Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

The Laplace and Heat Operators on Quantum Graphs
By

Kenny Jones
Doctor of Philosophy
Mathematics

David Borthwick Advisor
Shanshuang Yang
Committee Member

> Alessandro Veneziani
> Committee Member

Accepted:

Kimberly Jacob Arriola
Dean of the James T. Laney School of Graduate Studies

Date

The Laplace and Heat Operators on Quantum Graphs

By

Kenny Jones
B.B.A, Georgia State University, 2014
M.A., Georgia State University, 2017

Advisor: David Borthwick, Ph.D.

Special thanks to Dr. David Borthwick, Dr. Evans Harrell, and Dr. Livia Corsi for their infinite patience and guidance.

Thanks to my mom, Carol Lucas, for her slightly less than infinite patience.

An abstract of
A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Mathematics
2022

Abstract

The Laplace and Heat Operators on Quantum Graphs By Kenny Jones

This thesis analyzes the Laplace and heat operators on quantum graphs. The thesis is separated into four chapters,

- Chapter 1: Introduction to quantum graphs, the Laplace operator, and summary of the main results.
- Chapter 2: Strategies for bounding the spectral gap of a quantum graph, including a sharp upper bound for the spectral gap using the diameter and total number of vertices as parameters.
- Chapter 3: Bounds for the heat kernel of a quantum graph. The main results include a bound for small time and identifying a class of edges that can be bound by a Neumann interval.
- Chapter 4: Finds two mean value formulas for the heat equation on a quantum graph. Proves an additional bound for the mean value formula using the one dimensional free heat kernel.

The Laplace and Heat Operators on Quantum Graphs

By

Kenny Jones
B.B.A, Georgia State University, 2014
M.A., Georgia State University, 2017

Advisor: David Borthwick, Ph.D.
Special Thanks to Dr. David Borthwick, Dr. Evans Harrell, and Dr. Livia Corsi for their infinite patience and guidance.

Thanks to my mom, Carol Lucas, for her slightly less than infinite patience.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Mathematics 2022

Contents

Chapter 1. Introduction 1

1. Motivation 1
2. Introduction to Quantum Graphs 1
3. The Laplacian and Its Spectrum 3
4. Main Results 5
Chapter 2. The Spectral Gap 7
5. Introduction to the Spectral Gap 7
6. Diameter Bounds and Pumpkin Chains 12
7. Sharp Diameter Bound for Quantum Graphs 16
Chapter 3. The Heat Kernel 20
8. Introduction to the Heat Kernel 20
9. Bond Scattering Matrix and Heat Kernel Formula 21
10. Heat Kernel for Small Time 22
11. Construction of the Graph G_{n}^{*} 23
12. Identifying Paths along G^{\prime} and G_{n}^{*} 26
13. Bounding Coefficients in the Heat Kernel Formula 31
14. Direct Path Bounded Edges 36
15. Comparison Between Neumann Interval and Direct Path Bounded Edges 40
16. Neumann Comparison: Off Diagonal Results 43
Chapter 4. Mean Value Theorem 45
17. Mean Value Formula 45
18. Bounding the Mean Value Formula 47
Bibliography 52

CHAPTER 1

Introduction

1. Motivation

Quantum graphs where first used in the 1930's to study free electrons in molecules. Since then quantum graphs have been used to understand a plethora of physical objects including crystal lattices, carbon-nanotubes, waveguides, and much more. They are also used to better understand other areas of mathematics and physics. Quantum graphs have been used to model quantum chaos, Anderson localization, and many dynamic systems.

Quantum graphs, or metric graphs as they are often called, can serve as a mathematical approximation for networks where there is a well defined distance function between nodes in the network. The implications of this are endless from understanding the dynamics of traffic on roads, to the spread of viruses, to electricity in robotics. This paper will mostly involve understanding the Laplace and heat operators on quantum graphs. The Laplace operator is often associated with the energy of a system. The eigenvalues of the laplace operator give the allowable energy states for a domain with no potential energy. The heat operator is used to understand diffusion of a system. Understanding these two operators on quantum graphs has many implications in nano-technology and quantum circuitry.

Although quantum graphs are often used to better understand physical systems the author would argue that they are interesting objects in and of themselves. They are a thought-provoking marriage of graphs and partial differential equations with many surprising and fascinating characteristics.

2. Introduction to Quantum Graphs

Let G be an arbitrary quantum graph, G is defined by a finite or countably infinite set of vertices $V(G)$ and edges $E(G), G=\{V(G), E(G)\}$. We will use the simpler notation V and E, when there can be no confusion about G. Each edge $e \in E(G)$ is a one dimensional line segment connected to points $v_{1}, v_{2} \in V(G)$, alternatively we can think of v_{1} and v_{2} as being the end points of e. The structure of G is determined by how edges are connected to vertices. Multiple edges can be connected to the same vertex and both end points of an edge can be connected to the same vertex, known as a loop. Below is an example of a quantum graph.

Figure 1. A quantum graph with edges in black and vertices in blue.

The cardinality of the sets V and E will be denoted $|V|$ and $|E|$, respectively. For $e \in E$ and $v \in V, v$ and e are said to be adjacent if v is connected to e, expressed as $e \sim v$. Two edges $e_{1}, e_{2} \in E$ are adjacent if e_{1} and e_{2} are connected to the same vertex, we use the same notation $e_{1} \sim e_{2}$. All edges are adjacent to themselves.

Definition 2.1. We call G a metric graph if for all $e \in E$, e can be assigned a positive length, $\ell(e)$, where $\ell(e) \in(0, \infty]$.

All quantum graphs in this paper are assumed to be metric graphs and $\ell(e)$ will always be the one dimensional lebesgue measure of e. Each edge e can be identified with the line segment $[0, \ell(e)]$, which introduces a coordinate system along e. When using a coordinate system, a point along e will be denoted x_{e} or simply x if e is clear. Edges have no direction, so the orientation of any coordinate system is arbitrary. Occasionally, it is useful to split an edge into two directed bonds. Let e be connected to v_{1} and v_{2}. Then e can be split into two bonds $\vec{b}_{v_{1}, v_{2}}$ and $\vec{b}_{v_{2}, v_{1}}$, where $\vec{b}_{v_{1}, v_{2}}$ has the direction from v_{1} to v_{2} and $\vec{b}_{v_{2}, v_{1}}$ has the direction from v_{2} to v_{1}. Two bonds $\vec{b}_{v, w}$ and $\vec{b}_{u, x}$ are consecutive if $w=u$, meaning $\vec{b}_{v, w}$ ends at the vertex $\vec{b}_{u, x}$ begins. This technique is fully explained in Chapter 3 section 2 ,

The total length of the graph G, or $L(G)$, can be found by summing all edge lengths for edges contained in G,

$$
\begin{equation*}
L(G)=\sum_{e \in G} \ell(e) . \tag{2.1}
\end{equation*}
$$

For all vertices $v \in V$, the number of edges connected to v is called the degree of v denoted d_{v}. If both endpoints of e are connected to v, i.e. e is a loop, then we count this edge twice in the degree. If $d_{v}=2$, then v is called an artificial vertex. Artificial vertices do not affect the underlying topology of G and are often added or removed for convenience or as part of a technique to better understand the graph G. However, one must be careful when adding or deleting artificial vertices because G is defined by its set of edges and vertices, changing these sets technically changes the graph G to some new graph G^{\prime}.

We will now introduce the metric used for all quantum graphs in this paper, first we must define a path along G.

DEFINITION 2.2. A path along a quantum graph is an ordered sequence of consecutive bonds, $\left\{\vec{b}_{1,2}, \vec{b}_{2,3}, \ldots, \vec{b}_{N-2, N-1}, \vec{b}_{N-1, N}\right\}$.

A bond can be repeated any multiple of times along a path. Let p be a path consisting of the bonds $\left\{\vec{b}_{1,2}, \vec{b}_{2,3}, \ldots, \vec{b}_{N-2, N-1}, \vec{b}_{N-1, N}\right\}$. The length of p, expressed $\ell(p)$, can be found by summing the lengths of all bonds along p.

Definition 2.3. The length of a path can be calculated by

$$
\begin{equation*}
\ell(p)=\sum_{\vec{b} \in p} \ell(\vec{b}) \tag{2.2}
\end{equation*}
$$

Let q_{1} and q_{2} be two points contained on edges of G, not necessarily the same edge. If $q_{1}, q_{2} \notin V(G)$, then we can insert artificial vertices at q_{1} and q_{2}, this creates a new graph G^{\prime}. Note that $q_{1}, q_{2} \in V\left(G^{\prime}\right)$. Using definition 2.2 we can define a path from q_{1} to q_{2} along G^{\prime}.

We will define the distance function $d\left(q_{1}, q_{2}\right)$ to be the length of the shortest path between q_{1} and q_{2},

Definition 2.4. Let $P\left(q_{1}, q_{2}\right)$ be the set of all paths between q_{1} and q_{2}, then the distance between q_{1} and q_{2} is

$$
\begin{equation*}
d\left(q_{1}, q_{2}\right)=\min _{p \in P\left(q_{1}, q_{2}\right)} \ell(p) \tag{2.3}
\end{equation*}
$$

The distance $d\left(q_{1}, q_{2}\right)$ on the new graph G^{\prime} defines the distance between points q_{1} and q_{2} on the original graph G. This distance function defines a topology on the graph G, making G a topological space. Thus, we can define a function $f(q)$ for a point $q \in G$. For $q \notin V(G)$, $f(q)$ acts locally as if it is on a one dimension line segment. At vertices we impose vertex conditions, in this paper the standard Kirchoff-Neumann vertex conditions will be used,

$$
\left\{\begin{array}{l}
f \text { is continuous on } G \tag{2.4}\\
\text { and } \\
\sum_{e \sim v} d f(v) / d x_{e}=0
\end{array}\right.
$$

Where $d f(v) / d x_{e}$ refers to the outward derivative of f away from the vertex v along the edge e. If $d_{v}=1$, the second vertex condition becomes a Neumann boundary condition, $d f(v) / d x_{e}=0$. If $d_{v}=2, v$ is an artificial vertex, the second condition implies that the function is differentiable at v. We will sometimes refer to the first condition as the "continuity vertex condition" and the second condition as the "net flow vertex condition."

In order to be considered a quantum graph we equip G with a differential operator. This paper will focus on the Laplace operator $-\Delta$, or $-d^{2} / d x^{2}$, and the heat operator $\frac{\partial^{2}}{\partial x^{2}}-\partial_{t}$.

3. The Laplacian and Its Spectrum

A function f on a quantum graph can be thought of as existing on each edge e, $f_{e}:=[0, \ell(e)] \rightarrow \mathbb{C}$. Using this we can define the following functional spaces for the set $E(G)$

$$
\begin{align*}
L^{2}(E) & =\bigoplus_{e \in E(G)} L^{2}([0, \ell(e)]) \tag{3.1}\\
H^{k}(E) & =\bigoplus_{e \in E(G)} H^{k}([0, \ell(e)]) \tag{3.2}
\end{align*}
$$

Where

$$
\begin{gather*}
L^{2}([0, \ell(e)])=\left\{\left.f_{e}\left|\int_{0}^{\ell(e)}\right| f(x)\right|^{2} d x<\infty\right\} \tag{3.3}\\
H^{k}([0, \ell(e)])=\left\{f_{e} \in L^{2}([0, \ell(e)]) \left\lvert\, \int_{0}^{\ell(e)}\left(|f(x)|^{2}+\sum_{n=1}^{k}\left|\frac{d^{n} f(x)}{d x^{n}}\right|^{2}\right) d x<\infty\right.\right\} . \tag{3.4}
\end{gather*}
$$

Along each edge, the Laplacian can be defined as

$$
\begin{equation*}
-\Delta f_{e}:=f_{e} \rightarrow-\frac{d^{2} f_{e}}{d x^{2}} \tag{3.5}
\end{equation*}
$$

On each edge the domain of the Laplacian is $H^{2}([0, \ell(e)])$. In order to make $-\Delta$ selfadjoint on G, we further restrict the domain to functions which satisfy the vertex conditions (2.4).

$$
\begin{equation*}
\mathcal{D}(-\Delta(G))=\left\{f \in H^{2}(E) \mid \text { f satisfies the vertex conditions }\right\} \tag{3.6}
\end{equation*}
$$

For a proof that $-\Delta(G)$ is self-adjoint acting on $\mathcal{D}(-\Delta(G))$ we refer the reader to Theorem 1.4.4 of [5]. We can associate $-\Delta(G)$ with its quadratic form

$$
\begin{equation*}
h[f, f]:=\sum_{e \in E} \int_{e}\left|\frac{d f_{e}}{d x}\right|^{2} d x \tag{3.7}
\end{equation*}
$$

the domain for h is defined as

$$
\begin{equation*}
\mathcal{D}(h)=H^{1}(G)=\left\{f \in H^{1}(E) \mid \mathrm{f} \text { is continuous on } G\right\} \tag{3.8}
\end{equation*}
$$

Through out this paper we will assume all quantum graphs are compact and contain a finite number of edges and vertices. The spectrum of $-\Delta(G)$ will be referred to as $\sigma(-\Delta(G))$, or $\sigma(-\Delta)$ when G is clear. The following comes from [5], Theorem 3.1.1.

THEOREM 3.1. If G is a compact quantum graph, then $\sigma(-\Delta)$ only contains isolated eigenvalues with finite multiplicity and as $j \rightarrow \infty, \lambda_{j} \rightarrow \infty$.

Proof. Restricting ourselves to $\mathcal{D}(-\Delta(G)),-\Delta(G)$ is self adjoint. This implies the resolvent $(-\Delta-i \mathbb{I})^{-1}$ continuously maps $L^{2}(E) \rightarrow \mathcal{D}(-\Delta(G)) \subset H^{2}(E)$. By the Sobolev embedding theorem the embedding of $H^{2}(E) \rightarrow L^{2}(E)$ is compact, which implies the resolvent is compact.

The above theorem implies that for all $\lambda_{j} \in \sigma(-\Delta(G))$, there exists a function $\psi_{j} \in$ $\mathcal{D}(-\Delta(G))$ such that

$$
\begin{equation*}
\left(-\Delta-\lambda_{j}\right) \psi_{j}=0 \tag{3.9}
\end{equation*}
$$

We will refer to λ_{j} and ψ_{j} as eigenvalue, eigenfunction pairs. Because $-\Delta(G)$ is selfadjoint on $D(-\Delta(G))$ all eigenvalues must be real. We order the eigenvalues such that $\lambda_{j} \leq \lambda_{j+1}$ for all $j \in\{0,1,2, \ldots\}$. It is well known that all eigenfunctions are contained in $C^{\infty}(G)$ and for eigenvalues such that $\lambda_{i} \neq \lambda_{j}$, the eigenfunctions ψ_{i} and ψ_{j} are orthogonal, meaning

$$
\begin{equation*}
\int_{G} \psi_{j} \psi_{i}=0 \tag{3.10}
\end{equation*}
$$

We can ensure that all eigenfunctions are orthogonal. Let n be the dimension of the eigenspace associated with the eigenvalue λ_{j}, call this space S_{j}. By the Gram-Schmidt process we can choose n functions $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ in S_{j} such that each function ϕ_{j} is orthogonal
to $\phi_{i}, i \neq j$. We then choose $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ to be the eigenfunctions associated with the eigenspace S_{j}.

Finding the values for eigenvalues, and bounding eigenvalues, frequently makes use of the Rayleigh quotient. The Rayleigh quotient on G is defined as

$$
\begin{equation*}
R(f):=\frac{\sum_{e \epsilon E} \int_{e}\left|\frac{d f_{e}}{d x}\right|^{2} d x}{\sum_{e \in E} \int_{e}\left|f_{e}\right|^{2} d x} \tag{3.11}
\end{equation*}
$$

Because all of the eigenfunctions can be made to be orthogonal and the set $\left\{\psi_{j}\right\}_{j=0}^{\infty}$ is a basis for $L^{2}(E)$, we can use the min-max formula to express all eigenvalues

$$
\begin{equation*}
\lambda_{j-1}=\min _{\substack{X \subset \mathcal{D}(-\Delta(G)) \\ \operatorname{dim}(X)=j}}\left\{\max _{f \in X}\{R(f)\}\right\} \tag{3.12}
\end{equation*}
$$

The first non-trivial eigenvalue λ_{1} is known as the spectral gap. In physics, the spectral gap has the interpretation as the smallest non-zero energy for a domain, or the first excited state. In the next chapter, we will further examine the spectral gap and provide common techniques and strategies for bounding the spectral gap.

4. Main Results

The topics in this paper can be separated into three main categories:

- Bounding the spectral gap
- Bounding the heat kernel
- Mean value formula for the heat equation

The main result for bounding the spectral gap is a sharp upper bound on the spectral gap using the diameter and $|V|$ for a graph. The diameter of a graph is defined as

$$
\begin{equation*}
D(G)=\max _{q, q_{0} \in G}\left\{d\left(q_{0}, q\right)\right\} \tag{4.1}
\end{equation*}
$$

where $d\left(q_{0}, q\right)$ is the distance between points $q_{0}, q \in G$. We also provide an algorithm for finding graphs with spectral gap arbitrarily close to our upper bound.

Theorem 4.1. Let G be a quantum graph with $|V|$ vertices and diameter D. Then the spectral gap is bounded by

$$
\begin{equation*}
\lambda_{1}(G) \leq\left(\frac{\pi(|V|+2)}{2 D}\right)^{2} . \tag{4.2}
\end{equation*}
$$

If the diameter can be realized at two vertices then

$$
\begin{equation*}
\lambda_{1}(G) \leq\left(\frac{\pi(|V|)}{2 D}\right)^{2} \tag{4.3}
\end{equation*}
$$

Furthermore, for all $\epsilon>0$, there exists a quantum graph G^{*} such that $D\left(G^{*}\right)=D$ and $\left|V\left(G^{*}\right)\right|=|V|$ and

$$
\begin{equation*}
\lambda_{1}\left(G^{*}\right) \geq\left(\frac{\pi(|V|)}{2 D}\right)^{2}-\epsilon \tag{4.4}
\end{equation*}
$$

In the next chapter, we focus on bounding the heat kernel. Let $K_{G}\left(t, q, q_{0}\right)$ be the heat kernel for G. There are two main results for bounding the heat kernel. The first is a short time estimate that utilizes the bond scattering matrix for G. The bound presented below is along the diagonal of the heat kernel, i.e. $q_{0}=q$, however the theorem is extended to off
diagonal results.

Proposition 4.2. Let G be an arbitrary quantum graph with minimum edge length a_{0}. For $q \in G$, let v_{0} be the closest non-artificial vertex with degree d_{0}. For $t<a_{0}^{2} / 2 \log (m)$,

$$
\begin{equation*}
K(t, q, q)=\frac{1}{\sqrt{4 \pi t}}\left[1+\left(\frac{2}{d_{0}}-1\right) e^{-d\left(v_{0}, q\right)^{2} / t}+O\left(m e^{-a_{0}^{2} / t}\right)\right] \tag{4.5}
\end{equation*}
$$

The next bound involves identifing a class of edges called direct path bounded edges. For any edge in this class the heat kernel can be bounded by a Neumann interval with length $\ell(e)$, where q and q_{0} have the same relative spacing on the Neumann interval as on e.

Theorem 4.3. Let $q, q_{0} \in e$, where e is direct path bounded. Let e have vertices v_{l} and v_{r} with $\ell_{1}:=\left|v_{l}-q_{0}\right|$ and $\ell_{2}:=\left|v_{r}-q_{0}\right|$. If every path from q_{0} to q_{0} containing both v_{r} and v_{l} has length equal to or greater than $\max \left\{2 \ell_{1}, 2 \ell_{2}\right\}$. Then

$$
\begin{equation*}
K_{G}\left(t, q, q_{0}\right) \leq K_{I}\left(t, q, q_{0}\right), \tag{4.6}
\end{equation*}
$$

for all $t>0$. Where $K_{I}\left(t, q, q_{0}\right)$ is the heat kernel for a Neumann interval of length ℓ, and q, q_{0} have the same relative positions as on e. If G is not the Neumann interval then the inequality is strict.

The last section finds two mean value formulas for the heat equation on a quantum graph and a bound for the mean value formula. The main result from the chapter is given below. Let $Q\left(q_{0}, t_{0}, C\right):=\left\{(x, t) \in G \times\left(0, t_{0}\right) \mid K\left(t_{0}-t, q_{0}, q\right) \geq C\right\}$ for some $C>0, q_{0} \in G$, and $t_{0} \in(0, \infty)$. We refer to $Q\left(q_{0}, t_{0}, C\right)$ as the heat ball.

Theorem 4.4. Let G be a compact quantum graph and let $u(q, t)$ satisfy the heat equation, then

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\int_{\partial Q}-u K_{x} n_{1} d s \tag{4.7}
\end{equation*}
$$

Where ∂Q is the boundary of the heat ball $Q\left(q_{0}, t_{0}, C\right)$ for some $C>0$.

CHAPTER 2

The Spectral Gap

1. Introduction to the Spectral Gap

Let $-\Delta:=-d^{2} / d x^{2}$ be the Laplace operator which acts on the L^{2} space of functions on the edges of $G .-\Delta$ has the quadratic form

$$
\begin{equation*}
h[f, f]:=\left\|f^{\prime}\right\|^{2} . \tag{1.1}
\end{equation*}
$$

The domain for h are functions which are H^{1} along each edge of G and are continuous on G, we will refer to this space of functions as $H^{1}(G)$.

Definition 1.1. The spectral gap is the first non-trivial eigenvalue of the Laplace operator, $-d^{2} / d x^{2}$, which we will call λ_{1}.

Using the Rayleigh quotient we can find an explicit expression for λ_{1},

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\frac{\int_{G}\left|f^{\prime}\right|^{2}}{\int_{G}|f|^{2}}: f \in \mathcal{D}(-\Delta(G)), \int_{G} f=0\right\} \tag{1.2}
\end{equation*}
$$

For many simple graphs we can exploit symmetries of the graph to find the first eigenvalue. All quantum graphs can be thought of as being constructed by connecting simpler sub-graphs. For example, a star graph is a graph with a single central vertex of degree d_{v} and d_{v} edges connected to the central vertex; all graphs are the union of connected star graphs. Understanding simple graphs builds an understanding of how size and shape affect the spectral gap. It is also a common strategy to utilize simple graphs to bound the spectral gap.

