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Abstract

Detection of Adverse Events in Pregnancy Using a Low-Cost 1D Doppler
Ultrasound Signal

By Nasim Katebijahromi

Fetal maternal mortality is an enormous global health challenge, affecting over 2.6
million families annually. The burden is most heavily felt in low-and middle-income
countries (LMICs) due to systemic healthcare issues related to inequity, limited fund-
ing for medical technology, and poor infrastructure for delivering and maintaining
technology. Fetal growth restriction is increasingly recognized as an important con-
tributor to fetal health problems in LMICs. One of the effective approaches to detect
fetal developmental issues is tracking fetal heart rate variability (FHRV). FHRV is
also an indicator of fetal brain development since it is influenced by the autonomic
nervous system, which evolves during pregnancy. Therefor, accurate estimation of
gestational age using FHRV patterns could help to detect fetal brain developmental
issues and potential cases of small for gestational age. This thesis aims to enhance
fetal health monitoring for disadvantaged populations by developing AI-enabled edge
computing devices which are intuitive to use even for low-literacy populations. Specif-
ically, this work presented machine learning methods to analyze one-dimension fetal
Doppler ultrasound signals (1D-DUS), which have been collected using a low-cost
mobile health system.

Developing accurate models to capture the underlying dynamic of 1D-DUS is a
challenging task. Since 1D-DUS is nonstationary, highly susceptible to noise and
movement, and has a transient nature. Using additional device for recording another
data modality or labels of the beat intervals can mitigate the effect of highly vari-
able morphology. However, these solutions significantly complicate the use and raise
the cost of the smartphone-mediated perinatal screening system. Therefore, this the-
sis aimed to underline the importance of taking challenges in LMICs into account
for developing accurate machine learning methods and addressed the challenges via
two approaches: 1) developing an unsupervised probabilistic segmentation method
to estimate FHRV metrics from 1D-DUS recordings. 2) Developing a deep sequence
learning model with an attention mechanism for automatic feature extraction and
estimation of fetal gestational age. This model is the first attempt to estimate ges-
tational age from only Doppler signals and outperforms previous attempts based on
multiple signals. The developed methods will ultimately run on-device and interact
with the healthcare workers or mothers directly. This work could assist traditional
birth attendants in rural areas with a decision support system to identify patients
with possible pregnancy-related abnormalities for early triage and intervention.
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Chapter 1

Introduction

This thesis contributes to approaches for enhancing healthcare in disadvantaged pop-

ulations by developing AI-enabled edge computing devices that are intuitive to use,

even for low-literacy populations. In particular, this work focuses on improving fetal-

maternal monitoring for rural pregnant disparity populations in highland Guatemala,

where one-dimensional Doppler ultrasound (1D-DUS) recordings have been collected

over the last five years using a low-cost device [237]. There are a lot of studies on fetal

cardiac signals in the field, however most of them are not suitable for low-resource

settings. This thesis proposes methods based on issues identified during pilot research

and a randomized control trial [166, 165, 237, 234, 237]. The developed algorithms

will ultimately run on-device and interact with the healthcare workers or mothers

directly.

1.1 Motivation

Fetal maternal mortality is an enormous global health challenge, affecting over 2.6

million families annually [38, 148]. The burden is most heavily felt in low-middle

income countries (LMICs) where 98% of total perinatal deaths occur [284]. Among

LMICs, Guatemala suffers one of the highest rates of perinatal morbidity and mor-
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tality in Latin America which is reported as 73 deaths per 100,000 live births. This

rate can more than double among rural indigenous women, particularly the Mayan

population. [243]. Alarmingly, major causes of fetal maternal deaths in low resource

regions are preventable by addressing inequalities and discrimination in healthcare

system that affect maternity care. There are major factors that perpetuate the high

perinatal mortality rates in these areas such as chronic health problems, a lack of

knowledge about obstetric danger signs and a lack of access to professional medical

care and routine perinatal screening due to economic status, language, and culture.

Therefore, home delivery with the assistance of traditional birth attendants (TBAs)

is common and lack of specialized training of TBAs leads to ineffective detection of

fetal maternal compromise [122, 165].

In LMICs, fetal developmental issues, specifically, intrauterine growth restriction

(IUGR) is known to be the most prevalent fetal complication [151]. In high-income

countries, obstetricians detect suspicious cases of IUGR by Doppler ultrasound imag-

ing [154]. However, the cost of purchase, the technical skills required for maintenance

and the user-dependent accuracy have limited the application of this technique in

resource-limited settings [189]. Therefore, the need for low cost and accurate mon-

itoring and diagnostics system is acute, particularly in low resource regions of the

world.

One of the strategies identified as being crucial for the detection of fetal health

problems and as an indicator for fetal development is cardiac assessment [196]. As

previous studies have reported, fetal heart rate variability (FHRV) is associated with

development of fetal autonomic nervous system (ANS) and helps to detect IUGR

[238, 110, 240, 248, 171, 170].

An affordable fetal monitoring system was introduced by Stroux et al. [237] to

assist TBAs in rural areas of Guatemala. The mhealth monitoring system consists

of a low-cost 1D Doppler transducer connected to a smartphone and a standard
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oscillometric blood pressure monitor. The app guides the user to record the data by

helping to find the fetus and to record fetal cardiac activity. The app also guides

the user through a checklist - the Pregnancy Risk Assessment Monitoring System

(PRAMS) [48]. This is presented to the TBA through culturally appropriate pictures

and audio prompts in the local language to help to identify concerning signs and

symptoms during pregnancy. User responses are combined with the results of the

blood pressure readings and Doppler recording analysis to identify concerning signs

and symptoms during pregnancy and then provide an alert to a healthcare worker for

decisions on appropriate interventions.

Doppler transducer has the capability of capturing the flow of blood through

the heart’s chambers and valves which conveys important information regarding the

hemodynamic status and cardiovascular adaptation of a fetus in the face of several

perinatal complications. Previous studies used signal processing techniques to esti-

mate beat-to-beat variability and extract the characteristics of the 1D-DUS signal.

Hence, the location of the beats was determined by hand labeling or providing si-

multaneous recordings. While additional recording technique enhances the analysis,

it is not suitable for the application of interest due to increasing the complication

and raising the cost of the screening system. Furthermore, manual identification of

the cardiac valve timings is time-consuming, requires special expertise, and is subject

to visual errors. Furthermore, 1D-DUS signal is nonstationary, highly susceptible to

noise, and has a transient nature which complicates the extraction of the information.

As such, improved approaches for automatic feature extraction and modeling were

investigated in this research.
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1.2 Aim of this thesis

This thesis aims to provide methods for automatic fetal 1D-DUS feature extraction

and detection of adverse events in pregnancy. To this end, signal processing and

machine learning techniques were used to learn the underlying dynamics in fetal

cardiac activity. To achieve our final aim, the following novel research was performed:

• A method to segment the 1D-DUS signal in an unsupervised manner and ex-

tract fetal heart rate variability metrics enabling by hidden semi-Markov model.

The proposed probabilistic segmentation method employs envelope and spec-

tral features as input of data transformation block which includes time-delay

embedding and kernel density estimation to reduce the variability while keeping

useful information in state transitions. The beat onsets and fetal cardiac beat-

to-beat intervals were estimated from the segmentation results. Comparison of

heart rate variability metrics estimated from 1D-DUS and fetal electrocardio-

gram shows the effectiveness of the presented model.

• A method to estimate gestational age using deep sequence learning model con-

sists of convolutional Long short-term memory networks. Time-frequency fea-

tures were extracted from Doppler signals and regularized before feeding to

the network. The presented work is the first attempt to estimate gestational

age from only Doppler signals, and outperforms previous attempts based on

multiple signals.

• A method to detect noisy gestational age labels recorded in Guatemala site

based on multiple observation fusion. The proposed label evaluation metric

gives insight to improve the fetal monitoring system and helps to improve the

analysis by using training strategies to learn from noisy labels.

• A method for learning hierarchical relationship in cardiac signal to estimate ges-
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tational age. This model incorporates the information in long-term and short-

term fetal cardiac activity. The training strategies to increase the generalization

on less frequent labels helped to improve the results.

1.3 Thesis outline

This thesis comprises seven chapters besides this introduction, all of which (except

for the conclusion) have been published or are under review in key journals and

conferences in the field (see section 1.4).

Chapter 2 presents the background of this thesis. The chapter reviews the fetal

cardiac monitoring approaches in LMICs. Then, the chapter describes the limitations

and challenges of using medical technologies in low-resource settings. The chapter

concludes by introducing low-cost mobile health technologies to overcome LMICs

barriers.

Chapter 3 provides the details of data collection and labeling process. Then, the

chapter introduces the GUI used for annotating the quality and beats of the fetal

cardiac signals.

Chapter 4 presents the unsupervised segmentation method to estimate fetal heart

rate variability. This chapter also introduces data transformation method based on

time-delay embedding to reduce the effect of signal variability in the segmentation

part of the model.

Chapter 5 proposes a deep learning approach for automatic extraction of dis-

criminative information from 1D-DUS signals. This chapter presented an end-to-end

training of the network to map the generated time-frequency features to the gesta-

tional age labels.

Chapter 6 provides a method to evaluate the quality of the recorded gestational

age labels. Then this chapter provides the analysis of the defined error based on
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variables of the study.

Chapter 7 extends the method introduced in Chapter 5 by presenting an approach

to estimate gestational age using the deep hierarchical attention network.

Finally, Chapter 8 presents a summary of contributions, limitations, and possible

future work.

1.4 List of publication

Work in this thesis has been published in the following journals and conference:

• Valderrama C. E., Katebi, N., Marzbanrad, F., Rohloff, P., Clifford G. D. A

review of fetal monitoring for well-being assessment, with a focus on low-and

middle-income countries. Physiological Measurement. 2020 Oct 26.

(This publication appears in its entirety in Chapter 2)

• Valderrama C. E., Marzbanrad F., Stroux L., Martinez B., Hall-Clifford R., Liu

C., Katebi N., Rohloff P., Clifford G. D. Improving the quality of point of care

diagnostics with real-time machine learning in low literacy LMIC settings. In

Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable

Societies 2018 Jun 20 (pp. 1-11).

(This publication appears in Chapter 3).

• Valderrama C. E., Stroux L., Katebi N., Paljug E., Hall-Clifford R., Rohloff P.,

Marzbanrad F., Clifford G. D. An open source autocorrelation-based method

for fetal heart rate estimation from one-dimensional Doppler ultrasound. Phys-

iological Measurement. 2019 Feb 25;40(2):025005. (This publication appears in

Chapter 3).

• Katebi N., Marzbanrad F., Stroux L., Valderrama C. E., Clifford G. D. Un-

supervised hidden semi-Markov model for automatic beat onset detection in
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1D Doppler ultrasound. Physiological Measurement. 2020 Sep 4;41(8):085007.

(This publication appears in its entirety in Chapter 4).

• Katebi N., Sameni R., Clifford G. D. Deep Sequence Learning for Accurate

Gestational Age Estimation from a $25 Doppler Device. ML4H 2020, NeurIPS

2020, December 11, 2020. (This publication appears in its entirety in Chapter

5).

• Katebi N., Sameni R., Clifford G. D. Detection and relabeling of noisy ges-

tational age recordings. (In submission to Physiological Measurment) (This

publication appears in Chapter 6).

• Katebi N., Sameni R., Clifford G. D. Hierarchical attention network for ges-

tational age estimation. (In submission to IEEE Transactions on Biomedical

Engineering) (This publication appears in Chapter 7).
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Chapter 2

A review of fetal cardiac

monitoring, with a focus on

low-and middle-income countries 1

2.1 Abstract

There is limited evidence regarding the utility of fetal monitoring during pregnancy,

particularly during labor and delivery. High income countries rely on consensus ‘best

practices’ of obstetrics and gynecology professional societies to guide their protocols

and policies. Protocols are often driven by the desire to be as safe as possible and

avoid litigation, regardless of the cost of downstream treatment. In high-resource

settings, there may be a justification for this approach. In low-resource settings, in

particular, interventions can be costly and lead to adverse outcomes in subsequent

pregnancies. Therefore, it is essential to consider the evidence and cost of different

fetal monitoring approaches, particularly in the context of treatment and care in

low-to-middle income countries.

1© Institute of Physics and Engineering in Medicine. Reproduced with permission. All rights
reserved (https://iopscience.iop.org/article/10.1088/1361-6579/abc4c7).

https://iopscience.iop.org/article/10.1088/1361-6579/abc4c7
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This chapter includes the standard methods used for fetal monitoring, with par-

ticular emphasis on fetal cardiac assessment which is a reliable indicator of fetal

well-being. An overview of fetal monitoring practices in low-to-middle income coun-

ties, including perinatal care access challenges, is also presented. Finally, an overview

of how mobile technology may help reduce barriers to perinatal care access in low-

resource settings is provided.

2.2 Introduction

Perinatal complications account for 40% of the perinatal and maternal deaths world-

wide [272]. Low-and middle-income countries (LMICs) contribute approximately 90%

of total births, and 98% of the total perinatal deaths [268, 213, 38, 262].

The perinatal mortality rate is defined as the sum of the number of stillbirths

and deaths occurring during the first seven days of life, per 1000 live births. In 2018,

this rate stood at 19 per 1000 in LMICs, whereas in upper-middle and high-income

countries, there was an average of seven and three deaths per 1000 live births, respec-

tively [244]. The highest perinatal mortality rates have been reported for countries

in Sub-Saharan Africa and South-Asia (28% and 26%, respectively) [244] and may

be underreported [155, 195]. At the beginning of the twentieth century, the perinatal

mortality rate in high-income countries (HIC) was as alarmingly high as it currently

is in LMICs, but was effectively reduced by the expansion of antenatal care coverage,

extended indications for Cesarean sections, and the introduction of perinatal screen-

ing technologies (cardiotocography (CTG), ultrasound, amnioscopy, amniocentesis,

and pH-meter) [69, 149, 78, 93].

The most common causes of perinatal deaths are preterm birth-related complica-

tions (35%), intrapartum-related events (24%), and sepsis (15%) [243]. Studies con-

ducted in LMICs have reported significant issues with prematurity, birth asphyxia,
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maternal hypertensive disorders, and septicemia being the most common causes of

perinatal death [10, 157]. Fetuses and newborns are also disproportionately affected

by infections, including syphilis, malaria, and animal and vector-borne diseases, lead-

ing to elevated mortality and morbidity [101, 91].

Asphyxia, one of the most common causes of death during childbirth [90, 149, 260,

257], involves oxygen deprivation arising from obstruction of the placental blood flow,

which may be rooted in maternal pre-eclampsia, placental abruption, or umbilical cord

accident. The high death rate associated with asphyxia is mainly due to poor delivery

management. Signs of asphyxia can be identified via fetal heart rate monitoring [76],

and timely detection and intervention can reduce the risk of irreversible organ damage

and identify cases requiring rapid deliveries [91]. However, this basic monitoring

procedure is not often practiced in LMICs.

Low birth weight (LBW), common among preterm (<37 weeks) or small-for-

gestational-age (SGA) babies, is documented in 70-80% of the perinatal deaths [146,

10, 157]. In LMICs, approximately 60% of LBW newborns are SGA [151], which, in

these countries, is often ascribed to intrauterine growth restriction (IUGR) [63, 151].

IUGR can develop as a consequence of maternal vascular problems, malnutrition, or

placental malfunction [282].

While fetal cardiac assessment has been in use over the past four decades to

diagnose, monitor, or predict adverse fetal conditions throughout pregnancy [154,

273], there is still insufficient evidence with regards to its contribution to improved

perinatal outcomes [221]. As a result, the World Health Organization (WHO) does

not currently recommend continuous cardiotocography during labor for assessment of

fetal well-being in healthy pregnant women undergoing spontaneous labor, but rather

a periodic point of care auscultation [275].

To explore the potential future directions for fetal monitoring in low-resource set-

tings, this review presents an insight into fetal cardiac assessment, briefly explaining
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the affordability and applicability to each stage of pregnancy. Finally, we provide an

overview of how mobile technology may reduce barriers to access perinatal care in

poor-resource settings.

2.3 Fetal cardiac circulation

The human heart develops within the first six weeks of gestation [88], with the major-

ity of its functionality achieved by the eighth week of gestation [19]. The development

begins with a primary heart tube, which evolves into the four-chambered adult heart

structure, composed of two atria and two ventricles. Fetal circulation is unique in

that blood is oxygenated in the placenta rather than in the lungs [231].

