on the heat path coefficients to bound the heat kernel.

We start by partitioning the paths in P (q, q) by

(1) The initial direction of the path (leaves q to the left or right).
(2) How many times the path returns to the point q.

We will need to control the sum of heat path coefficients for paths with less than M
bonds. Every heat path coefficient α(p), can be associated with a path p via (2.1). To
control the sum of coefficients in each partition we will construct directed bond graphs
(DBG) G∗

n for n ∈ {1,2, ...}. These DBG will allow us to control the sum of coefficients for
the two partitions that return to q n-times, and are defined as follows.

Definition 4.1. A graph is a set of vertices connected by edges. With each edge we
can associate two directed bonds. A directed bond graph is a set of vertices and bonds.
Given a graph G, we define the directed bond graph (DBG) G∗ associated to G as the set
of vertices and bonds of G (i.e. G where the edges are all replaced by directed bonds).

We start by constructing a new graph G′ by inserting two artificial vertices on either
side of vq along the same edge e, call these vertices v1 and v2. We also introduce the set
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P(q), which is all paths along G′ from vq to vq that do not bounce at artificial vertices
(namely vq, v1, and v2).

Note a subtle but important distinctions between the sets P(q) and P (q, q). Every path
in P(q) corresponds to a path in P (q, q), but because of the inserted vertices v1 and v2 the
path in P(q) will contain more bonds and hence more bond transfers.

We number the bonds of G′ according to the following picture where only the edge e is
included:

Figure 1. Outgoing bonds of vq are labeled 1 and 2, incoming bonds of
vq are 3 and 4, and outgoing bonds of v1 and v2 oriented away from vq are
bonds 5 and 6 respectively

Note that we choose this numbering only for computational convenience, any alternate
numbering would not change our result. Fix some numbering for all other bonds of G′. Let
B′ be the bond scattering matrix for the graph G′. By construction vq, v1, and v2 are all
artificial vertices. This implies the entries of columns 1 through 4 of B′ are zeros except
for a single entry equal to 1. Since the scattering component for bond transfers at artificial
vertices is equal to 1, while it is zero for bounces. Moreover, if a path p bounces at a vertex
of degree two, then by (2.1) we have α(p) = 0, hence such a path does not contribute to the
heat kernel formula. This means

KG(t, q, q) =KG′(t, q, q) = 1√
4πt

∑
p∈P (q,q)

αB(p)e−`(p)
2/4t = 1√

4πt
∑

p′∈P(q)
αB′(p′)e−`(p

′)2/4t .

We insert the artificial vertices v1 and v2 because we will need to change the out-going
bonds of vq to loops. Inserting these vertices allows us to construct paths from v1 or v2 to
vq with the same heat path coefficients as paths in P(q).

Now consider the DBG (G′)∗ associated with G′ and construct the DBG G∗
1 by changing

the outgoing bonds of vq (bond 1 and bond 2) to loops from vq to vq. We construct the

matrix B*
1 from B′ by changing columns 1 through 4 of B′ to have a one in the first row and

zeros elsewhere, keeping all other columns the same. Note that a path p containing bond
3 (respectively bond 4) has αB*

1
(p) = 0 if the bond directly following bond 3 (respectively

bond 4) is not bond 1 (respectively bond 2).
In Figure 2, we show the DBG (G′)∗ and G∗

1 for a 3 edged star graph.
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Figure 2. (a) The Graph (G′)∗ for a 3 edged star graph and (b) the DBG
G∗

1 for the same 3 edged star graph

To construct the DBG G∗
n, we start with n copies of the DBG (G′)∗. Assume (G′)∗

has 2m bonds. Each copy of (G′)∗ is ordered and relabeled such that bond i on copy k of
(G′)∗ is renumbered to be i + (k − 1)2m. Each copy of vq is relabeled such that vq on copy
k becomes vqk . Then we connect each copy of (G′)∗ by having bond 4 + (k − 1)2m transfer
to bond 6 + 2mk for k ∈ {1,2, ..., n}, i.e bond 4 is connected to bond 6 of the next copy of
(G′)∗ and bond 3+ (k − 1)2m is connected to bond 5+ 2mk, i.e. bond 3 transfers to bond 5
of the next copy of (G′)∗. On the last copy of (G′)∗, copy number n, (G′)∗ is converted to
G∗

1, i.e. bond 1 + (n − 1)2m and bond 2 + (n − 1)2m are changed to loops from vqn to vqn .
We force the length of each bond in G∗

n to be the same length as the corresponding bond
in (G′)∗.

We now introduce a 2mn× 2mn matrix B∗
n obtained from B′ as follows. We start with

a 2mn× 2mn block diagonal matrix, containing n blocks of size 2m× 2m, where each block
is the matrix B′. The matrix entries equal to one in the 3rd and 4th columns are moved
down 2m+ 4 rows for each block, excluding the last block where this is not possible. So, we
change b24 = 1 to b24 = 0 and b(6+2m)(4) = 0 to b(6+2m)(4) = 1. Similarly, b13 = 1 is changed to

b13 = 0 and b(5+2m)(3) = 0 to b(5+2m)(3) = 1. The last block is converted to the matrix B*
1.

Note that for each block, only entries associated with either incoming or outgoing bonds
of vq are changed. The DBG G∗

2 for a three edged star graph is given in Figure 4.
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Figure 3. (a) Two copies of the DBG (G′)∗ with renumbered bonds, and
(b) G∗

2, bond 3 connects to bond 5+12=17 and bond 4 connects to bond
6+12=18. Bonds 1+12 and 2+12 are changed to loops

In the next section we will show there exists a bijection Ψ between non-trivial paths p
along G′ that return to vq n-times and paths p∗ along G∗

n from vq1 to vqn . Furthermore,
the bijection preserves the heat path coefficient for each path in the sense that

(4.1) αB′(p) = αB*
n
(Ψ(p)).

By investigating the heat path coefficients for paths from vq1 to vqn along G∗
n, we can

deduce information about the heat path coefficients for paths in P (q, q) that return to vq
n-times. Investigating the non-zero heat path coefficients for the DBG G∗

n will be easier
because the loops at vqn “trap” the heat path coefficients at the bond 1 + 2(n − 1)m (first
loop of vqn).

5. Identifying Paths along G′ and G∗
n

We will show there is a bijection Ψ between non-trivial paths in P(q) that return to vq
n-times and paths p along G∗

n from bond 5 or bond 6 to vqn such that

(5.1) αB′(p) = αB*
n
(Ψ(p)).

We partition the paths of P(q) according to 2 criteria:

(1) Whether the first bond is bond 1 or bond 2 (initial direction).
(2) Number of outgoing bonds of vq the path contains (number of returns to vq).

It will also be convenient to work with paths of finite length. In order to do so we introduce
the following sets:

Definition 5.1. For n ≥ 1 we denote by P in,M(G′) the subset of P(q) of paths starting

with bond i ∈ {1,2}, containing n outgoing bonds of vq, and containing less than M bonds.

Definition 5.2. For n ≥ 1 we denote by P̃ in,M(G∗
n) the set of paths along G∗

n that start

with bond i ∈ {5,6} and end at bond 1 + 2m(n − 1), i.e. the first loop bond of vqn , with
exactly M − n bonds.
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Remark 5.3. In Definition 5.1 (respectively 5.2) we wrote explicitly the dependence

on G′ (respectively 5.2) of the set P in,M (respectively P̃ in,M(G∗
n)). We shall omit such

dependence every time it is clear which graph (respectively DBG) we are referring to.

Lemma 5.4. For n ≥ 1 there exists a bijective map Ψ ∶ P in,M → P̃ i+4
n,M for all i ∈ {1,2},

and all M and n.

Proof. We will show the proof for i = 1, the proof for i = 2 follows the same strategy.
First, we note that any path p ∈ P 1

n,M is the concatenation of n sub-paths from vq to vq
containing only one out-going bond of vq, hence each sub-path starts and ends at vq but
never crosses-over vq. Let P1 ⊂ P(q), be the set of paths from vq to vq containing one
out-going bond of vq, and introduce the map

φ1 ∶ P 1
n,M Ð→ P1 × . . . × P1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−times

,

where we think of each P1 to be on a separate copy of G′. We maintain the order of sub-
paths with copies of G′, i.e. the ith sub-path is sent to the ith copy of G′.
Assume p has m <M bonds, m ≠ 1 since any path in P(q) must contain at least two bonds,

with the exception of the trivial path. Assumem ≥ 2 and let p = {
Ð→
b w1,w2 ,

Ð→
b w2,w3 , ...,

Ð→
b wq,wq+1}.