Below is a list of several common graphs and there exact spectral gap.

1) Path Graph $I(L)$: Consists of a single edge of length L and two degree 1 vertices. Because both vertices are degree one the second vertex condition forces the path graph to coincide with a Neumann interval of length L, as pointed out in 2.4. Hence,

$$
\begin{equation*}
\lambda_{1}(I(L))=\frac{\pi^{2}}{L^{2}} \tag{1.3}
\end{equation*}
$$

2) Symmetric Star Graph $\mathrm{S}(\mathrm{L}, \mathrm{E})$: The symmetric star graph has a single central vertex and $|E|$ edges of equal length $\frac{L}{|E|}$.

$$
\begin{equation*}
\lambda_{1}(S(L, E))=\frac{\pi^{2} E^{2}}{4 L^{2}} \tag{1.4}
\end{equation*}
$$

Figure 1. A symmetric star graph with 6 edges.
3) Symmetric Flower Graph $\mathrm{F}(\mathrm{L}, \mathrm{E})$: A symmetric flower graph also has a single central vertex and $|E|$ edges of length $\frac{L}{|E|}$. However, all edges of a flower graph are loops, meaning both end points are attached to the central vertex.

$$
\begin{equation*}
\lambda_{1}(F(L, E))=\frac{\pi^{2} E^{2}}{L^{2}} \tag{1.5}
\end{equation*}
$$

Figure 2. A symmetric flower graph with 5 edges.
3) Symmetric Pumpkin Graph $\mathrm{K}(\mathrm{L}, \mathrm{E})$: A symmetric pumpkin graph has two vertices and $|E|$ edges. The vertices are the end points for each edge in $K(L, E)$, all edges have length $\frac{L}{|E|}$.

$$
\begin{equation*}
\lambda_{1}(F(L, E))=\frac{\pi^{2} E^{2}}{L^{2}} . \tag{1.6}
\end{equation*}
$$

Figure 3. A symmetric pumpkin graph with 4 edges.
Our goal is to bound the spectral gap, λ_{1}. However, it is easy to show that for an arbitrary quantum graph one can not bound the spectral gap from above or below. Consider trying to bound the spectral gap from below. Let $\{I(n)\}_{n=1}^{\infty}$ be a sequence of path graphs with length $n \in\{1,2, \ldots\}$, then

$$
\begin{equation*}
\lambda_{1}(I(n))=\frac{\pi^{2}}{n^{2}} \tag{1.7}
\end{equation*}
$$

Clearly, the spectral gap of this sequence converges to zero.
Bounding the spectral gap from above is also impossible. Consider the sequence of symmetric star graphs $\{S(L, n)\}_{n=1}^{\infty}$, each graph in the sequence has the same total length L, and the number of edges increases for each graph in the sequence. We can compute the spectral gap for the $n^{t h}$ graph in the sequence as

$$
\begin{equation*}
\lambda_{1}(S(L, n))=\frac{\pi^{2} n^{2}}{L^{2}} \tag{1.8}
\end{equation*}
$$

The spectral gap for this sequence diverges.
These examples show that it is easy to find graphs with arbitrarily large spectral gaps or spectral gaps arbitrarily close to zero. However, if we fix a characteristic of the graph, i.e. L or $|E|$, it may be possible to create a bound. In the path graph sequence $\{I(n)\}_{n=1}^{\infty}$, fixing L would have excluded this sequence. In the second example, $\{S(L, n)\}_{n=1}^{\infty}$, fixing $|E|$ would have excluded the sequence. The most natural parameters to use to bound the spectral gap are:
(1) $L:=$ total length of G.
(2) $|V|:=$ total number of vertices of G.
(3) $|E|:=$ total number of edges of G.
(4) $D:=$ the diameter of G.

Definition 1.2. The diameter of a graph G, denoted $D(G)$ or simply D if G is understood, is defined as the largest distance between two points in G,

$$
\begin{equation*}
D(G):=\sup \left\{d\left(q_{1}, q_{2}\right): q_{1}, q_{2} \in G\right\} \tag{1.9}
\end{equation*}
$$

Many results have been proven using one or several of the parameters above. Using only the length as a parameter the following lower bound for the spectral gap was first proven by Serge Nicaise [17,

$$
\begin{equation*}
\lambda_{1} \geq \frac{\pi^{2}}{L^{2}} \tag{1.10}
\end{equation*}
$$

This makes intuitive sense as you would expect diffusion to be slowest on an interval. This result was extended by Leonid Friedlander [9] to be a lower bound for all eigenvalues of G,

$$
\begin{equation*}
\lambda_{n}(G) \geq\left(\frac{\pi(n+1)}{2 L}\right)^{2} \tag{1.11}
\end{equation*}
$$

for $n \geq 2$. No upper bound can be found fixing the total length of a graph, this follows from the sequence of symmetric star graphs, $\{S(L, n)\}_{n=1}^{\infty}$.

Other bounds rely on the procedure of graph surgeries, changes to the original graph G that monotonically affect the spectral gap. These surgeries are used in sequence to transform an arbitrary graph into a graph where the spectral gap is able to be calculated. If each surgery in the sequence monotonically increases the spectral gap, then the resulting graph must have a larger first eigenvalue and you can bound the spectral gap from above. If each surgery in the sequence decreases the spectral gap, then the first eigenvalue of the resulting graph is a lower bound.

In order to introduce these surgeries we need the following definitions:
Definition 1.3. A pendant sub-graph is a sub-graph of G that is connected to the larger graph at a single vertex.

Definition 1.4. We identify two vertices by joining them to make a single vertex. If v_{1} and v_{2} are identified to make a new vertex v_{0}, then any edge with either v_{1} or v_{2} as an endpoint now has v_{0} as an endpoint. Any edge connecting v_{1} and v_{2} becomes a loop at v_{0}.

Let G be the original graph and G^{\prime} the graph after performing a surgery. We will state each surgery such that $\lambda\left(G^{\prime}\right) \leq \lambda(G)$. We point out that the reverse action must increase the spectral gap. The following Lemma largely follows work found in [13], for a more in depth look at graph surgeries we point the reader to [15].

Lemma 1.5. Assume G and G^{\prime} are compact, connected, and finite quantum graphs. Then for the following

$$
\begin{equation*}
\lambda_{1}\left(G^{\prime}\right) \leq \lambda_{1}(G) \tag{1.12}
\end{equation*}
$$

(1) If G^{\prime} is the result of connecting a pendant sub-graph to G.
(2) If G is the result of identifying two vertices of G^{\prime}.
(3) If G^{\prime} is the result of lengthening an edge of G
(4) If G^{\prime} is the result of scaling G by $C \geq 1$, then

$$
\begin{equation*}
C^{-2} \lambda_{1}\left(G^{\prime}\right)=\lambda_{1}(G) \tag{1.13}
\end{equation*}
$$

Proof. Results (1) and (3) rely on finding a test function on the new graph G^{\prime} that is orthogonal to the constants and has a Rayleigh quotient smaller than $\lambda_{1}(G)$.

1) Attaching a pendant: Assume the pendant is attached at some vertex v. Let ψ_{1} be the eigenfunction of G associated with the eigenvalue $\lambda_{1}(G)$. We can extend ψ_{1} to a function $\widetilde{\psi} \in H^{1}\left(G^{\prime}\right)$ by setting $\widetilde{\psi}=\psi_{1}(v)$ on the pendant, which we label $G^{\prime} \backslash G$. Let $\phi=\widetilde{\psi}-\int_{G^{\prime} \backslash G} \psi_{1}(v)$, clearly, $\phi \in H^{1}\left(G^{\prime}\right)$ and it is easy to calculate that $\int_{G^{\prime}} \phi=0$. Using $\int_{G} \psi=0$ and setting $\alpha=\int_{G^{\prime} \backslash G} \psi_{1}(v)$, we calculate the Rayleigh quotient of ϕ as

$$
\begin{align*}
\frac{\int_{G^{\prime}}\left\|\phi^{\prime}\right\|^{2}}{\int_{G^{\prime}}\|\phi\|^{2}} & =\frac{\int_{G}\left\|\psi_{1}^{\prime}\right\|^{2}}{\int_{G}\|\widetilde{\psi}-\alpha\|^{2}+\int_{G^{\prime} \backslash G}\|\widetilde{\psi}(v)-\alpha\|^{2}} \tag{1.14}\\
& =\frac{\int_{G}\left\|\psi_{1}^{\prime}\right\|^{2}}{\int_{G} \psi_{1}^{2}-2 \psi_{1} \alpha+\alpha^{2}+\int_{G^{\prime} \backslash G}\|\widetilde{\psi}(v)-\alpha\|^{2}} \tag{1.15}\\
& =\frac{\int_{G}\left\|\psi_{1}^{\prime}\right\|^{2}}{\int_{G} \psi_{1}^{2}+\alpha^{2}+\int_{G^{\prime} \backslash G}\|\widetilde{\psi}(v)-\alpha\|^{2}} \tag{1.16}\\
& \leq \frac{\int_{G}\left\|\psi_{1}^{\prime}\right\|^{2}}{\int_{G}\left\|\psi_{1}\right\|^{2}} \tag{1.17}\\
& =\lambda_{1}(G) \tag{1.18}
\end{align*}
$$

2) Identifying two vertices: Let G be the result of identifying two vertices of G^{\prime}. If $f \in H^{1}(G)$ then there exists some function $\tilde{f} \in H^{1}\left(G^{\prime}\right)$ such that for any edge $e \in G$ and its natural counterpart $\widetilde{e} \in G^{\prime}$ we have $f\left(x_{e}\right)=\widetilde{f}\left(x_{\widetilde{e}}\right)$. Where f and \widetilde{f} have the same Rayleigh quotient. Thus, there is a natural identification between the functions in $H^{1}(G)$ and a subset of functions in $H^{1}\left(G^{\prime}\right)$. The result follows.
3)Lengthening an edge: This is solved in the same way as attaching a pendant, with the exception that $G^{\prime} \backslash G$ represents the new added length of the edge.
3) Scaling the graph: Let G be an arbitrary quantum graph and construct G^{\prime} by scaling G by $C \geq 1$. Let $f \in H^{1}\left(G^{\prime}\right)$ and $e \in G^{\prime}$. Let $\widetilde{e} \in G$ be the natural counterpart of e. Then we can identify f with a function $\widetilde{f} \in H^{1}(G)$ by setting $\widetilde{f}=f\left(C^{-1} x_{e}\right)$ along \widetilde{e}. We can make the reverse identification by scaling by C. It is easy to calculate the Rayleigh quotient for the function $\widetilde{f} \in H^{1}(G)$ as

$$
\begin{equation*}
\frac{\int_{G}\left\|\widetilde{f}^{\prime}\right\|^{2}}{\int_{G}\left\|\widetilde{f}^{2}\right\|}=\frac{\int_{G}\left\|f\left(C^{-1} x_{e}\right)^{\prime}\right\|^{2}}{\int_{G}\left\|f\left(C^{-1} x_{e}\right)\right\|}=C^{-2} \frac{\int_{G^{\prime}}\left\|f^{\prime}\right\|^{2}}{\int_{G^{\prime}}\left\|f^{2}\right\|} \tag{1.19}
\end{equation*}
$$

Using these graph surgeries we transform an arbitrary quantum graph into an extremal graph, a graph where the first eigenvalue is either maximized or minimized given a set of parameters. The next theorem is an example of this technique. We use the parameters $|L|$ and $|E|$ to derive an upper bound on the spectral gap, the theorem can be found in $[\mathbf{1 3}$.

Theorem 1.6. Let G be a quantum graph with $L>0$ and $|E|>1$. Then,

$$
\begin{equation*}
\lambda_{1}(G) \leq \frac{\pi^{2}|E|^{2}}{L^{2}} \tag{1.20}
\end{equation*}
$$

If $|E|=1$, then G is either a loop or path graph, thus

$$
\lambda_{1}(G)=\left\{\begin{array}{l}
\frac{\pi^{2}}{L^{2}}, G \text { is a path graph } \tag{1.21}\\
\frac{4 \pi^{2}}{L^{2}}, G \text { is a loop }
\end{array}\right.
$$

Proof. Let G be a quantum graph and let G_{1} be the graph created by identifying all vertices of G, i.e. G_{1} is a flower graph. Then by Lemma 1.5

$$
\begin{equation*}
\lambda_{1}(G) \leq \lambda_{1}\left(G_{1}\right) \tag{1.22}
\end{equation*}
$$

Let F be a symmetric flower graph with total length L and $|E|$ edges. If $\lambda_{1}\left(G_{1}\right) \leq \lambda_{1}(F)$, then the proof is complete. Let e_{1} and e_{2} be the two longest edges of G_{1} (if the two longest edges are not unique choose any two longest edges). Then $\ell\left(e_{1}\right)+\ell\left(e_{2}\right) \geq 2 L /|E|$. Each petal of G_{1} is a pendant, consider a new graph G_{2} constructed from G_{1} by removing all petals except for e_{1} and e_{2}, then Lemma 1.5 implies

$$
\begin{equation*}
\lambda_{1}\left(G_{1}\right) \leq \lambda_{1}\left(G_{2}\right) \tag{1.23}
\end{equation*}
$$

Let G_{3} be a graph constructed from G_{2} by un-identifying the central vertex, i.e. changing the two petals into a single loop of length $\ell\left(e_{1}\right)+\ell\left(e_{2}\right)$. Again, by Lemma 1.5 we have

$$
\begin{equation*}
\frac{4 \pi^{2}}{\left(\ell\left(e_{1}\right)+\ell\left(e_{2}\right)\right)^{2}}=\lambda_{1}\left(G_{3}\right) \leq \lambda_{1}\left(G_{2}\right) \tag{1.24}
\end{equation*}
$$

However, since any eigenfunction on the circle G_{3} can serve as a test function on the two petal graph G_{2}, as long as we insure that the eigenfunction is rotated in such a way as to satisfy the central vertex condition this proves

$$
\begin{equation*}
\lambda_{1}\left(G_{2}\right) \leq \lambda_{1}\left(G_{3}\right) \tag{1.25}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\lambda_{1}(G) \leq \lambda_{1}\left(G_{3}\right)=\frac{4 \pi^{2}}{\left(\ell\left(e_{1}\right)+\ell\left(e_{2}\right)\right)^{2}} \leq \frac{\pi^{2}|E|^{2}}{L^{2}} \tag{1.26}
\end{equation*}
$$

The following section introduces pumpkin chain graphs and a more involved sequence of surgeries that reduces any graph to a pumpkin chain while monotonically increasing the spectral gap, thus giving us an upper bound on the spectral gap.

2. Diameter Bounds and Pumpkin Chains

In this section we will discuss diameter bounds for quantum graphs. Pumpkin chain graphs play an important role in bounding the spectral gap using the diameter.

Definition 2.1. A pumpkin chain is a quantum graph constructed by placing symmetric pumpkin graphs end to end. Each vertex is either an end point of the chain or connects adjacent pumpkins.

Figure 4. Pumpkin chain with 4 pumpkins and 5 vertices
Pumpkin chains are used when finding diameter bounds on the spectral gap for two reasons. First, given a graph G with diameter $D(G)$ there exists a sequence of surgeries from Lemma 1.5 that converts G into a pumpkin chain with diameter $D(G)$ such that each step in the sequence either increases the spectral gap or leaves it unchanged. This makes pumpkin chains a natural choice for creating upper bounds using the diameter as a parameter. The second reason is that finding the first eigenfunction on a pumpkin chain can be reduced to a Sturm-Liouville problem, making it possible to calculate the first eigenvalue.

The following pumpkin chain algorithm was first introduced by Kennedy et al, 2016 13.

LEMMA 2.2 (Lemma 5.4 of $\mathbf{1 3}$). Given a compact, connected, non-empty metric graph G, there exists a pumpkin chain K such that
(1) $D(G)=D(K), \ell(G) \geq \ell(K)$, and $|V(G)| \geq|V(K)|-2$.
(2) $\lambda_{1}(G) \leq \lambda_{1}(K)$.

If the combinatorial diameter is used, (1) is replaced by
$\left(1^{\prime}\right) D(G)=D(K), \ell(G) \geq \ell(K)$, and $|V(G)| \geq|V(K)|$.
Proof. The pumpkin chain K can be constructed following the algorithm below, all steps in the algorithm either increase λ_{1} or leave it unchanged by Lemma 1.5 .
Step 1. Choose two points $q, q_{0}, \in G$ such that $d\left(q, q_{0}\right)=D(G)$. If q and q_{0} are not vertices, insert artificial vertices at q and q_{0} (these extra vertices produce the shift by -2 in (1)). If $d\left(q, q_{0}\right)=D$ can be achieved for $q, q_{0} \in V$, then (1) is modified to (1^{\prime}). Let $v_{0}=q$ and $v_{D}=q_{0}$.
Step 2. Choose the shortest path between v_{0} and v_{D}, if this path is not unique, choose any shortest path. Call this path Γ_{1}. Note, $\ell\left(\Gamma_{1}\right)=D$ and Γ_{1} does not contain loops or any point twice. In the example below, Γ_{1} is the central path.

Figure 5. The initial graph G.
Step 3. Find the second shortest path, Γ_{2}, such that Γ_{2} does not contain any point twice (edge or vertex) and $\Gamma_{2} \nsubseteq \Gamma_{1}$. If two or more paths have the same length and satisfy the above conditions, choose one arbitrarily. If such a path does not exist, skip to Step 5.
Step 4. Continue to find the next shortest path connecting v_{0} to v_{D} such that the path does not contain a point twice and

$$
\Gamma_{k} \nsubseteq \bigcup_{i=1}^{k-1} \Gamma_{i},
$$

for each k. Because G is compact, this process must terminate after a finite number of steps. Let Γ_{n} be the last path, we have

$$
\begin{equation*}
D=\ell\left(\Gamma_{1}\right) \leq \ell\left(\Gamma_{2}\right) \leq \cdots \leq \ell\left(\Gamma_{n-1}\right) \leq \ell\left(\Gamma_{n}\right) . \tag{2.2}
\end{equation*}
$$

Step 5. Let $G_{1}=\bigcup_{i=1}^{n} \Gamma_{i}$. Any connected component of $G \backslash G_{1}$ must be attached to G_{1} by a single vertex (i.e., is a pendant of G). If this was not true, we could find a non-self-intersecting path Γ^{*} such that $\Gamma^{*} \nsubseteq G_{1}$, which would contradict step 4 terminating.

Figure 6. The graph G_{1}, created by removing pendants of G.
Step 6. We now construct a new graph G_{2} by shortening edges of G_{1} so that all paths connecting v_{0} to v_{D} have length D. Starting with Γ_{1}, if $\ell\left(\Gamma_{j}\right)=D$ we do not change the path and rename the path Γ_{j}^{*}. If $\ell\left(\Gamma_{j}\right)>D$ then we shorten edges of Γ_{j} not contained in $\Gamma_{j} \cup_{i=1}^{j-1} \Gamma_{i}^{*}$ until $\ell\left(\Gamma_{j}\right)=D$, and rename the new path Γ_{j}^{*}. Note that some paths may have become subsets. The new graph $G_{2}=\cup_{i=1}^{n} \Gamma_{i}^{*}$.
Step 7. Let $S=\left\{d\left(v_{0}, q\right) \mid q \in V\left(G_{2}\right)\right\}$. For each point q along $\Gamma_{j}^{*}, j \in\{1,2, \ldots, n\}$, if $d\left(v_{0}, q\right) \in$ S we ensure there is a vertex at the point by adding an artificial vertex if needed.

Figure 7. The graph G_{2}, created from G_{1} by adding the artificial vertex v_{1} and shortening edges such that $\ell\left(e_{1}\right)=\ell\left(e_{2}\right)=\ell\left(e_{3}\right)$ and $\ell\left(e_{4}\right)=\ell\left(e_{5}\right)=$ $\ell\left(e_{6}\right)$.

Step 8. The final step is to identify all vertices with the same distance from v_{0} i.e. if $d\left(v_{0}, v_{i}\right)=d\left(v_{0}, v_{j}\right)$ then we identify v_{i} and v_{j}.

Figure 8. The pumpkin chain K created from G_{2} by identifying vertices v_{1}, v_{2}, and v_{3}.

The construction of K involves cutting pendants, shortening edges, and identifying vertices. From Lemma 1.5, these operations can only increase the spectral gap. Therefore, $\lambda_{1}(G) \leq \lambda_{1}(K)$.

Note that the algorithm used in Lemma 2.2 does not yield a unique result. For a pumpkin chain, finding the first eigenvalue reduces to a Sturm-Liouville problem. Let K be a pumpkin chain with diameter D and total number of vertices $|V|$. Let v_{1} and $v_{|V|}$ be the end vertices of the pumpkin chain. Starting with the pumpkin with end point v_{1}, we label the $k^{t h}$ pumpkin in the chain G_{k} and its edge multiplicity m_{k}. We construct a function, $r(q): G \rightarrow[0, D]$ such that for $q \in G, r(q)=d\left(v_{1}, q\right)$. And the function $w(x):[0, D] \rightarrow \mathbb{Z}$, such that if $q \in G_{k}$ then $w(r(q))=m_{k}$, the multiplicity of pumpkin G_{k}.

Lemma 2.3. Let K be a pumpkin chain, then there exists an eigenfunction, ψ_{1}, of K with eigenvalue $\lambda_{1}(K)$ such that for $q \in G, \psi_{1}(q)=\phi(r(q))$, where $\phi(x):=[0, D] \rightarrow \mathbb{C}$.

Proof. Let ψ be an eigenfunction of K associated with eigenvalue λ_{1}. We construct a new eigenfunction ψ_{1} by averaging the values of ψ along each pumpkin. Let $S(x)=\{q \in G \mid$ $\left.d\left(v_{1}, q\right)=x ; x \in[0, D]\right\}$. The set $S(x)$ is a single point if $d\left(v_{1}, q\right)=x$ and q is a vertex. $S(x)$ has m_{k} points when $d\left(v_{1}, q\right)=x$ describes points belonging to the pumpkin G_{k}. Let $\psi_{1}(x)=\sum_{q \in S(x)} \psi(q) /|S(x)|$. It is easy to verify that ψ_{1} is orthogonal to the constants with Rayleigh quotient $\lambda_{1}(K)$.

