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Abstract 
 

Indigenous gut microbes modulate neural cell state and neurodegenerative disease susceptibility 
 By Lisa Blackmer-Raynolds  

 
The human gastrointestinal tract is home to trillions of microorganisms—collectively referred to as 
the gut microbiome—that maintain a symbiotic relationship with their host. This diverse community 
of microbes grows and changes as we do, with developmental, lifestyle, and environmental factors all 
shaping microbiome community structure. Increasing evidence suggests this relationship is 
bidirectional, with the microbiome also influencing a wide range of host physiological processes, 
including various aspects of neurological health. However, the ways in which the native microbiome 
concurrently impacts diverse brain cell types remain poorly understood. Therefore, this thesis begins 
by characterizing microbiome-dependent transcriptional changes across hippocampal cell types using 
single nucleus RNA sequencing (snRNA-seq) of wild-type germ-free (GF) mice, born and raised in a 
sterile environment. Simultaneous profiling of all major cell types allowed for direct comparison of 
transcriptional changes occurring within specific cell populations, identifying cell-type-specific and 
conserved microbiome-dependent transcriptional changes. This analysis highlighted an increase in 
adaptive immune and neurodegenerative disease-associated pathways across cell types in GF mice, 
highlighting a potential link between microbial signals and disease susceptibility. Therefore, to explore 
the sufficiency of specific indigenous microbes to mediate neuroimmune outcomes, wildtype GF mice 
were mono-colonized with select taxa associated with human neurological disease. RNA sequencing 
of brain myeloid cells from mice mono-colonized with Escherichia coli, Clostridium celatum, Bacteroides 
thetaiotaomicron, and Lactobacillus johnsonii each displayed their own unique phenotypes, highlighting 
species-specific effects of the microbiome on neuroinflammatory tone. One organism, E. coli, induced 
a unique adaptive immune and neurodegenerative disease-associated state, suggesting an increased 
disease susceptibility. SnRNA-seq of the hippocampus of E. coli mono-colonized mice demonstrated 
time and cell-type-dependent effects of E. coli on the brain, with changes in adaptive immune and 
neurodegenerative disease pathways occurring across cell types and time points. Further highlighting 
the importance of these transcriptional changes for disease outcomes, exposure of the 5xFAD beta-
amyloidosis mouse model to E. coli resulted in exacerbated cognitive decline and amyloid pathology, 
demonstrating that this bacterium is sufficient to worsen AD-relevant outcomes. Together, these 
results emphasize the wide-reaching, species-specific, microbiome-dependent consequences on 
neurological functions, highlighting the capacity of specific microbes to modulate brain health and 
disease susceptibility. 
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1.1 Abstract 

The human gastrointestinal tract is home to trillions of microorganisms—collectively referred to 

as the gut microbiome—that maintain a symbiotic relationship with their host. This diverse 

community of microbes grows and changes as we do, with developmental, lifestyle, and 

environmental factors all shaping microbiome community structure. Increasing evidence suggests 

this relationship is bidirectional, with the microbiome also influencing host physiological processes. 

For example, changes in the gut microbiome have been shown to alter neurodevelopment and have 

lifelong effects on the brain and behavior. Age-related changes in gut microbiome composition have 

also been linked to inflammatory changes in the brain, perhaps increasing susceptibility to 

neurological disease. Indeed, associations between gut dysbiosis and many age-related neurological 

diseases—including Parkinson’s disease, Alzheimer's disease, multiple sclerosis, and amyotrophic 

lateral sclerosis—have been reported. Further, microbiome manipulation in animal models of 

disease highlights a potential role for the gut microbiome in disease development and progression. 

Although much remains unknown, these associations open up an exciting new world of therapeutic 

targets, potentially allowing for improved quality of life for a wide range of patient populations.  

1.2 Introduction 

Our bodies live in intimate association with a complex community of microbes: the microbiome. 

This consortium of microorganisms (inclusive of bacteria, archaea, fungi, and viruses) exists in a 

dynamic relationship with our bodies, and each other, as we age. Every environmentally-exposed 

surface—including our skin, oral cavity, and gastrointestinal (GI) tract—harbors a uniquely 

structured microbial community. These organisms have a distinct capacity to successfully inhabit 

each of these stringent niches, drawing on discrete carbon and energy sources, and resisting 

environmental and host-derived pressures (e.g. the immune response). In return, these microbial 
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symbionts provide critical metabolic and nutritional inputs, drive the development of our immune 

system, and perform a myriad of physiological functions throughout life.  

While every exposed surface of our body is colonized by microbes, the microbiome of the GI 

tract is the largest and most complex. It is predicted that an equal number of bacteria per human cell 

exists within the gut microbiome(Sender, Fuchs et al. 2016). More impressively, current observations 

suggest an astounding ~3,500 unique species inhabit the human gut worldwide(Leviatan, Shoer et al. 

2022), with each individual harboring ~100-500 unique species that are estimated to encode 100-fold 

more genes than the human genome(Qin, Li et al. 2010, Scepanovic, Hodel et al. 2019, Leviatan, 

Shoer et al. 2022). Within the GI tract, unique communities of microbes inhabit distinct niches. 

Biochemical, nutritional, and immunological gradients found throughout the gut create distinct 

environmental pressures that select for specific bacterial communities. For instance, the most 

proximal portion of the duodenum is environmentally characterized by an abundance of proteases, 

lipases, and bile salts, which are all necessary for appropriate digestion and absorption. The activity 

of these, in conjunction with acidic secretions from the gastric system, creates an environment 

where only a subset of microbes—typically fast-growing-facultative anaerobes—can fruitfully 

survive(Donaldson, Lee et al. 2016). More distally in the small intestine, these selective pressures 

decrease, and the overall bacterial load and species diversity increases. In the colon where water 

absorption occurs, the anaerobic environment creates prime conditions for the fermentation and 

production of methane, hydrogen, and carbon dioxide and selects for fermentative polysaccharide-

degrading anaerobes, such as Bacteroidaceae and Clostridia(Donaldson, Lee et al. 2016). 

Microenvironments also exist within each region of the small intestine and colon. The luminal 

environment—in the center of the GI tract—is highly anaerobic, only supporting the growth of 

anaerobic microbes. In contrast, the mucosal layer that creates a barrier between the gut lumen and 

epithelial tissue contains some residual oxygen content and facilitates the growth of oxygen-tolerant 
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organisms such as Proteobacteria and Acinobacteria(Albenberg, Esipova et al. 2014). Organisms that 

reside within this mucosa also have access to host-derived mucin glycans, a rich source of 

carbohydrates and protein. Bacteria such as Akkermansia muciniphila have been shown to break down 

mucin and are found in high abundance within the mucosal layer(Png, Lindén et al. 2010, Berry, 

Stecher et al. 2013). As epithelial cells slough away from the surface during cell turnover and luminal 

contents are mixed by peristalsis, organisms resident in each of these niches become intermingled 

into stool. Thus, while not a perfect representation of each niche separately, stool represents a 

reasonable—and technically feasible—platform to assess the many organisms found within the GI 

tract. 

1.3 The gut microbiome through development and aging 

The microbial composition of the GI tract is not static and continues to evolve throughout the 

lifespan. Each stage of development is associated with unique shifts in the microbial community, 

allowing for a bidirectional relationship between the microbiome and the developing body and brain 

(Figure 1.1).  

The placental environment is largely thought to remain microbially sterile (with a few studies 

reporting possible in-utero microbial colonization(Jimenez, Marin et al. 2008, DiGiulio 2012, 

Aagaard, Ma et al. 2014, Zheng, Xiao et al. 2015, Collado, Rautava et al. 2016)), causing the 

developing fetus to remain un-colonized until birth(Lauder, Roche et al. 2016, Perez-Munoz, Arrieta 

et al. 2017, Briana, Papaevangelou et al. 2021). Even though the fetus may not make direct contact 

with living microbes, the indigenous maternal microbiome modulates the fetal environment through 

microbial metabolites, and via immune and metabolic signals that can cross (or signal through) the 

placental barrier. As such, changes in the maternal microbiome significantly impact fetal health and 

development. The maternal microbiome makes noticeable shifts in microbial composition that 
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coincide with key stages in gestation. During early stages of pregnancy, the maternal GI microbiome 

resembles that of a typical adult. However, during the third trimester, alpha diversity (the richness 

and evenness of the types of microbes present) decreases and the microbial community shifts to 

include more Actinobacteria and Proteobacteria(Koren, Goodrich et al. 2012). When given to germ-free 

mice, this pregnancy-associated GI microbiome induces metabolic changes that have the potential to 

shape neonatal developmental processes, including development of the nervous system(Koren, 

Goodrich et al. 2012).  

The newborn’s first exposure to external microbes varies considerably, depending on the mode 

of delivery. Infants born by vaginal delivery tend to have an initial microbiome composition that 

more closely resembles the maternal vaginal canal (enriched with Lactobacillus, Prevotella, and Sneathia 

spp.), whereas the microbiome of infants born by cesarian section has an increase in bacteria found 

on skin (such as Staphylococcus, Corynebacterium, and Propionibacterium spp.)(Dominguez-Bello, Costello 

et al. 2010). Although the differences between infants born by vaginal and cesarian section diminish 

with time(Chu, Ma et al. 2017, Hill, Lynch et al. 2017), these alterations in microbiome composition 

fall during a key critical window for neurological and immune development, with potential lifelong 

impacts. Unlike later stages of life when each environmental niche/body system has its own unique 

microbial community, the newborn microbiome begins relatively uniform across the entire body, 

with similar microbial composition on each body surface(Dominguez-Bello, Costello et al. 2010, 

Chu, Ma et al. 2017).  

The infant microbiome is subsequently intimately shaped by early life diet, including the 

prebiotic and probiotic elements of breastmilk. Human milk oligosaccharides (HMOs)—the third 

most abundant component of breastmilk—promote the growth of beneficial microbes, including 

Bifidobacterium spp., which are uniquely adapted to ferment these indigestible complex glycans(Ward, 

Ninonuevo et al. 2006). HMOs also have antimicrobial activity against several harmful bacterial 
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strains, thus limiting potential infant infections(Ackerman, Doster et al. 2017, Ackerman, Craft et al. 

2018, Chambers and Townsend 2020). In addition to shaping the existing infant microbial 

community, breastmilk also contains its own unique microbiome that is then passed on to the infant. 

In fact, during the first month of life, infants are estimated to receive 27.7% of their gut bacteria 

from breastmilk(Pannaraj, Li et al. 2017). It is, therefore, not surprising that the microbiome—and 

health outcomes—of breastfed infants are different from those who receive formula diets lacking in 

both these prebiotic and probiotic elements. Instead of microbiomes enriched with Bifidobacterium 

and Lactobacillus ssp., formula-fed infants display elevated levels of Clostridium difficile, Granulicatella 

adiacens, Citrobacter spp., Enterobacter cloacae, and Bilophila wadsworthia(Backhed, Roswall et al. 2015). 

Weaning and the introduction of solid food serves as an important trigger for continued 

diversification and transformation of the microbiome. Novel nutrients allow for an increase in alpha 

diversity as more types of bacterial taxa begin to thrive. This results in an overall increase in 

Firmicutes and Bacteroidetes—the dominant phyla throughout adulthood—and a subsequent decline in 

the previously dominant Proteobacteria and Actinobacteria (reviewed by (Milani, Duranti et al. 2017)). 

After around the age of three, the microbiome becomes more stable and less susceptible to 

perturbation, causing an overall decrease in beta diversity (variability in the composition of microbial 

taxa) as the microbiome composition begins to resemble that of a typical adult(Milani, Duranti et al. 

2017). Although numerous lifestyle and environmental factors (discussed in the next section) can 

still induce subtle changes in overall community structure, larger and more long-lasting disturbances 

are needed to see an effect on the adult gut microbiome.  

As individuals age, alpha diversity begins to decline, and the microbiome returns to a more 

unstable and malleable state(Claesson, Cusack et al. 2011). Aging-associated changes in hormone 

levels, metabolism, inflammation, GI physiology, and dietary/lifestyle factors disrupt the 

homeostasis of the microbiome, triggering widescale community restructuring. Unlike early life 
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changes that occur during more defined developmental windows, aging-associated microbiome 

shifts are far less predictable in timing and magnitude, depending on an individual’s overall health 

and lifestyle(O'Toole and Jeffery 2015). Consequently, there is considerably more variability between 

studies characterizing the aged microbiome. In general, however, the elderly microbiome (65 and 

older) is characterized by a shift in the ratio of Firmicutes to Bacteroidetes, with the relative amount of 

Bacteroidetes increasing with age(Mariat, Firmesse et al. 2009, Claesson, Cusack et al. 2011, O'Toole 

and Jeffery 2015). Further insight into the microbiome in healthy aging may be gained through 

studies of centenarians and the unique microbiome composition associated with extreme aging and 

longevity. Although alpha diversity generally declines with age, centenarians tend to have increased 

alpha diversity compared with other less healthy elderly people(Kong, Hua et al. 2016). In addition, 

enrichment of Akkermansia is often evident, suggesting a contribution to longevity(Biagi, Franceschi 

et al. 2016, Kong, Hua et al. 2016) or a consequence of a highly aged intestinal environment. 

1.4 Perturbations to the gut microbiome 

In addition to age-related changes in microbiome composition, many lifestyle and environmental 

factors have been shown to modulate the microbial community within the gut. As stated above, the 

adult microbiome is generally considered to be remarkably stable, undergoing relatively minimal 

changes in the absence of overt perturbation(Faith, Guruge et al. 2013). The overall resilience of the 

gut microbiome is supported at both the microbial and host level. The highly diverse and 

interconnected community structure of the microbiome resists colonization by novel microbes and 

supports the overall community resilience(Fassarella, Blaak et al. 2021). Similarly, stable selective 

pressures from the side of the host support the growth, and regrowth of specific taxa after minor 

perturbations(Fassarella, Blaak et al. 2021). As such, the microbiome remains in a state of dynamic 

equilibrium in which minor lifestyle and environmental changes cause only transient alterations to 
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the overall community structure. However, more drastic or sustained selective pressures can 

represent tipping points that trigger widespread community restructuring(Fassarella, Blaak et al. 

2021).  

Perhaps the most obvious and critical factor influencing the microbiome throughout the lifespan 

is diet. By modulating the nutrients present in the GI tract, one can support or inhibit the growth of 

specific microbes within this ecosystem, causing dramatic shifts in the microbial community. These 

changes can occur on both short- and long-term timescales, depending on a person’s dietary habits. 

For example, a sudden switch from a plant-based diet to an animal-based diet triggers substantial 

changes in microbiome composition within only one day(David, Maurice et al. 2014). Specifically, 

initiating an animal-based diet increased levels of bile-tolerant Alistipes, Biophilia, and Bacteroides while 

decreasing the levels of bacteria that metabolize plant polysaccharides, such as Roseburia, Eubacterium 

rectale, and Ruminococcus bromii(David, Maurice et al. 2014). Although brief dietary changes such as this 

do not produce lasting effects on microbiome composition,(David, Maurice et al. 2014) long-term 

dietary patterns can exert a sustained effect on the microbiome. A persistent high-fat diet, as one 

example, is associated with a unique microbiome composition in murine models that is generally 

characterized by increased Firmicutes and Proteobacteria with decreased Bacteroidetes(Hildebrandt, 

Hoffmann et al. 2009, Carmody, Gerber et al. 2015). In contrast, a Mediterranean diet (high in 

whole grains, nuts, legumes, fruits, and vegetables) is associated with an increase in Bacteroides and 

Clostridium and reductions in Proteobacteria and Bacillaceae(Marlow, Ellett et al. 2013). 

Stress is another environmental factor that is known to influence the composition of the gut 

microbiome. Physiological changes associated with stress—including altered hypothalamic-pituitary-

adrenal axis (HPA-axis) reactivity, GI motility, and immune activation—modify the intestinal 

environment and shape the microbial community. Prenatal stress can have a particularly significant 

impact on overall microbiome composition due to the increased malleability of the microbiome 
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during this developmental window (see the section on development and aging above). As such, gut 

dysbiosis associated with prenatal stress has been reported in both humans and animal 

models(Golubeva, Crampton et al. 2015, Zijlmans, Korpela et al. 2015, Gur, Shay et al. 2017). 

Infants of mothers who experienced high levels of stress throughout pregnancy display higher levels 

of bacterial taxa such as Escherichia, Serratia, and Enterobacter and lower levels of lactic acid bacteria 

(such as Lactobacillus, Lactococcus, Aerococcus) and Bifidobacteria(Zijlmans, Korpela et al. 2015). The 

effects of prenatal stress on the microbiome can be lifelong, with prenatally stressed rodents 

showing altered microbiome composition into adulthood(Golubeva, Crampton et al. 2015, Gur, 

Shay et al. 2017). Changes in the gut microbiome are similarly associated with stress levels during 

adulthood (Knowles, Nelson et al. 2008, Bailey, Dowd et al. 2011, Galley, Yu et al. 2014, Bharwani, 

Mian et al. 2016, Gautam, Kumar et al. 2018). For example, levels of lactic acid bacteria have been 

shown to decline during periods of high stress, such as during college exams(Knowles, Nelson et al. 

2008).  

A substantial number of studies have shown that exercise modifies the gut microbiome in both 

animal models and people(Mailing, Allen et al. 2019). Like many microbiome investigations, these 

studies often show quite disparate results potentially attributable to differences in experimental 

design, such as the type of exercise, dietary controls, and the subject’s body mass index(Mailing, 

Allen et al. 2019). One of the more consistent trends, however, is an increase in bacteria that 

produce butyrate(Matsumoto, Inoue et al. 2008, Evans, LePard et al. 2014, Estaki, Pither et al. 2016, 

Bressa, Bailen-Andrino et al. 2017)—a short-chain fatty acid produced by bacterial fermentation of 

dietary fiber that has known effects on GI function, immunity, and the brain(Tan, McKenzie et al. 

2014, Dalile, Van Oudenhove et al. 2019). One study, however, reported that this too may vary, 

based on body mass index, with an increase in butyrate-producing Faecalibacterium in lean participants 

but a decrease in obese participants(Allen, Mailing et al. 2018).  
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Specifically designed to target bacteria, antibiotic treatment also may cause rapid and drastic 

changes in overall microbiome composition. Although antibiotic treatment is an effective way to 

eliminate many significant bacterial pathogens, it also has the potential to have long-term impacts on 

the overall health of the microbiome. The consequences of antibiotic use vary, depending on the 

antibiotic type, dosage, and treatment duration, as well as an individual’s starting microbiome 

composition and diet. Antibiotic treatment triggers a rapid depletion of many bacterial taxa—likely 

eliminating some species from the ecosystem entirely—and provides novel niches for antibiotic-

resistant bacterial blooms(Schwartz, Langdon et al. 2020). While most microbes quickly regrow after 

the cession of antibiotic treatment and the overall microbiome composition re-stabilizes, numerous 

studies have demonstrated that an individual’s microbiome composition may never fully recover to 

its pre-antibiotic state(Jernberg, Lofmark et al. 2007, Dethlefsen, Huse et al. 2008, Jakobsson, 

Jernberg et al. 2010, Dethlefsen and Relman 2011). This is especially true in people who are 

vulnerable due to other lifestyle and environmental factors. For example, antibiotic treatment is 

particularly disruptive during times when the microbiome is already unstable, such as early in the 

lifespan and during ageing(Schwartz, Langdon et al. 2020). In addition to changing the overall 

microbial composition, antibiotics modulate the activity and metabolism of microbes that remain 

present within the GI tract, altering their effects on the human body(Ferrer, Mendez-Garcia et al. 

2017). 

Many other factors shape the composition of the gut microbiome, including genetics, 

environmental exposures, sleep, and medication use(Cryan, O'Riordan et al. 2019). Together, these 

lifestyle factors all act in concert to define the pressures that select an individual’s unique 

microbiome composition. As such, it’s not surprising that many human microbiome studies struggle 

to account for these individual differences. This leads to challenges in the interpretation of 

correlational studies and difficulty generalizing results from one study to the next. Careful and 
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informed experiential design, representative controls, and large sample sizes are essential to mitigate 

these challenges. For example, there is a growing push towards the use of age matched-household 

controls in human microbiome studies in an attempt to limit confounding effects of environmental, 

physiological, and lifestyle factors on study results. 

1.5 Contributions of the gut microbiome to brain health throughout the lifespan 

The gut microbiome is poised to have a critical influence on numerous aspects of neurological 

development throughout the lifespan. The intimate association between the microbial community 

and body systems allows for dynamic interactions across development. In addition, the microbiome 

has a significant capacity for both metabolic and immune modulation, allowing it to shape numerous 

developmental processes. Using gnotobiotic experimental models, combined with detailed profiling 

of human-derived gut microbiomes across various disorders, the field is beginning to identify some 

of these key contributions of the gut microbiome to neurological health. 