From the definition of P 1
n,M , w1 = wq+1 = vq and w2 = v1. Moreover p contains n outgoing

bonds of vq, thus

(5.2) #{bond 1 in p} +#{bond 2 in p} = n
Using each appearance of bond 1 or bond 2 as delimiters, we separate p into n shorter

sub-paths. Where bond 1 or bond 2 mark the start of the next sub-path. By continuity
of the path p, all sub-paths must end with either bond 3 or bond 4, i.e. if sub-path k + 1
starts with bond 1, sub-path k must end with bond 3 and if sub-path k + 1 starts with
bond 2, sub-path k must end with bond 4. This implies each sub-path is contained in P1.

Thus, φ1 is injective. We define the set P 1
n,M

′
to be the image of P 1

n,M under φ1, so that

φ1 ∶ P 1
n,M → P 1

n,M

′
, is bijective. The set P 1

n,M

′
can be viewed as an ordered n-tuple of

sub-paths. In Figure 4 is an example of a path in P 1
2M and its image under φ1.
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Figure 4. (a) Graph G′ with path starting at vq and containing two out-
going bonds of vq, and (b) two copies of G′ containing the ordered P1

sub-paths

Let P ′
1 be the set of paths on G′ that start either at v1 or v2, end at vq and have no

out-going bond of vq. We now introduce a map

φ2 ∶ P 1
n,M

′ Ð→ P ′
1 × . . . × P ′

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−times

,

which acts on each P1 sub-path by removing the first bond. Note that for all paths in P1,
the first bond is uniquely specified by the second bond, since v1 and v2 are artificial vertices
with a trivial bond transfer. For instance if the second bond for a path in P1 is bond 6 this
implies the first bond must be bond 2. Therefore φ2 is injective, an example is in Figure 5.

We define P 1
nM

′′
to be the image of P 1

nM

′
under φ2, so that φ2 ∶ P 1

nM

′ → P 1
nM

′′
is

bijective.

(a) An element of P 1
2M

′
(b) The same elements image under φ2

Figure 5. (a) An element of P 1
2M

′
, and (b) the same elements image under φ2

As done when constructing G∗
n, we relabel the bond numbering for the n ordered copies

of G′ such that bond i along copy k of G′ is relabeled bond i + (k − 1)2m, k ∈ {1,2, ..., n}.
Thus, each bond on the n copies of G′ can be naturally associated with a bond on G∗

n. Let
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φ3 represent this renumbering of bonds. Then, for p ∈ P 1
n,M

′′
clearly φ3(p) is a continuous

path on G∗
n, as any sub-path ending with bond 3 + 2m(k − 1) the next sub-path must start

with 5 + 2mk.
Since, every path on G∗

n is uniquely determined by its order bond sequence we have for

pa, pb ∈ P 1
n,M

′′
, if φ3(pa) = φ3(pb), then pb = pa. We let P 1

nM

′′′
be the image of P 1

n,M

′′
under

φ3. Thus, φ3 ∶ P 1
n,M

′′ → P 1
n,M

′′′
is bijective, see Figure 6.

Figure 6. (a) An element in P 1
2M

′′
, and (b) its image under φ3

Finally, note that if p′′ ∈ P 1
n,M

′′
, and φ3(p′′) = p′′′ ∈ P 1

n,M

′′′
then p′′′ has less than or

equal to M − (n − 1) bonds, because we deleted a bond from each copy of G′. Since p has
m bonds, then p′′′ must have m − n bonds.

We introduce the last map φ4,

φ4 ∶ P 1
n,M

′′′ Ð→ P̃ 5
n,M .

that adds M −m loops, on bond 1 + (n − 1)2m, to the path p′′′. Thus, the path φ4(p′′′)
contains at least one loop and exactly (m − n) +M −m = M − n bonds, an example is in
Figure 7.

Figure 7. (a) Graph G∗
2 with path in P 1

2,M

′′′
, and (b) image under φ4

containing M − 10 + 1 loops
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Clearly, φ4 is injective, and hence Ψ ∶= φ4○φ3○φ2○φ1 is injective. To complete the proof

me must show that Ψ is onto P̃ 5
n,M . Let p̃ ∈ P̃ 5

n,M and say it is given by the bond sequence

{b∗1, b∗2, ..., b∗t }. In particular p̃ must start at bond 5 and end with bond 1 + 2(n − 1)M ,

containing exactly M − n bonds by the definition of P̃ 5
n,M .

Let p ∈ P 1
n,M obtained from p̃ as follows:

(1) Delete the loops of p̃.
(2) On the n copies of G′ construct a sequence of paths having bond numbers equal

to the bond numbers of p̃ without the loops.
(3) To each path on each copy of G′ add a bond starting at vq as the first bond.
(4) Concatenate the paths on the copies of G′ in a single path p ∈ P 1

n,M .

Then by construction Ψ(p) = p̃, hence Ψ is onto.
�

Lemma 5.5. Let Ψ be the bijective map of Lemma 5.4. Let αG′(p) be the heat path
coefficient associated with path p ∈ P in,M and αG∗

n
(φ(p)) be the heat path coefficient for

φ(p) ∈ P̃ i+4
n,M , i ∈ {1,2}. Then

(5.3) αB′(p) = αB*
n
(Ψ(p)),

for all M and n.

Proof. We prove the result for i = 1; of course one can reason the same way for i = 2.

The proof relies on the fact that Ψ ∶ P 1
n,M → P̃ 5

n,M is bijective, and for each step in the
mappings φ1, φ2, φ3, and φ4 we add or delete bond transfers with bond scattering matrix
entries equal to one, thus the product of bond scattering matrix entries remains unchanged
under the mappings.

Consider a path p = {i1, . . . , iq} ∈ P in,M , note that if q = 0 or q = 1, αB′(p) = αB*
n
(Ψ(p)) =

1 and the result is trivial. Assume q ≥ 2, then we can identify p with a sequence of elements
of B′, namely the sequence {β′i1,i2 , β

′
i2,i3

, . . . , β′iq−1,iq}.

The map φ1 acts on p by separating p into n sub-paths in G′ × . . . ×G′ =∶ (G′)n. Each
sub-path of p as a path in G′ is connected by either the bond transfer bond 3 to bond 1 or
bond 4 to bond 2. Thus, applying φ1 is equivalent to deleting all bond transfers from bond
3 to bond 1 and all bond transfers from bond 4 to bond 2. Note that β′24 = β′13 = 1, since vq
is an artificial vertex. If we denote the k-th sub-path of p as pk we have

(5.4) αB′(p) =
n

∏
k=1

αB′(pk).

Next, φ2 acts on each copy of G′ by deleting the first bond in each sub-path, we can
write

(5.5) φ2(p1, . . . , pn) = (φ2(p1), . . . , φ2(pn)).

Observe that φ2 acts on pk by deleting either bond 1 or bond 2 and thus deletes either
the bond transfer from bond 1 to bond 5, β′51, or bond 2 to bond 6, β′62. Because v1 and v2

are artificial vertices, β′51 = β′62 = 1, and hence

(5.6) αB′(pk) = αB′(φ2(pk)),
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Combined with (5.4) implies

(5.7) αB′(p) =
n

∏
k=1

αB′(φ2(pk)).

The map φ3 concatenates all the sub-paths pk onto a single path on G∗
n. The concatena-

tion introduces bond transfers from bonds 4+(k−1)2m to 6+2km and from bonds 3+(k−1)2m
to 5+2km, k ∈ {1,2, ..., n−1}. Moreover we note that b∗6+2km,4+(k−1)2m = b∗5+2km,3+(k−1)2m = 1

where b∗i,k are the elements of the matrix B*
n, so that

(5.8)
n

∏
k=1

αB′(φ2(pk)) = αB*
n
(φ3(φ2(p1, . . . , pn))) = αB′(φ3(φ2(φ1(p)))).

Finally, φ4 adds M −m bond transfers to bond 1 + 2m(n − 1), the loop bond of vqn .

These bond transfers all correspond to an element of B*
n equal to 1. Thus,

(5.9) αB*
n
(φ3(φ2(p1, . . . , pn))) = αB*

n
(φ4(φ3(φ2(p1, . . . , pn))).

so that combining (5.9) with (5.8), (5.7) and the definition of Ψ the assertion follows. �

6. Bounding Coefficients in the Heat Kernel Formula

Lemma 6.1 below is a general fact about quantum graphs and their bond scattering
matrices. Let es be the vector with components δis the Kronecker-delta.

Lemma 6.1. Let G be an arbitrary quantum graph with 2m directed bonds. Let B be
the bond scattering matrix for G. Let Pms,k be the set of all paths starting with bond s and

ending with bond k and having exactly m + 1 bonds (hence m bond transfers). then

(Bmes)k = ∑
p∈Pm

s,k

αB(p).