This proves that for a pumpkin chain K, there exists an eigenfunction ψ_{1} with eigenvalue $\lambda_{1}(K)$ such that $\psi_{1}(q)$ is only dependent on $d\left(v_{1}, q\right)$. We can use the coordinate system $x \in[0, D]$ to indicate the longitudinal position along the graph K, and use the function $w(x)$ to indicate the multiplicity of the pumpkin at position x. This reduces the problem to a one dimensional Sturm-Liouville problem of the form

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\frac{\int_{0}^{D}\left|\phi^{\prime}(x)\right|^{2} w(x)}{\int_{0}^{D}|\phi(x)|^{2} w(x)}: \phi \in H^{1}([0, D]), \int_{0}^{D} \phi(x) w(x)=0\right\} \tag{2.3}
\end{equation*}
$$

3. Sharp Diameter Bound for Quantum Graphs

Kennedy et al. 13 proved that by fixing the diameter and total number of vertices the spectral gap was bounded above by

$$
\begin{equation*}
\lambda_{1}(G) \leq\left(\frac{\pi(|V|+1)}{D(G)}\right)^{2} . \tag{3.1}
\end{equation*}
$$

If the diameter can be realized at two vertices then the estimate improves to

$$
\begin{equation*}
\lambda_{1}(G) \leq\left(\frac{\pi(|V|-1)}{D(G)}\right)^{2} \tag{3.2}
\end{equation*}
$$

This estimate is sharp if $|V|=2$. The following theorem extends their work, creating a smaller upper bound that is shown to be sharp for all $|V|$.

Theorem 3.1. Let G be a quantum graph with $|V|$ vertices and diameter D. Then the first non-zero eigenvalue satisfies

$$
\begin{equation*}
\lambda_{1}(G) \leq\left(\frac{\pi(|V|+2)}{2 D}\right)^{2} . \tag{3.3}
\end{equation*}
$$

If the diameter can be realized at two vertices then

$$
\begin{equation*}
\lambda_{1}(G) \leq\left(\frac{\pi(|V|)}{2 D}\right)^{2} \tag{3.4}
\end{equation*}
$$

And for all $\epsilon>0$, there exists a quantum graph G^{*} such that $D\left(G^{*}\right)=D$ and $\left|V\left(G^{*}\right)\right|=|V|$ with

$$
\begin{equation*}
\lambda_{1}\left(G^{*}\right) \geq\left(\frac{\pi(|V|)}{2 D}\right)^{2}-\epsilon \tag{3.5}
\end{equation*}
$$

Proof. Let G have $|V(G)|$ vertices and diameter $D(G)$. Using the algorithm from Lemma 2.2 we can construct a pumpkin chain K such that

$$
\begin{equation*}
\lambda_{1}(G) \leq \lambda_{1}(K) \tag{3.6}
\end{equation*}
$$

Where K has diameter D and at most $|V(G)|+2$ vertices. We label the pumpkins $K_{1}, \ldots, K_{|V(K)|-1}$, where pumpkin K_{j} has length ℓ_{j} and multiplicity m_{j}.

As in Lemma 2.3, we construct a coordinate system along K. Let v_{0} be an endpoint of K, then $d\left(v_{0}, q\right)=x, x \in[0, D]$ defines the coordinate system along each edge. As before in equation 2.3$), w(x)$ is a weight function that returns the multiplicity of the pumpkin at $d\left(v_{0}, q\right)=x \in[0, D]$. Then for any function $\psi \in H^{1}(G)$, where $\psi(q)$ is only dependent on $d\left(v_{0}, q\right)$ the Rayleigh quotient for ψ can be expressed

$$
\begin{equation*}
R(\psi)=\frac{\int_{0}^{D}\left|\psi^{\prime}(x)\right|^{2} w(x) d x}{\int_{0}^{D}|\psi(x)|^{2} w(x) d x} \tag{3.7}
\end{equation*}
$$

Let K_{r} be the longest pumpkin in K, i.e. $\ell_{r} \geq \ell_{j}$ for all $j \in\{1,2, \ldots,|V(K)|-1\}$, with endpoint v_{1} where $d\left(v_{0}, v_{1}\right)=x_{1}$, and v_{1} is the closest vertex of K_{r} to v_{0}. We construct the following test function along K,

$$
\psi_{1}(x):= \begin{cases}b_{1}, & x \leq x_{1} \\ b_{1} \cos \left[\pi\left(x-x_{1}\right) / \ell_{r}\right], & x_{1} \leq x \leq x_{1}+\ell_{r} / 2 \\ b_{2} \cos \left[\pi\left(x-x_{1}\right) / \ell_{r}\right], & x_{1}+\ell_{r} / 2 \leq x \leq x_{1}+\ell_{1} \\ -b_{2}, & x \geq x_{1}+\ell_{r}\end{cases}
$$

Choosing b_{1} and b_{2} such that

$$
\begin{equation*}
\int_{0}^{D} \psi_{1}(x) w(x)=0 \tag{3.8}
\end{equation*}
$$

The numerator of the Rayleigh quotient for ψ_{1} is

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}}\left|\psi_{1}^{\prime}(x)\right|^{2} m_{r}=\frac{\pi^{2} m_{r}}{2 l_{r}}\left(b_{1}^{2}+b_{2}^{2}\right) \tag{3.9}
\end{equation*}
$$

and the denominator is bounded by

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}}\left|\psi_{1}(x)\right| m_{r} \geq \frac{\ell_{r} m_{r}}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \tag{3.10}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\lambda_{1}(K) \leq \frac{\pi^{2}}{\ell_{r}^{2}} \tag{3.11}
\end{equation*}
$$

We construct a second test function $\psi_{2}(x)$, where ψ_{2} is a quarter period cosine on the two longest pumpkins in K and constant on all other pumpkins. Let K_{t} be a pumpkin in K such that $\ell_{t} \geq \ell_{j}$ for all $j \in\{1,2, \ldots,|V(K)|-1\}, j \neq r$. Let K_{t} have endpoint v_{2} where $d\left(v_{0}, v_{2}\right)=x_{2}$, and v_{2} is the closest vertex of K_{t} to v_{0}. Without loss of generality let $x_{1}<x_{2}$, and

$$
\psi_{2}(x):= \begin{cases}b_{3}, & x \leq x_{1} \\ b_{3} \cos \left[\pi\left(x-x_{1}\right) / 2 \ell_{2}\right], & x_{1} \leq x \leq x_{1}+\ell_{2} \\ 0, & x_{1}+\ell_{2} \leq x \leq x_{2} \\ -b_{4} \sin \left[\pi\left(x-x_{2}\right) / 2 \ell_{2}\right], & x_{2} \leq x \leq x_{2}+\ell_{2} \\ -b_{4}, & x \geq x_{2}+\ell_{2}\end{cases}
$$

Again, choosing b_{3} and b_{4} such that

$$
\begin{equation*}
\int_{0}^{D} \psi_{2}(x) w(x)=0 \tag{3.12}
\end{equation*}
$$

For ψ_{2} the numerator is

$$
\begin{equation*}
\int_{0}^{D}\left|\psi_{2}^{\prime}\right|^{2} w(x) d x=\frac{\pi^{2}}{8 \ell_{t}}\left(m_{r} b_{3}^{2}+m_{t} b_{4}^{2}\right) \tag{3.13}
\end{equation*}
$$

The denominator is bounded by

$$
\begin{equation*}
\int_{0}^{D}\left|\psi_{2}\right|^{2} w(x) d x \geq \frac{\ell_{t}}{2}\left(m_{r} b_{3}^{2}+m_{t} b_{4}^{2}\right) \tag{3.14}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
\lambda_{1}(K) \leq \frac{\pi^{2}}{4 \ell_{t}^{2}} \tag{3.15}
\end{equation*}
$$

Given the constraints 3.11 and 3.15, we can find the maximum value for $\lambda_{1}(K)$. Since $\ell_{t} \geq \ell_{j}$ for $j \in\{1,2,, \ldots,|V(K)|-1\}, j \neq r$ we have

$$
\begin{equation*}
(|V(K)|-2) \ell_{t} \geq D-\ell_{r} \tag{3.16}
\end{equation*}
$$

Combining this with 3.15 gives the bound

$$
\begin{equation*}
\lambda_{1}(K) \leq \frac{\pi^{2}(|V(K)|-2)^{2}}{4\left(D-\ell_{r}\right)^{2}} \tag{3.17}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\lambda_{1}(K) \leq \pi^{2}\left(\min \left\{1 / \ell_{r}, \frac{(|V(K)|-2)}{2\left(D-\ell_{r}\right)}\right\}\right)^{2} \tag{3.18}
\end{equation*}
$$

The maximum is achieved when $\ell_{r}=2 D /(|V(K)|-1)$ which proves 3.3, and 3.4 if no vertices were added in constructing K from the original graph G.

To prove the above estimate is sharp, given $\epsilon>0, D$, and $|V|$ we must find a graph G^{*} such that $D\left(G^{*}\right)=D, V\left(G^{*}\right)=|V|$ with

$$
\begin{equation*}
\lambda_{1}\left(G^{*}\right)>\left(\frac{\pi|V|}{2 D}\right)^{2}-\epsilon . \tag{3.19}
\end{equation*}
$$

Based off the calculations in Theorem 3.1, G^{*} will be a pumpkin chain with $|V|-1$ pumpkins. One of the pumpkins should have length $2 D /(|V|-1)$, and all other pumpkins will have length $D /(|V|-1)$.

For arbitrarily small values of $\delta>0$, to be specified later, we will choose edge multiplicities that produce the eigenvalue $\lambda_{1}\left(G^{*}\right)=\sigma_{1}^{2}$ where

$$
\sigma_{1}=\frac{\pi}{2(a+\delta)}
$$

If δ is small, an interval of length a will contain slightly less than a quarter period of $\cos \left(\sigma_{1} x\right)$. Choosing an orientation and initial vertex v_{0}, let $d\left(v_{0}, v_{j}\right)=x_{j}$ where v_{j} is the first vertex of pumpkin K_{j}, for $j=1, \ldots,(|V|-1)$. One of the segments has length $2 a$, which we label by j_{0}. (We do not assume the lengths are arranged in order.) The strategy is to splice together functions of the form

$$
h_{j}(x):= \begin{cases}\cos \left(\sigma_{1}\left(x-x_{j}\right)+\eta_{j}\right), & 1 \leq j \leq j_{0}, \tag{3.20}\\ \sin \left(\sigma_{1}\left(x-x_{j}\right)+\eta_{j}\right), & j_{0}<j \leq|V|-1 .\end{cases}
$$

Each phase shift η_{j} will be an integer multiple of $\sigma_{1} \delta / 2$. First, we determine the phase shift for given δ. Then multiply each h_{j} by an amplitude term b_{j} to satisfy the continuity condition. In order to satisfy the net flow vertex condition, our edge multiplicities m_{j} will be determined.
We start with specifying η_{j} If $j \neq j_{0}$, then

$$
\eta_{j}:= \begin{cases}0, & \text { if } j=1 \\ \sigma_{1} \delta / 2, & \text { if } 1<j<m \\ \sigma_{1} \delta, & \text { if } j=m\end{cases}
$$

For the segment of length $2 a, j=j_{0}$, the phase shifts,

$$
\eta_{j_{0}}:= \begin{cases}0, & \text { if } j_{0}=1 \\ \sigma_{1} \delta, & \text { if } 1<j_{0}<m \\ 2 \sigma_{1} \delta, & \text { if } j_{0}=m\end{cases}
$$

Let the edges of sub-pumpkin K_{j} have length ℓ_{j}. The full eigenfunction ϕ, is defined by setting

$$
\phi(x):=b_{j} h_{j}(x), \quad \text { for } x \in\left[x_{j}, x_{j}+\ell_{j}\right]
$$

with b_{j} defined by the continuity condition. The matching conditions at vertex x_{j} are

$$
\begin{align*}
b_{j-1} h_{j-1}\left(x_{j}\right) & =b_{j} h_{j}\left(x_{j}\right) \\
b_{j-1} m_{j-1} h_{j-1}^{\prime}\left(x_{j}\right) & =b_{j} m_{j} h_{j}^{\prime}\left(x_{j}\right), \tag{3.21}
\end{align*}
$$

for $j=2, \ldots,(|V|-1)$. Hence the edge multiplicities satisfy the condition

$$
\begin{equation*}
m_{j-1} h_{j-1}^{\prime}\left(x_{j}\right)=m_{j} h_{j}^{\prime}\left(x_{j}\right), \quad 2 \leq j \leq m \tag{3.22}
\end{equation*}
$$

Choosing δ so that $\sin \left(\sigma_{1} \delta / 2\right)$ and $\cos \left(\sigma_{1} \delta / 2\right)$ are both rational, then by basic trigonometric identities all of the values of h and h^{\prime} / σ appearing in 3.22 will be rational. Hence, we can find a set of integers $m_{1}, \ldots, m_{|V|-1}$ satisfying 3.22 .

We can find arbitrarily small values of δ satisfying the rational condition by choosing a large integer n and setting

$$
\begin{equation*}
\frac{\sigma_{1} \delta}{2}=\frac{\pi \delta}{4(a+\delta)}=\arctan \left(\frac{2 n}{n^{2}-1}\right) . \tag{3.23}
\end{equation*}
$$

Let δ be small enough such that $\sigma_{1} \delta<\pi / 8$, After choosing the corresponding integers $m_{1}, \ldots, m_{|V|-1}$ satisfying $(\sqrt[3.22]{ })$, we can then solve the coefficient equations ((3.21)) to construct an eigenfunction ϕ with eigenvalue $\lambda=\sigma_{1}^{2}$. If $\sigma_{1} \delta<\pi / 8, \phi$ will be strictly decreasing, with a single zero at the midpoint of $K_{j_{0}}$.

To show that ϕ corresponds to eigenvalue $\lambda_{1}(K)$, assume there exists an eigenfunction ψ associated to the eigenvalue $\lambda<\sigma_{1}^{2}$. On $K_{1}, \psi=b_{1} \cos \left(\sqrt{\lambda} x+\alpha_{1}\right)$ and since $\sqrt{\lambda}<\sigma_{1}$ on each $K_{j}, j \leq j_{0}, \psi$ must take the form $b_{j} \cos \left(\sqrt{\lambda} x+\alpha_{j}\right)$. If we re-scale such that $\psi(0)=\phi(0)$, for all $x \leq x_{j_{0}}+a$ then $\psi(x)>\phi(x)$ i.e. ψ does not contain a zero on the interval [0, $\left.x_{j}+a\right]$. We can apply the same logic in reverse starting from $\psi(D)$, and deduce ψ does not have a zero on the interval $\left[x_{j}+a, D\right]$. Clearly, this is a contradiction as ψ is continuous and orthogonal to the constants. Thus, ϕ must correspond to $\lambda_{1}(K)$.

Given a delta, the multiplicities can be calculated using (3.23). For $|V|=5, D=1$ and choosing K_{2} to be the pumpkin with double length we find the multiplicities $m_{1}=1$, $m_{2}=10^{10}, m_{3}=10^{20}$, and $m_{4}=2 \times 10^{10}$ correspond to the eigenvalue $\lambda_{1}(K)=(2.49998 \pi)^{2}$ which is very close to our bound of $\lambda_{1}(K) \leq(2.5 \pi)^{2}$.

CHAPTER 3

The Heat Kernel

1. Introduction to the Heat Kernel

Let G be a compact connected quantum graph. Consider the initial value problem on G for $f(x) \in H^{1}(G)$, where along each edge $e \in G$

$$
\left\{\begin{array}{l}
\Delta u(x, t)=\frac{\partial u(x, t)}{\partial t} \tag{1.1}\\
u(x, 0)=f(x)
\end{array}\right.
$$

Where $u(x, t)$ must satisfy the vertex conditions,

$$
\left\{\begin{array}{l}
u(x, t) \text { is continuous on } G \tag{1.2}\\
\text { and } \\
\sum_{e \sim v} \frac{\partial u(x, t)}{\partial x_{e}}=0
\end{array}\right.
$$

for all $t>0$.
We can find a solution for $u(x, t)$ using the integral kernel,

$$
\begin{equation*}
u(x, t)=e^{t \Delta} f \tag{1.3}
\end{equation*}
$$

The eigenfunctions of $-\Delta$ form a basis for $L^{2}(G)$, Let $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ be this basis of eigenfunctions where ψ_{i} is the eigenfunction with eigenvalue λ_{i}. In this basis, f can be expressed

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} A_{n} \psi_{n} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\int_{G} f(y) \psi_{n}(y) d y \tag{1.5}
\end{equation*}
$$

Then $e^{t \Delta} f$ is

$$
\begin{align*}
e^{t \Delta} f & =\sum_{n=0}^{\infty} A_{n} e^{-t \lambda_{k}} \psi_{n}(x) \tag{1.6}\\
& =\sum_{n=0}^{\infty}\left[\int_{G} f(y) \psi_{n}(y) d y\right] e^{-t \lambda_{k}} \psi_{n}(x) \tag{1.7}\\
& =\int_{G}\left[\sum_{n=0}^{\infty} e^{-t \lambda_{k}} \psi_{n}(x) \psi_{n}(y)\right] f(y) d y \tag{1.8}
\end{align*}
$$

The bracketed summation inside the integral is the heat kernel on G and is the fundamental solution to the initial-boundary problem stated in 1.1 and 1.2 . We will use the notation

$$
\begin{equation*}
K_{G}\left(t, q, q_{0}\right)=\sum_{n=0}^{\infty} e^{-t \lambda_{k}} \psi_{n}(q) \psi_{n}\left(q_{0}\right) \tag{1.10}
\end{equation*}
$$

Where q and q_{0} are points along edges of G. If the eigenfunctions for $-\Delta$ are known then the heat kernel can be represented explicitly. The eigenfunctions of $-\Delta$ on each edge of G have the form

$$
\begin{equation*}
\psi_{n}=B_{n} \cos \left(\sqrt{\lambda_{n}} x_{e}+C_{n}\right) \tag{1.11}
\end{equation*}
$$

However, in general the constants in the above formula are unknown. In the next section we will introduce another representation of the heat kernel, which we will use to prove the main results for this chapter. For a more in depth introduction to heat kernels on Riemannian manifolds we point the reader to [10].

2. Bond Scattering Matrix and Heat Kernel Formula

Let G be a compact connected quantum graph. For any pair of vertices v, w (possibly coinciding) connected by an edge e, we call a directed bond either of the ordered sets $\vec{b}_{v w}:=$ $\{v, w\}$ and $\overleftarrow{b}_{v w}:=\{w, v\}=\vec{b}_{w v}$. We say that a bond $\vec{b}_{v w}$ is incoming at w and outgoing from v. Two bonds $\vec{b}_{v w}$ and $\vec{b}_{u z}$ are consecutive if $w=u$, i.e. if $\vec{b}_{v w}$ is an incoming bond and $\vec{b}_{w z}$ is an outgoing bond for the same vertex w.

As in definition 2.2 from Chapter 1, we define a path along G as an ordered sequence of consecutive bonds $\left\{\vec{b}_{v_{1} v_{2}}, \vec{b}_{v_{2} v_{3}} \ldots, \vec{b}_{v_{n-1} v_{n}}\right\}$. For any path p, its length is denoted $\ell(p)$ which is calculated by summing the lengths of all bonds in p .

Fix two points q and q_{0} along edges of G and insert artificial vertices v_{q} at q and $v_{q_{0}}$ at q_{0}. Call $P\left(q, q_{0}\right)$ the collection of paths beginning at v_{q} and ending at $v_{q_{0}}$, this is clearly a countable set. If $q=q_{0}$ we include in $P(q, q)$ the trivial path i.e. the empty sequence $\}$, and we say that the trivial path has length zero.

Assume the graph G, including the artificial vertices v_{q} and $v_{q_{0}}$, has m edges (hence $2 m$ bonds). We fix an ordering on the set of bonds in G so that given any $2 m \times 2 m$ matrix $A=\left\{a_{i k}\right\}$, we can uniquely associate each row and each column of A with a bond. According to the ordering on the bonds in G we can also identify any path p with an ordered sequence of integers $\left\{i_{1}, \ldots, i_{q}\right\} \in\{1, \ldots, 2 m\}^{q}$, so that we can set

$$
\alpha_{A}(p):=\left\{\begin{array}{lr}
1 & \text { if } q=0,1 \tag{2.1}\\
\prod_{\ell=1}^{q-1} a_{i_{\ell} i_{\ell+1}} & \text { if } q \geq 2
\end{array}\right.
$$

In particular the bond scattering matrix B is a $2 m \times 2 m$ orthogonal matrix with coefficients

$$
\beta_{i k}:= \begin{cases}2 / d_{v}-1 & \text { if } k=\vec{b}_{w v} \text { and } i=\overleftarrow{b}_{w v} \quad(\text { bounce }) \tag{2.2}\\ 2 / d_{v} & \text { if } k=\vec{b}_{w v} \text { and } i=\vec{b}_{v u} \text { with } \vec{b}_{w v} \neq \vec{b}_{v u} \quad \text { (transfer) } \\ 0 & \text { otherwise }\end{cases}
$$

We will refer to $\beta_{i k}$ as a scattering component of B.
REmark 2.1. Note that if a graph G^{\prime} is obtained from G by adding an artificial vertex, then any path p in G corresponds to a path p^{\prime} in G^{\prime} and one has

$$
\alpha_{B}(p)=\alpha_{B^{\prime}}\left(p^{\prime}\right)
$$

When the matrix B is understood, we will use the simpler notation $\alpha(p)$.
Definition 2.2. We will call $K_{G}\left(t, q, q_{0}\right)$ a rational heat kernel if after inserting the artificial vertices v_{q} and $v_{q_{0}}$ all edges have rational length.