Starting during gestation, experimental studies using mouse models have linked maternal 

microbiome composition to several important outcomes within the developing fetus. For example, 

embryos derived from germ-free mice (born and raised in a sterile environment) display significantly 

increased blood-brain-barrier (BBB) permeability, corresponding with altered tight junction protein 

profiles in their brains(Braniste, Al-Asmakh et al. 2014). Germ-free murine embryos also display 

immature microglia phenotypes (Thion, Low et al. 2018) and diminished thalamocortical axon 

growth leading to deficits in sensory-motor behaviors later in life(Vuong, Pronovost et al. 2020). 

Although being germ-free is a highly artificial condition, these data highlight the presence of critical 

inputs from the microbiome to the developing brain. More coercively, it suggests that maternal 

microbiome-derived signals may predispose developing offspring to subsequent neurological 

deficits. For instance, increased BBB permeability may induce a shift in signals (e.g., small molecule 
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metabolites and cytokines) received within the brain parenchyma during this critical developmental 

window. 

Although humans are not raised germ-free, many infants are exposed to antibiotic treatment 

either during gestation or shortly after birth, which can disrupt the microbial signals they receive. 

Epidemiological studies have linked this early-life antibiotic exposure to a wide range of negative 

health outcomes(Aversa, Atkinson et al. 2021). In addition, perinatal administration of antibiotics 

has been linked to behavioral changes in rodents, including hypoactivity and alterations to anxiety-

like and social behaviors, often phenocopying germ-free animals(Vuong, Yano et al. 2017). Thus, 

not only is an intact microbiome required for many of these developmental aspects, but a complex 

and highly diverse microbiome is necessary.  

Some impacts of the microbiome on neurological function appear following perturbation post-

development and in adulthood. One prime example is the necessity of gut microbiome-derived 

signals for the development and continued maintenance of fully mature microglia. Germ-free or 

antibiotic-treated mice display microglia with an immature phenotype, less capable of mounting 

inflammatory responses and defense against pathogens(Erny, Hrabe de Angelis et al. 2015, 

Matcovitch-Natan, Winter et al. 2016, Thion, Low et al. 2018). Exposure to intact microbiomes or 

to the microbial metabolites, short-chain fatty acids (SCFAs), rescues these effects within only a few 

weeks, suggesting that the microbiome can modulate cellular activities in the brain actively in 

adulthood(Erny, Hrabe de Angelis et al. 2015). The gut microbiome also influences levels of 

important signaling molecules within the brain into adulthood. For example, germ-free and 

antibiotic-treated mice have altered brain derived neurotrophic factor (BDNF)(Bercik, Denou et al. 

2011, Neufeld, Kang et al. 2011) (a protein involved in promoting neuronal survival and plasticity) as 

well as changes in several key neurotransmitters and their receptors(Diaz Heijtz, Wang et al. 2011, 

Neufeld, Kang et al. 2011, Clarke, Grenham et al. 2013).  
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As mammals age, circulating and tissue-resident levels of pro-inflammatory cytokines begin to 

basally increase, including within the brain. This process—often termed inflammaging—increases 

one’s risk of age-related neurological disease(Zuo, Prather et al. 2019). These age-related changes in 

inflammatory state are accompanied by distinct changes in gut microbiome composition that may 

contribute to immunosenescence. In Drosophila melanogaster, for example, these microbiome changes 

predate and predict age-related intestinal barrier dysfunction, immune activation, and 

mortality(Clark, Salazar et al. 2015). Further, some experimental models have demonstrated that an 

aged microbiome is sufficient to induce some aspects of inflammaging in younger animals(Fransen, 

van Beek et al. 2017, Thevaranjan, Puchta et al. 2017). On the other hand, recolonization of older 

animals with microbiota from younger animals has the opposite effect, decreasing inflammation and 

improving longevity(Smith, Willemsen et al. 2017, Barcena, Valdes-Mas et al. 2019). Given that both 

aging and inflammation are major risk factors for neurodegenerative diseases, there is growing 

interest in how the aging microbiome may contribute to disease development.  

1.6 Associations between neurological diseases and gut microbiome composition  

With mounting evidence that the gut microbiome can shape a wide range of neurological 

functions, there is growing interest in the potential role of the gut microbiome in the 

pathophysiology of neurological diseases. As such, an increasing number of studies have attempted 

to characterize the gut microbiome composition associated with distinct patient populations to 

identify potential disease-modifying microbes. Compelling associations have begun to appear 

between the composition of the gut microbiome and a number of disease states including 

Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), and amyotrophic lateral 

sclerosis (ALS) (Figure 1.2)(Fang, Kazmi et al. 2020). These, and others, are discussed in-depth in 

later reviews in this monograph. 
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Of the neurogenerative diseases, PD has some of the strongest associations with gut dysbiosis. 

Although typically considered a motor disorder, PD is also characterized by GI symptoms that can 

predate motor deficits by decades(Kalia and Lang 2015). Evidence of alpha-synuclein pathology in 

the gut suggests that in some PD patients, PD pathology may originate in the GI tract(Braak, de Vos 

et al. 2006). Changes in the gut microbiome of PD patients were first reported in 2015, highlighting 

the association between the gut microbiome and disease outcomes(Keshavarzian, Green et al. 2015, 

Scheperjans, Aho et al. 2015). Clinical studies characterizing the gut microbiota of PD patients have 

faced replication challenges due to variability from methodological differences, small sample sizes, 

and confounding variables. However, recent meta-analyses and larger-scale studies have begun to 

identify some consistent patterns(Tan, Lim et al. 2022). Of these, the most consistent finding is an 

increase in the mucin-degrading bacteria Akkermansia(Nishiwaki, Ito et al. 2020, Romano, Savva et 

al. 2021, Toh, Chong et al. 2022). Other consistent trends include an increase in Bifidobacterium and 

Lactobacillus(Romano, Savva et al. 2021, Wallen, Demirkan et al. 2022) and reductions in 

Lachnospiraceae,(Nishiwaki, Ito et al. 2020, Romano, Savva et al. 2021) Faecalibacterium,(Nishiwaki, Ito 

et al. 2020, Romano, Savva et al. 2021, Wallen, Demirkan et al. 2022) and Roseburia(Nishiwaki, Ito et 

al. 2020, Toh, Chong et al. 2022, Wallen, Demirkan et al. 2022).  

As with PD, increasing evidence suggests that AD pathophysiology may be shaped by changes 

in the gut microbiome(Chandra, Sisodia et al. 2023). Although numerous smaller studies have been 

published attempting to characterize the AD microbiome, few metanalyses or large-scale studies 

have been performed. Consequently, the characteristics of the AD-associated microbiome—or if 

there even is a specific composition associated with AD—remains unclear. Despite these challenges, 

the few published studies identify some apparent compositional differences in those with AD. AD 

patients show a reduction in overall phylogenic diversity and a microbiome composition that is 

distinct from healthy controls(Vogt, Kerby et al. 2017, Liu, Wu et al. 2019, Ling, Zhu et al. 2020, 
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Hung, Chang et al. 2022). As in PD, several studies have demonstrated that AD patients have an 

increase in Bifidobacterium and the phylum Actinobacteria in which it resides(Zhuang, Shen et al. 2018, 

Ling, Zhu et al. 2020, Hung, Chang et al. 2022). In fact, Bifidobacterium was found to be positively 

correlated with worsened symptom severity(Ling, Zhu et al. 2020). However, another prominent 

study found a significant decrease in Bifidobacterium in AD patients that was correlated with worsened 

amyloid and tau CSF biomarkers(Vogt, Kerby et al. 2017), an example of significant discrepancies 

remaining in this field. Another trend that has appeared in several studies is an increase in 

Escherichia/Shigella and their phylum Proteobacteria(Cattaneo, Cattane et al. 2017, Liu, Wu et al. 2019). 

Levels of Escherichia/Shigella were positively correlated with serum pro-inflammatory cytokines in 

AD patients, suggesting a possible contribution of these bacteria to pathologic 

neuroinflammation(Cattaneo, Cattane et al. 2017). The family Bacteroides and phylum Bacteroidetes also 

appear different in AD, although the direction of change varies by geographical location(Vogt, 

Kerby et al. 2017, Zhuang, Shen et al. 2018, Hung, Chang et al. 2022). Finally, decreases in 

Clostridium have also been reported in several studies(Vogt, Kerby et al. 2017, Hung, Chang et al. 

2022).  

Although less researched than either PD or AD, growing evidence suggests that MS is also 

associated with an altered gut microbiome compared with healthy individuals(Correale, Hohlfeld et 

al. 2022). As in PD, MS patients have increased levels of Akkermansia(Jangi, Gandhi et al. 2016, 

Berer, Gerdes et al. 2017, Cekanaviciute, Yoo et al. 2017) and decreased levels of 

Faecalibacterium(Cantarel, Waubant et al. 2015, Miyake, Kim et al. 2015, Ling, Cheng et al. 2020). In 

fact, one study found a negative correlation between levels of Faecalibacterium and pro-inflammatory 

cytokines such as TNF(Ling, Cheng et al. 2020). MS patients have also been found to have 

decreased Parabacteroides(Chen, Chia et al. 2016, Cekanaviciute, Yoo et al. 2017), Butyricicoccus(Jangi, 

Gandhi et al. 2016, Ling, Cheng et al. 2020), and Prevotella(Miyake, Kim et al. 2015, Chen, Chia et al. 
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2016) and associated species. Of note, medication use significantly alters the microbiome 

composition of MS patients, highlighting the importance of controlling for such variables in these 

studies(Cantarel, Waubant et al. 2015, Jangi, Gandhi et al. 2016, Berer, Gerdes et al. 2017).  

Finally, a few preliminary studies (all with sample sizes under 40) have hinted at possible changes 

in gut microbiome composition associated with ALS, but no generalizable trends have been 

established(Fang, Wang et al. 2016, Blacher, Bashiardes et al. 2019, Zhai, Zheng et al. 2019, Zeng, 

Shen et al. 2020). For example, the largest and most well-controlled study (with 37 ALS patients and 

29 healthy family members) by Blacher et al. identified a distinct microbiome associated with ALS, 

with marginally significant increases in Anaerostipes hadrus, Bacteroidales bacterium, and Bifidobacterium 

pseudocatenulatum and marginally significant decreases in Clostridium leptum and Escherichia coli(Blacher, 

Bashiardes et al. 2019). In support of the positive association of Anaerostipes hadrus with ALS, 

another study similarly demonstrated an increase in this type of bacteria at the family (Lachnospiraceae) 

and genus level (Anaerostipes)(Fang, Wang et al. 2016). However, this is one of the few associations 

that has been replicated, highlighting the critical need for further observations. In fact, another study 

investigating the microbiome of ALS patients failed to identify significant differences in microbiome 

composition at all(Brenner, Hiergeist et al. 2018). 

Although correlations between neurological diseases and microbiome composition are 

compelling, care must be taken in interpreting human disease-microbiome association studies to not 

equate associations (no matter how strong) with a microbiome contribution to disease. Many 

neurological diseases likely have impacts on the intestinal environment (covered in depth in other 

reviews in this monograph) that may shape microbiome community structure. For example, 

alterations to gut motility, intestinal permeability, inflammation, and mucin production may all select 

for specific bacterial types. In addition, dietary changes due to mood or motor control may also 

result in microbiome compositional changes. Indeed, a prominent example of how dietary changes 
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may mediate microbiome associations with neurological outcomes was a demonstration that the 

majority of microbiome changes associated with autism spectrum disorder (ASD) were more highly 

associated with restrictive and repetitive dietary habits, rather than the disorder itself (Yap, Henders 

et al. 2021). However, although this study serves as an example of how a disease may give rise to an 

altered microbiome (through dietary restrictions for instance), it does not prove that disease-

associated microbiomes are merely epiphenomena. No matter the cause, changes in gut microbiome 

composition and function can modulate metabolic and immunologic profiles that are critical 

determinants of overall disease progression. Thus, to truly understand the consequences of discrete 

microbiome compositions on disease etiology, pathology, and progression, it is important to 

complement human association studies with more controlled experiments in animal models that can 

determine both the time course and consequences of dysbiosis.  

1.7 Experimental impacts of the microbiome on neurological disease 

To further understand the relationships between the gut microbiome and neurological diseases, 

researchers have turned to animal models that allow for direct manipulation of the gut microbiome. 

As such, increasing evidence suggests that disease-associated microbes can directly modulate disease 

outcomes in models of many neurological diseases including PD, AD, MS, and ALS.  

As with the human data, the most substantial evidence for the role of the gut microbiome in 

neurological disease is seen within PD mouse models. Germ-free status or antibiotic treatment of 

alpha-synuclein overexpressing mice reduces model-dependent behavioral impairments and 

pathologies, suggesting a contribution of the microbiome to PD(Sampson, Debelius et al. 2016). 

Conversely, reconstituting intact human microbiomes derived from PD patients exacerbates these 

outcomes(Sampson, Debelius et al. 2016), suggesting that specific microbes found within the PD 

patient microbiome may act pathologically. As such, several studies have attempted to identify 
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specific PD-associated bacterial species that modulate disease outcomes. For example, studies have 

shown that Proteus mirabilis(Choi, Kim et al. 2018) and Escherichia coli(Chen, Stribinskis et al. 2016, 

Sampson, Challis et al. 2020) are both sufficient to exacerbate motor impairments in PD mouse 

models. In addition, both of these bacteria exacerbate inflammation and alpha-synuclein pathology 

in the colon and brain, suggesting a direct contribution to inflammatory and pathological 

processes(Chen, Stribinskis et al. 2016, Choi, Kim et al. 2018, Sampson, Challis et al. 2020). In 

parallel with these more subtle inflammatory insults, robust intestinal inflammation triggered by a 

transient bacterial infection(Matheoud, Cannon et al. 2019) or dextran sodium sulphate(Kishimoto, 

Zhu et al. 2019) has also been shown to exacerbate disease outcomes in PD mouse models, 

including the conversion to parkinsonism(Matheoud, Cannon et al. 2019).  

Similar to PD, increasing evidence suggests that AD outcomes may be modulated by the gut 

microbiome. AD mouse models treated with high dose antibiotics(Minter, Zhang et al. 2016, Minter, 

Hinterleitner et al. 2017, Dodiya, Kuntz et al. 2019, Dodiya, Frith et al. 2020, Mezö, Dokalis et al. 

2020, Dodiya, Lutz et al. 2022, Seo, O'Donnell et al. 2023) or raised in a germ-free 

environment(Harach, Marungruang et al. 2017, Mezö, Dokalis et al. 2020, Seo, O'Donnell et al. 

2023) display significant reductions in amyloid and tau pathology, neurodegeneration, and 

neuroinflammation, highlighting the contribution of microbes to AD outcomes. Furthermore, the 

overall microbial composition that occurs in AD mouse models may play a role in the development 

of pathology. For example, colonization of antibiotic-treated or germ-free APP/PSEN1 mice with 

the microbiota of dysbiotic APP/PSEN1 mice exacerbates AD-like pathology(Harach, Marungruang 

et al. 2017, Dodiya, Kuntz et al. 2019) while colonization with healthy wild-type microbiota induces 

considerably less amyloid pathology(Harach, Marungruang et al. 2017). In addition, transfer of 

healthy wild-type microbiota to dysbiotic AD mouse models improves disease outcomes(Sun, Xu et 

al. 2019, Kim, Kim et al. 2020) whereas transfer of dysbiotic AD microbiota to wild-type mice 
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induces cognitive impairment and neuroinflammation(Kim, Jeon et al. 2021).  

As with PD and AD, a growing body of evidence supports the role of the gut microbiome in the 

etiology of MS. One of the most common mouse models of MS is induced by inoculating mice with 

antigens of myelin oligodendrocyte glycoprotein, which triggers an autoimmune response called 

experimental autoimmune encephalomyelitis (EAE), which is similar (though not identical) to the 

human condition. Mice with an intact microbiome typically develop EAE within two weeks of 

inoculation, but germ-free and antibiotic-treated mice show significant attenuation of 

neuroinflammation and EAE symptoms, and many never develop EAE at all(Yokote, Miyake et al. 

2008, Ochoa-Reparaz, Mielcarz et al. 2009, Berer, Mues et al. 2011, Lee, Menezes et al. 2011). The 

necessity of the gut microbiome for the full EAE presentation suggests that microbes contribute to 

the development of this autoimmune response. As with PD, colonization of germ-free mice with the 

microbiota from MS patients results in exacerbated EAE compared with mice colonized with fecal 

samples from healthy controls, highlighting the particularly detrimental effects of the MS-associated 

microbiome(Berer, Gerdes et al. 2017, Cekanaviciute, Yoo et al. 2017). Attempts to identify 

individual bacteria that are capable of modulating EAE outcomes have demonstrated that 

segmented filamentous bacteria (SFB) is sufficient to increase EAE susceptibility(Lee, Menezes et al. 

2011), whereas Bacteroides fragilis polysaccharide A is protective(Ochoa-Reparaz, Mielcarz et al. 2010).  

Unlike the other neurological diseases discussed herein, evidence from mouse models of ALS 

demonstrates a more protective role of the gut microbiome. For example, antibiotic treatment of the 

Sod1-Tg mouse model was found to exacerbate, rather than improve, motor symptoms in this model 

of ALS(Blacher, Bashiardes et al. 2019). Furthermore, deriving Sod1-Tg mice germ-free resulted in 

high mortality rates, suggesting that the microbiome may be protective in this model. Attempts to 

identify specific disease-relevant bacteria showed that Ruminococcus torques and Parabacteroides distasonis 

exacerbated disease outcomes and Akkermansia muciniphila was protective in this model(Blacher, 
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Bashiardes et al. 2019).  

Together, preclinical data provide strong support for the potential role of the gut 

microbiome in neurological disease. However, whether these results will translate to human patients 

remains unknown. Although animal models often recapitulate key characteristics of the human 

condition, they fall short of truly replicating all elements of the disease pathophysiology. As such, 

preclinical data must be paired with well-controlled longitudinal microbiome association studies and 

clinical trials in order to fully understand the contribution of the gut microbiome to disease.  

1.8 Microbiome-based therapeutics 

With growing evidence supporting the capacity of the gut microbiome to modify neurological 

outcomes, there is increasing enthusiasm for the development of microbiome-based therapeutics. 

The gut microbiome could potentially serve as a relatively low-risk and easily modifiable treatment 

target for a wide range of neurological conditions. To date, there are three primary microbiome-

based therapeutic options, each with their own advantages and disadvantages: 1) fecal microbiota 

transplant (FMT), 2) probiotics, and 3) prebiotics. Each of these treatment approaches has been 

utilized with varied success in both preclinical and clinical settings to treat a wide range of disease 

conditions.  

With our currently limited understanding of the causal relationships between individual bacteria 

and disease outcomes, FMT—in which patients are given a complex microbial community derived 

from the fecal sample of a healthy donor—provides a promising possibility for the immediate 

implementation of a microbiome-based treatment. FMT alleviates the need for researchers to 

identify individual disease-modifying microbes (as is necessary for probiotic approaches), providing 

an accelerated approach to treating the millions of people currently suffering from neurological 

diseases. Furthermore, results from preclinical models of neurological disease, including PD(Sun, 
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Zhu et al. 2018, Zhao, Ning et al. 2021, Zhong, Chen et al. 2021), AD(Sun, Xu et al. 2019, Kim, 

Kim et al. 2020), and MS(Li, Wei et al. 2020), suggest that FMT may be effective in modifying 

disease outcomes. In addition, several small-scale studies point to the potential long-term benefits of 

FMT in those with PD(Huang, Xu et al. 2019, Xue, Yang et al. 2020, Kuai, Yao et al. 2021, Segal, 

Zlotnik et al. 2021), AD(Hazan 2020, Park, Lee et al. 2021), MS(Borody, Leis et al. 2011, Makkawi, 

Camara-Lemarroy et al. 2018, Engen, Zaferiou et al. 2020), and ALS(Lu, Wen et al. 2022). In order 

to truly determine the safety and efficacy of FMT for the treatment of neurological conditions, large-

scale randomized, double-blind, placebo-controlled (or autologous FMT-controlled) clinical trials 

must be conducted. In response to this need, several trials are ongoing for PD (ClinicalTrials.gov # 

NCT05204641, NCT03808389, NCT04854291) and ALS (ClinicalTrials.gov # NCT03766321), but 

others are needed to explore the safety and efficacy in the context of other neurological diseases. 

FMT allows for rapid implementation in the clinic before a complete understanding of the 

effects of individual microbes on disease outcomes is established, but this less targeted approach 

also opens the possibility of inadvertently introducing pathogenic microbes that may be detrimental 

to patients or interact with comorbidities or genotypes in unexpected ways. The potential risks of 

FMT have prompted many researchers to turn to more targeted approaches in which specific 

beneficial microbes (i.e. probiotics) are given to patients. To this effect, there has been great interest 

in using probiotics—primarily consisting of various Lactobacillus and Bifidobacterium species—for the 

treatment of neurological conditions in both preclinical and clinical studies. While more targeted, 

these approaches still come with the caveat that we are still early in our understanding of how these 

organisms precisely interact with us and other microbes in the community. Further, on their own, 

probiotics are not generally able to colonize an intact adult microbiome(Han, Lu et al. 2021). 