Proof. Let βij be the entry in row i, column j of B, defined as in (2.2). We know
that (Bmes)k is a sum of products, we will show that all non-zero terms in the sum can
be uniquely identified with a path along G from bond s to bond k with m bond transfers.
Simple matrix multiplication shows

(6.1) (Bmes)k =
2m

∑
i=1

2m

∑
j=1

2m

∑
h=1

...
2m

∑
`=1

(βis)βjiβhj ⋅ . . . ⋅ βk`.

Let a be an arbitrary element in the above sum, and note that it has the form

(6.2) a = βi1,i0βi2,i1 ⋅ . . . ⋅ βim,im−1 , i0 = s, im = k.
We want to show that if the ordered sequence {i0, i1, . . . , iq} is not a path p ∈ Pms,k

then a = 0. In other words we need to show that id and id+1 are consecutive bonds for
d ∈ {0,1,2, ...,m − 1}.

For a to be non-zero, each βidjd must be non-zero. By the definition of B each non-zero
βij is non-zero if i and j are consecutive bonds. Thus the assertion follows. �

Corollary 6.2. One has

(6.3) ((B∗
n)M−n−1ek)1+2m(n−1) = ∑

p∈P i
n,M

α(p),

for i ∈ {1,2}, k = i + 4, and all M and n.
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Proof. From Lemma 5.5 it follows that

(6.4) ∑
p∈P i

n,M

αB′(p) = ∑
p̃∈P̃ i+4

n,M

αB*
n
(p̃).

where P in,M and P̃ i+4
n,M are defined in Definitions 5.1 and 5.2 respectively. Using Lemma 6.1

we have

(6.5) ∑
p̃`∈P̃ i+4n,M

αB*
n
(p̃) = ((B∗

n)M−n−1e5)1+2m(n−1),

so the assertion follows. �

Definition 6.3. We say an edge is direct path bounded if for i ∈ {1,2}

(6.6) 1) lim
M→∞

∑
p∈P i

1,M

α(p) = 1,

(6.7) 2) ∑
p∈P i

1,M1

α(p) ≤ ∑
p∈P i

1,M2

α(p),

for all M0 ≤M1 ≤M2, and M0 = minp∈P i1{#bonds(p)}.

Note, conditions 1) and 2) imply

(6.8) ∣ ∑
p∈P i

1M

α(p)∣ ≤ 1.

Definition 6.4. Let v0, v1 be the vertices for e ∈ G. We will say that e has no loop paths
if for all p ∈ P (v0, v1), p contains the edge e. In other words, the only way to get from v0 to
v1 is to travel across e.

We will use the notation that Bei(j) is entry j in the vector Bei.

Lemma 6.5. Let e ∈ G be a direct path bounded edge with m edges, then for all i ∈ {1,2}

(6.9) ∣
N

∑
n=1

(B∗
n)Mei+4(2m(n − 1) + 1)∣ ≤ N,

or equivalently

(6.10) ∣
N

∑
n=1

[ ∑
p∈P i

n,M

α(p)]∣ ≤ N.

Proof. We will start with the assumption that e has no loop paths, defined in 6.4. For
convenience, let

(6.11) αij = ∑
p∈P i1,M

#bonds(p)=j

α(p).

Note that many αij will be zero, these terms can be ignored. With the above notation we
can rewrite

(6.12) ∑
pi
1,M

α(p) =
M

∑
j=1

αij .
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By assumption there are no loop paths, this implies any path p ∈ P 1
n,M is the concate-

nation of n paths alternating between P 1
1,M and P 2

1,M . Let #(p) represent the number of

bonds along p. Since all paths in P in,M have less than or equal to M bonds

(6.13) ∑
p∈P 1

n,M

α(p) = ∑
p∈P i

(n−1),M

[α(p)
M−#(p)

∑
j=1

αkj ].

Where k = 1 if n is odd and k = 2 if n is even. Without loss of generality assume n is
even. The above formula gives a recursive relationship for finding the sum of heat kernel
coefficients for paths in P in,M ,

(6.14) ∑
p∈P 1

n,M

α(p) =
M

∑
j1=1

M−j1
∑
j2=1

...
(M−j1...−jn−1)

∑
jn=1

α1
j1α

2
j2 ...α

1
jn−1α

2
jn .

Using the above equation, we can find the sum of heat kernel coefficients in both P 1
n,M and

P 1
(n−1),M by

(6.15)

∑
p∈P 1

n,M

α(p) + ∑
p∈P 1

(n−1),M

α(p) =
M

∑
j1=1

M−j1
∑
j2=1

...
(M−j1...−jn−2)

∑
jn−1=1

α1
j1α

2
j2 ...α

1
jn−1(1 +

(M−j1...−jn−1
∑
jn=1

α2
jn).

Extending this new recursive relation, we have

(6.16)
N

∑
n=1

( ∑
p∈P 1

n,M

α(p)) =
M

∑
j1=1

α1
j1(1+

M−j1
∑
j2=1

α2
j2(1+ ...(1+

(M−j1...−jn−2)

∑
jn−1=1

α1
jn−1(1+

(M−j1...−jn−1)

∑
jn=1

α2
jn)...).

The assumption that e is direct path bounded implies for all Q,

(6.17) ∣
Q

∑
j=1

αij ∣ ≤ 1.

If P i1,M contains at least one path than for all M

(6.18)
M

∑
j=1

αij ≤
(M+1)

∑
j=1

αij .

Which implies if P i1,(M−j1...−jn−1) contains at least one path then

(6.19)
(M−j1...−jn−1)

∑
jn=1

αijn ≤
(M−j1...−1)

∑
jn=1

αijn ,

if P i1,(M−j1...−jn−1) does not contain a path then all αjn = 0 and we can drop this term. This

implies

(6.20) (1 +
(M−j1...−jn−1)

∑
jn=1

αijn) ≤ (1 +
(M−j1...−1)

∑
jn=1

αijn).

Where
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(6.21) 0 ≤ (1 +
(M−j1...−1)

∑
jn=1

αijn) ≤ 2,

and the sum is no longer dependent on jn−1. Recall from the definition of direct path
bounded that for p ∈ P i1,M , only the path with the least number of bonds can have a

negative coefficient. We will call this coefficient αineg < 0. If αineg is not less than zero, than

the edge e must have a degree one vertex and αineg = 1 is the only non-zero coefficient. We

can then replace ∑Mj=1 α
i
j with 1 and the result follows the steps below. Assume αineg < 0,

(6.22) − 2 ≤ 2α1
neg ≤

(M−j1...−jn−2)

∑
jn−1=1

α1
jn−1(1 +

(M−j1...−jn−2−1)

∑
jn=1

α2
jn) ≤ 2

(M−j1...−jn−2)

∑
jn−1=1

α1
jn−1 ≤ 2.

Repeating the process we have

(6.23) − 3 ≤ 3αk2neg ≤
(M−j1...−jn−3)

∑
jn−2=1

αk1jn−2(1 +
(M−j1...−jn−2−1)

∑
jn−1=1

αkjn) ≤ 3
(M−j1...−jn−3)

∑
jn−2=1

αk1jn−2 ≤ 3.

We continue the recursive process for the full sum,

∣
N

∑
n=1

[ ∑
p∈P 1

n,M

α(p)]∣ = ∣
M

∑
j1=1

α1
j1(1 +

M−j1
∑
j2=1

α2
j2(1 + ...(1 +

(M−j1...−jn−2)

∑
jn−1=1

α1
jn−1(1 +

(M−j1...−jn−1)

∑
jn=1

αkjn)...)∣

(6.24)

≤ ∣
M

∑
j1=1

α1
j1(1 +

M−j1
∑
j2=1

α2
j2(1 + ...(1 + 2

(M−j1...−jn−2)

∑
jn−1=1

α1
jn−1)...)∣(6.25)

≤ ∣
M

∑
j1=1

α1
j1(1 +

M−j1
∑
j2=1

α2
j2(1 + ...(1 + 3

(M−j1...−jn−2)

∑
jn−3=1

α1
jn−1)...)∣(6.26)

⋮

≤ ∣
M

∑
j1=1

α1
j1(1 + (N − 1)

M−j1
∑
j2=1

α2
j2 ∣(6.27)

≤ N(6.28)

Now, we will show that dropping the assumption that e has no loop paths the above
bound remains true. Let v1 and v2 be the vertices of e. Consider the sets P 1

1,M and P 2
1,M .