From [14], we quote the following
Proposition 2.3. For a compact quantum graph G, if $\alpha_{B}(p)$ is defined as in 2.1 with B as in (2.2), then the heat kernel for G is given by

$$
\begin{equation*}
K_{G}\left(t, q, q_{0}\right)=\frac{1}{\sqrt{4 \pi t}} \sum_{p \in P\left(q, q_{0}\right)} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t} \tag{2.3}
\end{equation*}
$$

In light of Proposition 2.3 , we call the coefficients $\alpha_{B}(p)$ the heat path coefficients when B is the bond scattering matrix.

Example 2.4. For a single interval I of length ℓ, with Neumann boundary conditions, the eigenfunction expansion of the heat kernel is

$$
K_{I}\left(t, q, q_{0}\right)=\frac{1}{\ell}+\frac{2}{\ell} \sum_{j=1}^{\infty} e^{-\left(\frac{j \pi}{\ell}\right)^{2} t} \cos \left(\frac{j \pi}{\ell} q\right) \cos \left(\frac{j \pi}{\ell} q_{0}\right) .
$$

The alternative formula given by Proposition 2.3 is actually the result obtained by the method of images:

$$
\begin{equation*}
K_{I}\left(t, q, q_{0}\right)=\frac{1}{\sqrt{4 \pi t}} \sum_{k \in \mathbb{Z}^{+}}\left[e^{-\left(q-q_{0}+2 k \ell\right)^{2} / 4 t}+e^{-\left(q+q_{0}+2 k \ell\right)^{2} / 4 t}\right] \tag{2.4}
\end{equation*}
$$

3. Heat Kernel for Small Time

From (2.3), it is clear that for small enough time the contributions from the shortest paths dominate the sum. The following proposition bounds the heat kernel for small time.

Proposition 3.1. Let G be an arbitrary quantum graph with minimum edge length a_{0} and m edges. For a point $q \in G$, let v_{0} be the closest non-artificial vertex with degree d_{0}. For $t<a_{0}^{2} / 2 \log (m)$,

$$
\begin{equation*}
K(t, q, q)=\frac{1}{\sqrt{4 \pi t}}\left[1+\left(\frac{2}{d_{v_{0}}}-1\right) e^{-d\left(v_{0}, q\right)^{2} / t}+O\left(m e^{-a_{0}^{2} / t}\right)\right] . \tag{3.1}
\end{equation*}
$$

Proof. Let e have vertices v_{0} and v_{1} and $q \in e$, with $d\left(v_{0}, q\right) \leq d\left(v_{1}, q\right)$. Let $|E(G)|=m$. The set $P(q, q)$ contains the trivial path, the path with a single reflection off of v_{0}, and the path with a single reflection off of v_{1}. All other paths in $P(q, q)$ contain a complete edge. Let $R(t, q)$ be the contribution to 2.3 from all paths containing a complete edge. We can re-write 2.3 as

$$
\begin{equation*}
K(t, q, q)=\frac{1}{\sqrt{4 \pi t}}\left[1+\left(\frac{2}{d_{v_{0}}}-1\right) e^{-d\left(v_{0}, q\right)^{2} / t}+\left(\frac{2}{d_{v_{1}}}-1\right) e^{-d\left(v_{1}, q\right)^{2} / t}+R(t, q)\right] \tag{3.2}
\end{equation*}
$$

Suppose that p is a path in $P(q, q)$ containing k complete edges, $k \geq 1$. Then, $\ell(p) \geq$ $k a_{0}+2 d\left(v_{0}, q\right)$, where a_{0} is the shortest edge of G. The number of paths containing exactly k edges is bounded by m^{k}. Thus we can bound $R(t, q)$,

$$
\begin{equation*}
|R(t, q)| \leq \sum_{k=1}^{\infty} m^{k} e^{-\left(2 d\left(v_{0}, q\right)+k a_{0}\right)^{2} / 4 t} \tag{3.3}
\end{equation*}
$$

For $t<a_{0}^{2} / 2 \log (m)$ and $k \geq 1$, we can bound each term in the sum above by

$$
\begin{equation*}
\frac{\left(k a_{0}\right)^{2}}{4 t}+k \log (m) \geq-\frac{a_{0}^{2}}{4 t}+\frac{k a_{0}^{2}}{2 t}+k \log (m) \tag{3.4}
\end{equation*}
$$

Creating a new bound for $R(t, q)$,

$$
\begin{align*}
|R(t, q)| & \leq \sum_{k=1}^{\infty} m^{k} e^{a_{0}^{2} / 4 t-k a_{0}^{2} / 2 t} \tag{3.5}\\
& =\sum_{k=1}^{\infty} e^{a_{0}^{2} / 4 t}\left(m e^{-a_{0}^{2} / 2 t}\right)^{k} \tag{3.6}\\
& =\frac{m e^{-a_{0}^{2} / 4 t}}{1-m e^{-a_{0}^{2} / 2 t}} \tag{3.7}
\end{align*}
$$

Using a similar strategy, for points $q_{1} \neq q_{2}$

$$
\begin{equation*}
K\left(t, q_{1}, q_{2}\right) \sim \frac{c}{\sqrt{4 \pi t}} e^{-d\left(q_{1}, q_{2}\right)^{2} / 4 t} \tag{3.8}
\end{equation*}
$$

Where c is the sum of $\alpha(p)$ coefficients for all minimum distance paths between q_{1} and q_{2},

$$
\begin{equation*}
c=\sum_{\substack{p \in P\left(q_{1}, q_{2}\right) \\ \ell(p)=d\left(q_{1}, q_{2}\right)}} \alpha(p) \tag{3.9}
\end{equation*}
$$

We note that minimal paths can't contain reflections, so for all $\alpha(p)$ in the above sum

$$
\begin{equation*}
\alpha(p)=\prod_{v \in p} \frac{2}{d_{v}}>0 \tag{3.10}
\end{equation*}
$$

4. Construction of the Graph G_{n}^{*}

In the following sections our goal is to show that for particular edges we can bound the heat kernel coefficients associated with paths in $P\left(q, q_{0}\right)$. For these special edges, we can use the bound on the heat path coefficients to bound the heat kernel.

We start by partitioning the paths in $P(q, q)$ by
(1) The initial direction of the path (leaves q to the left or right).
(2) How many times the path returns to the point q.

We will need to control the sum of heat path coefficients for paths with less than M bonds. Every heat path coefficient $\alpha(p)$, can be associated with a path p via (2.1). To control the sum of coefficients in each partition we will construct directed bond graphs (DBG) G_{n}^{*} for $n \in\{1,2, \ldots\}$. These DBG will allow us to control the sum of coefficients for the two partitions that return to $q n$-times, and are defined as follows.

Definition 4.1. A graph is a set of vertices connected by edges. With each edge we can associate two directed bonds. A directed bond graph is a set of vertices and bonds. Given a graph G, we define the directed bond graph (DBG) G^{*} associated to G as the set of vertices and bonds of G (i.e. G where the edges are all replaced by directed bonds).

We start by constructing a new graph G^{\prime} by inserting two artificial vertices on either side of v_{q} along the same edge e, call these vertices v_{1} and v_{2}. We also introduce the set
$\mathbb{P}(q)$, which is all paths along G^{\prime} from v_{q} to v_{q} that do not bounce at artificial vertices (namely v_{q}, v_{1}, and v_{2}).

Note a subtle but important distinctions between the sets $\mathbb{P}(q)$ and $P(q, q)$. Every path in $\mathbb{P}(q)$ corresponds to a path in $P(q, q)$, but because of the inserted vertices v_{1} and v_{2} the path in $\mathbb{P}(q)$ will contain more bonds and hence more bond transfers.

We number the bonds of G^{\prime} according to the following picture where only the edge e is included:

Figure 1. Outgoing bonds of v_{q} are labeled 1 and 2, incoming bonds of v_{q} are 3 and 4 , and outgoing bonds of v_{1} and v_{2} oriented away from v_{q} are bonds 5 and 6 respectively

Note that we choose this numbering only for computational convenience, any alternate numbering would not change our result. Fix some numbering for all other bonds of G^{\prime}. Let B^{\prime} be the bond scattering matrix for the graph G^{\prime}. By construction v_{q}, v_{1}, and v_{2} are all artificial vertices. This implies the entries of columns 1 through 4 of B^{\prime} are zeros except for a single entry equal to 1 . Since the scattering component for bond transfers at artificial vertices is equal to 1 , while it is zero for bounces. Moreover, if a path p bounces at a vertex of degree two, then by (2.1) we have $\alpha(p)=0$, hence such a path does not contribute to the heat kernel formula. This means

$$
K_{G}(t, q, q)=K_{G^{\prime}}(t, q, q)=\frac{1}{\sqrt{4 \pi t}} \sum_{p \in P(q, q)} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}=\frac{1}{\sqrt{4 \pi t}} \sum_{p^{\prime} \in \mathbb{P}(q)} \alpha_{B^{\prime}}\left(p^{\prime}\right) e^{-\ell\left(p^{\prime}\right)^{2} / 4 t}
$$

We insert the artificial vertices v_{1} and v_{2} because we will need to change the out-going bonds of v_{q} to loops. Inserting these vertices allows us to construct paths from v_{1} or v_{2} to v_{q} with the same heat path coefficients as paths in $\mathbb{P}(q)$.

Now consider the DBG $\left(G^{\prime}\right)^{*}$ associated with G^{\prime} and construct the DBG G_{1}^{*} by changing the outgoing bonds of v_{q} (bond 1 and bond 2) to loops from v_{q} to v_{q}. We construct the matrix $\mathrm{B}^{*}{ }_{1}$ from B^{\prime} by changing columns 1 through 4 of B^{\prime} to have a one in the first row and zeros elsewhere, keeping all other columns the same. Note that a path p containing bond 3 (respectively bond 4) has $\alpha_{\mathrm{B}^{*}{ }_{1}}(p)=0$ if the bond directly following bond 3 (respectively bond 4) is not bond 1 (respectively bond 2).

In Figure 2, we show the DBG $\left(G^{\prime}\right)^{*}$ and G_{1}^{*} for a 3 edged star graph.

Figure 2. (a) The Graph $\left(G^{\prime}\right)^{*}$ for a 3 edged star graph and (b) the DBG G_{1}^{*} for the same 3 edged star graph

To construct the DBG G_{n}^{*}, we start with n copies of the DBG $\left(G^{\prime}\right)^{*}$. Assume $\left(G^{\prime}\right)^{*}$ has $2 m$ bonds. Each copy of $\left(G^{\prime}\right)^{*}$ is ordered and relabeled such that bond i on copy k of $\left(G^{\prime}\right)^{*}$ is renumbered to be $i+(k-1) 2 m$. Each copy of v_{q} is relabeled such that v_{q} on copy k becomes $v_{q_{k}}$. Then we connect each copy of $\left(G^{\prime}\right)^{*}$ by having bond $4+(k-1) 2 m$ transfer to bond $6+2 m k$ for $k \in\{1,2, \ldots, n\}$, i.e bond 4 is connected to bond 6 of the next copy of $\left(G^{\prime}\right)^{*}$ and bond $3+(k-1) 2 m$ is connected to bond $5+2 m k$, i.e. bond 3 transfers to bond 5 of the next copy of $\left(G^{\prime}\right)^{*}$. On the last copy of $\left(G^{\prime}\right)^{*}$, copy number $n,\left(G^{\prime}\right)^{*}$ is converted to G_{1}^{*}, i.e. bond $1+(n-1) 2 m$ and bond $2+(n-1) 2 m$ are changed to loops from $v_{q_{n}}$ to $v_{q_{n}}$. We force the length of each bond in G_{n}^{*} to be the same length as the corresponding bond in $\left(G^{\prime}\right)^{*}$.

We now introduce a $2 m n \times 2 m n$ matrix B_{n}^{*} obtained from B^{\prime} as follows. We start with a $2 m n \times 2 m n$ block diagonal matrix, containing n blocks of size $2 m \times 2 m$, where each block is the matrix B^{\prime}. The matrix entries equal to one in the 3 rd and 4 th columns are moved down $2 m+4$ rows for each block, excluding the last block where this is not possible. So, we change $b_{24}=1$ to $b_{24}=0$ and $b_{(6+2 m)(4)}=0$ to $b_{(6+2 m)(4)}=1$. Similarly, $b_{13}=1$ is changed to $b_{13}=0$ and $b_{(5+2 m)(3)}=0$ to $b_{(5+2 m)(3)}=1$. The last block is converted to the matrix $\mathrm{B}^{*}{ }_{1}$.

Note that for each block, only entries associated with either incoming or outgoing bonds of v_{q} are changed. The DBG G_{2}^{*} for a three edged star graph is given in Figure 4 .

Figure 3. (a) Two copies of the DBG $\left(G^{\prime}\right)^{*}$ with renumbered bonds, and (b) G_{2}^{*}, bond 3 connects to bond $5+12=17$ and bond 4 connects to bond $6+12=18$. Bonds $1+12$ and $2+12$ are changed to loops

In the next section we will show there exists a bijection Ψ between non-trivial paths p along G^{\prime} that return to $v_{q} n$-times and paths p^{*} along G_{n}^{*} from $v_{q_{1}}$ to $v_{q_{n}}$. Furthermore, the bijection preserves the heat path coefficient for each path in the sense that

$$
\begin{equation*}
\alpha_{B^{\prime}}(p)=\alpha_{\mathrm{B}^{*}{ }_{n}}(\Psi(p)) \tag{4.1}
\end{equation*}
$$

By investigating the heat path coefficients for paths from $v_{q_{1}}$ to $v_{q_{n}}$ along G_{n}^{*}, we can deduce information about the heat path coefficients for paths in $P(q, q)$ that return to v_{q} n-times. Investigating the non-zero heat path coefficients for the DBG G_{n}^{*} will be easier because the loops at $v_{q_{n}}$ "trap" the heat path coefficients at the bond $1+2(n-1) m$ (first loop of $v_{q_{n}}$).

5. Identifying Paths along G^{\prime} and G_{n}^{*}

We will show there is a bijection Ψ between non-trivial paths in $\mathbb{P}(q)$ that return to v_{q} n-times and paths p along G_{n}^{*} from bond 5 or bond 6 to $v_{q_{n}}$ such that

$$
\begin{equation*}
\alpha_{B^{\prime}}(p)=\alpha_{\mathrm{B}^{*}}{ }_{n}(\Psi(p)) . \tag{5.1}
\end{equation*}
$$

We partition the paths of $\mathbb{P}(q)$ according to 2 criteria:
(1) Whether the first bond is bond 1 or bond 2 (initial direction).
(2) Number of outgoing bonds of v_{q} the path contains (number of returns to v_{q}).

It will also be convenient to work with paths of finite length. In order to do so we introduce the following sets:

Definition 5.1. For $n \geq 1$ we denote by $P_{n, M}^{i}\left(G^{\prime}\right)$ the subset of $\mathbb{P}(q)$ of paths starting with bond $i \in\{1,2\}$, containing n outgoing bonds of v_{q}, and containing less than M bonds.

Definition 5.2. For $n \geq 1$ we denote by $\widehat{P_{n, M}^{i}}\left(G_{n}^{*}\right)$ the set of paths along G_{n}^{*} that start with bond $i \in\{5,6\}$ and end at bond $1+2 m(n-1)$, i.e. the first loop bond of $v_{q_{n}}$, with exactly $M-n$ bonds.

REMARK 5.3. In Definition 5.1 (respectively 5.2) we wrote explicitly the dependence on G^{\prime} (respectively 5.2 of the set $P_{n, M}^{i}\left(\right.$ respectively $\left.\widehat{P_{n, M}^{i}}\left(G_{n}^{*}\right)\right)$. We shall omit such dependence every time it is clear which graph (respectively DBG) we are referring to.

Lemma 5.4. For $n \geq 1$ there exists a bijective map $\Psi: P_{n, M}^{i} \rightarrow \widetilde{P_{n, M}^{i+4}}$ for all $i \in\{1,2\}$, and all M and n.

Proof. We will show the proof for $i=1$, the proof for $i=2$ follows the same strategy. First, we note that any path $p \in P_{n, M}^{1}$ is the concatenation of n sub-paths from v_{q} to v_{q} containing only one out-going bond of v_{q}, hence each sub-path starts and ends at v_{q} but never crosses-over v_{q}. Let $P_{1} \subset \mathbb{P}(q)$, be the set of paths from v_{q} to v_{q} containing one out-going bond of v_{q}, and introduce the map

$$
\phi_{1}: P_{n, M}^{1} \longrightarrow \underbrace{P_{1} \times \ldots \times P_{1}}_{n \text {-times }},
$$

where we think of each P_{1} to be on a separate copy of G^{\prime}. We maintain the order of subpaths with copies of G^{\prime}, i.e. the $i^{t h}$ sub-path is sent to the $i^{t h}$ copy of G^{\prime}.
Assume p has $m<M$ bonds, $m \neq 1$ since any path in $\mathbb{P}(q)$ must contain at least two bonds, with the exception of the trivial path. Assume $m \geq 2$ and let $p=\left\{\vec{b}_{w_{1}, w_{2}}, \vec{b}_{w_{2}, w_{3}}, \ldots, \vec{b}_{w_{q}, w_{q+1}}\right\}$. From the definition of $P_{n, M}^{1}, w_{1}=w_{q+1}=v_{q}$ and $w_{2}=v_{1}$. Moreover p contains n outgoing bonds of v_{q}, thus

$$
\begin{equation*}
\#\{\text { bond } 1 \text { in } p\}+\#\{\text { bond } 2 \text { in } p\}=n \tag{5.2}
\end{equation*}
$$

Using each appearance of bond 1 or bond 2 as delimiters, we separate p into n shorter sub-paths. Where bond 1 or bond 2 mark the start of the next sub-path. By continuity of the path p, all sub-paths must end with either bond 3 or bond 4, i.e. if sub-path $k+1$ starts with bond 1 , sub-path k must end with bond 3 and if sub-path $k+1$ starts with bond 2 , sub-path k must end with bond 4 . This implies each sub-path is contained in P_{1}. Thus, ϕ_{1} is injective. We define the set $P_{n, M}^{1}{ }^{\prime}$ to be the image of $P_{n, M}^{1}$ under ϕ_{1}, so that $\phi_{1}: P_{n, M}^{1} \rightarrow P_{n, M}^{1}{ }^{\prime}$, is bijective. The set $P_{n, M}^{1}{ }^{\prime}$ can be viewed as an ordered n-tuple of sub-paths. In Figure 4 is an example of a path in $P_{2 M}^{1}$ and its image under ϕ_{1}.

Figure 4. (a) Graph G^{\prime} with path starting at v_{q} and containing two outgoing bonds of v_{q}, and (b) two copies of G^{\prime} containing the ordered P_{1} sub-paths

Let P_{1}^{\prime} be the set of paths on G^{\prime} that start either at v_{1} or v_{2}, end at v_{q} and have no out-going bond of v_{q}. We now introduce a map

$$
\phi_{2}: P_{n, M}^{1}{ }^{\prime} \longrightarrow \underbrace{P_{1}^{\prime} \times \ldots \times P_{1}^{\prime}}_{n \text {-times }},
$$

which acts on each P_{1} sub-path by removing the first bond. Note that for all paths in P_{1}, the first bond is uniquely specified by the second bond, since v_{1} and v_{2} are artificial vertices with a trivial bond transfer. For instance if the second bond for a path in P_{1} is bond 6 this implies the first bond must be bond 2. Therefore ϕ_{2} is injective, an example is in Figure 5

We define $P_{n M}^{1}{ }^{\prime \prime}$ to be the image of $P_{n M}^{1}{ }^{\prime}$ under ϕ_{2}, so that $\phi_{2}: P_{n M}^{1}{ }^{\prime} \rightarrow P_{n M}^{1}{ }^{\prime \prime}$ is bijective.

Figure 5. (a) An element of $P_{2 M}{ }^{\prime}$, and (b) the same elements image under ϕ_{2}
As done when constructing G_{n}^{*}, we relabel the bond numbering for the n ordered copies of G^{\prime} such that bond i along copy k of G^{\prime} is relabeled bond $i+(k-1) 2 m, k \in\{1,2, \ldots, n\}$. Thus, each bond on the n copies of G^{\prime} can be naturally associated with a bond on G_{n}^{*}. Let
ϕ_{3} represent this renumbering of bonds. Then, for $p \in P_{n, M}^{1}{ }^{\prime \prime}$ clearly $\phi_{3}(p)$ is a continuous path on G_{n}^{*}, as any sub-path ending with bond $3+2 m(k-1)$ the next sub-path must start with $5+2 m k$.

Since, every path on G_{n}^{*} is uniquely determined by its order bond sequence we have for $p_{a}, p_{b} \in P_{n, M}^{1}{ }^{\prime \prime}$, if $\phi_{3}\left(p_{a}\right)=\phi_{3}\left(p_{b}\right)$, then $p_{b}=p_{a}$. We let $P_{n M}^{1}{ }^{\prime \prime \prime}$ be the image of $P_{n, M}^{1}{ }^{\prime \prime}$ under ϕ_{3}. Thus, $\phi_{3}: P_{n, M}^{1}{ }^{\prime \prime} \rightarrow P_{n, M}^{1}{ }^{\prime \prime \prime}$ is bijective, see Figure 6,

Figure 6. (a) An element in $P_{2 M}^{1}{ }^{\prime \prime}$, and (b) its image under ϕ_{3}
Finally, note that if $p^{\prime \prime} \in P_{n, M}^{1}{ }^{\prime \prime}$, and $\phi_{3}\left(p^{\prime \prime}\right)=p^{\prime \prime \prime} \in P_{n, M}^{1}{ }^{\prime \prime \prime}$ then $p^{\prime \prime \prime}$ has less than or equal to $M-(n-1)$ bonds, because we deleted a bond from each copy of G^{\prime}. Since p has m bonds, then $p^{\prime \prime \prime}$ must have $m-n$ bonds.

