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Abstract

Polynomials Nonnegative on Noncompact Subsets of the Plane
By Ha Ngoc Nguyen

In 1991, Schmüdgen proved that if f is a polynomial in n variables with
real coefficients such that f > 0 on a compact basic closed semialgebraic
set K ⊆ R

n, then there always exists an algebraic expression showing that
f is positive on K. Then in 1999, Scheiderer showed that if K is not com-
pact and its dimension is 3 or more, there is no analogue of Schmüdgen’s
Theorem. However, in the noncompact two-dimensional case, very little is
known about when every f positive or nonnegative on a noncompact basic
closed semialgebraic set K ⊆ R

2 has an algebraic expression proving that
f is nonnegative on K. Recently, M. Marshall answered a long-standing
question in real algebraic geometry by showing that if f ∈ R[x, y] and f ≥ 0
on the strip [0, 1] × R, then f has a representation f = σ0 + σ1x(1 − x),
where σ0, σ1 ∈ R[x, y] are sums of squares.

This thesis gives some background to Marshall’s result, which goes back
to Hilbert’s 17th problem, and our generalizations to other noncompact
basic closed semialgebraic sets of R

2 which are contained in strip. We also
give some negative results.
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Chapter 1

Introduction

In 1900, Hilbert posed his 17th problem, asking whether every real polyno-

mial f in n variables that is nonnegative on R
n can be written as a sum of

squares of rational functions. In 1927, Artin [1] gave an affirmative answer

to Hilber’s 17th Problem. A natural question to ask is what would happen if

we change the condition “f ≥ 0 on R
n” by some other positivity condition,

for example, f ≥ 0, or f > 0 on some subset K of R
n.

Given a finite subset S = {g1, . . . , gr} ⊆ R[x1, . . . , xn] =: R[X], the basic

closed semialgebraic set KS associated to S is

KS := {α ∈ R
n | gi(α) ≥ 0, i = 1, . . . , r},

and the preordering TS of R[X] generated by S is TS := {
∑

ǫ∈{0,1}r

sǫ g
ǫ1
1 . . . gǫr

r },

where sǫ is a sum of squares of polynomials in R[X] for all ǫ ∈ {0, 1}r.

Since sums of squares of polynomials in R[X] are globally nonnegative, and

the gi are nonnegative on KS, f ∈ TS implies that f is nonnegative on KS,

and a representation of f in TS, i.e., f =
∑

ǫ∈{0,1}r sǫ g
ǫ1
1 . . . gǫr

r , is an algebraic

identity certifying that f is nonnegative on KS.

Fix S as above. In 1991, Schmüdgen [17] proved that if KS is compact and

f ∈ R[X] such that f > 0 on KS, then f ∈ TS, i.e., there always exists an

algebraic expression proving that the given polynomial f is positive on KS.

In general Schmüdgen’s result does not hold if the condition “f > 0 on KS”

is replaced by “f ≥ 0 on KS”.



2

An obvious question to ask is: What happens when KS is not compact?

In 1999, Scheiderer [15] showed that if KS is not compact and its dimen-

sion is 3 or more, there is no analogue of Schmüdgen’s Theorem. Then in

2002, Kuhlmann and Marshall [6] proved that there is a result similar to

Schmüdgen’s Theorem for a noncompact set KS ⊆ R, provided that S con-

tains the “right” set of generators for KS.

In the noncompact two-dimensional case, very little is known about when

every f positive or nonnegative on a noncompact set KS ⊆ R
2 has an alge-

braic expression proving that f is nonnegative on KS, i.e., f > 0 or f ≥ 0

implies that f ∈ TS. Recently, M. Marshall showed that if f ∈ R[x, y] is

nonnegative on the strip [0, 1]×R ⊆ R
2, then f ∈ TS, where S = {x, 1− x}.

This is a stronger result than Schmüdgen’s Theorem, as Marshall proved that

the preordering in this case contains all polynomials nonnegative on KS.

In this thesis, we explore representations of polynomials that are nonneg-

ative on some noncompact subsets of the plane. Our work concerns gener-

alizations of Marshall’s result and an attempt to characterize noncompact

semialgebraic sets for which there is a corresponding finitely generated pre-

ordering which contains all polynomials nonnegative on the set.

In Chapter 3, we generalize Marshall’s theorem to the half-strip situa-

tion, by which we mean noncompact basic closed semialgebraic subsets of

the form {(x, y) | 0 ≤ x ≤ 1, g(x, y) ≥ 0} which are bounded as y → −∞.

We show that if f ∈ R[x, y] is nonnegative on certain types of half-strips in

the plane, then f ∈ TS, provided we choose the “right” set of generators S.

The proof of the theorem involves two steps of reduction: first to the case

[0, 1] × R
+ and secondly to the strip [0, 1] × R, and then using Marshall’s

theorem on the strip. Combining this half-strip result with a substitution

technique from Scheiderer’s work [16], we obtain more examples of half-strips

for which the corresponding preorderings contain all nonnegative polynomi-

als. Then we end this chapter with a family of examples of half-strips for
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which no corresponding finitely generated preordering contains all positive

polynomials.

In Chapter 4, we give another generalization of Marshall’s result by showing

that if f ∈ R[x, y] such that f(x, y) ≥ 0 on U ×R, where U ⊆ R is compact,

i.e., U × R consists of multiple strips in the plane, then f ∈ TS, again

provided we choose the right set of generators. The proof uses generalizations

of Marshall’s arguments. The idea of the proof is to get representations of

f on some small strips covering U × R, where the representations use the

generators and sums of squares of polynomials in y whose coefficients are

analytic functions of x defined in some open neighborhoods of these small

strips. Then we apply a version of the Weierstrass Approximation Theorem

to obtain a polynomial representation of f(x, y) in TS.

Finally we end this thesis with Chapter 5, where we summarize our work

and propose a list of open problems.
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Chapter 2

Preliminaries

Fix n ∈ N and let R[X] := R[x1, . . . , xn] be the ring of polynomials in n

variables over R. For the special cases n = 1 and n = 2 , we use R[x] and

R[x, y], respectively. Throughout, R
+ denotes the nonnegative elements of

R, and R>0 denotes the strictly positive elements of R.

2.1 Positivity and Sums of Squares

We say that a polynomial f ∈ R[X] is positive semidefinite, or psd, if

f(α) ≥ 0 for all α ∈ R
n. A polynomial f ∈ R[X] is a sum of squares, or

sos, if f =
∑k

i=1 g
2
i , for g1, . . . , gk ∈ R[X]. We write

∑

R[X]2 for the set of

sums of squares in R[X]. Obviously, f sos implies that f is psd, since squares

in R are nonnegative. The converse, in general, is not true. Also, writing f

as a sum of squares gives an algebraic identity proving that f is psd.

It has been well-known since the late 19th century that in the one variable

case, f psd implies f sos. This follows from the Fundamental Theorem of

Algebra:

Theorem 2.1. If f(x) ∈ R[x] is psd, then f(x) is a sum of two squares in

R[x].
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Proof. Factor f(x) in C[x]. Since f ≥ 0 on R, real roots appear to even

degree, and complex roots appear in conjugate pairs. Thus, we have

f(x) =
∏

c(x− zj)(x− z̄j),

where c ∈ R
+. Let g =

∏

(x− zj) and write g = g1 + ig2, with g1, g2 ∈ R[x].

Then f = c(g2
1 + g2

2).

If deg f = 2, it is easy to see that f is sos, using diagonalization of psd

quadratic forms. In 1888, Hilbert [4] proved the following remarkable theo-

rem:

Theorem 2.2 (Hilbert). Suppose f is psd of degree 4 in two variables, then

f is sos. For all other cases, there exist psd f which are not sos.

However, Hilbert did not give an explicit example of a psd polynomial that

is not sos. The first published examples did not appear until the 1960s, and

the most famous is the Motzkin polynomial [9] from 1967:

x4y2 + x2y4 − 3x2y2 + 1

In 1893, Hilbert [5] proved that for n = 2 every psd polynomial in R[X]

can be written as a sum of squares of rational functions. Unable to answer

the general question of whether every psd polynomial is a sum of squares of

rational functions, it became the 17th problem on Hilbert’s list of 23 problems

he gave in his address to the International Congress of Mathematicians in

1900. In 1927, E. Artin [1] gave an affirmative solution to Hilbert’s 17th

problem.