Although this does not negate the potential efficacy of hit-and-run type influences on the microbial 

community, it does suggest consistent dosing may be necessary for long-term effects.  
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Where FMT and probiotics facilitate the growth of beneficial microbes by providing a direct 

supplement of the desired living organisms, prebiotics take an alternative approach, instead 

providing the nutrients to support the growth and beneficial functions of microbes already present 

in the gut. Prebiotic supplementation has been shown to modulate gut microbiome composition and 

impact several neurological conditions. For example, treatment of alpha-synuclein overexpressing 

mice with a prebiotic high-fiber diet remodels the gut microbiome and attenuates motor deficits, 

alpha-synuclein pathology, and neuroinflammation(Abdel-Haq, Schlachetzki et al. 2022). Other 

dietary changes, such as adherence to a Mediterranean diet, which is known to promote the growth 

of beneficial microbes, can also modulate neurological disease outcomes. For example, switching to 

a Mediterranean diet altered the gut microbiome composition of patients with mild cognitive 

impairment and improved AD biomarkers in their cerebrospinal fluid(Nagpal, Neth et al. 2019).  

Just as the gut microbiome is known to be modulated by a wide range of factors, the efficacy of 

microbiome-based treatment approaches is similarly shaped by lifestyle and genetic factors. For 

microbiome-based treatments to take hold, the intestinal environment needs to provide the correct 

conditions for beneficial microbes to thrive and outcompete potentially detrimental microbes. As 

such, a combination of FMT / probiotic treatments with additional therapeutic approaches such as 

prebiotics or lifestyle changes that facilitate the growth of beneficial microbes may hold the key to 

clinical efficacy.  

1.9 Future outlooks 

The gut microbiome has evolved to co-exist in a symbiotic relationship with the host throughout 

the lifespan. Just as host lifestyle and physiological processes shape the gut microbiome, growing 

evidence suggests that the gut microbiome shapes host health and development. As such, a better 

understanding of factors that modulate the health of the gut microbiome may hold the key to 
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understanding—and treating—many human diseases. Insight from longitudinal studies and animal 

models has begun to tease apart the intricate relationships between the gut microbiome and human 

health. With this comes growing evidence for the role of the microbiome in neurological processes, 

including neurodevelopment and neurological disease. 

Despite growing evidence for the role of the gut microbiome in shaping neurological outcomes, 

much remains unknown. Although animal models highlight a potential contribution of the gut 

microbiome to neurological disease, it is still unknown whether similar processes may be occurring 

in humans. The lack of well-powered longitudinal studies has made it difficult to determine the 

potential etiological role of the gut microbiome in human disease. Most human studies to date have 

assessed microbiome composition after disease diagnosis, making it impossible to determine when 

dysbiosis may have developed. This leads to challenges in understanding the role of the microbiome 

in disease etiology, since it is unclear whether the alterations in the microbiome trigger disease onset, 

contribute to progression, or merely co-occur with disease. Microbiome-based treatment approaches 

are also limited by a lack of mechanistic insight into the specific microbes and signaling pathways 

involved in health and disease. As such, many clinicians are understandably hesitant to implement 

microbiome-based treatments at this time. 

Although most gut microbiome research to date focuses solely on bacteria, this is merely 

scraping the surface of the entire gut microbiome. In order to truly understand the contribution of 

the gut microbiome to host health, one needs to consider the potential role of all the different 

microbial types (including bacteria, but also archaea, fungi, and viruses). For example, there is 

increasing interest in the ability of viruses and fungi to modulate physiological outcomes and overall 

microbiome health and community structure(Virgin 2014, Forbes, Bernstein et al. 2019, Santiago-

Rodriguez and Hollister 2019).  

In addition, microbial genes may act in combination with host genes to determine genetic 
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disease risk factors. For example, an association between PD risk genes and intestinal microbiome 

composition has been reported(Wallen, Stone et al. 2021). As such, there is a growing push across 

many realms of biomedical science to view the human body not as a single, isolated organism, but 

instead as a “holobiont” consisting of both host and microbial inputs. By increasing our 

understanding of how the holobiont develops and responds throughout health, aging, and disease, 

we will gain insight into how to better prevent, detect, and treat numerous neurological diseases.  

1.10 Figures 

 

Figure 1.1. The gut microbiome across the lifespan. The composition of the gut microbiome 
evolves throughout the lifespan and is shaped by many lifestyle and environmental factors. 
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Figure 1.2. The gut microbiome and neurodegenerative disease. Changes in gut microbiome 
composition are associated with several neurodegenerative diseases including Parkinson’s disease, 
Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. 
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2.1 Introduction to Alzheimer’s disease 

 Almost seven million people in the United States are currently living with Alzheimer’s disease 

(AD), a number that is projected to rise to nearly 13 million by 2050(Alzheimer’s Association 2023). 

AD is the number one cause of dementia and the fifth leading cause of death among people 65 and 

older(Alzheimer’s Association 2023). The prevalence of AD is heavily influenced by race, with Black 

Americans having 2x greater risk of developing AD and Hispanic Americans having a 1.5x greater risk 

compared to White Americans. Further, almost two-thirds of AD patients are women(Alzheimer’s 

Association 2023). This incredibly prevalent and debilitating dementia results in significant reductions 

in quality of life for both patients and caregivers and an annual economic burden of $360 billion in 

the United States alone(Alzheimer’s Association 2023).  

2.2 Alzheimer’s disease symptoms and pathology 

 AD is a neurodegenerative disorder in which patients experience progressively worsening 

cognitive impairment. Early symptoms of AD include difficulty remembering names or recent events 

as well as affective changes such as depression or anxiety(Alzheimer’s Association 2023). As the 

disease progresses, memory problems continue to worsen, and patients experience personality 

changes, confusion, and executive dysfunction(Alzheimer’s Association 2023). Finally, in late stages 

of the disease, patients develop difficulty walking, speaking, and swallowing(Alzheimer’s Association 

2023). Symptomatic illness typically lasts 8-10 years, but pathology is thought to begin developing 

decades prior to symptom onset(Masters, Bateman et al. 2015). The pathological hallmarks of AD 

consist of amyloid beta (A) plaques that accumulate extracellularly and neurofibrillary tangles 

consisting of hyperphosphorylated tau within neurons. Amyloid pathology is thought to develop 

before tauopathy, primarily in the frontal and temporal lobes, hippocampus, and limbic system(Braak 

and Braak 1997). Neurofibrillary tangles are thought to develop later, starting in the medial temporal 
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lobe and hippocampus and then progressing to adjoining regions of the neocortex(Braak and Braak 

1997). Neuroinflammation is also a prominent feature of AD pathology. Microglia—the primary 

immune cells of the brain—are though to play a dual role in AD development, first aiding in the 

clearance of A plaques and providing neurotrophic support, but as the disease progresses, chronic 

inflammation leads to neuronal damage and oxidative stress, A accumulation, synapse loss, and blood 

brain barrier breakdown(Leng and Edison 2021). 

2.3 Alzheimer’s disease etiology 

 The causes of AD remain poorly understood, but are thought to be due to a combination of 

genetic and environmental factors. A small subset of AD patients (less than 1%) have rare, heritable 

forms of AD caused by mutations in genes such as APP, PSEN1, and PSEN2 which cause increased 

accumulation of A and early onset AD(Masters, Bateman et al. 2015). The majority of AD patients, 

however, have sporadic, late onset AD (LOAD) without a clear singular cause. Although LOAD is 

not thought to be caused by a single genetic mutation, studies have identified numerous genes that 

increase the risk of developing AD. For example, the APOE4 allele is the greatest known genetic risk 

factor for AD and increases one’s risk of developing AD by three to four times(Jansen, Savage et al. 

2019). Other AD risk genes are primarily involved in cholesterol metabolism, endocytosis, and 

immune responses, highlighting the importance of these processes in AD(Karch and Goate 2015). In 

addition to genetic factors, several environmental risk factors are associated with AD. The 2020 Lancet 

Commission on dementia prevention, intervention, and care identified twelve modifiable 

environmental risk factors for dementia including lower education, hypertension, hearing impairment, 

smoking, obesity, depression, physical inactivity, diabetes, low social contact, excessive alcohol 

consumption, traumatic brain injury, and air pollution(Livingston, Huntley et al. 2020). Together, these 

factors are thought to account for around 40% of dementia cases worldwide(Livingston, Huntley et 
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al. 2020). 

2.4 Alzheimer’s disease treatments 

Despite a century of research and over 2,000 clinical trials, AD has limited treatment options 

and no cure(Liu, Xie et al. 2019). Traditional AD treatments primarily involve the use of cholinesterase 

inhibitors to increase cholinergic signaling, compensating for loss of cholinergic neurons, and 

improving cognitive function(Liu, Xie et al. 2019). While initially effective, these medications do 

nothing to slow disease progression or treat the underlying cause(Liu, Xie et al. 2019). Recently, 

however, the FDA approved two novel potential disease modifying medications that directly target 

A pathology. The first of these, aducanumab, was shown to dramatically reduce amyloid pathology 

in the brains of AD patients, but there was conflicting data as to whether this resulted in significant 

symptomatic improvement(Sevigny, Chiao et al. 2016, Knopman, Jones et al. 2021). The development 

and marketing of aducanumab has since been halted in favor of the newer, more promising anti-A 

therapeutic lecanemab(Cox 2024). Unlike aducanumab, lecanemab was shown to both reduce amyloid 

pathology and slow cognitive decline in patients with early AD(Van Dyck, Swanson et al. 2023). 

However, lecanemab is also associated with an increased risk of amyloid-related imaging abnormalities 

which could potentially be harmful to some patients(Van Dyck, Swanson et al. 2023). While promising, 

lecanemab is still not a cure, and additional research to identify medications that halt, or reverse disease 

progression is sorely needed.  

2.5 The microbiome in Alzheimer’s disease 

Although numerous smaller studies have been published attempting to characterize the AD 

microbiome, few metanalysis or large-scale studies have been performed. As such, there is a 

significantly less clear picture of what the AD-associated microbiome consists of, or if there is a 
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specific composition associated with AD. Despite these challenges, the few published studies 

identify some apparent compositional differences in those with AD. AD patients show a reduction 

in overall phylogenic diversity and a microbiome composition that is distinct from healthy 

controls(Vogt, Kerby et al. 2017, Liu, Wu et al. 2019, Ling, Zhu et al. 2020, Hung, Chang et al. 

2022). Like in PD, several studies have demonstrated that AD patients have an increase in 

Bifidobacterium and the phylum Actinobacteria in which it resides(Zhuang, Shen et al. 2018, Ling, Zhu 

et al. 2020, Hung, Chang et al. 2022). In fact, Bifidobacterium was found to be positively correlated 

with worsened symptom severity(Ling, Zhu et al. 2020). Of note however, another prominent study 

found a significant decrease in Bifidobacterium in AD patients that was correlated with worsened 

amyloid and tau CSF biomarkers(Vogt, Kerby et al. 2017), an example of significant discrepancies 

remaining in this field. Another trend that has appeared in several studies is an increase in 

Escherichia/Shigella and their phylum Proteobacteria(Cattaneo, Cattane et al. 2017, Liu, Wu et al. 2019). 

Levels of Escherichia/Shigella were found to be positively correlated with serum pro-inflammatory 

cytokines in AD patients, suggesting a possible contribution of these bacteria to pathologic 

neuroinflammation(Cattaneo, Cattane et al. 2017). The family Bacteroides and phylum Bacteroidetes also 

appear different in AD, although the direction of change varies by geographical location(Vogt, 

Kerby et al. 2017, Zhuang, Shen et al. 2018, Hung, Chang et al. 2022). Finally, decreases in 

Clostridium have also been reported in several studies(Vogt, Kerby et al. 2017, Hung, Chang et al. 

2022).  

Increasing evidence from mouse models suggests that AD outcomes may be modulated by the 

gut microbiome. AD mouse models treated with high dose antibiotics(Minter, Zhang et al. 2016, 

Minter, Hinterleitner et al. 2017, Dodiya, Kuntz et al. 2019, Dodiya, Frith et al. 2020, Mezö, Dokalis 

et al. 2020, Dodiya, Lutz et al. 2022, Seo, O'Donnell et al. 2023) or raised in a germ-free 

environment(Harach, Marungruang et al. 2017, Mezö, Dokalis et al. 2020, Seo, O'Donnell et al. 
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2023) display significant reductions in amyloid and tau pathology, neurodegeneration, and 

neuroinflammation, highlighting the contribution of microbes to AD outcomes. Furthermore, the 

overall microbial composition that occurs in AD mouse models may play a role in the development 

of pathology. For example, colonization of antibiotic-treated or germ-free APP/PSEN1 mice with 

the microbiota of dysbiotic APP/PSEN1 mice exacerbates AD-like pathology(Harach, Marungruang 

et al. 2017, Dodiya, Kuntz et al. 2019) while colonization with healthy wild-type microbiota induces 

considerably less amyloid pathology(Harach, Marungruang et al. 2017). In addition, transfer of 

healthy wild-type microbiota to dysbiotic AD mouse models improves disease outcomes(Sun, Xu et 

al. 2019, Kim, Kim et al. 2020) while transfer of dysbiotic AD microbiota to wild-type mice induces 

cognitive impairment and neuroinflammation(Kim, Jeon et al. 2021). Although fecal microbiome 

transplantation (FMT) is not commonly used in AD patients, significant and long-lasting 

improvements in cognition following FMT to treat a Clostridioides difficile infection have been 

reported in several case studies (Hazan 2020, Park, Lee et al. 2021). 

2.6 Alzheimer’s disease, neuroinflammation, and the microbiome 

 Although the ways in which the microbiome shapes AD remains largely unexplored, there is 

growing evidence to suggest that neuroinflammatory signaling plays an important role. Depletion of 

myeloid cells from the brain—primarily microglia—eliminates the protective effects of antibiotic 

treatment on AD-associated outcomes (Dodiya, Lutz et al. 2022), suggesting that this cell type may 

serve as the conduit for microbiome communication in AD. Indeed, there is growing evidence that a) 

microglia play an essential role in AD and b) the microbiome modulates microglia activation and 

response to disease (Schaible, Henschel et al. 2025). Research on microglia in AD has demonstrated 

both beneficial and detrimental roles. Initially, microglia activation is thought to be protective, clearing 

toxic debris and maintaining homeostasis(Leng and Edison 2021). However, microglia can switch to 
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a pro-inflammatory state that causes prolonged release of neurotoxic molecules, stimulates excessive 

synapse pruning, and may in fact increase Aß aggregation and spread tau pathology (Leng and Edison 

2021). Therefore, factors that predispose microglia to enter either a protective or neurotoxic state will 

significantly impact AD outcomes. Growing evidence suggests that microbiome composition may be 

one of these factors. Several studies have demonstrated that microglia from both GF and antibiotic 

treated mice display an immature phenotype and decreased innate immune response (Erny, Hrabe de 

Angelis et al. 2015, Matcovitch-Natan, Winter et al. 2016, Sampson, Debelius et al. 2016, Thion, Low 

et al. 2018, Mossad and Erny 2020, Mossad, Batut et al. 2022), highlighting how microbial signals 

continually shape microglia state. Furthermore, GF and antibiotic treated AD mouse models display 

altered microglia response to A pathology, with changes in the morphology, gene expression, and 

A uptake of plaque-associated microglia (Minter, Zhang et al. 2016, Minter, Hinterleitner et al. 2017, 

Dodiya, Kuntz et al. 2019, Mezö, Dokalis et al. 2020, Dodiya, Lutz et al. 2022).  

 In addition to changes in microglia, increasing evidence suggests that non-microglia immune 

cells may also play a critical role in AD outcomes. Systemic infection and chronic inflammation is 

linked to increased AD susceptibility and worsened outcomes (Xie, Van Hoecke et al. 2022). The 

peripheral immune system is dependent on the gut microbiome, with GF mice having increased  

susceptibility to infectious disease (Round and Mazmanian 2009). These impacts are particularly 

significant within the adaptive immune system, that is said to be trained to properly respond to 

immune stimuli by the microbiome. Indeed, in the absence of indigenous microbes, GF mice have 

smaller, poorly developed lymphoid organs, limited numbers of lymphocytes, impaired lymphocyte 

maturation, and a significant reduction in IgA antibody production (Round and Mazmanian 2009, 

Gensollen, Iyer et al. 2016). Highlighting the species specific consequences of bacteria on the 

peripheral immune system, Geva-Zatorsky et al., have shown that specific bacteria have very distinct, 

effects on the peripheral immune system, even into adulthood (Geva-Zatorsky, Sefik et al. 2017). 
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 While the role of the adaptive immune system in AD didn’t begin to be fully recognized until 

recently, increasing evidence suggests that the adaptive immune system plays an important role in 

modulating AD outcomes (Chen and Holtzman 2022). Increased circulating levels of CD8+ T effector 

memory CD45RA+ (TEMRA) cells were found in AD patient blood samples and were negatively 

associated with cognition (Gate, Saligrama et al. 2020). CD8+ T cells were also found to be elevated in 

the cerebrospinal fluid (Gate, Saligrama et al. 2020) and brains of AD patients (Costa 2024, Yamakawa 

and Rexach 2024). In both amyloid and tau-based AD mouse models, increased T cell infiltration into 

the brain is associated with worsened AD outcomes (Laurent, Dorothée et al. 2016, Chen, Firulyova 

et al. 2023, Kedia, Ji et al. 2024, Panwar, Rentsendorj et al. 2024, Wang, Campbell et al. 2024, Zeng, 

Liao et al. 2024). T cell infiltration is thought to be triggered by myeloid cells in the brain, and myeloid 

cell depletion has been shown to reduce T cell infiltration, neurodegeneration, and tau pathology in 

AD mice (Chen, Firulyova et al. 2023). The activation and recruitment of T cells is driven by antigens 

presented on MHC class I and II proteins, which classically present to CD8+ and CD4+ T cells 

respectively (Neefjes, Jongsma et al. 2011). In the context of neurodegeneration however, increased 

MHCII antigen presentation by microglia or border associated macrophages (a brain resident 

macrophage population that resides along the borders of the central nervous system (CNS), serving 

as the initial point of communication between the central and peripheral immune system) is associated 

with both increased CD4+ and CD8+ T cell infiltration and exacerbated disease outcomes (Williams, 

Schonhoff et al. 2021, Chen, Firulyova et al. 2023, Schonhoff, Figge et al. 2023). Although the 

consequences of the microbiome for adaptive immune responses within the brain remain poorly 

understood, it is likely that the effects of the microbiome on both peripheral adaptive immune 

processes and myeloid cell activation state would translate to adaptive immune changes within the 

CNS as well. 

2.7 Dissertation aims 
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Increasing evidence highlights capacity of the gut microbiome to shape neurological function in 

both health and disease, however, how the microbiome simultaneously shapes the transcriptional 

landscape across different brain-resident cell populations remains poorly understood. Furthermore, 

despite the various associations of specific bacterial taxa with neurological diseases, few studies have 

addressed physiological contributions of individual microbial species to relevant neuroimmune and 

neurodegeneration related outcomes. The present dissertation aims to address these gaps through 

three specific aims: 1) I performed the first single-cell characterization of microbiome-dependent 

transcriptional state across all major cell types within the mouse brain, helping to identify both the 

conserved and cell-type specific transcriptional changes modulated by microbiome-derived signals; 

2) I characterized the neuroimmune modulatory capacity of four representative gut-resident bacteria, 

identifying bacteria specific neuroimmune responses; 3) As proof of concept, I performed an in 

depth characterization of the transcriptional landscape of the brain after Escherichia coli colonization 

and demonstrated that E. coli is sufficient to modify disease outcomes in a mouse model of AD. 

Together these results highlight the widespread impact of native microbiome-dependent signaling 

on the brain, as well as the specific consequences of individual gut microbes for neuroimmune and 

neurological function, emphasizing the importance of the native microbiome in shaping 

transcriptional tone and disease susceptibility. 
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3.1. Abstract 

The native microbiome influences a plethora of host processes, including neurological 

function. However, its impacts on diverse brain cell types remains poorly understood. Here, we 

performed single nucleus RNA sequencing on hippocampi from wildtype, germ-free mice and reveal 

the microbiome-dependent transcriptional landscape across all major neural cell types. We found 

conserved impacts on key adaptive immune and neurodegenerative transcriptional pathways, 

underscoring the microbiome’s contributions to disease-relevant processes. Mono-colonization with 

select indigenous microbes identified species-specific effects on the transcriptional state of brain 

myeloid cells. Colonization by Escherichia coli induced a distinct adaptive immune and 

neurogenerative disease-associated cell state, suggesting increased disease susceptibility. Indeed, E. 

coli exposure in the 5xFAD mouse model resulted in exacerbated cognitive decline and amyloid 

pathology, demonstrating its sufficiency to worsen Alzheimer’s disease-relevant outcomes. Together, 

these results emphasize the broad, species-specific, microbiome-dependent consequences on 

neurological transcriptional state and highlight the capacity of specific microbes to modulate disease 

susceptibility. 