We introduce the last map ϕ_{4},

$$
\phi_{4}: P_{n, M}^{1}{ }^{\prime \prime \prime} \longrightarrow \widetilde{P_{n, M}^{5}}
$$

that adds $M-m$ loops, on bond $1+(n-1) 2 m$, to the path $p^{\prime \prime \prime}$. Thus, the path $\phi_{4}\left(p^{\prime \prime \prime}\right)$ contains at least one loop and exactly $(m-n)+M-m=M-n$ bonds, an example is in Figure 7

Figure 7. (a) Graph G_{2}^{*} with path in $P_{2, M}^{1}{ }^{\prime \prime \prime}$, and (b) image under ϕ_{4} containing $M-10+1$ loops

Clearly, ϕ_{4} is injective, and hence $\Psi:=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}$ is injective. To complete the proof me must show that Ψ is onto $\widetilde{P_{n, M}^{5}}$. Let $\widetilde{p} \in \widetilde{P_{n, M}^{5}}$ and say it is given by the bond sequence $\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{t}^{*}\right\}$. In particular \widetilde{p} must start at bond 5 and end with bond $1+2(n-1) M$, containing exactly $M-n$ bonds by the definition of $\widetilde{P_{n, M}^{5}}$.

Let $p \in P_{n, M}^{1}$ obtained from \widetilde{p} as follows:
(1) Delete the loops of \widetilde{p}.
(2) On the n copies of G^{\prime} construct a sequence of paths having bond numbers equal to the bond numbers of \widetilde{p} without the loops.
(3) To each path on each copy of G^{\prime} add a bond starting at v_{q} as the first bond.
(4) Concatenate the paths on the copies of G^{\prime} in a single path $p \in P_{n, M}^{1}$.

Then by construction $\Psi(p)=\widetilde{p}$, hence Ψ is onto.

Lemma 5.5. Let Ψ be the bijective map of Lemma 5.4. Let $\alpha_{G^{\prime}}(p)$ be the heat path coefficient associated with path $p \in P_{n, M}^{i}$ and $\alpha_{G_{n}^{*}}(\phi(p))$ be the heat path coefficient for $\phi(p) \in \widetilde{P_{n, M}^{i+4}}, i \in\{1,2\}$. Then

$$
\begin{equation*}
\alpha_{B^{\prime}}(p)=\alpha_{\mathrm{B}^{*}}{ }_{n}(\Psi(p)), \tag{5.3}
\end{equation*}
$$

for all M and n.
Proof. We prove the result for $i=1$; of course one can reason the same way for $i=2$. The proof relies on the fact that $\Psi: P_{n, M}^{1} \rightarrow \widetilde{P_{n, M}^{5}}$ is bijective, and for each step in the mappings $\phi_{1}, \phi_{2}, \phi_{3}$, and ϕ_{4} we add or delete bond transfers with bond scattering matrix entries equal to one, thus the product of bond scattering matrix entries remains unchanged under the mappings.

Consider a path $p=\left\{i_{1}, \ldots, i_{q}\right\} \in P_{n, M}^{i}$, note that if $q=0$ or $q=1, \alpha_{B^{\prime}}(p)=\alpha_{B^{*}}{ }_{n}(\Psi(p))=$ 1 and the result is trivial. Assume $q \geq 2$, then we can identify p with a sequence of elements of B^{\prime}, namely the sequence $\left\{\beta_{i_{1}, i_{2}}^{\prime}, \beta_{i_{2}, i_{3}}^{\prime}, \ldots, \beta_{i_{q-1}, i_{q}}^{\prime}\right\}$.

The map ϕ_{1} acts on p by separating p into n sub-paths in $G^{\prime} \times \ldots \times G^{\prime}=:\left(G^{\prime}\right)^{n}$. Each sub-path of p as a path in G^{\prime} is connected by either the bond transfer bond 3 to bond 1 or bond 4 to bond 2. Thus, applying ϕ_{1} is equivalent to deleting all bond transfers from bond 3 to bond 1 and all bond transfers from bond 4 to bond 2 . Note that $\beta_{24}^{\prime}=\beta_{13}^{\prime}=1$, since v_{q} is an artificial vertex. If we denote the k-th sub-path of p as p_{k} we have

$$
\begin{equation*}
\alpha_{B^{\prime}}(p)=\prod_{k=1}^{n} \alpha_{B^{\prime}}\left(p_{k}\right) \tag{5.4}
\end{equation*}
$$

Next, ϕ_{2} acts on each copy of G^{\prime} by deleting the first bond in each sub-path, we can write

$$
\begin{equation*}
\phi_{2}\left(p_{1}, \ldots, p_{n}\right)=\left(\phi_{2}\left(p_{1}\right), \ldots, \phi_{2}\left(p_{n}\right)\right) . \tag{5.5}
\end{equation*}
$$

Observe that ϕ_{2} acts on p_{k} by deleting either bond 1 or bond 2 and thus deletes either the bond transfer from bond 1 to bond $5, \beta_{51}^{\prime}$, or bond 2 to bond $6, \beta_{62}^{\prime}$. Because v_{1} and v_{2} are artificial vertices, $\beta_{51}^{\prime}=\beta_{62}^{\prime}=1$, and hence

$$
\begin{equation*}
\alpha_{B^{\prime}}\left(p_{k}\right)=\alpha_{B^{\prime}}\left(\phi_{2}\left(p_{k}\right)\right) \tag{5.6}
\end{equation*}
$$

Combined with (5.4) implies

$$
\begin{equation*}
\alpha_{B^{\prime}}(p)=\prod_{k=1}^{n} \alpha_{B^{\prime}}\left(\phi_{2}\left(p_{k}\right)\right) \tag{5.7}
\end{equation*}
$$

The $\operatorname{map} \phi_{3}$ concatenates all the sub-paths p_{k} onto a single path on G_{n}^{*}. The concatenation introduces bond transfers from bonds $4+(k-1) 2 m$ to $6+2 k m$ and from bonds $3+(k-1) 2 m$ to $5+2 k m, k \in\{1,2, \ldots, n-1\}$. Moreover we note that $b_{6+2 k m, 4+(k-1) 2 m}^{*}=b_{5+2 k m, 3+(k-1) 2 m}^{*}=1$ where $b_{i, k}^{*}$ are the elements of the matrix $\mathrm{B}^{*}{ }_{n}$, so that

$$
\begin{equation*}
\prod_{k=1}^{n} \alpha_{B^{\prime}}\left(\phi_{2}\left(p_{k}\right)\right)=\alpha_{\mathrm{B}^{*}}{ }^{*}\left(\phi_{3}\left(\phi_{2}\left(p_{1}, \ldots, p_{n}\right)\right)\right)=\alpha_{B^{\prime}}\left(\phi_{3}\left(\phi_{2}\left(\phi_{1}(p)\right)\right)\right) \tag{5.8}
\end{equation*}
$$

Finally, ϕ_{4} adds $M-m$ bond transfers to bond $1+2 m(n-1)$, the loop bond of $v_{q_{n}}$. These bond transfers all correspond to an element of $\mathrm{B}^{*}{ }_{n}$ equal to 1 . Thus,

$$
\begin{equation*}
\alpha_{\mathrm{B}^{*}}{ }_{n}\left(\phi_{3}\left(\phi_{2}\left(p_{1}, \ldots, p_{n}\right)\right)\right)=\alpha_{\mathrm{B}^{*}{ }_{n}}\left(\phi_{4}\left(\phi_{3}\left(\phi_{2}\left(p_{1}, \ldots, p_{n}\right)\right)\right)\right. \tag{5.9}
\end{equation*}
$$

so that combining (5.9) with (5.8), 5.7) and the definition of Ψ the assertion follows.

6. Bounding Coefficients in the Heat Kernel Formula

Lemma 6.1 below is a general fact about quantum graphs and their bond scattering matrices. Let e_{s} be the vector with components $\delta_{i s}$ the Kronecker-delta.

Lemma 6.1. Let G be an arbitrary quantum graph with $2 m$ directed bonds. Let B be the bond scattering matrix for G. Let $\mathcal{P}_{s, k}^{m}$ be the set of all paths starting with bond s and ending with bond k and having exactly $m+1$ bonds (hence m bond transfers). then

$$
\left(B^{m} e_{s}\right)_{k}=\sum_{p \in \mathcal{P}_{s, k}^{m}} \alpha_{B}(p)
$$

Proof. Let $\beta_{i j}$ be the entry in row i, column j of B, defined as in 2.2 . We know that $\left(B^{m} e_{s}\right)_{k}$ is a sum of products, we will show that all non-zero terms in the sum can be uniquely identified with a path along G from bond s to bond k with m bond transfers. Simple matrix multiplication shows

$$
\begin{equation*}
\left(B^{m} e_{s}\right)_{k}=\sum_{i=1}^{2 m} \sum_{j=1}^{2 m} \sum_{h=1}^{2 m} \ldots \sum_{\ell=1}^{2 m}\left(\beta_{i s}\right) \beta_{j i} \beta_{h j} \cdot \ldots \cdot \beta_{k \ell} \tag{6.1}
\end{equation*}
$$

Let a be an arbitrary element in the above sum, and note that it has the form

$$
\begin{equation*}
a=\beta_{i_{1}, i_{0}} \beta_{i_{2}, i_{1}} \cdot \ldots \cdot \beta_{i_{m}, i_{m-1}}, \quad i_{0}=s, i_{m}=k \tag{6.2}
\end{equation*}
$$

We want to show that if the ordered sequence $\left\{i_{0}, i_{1}, \ldots, i_{q}\right\}$ is not a path $p \in \mathcal{P}_{s, k}^{m}$ then $a=0$. In other words we need to show that i_{d} and i_{d+1} are consecutive bonds for $d \in\{0,1,2, \ldots, m-1\}$.

For a to be non-zero, each $\beta_{i_{d} j_{d}}$ must be non-zero. By the definition of B each non-zero $\beta_{i j}$ is non-zero if i and j are consecutive bonds. Thus the assertion follows.

Corollary 6.2. One has

$$
\begin{equation*}
\left(\left(B_{n}^{*}\right)^{M-n-1} e_{k}\right)_{1+2 m(n-1)}=\sum_{p \in P_{n, M}^{i}} \alpha(p) \tag{6.3}
\end{equation*}
$$

for $i \in\{1,2\}, k=i+4$, and all M and n.

Proof. From Lemma 5.5 it follows that

$$
\begin{equation*}
\sum_{p \in P_{n, M}^{i}} \alpha_{B^{\prime}}(p)=\sum_{\widetilde{p} \in \underset{n, M}{i+4}} \alpha_{\mathrm{B}^{*}{ }_{n}}(\widetilde{p}) . \tag{6.4}
\end{equation*}
$$

where $P_{n, M}^{i}$ and $\widetilde{P_{n, M}^{i+4}}$ are defined in Definitions 5.1 and 5.2 respectively. Using Lemma 6.1 we have

$$
\begin{equation*}
\left.\sum_{\widetilde{p_{\ell}} \in \xlongequal[P_{n, M}^{i+4}]{ }} \alpha_{\mathrm{B}^{*}}^{n} \text { (} \widetilde{p}\right)=\left(\left(B_{n}^{*}\right)^{M-n-1} e_{5}\right)_{1+2 m(n-1)}, \tag{6.5}
\end{equation*}
$$

so the assertion follows.
Definition 6.3. We say an edge is direct path bounded if for $i \in\{1,2\}$

$$
\begin{gather*}
\text { 1) } \lim _{M \rightarrow \infty} \sum_{p \in P_{1, M}^{i}} \alpha(p)=1 \tag{6.6}\\
\text { 2) } \sum_{p \in P_{1, M_{1}}^{i}} \alpha(p) \leq \sum_{p \in P_{1, M_{2}}^{i}} \alpha(p), \tag{6.7}
\end{gather*}
$$

for all $M_{0} \leq M_{1} \leq M_{2}$, and $M_{0}=\min _{p \in P_{1}^{i}}\{\#$ bonds $(p)\}$.
Note, conditions 1) and 2) imply

$$
\begin{equation*}
\left|\sum_{p \in P_{1 M}^{i}} \alpha(p)\right| \leq 1 \tag{6.8}
\end{equation*}
$$

Definition 6.4. Let v_{0}, v_{1} be the vertices for $e \in G$. We will say that e has no loop paths if for all $p \in P\left(v_{0}, v_{1}\right), p$ contains the edge e. In other words, the only way to get from v_{0} to v_{1} is to travel across e.

We will use the notation that $B e_{i}(j)$ is entry j in the vector $B e_{i}$.
Lemma 6.5. Let $e \in G$ be a direct path bounded edge with m edges, then for all $i \in\{1,2\}$

$$
\begin{equation*}
\left|\sum_{n=1}^{N}\left(B_{n}^{*}\right)^{M} e_{i+4}(2 m(n-1)+1)\right| \leq N \tag{6.9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left|\sum_{n=1}^{N}\left[\sum_{p \in P_{n, M}^{i}} \alpha(p)\right]\right| \leq N \tag{6.10}
\end{equation*}
$$

Proof. We will start with the assumption that e has no loop paths, defined in 6.4. For convenience, let

$$
\begin{equation*}
\alpha_{j}^{i}=\sum_{\substack{p \in P_{1, M}^{i} \\ \# b o n d s(p)=j}} \alpha(p) \tag{6.11}
\end{equation*}
$$

Note that many α_{j}^{i} will be zero, these terms can be ignored. With the above notation we can rewrite

$$
\begin{equation*}
\sum_{p_{1, M}^{i}} \alpha(p)=\sum_{j=1}^{M} \alpha_{j}^{i} \tag{6.12}
\end{equation*}
$$

By assumption there are no loop paths, this implies any path $p \in P_{n, M}^{1}$ is the concatenation of n paths alternating between $P_{1, M}^{1}$ and $P_{1, M}^{2}$. Let $\#(p)$ represent the number of bonds along p. Since all paths in $P_{n, M}^{i}$ have less than or equal to M bonds

$$
\begin{equation*}
\sum_{p \in P_{n, M}^{1}} \alpha(p)=\sum_{p \in P_{(n-1), M}^{i}}\left[\alpha(p) \sum_{j=1}^{M-\#(p)} \alpha_{j}^{k}\right] . \tag{6.13}
\end{equation*}
$$

Where $k=1$ if n is odd and $k=2$ if n is even. Without loss of generality assume n is even. The above formula gives a recursive relationship for finding the sum of heat kernel coefficients for paths in $P_{n, M}^{i}$,

$$
\begin{equation*}
\sum_{p \in P_{n, M}^{1}} \alpha(p)=\sum_{j_{1}=1}^{M} \sum_{j_{2}=1}^{M-j_{1}} \ldots \sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-1}\right)} \alpha_{j_{1}}^{1} \alpha_{j_{2}}^{2} \ldots \alpha_{j_{n-1}}^{1} \alpha_{j_{n}}^{2} \tag{6.14}
\end{equation*}
$$

Using the above equation, we can find the sum of heat kernel coefficients in both $P_{n, M}^{1}$ and $P_{(n-1), M}^{1}$ by

$$
\begin{equation*}
\sum_{p \in P_{n, M}^{1}} \alpha(p)+\sum_{p \in P_{(n-1), M}^{1}} \alpha(p)=\sum_{j_{1}=1}^{M} \sum_{j_{2}=1}^{M-j_{1}} \ldots \sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{1}}^{1} \alpha_{j_{2}}^{2} \ldots \alpha_{j_{n-1}}^{1}\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-1}\right.} \alpha_{j_{n}}^{2}\right) \tag{6.15}
\end{equation*}
$$

Extending this new recursive relation, we have
$\sum_{n=1}^{N}\left(\sum_{p \in P_{n, M}^{1}} \alpha(p)\right)=\sum_{j_{1}=1}^{M} \alpha_{j_{1}}^{1}\left(1+\sum_{j_{2}=1}^{M-j_{1}} \alpha_{j_{2}}^{2}\left(1+\ldots\left(1+\sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{n-1}}^{1}\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-1}\right)} \alpha_{j_{n}}^{2}\right) \ldots\right)\right.\right.$.
The assumption that e is direct path bounded implies for all Q,

$$
\begin{equation*}
\left|\sum_{j=1}^{Q} \alpha_{j}^{i}\right| \leq 1 \tag{6.17}
\end{equation*}
$$

If $P_{1, M}^{i}$ contains at least one path than for all M

$$
\begin{equation*}
\sum_{j=1}^{M} \alpha_{j}^{i} \leq \sum_{j=1}^{(M+1)} \alpha_{j}^{i} . \tag{6.18}
\end{equation*}
$$

Which implies if $P_{1,\left(M-j_{1} \ldots-j_{n-1}\right)}^{i}$ contains at least one path then

$$
\begin{equation*}
\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-1}\right)} \alpha_{j_{n}}^{i} \leq \sum_{j_{n}=1}^{\left(M-j_{1} \ldots-1\right)} \alpha_{j_{n}}^{i} \tag{6.19}
\end{equation*}
$$

if $P_{1,\left(M-j_{1} \ldots-j_{n-1}\right)}^{i}$ does not contain a path then all $\alpha_{j_{n}}=0$ and we can drop this term. This implies

$$
\begin{equation*}
\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-1}\right)} \alpha_{j_{n}}^{i}\right) \leq\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-1\right)} \alpha_{j_{n}}^{i}\right) \tag{6.20}
\end{equation*}
$$

Where

$$
\begin{equation*}
0 \leq\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-1\right)} \alpha_{j_{n}}^{i}\right) \leq 2 \tag{6.21}
\end{equation*}
$$

and the sum is no longer dependent on j_{n-1}. Recall from the definition of direct path bounded that for $p \in P_{1, M}^{i}$, only the path with the least number of bonds can have a negative coefficient. We will call this coefficient $\alpha_{n e g}^{i}<0$. If $\alpha_{n e g}^{i}$ is not less than zero, than the edge e must have a degree one vertex and $\alpha_{n e g}^{i}=1$ is the only non-zero coefficient. We can then replace $\sum_{j=1}^{M} \alpha_{j}^{i}$ with 1 and the result follows the steps below. Assume $\alpha_{\text {neg }}^{i}<0$,

$$
\begin{equation*}
-2 \leq 2 \alpha_{n e g}^{1} \leq \sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{n-1}}^{1}\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-2}-1\right)} \alpha_{j_{n}}^{2}\right) \leq 2 \sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{n-1}}^{1} \leq 2 . \tag{6.22}
\end{equation*}
$$

Repeating the process we have

$$
\begin{equation*}
-3 \leq 3 \alpha_{n e g}^{k_{2}} \leq \sum_{j_{n-2}=1}^{\left(M-j_{1} \ldots-j_{n-3}\right)} \alpha_{j_{n-2}}^{k_{1}}\left(1+\sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}-1\right)} \alpha_{j_{n}}^{k}\right) \leq 3 \sum_{j_{n-2}=1}^{\left(M-j_{1} \ldots-j_{n-3}\right)} \alpha_{j_{n-2}}^{k_{1}} \leq 3 . \tag{6.23}
\end{equation*}
$$

We continue the recursive process for the full sum,
$\left|\sum_{n=1}^{N}\left[\sum_{p \in P_{n, M}^{1}} \alpha(p)\right]\right|=\mid \sum_{j_{1}=1}^{M} \alpha_{j_{1}}^{1}\left(1+\sum_{j_{2}=1}^{M-j_{1}} \alpha_{j_{2}}^{2}\left(1+\ldots\left(1+\sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{n-1}}^{1}\left(1+\sum_{j_{n}=1}^{\left(M-j_{1} \ldots-j_{n-1}\right)} \alpha_{j_{n}}^{k}\right) \ldots\right) \mid\right.\right.$

$$
\vdots
$$

$$
\begin{equation*}
\leq \mid \sum_{j_{1}=1}^{M} \alpha_{j_{1}}^{1}\left(1+\sum_{j_{2}=1}^{M-j_{1}} \alpha_{j_{2}}^{2}\left(1+\ldots\left(1+2 \sum_{j_{n-1}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{n-1}}^{1}\right) \ldots\right) \mid\right. \tag{6.25}
\end{equation*}
$$

$$
\begin{equation*}
\leq \mid \sum_{j_{1}=1}^{M} \alpha_{j_{1}}^{1}\left(1+\sum_{j_{2}=1}^{M-j_{1}} \alpha_{j_{2}}^{2}\left(1+\ldots\left(1+3 \sum_{j_{n-3}=1}^{\left(M-j_{1} \ldots-j_{n-2}\right)} \alpha_{j_{n-1}}^{1}\right) \ldots\right) \mid\right. \tag{6.26}
\end{equation*}
$$

$$
\begin{equation*}
\leq \mid \sum_{j_{1}=1}^{M} \alpha_{j_{1}}^{1}\left(1+(N-1) \sum_{j_{2}=1}^{M-j_{1}} \alpha_{j_{2}}^{2} \mid\right. \tag{6.27}
\end{equation*}
$$

$$
\begin{equation*}
\leq N \tag{6.28}
\end{equation*}
$$

Now, we will show that dropping the assumption that e has no loop paths the above bound remains true. Let v_{1} and v_{2} be the vertices of e. Consider the sets $P_{1, M}^{1}$ and $P_{1, M}^{2}$. If there exists a path $p \in P_{1, M}^{1}$ where p is a loop path, i.e. the first vertex along p is v_{1} and the last vertex is v_{2}, then by reversing the bond ordering of p, there exists some path $p_{\text {rev }}$ such that $\ell(p)=\ell\left(p_{\text {rev }}\right)$, \#bonds $(p)=\#$ bonds $\left(p_{\text {rev }}\right), \alpha(p)=\alpha\left(p_{\text {rev }}\right)$, and $p_{\text {rev }} \in P_{1 M}^{2}$. We can separate $P_{1, M}^{i}$ into two sets, loop paths $P_{\text {loops }}^{i}$ and paths that do not loop $P_{\text {noloops }}^{i}$,

$$
\begin{equation*}
P_{1, M}^{i}=P_{\text {loops }}^{i} \cup P_{\text {noloops }}^{i} . \tag{6.29}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
\left|\sum_{p \in P_{1, M}^{i}} \alpha(p)\right|=\left|\sum_{p \in P_{\text {loops }}^{i}} \alpha(p)+\sum_{p \in P_{\text {noloops }}^{i}} \alpha(p)\right| \leq 1 . \tag{6.30}
\end{equation*}
$$

Changing the indexing of the loop paths from $i \in\{1,2\}$ to $j \in\{1,2\}, j \neq i$, we have

$$
\begin{equation*}
\left|\sum_{p \in P_{1, M}^{i}} \alpha(p)\right|=\left|\sum_{p \in P_{\text {loops }}^{j}} \alpha(p)+\sum_{p \in P_{\text {noloops }}^{i}} \alpha(p)\right| \leq 1 . \tag{6.31}
\end{equation*}
$$

Hence, changing the indexing set for loop paths did not change the sum and all indexing paths return to q from the same direction. Thus, by changing the indexing set for loop paths we can repeat the above process.