The oxygenated blood from the placenta (umbilical vein) flows into the fetal liver

and later, the inferior vena cava via the ductus venosus. On the one hand, the

majority of oxygenated blood flows directly from the right atrium to the left atrium

through the foramen ovale, and subsequently to the left ventricular to be pumped to

the aorta [231, 82]. On the other hand, the remaining oxygenated blood passes from

the right atrium to the right ventricle and subsequently to the pulmonary vein. As

fetal lungs are non-functional, a significant percentage of the blood in the pulmonary

vein passes into the aorta via the ductus arteriosus [231]. The blood sent to the aorta

circulates to the fetal brain and tissues. Finally, deoxygenated blood is transported

to the placenta via two umbilical arteries [82]. After birth, the foramen ovale closes,

resulting in occlusion of the ductus venosus and arteriosus, and to the separation of

the pulmonary and circulatory functionalities [231].

2.3.1 Control of fetal heart rate

The fetal heart rate (FHR) represents the reciprocal of the interval between two

successive fetal heartbeats. The heartbeats are controlled by cardiac muscle cells
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located in the myocardium [231]. The cardiac cells are categorized as myocardial

contractile cells and myocardial conductive cells. The contractile cells stimulate the

contractions required to pump blood throughout the body, whereas the conductive

cells are the autorhythmic cells responsible for the heart’s electrical activity.

The majority of the conducting cells are located in the sinoatrial node (SAN), also

called the pacemaker. The SAN initiates action potentials, resulting in the contraction

of the atria at the onset of systole [231]. The action potential is propagated via the

atrioventricular (AV) node to the bundle branches and Purkinje fibers located within

the ventricular walls. This impulse initiates ventricular contractility, which, in turn,

pumps blood to the pulmonary veins and the aorta, to mark the end of systole. The

impulse then leaves the ventricles, marking the onset of diastole, during which the

ventricular walls are repolarized. The electrical and mechanical events of a heart

contraction generate the cardiac cycle, which is measured as the number of beats per

minute (bpm).

Throughout pregnancy, the pace of fetal cardiac activity is controlled by the au-

tonomic nervous system (ANS), baroreceptors, and chemoreceptors [82]. The ANS

is comprised of the sympathetic and parasympathetic nervous systems. The sympa-

thetic system accelerates the heart’s electrical activity, yielding a faster FHR. The

parasympathetic system, on the other hand, has the opposite effect on the FHR.

The balance between the sympathetic and parasympathetic nervous systems sets

the baseline of the heart rate. However, as the sympathetic system matures earlier

than the parasympathetic system, the FHR is higher in the first months of gesta-

tion. At 15 weeks gestation, the average FHR is 60 bpm. With the advancement of

pregnancy, and the evolvement of the parasympathetic system, the FHR increases to

approximately 110-160 bpm [197].

Figure 2.1 illustrates how the sympathetic and parasympathetic systems affect

the FHR across gestation, as reported by [258]. On analysis of traces of 61 healthy
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Figure 2.1: Illustration of the variation in FHR during gestation weeks 22-38. Note that
the vertical axis has an arbitrary offset. FHR drops by about 15 bpm from week 25 to week
40 of gestation [128]. Adapted from [258]. © Elsevier Inc. All rights reserved.

pregnant women, a short-term increase in FHR variability during the last trimester

was noted. In contrast, long-term variability in FHR was most pronounced during

the early gestational period.

The other two mechanisms that regulate the fetal heart rate are the baroreceptors

and chemoreceptors. Barocepters are located in the aortic arch, carotid arteries, and

brain stem. When blood pressure increases, baroreceptors signal the vagal nerve to

slow down the heart rate, which then reduces blood pressure. In response to the blood

pressure decrease, baroreceptors reduce the parasympathetic tone and stimulate an

increase in the fetal heart rate and blood pressure.

The chemoreceptors, found in the aorta, carotid artery, and brain stem, impact

the fetal heart rate via its oxygen level-sensing capacities. When the oxygen level

decreases, the FHR is accelerated to increase the oxygen input rate from the placenta.

However, when the oxygen level reduction is abrupt (hypoxemia), the chemoreceptors

trigger a vagal response, resulting in a reduction in heart rate and an increment in

blood pressure.
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2.4 Fetal heart monitoring techniques

Fetal heart monitoring technologies can be categorized as either intermittent auscul-

tation (IA) or electronic fetal monitoring (EFM) methods. IA techniques focus on

verifying fetal cardiac performance by counting the number of beats over short peri-

ods, most commonly measured with a Pinard fetoscope, DeLee fetoscope, or hand-

held Doppler device [39]. EFM methods identify fetal stress or distress based on FHR

variability, commonly performed via cardiotocography (CTG) [177]. It provides con-

tinuous information on the FHR, for a period of 10-60 minutes, using autocorrelation

to obtain the average FHR over a specific window, which is generally every 3.75 s

[168].

EFM techniques can be categorized into invasive and non-invasive methods. In

the invasive mode, the fetal electrocardiogram (fECG) is taken directly from the fe-

tal scalp [25]. Although the invasive technique is more accurate than non-invasive

modalities, its use is limited to the intrapartum period, when the membranes are

ruptured. In contrast, non-invasive methods are only employed during the ante-

natal period. Non-invasive methods extensively described in the literature include

CTG, abdominal fECG, phonocardiography (fPCG), and fetal magnetocardiography

(fMCG) [84, 207, 267, 23, 2].

2.4.1 Fetal phonocardiogram

The fetal phonocardiogram (fPCG) is an electronic extension of the Pinard and DeLee

stethoscopes. Similar to the stethoscope, fPCG is an IA technique in which a mi-

crophone is placed on the maternal abdomen to listen to fetal heart sounds [207].

The audible heart sounds correspond to the closure of the fetal valves during the

cardiac cycle [139]. The closure of the mitral and tricuspid valves generates a sound

called S1, and the closure of the semilunar valves (pulmonary and aorta) generates a
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sound called S2. Both S1 and S2 have low acoustic energy and are affected by noises

such as environmental noise, as well as other maternal and fetal physiological sounds,

such as breathing, fetal movements, and maternal circulation [253]. The technique

can extract cardiac timing and intensity of fetal heart sounds, which can carry useful

diagnostic information [2].

The fPCG can be used during the antepartum phase (gestational week ≥ 24)

[253]. Although fPCG is an alternative to the traditional ultrasound used in perinatal

management [100], it is underutilized [2] and suffers from significant challenges related

to signal acquisition and processing. Further research is needed to improve fPCG to

compete with standard fetal monitoring methods, i.e., CTG and ultrasound imaging.

2.4.2 One-dimensional Doppler ultrasound

One-dimensional Doppler ultrasound (1D-DUS) estimates FHR by measuring the

Doppler shift between ultrasound beams transmitted and received from the mechan-

ical heart movements and blood flow. The Doppler magnitude frequency shift fD, is

described as [136]:

fD =
2fo
c
V cos θ, (2.1)

where fD is the measured change in frequency (Hz), fo the frequency of emitted

ultrasound transducer in Hz, c the speed of sound in soft tissue in m/s, V the velocity

of the reflecting interface in m/s and θ is the angle between the ultrasound beam and

the surface in radians.

The transmitted beam travels across various anatomical structures, from the skin

surface, through the maternal skin and subcutaneous tissue, and then finally reaches

the uterine muscles, the amniotic sac, and the fetal heart [163]. The fetal heart

movement reflects the ultrasound beam, and propagates the ultrasound waves in the

reverse order. The distance between the DUS transducer and fetal heart depends
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on the maternal phenotype, which varies among nationalities [269], socioeconomic

status, as well as body mass index [179].

The shifted Doppler frequency is usually demodulated via the phase-quadrature

demodulation, in which the received signals are mixed with the carrier signals sin 2πfot

and cos 2πfot [72]. The demodulated signal is then autocorrelated to estimate the

cycle period of the heartbeat rhythm [219].

Doppler ultrasound includes two different modes - the continuous wave (CW) and

the pulsed-wave (PW). In CW, two piezoelectric crystals continuously monitor the

reflection of the emitted wave. In PW, one piezoelectric crystal alternates between

sending and receiving the sound waves. The dual functionality of CW Doppler enables

the measurement of higher velocities. However, as velocities are measured in the same

line of interrogation, it is impossible to know the origin of the velocity. In contrast,

PW measures slower velocities, but the emitted sound waves are associated with the

received waves, thus enabling the detection of the structure’s distance reflecting the

wave.

CW is primarily integrated in hand-held Doppler transducers, while PW is used

in standard CTG machines. Hand-held Doppler transducers are used during the

intrapartum and antepartum periods after the 20th gestational week, to measure

heart rate variability metrics as an indication of fetal wellbeing.

[158] carried out a randomized, controlled trial that showed that fetal monitor-

ing using hand-held DUS transducers could detect a similar number of prolonged or

late decelerations as ultrasonography. Additionally, the hand-held Doppler devices

detected a substantially larger number of late and prolonged decelerations than the

Pinard stethoscope. The potential of hand-held Doppler devices has also been re-

ported by [66], following a randomized controlled study that demonstrated that they

provide the same level of safety for screening and monitoring as cardiotocography in

low-risk pregnancies.



17

2.4.3 Cardiotocography

Cardiotocography (CTG) is the simultaneous and continuous measurement of FHR

and uterine pressure, often detected as uterine contractions (UC), and is a standard

method for assessment of fetal wellbeing [98]. To record the FHR, the medical as-

sistant applies a gel on the maternal abdomen and the ultrasound transducer. The

transducer is moved across the maternal abdomen while the technician listens for

an audible version of the Doppler signal, in an attempt to identify the spot with

maximum fetal heart rate impulse (as opposed to maternal arterial flow) [82].

CTG is used for fetal monitoring starting at the 20th week of gestation [66], but

most commonly indicated after the 28th week of gestation [216]. Although CTG is

widely used, it suffers from high intra- and inter-interpreter variability [241, 36, 40,

37, 112], resulting in low specificity. To reduce this subjectivity, [61] introduced a

computerized version of the CTG. A Cochrane review of two studies (469 subjects)

concluded that the mortality rate in a population monitored by computerized CTG

was four times lower than in the population monitored by visual CTG (0.9% vs.

4.2%) [98].

Computerized CTG has also been used in recent years to develop artificial intel-

ligence methods to detect abnormal FHR patterns, achieving comparable results to

clinical assessment of the CTG [50, 265, 86]. Notably, these artificial intelligence-

based CTG systems have shown the potential to discriminate between normal and

IUGR fetuses [238, 222].

Although CTG is a standard method used for fetal monitoring in high-income

countries, controlled clinical trials have not provided evidence of its benefits; CTG

was associate with a 20% increase in Cesarean interventions with no improvement

in fetal outcomes [66]. In addition, the use of CTG was not associated with sta-

tistically significant improvements in perinatal outcomes as compared to traditional

intermittent auscultation methods [127, 176].
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2.4.3.1 The nonstress test

The nonstress test (NST) monitors FHR patterns for at least 20 minutes, and is

designed to identify accelerations associated with fetal movements [160]. This test

calculates the baseline FHR, which is later used to measure long-term and short-

term variability, episodes of high and low variation, acceleration, and deceleration.

Test results are considered normal (reactive) when more than two accelerations occur

within 20 minutes of observation. In contrast, a non-reactive result is when, no more

than one acceleration occurs within 40 minutes [13]. The NST has a low false-negative

(0.3%), but a high false-positive (50%) rate [71]. Of note, the test carries no risk of

inducing any uterine contractions.

2.4.3.2 Contraction stress test

The contraction stress test (CST) is based on the premise that contractions, induced

using oxytocin or nipple stimulation [160], trigger a hypoxic state [221]. A healthy

fetus can tolerate this hypoxic state, whereas a non-healthy fetus will respond with

late FHR decelerations [160]. Although this method has a low false-negative rate

(0.04%) [81] and a lower false-positive rate than NST (30% vs. 50%) [13], it requires

an intravenous intervention, which increases the risk of fetal hypoxia and of induction

of preterm birth [160].

2.4.3.3 Acoustic stimulation

Acoustic stimulation is a variation of NST, in which if there are no fetal movements,

vibroacoustic stimulation (usually with a laryngeal stimulator) may be activated for

3 seconds on the maternal abdomen over the fetal head. This is performed to ‘awaken

a sleeping fetus’, before initiation of the NST [160]. The artificial larynx produces a

vibratory stimulus of 80 Hz that causes a healthy fetus to increase physical activity,

as measured by an increase in FHR. Its advantages include shortening of the NST by



19

10 minutes [51], and reduction of the number of non-reactive states, without affecting

readability [223, 224]. In cases of a non-reactive result, the acoustic stimulation is

repeated for five minutes. If the test is still non-reactive, a fetal biophysical profile or

CST is indicated [160].

2.4.4 Fetal electrocardiogram

The fECG records the complex electrical activity of the fetal heart. The main com-

ponents of the ECG signals are P, Q, R, S, and T waves. The P wave represents

atrial depolarization, which is followed by the atrial contraction (atrial systole). The

atrial contraction is extended to the QRS complex, which corresponds with ventricu-

lar depolarization, with ventricles contracting at the peak (R wave). The ventricular

contraction lasts until the ST-T wave, which corresponds with ventricular repolar-

ization and relaxation. fECG can be captured in an invasive manner during the

intrapartum period, when the cervix is dilated, and the fetus scalp is visible, or in a

non-invasive manner, starting from the second trimester. The fECG is also used to

complement CTG at intrapartum to reduce unnecessary Cesarean sections [256, 70].

2.4.4.1 Invasive fetal electrocardiogram

The invasive fetal electrocardiogram (invasive- fECG) requires the rupture of the

membranes to introduce electrodes, via the cervix, and to place them on the fetal

scalp [105, 106, 107]. This technique processes the recorded signals to visualize the P

and T waves, as well as the QRS complexes.

Scalp fECG has been used as a complementary technique during intrapartum FHR

monitoring [12, 187]. The morphology of the ST segment is analyzed to find patterns

associated with uterine complications [145, 144]. Invasive fetal ST can be captured

and analyzed from the 36th gestational week and is indicated in high-risk pregnancies

when a non-reactive CTG is obtained, or labor is induced by oxytocin. Although its
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use has shown to effectively reduce neonatal encephalopathy [186, 187], randomized

control trials of this technology have yet to demonstrate a clear benefit.

2.4.4.2 Non-invasive fetal electrocardiogram

Non-invasive fECG measures the electrical activity of the fetal heart via electrodes

which are placed on the maternal abdomen [142]. This technique is indicated from

the 18th week of gestation [207], and therefore has much wider applicability than

invasive ST analysis and can replace Doppler auscultation for the fetal heartbeat.

Although abdominal fECG signals have a relatively low amplitude (microvolts),

it can provide a more accurate estimate of beat location when compared to the CTG,

and hence a more accurate quantification of fetal heart rate variability indexes [119,

54, 121]. The morphology and beat-to-beat heart rate variability estimated from

fECG are established indicators of pre-eclampsia and IUGR. For instance, a study

conducted on 106 patients (30 healthy, 44 mild pre-eclampsia, and 32 severe pre-

eclampsia subjects) at 34-40 weeks of gestation, reported that FHR variability indices

were associated with the suppression of fetal biophysical activity and the development

of fetal distress in women suffering from severe pre-eclampsia [143]. Similarly, [254]

assessed the impact of IUGR on FHR variability indices extracted from abdominal

fECG recordings of 20 control and 15 IUGR singleton pregnant women. While the

authors identified clear P-QRS-T complexes in all cases, prolonged QT intervals were

measured in IUGR fetuses.

Over the last 30 years, a variety of methods have been proposed for extracting

and processing fECG signals [207, 116]. Methods range from adaptive filtering [193,

220, 164] to non-adaptive approaches such as, independent component analysis [209],

principal component analysis [4], wavelet transforms [47, 279] and neural networks [20,

14, 32]. Many of these techniques suffer from significant limitations due to causality

and signal stability. Other approaches based on generalized eigenvalue decomposition
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have shown more promise [211]. In [53, 31], it was shown that this approach was able

to accurately resolve both QT interval and ST elevation/depression from non-invasive

fECG. However, this promising result has yet to be applied in a randomized clinical

trial to demonstrate efficacy.

2.4.5 Fetal magnetocardiography

Fetal magnetocardiography (fMCG) uses a sensitive, superconducting sensor to mea-

sure the magnetic field of fetal heart activity [129, 207, 133]. The fMCG provides a

waveform almost identical to that of fECG, but at a higher signal-to-noise ratio, and

with a higher resultant quality of waveform [196, 133]. The higher quality enables

the classification of arrhythmias and detection of congenital heart diseases [124], as

well as the ability to assess fetal neurological development [258].