3.2. Introduction 

The human body is colonized by a diverse and complex community of microbes, the 

microbiome, that shapes a range of host physiological processes. An individual’s gastrointestinal 

(GI) tract harbors 100-500 unique bacterial species that are influenced by genetic, environmental, 

and lifestyle factors, with an estimated 3,500 unique strains of human gut-resident bacterial species 

worldwide(Qin, Li et al. 2010, Scepanovic, Hodel et al. 2019, Leviatan, Shoer et al. 2022, Blackmer-

Raynolds and Sampson 2023). Given this variability in microbiome composition between 

individuals, across the lifespan, and within the context of disease, understanding the physiological 
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consequences of specific microbial taxa on health outcomes, particularly neurological disease, is 

essential. 

Gnotobiotic mouse models raised in a sterile, germ-free (GF) environment, or treated with 

high dose antibiotics have provided significant insights into the contributions of the gut microbiome 

to host physiology. For instance, in the absence of indigenous microbes, GF mice have smaller, 

poorly developed lymphoid organs; limited lymphocyte maturation; and increased susceptibility to 

infectious disease(Round and Mazmanian 2009, Gensollen, Iyer et al. 2016). In the brain, GF or 

antibiotic-treated mice harbor immature microglia that are less capable of mounting inflammatory 

responses and defending against pathogens(Erny, Hrabe de Angelis et al. 2015, Matcovitch-Natan, 

Winter et al. 2016, Thion, Low et al. 2018). In addition to—or perhaps even as a result of—

microbiome contributions to neuroinflammatory tone, the microbiome also has broad impacts on 

neurological function in the context of both health and disease. A native microbiome is necessary 

for proper neurogenesis, myelination, and neurotransmitter production; with impacts on anxiety-like, 

social, and cognitive behaviors in mice(Cryan, O'Riordan et al. 2019). While some microbiome-

dependent effects on immune and neurological functions are developmental and irreversible, others 

are quickly restored by microbial colonization or exposure to microbial metabolites, highlighting the 

importance of continuous microbial input for proper neurological functions into adulthood (Erny, 

Hrabe de Angelis et al. 2015, Gensollen, Iyer et al. 2016, Sharon, Sampson et al. 2016).  

Whole microbiome manipulations in mouse models of disease have significant impacts on 

both behavioral and pathological outcomes(Cryan, O'Riordan et al. 2020, Fang, Kazmi et al. 2020). 

In the absence of an intact, native microbiome, mouse models of Alzheimer’s disease (AD) show 

significant improvements in cognitive performance and reductions in both amyloid beta (Aß) and 

tau pathology(Minter, Zhang et al. 2016, Harach, Marungruang et al. 2017, Minter, Hinterleitner et 

al. 2017, Dodiya, Kuntz et al. 2019, Dodiya, Frith et al. 2020, Mezo, Dokalis et al. 2020, Dodiya, 
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Lutz et al. 2022, Seo, O'Donnell et al. 2023). Depletion of myeloid cells from the brains of 

antibiotic-treated APPPS1-21 mice eliminates the protective effect of antibiotic treatment, 

suggesting that microbiome-mediated neuroimmune signaling contributes to pathological 

outcomes(Dodiya, Lutz et al. 2022). While these studies emphasize the microbiome’s capacity to 

modulate overall brain health and function, how the microbiome shapes the transcriptional state 

across different brain-resident cell populations, remains poorly understood. Furthermore, despite the 

various associations of specific bacterial taxa with neurological diseases(Fang, Kazmi et al. 2020), 

few studies have addressed physiological contributions of individual microbial species to relevant 

neuroimmune functions. 

Here, we provide a single-cell characterization of microbiome-dependent transcriptional 

state within the mouse brain and identify both the conserved and cell-type specific transcriptional 

landscapes temporally modulated by microbiome-derived signals. In particular, the neuroimmune 

compartment was one of the most transcriptionally responsive, suggesting that these cells act to 

propagate signals from the microbiome to other cells within the CNS. These responses are specific, 

as we find that select, non-pathogenic, gut-resident species are sufficient to uniquely shape the 

transcriptional state of brain-resident myeloid cells. In particular, the species Escherichia coli induces a 

distinct, and temporally modulated transcriptional profile across not only brain-resident immune 

cells, but also across neuronal and other glial populations. Colonization with E. coli dynamically 

regulates neurodegenerative disease associated pathways across numerous neural cell types. In fact, 

oral exposure to E. coli worsens cognitive impairments and increases amyloid pathology within the 

5xFAD mouse model of AD, underscoring the pathological relevance of the microbiome-dependent 

transcriptional landscape. Together these results highlight the widespread impact of native 

microbiome-dependent signaling on the brain, as well as the specific consequences of individual gut 

microbes for neurological function, emphasizing the importance of the native microbiome in 



 39 

shaping transcriptional tone that can impact disease. 

3.3. Results 

3.3.1. A complex microbiome is necessary for the steady-state transcriptional 
landscape across many brain-resident cell types. 

 
In order to understand how select gut bacterial species impact the brain, we first sought to 

determine how the complete absence of an indigenous microbiome influenced the cellular 

transcriptional landscape. We performed single-nucleus RNA sequencing (snRNAseq) on 

hippocampal tissues derived from young adult female, germ-free (GF) or conventional (CONV) 

mice with a complete and intact microbiome. Unsupervised clustering of 23,963 total nuclei 

(representing 4 mice per treatment group) revealed seven unique clusters, roughly equally 

represented across each microbiome status (Fig. 3.1A), that were identified as the following cell 

types based on marker genes(Alzheimer’s Association): excitatory neurons (Cluster 1), inhibitory 

neurons (Cluster 2), astrocytes (Cluster 3), myelinating oligodendrocytes (Cluster 4), vasculature 

(Cluster 5), oligodendrocyte progenitor cells (OPCs; Cluster 6), and immune cells (Cluster 7) (Fig. 

3.1B; Supplementary Data S1 - available online at DOI: 10.1101/2025.02.17.638718). Differential 

gene expression analysis demonstrated microbiome dependent transcriptional responses within each 

cluster, with most differentially expressed genes (DEGs) occurring within excitatory neurons, 

myelinating oligodendrocytes, vasculature cells, and immune cells (Fig 3.1C; Supplementary Data S1 

- available online at DOI: 10.1101/2025.02.17.638718). Upon normalization by cluster size, to 

further account for the increased power in highly abundant clusters, myelinating oligodendrocytes 

and immune cells were found to have the largest microbiome-dependent transcriptional response 

(Fig 3.1D. This highlights these cell types’ unique susceptibility at the interface between the CNS 

and periphery to indigenous microbial signals. 

To evaluate the biological relevance of these microbiome-dependent DEGs, we performed 
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pathway analysis (Fig. 3.1E, F; Supplementary Fig. S3.1; Supplementary Data S1 - available online at 

DOI: 10.1101/2025.02.17.638718). We first examined biological pathways conserved in their 

microbiome-dependent responses across at least 4 cell types. While we did not observe any pathway 

decreased within 4 cell types, we did find a number of shared, microbiome-dependent features 

within those biological pathways enriched in many cell types (Fig. 3.1F). Among all cell clusters, 

mRNA processing (GO:0006397) was highly enriched in the absence of a microbiome. Across 4 to 

5 cell types, we observed a further enrichment in protein localization (GO:0010954) and membrane 

trafficking (R-MMU-199991) pathways, adaptive immune system (R-MMU-1280218), cell cycle (R-

MMU-1640170) and brain development (GO:0007420) pathways, indicating a widespread repression 

of these particular signaling pathways by the native microbiome. These observations align with prior, 

targeted studies which demonstrated microbiome-dependent impacts on brain development and 

organization(Cryan, O'Riordan et al. 2019) and neuroimmune activation(Erny, Hrabe de Angelis et 

al. 2015, Matcovitch-Natan, Winter et al. 2016, Thion, Low et al. 2018). Even within the pathways 

that were increased in less than 4 cell types, impacted pathways were conceptually related, falling 

broadly within the categories of development, cellular stress, and immune processes (Supplementary 

Fig. S3.1A). Within both excitatory and inhibitory neuron clusters, gene set enrichment analysis 

(GSEA) of KEGG pathways revealed a significant microbiome-dependent enrichment of all major 

neurodegeneration-associated KEGG pathways (Fig. 3.1E). These same cell types also displayed 

increased immune related pathways (e.g. adaptive immune system (R-MMU-1280218), neutrophil 

degranulation (R-MMU-6798695), cellular response to interlukin-4 (GO:0070670), and interferon 

signaling (R-MMU-913531), among others), emphasizing the interaction between the indigenous 

microbiome, neuroimmune activation, and neurodegenerative disease pathways in shaping the 

neuronal transcriptional landscape (Supplementary Fig. S3.1A). 
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3.3.2. Select gut microbes differentially and specifically modulate the brain-resident 
myeloid cell transcriptome. 

Immune cells within the brain are observed to be particularly susceptible to perturbations 

within the gut microbiome(Erny, Hrabe de Angelis et al. 2015, Matcovitch-Natan, Winter et al. 2016, 

Thion, Low et al. 2018) (Fig. 3.1D). The increases we found in immune related pathways across 

brain cell types, suggest that immune cells are critical for transducing microbiome-derived signaling 

to other cells within the brain. However, it is unclear whether these activities are a generalized 

response to broad bacterial organisms or if specific, indigenous microbes are sufficient to impart 

differential effects on brain-resident immune cells. Therefore, we set out to test the specificity and 

sufficiency of select, indigenous gut bacterial species to modulate the transcriptional state of brain-

resident myeloid cells (primarily microglia). Wild-type GF mice were mono-colonized with select 

bacterial type strains representing prevalent genera within the mammalian gut microbiome- 

Bacteroides thetaiotaomicron (B. theta), Clostridium celatum, Lactobacillus johnsonii, and Escherichia coli- for 2 

weeks. CD11b+ myeloid cells, largely representing microglia but also present on other leukocytes, 

were then enriched(Van Hove, Martens et al. 2019), and bulk transcriptomics was performed (Fig. 

3.2A).  

Differential gene expression analysis of CD11b+ brain myeloid cells demonstrated that all 

but one of the bacteria studied—L. johnsonii—were sufficient to modulate myeloid cell gene 

expression, with colonization by E. coli and B. theta inducing the most DEGs (Fig. 3.2B; 

Supplementary Data S2 - available online at DOI: 10.1101/2025.02.17.638718). Comparison of the 

DEGs increased and decreased after mono-colonization shows very little overlapping DEGs, 

highlighting the specificity of the transcriptional response to each of these unique bacterial species 

(Fig. 3.2C). No shared DEGs were increased by all three species and of the decreased genes, only 10 

were shared across colonization states (Fig. 3.2C). Further emphasizing the unique transcriptional 

state induced by each bacterial species, pathway analysis comparing across each bacterial 
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colonization state shows near inverse effects between the unique species (Fig. 3.2D; Supplementary 

Data S2 - available online at DOI: 10.1101/2025.02.17.638718). Where E. coli induced an increase in 

pathways involved in immune activation and adaptive immune responses, B. theta and C. celatum 

decreased many of these same pathways in male mice. Further emphasizing the unique 

transcriptional response of brain myeloid cells to E. coli, comparison of KEGG pathway enrichment 

revealed that E. coli mono-colonization triggered an inverse effect to that of B. theta or C. celatum 

amongst all shared KEGG pathways (Fig. 3.2E). To validate the transcriptional increase in genes 

involved in adaptive immune processes, specifically MHCII antigen presentation, 

immunohistochemistry was performed to evaluate MHCII levels within the brain of male mono-

colonized mice (Fig. 3.2F). MHCII+ cells were primarily found within CD206+ cells, canonically 

considered to be border associated macrophages, within the CD31+ choroid plexus of the lateral 

ventricle. In line with the transcriptional data, when compared to GF mice, E. coli mono-

colonization induced significantly more MHCII+ / CD206+ double-positive cells (Fig. 3.2F), 

supporting the increase in adaptive immune transcriptional processes within the brains of these 

animals. In addition to pathways involved in adaptive immune responses, E. coli alone induced an 

increase in KEGG pathways involved in neurodegenerative diseases—including prion disease 

(mmu05020), AD (mmu05010), and Amyotrophic lateral sclerosis (ALS, map05014)—highlighting 

the potential for E. coli colonization to modulate a disease-susceptible transcriptional state within the 

brain (Fig. 3.2G). Notably, multiplex measurement of cytokines in both intestinal tissues and serum 

demonstrated limited impacts to inflammatory cytokine levels (Supplementary Figure S3.2A, B). 

While a decrease in ileal TNF and increase in colonic CXCL1 and TNF was observed in most 

mono-colonized conditions (Supplementary Fig. S3.2A), we observed no overt effect in colon length 

or other measure of GI function (Supplementary Fig. S3.2C-E). In conjunction with no observed 

effect on circulating cytokines during colonization by any tested microbe (Supplementary Fig. 
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S3.2B), these data suggest that mono-colonization did not induce robust local or systemic 

inflammatory signaling. Similarly, no overt gliosis was observed, with limited impact on the IBA1+ 

area (Supplementary Fig. S3.2F, G), demonstrating transcriptional effects in the absence of robust 

gliosis or systemic inflammation. 

3.3.3. E. coli elicits a temporal transcriptional response across CNS-resident cells 

Given the experimental contributions of E. coli to pathologies in models of 

neurodegenerative disease(Chen, Stribinskis et al. 2016, Sampson, Challis et al. 2020, Chongtham, 

Yoo et al. 2022, Liang, Liu et al. 2023), and our observations here that this native microbe is 

sufficient to drive both adaptive immune and neurodegenerative disease-associated pathways in 

brain-resident myeloid cells, we next sought to understand how this organism dynamically shapes 

transcriptional tone across many neural cell types. We performed snRNA-seq on hippocampal 

samples from female mice mono-colonized with E. coli for either 2 or 4 weeks to capture both short- 

and longer-term transcriptional responses following microbial colonization in comparison to GF 

controls. Clustering of 30,093 total nuclei (representing 4 mice per treatment group) was performed 

in combination with previously assessed nuclei (Fig. 3.1) to create comparable cell clusters (Fig. 

3.3A, B; Supplementary Data S3 - available online at DOI: 10.1101/2025.02.17.638718). 

Interestingly, while cell numbers between each cluster appeared relatively unchanged following 2 

weeks of E. coli colonization, by 4 weeks we observed a qualitative shift in cell populations. This is 

highlighted by over an 18.5% decrease in excitatory neuron representation and a corresponding 

increased representation of inhibitory neurons, myelinating oligodendrocytes, and astrocytes (Fig. 

3.3A). 

Differential gene expression analysis showed time dependent shifts in the number of DEGs 

increased in each cell type compared to GF (Fig. 3.3C; Supplementary Data S3 - available online at 
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DOI: 10.1101/2025.02.17.638718). Where the immune cell cluster displayed the most increased 

DEGs and myelinating oligodendrocytes the most decreased DEGs at 2 weeks post-colonization, 

the number of DEGs in both of these cell types was dramatically reduced at 4 weeks. In contrast, 

the number of DEGs in the other cell clusters (excluding OPCs that remained largely unresponsive) 

was dramatically higher at 4 weeks compared to 2 weeks. While many of the DEGs that were 

significantly altered at 2 weeks in the immune cell and myelinating oligodendrocyte clusters began to 

stabilize back towards a non-colonized state at 4 weeks (Fig. 3.3D), they did not fully recover, 

highlighting long-term, yet subtle, transcriptional states that may alter susceptibility to future insults. 

In contrast, the neuron clusters—with the highest number of DEGs at 4 weeks (Fig. 3.3C)—

displayed a limited transcriptional response until 4-weeks post-colonization with E. coli (Fig. 3.3D). 

We interpret this to suggest that these cells are either slower to respond to microbiome status or 

instead, respond to those signals derived from more acutely responsive cells.  

Since we observed the immune cell cluster as having the most increased DEGs in the early 

colonization state at 2 weeks post-E. coli colonization (Fig. 3.3), and bulk RNA-seq of brain myeloid 

cells displayed a microbiome-dependent adaptive immune and neurodegenerative disease phenotype 

(Fig. 3.2), we hypothesized that this cell type may initiate the broader transcriptional responses in 

other cells throughout the brain. In order to distinguish the microbiome dependent effects on 

microglia compared to other immune cell types, we performed sub-clustering and pathway analysis 

within the immune cell cluster (Fig. 3.4; Supplementary Data S4 - available online at DOI: 

10.1101/2025.02.17.638718). Unsupervised sub-clustering identified 2 main sub-clusters: microglia 

and non-microglia immune cells (e.g. border associated macrophages, infiltrating peripheral immune 

cells) (Figs. 3.4A-C).  While similarly prevalent irrespective of colonization status, non-microglia 

immune cells were lowly abundant and showed little transcriptional responsiveness to E. coli across 

both time points (Fig. 3.4D), however, this may be due to an insufficient sample size , rather than a 
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lack of susceptibility to perturbation.  

In contrast, differential gene expression analysis identified 515 repressed and 78 induced 

genes in microglia following 2-weeks of mono-colonization (Fig. 3.4E). Pathway analysis on these 

DEGs identified similar pathways as we observed in our analysis of CD11b+ cells (Fig. 3.2) 

including an increase in pathways involved in inflammatory responses and adaptive immunity, 

whereas downregulated pathways included those characterized as cellular organization and mRNA 

processing (Fig. 3.4F). At 4-weeks post-colonization, differential gene expression analysis of 

microglia revealed 23 increased and 142 decreased DEGs (Fig. 3.4G). We observed a repression in 

genes involved mRNA metabolic processes and cellular organization, as we observe at the 2-week 

time point. However, microglia also showed a decrease in cellular stress pathways (e.g. regulation of 

double stranded break repair (GO:2000779) and stress granule assembly (GO:0034063)) at 4-weeks 

post-colonization (Fig. 3.4H). Further, GSEA of microglia at the 4-week timepoint displayed a 

significant decrease in a range of neurodegenerative disease pathways (Fig. 3.4I), contrasting with the 

E. coli triggered increase in these pathways we observed at 2-weeks (Fig. 3.2G). 

To better understand the breadth of the transcriptional response to E. coli colonization, we 

performed pathway analysis within every other cell cluster at each timepoint (Fig. 3.5A, B; 

Supplementary Data S5 - available online at DOI: 10.1101/2025.02.17.638718). At both 2- and 4-

weeks post-colonization, we observed a significant decrease in pathways involved in RHO GTPase 

signaling, adaptive immunity, and RNA metabolism across cell types. This mirrors our observations 

in mice with a complex, and intact microbiome (Fig. 3.1E), and highlights that these transcriptional 

pathways may be highly sensitive to microbial colonization. In contrast, pathways involved in 

nervous system / brain development were increased in E. coli colonized mice, while these were 

decreased in conventional mice compared to GF animals (Fig. 3.1E). Cell-specific pathways further 

highlight that colonization with E. coli induced a time-dependent response in immune, cellular stress, 
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and cellular organization/transport pathways (Supplementary Fig. S3.3).  

Since these transcriptional responses are relevant for neurological disease, we specifically 

examined neurodegenerative disease KEGG pathways by both overrepresentation pathway analysis 

and GSEA (Fig. 3.5C). We observed a modulation of neurodegeneration KEGG pathways across 

nearly every cell type following E. coli colonization, with a decrease in KEGG pathways of 

neurodegenerative diseases in both excitatory and inhibitory neurons following colonization across 

both timepoints, and in microglia by 4-weeks post-colonization (Fig. 3.5C). In addition, 

overrepresentation-based pathway analysis demonstrated an enrichment of neurodegeneration 

pathways in both astrocytes and vasculature at 4 weeks of colonization (Fig. 3.5C). Taken together, 

these results emphasize a link between E. coli colonization and transcriptional pathways that are 

involved in modulation of neurodegenerative disease risk. 