For the definition of rational heat kernels, we refer the reader to definition 2.2 Rational heat kernels play a crucial role in bounding the heat kernel of a quantum graph. Recall the diagonal of the heat kernel on G can be expressed with the heat sum formula,

$$
\begin{equation*}
K_{G}(t, q, q)=\frac{1}{\sqrt{4 \pi t}}\left(\sum_{p \in P(q, q)} \alpha(p) e^{-\ell(p)^{2} / 4 t}\right) \tag{6.32}
\end{equation*}
$$

Up to this point, paths in $P_{n, M}^{i}$ are bounded by the number of bonds along the path, paths with less than $M+1$ bonds. For rational heat kernels, by inserting a finite number of artificial vertices all bonds can be made to have the same length. Hence, we can bound paths in $P_{n, M}^{i}$ by length. For rational heat kernels the matrix $\left(B_{n}^{*}\right)^{M}$ can be used to bound the $\alpha(p)$ coefficients and $\ell(p)$ in the exponential.

Lemma 6.6. Let G be a quantum graph with rational heat kernel $K_{G}(t, q, q)$. Then a graph G^{\prime} can be constructed from G by inserting a finite number of artificial vertices such that for all $e \in G^{\prime}, \ell(e)=C$. Let $P_{n}^{i, L}\left(G^{\prime}\right)$ be the set of all paths in $P_{n}^{i}\left(G^{\prime}\right)$ with length less than or equal to $L, i \in\{1,2\}$. Then

$$
\begin{equation*}
\sum_{p \in P_{n}^{i, L}\left(G^{\prime}\right)} \alpha(p)=\sum_{p \in P_{n, M}^{i}\left(G^{\prime}\right)} \alpha(p) \tag{6.33}
\end{equation*}
$$

for all n and M, where $L=C(M+1)$.
Proof. Let $K_{G}(t, q, q)$ be a rational heat kernel, by definition after inserting the vertex v_{q} all bonds have rational length. Thus, there exists a C such that for all bonds $b_{i} \in G$, $\ell\left(b_{i}\right) / C=q_{i}$, where q_{i} is a positive integer. For all bonds b_{i} of G we insert $q_{i}-1$ artificial vertices on b_{i} such that the distance between all adjacent vertices is exactly C. Let G^{\prime} be the graph obtained from G by adding all such artificial vertices. Then, any path along G^{\prime} containing $(M+1)$ bonds has length $(M+1) C$ and any path with less than $(M+1)$ bonds has length less than $(M+1) C$.

Lemma 6.7. Let $e \in G$ and q be a point contained in e. For all $\epsilon, t>0$, there exists a quantum graph R with edge e_{r} and point $q_{r} \in e_{r}$ such that $K_{R}\left(t, q_{r}, q_{r}\right)$ is a rational heat kernel satisfying

$$
\begin{equation*}
\left|K_{G}(t, q, q)-K_{R}\left(t, q_{r}, q_{r}\right)\right|<\epsilon \tag{6.34}
\end{equation*}
$$

Proof. Assume that after adding the artificial vertex v_{q}, G has m edges, where each edge is labeled $e_{i}, i \in\{1,2, \ldots, m\}$. We construct the graph R, by adding length $\delta_{i}>0$ to e_{i} in such a way that $\ell\left(e_{i}\right)+\delta_{i}$ is rational.

Let $e=e_{1} \cup e_{2}$ where e_{1} and e_{2} are the two edges created after inserting the artificial vertex at $q \in e$. Let e_{1}^{\prime} and e_{2}^{\prime} be the edges in R obtained by adding δ_{1} to e_{1} and δ_{2} to e_{2}, respectively. Call v_{r} the artificial vertex separating e_{1}^{\prime} and e_{2}^{\prime}.

Note that G and R have the same bond scattering matrix B. Let the N shortest paths in $P_{G}(q, q)$ and the corresponding paths in $P_{R}\left(q_{r}, q_{r}\right)$ as P_{N} and $P_{r N}$, respectively.

Then for all t, ϵ fixed, there exists $N=N(t, \epsilon)$ such that

$$
\begin{equation*}
\frac{1}{\sqrt{4 \pi t}}\left|\sum_{p \in P_{G}(q, q)} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}-\sum_{p \in P_{N}} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}\right|<\epsilon / 3 \tag{6.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\sqrt{4 \pi t}}\left|\sum_{p \in P_{R}\left(q_{r}, q_{r}\right)} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}-\sum_{p \in P_{r N}} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}\right|<\epsilon / 3 \tag{6.36}
\end{equation*}
$$

Each path $p \in P_{N}$ and its corresponding path $p_{r} \in P_{r N}$ must have finite length and hence contain a finite number of edges. Moreover $\alpha(p)=\alpha\left(p_{r}\right)$. Let
(1) $Q^{*}:=$ maximum number of edges for any path in P_{N}.
(2) $\ell^{*}:=\min _{p_{r} \in P_{r N}}\left\{\ell\left(p_{r}\right)\right\}$.
(3) $K^{*}:=\max _{p_{r} \in P_{r N}}\left\{\left|\alpha\left(p_{r}\right) e^{-\left(\ell(p)+\delta_{i}\right)^{2} / 4 t}\right|\right\}$.
(4) $\delta^{*}=\max _{i \in\{1,2, \ldots, M\}}\left\{\delta_{i}\right\}$.

Then for all $p \in P_{N}$ and the corresponding $p_{r} \in P_{r N}$

$$
\begin{align*}
\left|\alpha(p) e^{-\ell(p)^{2} / 4 t}-\alpha\left(p_{r}\right) e^{-\ell\left(p_{r}\right)^{2} / 4 t}\right| & \leq\left|\alpha(p) e^{-\ell(p)^{2} / 4 t}-\alpha(p) e^{-\left(\ell(p)+\delta^{*} Q^{*}\right)^{2} / 4 t}\right| \\
& \leq\left|\alpha(p) e^{-\ell(p)^{2} / 4 t}\left(1-e^{\left.-\left(2\left(\ell^{*} \delta^{*} Q^{*}\right)+\left(\delta^{*} Q^{*}\right)^{2}\right)\right) / 4 t}\right)\right| . \tag{6.37}
\end{align*}
$$

Summing the above bound for all $p \in P_{N}$ and $p_{r} \in P_{r N}$, we get

$$
\begin{align*}
\left|\sum_{p \in P_{N}} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}-\sum_{p \in P_{r N}} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}\right| & \leq \sum_{p \in P_{N}}\left|\alpha(p) e^{-\ell(p)^{2} / 4 t}\left(1-e^{\left.-\left(2\left(\ell^{*} \delta^{*} Q^{*}\right)+\left(\delta^{*} Q^{*}\right)^{2}\right)\right) / 4 t}\right)\right|, \tag{6.38}\\
& \leq K^{*} N\left(1-e^{-\left(2\left(\ell^{*} \delta^{*} Q^{*}\right) / 4 t+\left(\delta^{*} Q^{*}\right)^{2} / 4 t\right) .}\right. \tag{6.39}
\end{align*}
$$

Choosing $\delta^{*}=\delta^{*}(t, \epsilon)$ small enough implies

$$
\begin{equation*}
\frac{1}{\sqrt{4 \pi t}}\left|\sum_{p \in P_{N}} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}-\sum_{p \in P_{r N}} \alpha_{B}(p) e^{-\ell(p)^{2} / 4 t}\right|<\epsilon / 3 \tag{6.40}
\end{equation*}
$$

which together with (6.35) and 6.36 implies 6.34).

7. Direct Path Bounded Edges

From definition 6.3, e is a direct path bounded edge if for all $i \in\{1,2\}$

$$
\begin{equation*}
\text { 1) } \lim _{M \rightarrow \infty} \sum_{p \in P_{1, M}^{i}} \alpha(p)=1 \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { 2) } \sum_{p_{\epsilon} P_{1, M_{1}}^{i}} \alpha(p) \leq \sum_{p \in P_{1, M_{2}}^{i}} \alpha(p) \tag{7.2}
\end{equation*}
$$

for all $M_{0} \leq M_{1} \leq M_{2}$, where $M_{0}=\min _{p \in P_{1}^{i}}\{\# \operatorname{bonds}(p)\}$.
Let $e \in G$ with endpoints $\left\{v_{0}, v_{1}\right\}$, and $q \in e$. As in section 4. Let $P_{1}(q, q)$ be all paths along G from q to q that contain one out-going bond of q, i.e. return to q a single time. Then, $P_{1}(q, q)=P_{1}^{1} \cup P_{1}^{2}$, where P_{1}^{1} is all paths in $P_{1}(q, q)$ that first touch v_{0} and P_{1}^{2} is all paths that first touch v_{1}. If both P_{1}^{1} and P_{1}^{2} are bounded by 7.1 and 7.2 , then e is direct path bounded. We restrict our attention to paths that first touch v_{0}. The strategy
is to find sub-graphs connected to v_{0} where P_{1}^{1} is bounded by 7.1 and 7.2 . We can then construct a class of edges, where if the sub-graphs connected to v_{0} and v_{1} satisfy (7.1) and (7.2) then e is direct path bounded.

The first sub-graph that bounds P_{1}^{1} by 7.1 and 7.2 is a symmetric star sub-graph connected at v_{0}. Where all edges $e_{i} \sim v_{0}, e_{i} \neq e$, have the same length and contain a degree one vertex.

Figure 8. The above sub-graph shows endpoint v_{0} connected to a symmetric star

LEmma 7.1. Let v_{0} be a vertex of e, and v_{0} is connected to a symmetric star sub-graph, for all $e_{i} \sim v_{0}, e_{i} \neq e, \ell\left(e_{i}\right)=L>0$ and for $v_{i} \sim e_{i}, v_{i} \neq v_{0}, d_{v_{i}}=1$. If P_{1}^{1} is all paths that first touch v_{0} and contain a single outgoing bond of q then

$$
\begin{equation*}
\text { 1) } \lim _{M \rightarrow \infty} \sum_{p \in P_{1, M}^{1}} \alpha(p)=1 \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { 2) } \sum_{p \in P_{1, M_{1}}^{1}} \alpha(p) \leq \sum_{p \in P_{1, M_{2}}^{1}} \alpha(p) \tag{7.4}
\end{equation*}
$$

for all $M_{0} \leq M_{1} \leq M_{2}$, where $M_{0}=\min _{p \in P_{1}^{1}}\{\# \operatorname{bonds}(p)\}$.
Proof. Let v_{0} have degree d and P_{1}^{1} be all paths that start toward v_{0} and return to q a single time. We partition the paths in P_{1}^{1} by the number of times they touch v_{0}. Let the paths that touch $v_{0} N$ times be R_{N}. Since all edges connected to v_{0}, with the exception of e, have the same length all paths in each partition have the same length. If $p_{i} \in R_{N}$ and $p_{j} \in R_{N+1}$ then \#bonds $\left(p_{i}\right)=\#$ bonds $\left(p_{j}\right)-2$. We can examine the $\alpha(p)$ coefficients for each R_{N}.
R_{1} has a single path with heat path coefficient $\left(\frac{2}{d}-1\right)$,

$$
\begin{equation*}
\sum_{p \in R_{1}} \alpha(p)=\left(\frac{2}{d}-1\right) \tag{7.5}
\end{equation*}
$$

R_{2} has $d-1$ paths with two transmissions through v_{0}, with heat path coefficients $\left(\frac{2}{d}\right)^{2}$,

$$
\begin{equation*}
\sum_{p \in R_{2}} \alpha(p)=(d-1)\left(\frac{2}{d}\right)^{2} . \tag{7.6}
\end{equation*}
$$

R_{3} has $(d-1)^{2}$ paths, $(d-1)(d-2)$ containing 3 transmissions through v_{0} with heat path coefficient $\left(\frac{2}{d}\right)^{3}$ and $(d-1)$ paths with 2 transmissions and one reflection off v_{0} with heat path coefficients $\left(\frac{2}{d}\right)^{2}\left(\frac{2}{d}-1\right)$,

$$
\begin{equation*}
\sum_{p \in R_{3}} \alpha(p)=(d-1)(d-2)\left(\frac{2}{d}\right)^{3}+(d-1)\left(\frac{2}{d}\right)^{2}\left(\frac{2}{d}-1\right) . \tag{7.7}
\end{equation*}
$$

Noticing each time a path returns to v_{0} it has $(d-1)$ choices to transmit and one choice to reflect, the heat path coefficients for R_{N} follow a binomial distribution, $N>2$.

$$
\begin{align*}
\sum_{p \in R_{N}} \alpha(p) & =(2 / d)^{2}(d-1) \sum_{k=0}^{N-2}\binom{N-2}{k}(2 / d)^{N-k-2}(d-2)^{N-2-k}(2 / d-1)^{k}, \\
& =(2 / d)^{2}(d-1)(2 / d(d-2)+(2 / d-1))^{N-2}, \tag{7.8}\\
& =(2 / d)^{2}(d-1)(2-4 / d+2 / d-1)^{N-2}, \\
& =(2 / d)^{2}(d-1)(1-2 / d)^{N-2} .
\end{align*}
$$

Adding heat path coefficients from paths in $\cup_{i=1}^{N} R_{i}$,

$$
\begin{equation*}
\sum_{p \in \cup_{i=1}^{N} R_{i}} \alpha(p)=(2 / d-1)+(2 / d)^{2}(d-1) \sum_{k=0}^{N-2}(1-2 / d)^{k} . \tag{7.9}
\end{equation*}
$$

Which implies if $N_{1} \leq N_{2}$ then

$$
\begin{equation*}
\sum_{p \in \bigcup_{i=1}^{N_{1}^{1}} R_{i}} \alpha(p) \leq \sum_{p \in \cup_{i=1}^{N_{2}} R_{i}} \alpha(p) . \tag{7.10}
\end{equation*}
$$

Hence, a symmetric star shaped sub-graph satisfies (7.2). To show (7.1) is satisfied, take the sum of heat path coefficients from all paths in $\cup_{i=1}^{\infty} R_{i}$.

$$
\begin{align*}
\lim _{M \rightarrow \infty} \sum_{p \in P_{1, M}^{1}} \alpha(p) & =\sum_{p \in \cup \cup_{i=1}^{\infty} R_{i}} \alpha(p) \\
& =(2 / d-1)+(2 / d)^{2}(d-1) \sum_{k=0}^{\infty}(1-2 / d)^{k} \tag{7.11}\\
& =(1-2 / d)+(2 / d)^{2}(d-1)\left(\frac{1}{1-(1-2 / d)}\right) \\
& =1
\end{align*}
$$

The next sub-graph we consider is a symmetric flower sub-graph at v_{0}, i.e. for $e_{i} \sim v_{0}$, $e_{i} \neq e, \ell\left(e_{i}\right)=L$ and both endpoints of e_{i} are v_{0}.

Figure 9. The above sub-graph shows endpoint v_{0} connected to a symmetric flower

Corollary 7.2. Let v_{0} be a vertex of e, connected to a symmetric flower sub-graph. So, for all $e_{i} \sim v_{0}, e_{i} \neq e, \ell\left(e_{i}\right)=L$ and v_{0} is both end points for e_{i} (i.e. e_{i} is a loop connected to v_{0}). Then

$$
\begin{equation*}
\text { 1) } \lim _{M \rightarrow \infty} \sum_{p \in P_{1, M}^{1}} \alpha(p)=1 \tag{7.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { 2) } \sum_{p \in p_{1, M_{1}}^{1}} \alpha(p) \leq \sum_{p \in P_{1, M_{2}}^{1}} \alpha(p) \tag{7.13}
\end{equation*}
$$

for all $M_{0} \leq M_{1} \leq M_{2}$, where $M_{0}=\min _{p \in P_{1}^{1}}\{\# \operatorname{bonds}(p)\}$.
Proof. Let $d_{v_{0}}=2 N+1$, which implies v_{0} is connected to N flower petals of length L. The heat path coefficients for those petals are the same as a symmetric star sub-graph with $2 N$ edges (not including e_{0}) and each edge having length $L / 2$.

If the sub-graph at v_{0} is a symmetric pumpkin, meaning for $e_{i} \sim v_{0}, e_{i} \neq e, \ell\left(e_{i}\right)=L$ and all e_{i} share the same endpoints.

Figure 10. The above sub-graph shows endpoint v_{0} connected to a symmetric pumpkin

Corollary 7.3. Let v_{0} be connected to a symmetric pumpkin sub-graph, $e_{i} \sim v_{0}, e_{i} \neq e$, $\ell\left(e_{i}\right)=L$ and $e_{i} \sim v_{2} \neq v_{0}$. Then

$$
\begin{equation*}
\text { 1) } \lim _{M \rightarrow \infty} \sum_{p \in P_{1, M}^{1}} \alpha(p)=1 \text {, } \tag{7.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { 2) } \sum_{p \in P_{1, M_{1}}^{1}} \alpha(p) \leq \sum_{p \in P_{1, M_{2}}^{1}} \alpha(p) \tag{7.15}
\end{equation*}
$$

for all $M_{0} \leq M_{1} \leq M_{2}$, where $M_{0}=\min _{p \in P_{1}^{1}}\{\# \operatorname{bonds}(p)\}$.
Proof. Let v_{0} be connected to a pumpkin sub-graph with multiplicity M and v_{2} be the vertex of the pumpkin across from v_{0}. Then v_{2} has degree M. Let p be a path along G ending at v_{2} with heat path coefficient $\alpha(p)$, where the last edge along p is e_{i}. By the symmetry of the pumpkin there must be a corresponding path with heat path coefficient $\alpha(p)$ contained on each edge of the pumpkin not equal to e_{i}. All corresponding paths have the same length and same number of bonds, call these paths $\left\{p_{1}, \ldots, p_{M}\right\}$. Consider the scattering of each of these paths at v_{2}. Along each edge of the pumpkin sub-graph there will be $(M-1)$ equal transmissions through v_{2} and a single reflection.

$$
\begin{equation*}
\alpha(p)\left(\frac{2}{M}(M-1)+\left(\frac{2}{M}-1\right)\right)=\alpha(p) \tag{7.16}
\end{equation*}
$$

This implies v_{2} behaves like a degree one vertex for all paths from q. Which reduces the pumpkin argument to the symmetric star case.

8. Comparison Between Neumann Interval and Direct Path Bounded Edges

From Lemma 6.6, if $K_{G}(t, q, q)$ is a rational heat kernel we can construct a new graph G^{\prime} by inserting a finite number of artificial vertices such that all edges of G^{\prime} have the same length and

$$
\begin{equation*}
K_{G}(t, q, q)=K_{G^{\prime}}(t, q, q) \tag{8.1}
\end{equation*}
$$

for all $t>0$.
When using the heat sum formula for rational heat kernels, the number of bonds in a path is equal to the total length of the path times a constant. So, the matrix $\left(B_{n}^{*}\right)^{M}$ can be used to bound the sum of heat path coefficients according to the length for paths in P_{n}^{i}. For example, let $K_{G}(t, q, q)$ be a rational heat kernel, after constructing G^{\prime} from G by inserting a finite number of artificial vertices every edge in G^{\prime} has length C. Then if G has m edges,

$$
\begin{equation*}
\left(B_{n}^{*}\right)^{(M-n-1)} e_{5}(2 m(n-1)+1)=\sum_{p \in P_{n, M}^{i}} \alpha(p)=\sum_{p \in P_{n}^{i, L}} \alpha(p), \tag{8.2}
\end{equation*}
$$

where $L=C(M+1)$.
We construct a new set of paths,
Definition 8.1.

$$
\begin{equation*}
P(L, q, G)=\sum_{n=1}^{\infty}\left[\sum_{p \in P_{n}^{i, L}} \alpha(p)\right] \tag{8.3}
\end{equation*}
$$

$P(L, q, G)$ is all paths along G beginning and ending with q with length less than or equal to L.