Theorem 2.3 (Artin 1927). Suppose f ∈ R[X] is psd. Then there are

polynomials gi, i = 1, . . . , k, and a nonzero h ∈ R[X] such that

f =
(g1

h

)2

+ · · · +
(gk

h

)2
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Note that an identity f =
(

g1

h

)2
+ · · · +

(

gk

h

)2
is an algebraic expression

showing that f is psd.

What can be said if we replace the condition “f ≥ 0 on R
n” by f ≥ 0 on

some subset K of R
n? In particular, we consider semialgebraic subsets,

which are the sets of solutions of some finite system of polynomial equations

and inequalities.

A subset of R
n is called basic semialgebraic if it is the set of solutions of

a finite system of polynomial equations and inequalities, and semialgebraic

if it is a finite union of basic semialgebraic sets. One checks easily that a

subset of R is semialgebraic if and only if it is a finite union of points and

intervals.

In classical algebraic geometry, the key idea is to associate algebraic objects

– the ideal – with the geometric objects – varieties. In real algebraic geometry,

the geometric objects are semialgebraic sets, and the corresponding algebraic

objects are preorderings and quadratic modules.

We are interested in quadratic modules and preorderings in R[X] associated

to basic closed semialgebraic sets. Given a finite subset S = {g1, . . . , gs} of

R[X]. Recall that the basic closed semialgebraic set KS generated by S

is

KS := {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . , s}.

The quadratic module MS generated by S is

MS := {σ0 + σ1 g1 + · · · + σs gs | σi ∈
∑

R[X]2 for all i = 0, . . . , s},

and the preordering TS generated by S is

TS :=







∑

e∈{0,1}s

σeg
e | σe ∈

∑

R[X]2 for all e ∈ {0, 1}s







,

where ge := ge1

1 . . . ges

s , if e = (e1, . . . , es). The preordering TS is a quadratic
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module generated by products of the gi’s. Notice that an identity

f =
∑

ǫ∈{0,1}r

sǫ g
ǫ1
1 . . . gǫr

r

in TS is an algebraic identity certifying that f is nonnegative on KS.

Note that if MS is the quadratic module (respectively, preordering TS) of

R[X] generated by S, and I is the ideal of R[X] generated by h1, . . . , ht, then

M + I is the quadratic module (respectively, preordering) of R[X] generated

by

g1, . . . , gs, h1,−h1, . . . , ht,−ht.

The preordering R[X]2 + I of R[X] is generated (as a quadratic module or

as a preordering) by h1,−h1, . . . , ht,−ht.

Fix S as above. In 1991, Schmüdgen [17] proved a remarkable theorem

that created quite a stir in the community and gave rise to new directions in

research.

Theorem 2.4 (Schmüdgen’s Positivstellensatz). Given a finite set

S ⊆ R[X]. If KS is compact, then for any f ∈ R[X],

f > 0 on KS ⇒ f ∈ TS.

In other words, the theorem says that if f > 0 on a compact basic closed

semialgebraic set KS, there always exists an algebraic expression proving

the positivity condition. In general, Schmüdgen’s result does not hold if the

condition “f > 0 on KS” is replaced by “f ≥ 0 on KS”, as the following

example shows.

Example 2.5. [7, 2.7.3]. Take n = 1 and S = {−x2}. Then KS is the

singleton set {0}. Clearly, x ≥ 0 on KS. Assume that x ∈ TS, so x can be

written as

x = s0 + s1(−x2),
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where s0, s1 are sums of squares in R[x]. Evaluating at x = 0 yields that

s0(0) = 0. As s0 ∈ ∑

R[x]2, write s0 =
∑

g2
i , where gi ∈ R[x]. Then

s0(0) = 0 implies that
∑

gi(0)2 = 0, which means gi(0) = 0, for every i.

Hence we can factor gi as gi = hix, with hi ∈ R[x] and deg hi ≤ deg gi. This

implies that s0 =
∑

g2
i =

∑

(hix)
2 =

∑

(hi)
2x2. Thus, we have

x =
∑

(hi)
2x2 + s1(−x2).

Dividing x on both side of the equation yields

1 =
∑

(hi)
2x− s1x = (

∑

h2
i − s1)x,

which is not possible.

Hence, x is not in the preordering TS.

An obvious question to ask is: What happens when KS is not compact? It

turns out that, unlike the compact case, the answer depends on choosing the

right set of generators.

Definition 2.6. Given U ⊆ R, a basic closed semialgebraic set. Then U is

finite union of closed intervals and points. As in [6], we define the natural

set of generators S for U as follows:

(1) If U is compact, then U = [a1, b1] ∪ · · · ∪ [ak, bk], where ai, bi,∈ R with

i = 1, . . . , k, and a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk ∈ R. Let

S = {x− a1, (b1 − x)(a2 − x), . . . , (bk−1 − x)(ak − x), bk − x}.

(2) If U is noncompact, then S is defined as follows:

• If a ∈ U and (−∞, a) ∩ U = ∅, then x− a ∈ S.

• If a ∈ U and (a,∞) ∩ U = ∅, then a− x ∈ S.

• If a, b ∈ U, a < b and (a, b) ∩ U = ∅, then (x− a)(x− b) ∈ S

• Other than the above, S has no other elements.
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Clearly, in both case, KS = U .

For example, the natural set of generators of {−1} ∪ [0, 1] ∪ [2,∞) is

{x+1, (x+1)x, (x−1)(x−2)}, and the natural set of generators for [0, 1]∪[2, 3]

is {x, (1 − x)(2 − x), 3 − x}.

Definition 2.7. (i) Set T alg
S = {f ∈ R[X] | f ≥ 0 on KS}. The set T alg

S

is a preordering, called the saturation of TS. We say TS is saturated if

TS = T alg
S .

(ii) The closure of a quadratic module MS ⊆ R[X] is defined to be the

closure of MS in the unique finest locally convex topology on R[X], and MS

is said to be closed if MS = MS.

(iii) We say that MS has the strong moment property, or (SMP), if

MS = Malg
S .

In 1999, Scheiderer [15] gave a negative result for the dim KS ≥ 3 case.

Theorem 2.8 (Scheiderer, 1999). Suppose KS is not compact, and dim KS

is 3 or more. Then there always exists a polynomial that is strictly positive

on KS but not in the preordering TS, regardless of the choice of generators

S.

Then in 2002, Kuhlmann and Marshall [6] settled the case where KS ⊆ R

is noncompact.

Theorem 2.9. [6, Theorem 2.2] Suppose S ⊆ R[x], and KS is a noncompact

subset of R. Then TS is saturated if and only if S contains the natural set of

generators.

We begin by showing that if S ⊆ R[x] and KS is compact, then TS is

saturated. We will need this result for our main theorem (Theorem 4.1) in

Chapter 4. This result is probably well-known to experts, but we were unable

to find a proof in the literature. The proof is a generalization of the proof of

Theorem 2.9.
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Proposition 2.10. Suppose U ⊆ R is a compact set, and S is the natural

set of generators for U . If f(x) ∈ R[x] is nonnegative on U , then f is in the

preordering TS. In other words, TS is saturated.

Proof. We have U = [a1, b1]∪· · ·∪ [ak, bk], where ai, bi,∈ R with i = 1, . . . , k,

and a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk. Recall by Definition 2.6 that the

natural set of generators S for U is

S = {x− a1, (b1 − x)(a2 − x), . . . , (bk−1 − x)(ak − x), bk − x}

Suppose f is a polynomial in R[x] of degree d and f ≥ 0 on KS. Then f

can be written as a product of psd quadratic polynomials times a product of

linear polynomials in R[x]. Since each psd quadratic polynomial is a sum of

squares in R[x], without lost of generality, we can reduce to the case where

f is a product of linear polynomials in R[x].

We will prove the proposition by induction on d, the degree of f . If d = 0,

then f = a ∈ R with a > 0. In this case, f is clearly in TS. Hence we may

assume d ≥ 1. If f ≥ 0 on R, then f ∈ ∑R[x]2 by Theorem 2.1. Thus we

can assume that f(c) < 0 for some c ∈ R and consider the following 3 cases:

Case 1: c < a1. In this case, as f changes sign in the interval (c, a1],

there must be a least root r of f in (c, a1]. Write f = (x − r)f1, where

f1 ∈ R[x] is of degree d − 1. As a1 − r ≥ 0 and x − a1 ∈ TS, we have

x − r = (x − a1) + (a1 − r) ∈ TS. Since f ≥ 0 on KS and x − r ∈ TS,

this forces f1 ≥ 0 on KS. Then f1 ∈ TS by the induction hypothesis. Thus,

f ∈ TS.