The fMCG is used from the 20th gestational week [196]. Yet, although it provides

good-quality waveforms, it is not routinely used in perinatal care due to its higher

costs, i.e., the need for a shielded room, and highly skilled personnel [196, 133].

Alternative methods, such as the abdominal fECG or the hand-held Doppler, can

be used at any time during pregnancy, and can even be performed at home by the

patients themselves [207].

2.5 Ultrasound imaging

Ultrasound imaging is considered the gold standard for fetal monitoring in high-

income countries [154, 274]. It evaluates fetal growth, fetal cardiac structure and

function, and fetal, uterine, and placental blood circulation. Ultrasound imaging is

usually indicated in the second trimester, particularly after the 20th week of gestation,

with a scan recommended by the WHO before week 24 [266, 274, 273].

Ultrasound imaging is known to effectively assess pregnancy viability, estimate
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gestational age, detect multiple pregnancies, and determine placental position [266].

While there is no compelling evidence that ultrasound scans reduce perinatal mor-

tality [183, 69], they can be used to validate suspicious diagnoses without invasive

and risky interventions, reduce labor induction for post-term pregnancy, and detect

fetal malformation [266]. Moreover, a review of 58 obstetric articles, concluded that

ultrasound imaging provides appropriate clinical management in at least 30% of cases

when used by skilled operators [99].

Ultrasound imaging has also shown potential in the assessment of IUGR. A com-

parison between 38 IUGR and 32 appropriate for gestational age (AGA) fetuses

showed that growth-restricted fetuses had a statistically significant thicker aortic

wall than the AGA fetuses (1.9 mm vs. 1.15 mm) [57]. The median diameter of

the abdominal aorta was also significantly higher in IUGR than in AGA fetuses. The

thicker aortic wall in the IUGR fetus was also noted by [94], who compared 35 IUGR

fetuses with 49 AGA fetuses. In contrast to [57], they reported on the substantially

lower diameter of the abdominal aorta for fetuses with IUGR [94].

There is no scientific evidence for, or consensus on how often ultrasound scans

should be performed during pregnancy. Some obstetricians recommend at least four

ultrasound scans during normal pregnancies, whereas others recommend only one, to

be performed before the 24th gestational week [191]. When four scans are performed

during pregnancy, the first is conducted between weeks 10 and 14, to validate the

pregnancy and estimate gestational age. The second scan is carried out between

weeks 18 and 22, to detect fetal anomalies and confirm gestation age. The third scan

is scheduled between weeks 30 34 of gestation, to assess fetal growth. The final scan

is scheduled between weeks 36 and 38, and focuses on the fetal weight, position, and

orientation/presentation, which helps to determine the optimal mode of delivery.
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2.5.1 Fetal biometry

Ultrasound imaging enables measurement of different fetal organs, and estimation of

gestational age and fetal weight. The most common measures are biparietal diameter

(BDP), femur length (FL), head circumference (HC), crown rump length (CRL), and

abdomen circumference (AC) [160]. Using a combination of these measurements, fetal

weight estimates are within 5% of the actual weight in 50% of cases, and within 10%

in 80% of the evaluations [83].

Fetal biometry measurements have been shown to be more accurate during the

first trimester. During the second and third trimesters, fetal measurement accuracy

is impacted by genetic and nutritional factors [202]. Recently proposed formulas

combining the transcerebellar diameter (TCD) with FL and AC are emerging as a

solution for dating late pregnancies (after the 24th gestation week), with gestational

age estimates within ± 3 weeks of the CRL measurement taken between the 8th and

14th gestational weeks [64].

Fetal biometry measurements can differentiate between fetuses that are IUGR and

those that are constitutionally small (SGA) [227]. Specifically, when an estimated

weight is below the 10th percentile for gestational age, the fetus is considered growth-

restricted, as defined by the American College of Obstetricians and Gynecologists

(ACOG) guidelines [247]. However, a previous study, conducted by the Prospective

Observational Trial to Optimize Pediatric Health (PORTO), found that only 2% of

fetuses whose estimated birth weight was within the 3rd and 10th percentile, had an

adverse perinatal outcome; the authors concluded that the threshold should be below

the 3rd percentile [246].

Furthermore, fetal biometry measurements ignore the fact that 10% of the normal

population is genetically predisposed to be small, thus increasing the false-positive

rate [83]. Hence, to increase the accuracy in detecting IUGR, fetal biometry should

be combined with methods assessing the fetal ANS physiology [83]. When IUGR is
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detected, the pregnancy is categorized as high-risk, as the condition has long-term

consequences.

2.5.2 Doppler velocimetry

Doppler velocimetry assesses the blood flow in the umbilical arteries and vein to

evaluate pregnancies at risk of fetal compromise [242], such as growth restriction [6]

or cardiovascular abnormalities [35].In healthy pregnancies, the placental and fetal

circulation transfers oxygen and nutrients, and eliminates fetal waste products [160].

Umbilical flow is assessed using different indexes, such as systolic and diastolic

ratio, pulsatility index and resistance index [13]. Higher indexes indicate significant

vascular resistance, thus implying that fetal health is at risk [35, 221].

The resistance indexes are mainly measured on the umbilical artery (UA), the

middle cerebral artery (MCA), and the ductus venosus (DV) [178]. Of these three

areas, the UA Doppler is the only device that has been the subject of randomized

controlled trials, which have supported its feasibility for fetal surveillance in high-risk

pregnancies [7]. The UA Doppler measures the resistance in fetoplacental circulation

flow, providing a pulsatility index (PI). In a healthy fetus, the UA has a forward

flow. However, increases in placental resistance obliterate the muscular arteries in the

placental villi, resulting in a reduced diastolic flow [35], which then eliminates and

later reverses the fetoplacental circulation flow. Both the absence and the reversal of

flows can be visualized in the Doppler images. In the case of the absent end-diastolic

flow (AEDF), the pronounced systolic peak is followed by an interruption, while in the

reversed end-diastolic flow (REDF), the systolic peak is followed by a negative peak.

In fetal growth-restricted pregnancies with AEDF or REDF, delivery is recommended

at week 32 [206].

Randomized controlled trials have demonstrated that a UA PI greater than the

95th percentile in restricted-growth fetuses is an indicator of a perinatal adverse
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outcome [246, 190]. The use of UA Doppler was also shown to be effective in reducing

the incidence of perinatal deaths and induced deliveries [7]. MCA flow can be used

to detect problems caused by fetal hypoxemia in IUGR. In a hypoxic state, most of

the oxygenated blood is supplied to the brain, heart, and adrenal glands, affecting

the peripheral circulation [247]. This phenomenon is called brain-sparing reflex and

is observable in the waveform of the MCA Doppler. MCA Doppler is also a reliable

indicator of anemia. Moreover, the MCA PI/UA ratio can indicate adverse perinatal

outcomes (Mari and Hanif, 2008), which are related to an increment of the diastolic

flow due to hypoxia [180].

DV flow can be used to detect the cardiac failure in IUGR, particularly in cases

of early-onset fetal growth restriction [27]. It is a reliable marker of acidemia and

stillbirth [27], which are caused by absent or reversed end-diastolic pressure at the

ductus venosus. Although DV flow measurement displays moderate accuracy in de-

tecting fetal compromise, previous works have suggested that DV Doppler alone is

insufficient for fetal surveillance [206]. Furthermore, DV Doppler does not offer any

added benefit over traditional CTG for fetal monitoring [152]. Nevertheless, delaying

delivery until finding an abnormality using DV flow could prevent neurological im-

pairment in the long-term [85]. Randomized controlled trials are still needed to more

accurately assess the benefits of DV flow measurement.

Other anatomical areas useful in the management of fetal growth-restricted preg-

nancies are the uterine artery, the aortic isthmus, umbilical vein, and the atrioven-

tricular valves [178]. The uterine artery flow is useful in identifying pre-eclampsia

and SGA neonates in high-risk pregnancies [206]. The aortic isthmus measures the

balance between the brain’s impedance and systemic circulation, indicating cardiac

dysfunction when there is an abnormal balance [58]. Umbilical vein flow provides

an indication of fetal venous circulation, where high values suggest increased venous

pressure that results in right-sided heart failure and myocardial hypoxia [184].
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2.5.3 Fetal echocardiography

Fetal echocardiography is a non-invasive ultrasonography technique that examines

fetal cardiac anatomy and function [89]. The accuracy and speed of performing fetal

cardiac assessment have improved in the last decades, following the introduction of

advanced techniques such as color Doppler [67]. The primary use of fetal echocardio-

graphy is in the detection of congenital heart diseases (CHDs), which are the most

common abnormality in fetuses, with a prevalence of around 8 to 9 per 1,000 live

births [104]. The procedure assesses the heart structure, as well as the direction, pat-

tern, volume, and velocity of flow [8]. The basic visualization of the chambers can be

extended to include blood flow through the chambers, using a technique called ‘five

chambers views’, which increases the sensitivity of detecting CHDs by 5%, achieving

a final sensitivity rate of 65% [9].

Fetal echocardiography also includes a pulse wave Doppler component, which is

recommended for a complete evaluation of the fetal heart. The pulse wave shows

the blood flow through the atrioventricular, mitral, and tricuspid valves [1]. These

valves generate a dual-peak Doppler waveform that comprises the E-wave, which is

the passive diastolic filling, and the A-wave, which is the active diastolic filling (“atrial

kick”) [1]. In healthy fetuses, the amplitude of the A-wave is greater than that of the

E-wave, which increases throughout gestation. A higher increase in the E-wave/A-

wave ratio is a sign of IUGR or congenital cystic adenomatoid malformation, which

can lead to mitral or tricuspid regurgitation [162, 159].

Modern echocardiography techniques include three-dimensional (3D) and four-

dimensional (4D) fetal heart assessment [65], which enable real-time examination

of the heart rate function, and a more accurate assessment of the heart structures

[49, 33, 115].

Although fetal echocardiography is considered one of the most relevant fetal car-

diac assessment techniques, it is costly and requires qualified specialists to perform the
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examination [46]. Therefore, fetal echocardiography is only provided when indicated

by specific maternal and fetal conditions.

2.6 Comparison of fetal cardiac monitoring meth-

ods

Table 2.1 presents an comparison of the fetal cardiac monitoring techniques presented

in Sections 2.4 and 2.5, particularly with respect to the following four criteria:

1. medical equipment cost.

2. operator training requirement.

3. gestational week at which the device can be used.

4. evidence supporting the device’s utility.

2.6.1 Cost analysis and availability in LMICs

The fMCG is an expensive method, requiring specialized operator training, dedicated

shielded rooms, each costing approximately $350,000 to construct [232] and high

maintenance [196, 44, 133], which have limited its use in HICs [44, 259] and its

introduction into and widespread integration in LMICs.

Even compact portable ultrasound equipment, such as the GE LOGIQ Book XP

(General Electrics, Milwaukee, WI, USA), costs at least $ 10,000, and carries addi-

tional expenses such as maintenance, supplies, battery replacement, and staff training

[271]. However, a recent review on the use of ultrasound in LMICs reported an ex-

panding utilization of low-cost, portable imaging technology in low-resource settings

[230].
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Table 2.1: Comparison of fetal cardiac monitoring methods. The first column presents a
four-point ordinal scale of medical equipment cost, from low ($) to extremely high ($$$$).
The horizontal line indicates when, during pregnancy, the technology can be used. The color
of the line indicates the time required for training operators (green: low; blue: moderate;
cyan: considerable; red: high; magenta: extreme). The thickness of the line indicates the
relative evidence for the utility of each technology.

Cost Mode

Stage in pregnancy
Antepartum Intrapartum

Gestational Week
Delivery1-

5
5-
10

10-
15

15-
20

20-
25

25-
30

30-
35

35-
40

$ fPCG *

$
1D-Doppler
ultrasound †

$
Hand-held
Doppler ‡

$$ CTG §

$$
Abdominal

fECG ¶

$$
Scalp
fECG ‖

$$$
Ultrasound

imaging **

$$$$ fMCG ††

* GA ≥ 24 weeks [253].
† GA ≥ 20 weeks [196].
‡ GA ≥ 20 weeks [196].
§ GA ≥ 20 weeks [98].
¶ GA ≥ 18 weeks [207].
‖ Intrapartum (GA ≥ 36 weeks) [187].
** GA ≥ 20 weeks [273].
†† GA ≥ 20 weeks [196].

The ultrasound devices most commonly used for fetal monitoring were provided

by Sonosite Inc (Bothell, WA, USA) [135, 97, 41, 140] and General Electric [188, 92].

Despite these early indications of their increasing integration in fetal monitoring in

LMICs, there is still a need to assess the benefits, trade-offs, and potential drawbacks

of large-scale obstetric ultrasound implementation in these regions [134].

Several randomized controlled studies using ultrasound imaging in antenatal care

in LMICs, did not show any significant reductions in adverse perinatal outcomes

[183, 69, 134, 92, 80]. Moreover, this technique requires specialized skilled operators,
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who are in limited supply in LMICs [271].

Scalp fECG is limited to intrapartum use and requires specialized training. The

most common device used for invasive fECG is the STAN monitor (Neoventa Medical,

Goteborg, Sweden) [54]. [256] reported that the average cost of ST analysis in 2,827

deliveries in a Dutch hospital was e 1,345, which is not feasible for LMICs.

Abdominal fECG can be captured using low-cost equipment, which does not re-

quire skilled users [31, 174]. The Monica AN24 monitor (Monica Healthcare, Not-

tingham, UK) and the Meridian M100/M1000 monitors (MindChild Medical, North

Andover, MA), both which have been approved by the Food and Drug Administration

(FDA) and the European Commission (CE), are two commercial devices commonly

used for non-invasive fECG [31]. However, although the cost of fECG devices is rela-

tively low ( $ 4,500 for the Monica Novii Wireless Patch System [45]), non-invasive

fECG is still not widely used since the systems still require further testing to defini-

tively demonstrate that the morphological analysis is similar to that provided by the

scalp electrocardiography method [225, 123].

On average, CTG machines cost at least $ 450 [274] and require maintenance,

supplies, and training, thereby limiting its use in low-resource settings [273]. Although

obstetric protocols in HICs recommend CTG, its use in LMICs has not improved fetal

outcomes in comparison to auscultation methods [108]. In contrast, auscultation

methods, particularly the fetoscope, have been shown to be associated with reduced

perinatal deaths in LMICs [260].

Of the various auscultation methods available, the Pinard stethoscope is the most

available tool in resource-constrained regions due to its affordable cost [118]. Before

its introduction, midwives used a stethoscope in the labor ward to listen to the fetal

heart rate for ten minutes every half hour [158]. However, auscultation with the

stethoscope can be uncomfortable for both patients and practitioners. Additionally,

the stethoscope provides unsatisfactory results due to confounding factors such as
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environmental noise [158].

Hand-held Doppler transducers are simple to use and can be purchased for as

little as $17 [237]. They require less time than the Pinard stethoscope to assess the

fetal heart rate [158]. [198] compared the performance of hand-held Doppler and

Pinard devices for fetal monitoring in the intrapartum period by reviewing 19 studies

conducted in India and African LMICs. The comparison showed that Doppler devices

accurately detected more fetal abnormalities than the Pinard stethoscope. However,

there was no statistically significant improvement in perinatal outcomes when an

anomaly was detected. The authors suggested that the lack of progress resulted

from the poor clinical management and protocol referral of abnormality events. The

review also found that both patients and medical providers preferred Doppler hand-

held devices than Pinard stethoscopes, thereby justifying the integration of Doppler

in fetal monitoring protocols for LMICs.

2.7 Usage of devices in LMICs

In LMICs, there is limited availability of the life-saving and complex medical devices

routinely used for fetal cardiac monitoring in high income countries. The technolo-

gies involve the use of ultrasound technology, telemedicine, CTG and other fetal

monitoring techniques that may not be easily implementable in low-resource settings.

However, multiple research studies have demonstrated the acceptable effectiveness of

suitable and appropriate technologies in these regions for fetal cardiac monitoring

[26, 280, 200, 66, 11].