If there exists a path p ∈ P 1
1,M where p is a loop path, i.e. the first vertex along p is v1 and

the last vertex is v2, then by reversing the bond ordering of p, there exists some path prev
such that `(p) = `(prev), #bonds(p) = #bonds(prev), α(p) = α(prev), and prev ∈ P 2

1M . We
can separate P i1,M into two sets, loop paths P iloops and paths that do not loop P inoloops,

(6.29) P i1,M = P iloops ∪ P inoloops.
Which implies

(6.30) ∣ ∑
p∈P i

1,M

α(p)∣ = ∣ ∑
p∈P i

loops

α(p) + ∑
p∈P i

noloops

α(p)∣ ≤ 1.

Changing the indexing of the loop paths from i ∈ {1,2} to j ∈ {1,2}, j ≠ i, we have

(6.31) ∣ ∑
p∈P i

1,M

α(p)∣ = ∣ ∑
p∈P j

loops

α(p) + ∑
p∈P i

noloops

α(p)∣ ≤ 1.



35

Hence, changing the indexing set for loop paths did not change the sum and all indexing
paths return to q from the same direction. Thus, by changing the indexing set for loop paths
we can repeat the above process.

�

For the definition of rational heat kernels, we refer the reader to definition 2.2. Rational
heat kernels play a crucial role in bounding the heat kernel of a quantum graph. Recall the
diagonal of the heat kernel on G can be expressed with the heat sum formula,

(6.32) KG(t, q, q) = 1√
4πt

( ∑
p∈P (q,q)

α(p)e−`(p)
2/4t).

Up to this point, paths in P in,M are bounded by the number of bonds along the path,
paths with less than M + 1 bonds. For rational heat kernels, by inserting a finite number
of artificial vertices all bonds can be made to have the same length. Hence, we can bound
paths in P in,M by length. For rational heat kernels the matrix (B∗

n)M can be used to bound

the α(p) coefficients and `(p) in the exponential.

Lemma 6.6. Let G be a quantum graph with rational heat kernel KG(t, q, q). Then a
graph G′ can be constructed from G by inserting a finite number of artificial vertices such
that for all e ∈ G′, `(e) = C. Let P i,Ln (G′) be the set of all paths in P in(G′) with length less
than or equal to L, i ∈ {1,2}. Then

(6.33) ∑
p∈P i,Ln (G′)

α(p) = ∑
p∈P i

n,M
(G′)

α(p),

for all n and M, where L = C(M + 1).

Proof. Let KG(t, q, q) be a rational heat kernel, by definition after inserting the vertex
vq all bonds have rational length. Thus, there exists a C such that for all bonds bi ∈ G,
`(bi)/C = qi, where qi is a positive integer. For all bonds bi of G we insert qi − 1 artificial
vertices on bi such that the distance between all adjacent vertices is exactly C. Let G′ be
the graph obtained from G by adding all such artificial vertices. Then, any path along G′

containing (M + 1) bonds has length (M + 1)C and any path with less than (M + 1) bonds
has length less than (M + 1)C. �

Lemma 6.7. Let e ∈ G and q be a point contained in e. For all ε, t > 0, there exists a
quantum graph R with edge er and point qr ∈ er such that KR(t, qr, qr) is a rational heat
kernel satisfying

(6.34) ∣KG(t, q, q) −KR(t, qr, qr)∣ < ε.

Proof. Assume that after adding the artificial vertex vq, G has m edges, where each
edge is labeled ei, i ∈ {1,2, ...,m}. We construct the graph R, by adding length δi > 0 to ei
in such a way that `(ei) + δi is rational.

Let e = e1 ∪ e2 where e1 and e2 are the two edges created after inserting the artificial
vertex at q ∈ e. Let e′1 and e′2 be the edges in R obtained by adding δ1 to e1 and δ2 to e2,
respectively. Call vr the artificial vertex separating e′1 and e′2.

Note that G and R have the same bond scattering matrix B. Let the N shortest paths
in PG(q, q) and the corresponding paths in PR(qr, qr) as PN and PrN , respectively.
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Then for all t, ε fixed, there exists N = N(t, ε) such that

(6.35)
1√
4πt

∣ ∑
p∈PG(q,q)

αB(p)e−`(p)
2/4t − ∑

p∈PN
αB(p)e−`(p)

2/4t∣ < ε/3,

and

(6.36)
1√
4πt

∣ ∑
p∈PR(qr,qr)

αB(p)e−`(p)
2/4t − ∑

p∈PrN
αB(p)e−`(p)

2/4t∣ < ε/3.

Each path p ∈ PN and its corresponding path pr ∈ PrN must have finite length and
hence contain a finite number of edges. Moreover α(p) = α(pr). Let

(1) Q∗:=maximum number of edges for any path in PN .
(2) `∗:= minpr∈PrN {`(pr)}.

(3) K∗:=maxpr∈PrN {∣α(pr)e−(`(p)+δi)
2/4t∣}.

(4) δ∗ = maxi∈{1,2,...,M}{δi}.

Then for all p ∈ PN and the corresponding pr ∈ PrN

(6.37)
∣α(p)e−`(p)

2/4t − α(pr)e−`(pr)
2/4t∣ ≤ ∣α(p)e−`(p)

2/4t − α(p)e−(`(p)+δ
∗Q∗)2/4t∣

≤ ∣α(p)e−`(p)
2/4t(1 − e−(2(`

∗δ∗Q∗)+(δ∗Q∗)2))/4t)∣.
Summing the above bound for all p ∈ PN and pr ∈ PrN , we get

∣ ∑
p∈PN

αB(p)e−`(p)
2/4t − ∑

p∈PrN
αB(p)e−`(p)

2/4t∣ ≤ ∑
p∈PN

∣α(p)e−`(p)
2/4t(1 − e−(2(`

∗δ∗Q∗)+(δ∗Q∗)2))/4t)∣,
(6.38)

≤K∗N(1 − e−(2(`
∗δ∗Q∗)/4t+(δ∗Q∗)2/4t).(6.39)

Choosing δ∗ = δ∗(t, ε) small enough implies

(6.40)
1√
4πt

∣ ∑
p∈PN

αB(p)e−`(p)
2/4t − ∑

p∈PrN
αB(p)e−`(p)

2/4t∣ < ε/3.

which together with (6.35) and (6.36) implies (6.34). �

7. Direct Path Bounded Edges

From definition 6.3, e is a direct path bounded edge if for all i ∈ {1,2}
(7.1) 1) lim

M→∞
∑

p∈P i
1,M

α(p) = 1,

and

(7.2) 2) ∑
p∈P i1,M1

α(p) ≤ ∑
p∈P i

1,M2

α(p),

for all M0 ≤M1 ≤M2, where M0 =minp∈P i1{#bonds(p)}.

Let e ∈ G with endpoints {v0, v1}, and q ∈ e. As in section 4, Let P1(q, q) be all paths
along G from q to q that contain one out-going bond of q, i.e. return to q a single time.
Then, P1(q, q) = P 1

1 ∪ P 2
1 , where P 1

1 is all paths in P1(q, q) that first touch v0 and P 2
1 is

all paths that first touch v1. If both P 1
1 and P 2

1 are bounded by (7.1) and (7.2), then e is
direct path bounded. We restrict our attention to paths that first touch v0. The strategy
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is to find sub-graphs connected to v0 where P 1
1 is bounded by (7.1) and (7.2). We can then

construct a class of edges, where if the sub-graphs connected to v0 and v1 satisfy (7.1) and
(7.2) then e is direct path bounded.

The first sub-graph that bounds P 1
1 by (7.1) and (7.2) is a symmetric star sub-graph

connected at v0. Where all edges ei ∼ v0, ei ≠ e, have the same length and contain a degree
one vertex.

Figure 8. The above sub-graph shows endpoint v0 connected to a sym-
metric star

Lemma 7.1. Let v0 be a vertex of e, and v0 is connected to a symmetric star sub-graph,
for all ei ∼ v0, ei ≠ e, `(ei) = L > 0 and for vi ∼ ei, vi ≠ v0, dvi = 1. If P 1

1 is all paths that
first touch v0 and contain a single outgoing bond of q then

(7.3) 1) lim
M→∞

∑
p∈P 1

1,M

α(p) = 1,

and

(7.4) 2) ∑
p∈P 1

1,M1

α(p) ≤ ∑
p∈P 1

1,M2

α(p),

for all M0 ≤M1 ≤M2, where M0 =minp∈P 1
1
{#bonds(p)}.

Proof. Let v0 have degree d and P 1
1 be all paths that start toward v0 and return to q

a single time. We partition the paths in P 1
1 by the number of times they touch v0. Let the

paths that touch v0 N times be RN . Since all edges connected to v0, with the exception of
e, have the same length all paths in each partition have the same length. If pi ∈ RN and
pj ∈ RN+1 then #bonds(pi) = #bonds(pj)−2. We can examine the α(p) coefficients for each
RN .