Case 2: bi ≤ c ≤ ai+1. Since f(c) < 0 by assumption while f ≥ 0 on KS

with bi, ai+1 ∈ KS, there must be a greatest root r1 in the interval [bi, c) and

a least root r2 in the interval (c, ai+1]. Thus bi ≤ r1 < c < r2 ≤ ai+1. Write

f = (x− r1)(x− r2)f1, where f1 ∈ R[x] is of degree d− 2.

By [2, Lemma 4], since bi ≤ r1 < r2 ≤ ai+1, the product (x − r1)(x − r2)

is in the preordering generated by (x− bi)(x− ai+1). In particular, we have
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(x− r1)(x− r2) ∈ TS, as (x− bi)(x− ai+1) is in TS.

Using an argument similar to that in Case 1, it follows that f1 ∈ KS, and

and subsequently f is in TS.

Case 3: bk < c. By a similar argument in the above cases, there must

exist a greatest root r in the interval [bk, c). Write f = (r − x)f1, where

f1(x) ∈ R[x] is of degree d − 1. As r − bk ≥ 0 and bk − x ∈ TS, it follows

that (r − x) = (bk − x) + (r − bk) ∈ TS. Since f ≥ 0 on KS and x− r ∈ TS,

this implies that f1 ≥ 0 on KS. Then f1 ∈ TS by the induction hypothesis.

Thus, f ∈ TS.

Remark 2.11. Note that this is a stronger result than Schmüdgen’s Pos-

itivstellensatz (Theorem 2.4), since Schmüdgen’s Positivstellensatz tells us

that f strictly positive on a compact set KS holds in this case, but it does

not imply that TS is saturated.

2.2 Nonnegative Polynomials in R
2

Fix S = {g1, . . . , gr} ⊆ R[x, y]. Recall that TS is saturated if f ≥ 0 on KS

implies f ∈ TS. Define the following property of TS:

(*) For all f ∈ R[x, y], f > 0 on KS implies f ∈ TS.

Schmüdgen’s Theorem (Theorem 2.4)says that if KS is compact, then (*)

holds. Obviously, if TS is saturated, then (*) holds for TS. Example 2.5

shows that the converse is not true in general.

We focus on noncompact subsets of R
2. In 2000, by work of Powers and

Scheiderer [14], and independently proven by Kuhlmann and Marshall [6], if

KS ⊆ R
2 is not compact and contains a 2-dimensional cone, then (*) never

holds, regardless of the choice of generators S.
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In [16] Scheiderer showed that if S = {x−x2, y, 1−xy}, then the preordering

TS is saturated. This was the first example known where (*) holds for a

noncompact set in R
2.

y

x

y = 1/x

0 1

Figure 2.1: S = {x− x2, y, 1 − xy}

Consider the case where S = {x− x2} so that KS is a strip

[0, 1] × R = {(x, y) ∈ R
2 | x− x2 ≥ 0}.

Recently, M. Marshall [8] settled this case.

Theorem 2.12 (Marshall, 2008). Let S = {x, 1− x}. Then TS is saturated.

This settled a long-standing question, and certain weak versions of this

result can be found in [6], [12] and [13]. The proof uses symbolic computation

along with a careful analysis of the complex analytic branches of the curve

f = 0, where f ∈ R[x, y] and f ≥ 0 on KS.
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y

0 1 x

Figure 2.2: The strip [0, 1] × R

Our work concerns generalizations of Marshall’s result and an attempt to

characterize noncompact semialgebraic sets in R
2 for which there is a corre-

sponding finitely generated preordering which is saturated.
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Chapter 3

Polynomials Nonnegative on

Half-strips in the Plane

3.1 Introduction

In this section we look at some generalizations of Marshall’s theorem (The-

orem 2.12). We are interested in basic closed semialgebraic subsets of R
2

which are contained in the strip [0, 1] × R, noncompact, and are bounded

as y → −∞. We work with the strip [0, 1] × R for ease of exposition; Mar-

shall’s theorem and our results generalize immediately to the corresponding

semialgebraic subset contained in any strip [a, b] × R.

Remarks 3.1. 1. It is well-known that the preordering generated by x

and 1−x is the same as the quadratic module generated by x and 1−x.
This follows from the identity

x(1 − x) = (1 − x)2x+ x2(1 − x).

This means Marshall’s theorem could be stated with “preordering” or

“quadratic module”. However, in [13, Theorem 2] it is shown that the

quadratic module generated by {x, 1 − x, y} is not saturated and is

strictly smaller than the preordering TS. Hence our results in general

only hold for preorderings.
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2. Marshall’s result is stated for the preordering generated by {x, 1 − x}.
For ease of exposition, we replace {x, 1 − x} by {x− x2}. It makes no

difference in our results since T{x,1−x} = T{x−x2}, using the identities

x = x2 + (x− x2)

and

1 − x = (1 − x)2 + (x− x2)

3.2 Half-strips

In this section we look at noncompact basic closed semialgebraic subsets of

the form {(x, y) | 0 ≤ x ≤ 1, g(x, y) ≥ 0} which are bounded as y → −∞.

We refer to such a set as a half-strip in R
2. Suppose S = {x−x2, y− q(x)},

where q(x) ∈ R[x] with q(x) ≥ 0 on [0, 1], then KS is the half-strip

{(x, y) ∈ R
2 | 0 ≤ x ≤ 1, y ≥ q(x)}.

Our first result is that in this case the preordering TS is saturated. This

follows from Marshall’s theorem by an elementary argument.

Theorem 3.2. Suppose S = {x − x2, y − q(x)}, where q(x) ∈ R[x] with

q(x) ≥ 0 on [0, 1]. Set K = KS and T = TS. Then T is saturated.

Proof. We first claim that it is enough to prove the theorem for q(x) = 0,

i.e., for the half-strip [0, 1] × R
+.

Suppose that the preordering T{u−u2,v} ⊆ R[u, v] is saturated and that

f(x, y) ≥ 0 on K. Write f as a polynomial in y, say f(x, y) =
∑k

i=0 ai(x)y
i,

and define g in R[u, v] by g(u, v) :=
∑

ai(u)(q(u) + v)j. Then f(x, y) ≥ 0 on

K implies g(u, v) ≥ 0 on [0, 1] × R
+. Hence, as T{u−u2,v} is saturated by our

assumption, there exist sums of squares σ0, σ1, σ2, σ3 ∈ R[u, v] such that

g = σ0 + σ1(u− u2) + σ2v + σ3v(u− u2).
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y

0 1 x

Figure 3.1: Half-strip [0, 1] × R
+

Substituting u = x, v = y − q(x), we obtain a representation of f(x, y) in T .

We are reduced to proving the theorem for S = {x− x2, y}. If f(x, y) ≥ 0

on [0, 1]×R
+, then f(x, y2) ≥ 0 on [0, 1]×R. Thus, by Theorem 2.12, there

are g1, . . . , gk and h1, . . . , hl in R[x, y] such that

f(x, y2) =
k
∑

i=1

g2
i + (x− x2)

l
∑

i=1

h2
i .

Replacing y by −y, adding and dividing by 2, we obtain

f(x, y2) =
k
∑

i=1

1

2

(

gi(x, y)
2 + gi(x,−y)2

)

+(x−x2)
l
∑

j=1

1

2

(

hj(x, y)
2 + hj(x,−y)2

)

Using the standard identity

1

2

(

∑

i

aiy
i

)2

+
1

2

(

∑

i

ai(−y)i

)2

=

(

∑

j

a2jy
2j

)2

+

(

∑

j

a2j+1y
2j

)2

· y2
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we have

f(x, y2) =
k
∑

i=1

(

σi(x, y
2)2 + τi(x, y

2)2 · y2
)

+
l
∑

j=1

(

γj(x, y
2)2 + δj(x, y

2)2.y2
)

(x− x2),

where σi, τi, γj, δj ∈ R[x, y]. Replacing y2 by y yields a representation of

f(x, y) in T .

Consequently, the halfstrip result gives an infinite family of new examples

of saturated preorderings corresponding to noncompact semialgebraic sets in

R
2.

Example 3.3. The proof of the theorem gives a method for finding a repre-

sentation in the general case by reducing to the case [0, 1]×R
+. For example,

let S = {x−x2, y−x2} and f(x, y) = x4 −x3 +x2 −x2y−xy+ y2. We claim

that f(x, y) ≥ 0 on KS.