Mdoe et al. [175] demonstrated the superiority of fetal heart rate monitoring using

continuous Doppler when compared to intermittent fetoscope auscultation. In their

study, there was an 8.1% incidence of abnormal fetal heart rate detection when using

continuous Doppler, versus 3.0% with the use of intermittent auscultation.
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Additional studies have provided evidence for the preferential use of Doppler ul-

trasound for fetal cardiac activity monitoring. It has also been shown to accurately

determine the number of reported fetal demise and to classify them as stillbirths ver-

sus neonatal deaths [155]. Additionally, the emotional reassurance among mothers

associated with hearing the fetal heartbeat amplified by the Doppler is a positive

experience that could influence positive outcomes. Compared to the Pinard stetho-

scope, the Doppler was noted to be superior in detecting abnormal intrapartum fetal

heart rate but was not associated with improved perinatal outcomes [275].

Britton et al. [42] demonstrated the use of ‘tele-ultrasound’ for fetal cardiac

monitoring in low resource settings. In the study, fetal monitoring devices were

delivered to participants, to overcome challenges of geographical distance, lack of

facilities and inadequate healthcare personnel that are common in these areas. The

‘tele-ultrasound’ technique was found to be low-cost, and reliable and implementable

in resource-limited settings.

[276] reported on improved perinatal outcomes in following the use of CTG dur-

ing labor in LMICs. Others have associated CTG (cardiotocography) with higher

Cesarean section rates, with no added benefit on perinatal outcomes, and therefore

do not recommend its use in low-resource settings [109]. High-quality evidence consid-

ering implementation barriers and enablers is needed to determine the optimal fetal

monitoring technique in Low-resource settings. [276] noted that there are significant

gaps between international recommendations and what is practically possible in most

resource-constrained countries.

A study in Uganda highlighted critical challenges as shortage of staff and devices,

institutional challenges, and maternal perceptions to monitoring [181]. Another study

in Tanzania listed lack of strict protocol for use and misidentification of maternal heart

rate as the challenges associated with the introduction of Moyo, an electronic strap

on a fetal heart rate monitor [141] developed to improve intrapartum fetal heart rate
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monitoring. More specifically, the quick, short, and unstructured assessments and

inferences limited the initiation of various interventions due to indecisiveness. The

introduction of CTG was associated with simpler and more efficient monitoring of

labor, but no improved outcomes [125, 141].

2.8 Telemonitoring for perinatal care, an alterna-

tive for LMICs

In recent years, telemonitoring applications have been developed to enhance maternal

and fetal monitoring. These applications have been made possible by the high pene-

tration of mobile telecommunications technologies in LMICs, with approximately 90%

of the population owning a mobile phone device [34]. This high coverage of mobile

phone access can be exploited to overcome perinatal care access barriers in LMICs,

such as low literacy levels, poor road infrastructure, and medical professionals and

equipment deficiencies [73, 226, 102].

The feasibility of mobile health applications (mHealth) in improving antenatal

care was presented by [75] after reviewing 14 cases conducted in sub-Saharan Africa,

Southeast Asia, and Middle-East countries. The authors found that mHealth so-

lutions can improve perinatal care services by increasing the percentage of women

attending the minimum WHO-recommended perinatal visits. They noted that the

most effective mobile apps were those that used client education and behavior change

communication via short messages and patient tracking to allow for patient follow-up

in subsequent visits.

In a review of telemonitoring in obstetrics, researchers reported that mobile ap-

plications connected to external devices, such as electrodes, body sensors, and ther-

mometers provided effective maternal and fetal monitoring [11]. The used external

devices enabled the digitalization of data, which was later analyzed by medical pro-
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fessionals or artificial intelligence techniques to detect abnormalities. Among the

available fetal monitoring mobile applications, [117] developed a method to identify

the location of the fetus from an ultrasound image. The algorithms tested with

pictures taken in a public hospital in Indonesia, demonstrated 93% accuracy in the

detection of the fetal head and abdomen. Similarly, [132] developed methods to cal-

culate the mean abdominal diameter (MAD) from an ultrasound image. A mobile

app prototype was tested on ultrasound images captured by professional midwives in

a Norwegian hospital, and demonstrated a mean error of -0.06 mm.

Awiti et al. [21] developed an Android-based digital fetoscope prototype. Fetal

heart sounds are acquired using a Pinard horn and a microphone and are later sent

to a smartphone via Bluetooth technology. In the smartphone, the audio signals are

processed to display a heartbeat. When testing the system on adults, and compar-

ing the measurements with those of a standard electronic sphygmomanometer, the

Android-based digital fetoscope achieved a root mean square error of 7.23 bpm with

a standard deviation of 5.44 bpm.

Tapia-Conyer et al. [239] introduced a mobile maternal-fetal monitoring applica-

tion in a resource-poor and educationally-limited community in Mexico. The project

aimed to evaluate the feasibility of providing remote antenatal care. The staff in the

rural medical center was trained to use the mobile fetal monitor, which comprised a

fetal ultrasound heart monitor, a uterine tocodynamometer, and additional tools for

recording maternal blood pressure, blood glucose, and urinary protein values. The

researchers split the 125 volunteers into control and study groups. The study group

received perinatal care at the local medical center using the mHealth system, whereas

the control group received standard perinatal care at the main public hospital. [239]

observed that volunteers using the mHealth system were more than twice as likely to

adhere to antenatal care monitoring than those receiving standard of care. There were

no statistically significant differences in adverse perinatal outcomes between the two
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groups, suggesting that the tested mobile technology did not compromise maternal

and fetal health.

A low-cost fetal monitoring system introduced in a rural Guatemalan community

in 2013, was later developed into a system that was tested in a randomized con-

trolled trial in 2015-2017 [237, 166, 165]. The mHealth system consists of a low-cost

one-dimensional Doppler transducer and a blood pressure device connected to an

Android-based smartphone running an app designed for low-literacy traditional birth

attendants (TBAs). The TBAs were trained to use the mHealth system during home

visits. When a TBA visited a patient, the app guided the TBA to find the fetus and

record a Doppler recording of the fetal cardiac activity for up to 20 minutes. The

TBA also recorded blood pressure readings from both arms. The app then guided

the TBA through basic questions presented through appropriate pictograms and au-

dio prompts, to assist in the identification of concerning signs and symptoms during

pregnancy. In the event a risk factor was identified, the app connected the TBA to

appropriate (local or remote) medical care through a voice call, to provide decisional

support and onward referral to appropriate healthcare, if needed. The Doppler signal

and maternal blood pressure recorded with the mHealth system has allowed the de-

velopment of different modules for providing estimates of fHRV, gestational age, and

hypertension [250, 251, 252, 248, 249, 130].

2.9 Discussion and conclusion

Fetal monitoring is performed with a variety of devices and approaches, with CTG

and ultrasound imaging considered the ‘standard of care’ in high-income countries.

Despite the paucity of evidence supporting the utility of these techniques in reducing

perinatal mortality and morbidity [183, 66], their use may still be beneficial through-

out pregnancy. Specifically, CTG may facilitate the detection of signs of hypoxia re-
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quiring Cesarean delivery [98], and ultrasound imaging can help estimate gestation age

before gestational week 24, and to detect multiple pregnancies and fetal abnormalities

requiring vigilance or/and interventions [99, 266]. However, in resource-constrained

settings, CTG and Doppler imaging are scarce, due to their high cost and the need

for trained operators [69].

Among fetal monitoring techniques, 1D Doppler transducers provide an affordable

option, with an outstanding balance between cost, clinical utility, and operator learn-

ing curve, thereby making its use most practical (see Table 2.1). Moreover, Doppler

transducers have been shown to be comparable to CTG in fetal heart rate monitoring

in LMICs. Taken together, Doppler transducers, which are widely available in these

regions [28], are a reliable ‘standard of care’ in low-resource regions [66, 108].

Perinatal care access in LMICs can be facilitated by telemetry [34]. Mobile tech-

nology can support fetal monitoring analysis and transmission of clinical informa-

tion collected using low-cost devices, such as Doppler transducers, portable CTG, or

auscultation methods. In this manner, economic and geographical barriers can be

overcome to increase perinatal care coverage in LMICs.

The feasibility of the use and impact of mHealth mobile applications in fetal mon-

itoring has been shown in several works conducted in LMICs [239, 238, 75, 165]. With

the advent of increasingly complex smartphones, particularly those with embedded

‘AI’ chipsets), mHealth applications may extend beyond data collection and decision

support systems, by processing complex maternal and fetal information in an edge

computing paradigm, which allows the use of mobile applications without relying on

network communication. However, regulation (especially in the US) is likely to limit

this development, and to drive the solutions to higher-cost, self-contained devices.

Increasingly higher bandwidth cellular networks in LMICs could mitigate this by

driving the processing to the cloud. Still, the economics of providing high-bandwidth

networks to the poorest and least populated parts of the globe will still leave signif-
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icant disparities in fetal monitoring care. A store-and-forward approach may offer a

reasonable solution to this, with text messaging and voice calls addressing immediate

issues and use of a robust remote decision-support network of trained professionals

and an integrated referral mechanism (see [237] for example)

In summary, mHealth systems bear a significant potential to provide remote peri-

natal care and prevent many fetal complications, by removing many barriers prevailing

in LMICs. Notably, such approaches can empower the frontline healthcare workers

(and perhaps even mothers) to learn, and even improve the systems, and ultimately

alleviate the “brain drain” in the medical field in LMICs [56].
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Chapter 3

Data collection and labelling 2

3.1 Abstract

The scalability of medical technology in low resource settings requires a higher level

of usability and clear decision support compared to conventional devices, since users

often have very limited training. In particular, it is important to provide users with

real time feedback on data quality during the patient information acquisition and im-

prove the design by including machine learning algorithms to automate fetal maternal

health assessment. In this work, We present a preprocessing and labeling approach to

prepare the data for further analysis which ultimately will run on-device and interact

with the healthcare workers or mothers directly.

3.2 Introduction

This work has focused on reducing the high burden of perinatal deaths using a

smartphone-mediated affordable perinatal screening system, which addresses many

cultural requirements for use in rural Guatemala [237, 166]. The system allows the

2© Institute of Physics and Engineering in Medicine. Reproduced with permission. All rights
reserved (https://iopscience.iop.org/article/10.1088/1361-6579/ab033d).

https://iopscience.iop.org/article/10.1088/1361-6579/ab033d
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monitoring of fetal heart rhythm, which is commonly used by clinicians to identify

non-reassuring fetal status for timely intervention [22]. A low-cost One-Dimensional

Doppler Ultrasound (1D-DUS) transducer, connected to a smart phone, was intro-

duced into rural communities in collaboration with Wuqu’ Kawoq — Maya Health

Alliance, an NGO aiming to provide health care solutions for Guatemala’s indigenous

communities. Indigenous traditional birth attendants (TBAs) were trained to use the

approach for monitoring fetal wellbeing during pregnancy [233, 237, 166].

The mHealth technology has provided TBAs with decision support, and through

cellular connectivity, has linked their traditional procedures with a formal health-care

referral process. Although the technology has so far proven effective [235, 233, 237,

166], the need of some refinements has been identified. One critical requirement is

to ensure the quality of the 1D-DUS recordings. Indeed, during the first two release

cycles of the app, around 40% of the recordings were low quality [166]. Despite

the quality improvements by retraining the birth attendants and fixing the device

connections, the signal quality had to be automatically evaluated to identify users

who are making habitual mistakes or to identify equipment malfunctions. The low

quality of recordings can distort the posterior fetal health analysis and complicate fetal

abnormality detection. Since fetal heart rate (FHR) analysis is key to detection of

IUGR in our population, and its accuracy depends on the DUS quality, the exclusion

of poor quality DUS records before performing any analysis is important for reducing

false positives [236, 156].

To evaluate the performance of automatic FHR estimation algorithms, it was nec-

essary to manually annotate the heart rate in each database. This was performed on

a temporal sequence of overlapping 3.75 s windows of 1D-DUS data. Three datasets

were used in this work including Guatemala RCT Database, Leipzig University Hos-

pital database and Oxford JR Database.
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3.3 Methods

3.3.1 Databases

3.3.1.1 Guatemala RCT database

This dataset was collected as part of a randomized controll trial, conducted in rural

highland Guatemala in the vicinity of Tecpán, Chimaltenango. The study focused

on the use of the Doppler device, and an accompanying app with data capture and

decision support software built-in, to improve the continuum of care for indigenous

women of the target region. The study was approved by the Institutional Review

Boards of Emory University, the Wuqu’ Kawoq I Maya Health Alliance, and Agnes

Scott College (Ref: IRB00076231 - ‘Mobile Health Intervention to Improve Perinatal

Continuum of Care in Guatemala’) and registered as a clinical trial (ClinicalTrials.gov

identifier NCT02348840). All 1D-DUS signals were recorded by traditional birth

attendants (TBAs), who were trained to use the hand-held device. Before recording

the signals, the TBA also entered the gestational age in months and the maternal

heart rate, measured using a self inflating blood pressure device (Omron M7), into

the same mobile application designed to record the 1D-DUS.

3.3.1.2 Leipzig university hospital database

This dataset, used for training the FHR estimation algorithm in this study, was col-

lected at the Leipzig University Hospital (LUH) in Germany, as part of the study

presented in [17]. The database included data from 16 volunteers with pregnancies

between the 20th and 27th week of gestation, including pathological cases such as

Inter-uterine growth restriction (IUGR), premature rupture of membranes, or fetal

heart failures. The study was approved by the Leipzig University Hospital ethics com-

mittee (record 348-12-24092012), and written informed consent was obtained from

each patient. For each subject, indirect abdominal fetal electrocardiogram (fECG), a
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maternal ECG reference and a 1D-DUS signal were simultaneously recorded by clin-

icians. The fECG recordings were acquired from 7 abdominal channels using a 16bit

commercial ADC using the ADInstruments ML138 Octal Bio Amp and ADInstru-

ments PowerLab 16/30 (ADInstruments, Dunedin, NZ), and stored at a sampling

frequency of 1000 Hz. Spectral filtering was also performed in the hardware by a

mains filter (cutoff frequency at 50 Hz) and a first-order high-pass filter (cutoff at 1

Hz).

3.3.1.3 Oxford JR database

This dataset was collected at the John Radcliffe (JR) Hospital in Oxford, UK.

The study was approved by the NHS Health Research Authority (REC reference:

12/SC/0147) and written consent was obtained from each study subject prior to data

collection. Each subject received detailed information on the study protocol and their

right to withdraw from the study at any stage of the recording session, which was

carried out by professional midwives. The dataset included 1D-DUS signals from 17

healthy pregnant women, who bore singletons between 20 and 38 weeks of gestation.

This database has also been used in previous related 1D-DUS studies [236, 234, 250].

3.3.2 Data labeling and annotation

3.3.2.1 Annotation of Guatemala RCT database

Three independent annotators listened, visually inspected and labeled 195 DUS record-

ings from Guatemala RCT Database using a Matlab (MathWorks, Natick, MA, USA)

graphical user-interface (GUI) interface ( Figure 3.1). The GUI split recordings into

segments of 0.75 s (seconds), allowing to annotate each of them as one of the following

six categories:

• Interference: The epoch contains electrical interference, typically manifesting



41

as sort bursts of a buzzing sound.

• Silent: The epoch is silent or is barely audible.

• Talking: The epoch may contain audible heart beats but also human voices or

noises from the environment generated by animals (e.g. dog barking).

• Poor quality: The epoch contains noise but not any of the other classes.

• Unsure: The epoch contains a mixture of sounds, which was challenging to

assign a specific class, or the annotator was unsure of to which class it belonged.

• Good quality: The epoch contains audible heart beats with no significant pres-

ence of any of the above categories.

In previous works, the window for assessing DUS quality had been fixed at 3.75 s

because it is the usual length for computerized analysis of fetal non-stress tests based

on the Dawes/Redman criteria [192, 62]. However, in this work, the DUS quality was

assessed for different window lengths to find which is more appropriate for this aim.

Thus, after quality annotation, five different possible segments were built using as

window length a multiple of 0.75 s; namely, the defined window length were: 0.75,

1.50, 2.25, 3.00, and 3.75 s. In order to identify such windows, only contiguous

windows of a given class were used to create the windows longer than 0.75 s, creating

fewer examples for longer windows. To maximize data availability, one 0.75 s could

appear more than once in a longer window.