R1 has a single path with heat path coefficient ( 2
d
− 1),

(7.5) ∑
p∈R1

α(p) = (2

d
− 1).

R2 has d − 1 paths with two transmissions through v0, with heat path coefficients ( 2
d
)2,
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(7.6) ∑
p∈R2

α(p) = (d − 1)(2

d
)2.

R3 has (d − 1)2 paths, (d − 1)(d − 2) containing 3 transmissions through v0 with heat path
coefficient ( 2

d
)3 and (d − 1) paths with 2 transmissions and one reflection off v0 with heat

path coefficients ( 2
d
)2( 2

d
− 1),

(7.7) ∑
p∈R3

α(p) = (d − 1)(d − 2)(2

d
)3 + (d − 1)(2

d
)2(2

d
− 1).

Noticing each time a path returns to v0 it has (d−1) choices to transmit and one choice
to reflect, the heat path coefficients for RN follow a binomial distribution, N > 2.

∑
p∈RN

α(p) = (2/d)2(d − 1)
N−2

∑
k=0

(N − 2

k
)(2/d)N−k−2(d − 2)N−2−k(2/d − 1)k,

= (2/d)2(d − 1)(2/d(d − 2) + (2/d − 1))N−2,

= (2/d)2(d − 1)(2 − 4/d + 2/d − 1)N−2,

= (2/d)2(d − 1)(1 − 2/d)N−2.

(7.8)

Adding heat path coefficients from paths in ∪Ni=1Ri,

(7.9) ∑
p∈∪Ni=1Ri

α(p) = (2/d − 1) + (2/d)2(d − 1)
N−2

∑
k=0

(1 − 2/d)k.

Which implies if N1 ≤ N2 then

(7.10) ∑
p∈∪N1

i=1Ri

α(p) ≤ ∑
p∈∪N2

i=1Ri

α(p).

Hence, a symmetric star shaped sub-graph satisfies (7.2). To show (7.1) is satisfied,
take the sum of heat path coefficients from all paths in ∪∞i=1Ri.

lim
M→∞

∑
p∈P 1

1,M

α(p) = ∑
p∈∪∞i=1Ri

α(p)

= (2/d − 1) + (2/d)2(d − 1)
∞
∑
k=0

(1 − 2/d)k

= (1 − 2/d) + (2/d)2(d − 1)( 1

1 − (1 − 2/d)
)

= 1

(7.11)

�

The next sub-graph we consider is a symmetric flower sub-graph at v0, i.e. for ei ∼ v0,
ei ≠ e, `(ei) = L and both endpoints of ei are v0.
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Figure 9. The above sub-graph shows endpoint v0 connected to a sym-
metric flower

Corollary 7.2. Let v0 be a vertex of e, connected to a symmetric flower sub-graph.
So, for all ei ∼ v0, ei ≠ e, `(ei) = L and v0 is both end points for ei (i.e. ei is a loop connected
to v0). Then

(7.12) 1) lim
M→∞

∑
p∈P 1

1,M

α(p) = 1,

and

(7.13) 2) ∑
p∈p1

1,M1

α(p) ≤ ∑
p∈P 1

1,M2

α(p),

for all M0 ≤M1 ≤M2, where M0 =minp∈P 1
1
{#bonds(p)}.

Proof. Let dv0 = 2N + 1, which implies v0 is connected to N flower petals of length L.
The heat path coefficients for those petals are the same as a symmetric star sub-graph with
2N edges (not including e0) and each edge having length L/2. �

If the sub-graph at v0 is a symmetric pumpkin, meaning for ei ∼ v0, ei ≠ e, `(ei) = L
and all ei share the same endpoints.

Figure 10. The above sub-graph shows endpoint v0 connected to a sym-
metric pumpkin
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Corollary 7.3. Let v0 be connected to a symmetric pumpkin sub-graph, ei ∼ v0, ei ≠ e,
`(ei) = L and ei ∼ v2 ≠ v0. Then

(7.14) 1) lim
M→∞

∑
p∈P 1

1,M

α(p) = 1,

and

(7.15) 2) ∑
p∈P 1

1,M1

α(p) ≤ ∑
p∈P 1

1,M2

α(p),

for all M0 ≤M1 ≤M2, where M0 =minp∈P 1
1
{#bonds(p)}.

Proof. Let v0 be connected to a pumpkin sub-graph with multiplicity M and v2 be
the vertex of the pumpkin across from v0. Then v2 has degree M . Let p be a path along
G ending at v2 with heat path coefficient α(p), where the last edge along p is ei. By the
symmetry of the pumpkin there must be a corresponding path with heat path coefficient
α(p) contained on each edge of the pumpkin not equal to ei. All corresponding paths have
the same length and same number of bonds, call these paths {p1, ..., pM}. Consider the
scattering of each of these paths at v2. Along each edge of the pumpkin sub-graph there
will be (M − 1) equal transmissions through v2 and a single reflection.

(7.16) α(p)( 2

M
(M − 1) + ( 2

M
− 1)) = α(p).

This implies v2 behaves like a degree one vertex for all paths from q. Which reduces
the pumpkin argument to the symmetric star case.

�

8. Comparison Between Neumann Interval and Direct Path Bounded Edges

From Lemma 6.6, if KG(t, q, q) is a rational heat kernel we can construct a new graph
G′ by inserting a finite number of artificial vertices such that all edges of G′ have the same
length and

(8.1) KG(t, q, q) =KG′(t, q, q),

for all t > 0.
When using the heat sum formula for rational heat kernels, the number of bonds in a

path is equal to the total length of the path times a constant. So, the matrix (B∗
n)M can be

used to bound the sum of heat path coefficients according to the length for paths in P in. For
example, let KG(t, q, q) be a rational heat kernel, after constructing G′ from G by inserting
a finite number of artificial vertices every edge in G′ has length C. Then if G has m edges,

(8.2) (B∗
n)(M−n−1)e5(2m(n − 1) + 1) = ∑

p∈P i
n,M

α(p) = ∑
p∈P i,Ln

α(p),

where L = C(M + 1).

We construct a new set of paths,

Definition 8.1.

(8.3) P (L, q,G) =
∞
∑
n=1

[ ∑
p∈P i,Ln

α(p)].
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P (L, q,G) is all paths along G beginning and ending with q with length less than or
equal to L.

Theorem 8.2. Let G and G′ be compact connected quantum graphs, if

(8.4) ∑
p∈P (L,q,G)

α(p) ≤ ∑
p′∈P (L,q′,G′)

α(p′),

for all L ≥ 0. Then

(8.5) KG(t, q, q) ≤KG′(t, q′, q′),
for all t > 0.

Proof. Let p be a path along G beginning and ending at q and p′ be a path along
G′ beginning and ending at q′. We will proceed by contradiction, assume there exists some
time t0 such that

(8.6) KG(t0, q, q) >KG′(t0, q′, q′)

Then for all ε > 0, there exists N1 and N2 such that for all L1 > N1,

(8.7) ∣KG(t0, q, q) − ∑
p∈P (L1,q,G)

α(p)e−`(p)
2/4t0 ∣ < ε

2
,

and for all L2 > N2,

(8.8) ∣KG(t0, q′, q′) − ∑
p′∈P (L2,q′,G′)

α(p′)e−`(p
′)2/4t0 ∣ < ε

2
.

Let L∗ > max{N1,N2}, then for ε small enough

(8.9) ∑
p∈P (L∗,q,G)

α(p)e−`(p)
2/4t0 > ∑

p′∈P (L∗,q′,G′)
α(p′)e−`(p

′)2/4t0 .

Which implies

(8.10) ∑
p∈P (L∗,q,G)

α(p)e−`(p)
2/4t0 − ∑

p′∈P (L∗,q′,G′)
α(p′)e−`(p

′)2/4t0 > 0.

Let

(8.11) KL∗ = ∑
p∈P (L,q,G)

α(p)e−`(p)
2/4t0 − ∑

p′∈P (L,q′,G′)
α(p′)e−`(p

′)2/4t0 .

Assume there are Q unique path lengths for paths in P (L∗, q,G) ∪ P (L∗, q′,G′). We
will enumerate these path lengths, let `j correspond to the jth shortest unique path length
in P (L∗, q,G) ∪ P (L∗, q′,G′). We will combine terms in KL∗ by summing the coefficients
from paths with the same length. Let

(8.12) αj = ∑
p∈P (L∗,q,G)
`(p)=`j

α(p) − ∑
p′∈P (L∗,q′,G′)

`(p)=`j

α(p′).