3.3.4. E. coli modulates cognitive impairment in an animal model of amyloid 
pathology 

 
We have demonstrated that E. coli is sufficient to transcriptionally modulate adaptive 

immune and neurodegenerative disease pathways across many cell types in the brain. Notably, E. coli 

and closely related organisms have been reported to be enriched within the gut microbiome of 

individuals with neurodegenerative disease(Cattaneo, Cattane et al. 2017, Liu, Wu et al. 2019, Fang, 

Kazmi et al. 2020, Khedr, Omeran et al. 2022, Wallen, Demirkan et al. 2022, Wang, Li et al. 2022), 

suggesting it may contribute to disease processes. We therefore sought to directly test the disease 

modulatory potential of E. coli within the context of AD—the most prevalent neurodegenerative 

disease. To evaluate the sufficiency of gastrointestinal E. coli to modulate AD outcomes, we used the 

well-characterized 5xFAD mouse model(Oakley, Cole et al. 2006), that displays amyloid pathology 

beginning at 2 months of age(Richard, Kurdakova et al. 2015) and cognitive impairment between 3 

and 6 months of age(Jawhar, Trawicka et al. 2012). To test exacerbation over this model’s 
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pathological progression, 2-month-old conventionally raised 5xFAD mice were orally exposed to 

~108 cfu of a non-pathogenic, strain of E. coli (identical to our mono-colonization experiments) or 

vehicle control 3x weekly for 1 month prior to behavioral and pathological assessments (Fig. 3.6A). 

Irrespective of treatment, 5xFAD mice displayed similar outcomes in both the open field and 

intestinal behaviors, suggesting that E. coli exposure did not induce overt sickness or anxiety-like 

behaviors, and GI functions were not robustly disrupted (Supplementary Fig. S3.4 A-E). While 

working memory, as measured in the Y-maze test, appeared intact (Fig. 3.6B), E. coli exposure 

resulted in a loss of novelty preference in the object location test (Fig 3.6C). Similarly, while learning 

capacity during Barnes Maze training was not impacted (Fig. 3.6D), E. coli treated 5xFAD mice 

displayed a significantly longer primary latency during the probe trial suggesting a loss of typical 

memory function (Fig. 3.6E). These observations appeared specific to the 5xFAD genotype, as 

wildtype littermates did not demonstrate any loss of cognitive functions in an identical battery of 

tests (Supplementary Fig. S3.5). Thus, in a genotype specific fashion, exposure to intestinal E. coli is 

sufficient to exacerbate cognitive decline in this mouse model. 

To evaluate whether intestinal E. coli exacerbates pathological outcomes associated with the 

cognitive impairments observed in 5xFAD mice, we measured hippocampal Aß concentrations (Fig. 

3.6 F-I). Where there were no differences in the concentration of Tris- or triton-soluble Aß (Fig. 

3.6F-G), E. coli treated animals had significantly more formic acid soluble Aß (representing Aß in a 

highly insoluble form) than the vehicle treated controls (Fig. 3.6H), along with a trend towards 

increased Aß 42:40 ratio (Fig. 3.6I). Together, these data suggest that E. coli exposure exacerbates 

insoluble amyloid deposition. Profiling of cytokines and chemokines across anatomical 

compartments including the colon, serum, and hippocampus, demonstrated that exposure to E. coli 

did not induce a robust pro-inflammatory response in any anatomical compartment, in line with our 

behavioral evaluation for sickness-like behaviors (Supplementary Fig. S3.4 F-H).  
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Bulk RNA-seq of brain-derived CD11b+ cells from 5xFAD mice demonstrated a disease 

relevant transcriptional response to E. coli exposure. Brain myeloid cells, derived from E. coli treated 

mice had 12 repressed DEGs (Fig. 3.6J). Despite a small number of DEGs, nearly all are highly 

relevant for AD. For example, Apoe—the greatest known genetic risk factor for late onset 

AD(Serrano-Pozo, Das et al. 2021)—had one of the largest log fold change values, and all but two 

of the DEGs (Bhlhe40 and Rab7b) are known to be increased in the classical disease associated 

microglia (DAM) phenotype(Keren-Shaul, Spinrad et al. 2017). In support of this association, GSEA 

highlights a significant decrease in DAM genes following E. coli exposure (Fig. 3.6K). This suggests 

that E. coli exposure results in an inability for brain myeloid cells to transition into the initially 

protective DAM state and may explain the worsened cognitive behaviors and pathology observed in 

E. coli exposed 5xFAD mice. Overall, these results highlight how gut exposure to non-pathogenic E. 

coli alters brain wide transcriptional state in healthy wildtype animals and accelerates disease 

progression in a genetic model of AD. 

3.4. Discussion 

Increasing experimental evidence demonstrate that the gut microbiome maintains constant 

communication with the brain, shaping neurological function in both health and disease(Cryan, 

O'Riordan et al. 2019, Morais, Schreiber et al. 2021). We find that the gut microbiome shapes the 

transcriptional landscape of every major cell type in the brain, highlighting the breadth of 

microbiome-derived signaling. At a single cell resolution, we identify both cell-type specific and 

conserved transcriptional responses dependent on the presence of an intact microbiome. Further, 

our data delineates the shared and unique transcriptional responses elicited by particular gut 

microbial taxa, demonstrating the capacity for specific microbes to evoke distinct responses that are 

relevant for health and disease. Colonization with E. coli induces a broad transcriptional activation 
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state associated with adaptive immune and neurodegenerative disease pathways and further 

exacerbates disease outcomes in a mouse model of AD. Together the present study highlights the 

association between the gut microbiome community, the active transcriptional landscape in the 

brain, and neurological disease susceptibility. 

Over the past several decades, numerous studies have underscored the importance of the gut 

microbiome in shaping neurological function including consequences for a wide range of 

neurological cell types(Cryan, O'Riordan et al. 2019, Morais, Schreiber et al. 2021). In line with this, 

we observe a consistent pattern, shared across cell types, of microbiome-dependent influences on 

developmental and cellular organization processes that are not typically found within adult mouse 

brains. Previous studies have demonstrated that microbiome-derived signals are necessary for 

appropriate neuroimmune development, with GF mice displaying an immature microglia phenotype 

and an inability to mount a typical inflammatory response(Erny, Hrabe de Angelis et al. 2015, 

Matcovitch-Natan, Winter et al. 2016, Thion, Low et al. 2018). Our data demonstrate a global 

dysregulation of genes associated with adaptive immune processes in the brain, in the absence of a 

microbiome, further emphasizing the importance of the microbiome for neuroimmune processes. 

Even in healthy, wildtype mice, both excitatory and inhibitory hippocampal neurons display 

dysregulated transcription of genes assigned to neurodegenerative disease pathways. These findings 

support the emerging role of the microbiome in modulating neurodegenerative disease outcomes, 

including numerous observations of microbiome-dependent pathology in both genetic and toxicant-

induced models of neurodegenerative disease(Cryan, O'Riordan et al. 2020, Fang, Kazmi et al. 2020).  

The composition of the gut microbiome differs across individuals, including significant 

differences in those living with neurological conditions(Blackmer-Raynolds and Sampson 2023). It is 

therefore important to not only understand the consequences of the microbiome as a whole, but 

also to pinpoint the specific effects of individual gut microbes on neurological functions. This allows 
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a deeper understanding of whether and how particular microbial associations may ultimately 

contribute to neurological outcomes. Indeed, we found species-specific effects on transcriptional 

activation of neuroimmune cells, including one organism L. johnsonii, whose colonization induced no 

transcriptional modulation compared to GF controls. This surprising finding demonstrates that 

neuroimmune cells do not simply respond broadly and non-specifically to microbial colonization, 

but that there is indeed specificity in these interactions arising from the gut environment. Three 

other organisms, B. theta, C. celatum, and E. coli each induced unique transcriptional responses, 

demonstrating the specific neuroimmune modulatory capacity of these GI resident bacterial taxa. E. 

coli notably triggered an increase in expression of genes involved in antigen presentation and 

adaptive immune activation, pathways which were strikingly decreased with colonization by both B. 

theta and C. celatum. Similarly, colonization with E. coli induced expression of several pathways 

associated broadly with neurodegenerative diseases including prion disease, AD, and ALS within 

brain myeloid cells, emphasizing the disease modulatory potential of this bacterium. 

Microbiome-dependent transcriptional responses in the brain are dynamic. Our temporal 

analysis identified that immune cells and myelinating oligodendrocytes are acutely responsive to E. 

coli colonization, while neuronal populations do not display a response until 4 weeks post-

colonization. Expression of those genes involved in adaptive immune pathways were initially 

robustly upregulated within microglia following colonization, but this response subsided by 4 weeks 

post colonization. However, the increase in immune pathways, particularly those involved in 

adaptive immunity, became apparent in nearly every other cell type by 4 weeks post colonization, 

suggesting that microglia are a focal point in relaying microbiome-derived signals to other cells in the 

brain. This solidifies prior observations of microbiome-dependent shifts in microglia state during 

both development and in models of neurodegenerative disease. It further suggests that microbiome-

elicited microglia responses may trigger subsequent transcriptional impacts across other cell types in 
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the brain.   

Colonization with E. coli was sufficient to induce a transcriptional response associated with 

neurodegenerative diseases in wildtype mice. We further observed that increased exposure to E. coli 

within the 5xFAD mouse model of AD accelerated the development of cognitive decline and 

amyloid pathology. Cognitive impairments were associated with decreased expression of genes 

within the classical DAM phenotype, thought to be an initially protective microglia state that limits 

the development and progression of AD outcomes(Jay, Hirsch et al. 2017, Keren-Shaul, Spinrad et 

al. 2017). This lack of protective response within brain myeloid cells may help to explain why disease 

outcomes progressed more rapidly in E. coli exposed mice. Interestingly, we and others, have 

observed that E. coli and related taxa within the Enterobacteriaceae family are sufficient to exacerbate 

pathologies in other models of neurodegeneration(Chen, Stribinskis et al. 2016, Sampson, Challis et 

al. 2020, Chongtham, Yoo et al. 2022, Liang, Liu et al. 2023). Our data herein expand on this 

concept, identifying specific brain transcriptional responses evoked by the presence of E. coli within 

the microbiome that may contribute to these outcomes. This is of particular importance given 

observations that Enterobacteriaceae are enriched in the gut microbiome amongst many 

neurodegenerative diseases(Fang, Kazmi et al. 2020). 

While we utilized a model of AD-relevant pathologies, our data serve as a foundation to 

understand how microbiome-dependent transcriptional responses associated with specific microbial 

species can modulate neurological disease susceptibility. Systemic immune responses vary greatly in 

response to individual species, even within the same genera(Geva-Zatorsky, Sefik et al. 2017), 

suggesting that delineating individual microbial contributions is essential. While E. coli exemplifies 

how non-pathogenic microbiome derived signals shape the neurological transcriptional landscape, 

our data demonstrate that individual bacterial species—and perhaps bacterial strains—will induce 

differential outcomes. For example, we highlight the seemingly inverse consequences of B. theta on 
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neuroimmune transcriptional state compared to E. coli, yet it has been demonstrated that exposure 

to a related species of Bacteroides, Bacteroides fragilis, is sufficient to exacerbate AD outcomes(Cox, 

Schafer et al. 2019, Xia, Xiao et al. 2023, Wasén, Beauchamp et al. 2024). While both Escherichia and 

Bacteroides have been reported to be increased in people living with AD(Cattaneo, Cattane et al. 2017, 

Vogt, Kerby et al. 2017, Zhuang, Shen et al. 2018, Haran, Bhattarai et al. 2019, Liu, Wu et al. 2019, 

Khedr, Omeran et al. 2022, Wang, Li et al. 2022, Li, Cui et al. 2024), public studies of the AD-

associated microbiome are currently limited. Understanding the species-specific associations in these 

human conditions and their experimental contributions to neurological functions remains an 

important gap in the field. Together, our results highlight the specificity and dynamics of 

microbiome-derived signals on the transcriptional landscape of the brain, as a foundation for the 

continued study of how the indigenous microbiome shapes overall brain health and disease 

susceptibility.  

3.5. Methods 

3.5.1. Experimental model and study participant details 

3.5.1.1. Animals 

Gnotobiotics. Germ-free (GF), male and female DBA/2N mice were originally obtained from 

Taconic Biosciences (#DBA2; RRID: IMSR_TAC:DBA2) following embryonic rederivation and 

bred within the Emory Gnotobiotic Animal Core (EGAC), for at least 3 generations prior to use in 

this study. GF animals were co-housed (with 2-5 same sex and age matched cage mates) in sterile 

cages within Parkbio rigid isolators. Mice were provided sterile food (Teklad Autoclavable Diet, 

2019S) and water ad libitum. Microbiological testing (by culture and qPCR) was performed on all 

autoclaved materials entering isolators (including food, water, and bedding) as well as monthly 

within the isolators themselves. Prior to sacrifice or mono-colonization, all mice were transferred to 
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sterile, static housing in specific pathogen-free (SPF) vivarium. Mono-colonization was subsequently 

performed by oral gavage with ~108 cfu of bacteria of interest within a sterile, class II biological 

safety cabinet. Colonization status of all mice was confirmed by fecal culture at the time of sacrifice.  

Conventionally-reared mice Conventionally-raised (CONV) male and female DBA/2J mice were 

originally obtained from Jackson Laboratory (#000671; RRID: IMSR_JAX:000671) and co-housed 

(2-5 per cage) in static housing with food (LabDiet: 5001) and water provided ad libitum within an 

SPF facility. Female and male 5xFAD mice, on a congenic C57Bl/6J background (Jackson Labs, 

#034848; MMRRC_034848-JAX) were maintained by crossing with C57Bl/6J wildtype mice 

(IMSR_JAX:000664). Mice were co-housed (2–5 per cage) with mixed genotype littermates in sterile, 

microisolator cages, under a 12h light/dark cycle with ad libitum access to sterile food (Teklad 

Autoclavable Diet, 2019S) and drinking water. Genotypes were confirmed with the following 

vendor-approved primers and their PCR parameters: APP Forward 5′- 

AGGACTGACCACTCGACCAG-3′, APP Reverse 5’-CGGGGGTCTAGTTCTGCAT-3′; PS1 

Forward 5′- AATAGAGAACGGCAGGAGCA-3′, PS1 Reverse 5′- 

GCCATGAGGGCACTAATCAT-3′. All animal husbandry and experiments were performed in 

accordance with AVMA guidelines and approved by the Institutional Animal Care and Use 

Committee of Emory University (PROTO201900056). 

3.5.1.2. Bacteria 

Bacteroides thetaiotaomicron str. VPI 5482 (ATCC 29148), Clostridium celatum str. VPI 8759-1 

(ATCC 27791), and Lactobacillus johnsonii str. VPI 7960 (ATCC 33200) were obtained from the 

American Type Culture Collection (ATCC). Escherichia coli str. K12 MC4100 (a kind gift from 

Matthew Chapman (University of Michigan(Sampson, Challis et al. 2020)) and B. thetaiotaomicron were 

grown aerobically at 37 C in tryptic soy broth (BD #211825) and brain heart infusion (BD 
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#237500) supplemented with hemin and vitamin K, respectively. C. celatum and L. johnsonii were 

grown anaerobically at 37 C in Chopped Meat Carbohydrate (Anaerobe Systems AS-811) and de 

Man-Rogosa Sharpe (BD 288130) broth respectively. Bacterial cultures were resuspended at ~108 

cfu in sterile 50% glycerol and 5% sodium bicarbonate, plated to confirm monoculture, and stored 

at -80 C until use. Vehicle control consisted of sterile 50% glycerol (v/v) and 5% sodium 

bicarbonate (w/v) also stored at -80 C. 

3.5.2. Method details 

3.5.2.1. Bacterial enrichment 

Male and female, conventionally raised 2-month-old 5xFAD and wildtype littermates were 

treated with an antibiotic cocktail consisting of 1mg/mL neomycin, 1mg/mL ampicillin, and 

5mg/mL vancomycin in sterile water for 1 week. After antibiotic treatment, mice were randomly 

assigned to receive either ~108 cfu of E. coli by oral gavage 3x per week or vehicle (sterile 50% 

glycerol and 5% sodium bicarbonate) gavage. While cages consisted of mixed genotype animals, 

each cage of mice only received a single treatment to prevent cross-contamination. Each week, the 

colonization status of the mice was monitored by fecal culture.  

3.5.2.2. Behavioral testing 

Roughly equal numbers of male and female 5xFAD (n = 11-15) and wildtype (n= 9-23) 

littermates underwent behavioral testing after 1 month of enrichment, at 3 months of age. All 

behavioral testing was performed during the animal’s light cycle. Before the start of any test, mice 

were habituated to the testing room in their home cage for 1hr. All behavioral tracking and analysis 

were performed using EthoVision XT software (Noldus Information Technology, Wageningen, the 

Netherlands) and the testing arenas/objects were cleaned between trials with 70% ethanol to 
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eliminate bacterial contamination and olfactory cues. Mice were tested on the following tests in 

order: 

Open field test (OFT): As measures of motor and anxiety-like behavior, mice were placed in a 

45cm square open field box for 10 minutes and allowed to explore freely. Distance traveled and time 

spent in the center (20x20cm) was recorded. The OFT also served as habituation for the object 

location test (OLT). 

 

Object location test (OLT): Twenty four hours after the OFT, the OLT was run to assess short 

term spatial memory as described step-by-step in(Blackmer-Raynolds, Krout et al. 2024). The same 

open field box used in the OFT was used for the OLT, but additional landmarks (large papers with 

stripes, stars, or dots of different colors) were placed on 3 out of the four walls to allow for spatial 

orientation. During the initial study phase, mice were placed in the box with two identical copies of 

an object (either a plastic chess piece or 5mL Eppendorf tube) and allowed to explore freely for 10 

minutes. The mice were then returned to their home cage for a 10-minute retention delay. During 

the testing phase, mice were returned to the box where one of the two objects had been moved to a 

novel location and allowed to explore freely for 5 minutes. Object exploration was considered time 

spent with the mouse’s nose within 2cm of an object. Novelty preference was measured by taking 

the percent of total object exploration time that was spent exploring the moved object. A novelty 

preference significantly above 50% chance levels is indicative of intact memory as mice generally 

seek out the moved object. 

Y-maze: In order to evaluate spatial working memory capacity, the Y maze test was 

performed as described in detail in(Blackmer-Raynolds, Krout et al. 2024). Mice were placed in a 

plastic Y shaped maze and allowed to explore freely for 8 minutes while the order of entries into 

each arm of the maze was recorded. Percent alternation was calculated by taking total number of 
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alternations (consecutive entries into 3 arms before repeating any arms) divided by the maximum 

possible alternations (total entries minus 2) and multiplying by 100. Mice with intact working 

memory display higher percent alternation as they prefer to explore previously unvisited areas.  

Barnes maze: Longer term spatial learning and memory was evaluated using the Barnes maze 

test adapted from(Attar, Liu et al. 2013), and described in detailed in(Blackmer-Raynolds, Krout et 

al. 2024). Testing was performed over a 6-day period using a 92cm diameter, 20-hole, Barnes maze 

(MazeEngineers) with consistent extra-maze cues throughout. First, mice underwent a habituation 

trial in which they were placed on the maze with bright lights and white noise (66-70 dB) playing for 

20 seconds then gently guided to an escape hole leading to a dark box filled with sterile bedding. 

After entering the escape box, the white noise was immediately turned off and the mice were 

allowed to acclimate to the escape box for 2 minutes. The mice then underwent 5 consecutive 

training trails spread over 2 days. During each training trial, mice were placed in the center of the 

maze (with white noise and bright lights on) and allowed to explore for up to 3 minutes. If the mice 

entered the escape box during this period, the noise was turned off and they were allowed to rest for 

1 minute. Mice that did not enter the escape box after 3 minutes were gently guided to the proper 

hole before being allowed to rest. The probe trial occurred 72hr after completion of the final 

training trail. During the probe trial, the escape box was removed, and mice were placed on the 

maze (lights and noise on) to explore for 90 seconds. During both training and probe trials, primary 

latency (the time it took for the mouse to first check the escape hole) was recorded by hand. 

Intestinal behaviors: To evaluate whether colonization disrupts gastrointestinal (GI) function, a 

subset of roughly equal male and female mono-colonized (n=6-15) and 5xFAD mice (n=5-9) 

underwent a set of GI tests. First, colonic transit was measured by fecal output testing described in 

detail in(Hamilton, Krout et al. 2024). Fecal output testing was performed within a level II biosafety 

cabinet within the animal’s vivarium with no prior habituation period. Mice were placed in individual 
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sterile 1L plastic beakers for 30 minutes and the number of fecal pellets produced was recorded 

every 5 minutes. Fecal water content was measured by collecting the fecal pellets produced during 

the fecal output test and weighing them before and after drying at 100°C for 48hr. As a measure of 

total intestinal transit time, carmine red dye elution was performed as described in(Hamilton, Krout 

et al. 2024). Testing was performed in the behavioral testing room. Mice were allowed to acclimate 

for 1hr before undergoing oral gavage with 100µl of sterile carmine red dye (6% w/v) (Sigma, 

C1022) dissolved in 0.5% methylcellulose (w/v; Sigma, M7027). Mice remained in their home cages 

for 2 hours then were transferred to individual sterile cages devoid of bedding, but with access to a 

small amount of sterile food and water. The cages were observed every 15 minutes for the presence 

of a red fecal pellet. Once a red pellet was discovered, the time was recorded, and the mouse was 

returned to its home cage. 