Proof. Proceeding as in the proof, we define

g(u, v) = u4 − 2u3 + u2 + u2v − uv + v2

= (u2 − u+ v)2 + v(u− u2)

Then f(x, y) = g(x, y−x2) which yields f(x, y) = (x−y)2 +(y−x2)(x−x2).

Hence f ∈ TS, which implies the claim.

Example 3.4. let S = {x− x2, y + x3 − x2} and

f(x, y) = −x5−2x4+4x3−2x3y+x3y2−x2+x2y−2x2y2+xy+xy2+y+2y2+y3.

We claim that f(x, y) ≥ 0 on KS.
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y

0 1 x

y = x
2

Figure 3.2: Half-strip cut by parabola y = x2

Proof. As in the proof, we define

g(u, v) := f(u, q(u) + v)

= −u8 + 3u7 + u6 + u6v − 7u5 − 3u4v + 4u3 − 4u3v − 2u3v2 + 5u2v

+ u2v2 + uv + uv2 + v + 2v2 + v3

= (u3 − u2 − 2u− v)2u(1 − u) + (u3 − u2 − v − 1)2v + u(1 − u)v

Substituting back, we obtain

f(x, y) = (2x+ y)2(x− x2) + (y + 1)2(y + x3 − x2) + (y + x3 − x2)(x− x2)

Hence, f ∈ TS.

Combining Theorem 3.2 with a substitution technique from work of Schei-

derer [16], we can obtain more examples of half-strips for which the corre-

sponding preordering is saturated.

Proposition 3.5. Let S = {x− x2, xy − 1}, then we claim TS is saturated.
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y

0 1 x

y = 1/x

Figure 3.3: Half-strip cut by xy = 1

Proof. Suppose f(x, y) ≥ 0 on KS. Pick an integer n ≥ 0 large enough so

that x2nf ∈ R[x, xy], and hence f
(

x, y

x

)

∈ R[x, y]. Define g in R[u, v] by

g(u, v) := u2nf
(

u, v
u

)

so that g(x, xy) = x2nf(x, y) . As f(x, y) ≥ 0 on KS,

it implies that g(u, v) ≥ 0 on [0, 1]× [1,∞). Then by Theorem 3.2 there exist

sums of squares σ0, σ1, σ2, σ3 ∈ R[u, v] such that

g(u, v) = σ0 + σ1(u− u2) + σ2(v − 1) + σ3(u− u2)(v − 1).

Then x2nf(x, y) =

σ0(x, xy) + σ1(x, xy)(x− x2) + σ2(x, xy)(xy− 1) + σ3(x, xy)(x− x2)(xy− 1).

(3.1)

Define sm(x, y) :=
σm(x, xy)

x2n
, for m = 0, . . . , 3. We want to show that the

sm’s are in
∑

R[x, y]2. If n = 0, we are done. If n ≥ 1, then x2n doesn’t

divide x, 1 − x, or xy − 1. Since x2n divide the RHS of (3.1), it follows that

x2n must divide each of the σm. Thus sm ∈ R[x, y], and since each σm is a
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sos in R[x, y], so is each sm. Then f can be written as

f(x, y) = s0(x, y) + s1(x, y)(xy − 1) + [s2(x, y) + s3(x, y)(xy − 1)]x(1 − x)

Hence f ∈ TS.

Here are some more examples to show how Proposition 3.5 works:

Example 3.6. Set S = {x− x2, xy − 1}, and let

f = −x4 + x3 − 3x3y + x2 + 3x2y − x2y2 − x+ xy2,

then f ≥ 0 on KS. We write

f
(

u,
v

u

)

= −u4 + u3 + u2 − 3u2v − u+ 3uv − v2 +
v2

u

Define g(u, v) ∈ R[u, v] by g(u, v) := u2f
(

u, v
u

)

. In particular,

g(u, v) = −u6 + u5 + u4 − 3u4v − u3 + 3u3v − u2v2 + uv2

= (u2 + v)2(u− u2) + u2(v − 1)(u− u2)
(3.2)

Clearly, g(u, v) ∈ TS′ where S ′ = {u − u2, v − 1}. Substituting u = x and

v = xy back in (3.2), we get

x2f(x, y) = (x2 + xy)2(x− x2) + x2(xy − 1)(x− x2)

and hence,

f(x, y) = (x+ y)2(x− x2) + (xy − 1)(x− x2),

which implies that f ∈ TS.

Example 3.7. Set S = {x− x2, xy − 1}.
Let f(x, y) = x9y11 −x8 −x8y10 +x7 +2x7y6 −2x6y5 +x5y−2x5y2 +2x5y9 −
x4 +2x4y2−2x4y8−x3y+2x3y4 +x2 +x2y−2x2y3−x2y4 +x+xy4 +xy7−y6.
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Then f ≥ 0 on KS and f
(

u, v
u

)

=

v11

u2
− u8 +

v10

u2
+ u7 + 2uv6 − 2uv5 + u4v − 2u3v2 + 2

v9

u4
− u4

+ u2v2 − 2
v8

u4
− u2v + 2

v4

u
+ u2 + uv − 2

v3

u
− v4

u2
+ u+

v4

u3
+
v7

u6
− v6

u6

=

(

u3 +
v2

u2

)2

(u− u2) +

(

u2 +
v3

u3
+
v5

u

)2

(v − 1) + (v − 1)(u− u2)

=
1

u4
(u5 + v2)2(u− u2) +

1

u6
(u5 + u2v5 + v3)2(v − 1) + (v − 1)(u− u2)

In this case, choose n = 3 and define g(u, v) ∈ R[u, v] by g(u, v) := u6f(u, v
u
).

We then obtain

u6f(u, v
u
) = g(u, v)

= u2(u5 + v2)2(u− u2) + (u5 + u2v5 + v3)2(v − 1)

+ u6(v − 1)(u− u2)

(3.3)

So g(u, v) ∈ TS′ with S ′ = {u − u2, v − 1} and by substituting u = x and

v = xy back in (3.3), we get x6f2(x, y) =

x2(x5 + x2y2)2(x− x2) + (x5 + x3y3 + x7y5)2(xy − 1) + x6(xy − 1)(x− x2).

Since x6 divides each summand on the right hand right of the equation, we

have

f(x, y) = (x3 + y2)2(x− x2) + (x2 + y3 + x4y5)2(xy − 1) + (xy − 1)(x− x2).

Thus, f ∈ TS.

3.3 Further Examples in [0, 1] × R
+

Example 3.8. Suppose S = {x, 2−x, xy−1, 2−xy}. Then the preordering

TS is saturated.
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y

0 1 2 x

y = 2/x

y = 1/x

Figure 3.4: Half-strip cut by xy = 1 and xy = 2

Recall that a quadratic module M has (SMP), if MS = Malg
S (Definition

2.7). In [11, Example 5.3], it is shown that TS satisfies the following prop-

erty that is weaker than saturation: Every finitely generated preordering

describing this set S has (SMP). We will prove the stronger result that TS is

saturated.

Proof. Suppose f(x, y) ∈ R[x, y] ≥ 0 onKS. As in Proposition 3.5, we choose

an integer n ≥ 0 large enough so that x2nf ∈ R[x, xy]. Define g in R[u, v] by

g(u, v) := u2nf(u, v
u
) so that g(x, xy) = x2nf(x, y). Since f(x, y) ≥ 0 on KS,

it follows that g(u, v) ≥ 0 on the closed rectangle KS′ = [0, 2] × [1, 2] where

S ′ = {u(2 − u), (v − 1)(2 − v)}. By [16, Theorem 3.2], TS′ is saturated, and

hence g(u, v) has a representation

g(u, v) = σ0 + σ1u(2 − u) + σ2(v − 1)(2 − v) + σ3u(2 − u)(v − 1)(2 − v),
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where σi are sos in R[u, v], i = 0, . . . , 3.

Since g(x, xy) = x2nf(x, y), we have

x2nf(x, y) = τ0 + τ1x(2−x)+ τ2(xy−1)(2−xy)+ τ3x(2−x)(xy−1)(2−xy),

where τi = σi(x, xy) are the sos in R[x, y], i = 0, . . . , 3.

Define αi(x, y) :=
τi(x, y)

x2n
, with i = 0, . . . , 3. We want to show that αi’s

are sos in R[x, y]. If n = 0, we are done. If n ≥ 1, then x2n doesn’t divide

x, 2 − x, xy − 1 or 2 − xy. Thus, x2n must divide each of the τi, i = 0, . . . , 3.