Then KL∗ is equal to,

(8.13) KL∗ =
Q

∑
i=1

αie
`2i /4t0 > 0.

By assumption (8.4),
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(8.14)
m

∑
i=1

αi < 0.

for all m ≤ Q.
If αi < 0, we can increase KL∗ by increasing `i. By assumption 8.4, α1 ≤ 0, we increase

the path length of `1 so that `1 = `2 and combine terms in KL∗ with coefficients α1 and α2,

(8.15)
2

∑
i=1

αie
−`2i /4t0 ≤ (α1 + α2)e−`

2
2/4t0 .

Again by (8.4), α1 + α2 ≤ 0. Which implies

(8.16) (α1 + α2)e−`
2
2/4t0 + α3e

−`23/4t0 ≤ (α1 + α2 + α3)e−`
2
3/4t0 .

We repeat the process for all j ∈ {1,2, ...,M}, where at each step by assumption

(8.17)
j

∑
i=1

αi < 0.

and

(8.18) (
j

∑
i=1

αi)e−`
2
j/4t0 + (αj+1)e−`

2
j+1/4t0 ≤ (

j+1

∑
i=1

αi)e−`
2
j+1/4t0

When j =M , we have

(8.19) KL∗ ≤ (
M

∑
i=1

αi)e−`
2
M /4t0 ≤ 0

which contradicts (8.10) and completes the proof.
�

Corollary 8.3. Let e ∈ G be a direct bounded edge with vertices vl and vr, and length
`. For q ∈ e, where ∣vl−q∣ = `1 and ∣vr−q∣ = `2, if KG(t, q, q) is a rational heat kernel and any
path in P (q, q) containing both vl and vr has length equal to or greater than max{2`1,2`2},
then

(8.20) KG(t, q, q) ≤KI(t, q, q),

for all t > 0, where I is the Neumann interval of length ` and q has the same relative spacing
along the interval as on e. If G is not the Neumann interval the inequality is strict.

Proof. Let B(I) be the bond scattering matrix for I. For each path p on I we have
α(p) = 1. The heat path formula for the Neumann interval I reads

(8.21) KI(t, q, q) =
1√
4πt

(1 +
∞
∑
k=0

e−(2`1+2k`)2/4t + e−(2`2+2k`)2/4t + 2e−(2(k+1)`)2/4t).

where the first summand is the term corresponding to the trivial path; compare with (2.4).
If we partition the paths for the Neumann interval according to their initial direction and

how many out-going bonds of vq the path contains (as we did in Section 5), each partition
contains exactly one path. The path length in P 1

n(I) alternates between 2`1 + (n− 1)` for n
odd and n` for n even. Similarly, the paths in P 2

n(I) alternate between 2`2 + (n − 1)` for n
odd and n` for n even.
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By assumption KG(t, q, q) is a rational heat kernel, construct a new graph G′ from G
by inserting a finite number of artificial vertices such that all edges in G′ have length C, as
we did in (6.6). Constructing the matrices B∗

n from G′ we can use (6.5) to get

(8.22)
N

∑
n=1

(B∗
n)Mei+4(2m(n − 1) + 1) ≤ N,

for all N,M ∈ {1,2, ...}, and i ∈ {1,2}.

Because all bonds of G′ have the same length, (B∗
n)Me5(2m(n − 1) + 1) is the sum of

heat path coefficients from P 1,L
n , where L = C(M + 1). By assumption the shortest path

in P (q, q) containing both vl and vr must be greater than or equal to max{2`1,2`2}. This
implies than any loop path in P (q, q), has length greater than or equal to max{2`1,2`2}.
Thus, the shortest path p ∈ P (q, q) starting in the direction of vl has length 2`1. Similarly
the shortest path p ∈ P (q, q) starting in the direction of vr has length 2`2. This implies that
the length of any path in P in(G) has a lower bound 2`i + (n − 1)` for n odd and n` for n
even, which are the lengths of paths in P in(I) for n odd or even, respectively.

We construct a new graph I ′ by inserting a finite number of artificial vertices on I and
ensuring that all edges of I ′ have length C. Let I ′ have m∗ edges. If (M − 1) is less than
(2`i + (n − 1)`)/C for n odd or 2`/C for n even then P in,M(G′) = P in,M(I ′) = ∅, and

(8.23) (B(I ′)∗n)Me(i+4)(2m∗(n − 1) + 1) = (B∗
n(G′))Me(i+4)(2m(n − 1) + 1) = 0.

Summing the terms in the Neumann interval and using Lemma 6.5, if M is large enough
to include the shortest path in each partition then

(8.24)
N

∑
n=1

(B(I ′)∗n)Me(i+4)(2m∗(n − 1) + 1) = N ≥
N

∑
n=1

(B∗
n)Me(i+4)(2m(n − 1) + 1).

If M is not large enough, the contribution from both sums in (8.24) is zero and the
inequality remains true. The result follows from Theorem 8.2.

If G is not the Neumann interval then the inequality (8.20) becomes strict. Assume G
is not the Neumann interval, then at least one of the end points of e must be a vertex of
degree greater than 2. Equation (8.15) in Theorem 8.2 becomes a strict inequality as α1 < 0,

(8.25)
2

∑
i=1

αie
−`2i /4t0 < (α1 + α2)e−`

2
2/4t0 .

Hence, (8.20) becomes a strict inequality.
�

9. Neumann Comparison: Off Diagonal Results

Corollary 8.3 can be adapted to the off diagonal heat kernel by showing that there is a
bijection between paths along a quantum graph from q to q and paths from q to q0, for any
q0 contained along the same edge as q.

Lemma 9.1. If q and q0 belong to the same edge of a quantum graph there is a bijection
between the sets P (q, q) and P (q, q0).

Proof. We start by inserting two artificial vertices along G at q and q0, call them vq
and vq0 , respectively. Without loss of generality, assume vq0 is to the right of vq. As in
Lemma 5.4 it is convenient to distinguish paths that start to the right or to the left. Let



44

Pr(q, q) and Pr(q0, q) be the set of paths that start to the right in P (q, q) and P (q0, q),
respectively. Any path in Pr(q, q) can be obtained from a path in Pr(q0, q) by adding the

bond
Ð→
b vq,vq0 as the first bond. Conversely, any path in Pr(q0, q) can be obtained from a path

in Pr(q, q) by deleting the first bond
Ð→
b vq,vq0 . Thus, there is a one to one correspondence

between Pr(q, q) and Pr(q0, q). We can use the same reasoning for paths that start towards
the left. Then there is a one to one correspondence between P (q, q) and P (q0, q) and of
course the latter has a one to one correspondence with P (q, q0), so the assertion follows. �

Lemma 9.2. The bijection described in Lemma 9.1 preserves the heat path coefficients
for all paths.

Proof. The bijection in Lemma 9.1 either adds or deletes the bond transfer at vq which
is an artificial vertex and hence has a bond scattering matrix entry equal to one. Thus, the
bijection does not change the heat path coefficient. �

Thanks to Lemma 9.1 we can introduce a partition of P (q, q0) that bijectively corre-
sponds to the partition of P (q, q) in definition 5.1. We shall use the same notation for the
partition of P (q, q0) as the one of P (q, q). Thus, if we ensure that all paths in each partition
of P (q, q0) have length longer than the single path in the corresponding Neumann interval
partition, then for q, q0 ∈ e Lemma 8.3 extends to q ≠ q0.

Theorem 9.3. Let G be a quantum graph and KG(t, q, q0) be the heat kernel on G, where
q and q0 belong to the same edge e with length ` and vertices vl and vr. Let `1 ∶= ∣vl − q0∣
and `2 ∶= ∣vr − q0∣. If every path from q0 to q0 containing both vr and vl has length equal to
or greater than max{2`1,2`2} and e is direct path bounded then

(9.1) KG(t, q, q0) ≤KI(t, q, q0),
for all t > 0, where KI(t, q, q0) is the heat kernel for a Neumann interval of length ` with q
and q0 have the same relative positions as on e. If G is not the Neumann interval than the
inequality is strict.

Proof. Using the bijection of Lemma 9.1 both for G and the Neumann interval I, we
either add or delete a bond which has the same length in G and in I, so we can confine
ourselves to paths starting from q and returning to q. Then we simply apply Lemma 8.3. �



CHAPTER 4

Mean Value Theorem

1. Mean Value Formula

Let H be the heat operator in one dimension and H ′ its adjoint i.e.

(1.1) Hf = fxx − ft H ′v = vxx + vt.