3.5.2.3. Tissue collection and processing 

Mice were humanely euthanized via open-drop isoflurane overdose followed by cardiac 

puncture to collect blood samples, perfusion with PBS, and exsanguination. To collect serum, blood 

was immediately placed into vacuette collection tubes (Griener #454243) and spun at room 

temperature at 1,800 g for 10 minutes. Serum was then stored at -80 C until use. Brain tissue was 

either A) immediately processed by immunopanning or magnetic activated cell sorting (MACS; see 

below); B) dissected and flash frozen in liquid nitrogen and stored at -80 C for later protein or 

nuclei isolation; or C) fixed for 24hr in 4% paraformaldehyde and stored at 4 C in sodium azide for 

immunohistochemistry. Intestinal tissue was removed from the mouse and colon length was 

measured as a marker of overall intestinal inflammation. Approximately 1cm of tissue was dissected 

from the ilium and proximal colon, flash frozen in liquid nitrogen and stored at -80 C for multiplex 

ELISA. 
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3.5.2.4. Brain myeloid cell enrichment 

 
Immediately after sacrifice, brains were homogenized using a Wheaton dounce tissue grinder 

(with 0.114 ±0.025mm pestle clearance) in culture media comprised of HBBS with 1.5% HEPES, 

and 0.5% glucose. Cells were then transferred to a 35% isotonic percoll gradient solution and spun 

20 minutes at 700 x g to remove the myelin layer. Transcription (Actinomycin D, Sigma #A1410) 

and translation (Anisomycin, Sigma #A9789) inhibitors were added to every solution throughout 

both procedures to prevent transcriptional changes that could impact downstream results. The 

remaining cells were washed several times in HBBS culture media before undergoing either 

immunopanning or magnetic activated cell sorting (MACS) separation. 

Immunopanning. Cells were resuspended in 0.02% BSA in PBS and incubated at room 

temperature on a 10cm petri dish with anti-CD11b and secondary antibody already adhered to the 

dish (Thermo Scientific, 14-0112-82 and Jackson 112-005-167) for 10-15 minutes. After incubation 

the unadhered cells were washed away and remaining cells scraped off the plate directly into Trizol 

(Zymo Research R2050-1-200) and stored at -80 C until later use. 

MACS. Sorting was performed according to the manufacturers (Miltenyi Biotec) guidelines. 

Samples were resuspended in PB buffer (0.5% BSA in PBS pH 7.2) with CD11b MicroBeads 

(Miltenyi Biotec # 130-093-634) and incubated for 15 minutes at 4 C protected from light. Cells 

were then washed and resuspended in PB buffer before being placed on an LS column (Miltenyi 

Biotec #130-042-401). Magnetic separation was repeated on a second LS column to maximize 

purity. After separation, cells were resuspended in Trizol and stored at -80 C for later use. 

3.5.2.5. Single nucleus preparation and sequencing 

Flash frozen hippocampal samples from 12–15-week-old female germ-free, conventionally 
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raised, and mono-colonized mice (n = 4) underwent a nuclei isolation protocol adapted 

from(Corces, Trevino et al. 2017). Frozen tissue was placed in homogenization buffer (consisting of 

0.26M sucrose, 0.03M KCl, 0.01M MgCl2, 0.02M Tricine-KOH pH 7.8, 0.001M DTT, 0.5mM 

Spermidine, 0.05mM Spermine, 0.3% NP40, and protease inhibitor) and homogenized using both 

pestle A (0.0030-0.0050 in. clearance) and pestle B (0.0005-0.0025 in. clearance) of a KIMBLE 

dounce tissue grinder (Sigma D8938). Density gradient centrifugation was performed using 

iodixanol and the nuclei band was captured at the 30%-40% iodixanol interface. Nuclei were washed 

in RSB buffer (0.01M Tris-HCL pH 7.5, 0.01M NaCl, 0.003M MgCl2, and 0.1% Tween-20) then 

samples were combined such that each treatment group was represented by two samples, each 

containing roughly equal numbers of cells from two mice within a single treatment group. Then, 

samples immediately underwent cell capture using the Chromium Next GEM Single Cell 3’ Kit v3.1 

(10x Genomics # PN-1000268) according to the manufacturer’s guidelines. Approximately 1,600 

cells were loaded onto a Chromium Next GEM Chip and run using a Chromium Controller and 

library preparation steps were performed according to the manufacturer’s guidelines. Pooled samples 

were sequenced on a NovaSeq X Plus 25B 2x150 for 5-6.25B PE reads total by Admera Health 

(South Plainfield, NJ).  

3.5.2.6. Single nucleus RNA-seq analysis 

Reads were aligned to the mouse reference genome (GRCm39) using the Cell Ranger 

pipeline (version 4.0.10, 10x Genomics). The Cellbender(Fleming, Chaffin et al. 2023) (version 0.3.0) 

remove-background function was used to minimize the effects of ambient RNA (expected 

cells=5,500 and total droplets included=12,000). The snRNA-seq libraries were imported into R 

(version 4.3.2) using Seurat(Hao, Stuart et al. 2024) (version 5.1.0) then filtered to only include cells 

with 200-7,500 features and less than 6% mitochondrial reads. Data was normalized, scaled, and 
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clustered using Seurat defaults and doublets were removed using DoubletFinder(McGinnis, Murrow 

et al. 2019) (version 2.0.4) with a multiplex rate of 0.8% per 1,000 cells. Samples where integrated 

using Seurat RPCA Integration then re-clustered to create an integrated UMAP. Seurat 

“FindAllMarkers” function was used (min.pct = 0.25, thresh.use = 0.25) to identify marker genes for 

each cluster. Manual cell type annotation was performed by identifying cell types with high marker 

gene expression within the Allen Brain Cell Atlas(Alzheimer’s Association). Differential expression 

analysis was performed within each cell cluster of interest by using MAST within the Seurat 

“FindMarkers” function. Genes were considered differentially expressed if they had an absolute log 

fold change value greater than 1 and adjusted p value of less than 0.001. Functional annotation 

clustering was performed using Metascape(Zhou, Zhou et al. 2019) (version 3.5.20240901) with all 

DEGs except genes without a canonical name (those ending in “rik” or beginning with “Gm”) and 

GSEA was run using clusterProfiler(Wu, Hu et al. 2021) (version 4.10.1). 

3.5.2.7. Bulk RNA-seq preparation and sequencing 

RNA was extracted from isolated brain myeloid cells using the Qiagen RNeasy Kit (#74106) 

according to the manufacturer’s guidelines. Bulk RNA-sequencing libraries were created for each 

sample using the Takara SMART-Seq mRNA HT LP kit (#634792) according to the manufacturer’s 

protocol and recommendations. Sequencing was performed by Admera Health (South Plainfield, 

NJ) using a NovaSeq or HiSeq to achieve approximately 85 million total reads per sample. 

3.5.2.8. Bulk RNA-seq analysis 

Sequencing quality control was performed using FastQC (version 0.11.9) and reads were 

pseudoaligned to the mouse reference genome (GRCm39) using Kallisto (version 0.44.0)(Bray, 

Pimentel et al. 2016). Files were imported into R (version 4.3.2) and counts were converted into 

TMM normalized log2 counts per million. Genes expressed in less than 3 samples were excluded 
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from the analysis. Differential gene expression analysis was performed using limma(Ritchie, Phipson 

et al. 2015) (version 3.58.1) and edgeR(Robinson, McCarthy et al. 2010) (version 4.0.16). Genes were 

filtered to only include genes enriched in microglia compared to other brain cell types based on 

expression levels published by the Brain RNA-seq Website(Zhang, Chen et al. 2014). Genes were 

considered differentially expressed if they had a Bonferroni adjusted p value less than 0.05. 

Functional annotation clustering was performed using DAVID(Huang, Sherman et al. 2009, 

Sherman, Hao et al. 2022) and clusterProfiler(Wu, Hu et al. 2021) (version 4.10.1), gene set 

enrichment analysis was performed by fgsea(Korotkevich, Sukhov et al. 2016) (version 1.28.0). 

3.5.2.9. Protein extraction and ELISA 

Protein was extracted from flash frozen brain and gut samples by sonication in 

homogenization buffer consisting of 125mM Tris, 15mM MgCl2, 2.5mM EDTA (PH 7.2), 1% 

Triton X 100, and protease inhibitor (Roche #11697498001, 1 tablet per 10mL). Samples were 

centrifuged at 20,800 rcf for 10 minutes at 4 C. The protein concentration of the supernatant was 

measured using a Pierce BCA Protein Assay Kit (Thermo #23225) according to the manufacture’s 

guidelines. When quantifying amyloid beta levels, a three part protein solubility protocol outlined 

in(Blackmer-Raynolds and Sampson 2024) was performed instead. First, the tris soluble fraction was 

isolated by sonication in 125mM Tris, 15mM MgCl2, 2.5mM EDTA (PH 7.2), and protease inhibitor 

(Roche #11697498001, 1 tablet per 10mL). Following centrifugation, the pellet was then re-

sonicated in the above buffer with the addition of 1% Triton X 100 to isolate the triton soluble 

fraction. Finally, the remaining pellet was sonicated in buffer containing 70% formic acid to extract 

the most insoluble protein fraction. Protein samples as well as pure serum samples were then run 

using multiplex ELISA (Meso Scale Discovery V-PLEX Proinflammatory Panel 1 (mouse) Kit # 

K15048D and V-PLEX human amyloid beta peptide kit #K15200E). 
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3.5.2.10. Immunohistochemistry 

Paraformaldehyde fixed brain hemispheres were transferred to a 30% sucrose solution for 

24-48hr then frozen in Tissue-Tek O.C.T. compound (#4583) and sliced into 40m coronal 

sections using a cryostat. Two to four sections representing the anterior hippocampus including the 

3rd and lateral ventricles were stained per mouse. Antigen retrieval was performed prior to IBA1 

staining by heating the tissue to 90 C for 5 minutes in a sodium citrate antigen retrieval buffer (10 

mM tri-sodium citrate dihydrate and 0.43mM Tween 20, pH 6.0). Tissue was then blocked in 1% 

BSA, incubated in anti-IBA1 antibody (Wako #019-19741 1:1,000), and anti-rabbit 594 secondary 

(Thermo #A11012, 1:1,000). Imaging was performed using a Keyence BZ-X Series microscope 

(Itasca, IL) at 20X magnification. Images were processed in Fiji using a macro created by the Emory 

Integrated Cellular Imaging Core that auto thresholded the images using “RenyiEntropy dark,” 

converted to mask, and calculated IBA1% area within a hand traced region of interest around the 

hippocampus. MHCII, CD31, and CD206 staining was performed without antigen retrieval using 

the following antibodies and concentrations: MHCII (BioLegend #107602) 1:300 with anti-rat 

biotin (Thermo #A187843) and streptavidin 488 (Thermo #S31354);  CD31(R&D Systems # 

AF3628) 1:400 with anti-rabbit 594 (Thermo #A21207) 1:1,000; and CD206 (Cell Signaling # 

24595T) 1:400 with anti-goat 647 (Thermo #A21447). A streptavidin/biotin blocking kit (Vector 

labs SP-2002) was used in conjunction with biotinylated antibodies to improve MHCII signal. 

Images were taken at 20x using a Leica SP8 multiphoton microscope and analyzed using Fiji “Li” 

and “Moments” auto thresholding for MHCII and CD206 respectively. Microscopy and image 

analysis was performed by a blinded lab member. 

3.5.3. Overview of statistical tests 

Unless otherwise indicated in the figure legends, data are expressed as mean ± SEM. Sample 
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sizes are indicated in the figure legends, and when possible, each individual sample is represented as 

its own point on each graph. In all analyses except snRNA-seq, a sample represents an individual 

mouse. In SnRNA-seq a single sample represents combined data from two mice of the same 

treatment. Statistical tests for all non-transcriptomic data were performed using GraphPad Prism 8. 

One-way ANOVAs were used to compare mono-colonized mice and T tests were used to compare 

enriched (5xFAD and wildtype) mice. The object location test was analyzed by a one sample T test 

comparing each treatment to the 50% chance level. Unless otherwise noted significance was 

determined to be a p value of less than 0.05. Details on transcriptomic data analysis can be found in 

their respective sections above. All unique code is publicly available on GitHub upon acceptance. 
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3.7. Figures 
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Figure 3.1. The microbiome shapes the transcriptional landscape of every major cell type in 
the brain. A) Single nucleus RNA-seq was performed on hippocampal samples from female germ-
free (GF) and conventionally raised (CONV) mice. UMAP shows all major cell types identified as well 
as the amount of each cell type found within each treatment group. B) Cell type markers representing 
each major cell type cluster. C) Total number of differentially expressed genes (DEGs; log fold change 
> |1|, p < 0.001) in GF mice compared to CONV across each cell type. D) DEGs normalized by the 
number of cells in that cluster. E) Gene set enrichment analysis showing increased neurogenerative 
disease KEGG pathways in GF mice. F) Representative pathways increased in at least four cell types 
by overrepresentation analysis (Metascape). Data represents cells from 4 mice per treatment. 
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Figure 3.2. Select gut bacteria uniquely shape neuroinflammatory tone. A) Wildtype germ-free 
(GF) mice were mono-colonized with type strains of interest for 2 weeks. After mono-colonization, 
CD11b+ myeloid cells were isolated from the brains and bulk RNA-seq was performed. B) Number 
of differentially expressed genes (log fold change > |0.25|; p < 0.05) in mono-colonized mice 
compared to GF. C) Number of overlapping differentially expressed genes across colonization states. 
D) Comparison of overrepresentation-based pathway analysis results across mono-colonization states. 
E) KEGG pathway analysis was run on both increased and decreased DEGs using DAVID. KEGG 
pathways significantly increased or decreased in at least two treatments are shown. F) 
Immunohistochemistry was performed on the choroid plexus of the lateral ventricle to quantify the 
percent of MHCII+ CD206+ double-positive CD206+ cells. G) KEGG pathways increased after E. 
coli mono-colonization. n = 3-7 mice. In F) dots represent individual mice and error bars represent 
SEM. *** p < 0.001. 
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Figure 3.3. Gut colonization by E. coli temporally modulates the gene expression of all cell 
types the brain. Single nucleus RNA sequencing was performed on hippocampal samples from germ-
free (GF) mice and mice that were mono-colonized with E. coli for either 2 or 4 weeks. A) UMAP 
showing cell clusters and bar graph showing the percentage of total nuclei within each cluster based 
on treatment. B) Cell type markers for each major cell type cluster. C) Graph showing the total number 
of differentially expressed genes (DEGs; log fold change > |1|, adjusted p < 0.001) compared to GF 
per cell type across time. D) Heat map shows relative expression levels of all differentially expressed 
genes (at either 2 or 4 weeks) within each cell type across time (note each heat map represents only 
that cell type’s DEGs). Data represents cells from 4 mice per treatment. 

  



 67 

 

Figure 3.4. E. coli colonization induces temporal regulation of microglial transcriptional state. 
The immune cell cluster identified in Figure 3.2 was further subclustered to distinguish microglia from 
non-microglia immune cells. A) Shows cell clustering UMAP and % of all nuclei within each cell type. 
Markers defining each cell cluster are overlayed upon the immune UMAP with B) representing 
microglia markers and C) representing non-microglia markers. Differential gene expression analysis 
was performed only both cell clusters. D) shows violin plots of the two DEGs that reached 
significance in the low powered non-microglia immune cluster. E) Volcano plot and F) pathway 
analysis of microglia differentially expressed genes (log fold change > |1|, p < 0.001) after 2 weeks 
of E. coli mono-colonization. G) Volcano plot, H) GO pathway analysis and, I) neurodegeneration 
KEGG GSEA of microglia after 4 weeks of mono-colonization. Cells represent 4 mice per treatment. 
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Figure 3.5. E. coli mono-colonization modulates biological pathways involved in adaptive 
immune responses and neurodegeneration across cell types and timepoints. 
Overrepresentation pathway analysis was run using the DEGs (log fold change > |1|, p value < 
0.001) between GF and E. coli mono-colonized mice at each timepoint. Increased and decreased 
pathways that overlapped the most across cell types at 2 weeks are shown in A) and at 4 weeks are 
shown in B). Gene set enrichment analysis was also performed to identify neurodegeneration KEGG 
pathways that are modulated by E. coli colonization. C) Shows the normalized enrichment score for 
each cell type with a significant GSEA result at 2 and 4 weeks as well as neurodegeneration KEGG 
pathways increased in overrepresentation analysis at 4 weeks. Data is from 4 mice per treatment. 
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Figure 3.6. E. coli exposure exacerbates AD outcomes in 5xFAD mice. A) Male and female 2-
month-old 5xFAD mice underwent a 1-month enrichment paradigm followed by behavioral and 
pathological assessments. Behavioral testing was performed on the B) Y maze, C) Object location test, 
and D-E) Barnes maze to evaluate different forms of spatial memory function. Levels of amyloid beta 
were measured within F) tris soluble, G) triton soluble, and H) formic acid soluble protein fractions 
extracted from the hippocampus. I) The ratio of amyloid beta 42:40 as also calculated the formic acid 
soluble fraction. Bulk RNA-seq was performed on CD11b+ myeloid cells in the brain with J) showing 
a volcano plot of differentially expressed genes with disease associated microglia (DAM) genes 
highlighted in bold and K) showing the expression level of all DAM genes as well as results of a gene 
set enrichment analysis (GSEA). For B - I n = 11-15, dots represent individual mice, bars represent 
mean ± SEM. Groups were compared using a two tailed t test except C where each condition was 
compared to the 50% chance level using a one sample t test. J-K) n = 3 dots (J) and rows (K) represent 
individual genes and columns represent individual mice (K). * p < 0.05 ** p < 0.01. 
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3.8. Supplementary Figures 

 

Supplementary Figure S3.1, associated with Fig. 3.1. Pathways altered in GF mice by cell 
type. A) Hippocampal single-nucleus RNAseq, as in Fig. 1, UMAP with nuclei highlighted by 
colonization status. B) Overrepresentation based pathway analysis was run on every major cell 
cluster using Metascape (log fold change > |1|, p < 0.001). Representative pathways that are 
increased and decreased in each cell type (and not included in Fig. 1E) are shown. Cells are from 4 
mice per treatment group.  
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Supplementary Figure S3.2, associated with Fig. 3.2. Neurodegeneration-associated gut 
bacteria modulate intestinal, but not circulating cytokine levels or microgliosis. A). 
Inflammatory cytokines and chemokines were measured in the ileum, proximal colon, and B) serum 
by multiplex ELISA. C) Colon length at the time of sacrifice was recorded as a measure of 
generalized colonic inflammation. D) Fecal output and E) fecal water content was used to assess 
gastrointestinal function. F) IBA1 staining was performed in the hippocampus and G) % area was 
compared between groups. n = 5-24. Dots (graphs) or columns (heat maps) represent individual 
mice. Error bars represent mean ± SEM. All treatment groups were compared to germ-free (GF) 
using either two-way repeated measures ANOVAs (A-B) or one-way ANOVAs (C-E, G) with 
Dunnett’s multiple comparison tests. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 
compared to GF. Conventionally colonized (CONV). 
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Supplementary Figure S3.3, associated with Fig. 3.5. E. coli modulates unique biological 
pathways for each cell type at 2 and 4 weeks. Overrepresentation based pathway analysis was run 
on the increased and decreased DEGs for each cell type (log fold change > |1| , p <0.001) after 2 
and 4 weeks of mono-colonization using Metascape. Representative pathways (excluding those 
shown in Figure 5) for the 2-week timepoint are shown in A) and 4-week timepoint are shown in 
B). Data is from 4 mice per treatment. 
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Supplementary Figure S3.4, associated with Fig. 3.6. E. coli exposure does not induce 
sickness behavior or robust inflammation in 5xFAD mice. Vehicle and E. coli exposed 5xFAD 
mice were tested for signs of sickness behavior on a battery of tests. A) Motor and B) anxiety-like 
behavior were measured on the open filed test. Gastrointestinal function was measured by C) 
carmine red elution and D) total fecal output during a 30-minute period. Inflammation was 
measured within the colon via E) colon length at the time of sacrifice and inflammatory cytokines 
and chemokines were measured within the F) proximal colon, G) serum, and H) hippocampus by 
multiplex ELISA. n = 5-21. Dots (or columns in F-H) represent individual mice, bars represent 
mean ± SEM. In A-E groups were compared using a two tailed t test. In F-H, groups were 
compared using multiple t tests adjusted for multiple comparisons using two-stage step-up 
(Benjamini, Krieger, and Yekutieli). 
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Supplementary Figure S3.5, associated with Fig. 3.6. E. coli exposure does not induce 
cognitive impairment in wild type mice. A) Wild type littermates were tested side by side with 
5xFAD mice to see if E. coli exposure was sufficient to induce cognitive decline in the absence of 
familial AD mutations. Performance on the B) Y maze, C) object location test and D-E) Barnes 
maze. n = 9-23. Dots represent individual mice bars represent mean ± SEM. Groups were 
compared using a T test in B and E, one sample T test compared to 50% chance level in C, and 
two-way repeated measures ANOVA in D. *p < 0.05; ** p < 0.01. 
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4.1 Implications for the field 

The present dissertation research highlights the critical role of microbial signals in shaping 

neural health across brain cell types and in both health and disease contexts. To our knowledge, this 

study represents the first comprehensive single-cell dataset simultaniously highlighting the effects of 

microbial signals in all major brain cell types. We emphasize that the consequences of the microbiome 

are not isolated to a single cell type or biological pathway, but are instead incredibly diverse and wide-

sweeping. In our analysis, we present an overview of some of these findings, highlighting the relevance 

of microbial signals for neuroimmune and neurodegenerative disease pathways throughout the brain, 

however, our analysis only brushes the surface of the available data. From this dataset, it is clear that 

microbial signals modulate a vast array of biological processes that could be relevant across all 

neurological disease contexts. My hope is that researchers will each look at this dataset from their own 

unique perspective, allowing for continued discoveries to be made and an increased awareness of the 

important effects of microbial signals on the brain in all new contexts.  