After labeling the quality of the signals, segments that had been manually clas-

sified as good quality were used for beat annotation. Since in Doppler ultrasound

each cardiac cycle is represented by a combination of cardiac wall and valve move-

ments [219], it is extremely complicated to mark one specific point as a beat location,

thereby producing a large variation among annotators. Listening to the data and

attempting to hit a button when a beat is heard is also problematic since human
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Figure 3.1: GUI used for assessing DUS recordings quality. The blue tracing represents two
contiguous strips of 3.75 s raw audio file, each broken into five 0.75 s segments. The entire
7.5 s segment could be played back in real time or at fractional speeds (with pitch-preserving
frequency shifting), paused or looped. The green and red crosses indicate the start and end
of each ‘heart beat’ as determined by an automated algorithm [233], which were used only
for guidance. Using ‘Sennheiser HD 202 II Professional’ headphones, each segment of 0.75 s
was labeled by three trained researchers, acting independently, as either good quality, poor
quality, interference, silent, talking, or unsure.

reactions, keyboard delays, etc., add in large variable time delays [237]. To address

this problem, we designed a Matlab GUI (Figure 3.2) to count the number of audible

beats in each 3.75 s segment. The beat counting was performed by three independent

annotators. The median number of beats over all three annotators, b, was used to

define the FHR estimate as FHR = 60b/3.75 BPM.

3.3.3 Annotation of the Leipzig university hospital database

For the Leipzig university hospital database, the fECG channels were visually in-

spected to locate beats in both the Doppler and fECG recordings. Since the fECG

was recorded from the maternal abdomen, the first step was to remove the maternal

components. To do this, a previously validated fECG extraction method based on an
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Figure 3.2: GUI used to manually annotate the number of beats in the Guatemala RCT dataset.
Annotators listened to each 3.75 s segment, counting and recording the number of audible beats. ©

Institute of Physics and Engineering in Medicine. Reproduced with permission. All rights reserved
(https://iopscience.iop.org/article/10.1088/1361-6579/ab033d).

extended Kalman smoother was used [30, 210]. Then, the filtered fECG and the 1D-

DUS signal were resampled to 4 Khz, and were displayed in a graphical user-interface

(GUI) (Figure 3.3), using a window size of 3.75 s, written in Matlab (MathWorks,

Natick, MA, USA). The 3.75 s window was chosen because it is the usual length for

computerized analysis of fetal non-stress tests based on the Dawes/Redman criteria

[192, 62]. Furthermore, this window length was shown to be suitable for assessing

1D-DUS quality acquired with the same hand-held device used in this study [251]. In

addition to the fECG and 1D-DUS signals, the Matlab GUI also displayed the esti-

mated times of the QRS peaks from both maternal and fetal ECG using algorithms

in the FECGSYN toolbox [30]. These estimated fECG QRS peak times were taken

as guide for locating the beats in the 1D-DUS signal.

Two independent annotators used the Matlab GUI to assess the quality of 1D-DUS

and fECG channels, and to place the beat time location based on fECG channels.

https://iopscience.iop.org/article/10.1088/1361-6579/ab033d
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Figure 3.3: GUI used to annotate LUH database. The first seven channels correspond to abdominal
fECG after filtering maternal components using an extended Kalman smoother and peak detection
of fetal (black circles) and maternal beats (red crosses, upper plot). The last channel in the plot is
the 1D-DUS signal re-sampled at 4 kHz. Using buttons on the right of the GUI, and the automatic
detection as a preliminary guide, two independent annotators provided quality of fECG and 1D-
DUS. For good quality 1D-DUS, fECG beats are located (green circles in the upper part of each
fECG subplot). © Institute of Physics and Engineering in Medicine. Reproduced with permission.
All rights reserved (https://iopscience.iop.org/article/10.1088/1361-6579/ab033d).

For each 3.75 s segment, annotators listened to the ultrasound recording and noted

the number of audible beats, and labeled the 1D-DUS quality using the same class

hierarchy described in [251], namely, good, poor, electrical interference, talking, silent,

or unsure. Since 1D-DUS quality may affect the FHR estimation [234], only 1D-DUS

segments with good quality were retained for heart rate estimation. After labeling

the 1D-DUS quality, annotators labeled each fECG channel as:

• A: All QRS complexes can be seen (although not necessarily in the same chan-

nel)

https://iopscience.iop.org/article/10.1088/1361-6579/ab033d
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• B: Some QRS might be missing or some extra beats

• C: Lots of noise and absent signal/dropout but see at least two neighboring

beats

• D: Almost completely noise

• E: Unsure

To annotate the beat time location, the visible peaks contained in the good quality

fECG channels were used. As an initial estimate, the location provided by automatic

fECG QRS detection was used; however, annotators were able to correct those lo-

cations using the GUI. To avoid confusing maternal breakthrough for fetal peaks,

annotators used visual inspection of the maternal ECG and detected peaks, provided

in the upper subplot of the GUI (red crosses in Figure 3.3), thus discarding any peak

when it was aligned to a maternal peak and out of sequence. Observation across all

fECG channels was used to improve the accuracy of beat time locations.

After finishing the annotation process for all the 1D-DUS and fECG channels and

retaining segments with simultaneous high quality fECG and 1D-DUS, 5 of the 16

subjects were included, the remaining were eliminated due to high noise levels in

either of the channels. (Data were collected serendipitously as part of another study

in which 1D-DUS recording quality was not prioritized.)

To ensure that beat time locations were consistent, the difference in seconds, δ, of

fECG peak times between the two annotators was compared. Figure 3.4 shows that

for 95% of annotated beats, the difference between pairs of annotations was less than

50 ms. Therefore, a high level of trust was ensured in the fECG annotations.

3.3.4 Annotation of Oxford JR database

Each of the 1 minute-length 1D-DUS signals in this dataset were labeled by three

different expert annotators using a Matlab GUI. Each reviewer independently labeled
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Figure 3.4: Histogram of time differences between beat time locations from two independent anno-
tators. The horizontal axis, δ, is the difference in seconds of the two annotations for the fECG peak
timing. The vertical axis represents a logarithmic scale of the count (n) of each difference. Note
that 95% of the annotations differed by at most 0.05 s. © Institute of Physics and Engineering in
Medicine. Reproduced with permission. All rights reserved (https://iopscience.iop.org/artic
le/10.1088/1361-6579/ab033d).

the quality of each second as:

• Noise: No information available in the signal.

• Poor: The signal may contain heartbeats, but it is too ’noisy’ to identify them.

• Intermediate: Difficult to hear heartbeats, but can be done with some effort.

Heart rhythm detection may be possible.

• Good: Some background noise, but heartbeats can be heard clearly. Heart

rhythm detection is possible.

• Excellent: Almost no background noise, heartbeats are easy to identify, heart

rhythm detection is possible.

These categories defined the signal quality of the 1D-DUS segments. Furthermore,

while annotators were listening to the 1D-DUS segment, they clicked a mouse to

indicate the temporal location of each beat that they heard.

After labeling all the segments, one-minute segments were split into 3.75 s with no

overlap. Only segments in which at least two annotators labeled the same class were

https://iopscience.iop.org/article/10.1088/1361-6579/ab033d
https://iopscience.iop.org/article/10.1088/1361-6579/ab033d
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used. The manual FHR was estimated by first aligning the points that annotators

clicked for the beat sound. The closer points were grouped and their median was

taken as initial beat location. These locations were corrected using the homomorphic

envelope of the 1D-DUS segment. Starting from the last beat location of the segment,

the closest peak was searched in a window starting one interval prior to the annotation

and ending 1/4 interval thereafter. Then, using reverse iteration, each peak time was

corrected by finding the maximum peak in a window of ± 15 BPM from the last

corrected peak. More description of the method can be found in [234].

Similar to the other datasets, for the Oxford JR dataset, the manual FHR was

estimated as FHR = 60/median(I) BPM, where I is a vector containing the difference

in seconds between two corrected adjacent peaks.

3.4 Discussion and conclusion

In this work, the description of the datasets and the labeling process are provided. The

Guatemala RCT database was captured by TBAs in rural areas of Guatemala with

minimal training in the use of the equipment (a low-cost Doppler device connected to

a smartphone). This dataset is used in chapters 5 and 7 for gestational age estimation

using deep learning approaches.

The Leipzig database was recorded at the Leipzig University hospital in Germany.

In this database, in addition to 1D-DUS, simultaneously recorded fetal ECG signals

were provided. Another database used in this study is the Oxford JR database

collected at the John Radcliffe hospital in Oxford and included the 1D-DUS signals.

These two databases are used to evaluate the segmentation model presented in chapter

4.
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Chapter 4

Unsupervised fetal Doppler signals

segmentation and heart rate

variability estimation 3

4.1 Abstract

One dimensional (1D) Doppler ultrasound (DUS) is commonly used for fetal health

assessment, during both regular prenatal visits and labor. It is used in preference to

ECG and other modalities because of its simplicity and cost. To date, all analysis of

such data has been confined to a smoothed, windowed heart rate estimation derived

from the 1D DUS signal, reducing the potential of short-term variability information.

A first step in improving the assessment of short-term variability of the fetal heart

rate (FHR) is through implementing an accurate beat detector for 1D DUS signals.

This work presents an unsupervised probabilistic segmentation method enabled by

a hidden semi-Markov model (HSMM). The proposed method employs envelope and

spectral features for an online segmentation of fetal 1D DUS signal. The beat onsets

3© Institute of Physics and Engineering in Medicine. Reproduced with permission. All rights
reserved (https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf).

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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and fetal cardiac beat-to-beat intervals are then estimated from the segmentations.

For this work, two data sets were used, including 1D DUS recordings from five fetuses

recorded in Germany, comprising 6521 beats and 45.06 minutes of data (dataset 1).

Simultaneous fetal ECG (fECG) was used as the reference for beat timing. Dataset

2, comprising 4044 beats captured from 17 subjects in the UK was hand scored

for beat location and was used as an independent held-out test set. Leave-one-out

subject cross-validation was used for parameter tuning on dataset 1. No retraining

was performed for dataset 2. To assess the performance of the beat onset detection,

the root mean square error (RMSE), F1 score, sensitivity, positive predictivity (PPV)

and the error in several standard common heart rate variability metrics were used.

These metrics were evaluated on three fiducial points: 1) beat onset, 2) beat offset,

and 3) middle of beat interval.

In dataset 1, the proposed method provided an RMSE of 20 ms, F1 score of 97.5

%, a Se of 97.6%, and a PPV of 97.3%. In dataset 2, the proposed method achieved

an RMSE of 26 ms, an F1 score of 98.5 %, a Se of 98.0 % and a PPV of 98.9 %. It

was also determined that the best beat-to-beat interval was derived from the onset

of each beat. For the dataset 2, significant correlations were found in all short term

heart rate variability metrics tested, both in the time and frequency domain. Only

the proportion of successive normal-to-normal interval differences greater than 20 ms

(pNN20) exhibited a significant absolute difference.

This work presents the first-ever description of an algorithm to identify cardiac

beats with 1D DUS, closely matching the fetal ECG-derived beats, to enable short-

term heart rate variability analysis. The novel algorithm proposed requires no human

labeling of data, and could have applicability beyond 1D DUS to other similar highly

variable time series.
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4.2 Introduction

There are 2.9 million annual neonatal deaths (deaths in the first 28 days after birth)

worldwide [245], and the biggest risk factor is the small size of the child at birth due to

preterm birth or issues leading to fetuses being small-for-gestational-age (SGA) [147].

Growth retardation also increases the risk of post-neonatal mortality, growth stunt-

ing, and adult-onset non-communicable diseases. The burden is inequitably carried

by low-and-middle-income countries where 99% of intrapartum stillbirths occur [150].

Although many resources have been leveraged to alleviate this problem, progress has

been limited. The failure of intrapartum monitoring to improve outcomes is becom-

ing increasingly understood, and improved fetal monitoring strategies are needed in

order to reduce the incidence of intrapartum-related stillbirths and neonatal deaths

[212].Therefore, it is essential to provide a low-cost, accessible and accurate health

care system for this purpose, targeting patients who have difficulties in accessing

appropriate health care services.

Fetal monitoring is commonly performed with cardiotocography (CTG) devices.

CTG uses one dimensional Doppler ultrasound (1D DUS) to estimate fetal heart

rate (FHR), which is further analyzed to identify fetal risk. However, regardless the

widespread use of CTG, randomized controlled trials (RCTs) have reported little im-

provement in perinatal outcome, including intrapartum stillbirth or neonatal deaths

[60, 87, 43, 126]. In fact, the use of CTG has not had a statistically significant impact

on reducing perinatal death in comparison to the use of more traditional methods,

such as Pinard stethoscope or fetoscope [127, 176]. Perhaps a key weakness of the

use of Doppler for estimating FHR is that CTG estimates FHR using conventional

autocorrelation techniques that average the heart rate over several seconds [252].

This leads to a loss of detailed information. Never-the-less, in recent works, we have

demonstrated that the fetal heart rate variability (FHRV) from 1D DUS can be used

to identify intrauterine growth restriction (IUGR) in antepartum monitoring [238].
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We subsequently hypothesized that the analysis of FHRV derived from raw 1D

DUS can be improved by more accurately identifying beat-to-beat intervals, and

collecting multiple data sets in order to test this hypothesis [165]. Following this

hypothesis, we propose an unsupervised method for identifying beat-to-beat timings

based on hidden Markov models (HMMs) consisting of a clustering process for the

recognition of states, followed by probabilistic segmentation to detect the onset of

beats. Metrics for success include onset detection performance and the correlation of

FHRV estimates with reference values.

4.3 Background

4.3.1 Clinical trials using FHRV

Randomized controlled trials (RCTs) of 1D DUS in high-risk pregnancies were first

reported in the 1990’s to study the effect of 1D DUS monitoring. In 1992 Davies et

al. [60] conducted an RCT on a general obstetric population of 2475 pregnant women

with singletons between 19 and 22 weeks gestational age. The intervention group

underwent routine screening of the umbilical-artery and uterine-artery with DUS

according to their risk of having an SGA fetus. The authors reported that this inter-

vention did not demonstrate any improvement in neonatal outcome. In 2003, Giles et

al. [87] reported that a close surveillance in twin pregnancy (526 women at 25 weeks

of gestation) resulted in a lower than expected fetal mortality in both the no Doppler

and Doppler groups. In 2014, an RCT was performed on 1971 pregnant women in

Kampala comparing wind-up fetal Doppler versus the use of the more traditional

(non-electronic) Pinard stethoscope for intermittent FHR monitoring in labor [43].

They concluded that routine monitoring with a hand-held Doppler could increase

the identification of FHR abnormalities in labor. However, their trial did not find

evidence that this leads to a decrease in the incidence of adverse events, including
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intrapartum stillbirth or neonatal death. A similar follow-up study on 2844 women

in 2018 in Dar es Salaam indicated that abnormal FHRs were more often detected

in the Doppler (6%) versus Pinrad (3.9%) [127]. Once again, the overall findings did

not demonstrate any improvement in perinatal outcome. The same authors reported

results (on potentially the very same study) on 2442 pregnant women in Tanzania to

identify abnormalities, defined as FHR<120 or FHR>160 bpm [126]. The secondary

outcomes were rates of assessment/documentation of FHR, obstetric time intervals,

and intrauterine resuscitation. The authors report that Caesarean section rates sig-

nificantly increased from 2.6 to 5.4%, and vacuum deliveries significantly increased

from 2.2 to 5.8% (both with p < 0.001). Perinatal outcomes i.e., fresh stillbirths and

early neonatal deaths were not significantly different. The study was limited by both

lack of randomization, matched populations, and involvement of low-risk pregnant

women with fewer adverse perinatal outcomes than would be expected in a high-risk

population. Another comparative FHR monitoring study, comparing intermittently

used fetoscope and hand-held Doppler that took place in rural Tanzania failed to

demonstrate a statistically significant difference in the detection of abnormal FHR

between intermittently used Doppler and fetoscope and adverse perinatal outcomes

[176].

4.3.2 Fetal heart rate variability estimation from Doppler

Over the last decade or more, there have been several attempts to improve FHRV

estimates from 1D DUS signals. Studies on enhancing fast Fourier transform (FFT)

technique are among the first approaches to incorporate beat-to-beat variability esti-

mation from 1D DUS. Parametric spectral analysis using the autoregressive model[79]

and the multiple signal characterization algorithm [74] had been used to overcome

the shortcomings of FFT based approaches. Another category of studies had been

presented on developing the correction algorithm to enhance autocorrelation based
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methods. The correction methods include removing the constant error, which has

been assigned to an averaging nature of the autocorrelation function [278], and dy-

namic adjustment of the autocorrelation window and peak detection algorithm [120].

The most recent study on assessing FHRV using 1D DUS processing has employed

the empirical mode decomposition (EMD) and the kurtosis statistics [3]. The hybrid

EMD-Kurtosis approach showed a better estimate of mean beat-to-beat in compar-

ison to the autocorrelation method. However, none of the methods described so far

provide a satisfactory evaluation of the FHRV estimates in terms of clinical utility.