It follows that αi ∈ R[x, y], and since each τi is a sos in R[x, y], so is each αi.

Then f can be written as f(x, y) =

α0 + α1x(2 − x) + α2(xy − 1)(2 − xy) + α3x(2 − x)(xy − 1)(2 − xy)

Hence f ∈ TS.

Remark 3.9. Suppose S ⊆ R[x], and f,−f ∈ S, for some f ∈ R[x]. Then

the ideal R[X]f ⊆ TS

Proof. Using the identity

a =

(

a+ 1

2

)2

−
(

a− 1

2

)2

,

we have
∑

R[x] =
∑

R[x]2 −∑R[x]2. Subsequently, we get

R[x]f =
(

∑

R[x]2 −
∑

R[x]2
)

f =
∑

R[x]2f +
∑

R[x]2(−f).

Then f,−f, and
∑

R[x]2 ∈ S implies that R[x]f ⊆ TS.

Next we give an example of S ⊆ R[x, y, z] such that KS is noncompact of

dimension 2, and TS is saturated.

Example 3.10. Suppose S = {1 − x2, z − x2, x2 − z} so that

K := KS = {(x, y, z) ∈ R
3 | −1 ≤ x ≤ 1, z = x2}.

Then TS is saturated.
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Figure 3.5: Half-strip in R
3

Proof. Given f(x, y, z) ≥ 0 on K. Write

f =
∑

gi(x, y)z
i =

∑

gi(x, y)(z
i − x2i) +

∑

gi(x, y)x
2i, (3.4)

where gi(x, y) ∈ R[x, y]. Then
∑

gi(x, y)(z
i − x2i) is in the ideal generated

by z − x2. Thus,
∑

gi(x, y)(z
i − x2i) is in TS by the above remark.

Let g(x, y) =
∑

gi(x, y)x
2i = f(x, y, x2). Since f(x, y, z) ≥ 0 on K, this

implies that g(x, y) ≥ 0 on [−1, 1]×R. By Marshall’s result [8], we obtain a

representation

g(x, y) = σ(x, y) + τ(x, y)(1 − x2),

where σ, τ are sums of squares in R[x, y]. Thus g(x, y) ∈ TS.

Since each summand of the RHS in (3.4) is in TS, it follows that f ∈ TS.

We end with a family of examples of half-strips for which no corresponding

finitely generated preordering is saturated. This is a generalization of an

example due to Netzer, see [3, Lemma 7.4].
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Proposition 3.11. Let K = {(x, y) | x − x2 ≥ 0, ym − q(x) ≥ 0, y ≥ 0},
where m is even, q(x) ∈ R[x] with deg q odd, and q(x) ≥ 0 on [0, 1]. Then

no finitely generated preordering describing K is saturated.

Proof. Suppose there exist a finite set of polynomials S = {g1, . . . , gs} such

that KS = K and the preordering TS is saturated. For c ∈ [0, 1], let Tc be the

preordering in R[x] generated by {g1(c, y), . . . , gs(c, y)}, then T saturated im-

plies that Tc is saturated. Since {g1(c, y) ≥ 0, . . . , gs(c, y) ≥ 0} = [q(c)
1

m ,∞),

by Theorem 2.1 and 2.2 in [6], y− q(c)
1

m must be among the gi(c, y) up to a

constant factor. Without lost of generality, we can assume

g1(c, y) = r(c)
(

y − q(c)
1

m

)

,

for infinitely many c ∈ [0, 1], where r(c) ∈ R>0. Let d be the degree of

g1(x, y) in y, and write g1(x, y) =
∑d

i=0 ai(x)y
i with ai(x) ∈ R[x]. Then

g1(c, y) = r(c)
(

y − q(c)
1

m

)

= a0(c) + a1(c)y + · · · + ad(c)y
d

for infinitely many c ∈ [0, 1]. Comparing coefficients on both sides of the

above equation, this implies that a0(c) = −r(c)q(c) 1

m and a1(c) = r(c) for

infinitely many c ∈ [0, 1]. Hence, a0(x)
m = a1(x)

mq(x) ∈ R[x], since a0, a1

are polynomials. But this is a contradiction, since the degree of a0(x)
m is

m· deg a0(x) while the degree of the a1(x)
mq(x) is m · deg a1(x) + deg q(x),

which implies that one is even and one is odd, respectively.

Example 3.12. Suppose S = {x− x2, y2 − x, y} so that KS is the half-strip

{(x, y) | x − x2 ≥ 0, y2 − x, y ≥ 0}. Then no finitely generated preordering

describing KS is saturated.
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1

y

0 x

y = x
2

Figure 3.6: Half-strip cut by y2 = x
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Chapter 4

Polynomials Nonnegative on

Strips in the Plane

In this section, we generalize Marshall’s result (Theorem 2.12) to the case

U × R, where U ⊆ R is compact. More precisely, we show that if S ⊆ R[x]

is the set of natural generators for U , so that in R
2, KS = U ×R, then TS is

saturated.

For the rest of this section, fix U ⊆ R compact, say U = [a1, b1]∪· · ·∪[ak, bk],

where a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk. Let K = U × R and S ⊆ R[x] be

the natural set of generators for U , i.e.,

S = {x− a1, (b1 − x)(a2 − x), . . . , (bk−1 − x)(ak − x), bk − x}.

Then in R
2, we have KS = K. Let T denote the preordering in R[x, y]

generated by S.

Our main theorem in this section is the following:

Theorem 4.1. Let U,K and T be as above, then T is saturated. In other

words, if f(x, y) ∈ R[x, y] is nonnegative on U × R, then f ∈ T .

First we show that we can reduce Theorem 4.1 to the case where the leading

coefficient of f as a polynomial in y is strictly positive on U . All steps are

generalizations of results from [8].
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4.1 Reduction to a Positive Leading Coeffi-

cient

Our first step is to reduce to the case where the leading coefficient of f as a

polynomial in y is strictly positive on U .

Fix f(x, y) ∈ R[x, y] with f ≥ 0 on U × R. If f is a polynomial in x only,

then by Proposition 2.10, f ∈ T . Hence we assume degy f ≥ 1. We first

show that degy f is even and that the leading coefficient of f as a polynomial

in y is nonnegative on U .

Lemma 4.2. Suppose f(x, y) =
∑d

j=0 aj(x)y
j, with aj(x) ∈ R[x], and f ≥ 0

on U × R. Then d is even, and ad(x) ≥ 0 on U .

Proof. Suppose u ∈ U with ad(u) < 0 and consider f(u, y) ∈ R[y]. Since the

leading coefficient of f(u, y) is negative, lim
y→∞

f(u, y) = −∞, which contra-

dicts f nonnegative on U × R. Hence, ad(x) ≥ 0 on U .

If degy f is odd, pick u ∈ U with ad(u) > 0. Then lim
y→−∞

f(u, y) = −∞,

which contradicts the assumption that f ≥ 0 on U ×R. Therefore, degy f is

even.

The following lemma, a generalization of [8, Lemma 2.1], is the key idea

needed for our reduction.

Lemma 4.3. Suppose h ∈ R[x] with h ≥ 0 on U , and h is a constant or a

product of linear factors x − r with r ∈ U . If f ∈ R[x, y] such that hf ∈ T ,

then f ∈ T .

Proof. If deg h = 0, this is trivial. Thus we assume deg h ≥ 1, and proceed

by induction on deg h. Since hf ∈ T , we have hf =

∑

e∈{0,1}k+1

se(x− a1)
e1 [(b1 − x)(a2 − x)]e2 . . . (bk − x)ek+1 ,
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where each se ∈
∑

R[x, y]2. Let x− r be a factor of h, then these are several

cases to consider:

Case 1: Suppose r ∈ (a1, b1) ∪ · · · ∪ (ak, bk) and (x− r)2 divides h. Write

h = c(x − r)2 with c ∈ R[x], deg c < deg h, and c ≥ 0 on U . We have

hf = c(x− r)2f =

∑

e∈{0,1}k+1

se(x− a1)
e1 [(b1 − x)(a2 − x)]e2 . . . (bk − x)ek+1 (4.1)

Substitute x = r into (4.1) to obtain

0 =
∑

e∈{0,1}k+1

se(r, y)(r − a1)
e1 [(b1 − r)(a2 − r)]e2 . . . (bk − r)ek+1 .