Theorem 8.2. Let G and G^{\prime} be compact connected quantum graphs, if

$$
\begin{equation*}
\sum_{p \in P(L, q, G)} \alpha(p) \leq \sum_{p^{\prime} \in P\left(L, q^{\prime}, G^{\prime}\right)} \alpha\left(p^{\prime}\right) \tag{8.4}
\end{equation*}
$$

for all $L \geq 0$. Then

$$
\begin{equation*}
K_{G}(t, q, q) \leq K_{G^{\prime}}\left(t, q^{\prime}, q^{\prime}\right) \tag{8.5}
\end{equation*}
$$

for all $t>0$.
Proof. Let p be a path along G beginning and ending at q and p^{\prime} be a path along G^{\prime} beginning and ending at q^{\prime}. We will proceed by contradiction, assume there exists some time t_{0} such that

$$
\begin{equation*}
K_{G}\left(t_{0}, q, q\right)>K_{G^{\prime}}\left(t_{0}, q^{\prime}, q^{\prime}\right) \tag{8.6}
\end{equation*}
$$

Then for all $\epsilon>0$, there exists N_{1} and N_{2} such that for all $L_{1}>N_{1}$,

$$
\begin{equation*}
\left|K_{G}\left(t_{0}, q, q\right)-\sum_{p \in P\left(L_{1}, q, G\right)} \alpha(p) e^{-\ell(p)^{2} / 4 t_{0}}\right|<\frac{\epsilon}{2} \tag{8.7}
\end{equation*}
$$

and for all $L_{2}>N_{2}$,

$$
\begin{equation*}
\left|K_{G}\left(t_{0}, q^{\prime}, q^{\prime}\right)-\sum_{p^{\prime} \in P\left(L_{2}, q^{\prime}, G^{\prime}\right)} \alpha\left(p^{\prime}\right) e^{-\ell\left(p^{\prime}\right)^{2} / 4 t_{0}}\right|<\frac{\epsilon}{2} \tag{8.8}
\end{equation*}
$$

Let $L^{*}>\max \left\{N_{1}, N_{2}\right\}$, then for ϵ small enough

$$
\begin{equation*}
\sum_{p \in P\left(L^{*}, q, G\right)} \alpha(p) e^{-\ell(p)^{2} / 4 t_{0}}>\sum_{p^{\prime} \in P\left(L^{*}, q^{\prime}, G^{\prime}\right)} \alpha\left(p^{\prime}\right) e^{-\ell\left(p^{\prime}\right)^{2} / 4 t_{0}} \tag{8.9}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
\sum_{p \in P\left(L^{*}, q, G\right)} \alpha(p) e^{-\ell(p)^{2} / 4 t_{0}}-\sum_{p^{\prime} \in P\left(L^{*}, q^{\prime}, G^{\prime}\right)} \alpha\left(p^{\prime}\right) e^{-\ell\left(p^{\prime}\right)^{2} / 4 t_{0}}>0 \tag{8.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
K_{L^{*}}=\sum_{p \in P(L, q, G)} \alpha(p) e^{-\ell(p)^{2} / 4 t_{0}}-\sum_{p^{\prime} \in P\left(L, q^{\prime}, G^{\prime}\right)} \alpha\left(p^{\prime}\right) e^{-\ell\left(p^{\prime}\right)^{2} / 4 t_{0}} \tag{8.11}
\end{equation*}
$$

Assume there are Q unique path lengths for paths in $P\left(L^{*}, q, G\right) \cup P\left(L^{*}, q^{\prime}, G^{\prime}\right)$. We will enumerate these path lengths, let ℓ_{j} correspond to the $j^{t h}$ shortest unique path length in $P\left(L^{*}, q, G\right) \cup P\left(L^{*}, q^{\prime}, G^{\prime}\right)$. We will combine terms in $K_{L^{*}}$ by summing the coefficients from paths with the same length. Let

$$
\begin{equation*}
\alpha_{j}=\sum_{\substack{p \in P\left(L^{*}, q, G\right) \\ \ell(p)=\ell_{j}}} \alpha(p)-\sum_{\substack{p^{\prime} \in P\left(L^{*}, q^{\prime}, G^{\prime}\right) \\ \ell(p)=\ell_{j}}} \alpha\left(p^{\prime}\right) . \tag{8.12}
\end{equation*}
$$

Then $K_{L^{*}}$ is equal to,

$$
\begin{equation*}
K_{L^{*}}=\sum_{i=1}^{Q} \alpha_{i} e^{\ell_{i}^{2} / 4 t_{0}}>0 \tag{8.13}
\end{equation*}
$$

By assumption (8.4),

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i}<0 \tag{8.14}
\end{equation*}
$$

for all $m \leq Q$.
If $\alpha_{i}<0$, we can increase $K_{L^{*}}$ by increasing ℓ_{i}. By assumption 8.4, $\alpha_{1} \leq 0$, we increase the path length of ℓ_{1} so that $\ell_{1}=\ell_{2}$ and combine terms in $K_{L^{*}}$ with coefficients α_{1} and α_{2},

$$
\begin{equation*}
\sum_{i=1}^{2} \alpha_{i} e^{-\ell_{i}^{2} / 4 t_{0}} \leq\left(\alpha_{1}+\alpha_{2}\right) e^{-\ell_{2}^{2} / 4 t_{0}} \tag{8.15}
\end{equation*}
$$

Again by 8.4, $\alpha_{1}+\alpha_{2} \leq 0$. Which implies

$$
\begin{equation*}
\left(\alpha_{1}+\alpha_{2}\right) e^{-\ell_{2}^{2} / 4 t_{0}}+\alpha_{3} e^{-\ell_{3}^{2} / 4 t_{0}} \leq\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) e^{-\ell_{3}^{2} / 4 t_{0}} \tag{8.16}
\end{equation*}
$$

We repeat the process for all $j \in\{1,2, \ldots, M\}$, where at each step by assumption

$$
\begin{equation*}
\sum_{i=1}^{j} \alpha_{i}<0 \tag{8.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{i=1}^{j} \alpha_{i}\right) e^{-\ell_{j}^{2} / 4 t_{0}}+\left(\alpha_{j+1}\right) e^{-\ell_{j+1}^{2} / 4 t_{0}} \leq\left(\sum_{i=1}^{j+1} \alpha_{i}\right) e^{-\ell_{j+1}^{2} / 4 t_{0}} \tag{8.18}
\end{equation*}
$$

When $j=M$, we have

$$
\begin{equation*}
K_{L^{*}} \leq\left(\sum_{i=1}^{M} \alpha_{i}\right) e^{-\ell_{M}^{2} / 4 t_{0}} \leq 0 \tag{8.19}
\end{equation*}
$$

which contradicts 8.10 and completes the proof.

Corollary 8.3. Let $e \in G$ be a direct bounded edge with vertices v_{l} and v_{r}, and length ℓ. For $q \in e$, where $\left|v_{l}-q\right|=\ell_{1}$ and $\left|v_{r}-q\right|=\ell_{2}$, if $K_{G}(t, q, q)$ is a rational heat kernel and any path in $P(q, q)$ containing both v_{l} and v_{r} has length equal to or greater than $\max \left\{2 \ell_{1}, 2 \ell_{2}\right\}$, then

$$
\begin{equation*}
K_{G}(t, q, q) \leq K_{I}(t, q, q) \tag{8.20}
\end{equation*}
$$

for all $t>0$, where I is the Neumann interval of length ℓ and q has the same relative spacing along the interval as on e. If G is not the Neumann interval the inequality is strict.

Proof. Let $B(I)$ be the bond scattering matrix for I. For each path p on I we have $\alpha(p)=1$. The heat path formula for the Neumann interval I reads

$$
\begin{equation*}
K_{I}(t, q, q)=\frac{1}{\sqrt{4 \pi t}}\left(1+\sum_{k=0}^{\infty} e^{-\left(2 \ell_{1}+2 k \ell\right)^{2} / 4 t}+e^{-\left(2 \ell_{2}+2 k \ell\right)^{2} / 4 t}+2 e^{-(2(k+1) \ell)^{2} / 4 t}\right) \tag{8.21}
\end{equation*}
$$

where the first summand is the term corresponding to the trivial path; compare with (2.4).
If we partition the paths for the Neumann interval according to their initial direction and how many out-going bonds of v_{q} the path contains (as we did in Section 5), each partition contains exactly one path. The path length in $P_{n}^{1}(I)$ alternates between $2 \ell_{1}+(n-1) \ell$ for n odd and $n \ell$ for n even. Similarly, the paths in $P_{n}^{2}(I)$ alternate between $2 \ell_{2}+(n-1) \ell$ for n odd and $n \ell$ for n even.

By assumption $K_{G}(t, q, q)$ is a rational heat kernel, construct a new graph G^{\prime} from G by inserting a finite number of artificial vertices such that all edges in G^{\prime} have length C, as we did in 6.6. Constructing the matrices B_{n}^{*} from G^{\prime} we can use 6.5 to get

$$
\begin{equation*}
\sum_{n=1}^{N}\left(B_{n}^{*}\right)^{M} e_{i+4}(2 m(n-1)+1) \leq N \tag{8.22}
\end{equation*}
$$

for all $N, M \in\{1,2, \ldots\}$, and $i \in\{1,2\}$.
Because all bonds of G^{\prime} have the same length, $\left(B_{n}^{*}\right)^{M} e_{5}(2 m(n-1)+1)$ is the sum of heat path coefficients from $P_{n}^{1, L}$, where $L=C(M+1)$. By assumption the shortest path in $P(q, q)$ containing both v_{l} and v_{r} must be greater than or equal to $\max \left\{2 \ell_{1}, 2 \ell_{2}\right\}$. This implies than any loop path in $P(q, q)$, has length greater than or equal to $\max \left\{2 \ell_{1}, 2 \ell_{2}\right\}$. Thus, the shortest path $p \in P(q, q)$ starting in the direction of v_{l} has length $2 \ell_{1}$. Similarly the shortest path $p \in P(q, q)$ starting in the direction of v_{r} has length $2 \ell_{2}$. This implies that the length of any path in $P_{n}^{i}(G)$ has a lower bound $2 \ell_{i}+(n-1) \ell$ for n odd and $n \ell$ for n even, which are the lengths of paths in $P_{n}^{i}(I)$ for n odd or even, respectively.

We construct a new graph I^{\prime} by inserting a finite number of artificial vertices on I and ensuring that all edges of I^{\prime} have length C. Let I^{\prime} have m^{*} edges. If $(M-1)$ is less than $\left(2 \ell_{i}+(n-1) \ell\right) / C$ for n odd or $2 \ell / C$ for n even then $P_{n, M}^{i}\left(G^{\prime}\right)=P_{n, M}^{i}\left(I^{\prime}\right)=\varnothing$, and

$$
\begin{equation*}
\left(B\left(I^{\prime}\right)_{n}^{*}\right)^{M} e_{(i+4)}\left(2 m^{*}(n-1)+1\right)=\left(B_{n}^{*}\left(G^{\prime}\right)\right)^{M} e_{(i+4)}(2 m(n-1)+1)=0 \tag{8.23}
\end{equation*}
$$

Summing the terms in the Neumann interval and using Lemma 6.5, if M is large enough to include the shortest path in each partition then

$$
\begin{equation*}
\sum_{n=1}^{N}\left(B\left(I^{\prime}\right)_{n}^{*}\right)^{M} e_{(i+4)}\left(2 m^{*}(n-1)+1\right)=N \geq \sum_{n=1}^{N}\left(B_{n}^{*}\right)^{M} e_{(i+4)}(2 m(n-1)+1) \tag{8.24}
\end{equation*}
$$

If M is not large enough, the contribution from both sums in 8.24 is zero and the inequality remains true. The result follows from Theorem 8.2.

If G is not the Neumann interval then the inequality 8.20 becomes strict. Assume G is not the Neumann interval, then at least one of the end points of e must be a vertex of degree greater than 2. Equation (8.15) in Theorem 8.2 becomes a strict inequality as $\alpha_{1}<0$,

$$
\begin{equation*}
\sum_{i=1}^{2} \alpha_{i} e^{-\ell_{i}^{2} / 4 t_{0}}<\left(\alpha_{1}+\alpha_{2}\right) e^{-\ell_{2}^{2} / 4 t_{0}} \tag{8.25}
\end{equation*}
$$

Hence, 8.20 becomes a strict inequality.

9. Neumann Comparison: Off Diagonal Results

Corollary 8.3 can be adapted to the off diagonal heat kernel by showing that there is a bijection between paths along a quantum graph from q to q and paths from q to q_{0}, for any q_{0} contained along the same edge as q.

LEMMA 9.1. If q and q_{0} belong to the same edge of a quantum graph there is a bijection between the sets $P(q, q)$ and $P\left(q, q_{0}\right)$.

Proof. We start by inserting two artificial vertices along G at q and q_{0}, call them v_{q} and $v_{q_{0}}$, respectively. Without loss of generality, assume $v_{q_{0}}$ is to the right of v_{q}. As in Lemma 5.4 it is convenient to distinguish paths that start to the right or to the left. Let
$\mathbb{P}_{r}(q, q)$ and $\mathbb{P}_{r}\left(q_{0}, q\right)$ be the set of paths that start to the right in $P(q, q)$ and $P\left(q_{0}, q\right)$, respectively. Any path in $\mathbb{P}_{r}(q, q)$ can be obtained from a path in $\mathbb{P}_{r}\left(q_{0}, q\right)$ by adding the bond $\vec{b}_{v_{q}, v_{q_{0}}}$ as the first bond. Conversely, any path in $\mathbb{P}_{r}\left(q_{0}, q\right)$ can be obtained from a path in $\mathbb{P}_{r}(q, q)$ by deleting the first bond $\vec{b}_{v_{q}, v_{q_{0}}}$. Thus, there is a one to one correspondence between $\mathbb{P}_{r}(q, q)$ and $\mathbb{P}_{r}\left(q_{0}, q\right)$. We can use the same reasoning for paths that start towards the left. Then there is a one to one correspondence between $P(q, q)$ and $P\left(q_{0}, q\right)$ and of course the latter has a one to one correspondence with $P\left(q, q_{0}\right)$, so the assertion follows.

Lemma 9.2. The bijection described in Lemma 9.1 preserves the heat path coefficients for all paths.

Proof. The bijection in Lemma 9.1 either adds or deletes the bond transfer at v_{q} which is an artificial vertex and hence has a bond scattering matrix entry equal to one. Thus, the bijection does not change the heat path coefficient.

Thanks to Lemma 9.1 we can introduce a partition of $P\left(q, q_{0}\right)$ that bijectively corresponds to the partition of $P(q, q)$ in definition 5.1. We shall use the same notation for the partition of $P\left(q, q_{0}\right)$ as the one of $P(q, q)$. Thus, if we ensure that all paths in each partition of $P\left(q, q_{0}\right)$ have length longer than the single path in the corresponding Neumann interval partition, then for $q, q_{0} \in e$ Lemma 8.3 extends to $q \neq q_{0}$.

Theorem 9.3. Let G be a quantum graph and $K_{G}\left(t, q, q_{0}\right)$ be the heat kernel on G, where q and q_{0} belong to the same edge e with length ℓ and vertices v_{l} and v_{r}. Let $\ell_{1}:=\left|v_{l}-q_{0}\right|$ and $\ell_{2}:=\left|v_{r}-q_{0}\right|$. If every path from q_{0} to q_{0} containing both v_{r} and v_{l} has length equal to or greater than $\max \left\{2 \ell_{1}, 2 \ell_{2}\right\}$ and e is direct path bounded then

$$
\begin{equation*}
K_{G}\left(t, q, q_{0}\right) \leq K_{I}\left(t, q, q_{0}\right), \tag{9.1}
\end{equation*}
$$

for all $t>0$, where $K_{I}\left(t, q, q_{0}\right)$ is the heat kernel for a Neumann interval of length ℓ with q and q_{0} have the same relative positions as on e. If G is not the Neumann interval than the inequality is strict.

Proof. Using the bijection of Lemma 9.1 both for G and the Neumann interval I, we either add or delete a bond which has the same length in G and in I, so we can confine ourselves to paths starting from q and returning to q. Then we simply apply Lemma 8.3.

CHAPTER 4

Mean Value Theorem

1. Mean Value Formula

Let H be the heat operator in one dimension and H^{\prime} its adjoint i.e.

$$
\begin{equation*}
H f=f_{x x}-f_{t} \quad H^{\prime} v=v_{x x}+v_{t} \tag{1.1}
\end{equation*}
$$

Let D be a region in $\mathbb{R} \times(0, \infty),(\xi, \tau)$ be our variables of integration, and $\vec{n}=\left(n_{1}, n_{2}\right)$ be the outward normal with respect to ∂D. By the divergence theorem, if $H f=0$ and $H^{\prime} v=0$, then

$$
\begin{equation*}
\iint_{D}\left[f H^{\prime} v-v H f\right] d A=\int_{\partial D}\left[\left(f v_{\xi}-f_{\xi} v\right) n_{1}+f v n_{2}\right] d s=0 . \tag{1.2}
\end{equation*}
$$

Choosing $v \equiv 1$, equation 1.2 becomes

$$
\begin{equation*}
\int_{B}\left[-f_{\xi} n_{1}+f n_{2}\right] d s=\int_{B}-f_{\xi} d \tau+f d \xi=0 \tag{1.3}
\end{equation*}
$$

Recall the distance function along G,

$$
\begin{equation*}
d\left(q_{0}, q\right)=\min _{p \in P\left(q_{0}, q\right)}\{\ell(p)\} \tag{1.4}
\end{equation*}
$$

Fix a point $q_{0} \in G$, where $q_{0} \notin V(G)$. For all $q \in G$, if q is a singularity of $d\left(q_{0}, q\right)$ we insert an artificial vertex at q and add q to the set $V(G)$. Let q_{0} belong to the edge e_{0} and v_{0} be the closest vertex to q_{0}, we construct the following coordinate system along each edge of G

$$
x= \begin{cases}d\left(q_{0}, q\right) & e \neq e_{0} \tag{1.5}\\ d\left(v_{0}, q\right) & e=e_{0}\end{cases}
$$

Let $h\left(t_{0}-t, q_{0}, x\right)$ be the reverse time heat kernel on G . Then along each $e \in G$

$$
\begin{equation*}
h_{x x}+h_{t}=0 \tag{1.6}
\end{equation*}
$$

Definition 1.1. The heat ball on G is the set $Q\left(q_{0}, t_{0}, C\right):=\left\{(x, t) \in G \times\left(0, t_{0}\right) \mid\right.$ $\left.h\left(t_{0}-t, q_{0}, x\right) \geq C\right\}$ for some $C>0$. When we fix q_{0}, t_{0}, and C we will refer to the heat ball as Q.

THEOREM 1.2. Let G be a compact quantum graph and let $u(q, t)$ satisfy the heat equation on G, then

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\int_{\partial Q}-u h_{x} n_{1} d s \tag{1.7}
\end{equation*}
$$

Where ∂Q is the boundary of the heat ball $Q\left(q_{0}, t_{0}, C\right)$ for $q_{0} \in G, t_{0} \in(0, \infty)$, and $C>0$.

Proof. Fix $q_{0} \in G, t_{0} \in(0, \infty)$, and $C>0$. On each edge $e \in E(G)$, let $Q_{e}=\{(x, t) \in$ $\left.e \times\left(0, t_{0}\right) \mid h\left(t_{0}-t, q_{0}, x\right) \geq C\right\}$, i.e. $Q_{e}=e \cap Q$. Let $R_{e}=Q_{e} \cap\{V(G)\}, R_{e}$ is the boundary of Q_{e} at the vertices of e. On the edge e_{0}, we define the set $J_{t_{1}}=Q_{e_{0}} \cap\left\{t \leq t_{1}\right\}$ for some $t_{1}<t_{0}$, with boundary $\partial J_{t_{1}}$.

The boundary $\partial J_{t_{1}}$ can be split into two sub-sets $\partial J_{1}=\partial Q_{e_{0}} \cap \partial J_{t_{1}}$ and $\partial J_{2}=Q_{e_{0}} \cap\{t=$ $\left.t_{1}\right\}$. If $\vec{n}_{J}=\left(n_{J, 1}, n_{J, 2}\right)$ is the outward normal with respect to $\partial J_{t_{1}}$, then for ∂J_{2} we have $n_{1}=0$. If $\left|t_{1}-t_{0}\right|<\epsilon$, for ϵ small enough $\partial J_{2} \cap V(G)=\varnothing$. Let $u(q, t)$ solve the heat equation on G. Using the coordinate system described in (1.5) and the divergence theorem,
$0=\int_{J_{t_{1}}}\left[u\left(h_{x x}+h_{t}\right)-h\left(u_{x x}-u_{t}\right)\right] d A=\int_{\partial J_{t_{1}}}\left[u h_{x} n_{J, 1}-h u_{x} n_{J, 1}+h u n_{J, 2}\right] d s$,

$$
\begin{align*}
& =\int_{\partial J_{1}}\left[u h_{x} n_{J, 1}-h u_{x} n_{J, 1}+h u n_{J, 2}\right] d s+\int_{\partial J_{2}}\left[u h_{x} n_{J, 1}-h u_{x} n_{J, 1}+h u n_{J, 2}\right] d s \tag{1.9}\\
& =\int_{\partial J_{1}}\left[u h_{x} n_{J, 1}-h u_{x} n_{J, 1}+h u n_{J, 2}\right] d s+\int_{\partial J_{2}} h u n_{J, 2} d s \tag{1.10}
\end{align*}
$$

Letting $t_{1} \rightarrow t_{0}$ and using the delta function property of $h\left(t_{0}-t, q_{0}, x\right)$, we have

$$
\begin{align*}
u\left(q_{0}, t_{0}\right)=\lim _{t_{1} \rightarrow t_{0}} \int_{J_{2}} u h n_{J, 2} d s & =\int_{\partial Q_{e_{0}}}\left[-u h_{x} n_{J, 1}+h u_{x} n_{J, 1}-h u n_{J, 2}\right] d s \tag{1.11}\\
& =\int_{\partial Q_{e_{0}} \backslash R_{e_{0}}}\left[-u h_{x} n_{J, 1}+h u_{x} n_{J, 1}-h u n_{J, 2}\right] d s+\int_{R_{e_{0}}}\left[-u h_{x} n_{J, 1}+h u_{x} n_{J, 1}\right] d s
\end{align*}
$$

Let $\vec{n}_{e}=\left(n_{e, 1}, n_{e, 2}\right)$ be the outward normal with respect to ∂Q_{e}. We note that $n_{e, 2}=0$ with respect to the boundary R_{e}. For all $e \neq e_{0}$, by the divergence theorem

$$
\begin{align*}
0 & =\int_{\partial Q_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}-h u n_{e, 2}\right] d s \\
& =\int_{\partial Q_{e} \backslash R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}-h u n_{e, 2}\right] d s+\int_{R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}\right] d s \tag{1.12}
\end{align*}
$$

Summing equations 1.11 and 1.12 for all $\left\{e_{0}, e_{1}, \ldots, e_{N}\right\}$, where for $i \in\{0,1, \ldots, N\}, Q_{e_{i}} \neq \varnothing$, we get
(1.13) $u\left(q_{0}, t_{0}\right)=\sum_{i=0}^{N}\left[\int_{\partial Q_{e} \backslash R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}-h u n_{e, 2}\right] d s+\int_{R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}\right] d s\right]$.