In addition to emphasizing the importance of microbial signals as a whole, the present study 

also underscores the unique effects of individual bacteria on neuroinflammatory tone. Where many 

microbiome studies manipulate the entire microbial community, our reductionist mono-colonization 

approach allows us to pinpoint the specific effects of single microbes on the brain. Through this work, 

we highlight the unique and sometimes even opposite effects of individual microbes on 

neuroinflammatory tone, emphasizing the importance of studying individual bacterial taxa rather than 

just entire microbial communities. We demonstrate that some microbes, such as L. johnsonii, have no 

overt impacts on neuroinflammatory tone, whereas bacteria such as E. coli have robust consequences 

that translate to changes in Alzheimer’s disease (AD) outcomes. It is therefore only through this 
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reductionist mono-colonization approach that we can begin to identify potential disease-modulatory 

bacteria that can act as therapeutic targets.  

4.2 Limitations in the identification of an Alzheimer’s disease-associated microbiome 

In order to truly understand how specific microbes may be contributing to AD outcomes, it 

is essential that we first understand which microbes to study. While every attempt was made to select 

bacteria that represent taxa that are altered in patients with neurodegenerative disease, the selection 

process was severely hampered by a lack of high-quality data on microbiome changes that are 

associated with AD in humans.  

While there are numerous studies claiming to identify AD-associated microbiome changes, 

there is little agreement between studies, emphasizing serious methodological challenges within the 

field. One of the most highly cited and well-respected studies on the human AD microbiome was 

published back in 2017, comparing the fecal microbiome of 25 control patients to that of 25 AD 

patients(Vogt, Kerby et al. 2017). The authors made efforts to account for a range of potential 

confounding variables, including age, sex, ethnicity, BMI, diabetes diagnosis, medication usage 

(though there were differences between groups), diet, and stool form, making it one of the most well-

controlled studies published to date. Even almost a decade later—and despite a large uptick in the 

number of AD microbiome studies—these standards have rarely been met, let alone exceeded. 

Countless papers have been published without proper controls to account for dietary, lifestyle, and 

environmental factors that are known to influence microbiome composition. In addition, publications 

lack the proper sample size to account for the substantial variability that naturally occurs within the 

human microbiome. It is estimated that only roughly 10-20% of microbes are typically shared between 

two unrelated individuals, highlighting the incredibly high level of person-to-person variability in 

microbiome community structure(Seo and Holtzman 2024). When studies rely on sample sizes of 
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around 20-50 individuals as most currently published AD microbiome studies do, it is very difficult to 

overcome these levels of variability, and instead, results are likely to be heavily shaped by selection 

biases that skew the data based on other factors such as living environment, diet, or medication usage. 

In the past several years, researchers in other fields, such as the PD microbiome field, have finally 

begun to address some of these shortcomings, publishing papers with many hundreds of participants 

(Toh, Chong et al. 2022, Wallen, Demirkan et al. 2022). Similarly, a paper was recently published 

characterizing the microbiome composition of 519 participants with varied levels of cognitive 

impairment (n = 63-122 per group) (Jia, Ke et al. 2025). The authors also accounted for various 

potential confounding variables, including recent antibiotic usage and a number of co-morbidities 

(though notably no attempts to account for diet or medication usage were made), highlighting progress 

beginning to occur even in the AD field. As more rigorous studies begin to be performed, hopefully, 

more consistent trends will begin to appear between studies, providing clear targets for mechanistic 

studies. Once these targets have been identified, additional studies characterizing the effects of specific 

AD-associated microbes at the species and even strain level must be performed in order to determine 

whether individual bacteria may be modulating disease outcomes. In theory, this would allow for the 

identification of microbes that represent novel therapeutic targets.  

4.3 The promise of microbes for personalized medicine 

As our understanding of the specific effects of individual microbes continues to grow, one 

can imagine a time when microbes become a form of personalized medicine. The present study 

highlights how individual microbes have the capacity to shape neuroinflammatory tone in very unique 

ways that, in turn, modulate disease susceptibility. These microbes could therefore be used to adjust 

neuroinflammatory tone in a way that is beneficial for an individual’s specific disease and even disease 

stage. For example, we demonstrate that E. coli enrichment inhibits microglia from entering the 
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“disease associated microglia” (DAM) activation state first characterized by Keren-Shaul et al. in 2017. 

Where in early stages of disease, DAM are thought to be protective, DAM are thought to be 

detremential later in disease progression, DAM are thought to be detrimental. Would it therefore be 

helpful to supplement with E. coli at later disease stages to inhibit the negative consequences of DAM? 

One could also imagine a wide range of contexts outside of AD where using microbes to modulate 

neuroinflammatory tone could be beneficial. Can we use bacteria such as B. theta or C. celatum that 

inhibit adaptive immune responses in the brain to reduce autoimmune diseases such as multiple 

sclerosis?  

Admittedly, a lot more research is needed before bacteria-based personalized medicines are 

ready for clinical use. However, the present study can serve as a roadmap for future studies aimed at 

identifying microbiome-based therapeutic targets across disease conditions. Initial screening of 

potential disease-modulatory bacteria in wild-type animals provides insight into which bacteria may 

be beneficial or detrimental in specific disease contexts. The utilization of mono-colonized mice in 

this initial screen can be particularly beneficial in pinpointing the specific effects of each bacterium on 

the brain. Although the present work utilized bacterial type strains because human strain data was not 

available, ideally, initial screening would be done using human disease-relevant bacterial strains, as 

even strain-level differences have the potential to impact disease-relevant outcomes. While mono-

colonization allows one to isolate the effects of a specific microbe on the brain, germ-free mice are 

known to display numerous developmental abnormalities, including widespread immune 

abnormalities and increased gastrointestinal and blood-brain barrier permeability that can confound 

study results(Cryan, O'Riordan et al. 2019). Therefore, complementing these studies with an 

enrichment-based approach in conventionally raised animals allows for the study of a bacteria’s effects 

on the brain in a more naturalistic (albeit less controlled) environment. Finally, as done in the present 

work, candidate microbes identified during these initial studies must be tested in a model of disease. 
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Our results demonstrate that microbes can induce different activation states in wild-type animals 

compared to an AD mouse model, highlighting the need to study microbes in a disease-relevant 

context. To increase human relevance, ideally, bacteria would be tested in mouse models that most 

accurately represent the human condition. While the 5xFAD mouse model was used in the present 

work, Appendix A outlines some of the limitations of these overt overexpression-based AD models 

and highlights a set of newer APP knock-in models that may more accurately recapitulate the human 

condition(Blackmer-Raynolds, Lipson et al. 2025). The selection of the most relevant mouse model 

for each disease of interest is essential for the effective translation of pre-clinical data into clinical 

populations. 

I strongly believe that this thorough multi-step preclinical evaluation of targeted disease-

relevant microbes will allow for the identification of novel microbiome-based treatment targets across 

disease contexts. However, I would caution against the premature, wide-sweeping use of probiotic 

treatments in patients without proper preclinical studies for the very same reasons I see such promise 

for personalized medicine. Where I am suggesting a very nuanced view of bacteria, highlighting 

contexts where the same microbe can be beneficial or detrimental, the current definition of 

“probiotics” makes wide-sweeping assumptions that “good bacteria” are beneficial in all contexts. Just 

as no medication is helpful in treating all diseases, no bacteria will improve symptoms in all conditions. 

In fact, there is increasing evidence to suggest that just the opposite may be true, with traditional 

probiotic species such as a number of Lactobacillus and Bifidobacteria species being elevated in patients 

with Parkinson’s disease (Romano, Savva et al. 2021, Wallen, Demirkan et al. 2022). As a research 

community, it is therefore essential that we recognize both the incredible potential of microbiome-

based therapeutics, but also the nuance and dangers of oversimplification. The microbiome has the 

capacity to influence every single cell type in the brain, allowing for targeted treatment across 

neurological conditions, however, care must be taken to ensure that species- and strain-specific effects 
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of bacteria on the brain are taken into account and each bacterial type is used in the proper clinical 

context. 
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A1.1 Abstract 

APP knock-in (KI) mice serve as an exciting new model system to understand amyloid beta 

(A) pathology, overcoming many of the limitations of previous overexpression-based model 

systems. The APPSAA mouse model (containing the humanized APP with three familial Alzheimer’s 

disease mutations) and the APPWT control (containing wildtype humanized APP) are the first 

commercially available APP KI mice within the United States. While APPSAA mice have been shown 

to develop progressive A pathology and neuroinflammation, the age at which behavioral and 

cognitive impairments begin to develop has yet to be described. Therefore, we performed an in-

depth longitudinal study over 16 months, assessing cognition in these two strains, as well as 

assessments of motor function. While no cognitive deficits are observed in either genotype 

throughout the first year of life, 16-month-old APPSAA, but not APPWT mice show initial signs of 

spatial memory decline. In addition, both genotypes display impaired motor function at the same 

age. Together, this data identifies the age-dependent tipping point where behavioral deficits appear, 

providing an essential foundation for future studies using these model systems.  

A1.2 Introduction  

 Establishing and characterizing animal models that accurately recapitulate pathological and 

behavioral outcomes of human disease remains an essential component—and limiting factor—to 

understanding disease etiology and identifying novel treatment targets. Rodent models of amyloid 

beta (A) pathology—a key hallmark of Alzheimer’s disease (AD), as well as a prominent co-

pathology in Parkinson’s disease (PD), Lewy body dementia (LBD), and other amyloid diseases—

have been utilized for decades (Gotz, Bodea et al. 2018, Myers and McGonigle 2019). These models 

have provided important insights into the role of A in neurodegeneration and other physiological 

processes. Early rodent models of A pathology were first developed by overexpressing the human 
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amyloid precursor protein (APP) gene containing highly amyloidogenic mutations associated with 

familial AD (FAD) in humans (Games, Adams et al. 1995, Hsiao, Chapman et al. 1996, Sturchler-

Pierrat, Abramowski et al. 1997). The majority of amyloid transgenic mouse models in use today 

follow a similar, overt overexpression approach, driving high expression of various combinations of 

transgenes of APP, presenilin, tau, and alpha-synuclein (Chesselet 2008, Gotz, Bodea et al. 2018). 

However, there is increasing recognition that these overexpression approaches also have a number 

of important limitations. These include random gene integration, ectopic expression, 

overrepresentation of specific splice variants, non-physiological drivers of protein expression, and an 

inability to assess transcriptional regulatory impacts on the gene of interest, all of which confound 

experimental results (Jankowsky and Zheng 2017).  

 In response to these limitations, various knock-in (KI) models of amyloid pathology have 

been created in which the murine gene of interest is knocked-out and replaced with a humanized 

transgene either at the locus itself or in trans (Kuo, Li et al. 2010, Janezic, Threlfell et al. 2013, Saito, 

Matsuba et al. 2014, Gotz, Bodea et al. 2018, Saito, Mihira et al. 2019, Sakakibara, Sekiya et al. 2019, 

Serneels, T'Syen et al. 2020, Baglietto-Vargas, Forner et al. 2021, Xia, Lianoglou et al. 2022). These 

KI models overcome many of the limitations of overexpression-based models because the 

transgenes are expressed closer to physiological levels and are driven by native promotors, 

generating much excitement within the research community (Jankowsky and Zheng 2017). The first 

commercially available KI model of A pathology in the United States, the APPSAA mouse, carries 

humanized APP with three mutations associated with FAD (the Swedish, Arctic, and Austrian 

mutations) (Xia, Lianoglou et al. 2022). The APPSAA mouse develops amyloid and tau pathology, 

neurodegeneration, neuroinflammation, and neurovascular deficits that recapitulates elements of 

human disease (Xia, Lianoglou et al. 2022, Whittaker, Akhmetova et al. 2023, Kim, Cruz et al. 2024, 

Lu, Shue et al. 2025). In addition, studies have demonstrated hyperactivity behavior at 18 months 
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(Xia, Lianoglou et al. 2022), cognitive impairments on contextual and cued fear conditioning tests at 

12-13 months (Lu, Shue et al. 2025) and object recognition and radial arm maze deficits at 7.5 

months (Whittaker, Akhmetova et al. 2023). However, it is currently unknown when these 

behavioral changes begin to develop and how they progress as pathology continues to increase. To 

address this, here we performed an in-depth, longitudinal characterization of various aspects of 

rodent behavior known to be impacted by amyloid pathology including anxiety-like behaviors, 

learning and memory, as well as motor function in APPSAA mice. These behavioral assessments were 

preformed side-by-side in APPWT mice, another under-characterized APP KI model. APPWT mice 

encode humanized, wild-type APP without any FAD mutations and have significantly less Aß 

accumulation than APPSAA mice(Lu, Shue et al. 2025). We initially predicted that both mouse strains 

would display progressive behavioral impairments due to the presence of the human APP gene, with 

the APPSAA mice displaying exacerbated impairments compared to mice harboring the wildtype 

human gene. While we observed human A accumulation in the brains of both genotypes, which 

was significantly higher in the APPSAA mice, neither strain developed progressive cognitive or motor 

deficits within the first year of life. However, APPSAA mice were found to display significant learning 

and memory deficits on the object location and Barnes maze tests at 16 months of age. In addition, 

both APP KI genotypes displayed motor impairments beginning at 16 months. This age therefore 

represents the tipping point whereby APP KI mice display age- and genotype-dependent cognitive 

impairment, an essential parameter for the study of disease modifying factors of amyloid pathology. 

A1.3 Materials and methods  

Animal husbandry. Female and male APPSAA KI (B6.Cg-Apptm1.1Dnli/J Strain #:034711) and 

APPWT KI (B6.Cg-Appem1Adiuj/J Strain #:033013) mice were acquired from Jackson Labs through 

a kind gift by Dr. Srikant Rangaraju (Emory University) and maintained as homozygotes. The 

APPSAA model was created by humanizing the Aβ region of the APP gene using R684H, F681Y, and 
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G676R mutations, then adding 3 additional FAD mutations: the KM670/671NL (Swedish) 

mutation in exon 16 as well as the E693G (Arctic) and T714I (Austrian) mutations in exon 17 (Xia, 

Lianoglou et al. 2022). The APPWT mouse contains a humanized Aß1-42 region (G601R, F606Y, 

R609H in the mouse gene, corresponding to amino acid positions 676, 681, 684 in the 

human APP locus), but no additional FAD mutations. Both genotypes were maintained on a 

C57BL/6J background. Mice were genotyped by PCR using primers and conditions per the vendor 

(Jackson Labs). Mice were housed with 2-5 sex and age matched cage mates of the same genotype 

within unenriched microisolator cages in a central, specific pathogen-free vivarium on ventilated 

racks, with food (LabDiet: 5001) and water provided ad libitum and a 12:12hr light-dark cycle. All 

animal experiments were performed during the animal’s light cycle. Animal husbandry and 

experiments were performed in accordance with AVMA guidelines and approved by the 

Institutional Animal Care and Use Committee of Emory University (PROTO201900056). 

Overview of Cognitive Behavioral Testing. Since, APPSAA mice have been shown to develop 

pathology starting at 4 months of age(Xia, Lianoglou et al. 2022) we began longitudinal cognitive 

testing monthly at 4, 5, and 6 months of age to see if early pathology would impact behavior, 

however, when no cognitive impairments were observed the duration of testing was spread out and 

repeated again on the same animals at 12 months, when previous reports(Lu, Shue et al. 2025) had 

shown deficits. Finally, to test an even later age and mitigate any potential confounds of repeat 

testing, mice were also tested cross sectionally at 2-3 months old and 16 months old. Each genotype 

and age included 9-13 mice with roughly equal numbers of males and females as indicated in the 

associated data file. At each timepoint, the following tests were performed in order: open field test, 

object location test, Y maze, and Barnes maze. Before the start of any test, mice were habituated to 

the testing room in their home cage for 1hr. All behavioral tracking and analysis was performed 

using EthoVision XT software (Noldus Information Technology, Wageningen, the Netherlands) 
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and the testing arenas/objects were cleaned between trials with 70% ethanol to eliminate olfactory 

cues. 

Open Field Test (OFT): During the OFT, mice were placed in a 45cm square open field box 

for 10 minutes while distance traveled and time spent in the center was recorded as measures of 

motor and anxiety-like behavior. Object location test (OLT): 24 hours post OFT, the OLT was run as 

described step-by-step in (Blackmer-Raynolds, Krout et al. 2024) to assess short-term spatial 

memory. Briefly, mice were placed in an open field with landmarks on 3 out of the four walls to 

allow for spatial orientation. During the initial study phase, mice were placed in the box with two 

identical copies of an object and allowed to explore freely for 10 minutes. The mice underwent a 10-

minute retention delay in their home cage before being returned to the field for 5 minutes, with one 

of the two objects placed in a new location. Object exploration was considered time spent with the 

mouse’s nose within 2cm of an object. Exploration ratio = moved object exploration/total object 

exploration. An exploration ratio significantly above chance levels of 0.5 is indicative of intact 

memory as mice generally seek out the moved object. Y-maze: Mice were then tested on the Y-maze 

to evaluate spatial working memory, as described in detail in (Blackmer-Raynolds, Krout et al. 2024). 

Mice were allowed to freely explore a Y shaped maze for 8 minutes while entries into each arm were 

recorded. Percent alternation = total alternations (consecutive entries into 3 arms before repeating 

any arms) / maximum possible alternations (total entries minus 2). Mice with intact working 

memory display higher percent alternation as mice prefer to explore previously unvisited areas. 

Barnes Maze: Barnes maze testing adapted from (Attar, Liu et al. 2013), and described in detailed in 

(Blackmer-Raynolds, Krout et al. 2024) was used to assess spatial learning and memory. Testing 

occurred on a 92cm diameter, 20 hole, Barnes maze (MazeEngineers) over a 6-day period, with one 

habituation trial, five 3-minute training trials, and a 72-hour probe trial. During habituation, mice 

were placed on the maze with bright lights and white noise (66-70 dB) playing for 20 seconds before 
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being gently guided to an escape hole leading to a dark box. Upon entry to the box, the white noise 

was turned off and the mice were allowed to rest in the escape box for 2 minutes. During each 

training trial, mice were once again placed on the maze with white noise playing and allowed to 

explore for up to 3 minutes. Upon entry into the escape box, the noise was turned off and mice 

were allowed to rest for 1 minute. Mice that did not enter the escape box after 3 minutes were 

guided to the proper hole. 72 hours after the final training trial, mice were returned to the maze with 

the escape box removed and their behavior was observed for a 90 second probe trial. Primary 

latency (time until the mouse first checked the escape hole) was recorded for each trial. During 

repeat testing, the location of the escape hole was shifted 90 degrees to prevent mice from 

remembering the previous location of the escape hole. The extra-maze cues remained the same 

throughout all testing sessions.  

Motor behavior assessments. Since motor impairments typically develop later in the progression 

of amyloid pathology (O'Leary, Mantolino et al. 2020), motor function testing was performed cross 

sectionally at 3, 12, and 16 months of age as follows. Adhesive removal: The adhesive removal test was 

performed as described in (Krout and Sampson 2024) , by placing an adhesive sticker onto the 

mouse’s nose and quantifying the time needed to remove the sticker across three consecutive trials. 