For a fixed y ∈ R, as se(r, y) ≥ 0, r − a1 > 0, (bi − r)(ai+1 − r) > 0, and

bk − r > 0, this implies that se(r, y) = 0 for all e. Since this is true for

infinitely many y, it follows that se(r, y) = 0 in R[y]. Hence x − r divides

every coefficient of se(x, y), and consequently x − r divides se(x, y). As

se(x, y) ∈ ∑

R[x, y]2 with x − r dividing se(x, y), it follows that (x − r)2

divides se(x, y). Then we can write se = te(x − r)2, with te ∈ ∑R[x, y]2,

and hf = c(x− r)2f =

∑

e∈{0,1}k+1

te(x− r)2(x− a1)
e1 [(b1 − x)(a2 − x)]e2 . . . (bk − x)ek+1 ,

By canceling (x− r)2 on both sides of the equation, we obtain

cf =
∑

e∈{0,1}k+1

te(x− a1)
e1 [(b1 − x)(a2 − x)]e2 . . . (bk − x)ek+1

Hence, cf ∈ T , and we are done by induction.

Case 2: r ∈ (a1, b1) ∪ · · · ∪ (ak, bk) and x− r divides h. Then since h ≥ 0

on U , h cannot change sign at r, and it follows that (x− r)2|h. Thus we are

done by Case 1.
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Case 3: Suppose x − a1, aj − x, or bi − x divides h for some i, j, with

j = 2, . . . , k and i = 1, . . . , k. We will give a proof for x− a1; the other cases

are similar.

If x − a1 divides h, write hf = c(x − a1)f , with c ∈ R[x], c ≥ 0 on U, and

deg c < deg h. Decompose hf as hf = c(x− a1)f =

∑

e∈{0,1}k

αe[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

βe(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

(4.2)

Substitute x = a1 into (4.4), we get

0 =
∑

e∈{0,1}k

αe(a1, y)[(b1 − a1)(a2 − a1)]
e1 . . . (bk − a1)

ek

Using an argument similar to that in Case 1, this implies that (x − a1)
2

divides αe for all e. Thus we can write αe = ᾱe(x−a1)
2, with ᾱe ∈

∑

R[x, y]2,

and substitute back into the above equation to obtain hf = c(x− a1)f =

∑

e∈{0,1}k

ᾱe(x− a1)
2[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

βe(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

By canceling x− a1 on both sides of the above equation, we obtain cf =

∑

e∈{0,1}k

ᾱe(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

βe[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

Thus cf ∈ T , and we are done by induction.
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Case 4: Suppose (x− a1)
2, (aj − x)2, or (bi − x)2 divides h for some i, j,

with j = 2, . . . , k and i = 1, . . . , k. We will give a proof for (x − a1)
2; the

other cases are similar.

If (x − a1)
2 divides h, write hf = c(x − a1)

2f , with c ∈ R[x], c ≥ 0 on U,

and deg c < deg h. Decompose hf as hf = c(x− a1)
2f =

∑

e∈{0,1}k

αe[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

βe(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

By an argument similar to that in Case 1, we conclude that (x − a1)
2

divides αe for all e. Then write αe = ᾱe(x− a1)
2, with ᾱe ∈

∑

R[x, y]2, and

substitute back into the above equation to obtain hf = c(x− a1)
2f =

∑

e∈{0,1}k

ᾱe(x− a1)
2[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

βe(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

Cancelling (x− a1) on both sides of the equation, we get c(x− a1)f =

∑

e∈{0,1}k

ᾱe(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

βe[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

(4.3)

Applying the argument of Case 2 to (4.3), it follows that (x − a1)
2|βe for

all e. Write βe = β̄e(x − a1)
2, with β̄e ∈ ∑R[x, y]2. Then plug back into

(4.3) and cancel x− a1 from both sides of the equation to get
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cf =
∑

e∈{0,1}k

ᾱe[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek+

∑

e∈{0,1}k

β̄e(x− a1)[(b1 − x)(a2 − x)]e1 . . . (bk − x)ek

Hence, cf ∈ T , and we are done by induction.

A similar proof works for any other ai, bi such that (ai−x)2|h or (bi−x)2|h.

Case 5: Suppose none of the above cases hold, then

h = (x− a1)
d1(b1 − x)d2(a2 − x)d3 . . . (ak − x)d2k−1(bk − x)d2k ,

with di ∈ {0, 1}.
(i) If d1 = 1 or d2k = 1, then a proof similar to the proof of Case 3 will

work for each of these two cases.

(ii) Suppose d2 = 1. Then as h ≥ 0 on U while b1−x < 0 on U\[a1, b1] and

x− a1, b2 − x, . . . , ak − x, bk − x are nonnegative on U\[a1, b1], d3 must be 1.

Hence, h = c(b1 − x)(a2 − x), with c ∈ R[x], deg c < deg h, and c ≥ 0 on U .

Now decompose hf as hf = c(b1 − x)(a2 − x)f =

∑

e∈{0,1}k

αe(x− a1)
e1 [(b2 − x)(a3 − x)]e2 . . . (bk − x)ek+

∑

e∈{0,1}k

βe(b1 − x)(a2 − x)(x− a1)
e1 [(b2 − x)(a3 − x)]e2 . . . (bk − x)ek ,

where αe, βe ∈
∑

R[x, y]2. Using the same argument as in Case 1, it follows

that (b1 − x) and (a2 − x) divide each αe, which implies that the product

(b1−x)(a2−x) divides each αe. As se(x, y) ∈
∑

R[x, y]2 with (b1−x)(a2−x)
dividing se(x, y), it follows that [(b1 − x)(a2 − x)]2 divides αe. Thus we can

write αe = ᾱe[(b1 − x)(a2 − x)]2, where ᾱe’s are sums of squares in R[x, y].

Then by canceling (b1−x)(a2−x) on both sides of the equation, we get cf =

∑

e∈{0,1}k

ᾱe(b1 − x)(a2 − x)(x− a1)
e1 [(b2 − x)(a3 − x)]e2 . . . (bk − x)ek+
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∑

e∈{0,1}k

βe(x− a1)
e1 [(b2 − x)(a3 − x)]e2 . . . (bk − x)ek

This shows that cf ∈ T , and we are done by induction.

A similar proof works for d2, . . . , d2k−1.

Hence, in each case, we show that f ∈ T by induction.

Proposition 4.4. It is enough to prove Theorem 4.1 for f ∈ R[x, y] such

that the leading coefficient of f as a polynomial in y is strictly positive on U .

Proof. By Lemma 4.2, if f(x, y) ≥ 0 on U × R, then f(x, y) =
∑2d

j=0 aj(x)y
j

with a2d ≥ 0 on U . Factor the leading coefficient a2d as a2d = āh, where

ā, h ∈ R[x], with ā > 0 on U , h = ± a product of linear factors of the form

(x− r) with r ∈ U , and h ≥ 0 on U .

Assume Theorem 4.1 is true if the leading coefficient a2d > 0 on U . Let

g(x, y) := (h)2d−1f
(

x,
y

h

)

∈ R[x, y].

Then g(x, y) ≥ 0 on U × R, and the leading coefficient of g is ā, which is

strictly positive on U . By assumption, it follows that g ∈ T , i.e., g can be

written as

g(x, y) =
∑

e∈{0,1}k+1

te(x− a1)
e1 [(b1 − x)(a2 − x)]e2 . . . (bk − x)ek+1 ,

where the te’s are sums of squares in R[x, y]. Then g(x, hy) = h2d−1f(x, y) =

∑

e∈{0,1}k+1

te(x, hy)(x− a1)
e1 [(b1 − x)(a2 − x)]e2 . . . (bk − x)ek+1

Since te(x, y) ∈
∑

R[x, y]2, te(x, hy) ∈
∑

R[x, y]2. Thus

h2d−1f(x, y) = g(x, hy) ∈ T.

By Lemma 4.3, this implies f ∈ T .
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4.2 Additional Results

We establish the following additional results that we will need to prove our

main theorem. We fix f =
∑2d

j=0 aj(x)y
j and assume a2d > 0 on U .

Lemma 4.5. We may assume that f has finitely many zeros on U × R.

Proof. The proof is essentially the same as the proof of [8, Lemma 2.2], and

we include it for completeness.

First we show that we can assume f is square free. Suppose f = g2h, where

g, h ∈ R[x, y]. Note that if h ∈ T , then f ∈ T as well. By [7, Proposition

1.1.2], if g 6= 0, then the set {(a, b) ∈ U × R | g(a, b) 6= 0} is dense in U × R.