4.3.3 Beat segmentation in the 1D DUS

The method for 1D DUS beat onsets detection proposed in this work is based on an

analysis of sequential time series and probabilistic segmentation. The HMM and its

extensions are one of the most popular methods in this field, and several approaches to

the segmentation of cardiac signals using this technique have been published. Koski

[138] was perhaps the first to describe the application of an HMM to segmenta-

tion of cardiac time series (specifically the electrocardiogram). Clavier, Graja, and

Boucher extended this approach by using wavelet basis functions [52, 96]. Hughes

et al. then extended this approach and compared HMM with hidden semi-Markov

model (HSMM) [114, 113]. HMMs were also used for automated identification of fetal

heart valve movements from 1D DUS recordings [173, 172], which requires simultane-

ous fECG as a reference. Recent work on phonocardiograms (or heart sounds) using

HMMs have shown great promise for segmenting cardiac time series [215, 228]. Most

recently, Stroux and Clifford applied a similar approach to 1D DUS [234]. Although

this approach showed promise, the high variance of signal morphology, dependent

on the angle of transduction and the focus of the moving structure, created several

problems.
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4.4 Methods

In order to perceive the idea of the proposed method, consider training an HMM-based

probabilistic model. Before applying the Viterbi algorithm, the emission probability

density and duration distributions need to be established. Therefore, labeled data is

needed as an input for the optimization methods such as the Baum-Welch algorithm

to estimate mentioned distributions. However, in the absence of cardiac event labels,

training the HMM parameters is challenging. Hence, unsupervised approaches can

be used to avoid this limitation. We propose an unsupervised algorithm consisting

of clustering for the recognition of states followed by probabilistic segmentation. An

unsupervised learning approach groups data in a way such that similar objects, with

respect to the feature set, will be labeled as the same group. By applying this on a

per-signal basis, highly individual segmentation approaches can be created. Figure 4.2

shows the steps of the general approach.

In our proposed method, we assume that we have sequential data generated by

switching dynamical systems, and each block of the data sequence is originated from

a specific underlying distribution. Therefore, by tracking the changes in the observed

distribution, we can detect the states of the signal. This method should reduce the

effect of the changes in the pattern of the heartbeats since it detects the transitions

in the signal dynamics. By considering the probability of being in each state as an

input of an HSMM, the well-known dynamical programming approach of the Viterbi

algorithm can be used to optimize the state sequence. An HSMM’s strong statistical

foundation will add to the robustness of the model and allow for the restriction of a

physiologically plausible heartbeat duration.
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4.4.1 Datasets

Two data sets were used in this work which were recorded in Leipzig University Hos-

pital in Germany (dataset 1) and the Oxford John Radcliffe (JR) Hospital in the UK

(dataset 2). Both data sets included 1D Doppler signals acquired using a hand-held

device (AngelSounds Fetal Doppler JPD-100s, Jumper Medical Co., Ltd., Shenzhen,

China) with an ultrasound transmission frequency of 3.3 MHz and a digitization

sampling frequency of 44.1 kHz.

The dataset 1 consists of Doppler signals and simultaneously recorded seven chan-

nels of indirect abdominal ECG (1000 Hz) from five volunteers with pregnancies

between the 20th and 27th week of gestation. Pathological cases such as IUGR, pre-

mature rupture of membranes, or fetal heart failure were also allowable inclusions

for the recordings. The study was approved by the Leipzig University Hospital ethics

committee (record 348-12-24092012) and written informed consent was obtained from

each patient. Before the beat annotation, the DUS signals were downsampled to 4000

Hz using an anti-aliasing filter. Also, pre-processing algorithms including fECG de-

noising, fECG extraction and beat detection [29] were applied on fECG recordings

using FECGSYN toolbox [18].

In the annotating procedure of dataset 1, two annotators corrected the location of

the beats obtained from automatic fECG beat detection in addition to labeling the

signal quality of each 3.75 seconds of data using the Matlab GUI. After excluding noisy

segments, the data comprising 6521 beats was used for applying the segmentation

algorithm. Figure 4.1 illustrates the opening and closing timings of the fetal aortic

and mitral valves in relation to the simultaneous fECG.

As an independent test data, dataset 2 consists of 1D DUS signals from 17 healthy

pregnant women who bore singletons between 20 and 38 weeks of gestation was used.

The data were collected at the John Radcliffe Hospital in Oxford, UK. The study

was approved by the NHS Health Research Authority (REC reference: 12/SC/0147),
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Table 4.1: Summary of datasets used for developing 1D DUS segmentation. The Leipzig
dataset was used for optimizing the parameters since it contains simultaneously recorded
fECG, a validated reference technique used for fetal cardiac monitoring. The Oxford dataset
was used as an independent test set.
Database Subjects Beats Modalities Beat annotation Quality label Use
Leipzig
(Dataset 1)

5 6521 1D DUS, fECG,
maternal ECG

correcting the loca-
tion of the beats cal-
culated from fECG

provided for 1D
DUS and fECG
channels

Model development

Oxford
(Dataset 2)

17 4044 1D DUS locating the beats
by listening to 1D
DUS

provided for 1D
DUS

Model evaluation

and written consent was obtained from each study subject prior to data collection.

For this data set labels of signal quality and location of the beats were provided by

three trained annotators using a Matlab GUI. Annotators clicked for the beat sound

to indicate the location of the beats and a correction algorithm was applied to the

annotations as described in Valderrama et al. [252]. The 1D DUS recordings

were re-sampled to 4000 Hz using an anti-aliasing filter, and noisy segments of the

recordings were manually excluded. Dataset 2 comprising 4044 beats was used in the

testing phase.

The details of the processing and annotating of dataset 1 and dataset 2 were

provided in our previous work [252]. In this work, dataset 1 has been used to optimize

the parameters and justify the capability of the method by cross-validated results.

Dataset 2 was considered as an independent test data to evaluate the developed model.

Table 4.1 provides the summary of information regarding dataset 1 and dataset 2.

4.4.2 Pre-processing

According to the method shown in figure 4.2, the first step in 1D DUS segmentation

is pre-processing. Doppler signals, like other physiological observations, are often

affected by internal and external interference such as respiration, movement, and

environmental noise. To remove high-frequency noise and the baseline wander, a

second-order band-pass Butterworth filter was applied on data. By observing the

frequency components of the Doppler signals, the cut-off frequencies were set to 25
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Figure 4.1: The opening and closing timings of the fetal aortic and mitral valves in relation
to the fetal ECG: b) DUS signal. c) Fetal ECG recording. Adapted from [169]. © 2015 Dr.
Faezeh Marzbanrad. Under the Creative Commons Attribution 4.0 International License
(CC BY 4.0).

to 600 Hz, corresponding to cardiac oscillations. Also, to remove transients or spikes,

a spike removal filter was applied as per Schmidt et al. [215].

4.4.3 Data Transformation

The data transformation block in figure 4.2 includes feature extraction, time delay

embedding and kernel density estimation (figure 4.2-b). The purpose of the data

transformation block in this work is to reduce the variability relating to the highly

variable DUS signal while keeping useful information in state transitions. The follow-

ing sections specify the details of each data transformation step.

4.4.3.1 Feature Extraction

To characterize changes in time and frequency a set of features is established from

DUS data (figure 4.2-b-I). We used Homomorphic envelope and power spectral density

(PSD) to incorporate temporal and spectral properties of DUS data.
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Figure 4.2: Illustration of the proposed unsupervised methodology for 1D DUS signal seg-
mentation. a) The denoising filters are applied to 1D DUS. b) Filtered DUS signals are fed
to the data transformation block, consisting of three steps: b-I) Feature extraction. b-II)
Time delay embedding and, b-III) Kernel density estimation of windowed trajectories. The
example of each step is also provided in the green box where (b-I) shows the Homomorphic
and PSD envelopes, (b-II) indicates the time delay embedding of the two features and (b-
III) is the kernel density of the specified window. c) The resulting kernels in overlapping
windows are then clustered for recognizing the states of the data. d) Then, using the cluster
centroids, the HSMM can estimate the most probable states of the data. © Institute of
Physics and Engineering in Medicine. Reproduced with permission. All rights reserved
(https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf).

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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Figure 4.3: Extracted features from Doppler signal. From above figures are, the DUS signal,
the Homomorphic envelope and the PSD envelope. © Institute of Physics and Engineering
in Medicine. Reproduced with permission. All rights reserved (https://iopscience.iop
.org/article/10.1088/1361-6579/aba006/pdf).

The Homomorphic envelope was used as a feature to capture changes in the amplitude

of the DUS signal. This feature is suitable for the evaluation of signals combined

by amplitude modulation or convolution [204]. To get Homomorphic envelope, the

analytical signal was derived using the Hilbert transform. Then by applying a low-

pass filter in the log-domain, the envelope of the analytical signal was separated.

The PSD envelope is used to extract the temporal and spectral information cor-

responding to cardiac valve and wall motion. The common time-frequency represen-

tation for non-stationary signals is short-time Fourier transform (STFT). STFT with

Hamming window of 0.05 s in width with 50% overlap was used to calculate the PSD

of a signal over time. For the data recorded with a 3.3 MHz frequency Doppler device,

the cardiac movements generally take place within 100 Hz to 600 Hz. Therefore, the

PSD envelope was derived by averaging over this range of frequency.

Figure 4.3 illustrates the example of Homomorphic and PSD envelopes used in this

work. The feature vectors for each recording were individually normalised by sub-

tracting their mean and dividing by their standard deviation. Following Springer et

al. [228], to increase the speed of computation, the resulting feature vectors were

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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down-sampled to 500 Hz using a poly-phase anti-aliasing filter.

4.4.3.2 Time Delay Embedding

In this work, the time embedding method was used to represent features in a higher

dimension and reveal the underlying dynamics of the features. An embedding space of

features was formed by inclusion of temporal dependency (figure 4.2-b-II). Suppose

that the observed measurement x(t) is one dimensional data, the embedded data

zt = [x(t), x(t − τ), ..., x(t − (m − 1)τ)] generally lies in some higher dimension m.

Where m denotes the embedding dimension, and τ is a time delay parameter. In

practice, reliable estimation of time delay τ and the minimum embedding dimension

leads to a computationally effective model. In this work, an embedding dimension

(m) was set to two and time delay τ was set to 10 ms using the false nearest neighbor

method. As a result of embedding, for each feature, a periodic and recurrent behavior

is characterized by a path returning to itself, creating one or more loops.

4.4.3.3 Kernel Density Estimation

The proposed method tracks the variation based on the estimated probability density

functions (PDFs) in overlapping windows (figure 4.2-b-III). Considering that there

is not an assumption on the underlying form of the distribution, a non-parametric

method was employed to estimate the distribution directly from the data. The sim-

plest non-parametric method to estimate the distribution is a histogram. However,

the discontinuity in histograms in addition to the curse of dimensionality for high di-

mensional data makes it impractical. Also, for continuous data without a sufficiently

large number of data points in a window, it is highly probable to see each data point

once (uniform distribution). To estimate a PDF of the data points in each window,

we used kernel density estimation. The formulation for the kernel density estimator
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is

pt(z) =
1

Nw

Nw∑
i=1

1

(2πσ2)m/2
exp(−(z − zi)

2

2σ2
), (4.1)

where the kernel function was placed on each data point zi. The kernel density was

estimated in overlapping windows of time-delayed data to track changes in the state

of the signal. The window length (Nw) was optimized through cross-validation on

dataset 1 and set to 80 ms. We determined a smoothing parameter (σ) by calculating

the mean of distances of zi from neighbors following Kohlmorgen et al. method [137].

4.4.4 Clustering

We leveraged a two-level clustering algorithm to group the PDFs and recognize the

states in data (figure 4.2-c). A significant advantage of this clustering method is that

it considers the time dependency of windows and it has a lower computational cost

in comparison to clustering methods such as kmeans. The inputs of the proposed

clustering algorithm are subsets of PDFs estimated from DUS 3.75 s segments. The

duration of 3.75 s was fixed since it is the usual length based on the Dawes/Redman

criteria [192, 62] and we expect the higher cluster purity in each 3.75 s segment of

DUS.

For the first-level clustering, a time-dependent clustering method was used. The

time dependency was considered by clustering the data incrementally and updating

the clusters in each step by observing a new PDF. Briefly, in this approach, an up-

coming PDF which is not similar enough to the existing clusters will create a new

cluster. The threshold value for creating a new cluster was optimized based on the

desired number of states.

The second level of the clustering algorithm was then performed by applying a k-

means clustering method on cluster centroids calculated from the first level. There-

fore, the final cluster centroids were calculated by applying the second level clustering.
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Cluster centroids were then considered as the state representative. In both clustering

levels, energy distance measure was used which is a statistical distance between the

distributions. Following equation represents the distance measure between two PDFs

pi and pj:

d(pi(z), pj(z)) =

∫
(pi(z)− pj(z))2dz. (4.2)

Defining the states of DUS signal segmentation model is challenging due to the

changes in morphology of this signal and an uncertainty about which valve or wall

motion will be dominant in each cycle. In this study the number of states is set to

two, following the model presented in [234]. Therefore, states of the proposed model

indicates the dominant beat event in each cycle and the intervals between them. For

each upcoming window, the probability of being in each state can be calculated based

on the distance to the cluster centroids.

4.4.5 Hidden Semi-Markov Model

HMM is a powerful statistical model for the segmentation of sequential observation.

The underlying assumption of the statistical models is that the signal is characterized

as a parametric random process and the parameters can be estimated in a well-defined

manner [199]. The major difference between HSMM and HMM is the assumption that

the underlying stochastic process is a “semi-Markov” process. In this approach, the

duration of each state is considered as a random variable characterized by an explicit

probability distribution. As a result of this modification, self-transition coefficients

in the transition matrix are set to zero. The duration densities control the appro-

priate amount of observations required for each state. In this work, the estimation

of HSMM variables was modified to use it as an unsupervised model. To estimate

the most probable state sequence Q = {q1q2...qT} for a given observation sequence

O = {O1O2...OT} the well-known dynamic programming algorithm, Viterbi algorithm
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is used. The likelihood of the most probable state sequence corresponding to the first

t observations and ends in state i can be expressed as:

δi(t) = max
q1q2...qt−1

p(q1q2...qt = i, O1O2...Ot|λ), (4.3)

in which λ denotes the parameters of the model. Generally, an HMM can be charac-

terized by its parameters as:

λ = (A,B, π), (4.4)

where A is the transition probability matrix, B is the emission matrix and π is the

initial state distribution. The size of the model parameters is equal to the number of

states recognized in the clustering algorithm where we can define the hidden states

as S = {s1, s2, ..., sN}. In this work the total number of states N is set to two.

4.4.5.1 The initial state distribution:

The initial state probability π = {πi} was defined as a uniform distribution since

there was not any restriction for assigning a label to the first observation and it is

equally likely to observe either state.

4.4.5.2 The Observation Probability Density

The observation probability density B = {bj(Ot)} defines the probability that state

j generates the observation vector Ot at time t and was deployed based on the sim-

ilarity of the PDFs to the cluster centers. In this work, the probability of observing

the estimated PDF in state s ∈ S is defined as:

bj(pt(z)) = p(pt(z)|sj) =
1

σ
√

2π
exp(−

d(psj(z), pt(z))

2σ2
), (4.5)
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in which ps(z) is the cluster centroid and pt(z) is the estimated PDF from observation.

4.4.5.3 The duration distribution of Doppler states

We used a Gaussian probability density function for the duration probabilities, which

can capture the inherent variation of beat duration. The assumption in pruning theo-

rem requires the state duration distributions to be log-convex, as is the case for most

parametric distributions useful for the purpose [285].

The parameters of the duration distributions (pi(d)) were initialized based on physi-

ological limitations, then we updated the distributions based on the estimated mean

of cardiac cycle duration (µ). The mean cardiac cycle duration in each 3.75 s of DUS

was computed by auto-correlation of the signal envelope using the method presented

by Valderrama et al. [252]. The mean cardiac cycle also was used to specify the

maximum duration (dmax) in the Viterbi algorithm.