Let D be a region in R × (0,∞), (ξ, τ) be our variables of integration, and n⃗ = (n1, n2) be
the outward normal with respect to ∂D. By the divergence theorem, if Hf = 0 and H ′v = 0,
then

(1.2) ∫ ∫
D
[fH ′v − vHf]dA = ∫

∂D
[(fvξ − fξv)n1 + fvn2]ds = 0.

Choosing v ≡ 1, equation (1.2) becomes

(1.3) ∫
B
[−fξn1 + fn2]ds = ∫

B
−fξdτ + fdξ = 0.

Recall the distance function along G,

(1.4) d(q0, q) = min
p∈P (q0,q)

{`(p)}.

Fix a point q0 ∈ G, where q0 ∉ V (G). For all q ∈ G, if q is a singularity of d(q0, q) we insert
an artificial vertex at q and add q to the set V (G). Let q0 belong to the edge e0 and v0 be
the closest vertex to q0, we construct the following coordinate system along each edge of G

(1.5) x =
⎧⎪⎪⎨⎪⎪⎩

d(q0, q) e ≠ e0,

d(v0, q) e = e0.

Let h(t0 − t, q0, x) be the reverse time heat kernel on G. Then along each e ∈ G
(1.6) hxx + ht = 0.

Definition 1.1. The heat ball on G is the set Q(q0, t0,C) ∶= {(x, t) ∈ G × (0, t0) ∣
h(t0 − t, q0, x) ≥ C} for some C > 0. When we fix q0, t0, and C we will refer to the heat ball
as Q.

Theorem 1.2. Let G be a compact quantum graph and let u(q, t) satisfy the heat equa-
tion on G, then

(1.7) u(q0, t0) = ∫
∂Q

−uhxn1ds.

Where ∂Q is the boundary of the heat ball Q(q0, t0,C) for q0 ∈ G, t0 ∈ (0,∞), and C > 0.

45
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Proof. Fix q0 ∈ G, t0 ∈ (0,∞), and C > 0. On each edge e ∈ E(G), let Qe = {(x, t) ∈
e × (0, t0) ∣ h(t0 − t, q0, x) ≥ C}, i.e. Qe = e ∩Q. Let Re = Qe ∩ {V (G)}, Re is the boundary
of Qe at the vertices of e. On the edge e0, we define the set Jt1 = Qe0 ∩ {t ≤ t1} for some
t1 < t0, with boundary ∂Jt1 .

The boundary ∂Jt1 can be split into two sub-sets ∂J1 = ∂Qe0 ∩∂Jt1 and ∂J2 = Qe0 ∩{t =
t1}. If n⃗J = (nJ,1, nJ,2) is the outward normal with respect to ∂Jt1 , then for ∂J2 we have
n1 = 0. If ∣t1 − t0∣ < ε, for ε small enough ∂J2 ∩V (G) = ∅. Let u(q, t) solve the heat equation
on G. Using the coordinate system described in (1.5) and the divergence theorem,

0 = ∫
Jt1

[u(hxx + ht) − h(uxx − ut)]dA = ∫
∂Jt1

[uhxnJ,1 − huxnJ,1 + hunJ,2]ds,
(1.8)

= ∫
∂J1

[uhxnJ,1 − huxnJ,1 + hunJ,2]ds + ∫
∂J2

[uhxnJ,1 − huxnJ,1 + hunJ,2]ds,(1.9)

= ∫
∂J1

[uhxnJ,1 − huxnJ,1 + hunJ,2]ds + ∫
∂J2

hunJ,2ds.(1.10)

Letting t1 → t0 and using the delta function property of h(t0 − t, q0, x), we have

u(q0, t0) = lim
t1→t0

∫
J2
uhnJ,2ds = ∫

∂Qe0

[−uhxnJ,1 + huxnJ,1 − hunJ,2]ds,

= ∫
∂Qe0∖Re0

[−uhxnJ,1 + huxnJ,1 − hunJ,2]ds + ∫
Re0

[−uhxnJ,1 + huxnJ,1]ds.

(1.11)

Let n⃗e = (ne,1, ne,2) be the outward normal with respect to ∂Qe. We note that ne,2 = 0 with
respect to the boundary Re. For all e ≠ e0, by the divergence theorem

0 = ∫
∂Qe

[−uhxne,1 + huxne,1 − hune,2]ds,

= ∫
∂Qe∖Re

[−uhxne,1 + huxne,1 − hune,2]ds + ∫
Re

[−uhxne,1 + huxne,1]ds.
(1.12)

Summing equations 1.11 and 1.12 for all {e0, e1, ..., eN}, where for i ∈ {0,1, ...,N}, Qei ≠ ∅,
we get

(1.13) u(q0, t0) =
N

∑
i=0

[∫
∂Qe∖Re

[−uhxne,1+huxne,1−hune,2]ds+∫
Re

[−uhxne,1+huxne,1]ds].

From the vertex conditions for h and u, we have ∑e∼v uxne,1 = 0 and ∑e∼v hxne,1 = 0 for all
v ∈ V . This implies

N

∑
i=0
∫
Re

[−uhxne,1 + huxne,1]ds = ∑
v∈V (G)∩Q

[∑
e∼v
∫
Re

[−uhxne,1 + huxne,1]ds],(1.14)

= ∑
v∈V (G)∩Q

[∫
Re

[−u[∑
e∼v

hxne,1] + h[∑
e∼v

uxne,1]ds],(1.15)

= 0.(1.16)

Equation 1.13 becomes

(1.17) u(q0, t0) =
N

∑
i=0

[∫
∂Qe∖Re

[−uhxne,1 + huxne,1 − hune,2]ds.
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By construction of ∂Qe, h ≡ C on ∂Qe ∖Re. Which implies,

(1.18) u(q0, t0) =
N

∑
i=0

[∫
∂Qe∖Re

[−uhxne,1 +C(uxne,1 − une,2)]ds.

Using (1.3),

u(q0, t0) =
N

∑
i=0

[∫
∂Qe∖Re

[−uhxne,1 +C(uxne,1 − une,2)]ds,

=
N

∑
i=0

[∫
∂Qe∖Re

[−uhxne,1]ds,

= ∫
∂Q

−uhxn1ds.

(1.19)

�

2. Bounding the Mean Value Formula

In the previous section we found an expression for the mean value formula for the heat
equation on a quantum graph using the heat kernel of G. We will now find an alternate
representation for the mean value formula using the free heat kernel on R. This new version
can be used to bound the mean value formula on G. The free heat kernel on R can be
expressed

(2.1) KR(t, x, y) =
1√
4πt

e−∣x−y∣
2/4t.

Using the coordinate system described in (1.5), we define the function k(t0 − t, q0, x) on G
as

(2.2) k(t0 − t, q0, x) =
1√

4π(t0 − t)
e−x

2/4(t0−t).

For all x ∉ V ,

(2.3) kxx + kt = 0.

For the next theorem, we define the following sets:

● B(q0, t0,C) ∶= {(x, t) ∈ G × (0, t0) ∣ k(t0 − t, q0, x) ≥ C}, for some C > 0. When we
fix t0 ∈ (0,∞), q0 ∈ G ∖ V (G), and C > 0 we will refer to this set as B.

● Be(q0, t0,C) = B(q0, t0,C) ∩ e for some e ∈ E(G), when q0, t0, and C are clear we
use the simpler notation Be.

● n⃗e = (ne,1, ne,2) is the outward normal with respect to Be, using the coordinate
system described in (1.5).
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● d+v and d−v are the number of edges e ∼ v, such that on Be ∩ v, n⃗e = (−1,0) and
n⃗e = (1,0), respectively. Be ∩ v is the boundary of Be at v. To account for our
coordinate system, for v0 we subtract one from d+v0 and add one to d−v0 .

Theorem 2.1. Let G be a compact quantum graph. Using the sets described above if
u(q, t) solves the heat equation on G then

(2.4) u(q0, t0) = ∫
∂B

−ukxn1ds + ∑
v∈V

(d+v − d−v)∫
B∩v

ukxds.

Proof. Through out this proof we will fix q0, t0, and C > 0. Using the sets described
above and the coordinate system descirbed in (1.5), if

(2.5) k(t0 − t, q0, x) =
1√

4π(t0 − t)
e−x

2/4(t0−t),

then for all edges e ≠ e0, we have x = d(q0, q) > 0, which implies for all e ≠ e0

(2.6) kx =
−x

2(t0 − t)
k < 0.

For e ∈ E(G), the boundary of Be, denoted ∂Be, consists of two sets. The first is
{(x, t) ∈ e × (0, t0) ∣ k(t0 − t, q0, x) = C, x ∉ V }. The second is the boundary at the vertices
of e, Te = Be ∩{V }. Let n⃗e = (ne,1, ne,2) be the outward normal with respect to ∂Be. Along
the boundary Te, we have ne,2 = 0.