Thus we get h ≥ 0 on U × R, and it suffices to show the result for h, i.e.,

assuming f is square free.

Since the leading coefficient a2d is strictly positive on U , all factors x− ai

and x− bi do not divide a2d, hence x− ai and x− bi do not divide f . Thus

f has only finitely many zeros on the boundary of the strip (ai, bi) × R.

If f has infinitely many zeros in the interior of the strip (ai, bi) × R, then

some irreducible factor p of f has infinitely many zeros in the interior. Then

by [7, Lemma 9.4.1], p has a non-singular zero in the interior, which is not

a zero of any other irreducible factor of f . Then f changes sign at this non-

singular zero while all other irreducible factors of f have constant sign in

a neighborhood of this non-singular zero. This contradicts the assumption

that f ≥ 0 on (ai, bi) × R. Subsequently, f has only finitely many zeros in

(ai, bi) × R for all i; therefore, f has finitely many zeros on U × R.

Lemma 4.6. Suppose f has only finitely many zeros in U × R. Then there

exists ǫ(x) ∈ R[x], with ǫ(x) ≥ 0 on U , such that f(x, y) ≥ ǫ(x)(1 + y2)d

holds on U × R, and for each x ∈ U , ǫ(x) = 0 if and only if there exists

y ∈ R such that f(x, y) = 0.
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Proof. By [8, Lemma 4.2] and its proof, for i = 1, . . . , k, there exists a polyno-

mial ǫi(x) ∈ R[x], with ǫi(x) ≥ 0 on [ai, bi], such that f(x, y) ≥ ǫi(x)(1+y2)d

holds on [ai, bi]× R, ǫi(x) = 0 for x ∈ [ai, bi] if and only if there exists y ∈ R

such that f(x, y) = 0, and ǫi(x) 6= 0 for x ∈ R\[ai, bi].

Dividing by the maximum of ǫi(x) on U , we may assume that each ǫi(x) ≤ 1

on U . Let ǫ(x) =
(

∏k

i=1 ǫi(x)
)2

, then ǫ(x) ≥ 0 on U , and

f(x, y) ≥ ǫ(x)(1 + y2)d

holds on U × R. For each x ∈ U , the polynomial ǫ(x) = 0 if and only if

some ǫi(x) = 0, hence ǫ(x) = 0 if and only if there exists y ∈ R such that

f(x, y) = 0.

4.3 Representations of f by Analytic Func-

tions

In [8], it is shown that if f ∈ R[x, y] such that f ≥ 0 on [0, 1] × R and

the leading coefficients of f is positive on the interval [0, 1], then for each

r ∈ [0, 1] there is a representation of f involving generators x and 1 − x

and sums of g2
i , where the gi are polynomials in y with coefficients analytic

functions of x in some neighborhood of r.

Next we want to generalize this result to attain similar representations of f

involving the generators in S, for each r ∈ U . Then we will “glue” together

these representations of f and apply the Weierstrass Approximation Theorem

to obtain a polynomial representation of f(x, y) in R[x, y]. We can use the

results from [8]; however, we need an extra step in order to handle the cases

where r is an ai or bi.

Lemma 4.7. Suppose f ∈ R[x, y] is nonnegative on U × R, and the leading

coefficient of f as a polynomial in y is strictly positive on U . Then:
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1. For each r ∈ (ai, bi), for i = 1, . . . , k, there exist g1, g2 polynomials in

y with coefficients analytic functions of x in some open neighborhood

V (r) of r, such that f = g2
1 + g2

2 on V (r) × R.

2. There exist gl, hl, with l = 1, 2, polynomials in y with coefficients an-

alytic functions of x in some open neighborhood V (a1) of a1 such that

f =
∑2

l=1 g
2
l +

∑2
l=1 h

2
l (x− a1) on V (a1) × R.

3. For i = 1, . . . , k−1, there exist gl, hl, with l = 1, 2, polynomials in y with

coefficients analytic functions of x in some open neighborhood V (bi) of

bi such that f =
∑2

l=1 g
2
l +

∑2
l=1 h

2
l (bi − x)(ai+1 − x) on V (bi) × R.

4. For i = 1, . . . , k − 1, there exist gl, hl, l = 1, 2, polynomials in y with

coefficients analytic functions of x in some open neighborhood V (ai+1)

of ai+1 such that f =
∑2

l=1 g
2
l +
∑2

l=1 h
2
l (bi−x)(ai+1−x) on V (ai+1)×R.

5. There exist gl, hl,with l = 1, 2, polynomials in y with coefficients ana-

lytic functions of x in some open neighborhood V (bk) of bk, such that

f =
∑2

l=1 g
2
l +

∑2
l=1 h

2
l (bk − x) on V (bk) × R.

Proof. (1), (2) and (5) follow from [8, Lemma 4.4], using a change of variables,

if necessary.

For (3), if x is sufficiently close to bi, by [8, Lemma 4.4], there exist

ϕl(x, y), ψl(x, y), l = 1, 2, polynomials in y with coefficients analytic func-

tions of x in some open neighborhood V (bi) of bi, such that

f =
2
∑

l=1

ϕ2
l +

2
∑

l=1

ψ2
l (bi − x).

We have

f =
2
∑

l=1

ϕ2
l +

2
∑

l=1

ψ2
l

(ai+1 − x)
(bi − x)(ai+1 − x)

=
2
∑

l=1

ϕ2
l +

2
∑

l=1

(

ψl√
ai+1 − x

)2

(bi − x)(ai+1 − x).
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As
1√

ai+1 − x
is analytic for x close to bi, by taking gl = ϕl and

hl =
ψl√

ai+1 − x
, we get the desired result.

For (4), if x is sufficiently close to ai+1, by [8, Lemma 4.4] and a change

of variable, we get f =
∑2

l=1 ϕ
2
l +

∑2
l=1 ψ

2
l (x − ai+1), where ϕl, ψl, l = 1, 2,

are polynomials in y with coefficients analytic functions of x in some open

neighborhood V (ai+1) of ai+1. As in (3), we have

f =
2
∑

l=1

ϕ2
l +

2
∑

l=1

(

ψl√
x− bi

)2

(x− bi)(x− ai+1)

and taking gl = ϕl and hl =
ψl√
x− bi

, we obtain the result.

We need the following version of the Weierstrass Approximation Theorem,

which is a generalization of [8, Proposition 4.5]

Proposition 4.8. Suppose φ, ψ : U → R are continuous functions, where

U ⊆ R is compact, φ(x) ≤ ψ(x) for all x ∈ U , and φ(x) < ψ(x) for all

but finitely many x ∈ U . If φ and ψ are analytic at each point a ∈ U

where φ(a) = ψ(a) then there exists a polynomial p(x) ∈ R[x] such that

φ(x) ≤ p(x) ≤ ψ(x) holds for all x ∈ U .

Proof. This is proven for U = [0, 1] in [8, Proposition 4.5]. The proof for U

compact is identical.

4.4 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1. For ease of exposition, denote the

natural set of generators S for U by {s1, . . . , sk+1}, i.e.,

s1 = x− a1, s2 = (b1 − x)(a2 − x), . . . , sk+1 = bk − x.
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Let f(x, y) =
2d
∑

j=0

aj(x)y
j, where d ≥ 1. By Proposition 4.4 and Lemma

4.5, we can assume that a2d(x) > 0 on U and f(x, y) has only finitely many

zeros in U × R. By Lemma 4.6, there exists ǫ(x) ∈ R[x] such that ǫ(x) ≥ 0

on U , f(x, y) ≥ ǫ(x)(1 + y2)d, and ǫ(x) = 0 if and only if there exists y ∈ U

such that f(x, y) = 0. Let f1(x, y) := f(x, y) − ǫ(x)(1 + y2)d, then f1 ≥ 0

on U × R. Replacing ǫ(x) by ǫ(x)
N
, N > 1, if necessary, we can assume f1 has

degree 2d as a polynomial in y, and the leading coefficient of f1 is positive

on U .

By Lemma 4.7, for each r ∈ U , there exists an open neighborhood V (r) of

r so that

f1 =
2
∑

j=1

g0,j,r(x, y)
2 +

2
∑

j=1

g1,j,r(x, y)
2 s1 + · · · +

2
∑

j=1

gk+1,j,r(x, y)
2 sk+1 (4.4)

on V (r) × R, where gi,j,r(x, y) are polynomials in y of degree ≤ d with coef-

ficients analytic functions of x in V (r), for i = 0, ..., k + 1 and j = 1, 2. If r

is in the interior of U , note that gi,j,r = 0 for i 6= 0. If r = a1, then gi,j,r = 0

for i 6= 1, etc.