Note that, estimating the duration distribution of each state is required for the

HSMM. However, the auto-correlation method provides the estimate of the mean beat

interval which is the summation of the duration of two states (µ = µs1 + µs2). We

proposed an adaptive algorithm to update the initial distributions based on estimated

mean heart rate using Kullback-Leibler (KL) divergence. Specifically, KL divergence

of reference density P and estimated density Q is a measure of the information lost

when P is used to approximate the reference. In this work, P is the initial duration

distribution and Q is the updated version of P using mean of the duration of the

cardiac cycles. The formulation for KL divergence is as follow:

L = KL(Q‖P ) =
∑

Qln
Q

P
. (4.6)

The optimization process is based on one variable since, µs1 and µs2 are dependent.
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The defined objective function is

L1 = L(N(µs′1 , σs1)‖N(µs1 , σs1)), (4.7)

L2 = L(N(µ− µs′1 , σs2)‖N(µs2 , σs2)), (4.8)

argmin
µs′1

(L1 + L2), (4.9)

where µs1 and µs2 are the initial values and µs′1 is the updated value of mean for state

one and variable of the objective function.

Heretofore, we discussed the definition of parameters in our HSMM model. Ulti-

mately, the Viterbi algorithm was used to estimate the most likely sequence of PDFs

that might have generated the given sequence of PDFs. The likelihood of the most

probable sequence can be estimated using the following recursive relation:

δi(t) = max
d
{max

j
{δt−d(j)aij}pi(d)Πt

t′=t−d+1bi(pt′)}, (4.10)

where the maximization was performed over all the defined states and time samples

1 ≤ i, j < N , 1 ≤ t ≤ T and all possible state durations d where 1 ≤ d ≤ dmax.

4.5 Performance assessment

We investigated the effect of the window size used in kernel density estimation on F1

score of beat detection and mean square error (RMSE) in capturing variability using

dataset 1. For this purpose, the simultaneous fECG was considered as a reference

for benchmarking. The leave-one-out cross-validation method was used as a model

validation and parameter tuning technique to divide the data set into the training

and validation sets.

After parameter optimization, two approaches were used to reach a consensus on
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the performance of the algorithm. First, the standard evaluation metrics, sensitivity

(Se), positive predictive value (PPV), and F1 score were provided to measure the

beat detection accuracy. Also, the RMSE of the variability in detected beat inter-

vals was calculated. The second aspect of the evaluation is the performance of the

algorithm in HRV estimation. Therefore, the accuracy of the beat to beat interval

estimation was investigated by comparing the obtained HRV metrics from DUS and

fECG in frequency and time domain. HRV analysis included the mean of intervals

(NNmean), the standard deviation (SDNN), the root mean square of successive differ-

ences (RMSSD), the proportion of interval differences of successive intervals greater

than 20 ms (pNN20), the low frequency power (LF), and the high frequency power

(HF). In this work, HRV was analyzed using a 3-minutes sliding window with the

increment of 30 seconds. Based on the literature report on FHRV spectral analysis

in [205] and the successful use of LF and HF range to discriminate abnormal cases in

[15], the frequency bands of interest for LF and HF were set to 0.04-0.15 and 0.15-

0.5 Hz, respectively. An open-source ”PhysioNet Cardiovascular Signal” toolbox was

used to calculate the HRV indices [255].

The statistical comparison tests are provided to analyze the HRV estimation.

The Spearman’s rank-order correlation and the corresponding p-values tests the null

hypothesis that there is no relationship between the variables (α=0.05). In addition,

the p-value of a two-sided Wilcoxon rank-sum test was considered as a second measure

to test the null hypothesis that inputs are samples from continuous distributions with

equal medians against the alternative (α=0.05).

Figure 4.4 shows the two-state segmentation result. The performance of the al-

gorithm was evaluated based on the transition point between the states. Therefore,

three fiducial points were extracted from segmentation labels, including onset, mid-

dle, and offset of the dominant beat. The intervals between the mentioned points are

denoted by ∆D
1 , ∆D

2 and ∆D
3 respectively. Note that the fiducial point derived from
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HSMM may not necessarily identify the same location as an annotation. However,

the number of the detected beats and variability of the intervals are important to

evaluate the performance.

4.6 Results

4.6.1 Analysis of dataset 1

The effect of the window length was investigated using dataset 1. The F1 score and

RMSE values are provided in Figure 4.5. An extremely small RMSE shows that

the detected beats were located accurately. Considering the computation cost for

increasing the window size and the results in Figure 4.5, we can infer that choosing

the second window size (80 ms) leads to having good performance in beat detection

and more accurate overall variability estimation.

The segmentation algorithm was applied based on the optimized window size. Ta-

ble 4.2 includes the beat detection accuracy of dataset 1 averaged across the subjects

to an overall accuracy of 97.5%, 97.9% and 98.2% F1 score for ∆D
1 , ∆D

2 and ∆D
3

respectively. By using ∆D
3 , better performance in beat detection was achieved, and

the reason is the essence of the annotation in dataset 1, which is based on fQRS

location.

The accuracy of estimated beat-to-beat intervals is provided for each patient in

terms of HRV analysis (table 4.3). Overall, results show that the onset-to-onset inter-

val (∆D
1 ) is the best estimate for capturing the heart rate variability. The estimated

FHRV parameters and the reference values have significant correlation in terms of

Spearman correlation metric. Also, based on the Wilcoxon rank sum test, we can

infer that there is insufficient evidence to reject the null hypothesis (sampling from

continuous distributions with equal medians) in the estimates of the Mean, SDNN

and LF metrics calculated from dataset 1. Figure 4.6 shows the violin plot of the
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Figure 4.4: The segmentation result and simultaneous fECG from dataset 1. The perfor-
mance of the method was evaluated using start, middle and end of the dominant beat.
The estimated intervals were denoted by ∆D

1 , ∆D
2 and ∆D

3 respectively. © Institute of
Physics and Engineering in Medicine. Reproduced with permission. All rights reserved
(https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf).

Table 4.2: The performance of proposed unsupervised HSMM beat-to-beat interval estima-
tion on dataset 1.

Se (%) PPV (%) F1 (%) RMSE (ms)

∆D
1 ∆D

2 ∆D
3 ∆D

1 ∆D
2 ∆D

3 ∆D
1 ∆D

2 ∆D
3 ∆D

1 ∆D
2 ∆D

3

97.6 97.6 98.4 97.3 98.0 98.1 97.5 97.9 98.2 20.40 20.72 20.49

HRV metrics for all the patients in dataset 1, which demonstrates the distribution of

the HRV indices derived from the estimated and reference values.

4.6.2 Analysis of dataset 2

As we described in the study database, the annotation for dataset 2 is not based on

fECG and provided by three independent annotators. This data set is used as an

independent test data to evaluate the performance of the algorithm using calculated

cluster centroids and optimized window size.

Table 4.4 shows a performance of the algorithm on dataset 2 with F1 score ranged

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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Figure 4.5: The cross-validated measures to optimize window length. a) F1 score of beat
detection and b) RMSE of variability estimation for a range of window sizes. © Institute
of Physics and Engineering in Medicine. Reproduced with permission. All rights reserved
(https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf).

Table 4.3: The performance of unsupervised HSMM heart rate variability estimation on
dataset 1. ρre is the correlation coefficient between the reference and estimated HRV metrics,
PS denotes the p-value for the Spearman correlation and PW is a p-value of the Wilcoxon
rank sum test with the significance level of P < 0.05.

ρre PS PW

∆D
1 ∆D

2 ∆D
3 ∆D

1 ∆D
2 ∆D

3 ∆D
1 ∆D

2 ∆D
3

NNmean 0.99 0.99 0.99 0 0 0 0.22 0.24 0.24
SDNN 0.92 0.91 0.91 0 0 0 0.7 0.4 0.6
RMSSD 0.56 0.50 0.47 1.1e-04 9.5e-04 6.5e-04 3.5e-06 2.5e-06 5.7e-06
pNN20 0.50 0.48 0.42 9.1e-04 0.004 5.1e-04 1.1e-06 5.2e-06 4.8e-06
LF 0.98 0.98 0.98 0 0 0 0.72 0.88 0.74
HF 0.60 0.43 0.30 0.01 0.01 0.04 0.004 0.004 0.004

from 97.7% to 98.5%. Based on the results provided in table 4.5 and Figure 4.7, we

can conclude that all the estimated FHRV metrics can follow the reference values in

terms of Spearman correlation. The Wilcoxon rank sum test indicates the rejection

of null hypothesis (no statistically significant difference in medians) for the pNN20

measure. In addition, by comparing the three estimated intervals ∆D
1 , ∆D

2 and ∆D
3 ,

we can infer that ∆D
1 is the most accurate estimation in terms of HRV assessment

and beat detection.

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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Table 4.4: The performance of proposed unsupervised HSMM beat-to-beat interval estima-
tion on dataset 2.

Se (%) PPV (%) F1 (%) RMSE (ms)

∆D
1 ∆D

2 ∆D
3 ∆D

1 ∆D
2 ∆D

3 ∆D
1 ∆D

2 ∆D
3 ∆D

1 ∆D
2 ∆D

3

98.0 97.2 97.2 98.9 98.9 98.1 98.5 98.0 97.7 26.3 27.1 27.4

Table 4.5: The performance of unsupervised HSMM heart rate variability estimation on
dataset 2. ρre is the correlation coefficient between the reference and estimated HRV metrics,
PS denotes the p-value for the Spearman correlation and PW is a p-value of the Wilcoxon
rank sum test with the significance level of P< 0.05.

ρre PS PW

∆D
1 ∆D

2 ∆D
3 ∆D

1 ∆D
2 ∆D

3 ∆D
1 ∆D

2 ∆D
3

NNmean 0.99 0.99 0.99 0 0 0 0.26 0.26 0.25
SDNN 0.92 0.89 0.87 0 0 0 0.06 0.04 0.003
RMSSD 0.67 0.62 0.67 1.6e-07 1.5e-06 1.5e-07 0.78 0.78 0.41
pNN20 0.65 0.63 0.57 1.0e-08 5.5e-07 8.7e-06 0.001 0.002 0.001
LF 0.92 0.91 0.94 0 0 0 0.09 0.05 0.01
HF 0.65 0.52 0.33 3.4e-07 9.5e-05 0.01 0.41 0.33 0.20

4.7 Discussion

In this work, we have presented a novel approach to signal segmentation using an

unsupervised HSMM. Previous methods of FHR estimation using 1D DUS focused

on two alternative approaches with associated weaknesses. The first approach is

supervised and requires labeled data to train a segmentation model [173, 172] and

is therefore dependent on the quality of the labels, and the similarity between the

labeled data and the new data encountered. The second approach ignores beat events

and involves FHR estimation using fixed temporal windows of DUS data. The most

popular approach in this latter category is based on an auto-correlation method [252]

which provides a lower resolution for heart rate timing estimation than segmentation

approaches due to averaging over a few seconds. The EMD-Kurtosis approach of [3],

which also falls into the non-beat level windowed FHR estimation category, has been

shown to provide more accurate estimations than standard auto-correlation based
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methods. The reported results showed that although the EMD-Kurtosis method

could outperform the auto-correlation approach in estimating the mean beat-to-beat

interval, there were statistically significant differences in the derived estimates of

the SDNN and RMSSD metrics. This indicates that the EMD-Kurtosis approach

introduced errors in HRV estimation for all metrics evaluated.

The statistical analysis of our proposed method in terms of FHR variability metrics

(table 4.3 and table 4.5) substantiates our method’s superiority to this other work.

Specifically, we see no statistically significant differences in our estimates of all FHRV

metrics in terms of Spearman correlation in dataset 1 and dataset 2. Moreover, the

Wilcoxon rank-sum test rejects the null hypothesis of equal medians in estimates for

the RMSSD, pNN20 and HF HRV metrics calculated from dataset 1. For dataset

2 the Wilcoxon rank-sum test indicates the rejection of the null hypothesis only for

the pNN20 metric. All other metrics cannot be shown to be different to the human

annotations. Finally, we note that in our work (unlike previous works) we used an

independent test dataset drawn from a different population and setting, and so the

generalization of our reported performance is likely to be more realistic.

Based on the results shown in table 4.3 and table 4.5, some FHR variability metrics

such as RMSSD, pNN20, and HF are more prone to errors than others depending on

the selected fiducial point (∆D
1 , ∆D

2 or ∆D
3 ). The sensitivity of pNN20 and RMSSD

to the fiducial point choice can be explained considering their definition, which is

based on successive differences. Therefore, the possible error in the beat location

may influence these parameters more than the SDNN. Also, we note that the HF

estimate has been shown to be very sensitive to small changes in beat onset detection

[55].

It should be noted that the heart rate estimations are affected when data are heav-

ily corrupted by noise and interference [252], and in fact it is important at that point

to not report heart rate, or derived HRV metrics, but rather to report that the data
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are non-analyzable. In our earlier works [236, 250, 251], we demonstrated accurate

methods for separating poor quality from good quality data, and even identifying the

etiology of the noise. Therefore, coupling these works together may lead to a robust

system that could be used in an automatic or semi-automatic manner. We also note

that it was impossible for the human annotators to accurately estimate beat onsets

and fetal heart rate from noisy DUS data, and therefore assessments during noisy

sections are not possible.

Comparisons of the results for detecting the three possible fiducial points in DUS

(onset, offset and the midpoint of the beat) demonstrates that the interval estimated

from the onset of the dominant beat (∆D
1 ) is the most robust measurement of beat

interval for assessing HRV. This could be due to the nature of the proposed method,

which detects changes in the dynamics of the observation based on the learned pa-

rameters and the offset and midpoint can sometimes exhibit more indefinite fiducial

points. Furthermore, the onset time might best reflect the initiation of the cardiac

cycle and be less confounded by other extraneous factors.

The proposed method alleviates the cost of labeling clinical data by using un-

supervised learning to estimate beat-to-beat intervals, which has been shown to be

important in various applications, including evaluation of fetal maturation [111] and

comparison of HRV indices of low-risk and IUGR fetuses [229, 217, 15]. In particular,

SDNN, RMSSD, HF, and LF have shown to be significantly lower in IUGR fetuses.

Since our approach is capable of estimating SDNN and LF with minimal error (cor-

relation coefficient>0.9) the developed framework can be thought of as a low-cost

promising tool for FHR monitoring. In particular, the proposed technique may have

potential for improving the clinical utility of IUGR classification and prediction from

FHRV [238]. However, future work prospectively analyzing a significant volume of

IUGR fetuses with raw Doppler will be required to prove the eventual utility of such

an approach.
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An inevitable limitation in the processing of the clinical data is the existence of

noise. In DUS recording sources of noise include fetal movement, probe movement

or disconnection, maternal movement, and other moving organs and environmental

noise. The existence of low-quality segments of DUS recording affects the estimation

of most HRV metrics. Another limitation of this study is that the reference signal

is a non-invasive fECG, which is sometimes noisy and prone to errors at times [208].

A scalp fECG could have provided a more accurate and more reliable reference for

evaluation, but it requires the rupture of membranes and can only be performed

during labour.

4.8 Conclusion

In summary, this work presents the most accurate approach for the beat to beat

monitoring of fetuses using 1D DUS signals so far reported. The proposed modified

HSMM as an unsupervised approach along with the use of spectral and temporal

features as an input to a clustering algorithm, significantly improved DUS segmenta-

tion and heart rate variability assessment. This method may provide improved FHR

monitoring from low-cost 1D DUS transducers, and assist in better detection of fetal

abnormalities in low-resource settings.
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Figure 4.6: Comparison of estimated fetal HRV parameters from DUS segmentation and
reference values (beat intervals from fECG) in dataset 1. © Institute of Physics and
Engineering in Medicine. Reproduced with permission. All rights reserved (https:
//iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf).

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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Figure 4.7: Comparison of estimated fetal HRV parameters from DUS segmentation and
reference values (beat annotation) in dataset 2. © Institute of Physics and Engineering in
Medicine. Reproduced with permission. All rights reserved (https://iopscience.iop.o
rg/article/10.1088/1361-6579/aba006/pdf).

https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
https://iopscience.iop.org/article/10.1088/1361-6579/aba006/pdf
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Chapter 5

Deep sequence learning for

gestational age estimation

5.1 Abstract

Assessing fetal development is usually carried out by techniques such as ultrasound

imaging, which is generally unavailable in rural areas due to the high cost, mainte-

nance, skills and training needed to operate the devices effectively. In this work, we

propose a low-cost one-dimensional Doppler-based method for estimating gestational

age (GA). Doppler time series were collected from 401 pregnancies between 5 and 9

months GA using a smartphone. The proposed model for GA estimation is based

on sequence learning by forming a temporally dependent model using a convolu-

tional long-short-term memory network. Time-frequency features are extracted from

Doppler signals and regularized before feeding to the network. The overall mean

absolute GA error with respect to the last menstrual period was found to be 0.71

month, which outperforms all previous works.
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5.2 Introduction

Low- and middle-income countries (LMICs) account for approximately 98% of all

reported perinatal deaths worldwide, mainly due to gestational developmental issues,

specifically intrauterine growth restriction (IUGR) [286, 151, 59]. Rising costs of

healthcare and inadequate access to prenatal medical services exacerbate this issue

in LMICs as well as low-income regions in other countries, such as the southeast US.