On the edge e0, we define the set It1 ∶= Be0 ∩ {t ≤ t1} for some t1 < t0. We separate
the boundary of It1 into two sets ∂I1 = ∂Be0 ∩ ∂It1 and ∂I2 = Be0 ∩ {t = t1}. On ∂I2 we
have ne0,1 = 0. If ∣t1 − t0∣ < ε, then for ε small enough ∂I2 ∩ V (G) = ∅. Let u solve the heat
equation on G. Let n⃗I = (nI,1, nI,2) be the outward normal with respect to It1 . By the
divergence theorem, on e0

0 = ∫
It1

[u(kxx + kt) − k(uxx − ut)]dA = ∫
∂It1

[ukxnI,1 − kuxnI,1 + kunI,2]ds,

(2.7)

= ∫
∂II,1

[ukxnI,1 − kuxnI,1 + kunI,2]ds + ∫
∂I2

[ukxnI,1 − kuxnI,1 + kunI,2]ds,(2.8)

= ∫
∂I1

[ukxnI,1 − kuxnI,1 + kunI,2]ds + ∫
∂I2

kunI,2ds.(2.9)

Letting t1 → t0 implies ∂It1 → ∂Be0 . Using the delta function property of k(t0 − t, q0, x),

(2.10) u(q0, t0) = lim
t1→t0

∫
∂I2

uknI,2ds = ∫
∂Be0

[−ukxnI,1 + kuxnI,1 − kunI,2]ds.

If e ≠ e0 then

0 = ∫
∂Be

[−ukxne,1 + kuxne,1 − kune,2]ds,

= ∫
∂Be∖Te

[−ukxne,1 + kuxne,1 − kune,2]ds + ∫
Te

[−ukx + kux]ne,1ds.
(2.11)
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Let {e0, e1, ..., eN} be edges such that Bei ≠ ∅. Summing equations 2.10 and 2.11,

(2.12) u(q0, t0) =
N

∑
i=1

[∫
∂Bei∖Tei

[−ukxnei,1+kuxnei,1−kunei,2]ds+∫
Tei

[−ukx+kux]nei,1ds].

If v ∩ B = ∅, then for all e ∼ v, v ∩ ∂Be = ∅. Otherwise, we will integrate over v,
dv times. Note that for all e, on Te the outward normal ne,1 = ±1, however the sign is
dependent on the coordinate system described in (1.5). If v1 and v2 are the vertices of e,
then Te = (∂Be ∩ v1) ∪ (∂Be ∩ v2). From the vertex condition that ∑e∼v uxne,1 = 0 and the
continuity of k,

(2.13) ∑
e∼v
∫
∂Be∩v

kuxne,1ds = ∫
∂Be∩v

k(∑
e∼v

uxne,1)ds = 0.

Which implies

(2.14) u(q0, t0) =
N

∑
i=1

[∫
∂Bei∖Tei

[−ukxnei,1 + kuxnei,1 − kunei,2]ds + ∫
Tei

[−ukxnei,1ds].

For each v ≠ v0, let d+v be the number of edges adjacent to v such that on ∂Be ∩ v,
ne,1 = −1. Similarly, let d−v be the number of edges adjacent to v such that on ∂Be ∩ v,
ne,1 = 1. For v = v0, to account for our coordinate system, we subtract one from d+v0 and add
one to d−v0 . For each v ≠ v0, select some e ∼ v call this edge e∗v, selecting a single edge stops
us from integrating over the boundary ∂Be ∩ v multiple times. For all e ∼ v ≠ v0, kx < 0.
Then

(2.15) ∑
e∼v
∫
Be∩v

−ukxn1ds = (d+v − d−v)∫
Be∗v

∩v
ukxds.

Which implies

(2.16)
N

∑
i=1

[∫
Tei

[−ukxn1ds] = ∑
v∈V

(d+v − d−v)∫
Be∗v

∩v
ukxds.

We note that if B ∩ v = ∅, then the contribution to the sum from this vertex is zero. For
the vertex v0, the boundary Be0 ∩ v0, ne0,1 = −1 and kx > 0. For all edges e ∼ v0, e ≠ e0, we
have along the boundary Be ∩ v0, kx < 0 and ne,1 = −1. This implies

(2.17) ∑
e∼v0,e≠e0

∫
Be∩v0

−ukxn1ds = (dv0 − 1)∫
Be0∩v0

ukxds,

and for ∂Be0 ∩ v0, kx > 0 and ne0,1 = −1, so

(2.18) ∫
Be0∩v0

−ukxn1ds = ∫
Be0∩v0

ukxds = −∫
Be0∩v0

u(−kx)ds.

Where in (2.17), kx < 0 and in (2.18), kx > 0. For v0, we choose the edge e∗v0 to be
some e ∼ v, e ≠ e0. If no such edge exists, then we choose e0 = e∗v0 but we change the sign
of kx along ∂Be0 ∩ v0. This change in sign is to account for our coordinate system being
”backwards” with respect to kx along e0 near v0. Summing (2.17) and (2.18),

(2.19) ∑
e∼v0,e≠e0

∫
Be∩v0

ukxne,1ds − ∫
Be0∩v0

u(−kx)ne0,1ds = (dv0 − 2)∫
Be0∩v0

u(kx)ds.

Finally, we examine ∂Be∖Te. By construction, k(t0−t, q0, x) ≡ C on ∂Be∖Te. Summing
over each ∂Be, and choosing w ≡ 1 we have
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N

∑
i=0
∫
∂Bei

[(−uwx +wux)nei,1 −wun2]ds =
N

∑
i=0

[∫
∂Bei∖Tei

[(−uwx +wux)nei,1 −wunei,2]ds

+ ∫
Tei

[(−uwx +wux)nei,1 −wunei,2]ds],

=
N

∑
i=0

[∫
∂Bei∖Tei

[uxnei,1 − unei,2]ds + ∫
Tei

uxnei,1ds,

=
N

∑
i=0
∫
∂Bei∖Tei

[uxnei,1 − unei,2]ds,

= 0.

(2.20)

Where the third equality comes from the vertex condition ∑e∼v uxne,1 = 0, and the final
equality follows the same logic as (1.3). This implies

N

∑
i=1
∫
∂Bei∖Tei

[−ukxnei,1 + kuxnei,1 − kunei,2]ds =
N

∑
i=1
∫
∂Bei∖Tei

ukxnei,1ds −C[−uxnei,1 + unei,2]ds,

=
N

∑
i=1
∫
∂Bei∖Tei

−ukxnei,1ds,

= ∫
∂B

−ukxn1ds.

(2.21)

Thus, we have

(2.22) u(q0, t0) = ∫
∂B

−ukxn1ds + ∑
v∈V

(d+v − d−v)∫
B∩v

ukxds.

�

Definition 2.2. Let V1(G, q0) = {v ∈ V (G) ∣ dv = 1 or d(q0, v) is a singularity of d(q0, ⋅)},
for q0 ∈ G.

Corollary 2.3. Let G be a quantum graph and define V1(G, q0) as in definition 2.2.
If B(q0, t0,C) ∩ V1(G, q0) = ∅ and u(q, t) ≥ 0 solves the heat equation on G, then

(2.23) u(q0, t0) ≤ ∫
∂B

−ukxn1ds.

Proof. From theorem 2.1, we have

(2.24) u(q0, t0) = ∫
∂B

−ukxn1ds + ∑
v∈V

(d+v − d−v)∫
B∩v

ukxds

If v is not a singularity of d(q0, ⋅) and v ≠ v0, then for v ≠ v0, d(q0, v) is decreasing away
from v for one edge adjacent to v, and increasing away from v for dv −1 edges. This implies
d+v = dv − 1 and d−v = 1, which implies if dv > 1 then d+v − d−v ≥ 0. Because kx < 0 for all v ≠ v0

and u(q, t) ≥ 0

(2.25) (d+v − d−v)∫
B∩v

ukxds ≤ 0.

For v0, if v0 is not a singularity of d(q0, ⋅) then for all edges adjacent to v0 the coordinate
system in increasing traveling away from v0. This implies there are dv0 edges adjacent to v0
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with ne,1 = −1 along ∂Be ∩ v0. By the definition of d+v and d−v for v0, we subtract one from
d+v and add one to d−v . Hence, if dv0 > 1 then d+v0 − d

−
v0 ≥ 0. This implies

(2.26) (d+v0 − d
−
v0)∫

B∩v0
ukxds ≤ 0.

�

Note that for trees, the set V1(G, q0) = {v ∈ V ∣ dv = 1}.
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