This test provides insight into both sensory perception and fine motor skills. Wirehang: The wirehang 

test was performed as described in (Sampson, Krout et al. 2024) to evaluate muscle strength and 

function. Briefly, mice were placed on a 43cm square wire screen (made up of 12 mm squares of 1 

mm diameter wire), turned upside down, and the time the mouse held onto the screen was recorded 

and averaged across three consecutive trials. Hindlimb rigidity: Hindlimb scoring was performed on a 

scale of 0-3 based on extent of hindlimb clasping adapted from (Lieu, Chinta et al. 2013) and 

described in (Sampson and Krout 2024) on two separate days by two independent scorers. Greater 

hindlimb clasping is seen in mice with motor deficits and is indicative of neurodegenerative disease 



 109 

progression.  

Tissue Collection and A Quantification. At 12 months of age, mice were humanely euthanized 

under isoflurane anesthesia and perfused with PBS. Aß levels were quantified in the hippocampus 

since this is a region known to have the highest Aß burden in APPSAA mice (Lu, Shue et al. 2025). 

Hippocampal tissue was dissected, flash frozen, and protein extracted using a two-part fractionation 

protocol (Blackmer-Raynolds and Sampson 2024). Tris soluble (1M Tris HCL, 0.5M MgCl2 and 

0.1M EDTA- pH 7.8) and Triton soluble (1% Triton-X100) fractions were run on the Meso Scale 

Discovery V-PLEX human A peptide kit (K15200E) according to the manufacture’s guidelines. 

The resulting protein values were normalized to frozen tissue weight (rather than total protein 

concentration) since the total protein volume of the less soluble fractions may be influenced by the 

amount of insoluble Aß present in the tissue. 

Statistical Analysis. As indicated in the figure legends, data are expressed as mean ± SEM. 

Statistical tests were performed using GraphPad Prism 8. Longitudinal data was analyzed using 

repeated measures one- or two-way ANOVAs and cross-sectional data was measured using standard 

ANOVAs. The OLT outcome was measured using a one sample t test compared to 0.5 chance level, 

and Barnes maze training trials were analyzed by comparing the area under the curve (AUC) from all 

five training trials. All raw numerical data are included with the manuscript as a supplemental file. 

A1.4 Results  

Limited cognitive impairment is observed longitudinally through twelve months of age. In 

order to test the hallmark, progressive, cognitive impairments observed in amyloid diseases, and 

other amyloid mouse models, we examined both APP KI genotypes across a battery of behavioral 

tests through aging. Mice were first evaluated longitudinally starting at 4 months of age (when 

pathology begins to develop in the APPSAA mice (Xia, Lianoglou et al. 2022, Kim, Cruz et al. 2024)) 

to assess whether cognitive decline develops within the first year of life. However, throughout the 
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first 12 months of age, neither genotype displayed progressive cognitive impairment on any of the 

behavioral tests (Fig. A1.1). In the object location test (OLT), the APPSAA mice maintained a 

consistent discrimination of the object in a novel location—represented by an exploration ratio 

significantly above 0.5 chance levels (Fig. A1.1 A). However, the APPWT genotype consistently 

performed no better than chance, with a trend towards novelty preference (p = 0.053) only 

appearing at 12 months (Fig. A1.1 B). This is despite no significant difference in total object 

exploration between the two genotypes at any timepoint, but a significant overall decline in object 

exploration with repeat testing in the APPWT mice at 12 months (Fig. A1.2 A).  

Similarly, in the Y-maze test of spatial working memory, we observed no progressive loss of 

working memory (indicated by a decline in percent alternation) in either genotype through 12 

months of age (Fig. A1.1 C, D). Of note, however, there was a significant negative correlation 

between percent alternation and the total number of arm entries for both genotypes, especially the 

APPSAA mice, suggesting the animal’s activity level in this specific test may confound an 

interpretation of their cognitive performance (Fig. A1.2 B-C). To determine general locomotor 

activity and evaluate potential anxiety-like behaviors that could impact cognitive outcomes, the open 

field test (OFT) was also performed. While we observed a gradual decrease in distance traveled over 

time—a common finding as animals become habituated to the repetitive testing 

environment(Bolivar, Caldarone et al. 2000)—differences in distance traveled between the two 

genotypes only appeared at 4 months of age (Fig. A1.2 D). In addition, 4-month-old APPSAA mice 

spent more time in the center during the open field compared to APPWT at the same age suggesting 

potential genotype-dependent effects in anxiety-like behavior that dissipates with age (Fig. A1.2 E).  

In the Barnes maze, both genotypes were able to quickly learn the location of the goal box 

even at 12 months of age (Fig. A1.1 E, F). In fact, mice in both genotypes showed a median primary 

latency (time to first identify the target hole) below 30 seconds (as is typically seen after successful 
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Barnes maze training (Attar, Liu et al. 2013)) within the first two training trials, suggesting that the 

mice learned the location of the goal box during habituation and the first training trail. While 

primary latency did not significantly decrease over subsequent training sessions, this is likely due to a 

plateau effect rather than a learning deficit. While repeat testing could theoretically decrease initial 

primary latency measures if mice remember the location of the escape hole from the previous test, 

no significant difference in primary latency was observed during any training trial, suggesting that the 

tests were far enough apart to not require reversal learning (Fig. A1.1 E, F). Following a 72hr 

retention interval, all ages and genotypes showed similar or improved primary latency, suggesting no 

progressive loss of memory over time (Fig. A1.1 G, H).  

To confirm the presence of increased human amyloid beta (A) in each KI model, we 

performed detergent fractionation of hippocampal tissue lysates at 12 months of age. In line with 

prior reports(Xia, Lianoglou et al. 2022, Lu, Shue et al. 2025), we observed the presence of both Tris 

soluble and detergent soluble A by ELISA, with generally increased levels in the APPSAA genotype 

(Fig. A1.1 I, J). Given the behavioral outcomes, we conclude that the presence of amyloid burden at 

this age is not sufficient to induce cognitive impairment in these hallmark behaviors. 

APPSAA mice display cognitive impairment at 16 months of age. While we did not observe 

cognitive impairment through 12 months of age, similar models can begin behavioral deficits later in 

life (Saito, Matsuba et al. 2014). We therefore performed a cross-sectional analysis between 

independent cohorts of young, 2–3-month-old APPWT and APPSAA mice compared to individuals 

aged through 16 months-old (Fig. A1.3). While 2-3 month APPSAA mice showed a clear trend 

towards a novelty preference on the OLT (p = 0.054), 16 month APPSAA mice had a novelty 

preference score that was no different than chance levels (despite spending similar time exploring 

the objects, Fig. A1.4 A), suggesting that they were no longer able to remember which object had 

been moved (Fig. A1.3 A). There was, however, still no significant difference in percent alternation 
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on the Y maze based on age or genotype (and no correlation between percent alternation and 

number of entries, Fig. A1.4 B-C), suggesting that all mice have similar working memory (Fig. A1.3 

B). Finally, in the Barnes maze, 16-month APPSAA mice showed a significant learning and memory 

deficit. Compared to both young APPSAA and 16 month APPWT mice, 16 month APPSAA mice never 

were able to learn the escape hole location, with a significantly higher training AUC than the young 

mice of either genotype (Fig. A1.3 C,D). Similarly, 16-month APPSAA mice took significantly longer 

to find the escape hole during the probe trial than the other groups (Fig A1.3 E). While the mixed-

sex cohorts used in the present study are not sufficiently powered to evaluate sex differences, 2-3 

month male APPSAA, appear to have worsened cognitive impairment compared to females, 

highlighting the need for future studies to investigate sex differences in these models (Fig A1.4 D). 

Together, these results suggest that APPSAA but not APPWT mice display cognitive deficits at 16 

months old. 

Since motor impairments are associated with the development of amyloid pathology, motor 

testing was also performed within both APP KI genotypes. Mice were tested cross-sectionally, at 3, 

12, and 16 months. While both genotypes showed intact sensorimotor function during the nasal 

adhesive removal test and motor function on the wire hang test and at 3 and 12 months, 16-month-

old mice of both genotypes show significant impairments in these behaviors (Fig. A1.4 E-F). In 

addition, APPSAA mice fell from the wirehang test more quickly than the APPWT mice at 16 months, 

suggesting a greater motor impairment in this genotype (Fig. A1.4 F). Even at 16 months neither 

genotype displayed limb rigidity on the hind limb test (Fig. A1.4 G). APPSAA mice were heavier at 16-

months of age than APPWT animals (Fig. A1.4 H-I), which may contribute to the poorer 

performance in the wirehang test. However, both animals were impaired in this test irrespective of 

body weight and body weight would not be expected to contribute to the impaired adhesive removal 

test. In the OFT, APPWT mice traveled further than the APPSAA mice, particularly at 3-month of age 
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(Fig. A1.4 J). In addition, there was a significant reduction in the total distance traveled between the 

young 2–3-month APPWT mice and the 16-month APPWT mice (Fig. A.14 J). There was, however, no 

difference in time spent in center across genotypes or ages, suggesting that anxiety-like behavior 

remains stable up to 16 months (Fig. A.14 K).  

A1.5 Discussion 

KI models, such as the APP-KI strains used in this study, represent an important tool to 

understand etiological mechanisms that underlie amyloid pathologies and therapeutic interventions 

aimed at their clearance. By removing the presence of the murine amyloid ortholog, potential 

confounding interactions between the human and murine amyloids are avoided. Transcriptional 

control by the native human promoter in these models further allows a clearer understanding of 

how amyloid proteins respond to disease-relevant insults, such as immune modulation, metabolic 

input, or environmental exposures. In order to effectively use these models, however, it is critical to 

evaluate baseline pathologies and behaviors to have a foundation to explore such perturbations.  

The two APP KI genotypes used in this study are emerging and recently described model 

systems that currently lack complete characterization. While prior studies have characterized amyloid 

pathology and neuroinflammation (Xia, Lianoglou et al. 2022, Kim, Cruz et al. 2024) and 

demonstrated behavioral abnormalities late in life in the APPSAA mice (Xia, Lianoglou et al. 2022, 

Whittaker, Akhmetova et al. 2023, Lu, Shue et al. 2025), to our knowledge, there is no published 

dataset on the age-related development and progression of cognitive behaviors of either KI 

genotype. We therefore set out to identify a behavioral “tipping point,” an age where these 

genotypes began to show cognitive impairment or an age where the more pathogenic APPSAA 

genotype separated behaviorally from the APPWT genotype. Such a timepoint is important for timing 

potential interventions that seek to accelerate or diminish disease outcomes, directly test etiological 

contributions, or evaluate therapeutic interventions.  
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APPSAA mice have been reported to display progressive amyloid pathology and 

neuroinflammation starting at 4 months of age (Xia, Lianoglou et al. 2022, Kim, Cruz et al. 2024). 

We therefore hypothesized that these mice would display cognitive impairment as pathology 

progressed. However, despite assessing behaviors longitudinally for 12 months and confirming the 

presence of human A accumulation in both mouse models, we were unable to detect progressive 

cognitive impairment in either genotype within the first year. This stands in contrast to previously 

published papers showing deficits on the radial arm maze and object recognition test in APPSAA mice 

at 7.5 months(Whittaker, Akhmetova et al. 2023) and in cued fear conditioning in APPSAA and 

contextual fear conditioning tests in both genotypes at 12-13.5 months old compared to WT 

C57BL/6J controls (Lu, Shue et al. 2025). This discrepancy is likely due to differences in the 

cognitive tests performed and overall experimental design. In the present study, our main goal was 

to identify the age at which cognitive decline develops in each genotype, so comparisons were made 

within the same mice at various timepoints rather than across genotypes. This allows us to identify 

an age-related tipping point within a single genotype/animal but may be less sensitive to subtle 

genotype dependent differences in cognitive performance compared to WT animals. In addition, 

using a repeated measures design may mask subtle cognitive deficits, as mice may have an easier time 

with a task that they have performed before. However, even at the youngest ages and within the 

APPWT genotype where no cognitive impairment is expected, repeat testing did not result in 

significantly improved performance on any of the cognitive tests. In fact, the only cognitive test that 

showed improvement was the 12 month APPSAA Barnes maze probe trial, further emphasizing that 

these mice have intact cognition at this age.  

While we were unable to detect significant age-related cognitive decline in the first year of 

life, each genotype displayed significant behavioral impairments at 16 months of age. Both 

genotypes showed significant motor deficits on the wire hang and adhesive removal test, suggesting 
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that the human APP KI is sufficient to modulate motor outcomes at this age, regardless of the 

presence of FAD mutations. In addition, 16-month-old APPSAA, but not APPWT mice displayed 

spatial memory and learning deficits on the OLT and Barnes maze tests. Of note, however, all of 

these tests were performed cross sectionally rather than longitudinally, so it is difficult to directly 

compare these results to those of previous ages. Nevertheless, these results suggest that 16 months 

likely represents the age at which age- and genotype-dependent behavioral deficits associated with 

amyloid disease manifest in these mice. While a subtle exacerbation of cognitive impairment on the 

Barnes maze is observed in 2-3 month male APPSAA compared to females, the mixed-sex cohorts 

used in the present study were not sufficiently powered to reasonably detect sex differences. This 

stands in contrast to a recently published study showing contextual and cued fear conditioning 

deficits in female, but not male mice at 12-13.5 months of age (Lu, Shue et al. 2025), highlighting the 

need for future studies to further evaluate sex differences in these models. 

Of note, the APPWT mice performed at chance levels on the OLT at all timepoints, 

suggesting possible behavioral abnormalities even in young mice. While the APPWT mouse is 

considered a control for the APPSAA genotype, they are themselves a KI model and therefore may 

display their own behavioral deficits caused by the insertion of the wildtype humanized APP gene. 

However, lack of observable cognitive deficits on the other cognitive tests, suggests that this deficit 

is either very specific to the type of short-term object location memory tested, or is due to a 

confounding variable such as differences in motivation, hyperactivity, or visual acuity. Indeed, 2–3-

month-old APPWT mice display increased distance traveled on the OFT compared to APPSAA mice. 

While this trend remains at 16 months of age, there is a significant decrease in distance traveled in 

the APPWT mice with age, perhaps explaining why the older APPWT mice have OLT discrimination 

ratios that are almost significantly above chance levels. Together, these results suggest that OLT may 

not be a suitable test for evaluating cognitive decline in APPWT mice. Use of cognitive test that are 
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not shaped by hyperactivity would allow for a more accurate evaluation of age-related cognitive 

performance in this model. 

We appreciate that tests of murine cognitive function have a number of caveats, including 

environmental variability, as well as potential confounding effects of anxiety-like behavior and motor 

attributes. Nonetheless, the behavioral tests utilized in this study are well-evaluated to identify 

cognitive impairments across a range of AD models (Webster, Bachstetter et al. 2014). When used in 

combination with measures of anxiety-like behavior and motor functions, these tests provide 

important insights into age-related cognitive impairment within these models that can be 

qualitatively compared to other more established mouse models. Within established APP KI models, 

there is considerable variability in the age of cognitive decline depending on the presence of specific 

FAD mutations. For example, the APPNL-G-F model (containing the Swedish, Iberian, and Artic 

mutations) has been shown to display cognitive impairment on the Y maze starting at 6 months of 

age, but the APPNL-F model (containing only the Swedish and Iberian mutations) does not show 

impairment in this test until 18 months (Saito, Matsuba et al. 2014). While the APPSAA model 

contains the Swedish and Artic mutations like the APPNL-G-F model, the presence of the Austrian 

mutation, rather than the Iberian mutation, may impact the age of onset for cognitive decline, which 

we observe at 16 months of age. While cognitive decline was not observed in APPWT mice at 16 

months of age, it is possible that cognitive impairment could appear in this model at even later ages 

or with more sensitive tests. For example, contextual fear conditioning deficits have been reported 

in 12-13.5 month old APPWT mice (Lu, Shue et al. 2025). Wildtype C57BL/6J mice are reported to 

display cognitive and motor impairments at 18-20 months of age, so it is possible that the APPWT 

mice will not begin to show more striking cognitive deficits in other behavioral paradigms until this 

age (Benice, Rizk et al. 2006, Barreto, Huang et al. 2010, Justice, Carter et al. 2014).  

No single AD mouse model can fully recapitulate the human condition; however, when 
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properly characterized, model systems are essential tools to address specific biological and 

translational questions. The present study provides a longitudinal characterization of the behavioral 

phenotypes of APPSAA and APPWT mice in a mixed-sex cohort over the course of 16 months, 

providing foundational behavioral data to inform future work. We have identified an age at which 

APPSAA mice show significant cognitive decline compared to APPWT mice, providing a critical 

behavioral window for studies designed to limit or exacerbate behavioral defects. Further, we have 

identified age-related motor dysfunctions in both mouse models that will be important to consider 

both in the interpretation of cognitive behaviors and in the study of co-morbidities of amyloid 

diseases. Future studies into how various insults shape pathological and behavioral outcomes in 

these relevant A-dependent mouse models will provide substantial insights into how various 

factors interact to promote disease.  
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A.1.7 Figures 

 
 

Figure A1.1. APP-KI mice do not show progressive cognitive impairment through 12 months 
of age. Male and female APPSAA (A,C,E,G) and APPWT (B,D,F,H) mice were tested longitudinally 
from 4 through 12 month (m) of age, at the indicated time points across a battery of cognitive 
behavior tests. (A,B) Exploration ratio in the object location test (OLT). (C,D) Percent alternation 
in the Y-maze. (E,F) Barnes maze performance during longitudinal training period and (G,H) 72 h 
probe trial. (I,J) Tris soluble and Triton soluble hippocampal Aß analyzed by multiplex ELISA. (I) 
Total Aβ including Aβ38, Aβ40, and Aβ42 (J) Aβ 42:40 ratio. A significant genotype by solubility 
interaction effect was observed in Aβ 42:40 ratio (p=0.0297). Points represent individuals (excluding 
(e,f) where points represent the group mean), bars represent the mean±SEM. n=10–11 APPWT and 
13 APPSAA for (A-h) and n=4 for (I-J). Data analyzed by one sample t test compared to 0.5 chance 
level for (A-B) repeated measures ANOVA and Dunnett’s multiple comparisons test to compare 
each age to 4 m timepoint (C-H) and 2-way ANOVA with Fisher’s LSD post-hoc tests (I-J). 
*p≤0.05; **p≤0.01; ***p≤0.001. 
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Figure A1.2. Limited behavioral abnormalities appear in APP-KI mice through 12 months of 
age. A) Total object exploration during OLT. B, C) Correlation between number of entries and 
percent alternation during the Y maze for APPWT (B) and APPSAA (C) mice respectively. D, E) Male 
and female APPSAA and APPWT mice were tested longitudinally on the open field test from 4-12 
months (m) of age. D) Total distance traveled and E) time spent in center during 10-minute testing 
period. Points represent individuals, bars represent the mean and SEM. n= 10-11 APPWT and 13 
APPSAA for A, D, & E. Data analyzed with a 2-way ANOVA with Fisher’s LSD post hoc test for A, 
D, & E and simple linear regression for B-C. *p≤0.05; **p≤0.01; ***p≤0.001 compared to 4m 
APPWT mice. +p≤0.05; ++p≤0.01;+++p≤0.001, ++++p≤0.0001 compared to 4m APPSAA. 
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Figure A1.3. APPSAA but not APPWT mice show spatial learning and memory deficits at 16 
months of age. Young (2–3-month-old) and 16-month-old male and female APPSAA and APPWT 
mice were tested cross sectionally on a range of cognitive tests. (A) Exploration ratio in the object 
location test (OLT). (B) Percent alternation in the Y-maze. (C-E) Barnes maze performance during 
longitudinal training period showing both (C) primary latency and (D) area under the curve (AUC). 
(E) 72 h probe trial primary latency. Points represent individuals (excluding C, where points 
represent the group mean), bars represent the mean and SEM. n=9–12 APPWT and 9–13 APPSAA. 
Data analyzed by one sample t test compared to 0.5 chance level for (A), 2-way ANOVA with 
Fisher’s LSD post hoc test for (B,D and E). *p≤0.05; **p≤0.01. 
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Figure A1.4. APP-KI mice show age related motor impairments regardless of genotype. Male 
and female APPSAA and APPWT mice were tested cross sectionally at 2-3, 12, and 16 months (m) of 
age. A) Total object exploration during OLT. B,C) Correlation between number of entries and 
percent alternation during the Y maze for APPWT (B) and APPSAA (C). D) Primary latency in the 
Barnes maze, from Figure A1.3E, separated by biological sex. E) Time to remove a nasal adhesive in 
sticker removal test. F) Time to fall on the wire hang test. G) Hanging Impulse score. H) Hindlimb 
rigidity score. I, J) Body weight of female (I) and male (J) mice at 12 and 16m of age. K) Distance 
traveled and L) time spent in center during open field test. Points represent individuals, bars 
represent the mean and SEM. n= 7-11 APPWT and 8-13 APPSAA. Data analyzed by 2-way ANOVA 
with Fisher’s LSD post-hoc tests comparing each genotype and age (or sex) for A, D-K and simple 
linear regression for B-C. *p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 
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