From the vertex conditions for h and u, we have $\sum_{e \sim v} u_{x} n_{e, 1}=0$ and $\sum_{e \sim v} h_{x} n_{e, 1}=0$ for all $v \in V$. This implies

$$
\begin{align*}
\sum_{i=0}^{N} \int_{R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}\right] d s & =\sum_{v \in V(G) \cap Q}\left[\sum_{e \sim v} \int_{R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}\right] d s\right] \tag{1.14}\\
& =\sum_{v \in V(G) \cap Q}\left[\int_{R_{e}}\left[-u\left[\sum_{e \sim v} h_{x} n_{e, 1}\right]+h\left[\sum_{e \sim v} u_{x} n_{e, 1}\right] d s\right],\right. \tag{1.15}\\
& =0 . \tag{1.16}
\end{align*}
$$

Equation 1.13 becomes

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\sum_{i=0}^{N}\left[\int_{\partial Q_{e} \backslash R_{e}}\left[-u h_{x} n_{e, 1}+h u_{x} n_{e, 1}-h u n_{e, 2}\right] d s\right. \tag{1.17}
\end{equation*}
$$

By construction of $\partial Q_{e}, h \equiv C$ on $\partial Q_{e} \backslash R_{e}$. Which implies,

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\sum_{i=0}^{N}\left[\int_{\partial Q_{e} \backslash R_{e}}\left[-u h_{x} n_{e, 1}+C\left(u_{x} n_{e, 1}-u n_{e, 2}\right)\right] d s\right. \tag{1.18}
\end{equation*}
$$

Using (1.3),

$$
\begin{align*}
u\left(q_{0}, t_{0}\right) & =\sum_{i=0}^{N}\left[\int_{\partial Q_{e} \backslash R_{e}}\left[-u h_{x} n_{e, 1}+C\left(u_{x} n_{e, 1}-u n_{e, 2}\right)\right] d s,\right. \\
& =\sum_{i=0}^{N}\left[\int_{\partial Q_{e} \backslash R_{e}}\left[-u h_{x} n_{e, 1}\right] d s,\right. \tag{1.19}\\
& =\int_{\partial Q}-u h_{x} n_{1} d s .
\end{align*}
$$

2. Bounding the Mean Value Formula

In the previous section we found an expression for the mean value formula for the heat equation on a quantum graph using the heat kernel of G. We will now find an alternate representation for the mean value formula using the free heat kernel on \mathbb{R}. This new version can be used to bound the mean value formula on G. The free heat kernel on \mathbb{R} can be expressed

$$
\begin{equation*}
K_{\mathbb{R}}(t, x, y)=\frac{1}{\sqrt{4 \pi t}} e^{-|x-y|^{2} / 4 t} \tag{2.1}
\end{equation*}
$$

Using the coordinate system described in (1.5), we define the function $k\left(t_{0}-t, q_{0}, x\right)$ on G as

$$
\begin{equation*}
k\left(t_{0}-t, q_{0}, x\right)=\frac{1}{\sqrt{4 \pi\left(t_{0}-t\right)}} e^{-x^{2} / 4\left(t_{0}-t\right)} \tag{2.2}
\end{equation*}
$$

For all $x \notin V$,

$$
\begin{equation*}
k_{x x}+k_{t}=0 . \tag{2.3}
\end{equation*}
$$

For the next theorem, we define the following sets:

- $B\left(q_{0}, t_{0}, C\right):=\left\{(x, t) \in G \times\left(0, t_{0}\right) \mid k\left(t_{0}-t, q_{0}, x\right) \geq C\right\}$, for some $C>0$. When we fix $t_{0} \in(0, \infty), q_{0} \in G \backslash V(G)$, and $C>0$ we will refer to this set as B.
- $B_{e}\left(q_{0}, t_{0}, C\right)=B\left(q_{0}, t_{0}, C\right) \cap e$ for some $e \in E(G)$, when q_{0}, t_{0}, and C are clear we use the simpler notation B_{e}.
- $\vec{n}_{e}=\left(n_{e, 1}, n_{e, 2}\right)$ is the outward normal with respect to B_{e}, using the coordinate system described in 1.5).
- d_{v}^{+}and d_{v}^{-}are the number of edges $e \sim v$, such that on $B_{e} \cap v, \vec{n}_{e}=(-1,0)$ and $\overrightarrow{n_{e}}=(1,0)$, respectively. $B_{e} \cap v$ is the boundary of B_{e} at v. To account for our coordinate system, for v_{0} we subtract one from $d_{v_{0}}^{+}$and add one to $d_{v_{0}}^{-}$.

Theorem 2.1. Let G be a compact quantum graph. Using the sets described above if $u(q, t)$ solves the heat equation on G then

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\int_{\partial B}-u k_{x} n_{1} d s+\sum_{v \in V}\left(d_{v}^{+}-d_{v}^{-}\right) \int_{B \cap v} u k_{x} d s \tag{2.4}
\end{equation*}
$$

Proof. Through out this proof we will fix q_{0}, t_{0}, and $C>0$. Using the sets described above and the coordinate system descirbed in 1.5), if

$$
\begin{equation*}
k\left(t_{0}-t, q_{0}, x\right)=\frac{1}{\sqrt{4 \pi\left(t_{0}-t\right)}} e^{-x^{2} / 4\left(t_{0}-t\right)} \tag{2.5}
\end{equation*}
$$

then for all edges $e \neq e_{0}$, we have $x=d\left(q_{0}, q\right)>0$, which implies for all $e \neq e_{0}$

$$
\begin{equation*}
k_{x}=\frac{-x}{2\left(t_{0}-t\right)} k<0 \tag{2.6}
\end{equation*}
$$

For $e \in E(G)$, the boundary of B_{e}, denoted ∂B_{e}, consists of two sets. The first is $\left\{(x, t) \in e \times\left(0, t_{0}\right) \mid k\left(t_{0}-t, q_{0}, x\right)=C, x \notin V\right\}$. The second is the boundary at the vertices of $e, T_{e}=B_{e} \cap\{V\}$. Let $\vec{n}_{e}=\left(n_{e, 1}, n_{e, 2}\right)$ be the outward normal with respect to ∂B_{e}. Along the boundary T_{e}, we have $n_{e, 2}=0$.

On the edge e_{0}, we define the set $I_{t_{1}}:=B_{e_{0}} \cap\left\{t \leq t_{1}\right\}$ for some $t_{1}<t_{0}$. We separate the boundary of $I_{t_{1}}$ into two sets $\partial I_{1}=\partial B_{e_{0}} \cap \partial I_{t_{1}}$ and $\partial I_{2}=B_{e_{0}} \cap\left\{t=t_{1}\right\}$. On ∂I_{2} we have $n_{e_{0}, 1}=0$. If $\left|t_{1}-t_{0}\right|<\epsilon$, then for ϵ small enough $\partial I_{2} \cap V(G)=\varnothing$. Let u solve the heat equation on G. Let $\vec{n}_{I}=\left(n_{I, 1}, n_{I, 2}\right)$ be the outward normal with respect to $I_{t_{1}}$. By the divergence theorem, on e_{0}
$0=\int_{I_{t_{1}}}\left[u\left(k_{x x}+k_{t}\right)-k\left(u_{x x}-u_{t}\right)\right] d A=\int_{\partial I_{t_{1}}}\left[u k_{x} n_{I, 1}-k u_{x} n_{I, 1}+k u n_{I, 2}\right] d s$,

$$
\begin{align*}
& =\int_{\partial I_{I, 1}}\left[u k_{x} n_{I, 1}-k u_{x} n_{I, 1}+k u n_{I, 2}\right] d s+\int_{\partial I_{2}}\left[u k_{x} n_{I, 1}-k u_{x} n_{I, 1}+k u n_{I, 2}\right] d s \tag{2.8}\\
& =\int_{\partial I_{1}}\left[u k_{x} n_{I, 1}-k u_{x} n_{I, 1}+k u n_{I, 2}\right] d s+\int_{\partial I_{2}} k u n_{I, 2} d s \tag{2.9}
\end{align*}
$$

Letting $t_{1} \rightarrow t_{0}$ implies $\partial I_{t_{1}} \rightarrow \partial B_{e_{0}}$. Using the delta function property of $k\left(t_{0}-t, q_{0}, x\right)$,

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\lim _{t_{1} \rightarrow t_{0}} \int_{\partial I_{2}} u k n_{I, 2} d s=\int_{\partial B_{e_{0}}}\left[-u k_{x} n_{I, 1}+k u_{x} n_{I, 1}-k u n_{I, 2}\right] d s \tag{2.10}
\end{equation*}
$$

If $e \neq e_{0}$ then

$$
\begin{align*}
0 & =\int_{\partial B_{e}}\left[-u k_{x} n_{e, 1}+k u_{x} n_{e, 1}-k u n_{e, 2}\right] d s \\
& =\int_{\partial B_{e} \backslash T_{e}}\left[-u k_{x} n_{e, 1}+k u_{x} n_{e, 1}-k u n_{e, 2}\right] d s+\int_{T_{e}}\left[-u k_{x}+k u_{x}\right] n_{e, 1} d s . \tag{2.11}
\end{align*}
$$

Let $\left\{e_{0}, e_{1}, \ldots, e_{N}\right\}$ be edges such that $B_{e_{i}} \neq \varnothing$. Summing equations 2.10 and 2.11, (2.12) $u\left(q_{0}, t_{0}\right)=\sum_{i=1}^{N}\left[\int_{\partial B_{e_{i}} \backslash T_{e_{i}}}\left[-u k_{x} n_{e_{i}, 1}+k u_{x} n_{e_{i}, 1}-k u n_{e_{i}, 2}\right] d s+\int_{T_{e_{i}}}\left[-u k_{x}+k u_{x}\right] n_{e_{i}, 1} d s\right]$.

If $v \cap B=\varnothing$, then for all $e \sim v, v \cap \partial B_{e}=\varnothing$. Otherwise, we will integrate over v, d_{v} times. Note that for all e, on T_{e} the outward normal $n_{e, 1}= \pm 1$, however the sign is dependent on the coordinate system described in 1.5. If v_{1} and v_{2} are the vertices of e, then $T_{e}=\left(\partial B_{e} \cap v_{1}\right) \cup\left(\partial B_{e} \cap v_{2}\right)$. From the vertex condition that $\sum_{e \sim v} u_{x} n_{e, 1}=0$ and the continuity of k,

$$
\begin{equation*}
\sum_{e \sim v} \int_{\partial B_{e} \cap v} k u_{x} n_{e, 1} d s=\int_{\partial B_{e} \cap v} k\left(\sum_{e \sim v} u_{x} n_{e, 1}\right) d s=0 \tag{2.13}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\sum_{i=1}^{N}\left[\int_{\partial B_{e_{i}} \backslash T_{e_{i}}}\left[-u k_{x} n_{e_{i}, 1}+k u_{x} n_{e_{i}, 1}-k u n_{e_{i}, 2}\right] d s+\int_{T_{e_{i}}}\left[-u k_{x} n_{e_{i}, 1} d s\right]\right. \tag{2.14}
\end{equation*}
$$

For each $v \neq v_{0}$, let d_{v}^{+}be the number of edges adjacent to v such that on $\partial B_{e} \cap v$, $n_{e, 1}=-1$. Similarly, let d_{v}^{-}be the number of edges adjacent to v such that on $\partial B_{e} \cap v$, $n_{e, 1}=1$. For $v=v_{0}$, to account for our coordinate system, we subtract one from $d_{v_{0}}^{+}$and add one to $d_{v_{0}}^{-}$. For each $v \neq v_{0}$, select some $e \sim v$ call this edge e_{v}^{*}, selecting a single edge stops us from integrating over the boundary $\partial B_{e} \cap v$ multiple times. For all $e \sim v \neq v_{0}, k_{x}<0$. Then

$$
\begin{equation*}
\sum_{e \sim v} \int_{B_{e} \cap v}-u k_{x} n_{1} d s=\left(d_{v}^{+}-d_{v}^{-}\right) \int_{B_{e_{v}^{*} \cap v}} u k_{x} d s \tag{2.15}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
\sum_{i=1}^{N}\left[\int_{T_{e_{i}}}\left[-u k_{x} n_{1} d s\right]=\sum_{v \in V}\left(d_{v}^{+}-d_{v}^{-}\right) \int_{B_{e_{v}^{*} \cap v}} u k_{x} d s\right. \tag{2.16}
\end{equation*}
$$

We note that if $B \cap v=\varnothing$, then the contribution to the sum from this vertex is zero. For the vertex v_{0}, the boundary $B_{e_{0}} \cap v_{0}, n_{e_{0}, 1}=-1$ and $k_{x}>0$. For all edges $e \sim v_{0}, e \neq e_{0}$, we have along the boundary $B_{e} \cap v_{0}, k_{x}<0$ and $n_{e, 1}=-1$. This implies

$$
\begin{equation*}
\sum_{e \sim v_{0}, e \neq e_{0}} \int_{B_{e} \cap v_{0}}-u k_{x} n_{1} d s=\left(d_{v_{0}}-1\right) \int_{B_{e_{0} \cap v_{0}}} u k_{x} d s \tag{2.17}
\end{equation*}
$$

and for $\partial B_{e_{0}} \cap v_{0}, k_{x}>0$ and $n_{e_{0}, 1}=-1$, so

$$
\begin{equation*}
\int_{B_{e_{0} \cap v_{0}}}-u k_{x} n_{1} d s=\int_{B_{e_{0} \cap v_{0}}} u k_{x} d s=-\int_{B_{e_{0} \cap v_{0}}} u\left(-k_{x}\right) d s \tag{2.18}
\end{equation*}
$$

Where in 2.17, $k_{x}<0$ and in 2.18, $k_{x}>0$. For v_{0}, we choose the edge $e_{v_{0}}^{*}$ to be some $e \sim v, e \neq e_{0}$. If no such edge exists, then we choose $e_{0}=e_{v_{0}}^{*}$ but we change the sign of k_{x} along $\partial B_{e_{0}} \cap v_{0}$. This change in sign is to account for our coordinate system being "backwards" with respect to k_{x} along e_{0} near v_{0}. Summing 2.17) and 2.18,

$$
\begin{equation*}
\sum_{e \sim v_{0}, e \neq e_{0}} \int_{B_{e} \cap v_{0}} u k_{x} n_{e, 1} d s-\int_{B_{e_{0} \cap v_{0}}} u\left(-k_{x}\right) n_{e_{0}, 1} d s=\left(d_{v_{0}}-2\right) \int_{B_{e_{0} \cap v_{0}}} u\left(k_{x}\right) d s \tag{2.19}
\end{equation*}
$$

Finally, we examine $\partial B_{e} \backslash T_{e}$. By construction, $k\left(t_{0}-t, q_{0}, x\right) \equiv C$ on $\partial B_{e} \backslash T_{e}$. Summing over each ∂B_{e}, and choosing $w \equiv 1$ we have

$$
\begin{align*}
\sum_{i=0}^{N} \int_{\partial B_{e_{i}}}\left[\left(-u w_{x}+w u_{x}\right) n_{e_{i}, 1}-w u n_{2}\right] d s & =\sum_{i=0}^{N}\left[\int_{\partial B_{e_{i}} \backslash T_{e_{i}}}\left[\left(-u w_{x}+w u_{x}\right) n_{e_{i}, 1}-w u n_{e_{i}, 2}\right] d s\right. \tag{2.20}\\
& \left.+\int_{T_{e_{i}}}\left[\left(-u w_{x}+w u_{x}\right) n_{e_{i}, 1}-w u n_{e_{i}, 2}\right] d s\right], \\
& =\sum_{i=0}^{N}\left[\int_{\partial B_{e_{i}} \backslash T_{e_{i}}}\left[u_{x} n_{e_{i}, 1}-u n_{e_{i}, 2}\right] d s+\int_{T_{e_{i}}} u_{x} n_{e_{i}, 1} d s,\right. \\
& =\sum_{i=0}^{N} \int_{\partial B_{e_{i} \backslash T_{e_{i}}}}\left[u_{x} n_{e_{i}, 1}-u n_{e_{i}, 2}\right] d s, \\
& =0 .
\end{align*}
$$

Where the third equality comes from the vertex condition $\sum_{e \sim v} u_{x} n_{e, 1}=0$, and the final equality follows the same logic as (1.3). This implies

$$
\begin{align*}
\sum_{i=1}^{N} \int_{\partial B_{e_{i}} \backslash T_{e_{i}}}\left[-u k_{x} n_{e_{i}, 1}+k u_{x} n_{e_{i}, 1}-k u n_{e_{i}, 2}\right] d s & =\sum_{i=1}^{N} \int_{\partial B_{e_{i}} \backslash T_{e_{i}}} u k_{x} n_{e_{i}, 1} d s-C\left[-u_{x} n_{e_{i}, 1}+u n_{e_{i}, 2}\right] d s, \tag{2.21}\\
& =\sum_{i=1}^{N} \int_{\partial B_{e_{i}} \backslash T_{e_{i}}}-u k_{x} n_{e_{i}, 1} d s, \\
& =\int_{\partial B}-u k_{x} n_{1} d s .
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\int_{\partial B}-u k_{x} n_{1} d s+\sum_{v \in V}\left(d_{v}^{+}-d_{v}^{-}\right) \int_{B \cap v} u k_{x} d s . \tag{2.22}
\end{equation*}
$$

Definition 2.2. Let $V_{1}\left(G, q_{0}\right)=\left\{v \in V(G) \mid d_{v}=1\right.$ or $d\left(q_{0}, v\right)$ is a singularity of $\left.d\left(q_{0}, \cdot\right)\right\}$, for $q_{0} \in G$.

Corollary 2.3. Let G be a quantum graph and define $V_{1}\left(G, q_{0}\right)$ as in definition 2.2. If $B\left(q_{0}, t_{0}, C\right) \cap V_{1}\left(G, q_{0}\right)=\varnothing$ and $u(q, t) \geq 0$ solves the heat equation on G, then

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right) \leq \int_{\partial B}-u k_{x} n_{1} d s \tag{2.23}
\end{equation*}
$$

Proof. From theorem 2.1, we have

$$
\begin{equation*}
u\left(q_{0}, t_{0}\right)=\int_{\partial B}-u k_{x} n_{1} d s+\sum_{v \in V}\left(d_{v}^{+}-d_{v}^{-}\right) \int_{B \cap v} u k_{x} d s \tag{2.24}
\end{equation*}
$$

If v is not a singularity of $d\left(q_{0}, \cdot\right)$ and $v \neq v_{0}$, then for $v \neq v_{0}, d\left(q_{0}, v\right)$ is decreasing away from v for one edge adjacent to v, and increasing away from v for $d_{v}-1$ edges. This implies $d_{v}^{+}=d_{v}-1$ and $d_{v}^{-}=1$, which implies if $d_{v}>1$ then $d_{v}^{+}-d_{v}^{-} \geq 0$. Because $k_{x}<0$ for all $v \neq v_{0}$ and $u(q, t) \geq 0$

$$
\begin{equation*}
\left(d_{v}^{+}-d_{v}^{-}\right) \int_{B \cap v} u k_{x} d s \leq 0 . \tag{2.25}
\end{equation*}
$$

For v_{0}, if v_{0} is not a singularity of $d\left(q_{0}, \cdot\right)$ then for all edges adjacent to v_{0} the coordinate system in increasing traveling away from v_{0}. This implies there are $d_{v_{0}}$ edges adjacent to v_{0}
with $n_{e, 1}=-1$ along $\partial B_{e} \cap v_{0}$. By the definition of d_{v}^{+}and d_{v}^{-}for v_{0}, we subtract one from d_{v}^{+}and add one to d_{v}^{-}. Hence, if $d_{v_{0}}>1$ then $d_{v_{0}}^{+}-d_{v_{0}}^{-} \geq 0$. This implies

$$
\begin{equation*}
\left(d_{v_{0}}^{+}-d_{v_{0}}^{-}\right) \int_{B \cap v_{0}} u k_{x} d s \leq 0 \tag{2.26}
\end{equation*}
$$

Note that for trees, the set $V_{1}\left(G, q_{0}\right)=\left\{v \in V \mid d_{v}=1\right\}$.

Bibliography

[1] R. Band and G. Lévy, Quantum graphs which optimize the spectral gap, Ann. Henri Poincaré 18 (2017), 3269-3323.
[2] G. Berkolaiko and P. Kuchment, Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 117-137.
[3] G. Berkolaiko, J. B. Kennedy, P. Kurasov, and D. Mugnolo, Edge connectivity and the spectral gap of combinatorial and quantum graphs, J. Phys. A 50 (2017), 365201, 29.
[4] G. Berkolaiko, J. B. Kennedy, P. Kurasov, and D. Mugnolo, Surgery principles for the spectral analysis of quantum graphs, preprint, arXiv:1807.08183, 2018.
[5] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013.
[6] D. Borthwick, Spectral Theory - Basic concepts and applications, Graduate Texts in Mathematics, vol. 284, Springer, 2020.
[7] D. Borthwick, L. Corsi, K. Jones, Sharp Diameter Bound on the Spectral Gap of Quantum Graphs, Proceeding of the American Mathematical Society, vol. 149, American Mathematical Society, 2019.
[8] D. Borthwick, L. Corsi, E. Harrell, K. Jones, Analysis of the Heat Kernel on a Quantum Graph, Preprint, 2022.
[9] L. Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) 55 (2005), 199-211.
[10] A. Grigor'yan, Estimates of heat kernels on Riemannian manifolds, Imperial College (London)(1999).
[11] E. Harrell, Spectral theory on combinatorial and quantum graphs, Spectral theory of graphs and of manifolds, Soc. Math., Paris, France (2018).
[12] J. B. Kennedy, A sharp eigenvalue bound for quantum graphs in terms of the diameter, preprint, arXiv:1807.08185, 2018.
[13] J. B. Kennedy, P. Kurasov, G. Malenová, and D. Mugnolo, On the spectral gap of a quantum graph, Ann. Henri Poincaré 17 (2016), 2439-2473.
[14] Kostrykin, Potthoff, and Schrader, Heat kernels on metric graphs and a trace formula, Adventures in mathematical physics Vol 447 (2007), 175-198.
[15] P. Kurasov, G. Malenová, and S. Naboko, Spectral gap for quantum graphs and their edge connectivity, J. Phys. A 46 (2013), 275309, 16.
[16] P. Kurasov and S. Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory 4 (2014), 211-219.
[17] S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math. (2) 111 (1987), 401-413.
[18] J. Roth, Le spectre du laplacien sur un graphe,Théorie du potentiel. Lecture Notes in Math (1983). 111 (1987), 521-539.