Since U is compact, there are finitely many V (r1), . . . , V (rp) which cover

U . Since ǫ(x) has only finitely many roots on U , we can choose the open

cover so that no V (rl) contains more than one root of ǫ(x), and no root is in

more than one V (rl). By [10, Theorem 36.1], there exists a partition of unity

corresponding to the open cover of {V (rl)}, i.e., we have 1 = ν1 + ... + νp,

where ν1, . . . , νp are continuous functions on U with 0 ≤ νl ≤ 1 on U , and

supp(νl) ⊆ V (rl) for l = 1, ..., p. Note that by construction, if a root u of

ǫ(x) is in V (rl), then νl(x) = 1 for x close to u.

Define ϕi,j,l, polynomials in y with coefficients functions of x as follows: The

coefficient of yq in ϕi,j,l is
√

νl(x) times the coefficient of yq in gi,j,rl
. Since νl is

continuous on U , the coefficients of ϕi,j,l as a polynomial in y are continuous

functions of x on U , and they are 0 outside of V (rl) since νl is. Suppose ǫ(x)
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has a zero at u ∈ V (rl), then by construction of the open covering, u /∈ V (rq)

for any q 6= l, hence νl(u) 6= 0. Subsequently, the coefficients of the ϕi,j,l are

analytic whenever ǫ(x) = 0. Since degy f = 2d, degy ϕi,j,l ≤ d. Thus ϕi,j,l are

polynomials of degree ≤ d in y whose coefficients are continuous on U and

analytic at each of the roots of ǫ(x) in U . Further, f1 satisfies

f1 =

p
∑

l=1

νlf1 =

p
∑

l=1

(

2
∑

j=1

ϕ2
0,j,l +

2
∑

j=1

ϕ2
1,j,l s1 + · · · +

2
∑

j=1

ϕ2
k+1,j,l sk+1

)

(4.5)

on U × R.

We want to approximate the coefficients of the ϕi,j,l’s by polynomials, using

Proposition 4.8. Fix ϕi,j,l and a coefficient u(x). Then by construction,

u(x)+ ǫ(x)
N

= u(x)− ǫ(x)
N

for only finitely many x in U , and u(x)− ǫ(x)
N
, u(x)+ ǫ(x)

N

are analytic at each point in U where they are equal.

Define φ, ψ : U → R by φ(x) = u(x) − 2

5
ǫ(x), and ψ(x) = u(x) +

2

5
ǫ(x).

Then φ(x) ≤ ψ(x) for x ∈ U , with φ(x) < ψ(x) for all but finitely many

x ∈ U , and φ, ψ are analytic at each point x ∈ U where φ(x) = ψ(x). Hence,

by Proposition 4.8, ∃w ∈ R[x] such that

u(x) − 2

5
ǫ(x) ≤ w(x) ≤ u(x) +

2

5
ǫ(x), for each x ∈ U. (4.6)

Now we use these w(x)’s to define, for each triple i, j, l, a polynomial hi,j,l,

where degy hi,j,l = degy ϕi,j,l, and, for all q, if u(x) is the coefficient of yq in

ϕ, and w(x) is the coefficient of yq in h, then (4.6) holds. Finally, let

hl(x, y) :=
2
∑

j=1

h0,j,l(x, y)
2 +

2
∑

j=1

h1,j,l(x, y)
2 s1 + · · · +

2
∑

j=1

hk+1,j,l(x, y)
2 sk+1

Hence we have polynomials hl and δ ∈ R[x, y] such that we can write f1 as

follows:

f1 =

(

p
∑

l=1

hl(x, y)

)

+ δ(x, y),
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where δ(x, y) =
∑2d

i=0 ci(x)y
i. By the construction of polynomials hi,j,l and

(4.6), |ci(x)| ≤ 2
5
ǫ(x) on U , for all i.

The rest of the proof is identical to [8, The End Of The Proof]. We decom-

pose

f(x, y) = f1(x, y) + ǫ(x)(1 + y2)d

into f(x, y) = s1(x, y) + s2(x, y) + s3(x, y), where

s1(x, y) :=

p
∑

l=1

hl(x, y),

s2(x, y) :=
2

5
ǫ(x)(2 + y + 3y2 + y3 + 3y4 + ...+ y2d−1 + 2y2d) +

2d
∑

i=0

ci(x)y
i,

s3(x, y) := ǫ(x)[(1 + y2)d − 2

5
(2 + y + 3y2 + y3 + 3y4 + ...+ y2d−1 + 2y2d)].

We are done if we show s1, s2, s3 ∈ T . Clearly s1 ∈ T . Since |ci(x)| ≤ 2
5
ǫ(x)

on U , by Proposition 2.10 we get 2
5
ǫ(x) ± ci(x) ∈ T for i = 0, . . . , 2d. Thus,

2

5
ǫ(x) + ci(x) ∈ T, for i even.

Also, as 2
5
ǫ(x)y2m(y+1)2+ci(x)y

2m(y+1)2, 2
5
ǫ(x)y2my2−ci(x)y2my2, 2

5
ǫ(x)y2m−

ci(x)y
2m are all in T , and T is closed under addition, this implies

2

5
ǫ(x)y2m

(

(y + 1)2 + y2 + 1
)

+ ci(x)y
2m
(

(y + 1)2 − y2 − 1
)

∈ T.

Then, by simplifying, this yields
2

5
ǫ(x)y2m2(y2 + y + 1) + ci(x)y

2m2y2 =

2

5
ǫ(x)2(y2m+2 + y2m+1 + y2m) + ci(x)2y

2m+1 ∈ T

Thus,
2

5
ǫ(x)(yi+1 + yi + yi−1) + ci(x)y

i ∈ T, for i odd .

Hence s2(x, y) ∈ T . Using the identity in [8]



41

(1 + y2)d − 2
5
(2 + y + 3y2 + y3 + 3y4 + · · · + y2d−1 + 2y2d)

= 1
5
(1 + y2 + · · · + y2d−2)(1 − y)2 +

∑d−1
i=1

((

d

i

)

− 8
5

)

y2i,

it follows that s3(x, y) ∈ T . Hence, this implies that f(x, y) = s1(x, y) +

s2(x, y) + s3(x, y) ∈ T . �

Theorem 4.1 yields many more examples of finitely generated saturated

preorderings in the two-dimensional noncompact case.

For example, let K = [0, 1] ∪ [2, 3] × R and S = {x, (1 − x)(2 − x), 3 − x}
be the natural set of generators for K. If f ∈ R[x, y] such that f ≥ 0 on K,

then f ∈ TS.

y

0 1 2 3 x

Figure 4.1: Multiple Strips K = [0, 1] ∪ [2, 3] × R
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Chapter 5

Conclusion and Future Work

In this thesis, we explored representations of polynomials that are nonnega-

tive on some subsets of the plane. We gave generalizations of Marshall’s strip

theorem [8] to half-strips and multiple strips in the plane. Our work helped

generate many more examples of finitely generated saturated preordering

in the two-dimensional noncompact case. The remainder of this chapter is

devoted to explain some future projects:

1. Suppose S = {x− x2, y2 − q(x)2}, where q(x) ∈ R[x] with q(x) ≥ 0 on

[0, 1] so that KS is a “strip” {(x, y) ∈ R
2 | x− x2 ≥ 0, y2 − q2(x) ≥ 0}.

Does f ∈ R[x, y] ≥ 0 on KS imply f ∈ TS? See Figure 5.1

2. Generalize question (1) to the case of a strip “cut” by finitely many

q(x) of the given form, where q(x) ∈ R[x]. See Figure 5.2

3. Generalize question (1) to the case where the noncompact semialgebraic

set is of the form [0, 1] × U , where U is any noncompact closed subset

of R.

4. Find a general theory which would explain all the known results for

noncompact semialgebraic sets in R
2.
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y

q(x)

0 1

− q(x)

x

Figure 5.1: “strip” {(x, y) ∈ R
2 | x− x2 ≥ 0, y2 − q2(x) ≥ 0}

1

y

f(x)

g(x)

h(x)

x 0

q(x)

Figure 5.2: “strip” cut by finitely many polynomials in R[x]
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