Most of these deaths can be avoided by improving health monitoring before, during

and after childbirth. Therefore, developing AI-enabled edge-computing devices that

are intuitive to use, even for low-literacy populations helps to enhance healthcare for

disadvantaged populations.

Gestational age estimation provides essential information such as preterm birth

management, delivery scheduling and growth restriction [5]. Fetal cardiac assessment

is a tool recommended by obstetrical societies for monitoring fetal health during

pregnancy [154]. The functional assessment of the fetal heart conveys important in-

formation regarding the hemodynamic status and cardiovascular adaptation of a fetus

in the face of several perinatal complications. Fetal heart rate is influenced by the

autonomic nervous system (ANS), which matures during pregnancy. In particular,

fetal heart rate variability evolves over the course of pregnancy reflecting the ma-

turity of the ANS, and thus an indirect indicator of the fetal gestational age [258].

Previous studies have shown that fetal heart rate variability metrics can be used as

discriminative features for fetal development assessment [248, 110, 240, 170, 171]. One

non-invasive method for capturing fetal cardiac activity is one-dimensional Doppler

ultrasound (1D-DUS), which is a low-cost and simple method for fetal heart rate

monitoring [174]. The Doppler transducer can be easily adapted to connect to mobile

devices such as smartphones, for recording and processing, motivating their use in

mobile-health (mhealth) systems for risk screening in low-resource environments [237].

The Doppler transducer transmits and receives ultrasound waves, which reflect fetal
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I) II)

Gestational age

III)

(a) Data collection (b) Gestational age estimation model

Figure 5.1: (a) Data collection. I) The raw 1D ultrasound is captured using Doppler
transducer and II) The 1D-DUS and gestational age are recorded on the phone using the
developed mobile app. III) The data are then uploaded to the cloud for backup and further
processing. (b) An overview of the proposed process for training CLSTM network for fetal
monitoring from abdominal Doppler acquired during routine fetal monitoring. The features
from 1D-DUS are calculated and fed to the CLSTM network. The output is then flattened
and mapped to the target label.

cardiac activity. Using 1D-DUS signal, blood flow, cardiac wall, and valve motions

can be captured and are differentiable based on their different velocities. Although

1D-DUS provides useful information regarding cardiac functionality, its variable mor-

phology makes the processing and modeling of this signal challenging.

In this paper, we propose a systematic approach for assessing fetal development

by discovering the relation between fetal 1D-DUS signal and gestational age. The

proposed approach is based on a set of effective time-frequency domain features of

the 1D-DUS and a convolutional long-short-term memory (CLSTM) network [281],

which is a robust and powerful method for extracting features from sequential data.

This approach is used to model time dependencies in fetal 1D-DUS and to capture

the variability of the cardiac activity, eventually leading to the estimation of the fetal

gestational age. In the sequel, we start by formulating a mathematical model for the

problem of fetal gestational age estimation from 1D-DUS signals.
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5.3 Gestational age estimation model

Let x(n; t) denote the time series of a 1D-DUS signal with discrete time index n,

acquired during a clinical visit of a pregnant woman on date t. For simplicity, the

date and gestational age are represented in units of weeks. The “true gestational age”

at date t is denoted a(t) = t−c, where c is the date of conception, while the presumed

or reported gestational age is ã(t) = t− c̃, where c̃ is the anticipated conception date.

Therefore, the presumed (anticipated) and true gestational ages can be related as

follows:

ã(t) = a(t) + η (5.1)

where η = c − c̃ is the gestational age presumption error, which without additional

priors (such as 2D-Doppler) remains an unknown stochastic constant over pregnancy.

The error η accounts for lack of knowledge of the last menstrual period and uncer-

tainties in the exact ovulation, intercourse and conception dates. We further denote

the p-dimensional feature vector extracted from the 1D-DUS by f(x(n; t)) ∈ Rp. The

objective is to design a deep network that estimated the true gestational age from the

feature vector extracted from a single or a set of 1D-DUS acquired during pregnancy,

i.e.,

â(t) = G
[
ã(t), {f(x(n; tk))}Lk=1

]
(5.2)

where â(t) is an estimate of the true gestational age, tk (k = 1, . . . , L) denote the

L dates that 1D-DUS is acquired from the pregnant woman, and G(·) denotes the

feature-vector to gestational age transform that is learned by the neural network, as

shown in Fig. 5.1-(b). In this scheme, the presumed gestational age ã(t) is used for

model training.
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5.4 Dataset

A hand-held 1D-DUS device, the Angel Sounds Fetal 1D-DUS JPD-100s (Jumper

Medical Co., Ltd., Shenzhen, China), with an ultrasound transmission frequency of

3.3 MHz, and costing $25, was used to capture audio data from 401 pregnant women

(493 visits and 693 recordings) at 5 to 9 months of gestation. The data, collected as

part of a randomized control trial conducted in rural highland Guatemala [165, 251],

include 15, 77, 162, 186, 253 recordings corresponding to gestational ages of 5, 6,

7, 8 and 9 months, respectively. The 1D-DUS signals were recorded by traditional

birth attendants, who were trained to use the hand-held 1D-DUS device and were an

accompanying mobile application. Immediately before recording the 1D-DUS signals,

the traditional birth attendants entered the estimated gestational age into the app

in months, based on the last menstrual period (LMP). Data were captured using a

bespoke Android client at 44.1 kHz, using a low-cost smartphone (Samsung S3 mini)

and stored as uncompressed WAV files at 7056/s bits) [237]. The first five minutes

of each recording were used. Figure 5.1-(a) illustrates the data sources and devices

used in this research.

5.5 Data analysis and feature extraction

5.5.1 Preprocessing

Given the nature of the physiological time-series, 1D-DUS signals are corrupted with

internal and external interference such as respiration, movement, and environmental

noise. In this work, a second-order band-pass Butterworth filter was used to reduce

the noise. By observing the frequency components of the 1D-DUS signals, the cut-off

frequencies were set to 25 and 600 Hz, corresponding to cardiac oscillations.



82

5.5.2 Time-frequency (TF) features for DUS components

For a real-valued discrete-time signal xn, where n is the time instant, we define a

windowed version of the signal sn = wnxn, where wm (m = 0, . . . , N − 1) is a window

for improving the spectral features and minimizing the windowing effects. A Hamming

window of length 100 ms (400 samples at a sampling rate of 4 kHz) is used for the

later presented results. The discrete-time Fourier transform (DTFT) of a window of

N samples of sn is:

Sn(ω)
∆
=

N−1∑
m=0

sn+m−N+1e
−jωm (5.3)

According to the Parseval’s theorem, the energy of each window of the signal is:

En
∆
=

N−1∑
m=0

|sn−m|2 =
1

π

∫ π

0

|Sn(ω)|2dω (5.4)

We define the instantaneous frequency, or the first spectral moment of sn, as follows:

ωn
∆
=

1

En

∫ π

0

ω|Sn(ω)|2dω (5.5)

which for frequency-domain unimodal signals is the frequency (in radians) around

which the signal energy is localized at time instant n. It is therefore a measure of the

signal’s center frequency at time n. In a similar manner, the instantaneous bandwidth,

or the spectral centralized second moment, of sn is defined:

∆ω2
n

∆
=

1

En

∫ π

0

(ω − ωn)2|Sn(ω)|2dω (5.6)

which is a measure of the instantaneous energy spread around the instantaneous

frequency.

Finally, we define the instantaneous oscillation quality-factor (Q-factor): Qn
∆
=

ωn/∆ωn, as a measure of oscillation quality, which is a notion commonly used in elec-
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tronic circuitry for evaluating the quality of oscillation independent of the frequency.

Accordingly, when xn becomes closer to a single-tone component, the Q-factor in-

creases. Note that for digital implementations, the DTFT is replaced by the Discrete

Fourier Transform (DFT), with appropriate dimension corrections. These features

form the overall feature vector fn
∆
= (
√
En, ωn,∆ω

2
n, Qn), which is fed to the sequence

modeling part of the model. Due to the signal windowing, the extracted feature vec-

tor has slow variations over time and was therefore resampled from 4 kHz to 100 Hz,

to reduce the processing load.

5.5.3 Sequence modeling

Given that we have a sequential feature vector, the use of a recurrent neural network

is a natural choice to keep track of the variability and temporal structure of the signal.

Long-short-term memory (LSTM) [103] is one such recurrent neural network, which

has been used in various studies for the general purpose of sequence modeling. A

Convolutional LSTM (CLSTM) network developed by Shi et al. [281] is a combina-

tion of LSTM and convolutional neural network to capture spatio-temporal features.

Accordingly, the input-to-state and state-to-state transitions in LSTM are changed

from full connections to convolution structure. By stacking multiple CLSTM layers,

one can form a spatio-temporal sequence modeling network to uncover the variabil-

ity in fetal cardiac activity. By changing the kernel size, CLSTM is able to capture

the different DUS components with different velocities, corresponding to the different

fetal-maternal body tissues that move within the DUS transceiver frequency range.

We can consider the states as the hidden representation of the cardiac valve opening

and closing. These sub-organ motions are captured by setting the appropriate kernel

size. The utilized CLSTM architecture comprised of two successive layers with kernel

sizes (1, 20) and (1, 10), respectively. Each layer is followed by batch normalization.

The output is then flattened and mapped to the gestational age label through 4 fully
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connected layers with sizes 128, 32, 3 and 1. In order to reduce the likelihood of over-

fitting we used an L2-regularizer with regularization parameter λ = 0.01. A dropout

technique was also used before the dense layer and the probability of training a given

node in a layer was set to 0.3.

5.6 Results

Stratified five-fold cross-validation is used across patients to assess the performance

of gestational age estimation. The model was trained end-to-end for a total of 300

epochs using a mean absolute error (MAE) loss function. The batch size was fixed to

32 patients and generated using a balanced batch generator with random oversampling

(with replacement) of the less frequent label (5 months). The 50 trial cross-validation

was performed and the median, the lower and upper 95% confidence interval (LCI and

UCI ) of MAE values were determined (Table 5.1). Our proposed model outperforms

the previous studies on gestational age estimation, which were based on 1D-DUS

signals and maternal blood pressure and heart rate [248] and 1D-DUS signals with

simultaneously recorded fetal electrocardiogram (ECG) [170, 171]. It should be noted

that although using simultaneously recorded ECG or maternal blood pressure can im-

prove the performance of the gestational age estimation [248, 201], for the application

of interest, requiring an additional device for blood pressure or ECG recordings signif-

icantly complicates the use and raises the cost of the smartphone-mediated perinatal

screening system.

Table 5.1: Mean absolute errors of the 50-trial five-fold cross validation for the CLSTM
in months. Error is reported as lower, median and upper 95% confidence interval (LCI,
median, UCI) for GAs of 5-9 months, together with the average over all months tested
(All).

Gestational Age (months since reported LMP)
5 6 7 8 9 All

Error (1.9, 1.98, 2.1) (0.7, 0.72, 0.8) (0.4, 0.45, 0.5) (0.4, 0.48, 0.4) (0.9, 0.98, 1.1) 0.71
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5.7 Discussion and conclusion

This work represents the first attempt to estimate gestational age from only Doppler

signals, and outperforms previous attempts based on multiple signals (Doppler plus

electrocardiogram [170] or Doppler plus blood pressure [248]). Since the error is close

to the quantization of the labels, future improvements will require more accurate GA

labels, collected using Doppler imaging in the first trimester.
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Chapter 6

Detection of noisy gestational age

recordings

6.1 Abstract

The growing application of mobile health (mhealth) technology for maternal and

child health monitoring emphasizes examination of the contextual factors and inter-

ventional outcomes to improve the prototype design. Previously, we introduced an

affordable fetal monitoring system aimed to assist low-literacy traditional birth at-

tendants (TBAs) in rural Guatemalan communities. This mHealth fetal monitoring

system consists of a low-cost 1D Doppler device connected to a smartphone running a

mobile application. Before recording Doppler ultrasound signals, the app guides the

user to enter the anticipated gestational age in months based on the last menstrual

period. Further analysis has been done to evaluate fetal development based on fetal

cardiac recordings and gestational age labels using machine learning and signal pro-

cessing methods. In this study, we examined the reliability of the recorded gestational

age labels based on the distribution of the times of recording and the values recorded

in order to improve the estimates. Using multiple observation fusion we found that,
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there is a correlation between gestational age and uncertainty in labels. While further

analysis should be done to detect source of the error, we hypothesize that it might

be due to recalling the conception date in last weeks of pregnancy. The proposed

method will be used as a metric for detecting noisy labels for future analysis.

6.2 Introduction

Healthcare challenges in low and middle-income countries (LMICs) have been the

focus of many digital initiatives that aim to improve both access to healthcare and

quality of care. However, moving beyond the initial phase of piloting and experi-

menting needs effective scaling and integration to provide sustainable benefits to the

healthcare system. In particular, to evaluate the effectiveness of an intervention in

LMICs, it is essential to investigate sources of inaccurate or unreliable recordings

and take the necessary steps to provide users with real-time feedback for immediate

corrective action or modify the design of the monitoring system to avoid incorrect

or noisy recordings. Unreliable data could be due to the user’s habitual mistakes or

equipment malfunctions, leading to incorrect insight and faulty predictions.

In this work, we focused on the fetal maternal health monitoring system pro-

vided for traditional birth attendants in rural Guatemala [166, 234, 237, 167, 251],

where the perinatal morbidity and mortality rates are the highest in Latin America

[277, 270]. Maternal and neonatal health is a key concern of the global healthcare

community. Although advances in healthcare technology and delivery have reduced

overall morbidity and mortality rates in many countries, neonatal and maternal out-

comes have not improved proportionally. It is estimated that each year over 287000

women die of pregnancy-related causes [95, 277], and there are 2.6 million stillbirths

and 2.8 million early neonatal deaths worldwide [38, 146, 262]. Limited funding for

medical technology and poor infrastructure for delivering and maintaining technology
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severely limit medical decision support in these areas. To address these challenges,

a low-cost smartphone-based monitoring system was proposed, including peripheral

sensors, such as a handheld Doppler for the identification of fetal compromise. This

system is provided to assist traditional birth attendants who were trained to use the

developed mobile app and the hand-held 1D Doppler device for recording cardiac

activity. Before recording signals, they also entered the estimated gestational age

into the app in months, based on the last menstrual period (LMP). The precision

of the gestational age labels could be affected by different factors in the process of

recording such as error in recalling the date of LMP or entering the correct month.

This error will significantly affect further analysis of fetal health and development.

Therefore, we proposed a method to detect reliable gestational age labels and improve

the analysis of deep learning based gestational age estimation model [131].

In post processing steps that we perform on clinical data acquired in high income

countries we can discard the poor quality records, record them again or switch to a

more reliable monitor. However, when we propose solutions for LMICs with limited

and overloaded medical resources, misreported values, low quality signals and images

become an integral part of the problem. Therefore, it is necessary to provide users

with real time feedback on data quality during the patient information acquisition. As

part of the quality assessment process, we had previously presented the fetal Doppler

signal quality evaluation method to detect the type of noise and classify the signal

into interference, silent, talking, poor and good quality classes [250, 251]. Despite all

the aforementioned challenges, it had been demonstrated that midwifes could feasibly

collect quality one-dimensional fetal Doppler ultrasound data using a low-cost device

and smartphone [122]. In this work, we looked into the quality assessment from a

different angle and proposed a systematic approach to evaluate the accuracy of the

gestational age labels recorded by the Guatemalan TBAs.
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(b)(a)

Figure 6.1: Data collection. a) Gestational age is recorded in months on the phone using
the developed mobile app. b) The raw 1D ultrasound is captured using Doppler transducer
(adapted from [251]).

6.3 Method

6.3.1 Data acquisition

The data was collected as part of a randomized control trial, conducted in rural high-

land Guatemala [167, 251]. The recorded data includes multimodal data from visits

that were conducted inside the patient’s home and contains recording of 2769 pa-

tients. The primary objective of the developed mHealth perinatal monitoring system

is to enable recording of fetal cardiac activity onto a mobile phone for further pro-

cessing and fetal risk analysis. In order to detect growth restriction and monitor fetal

neural development, the gestational age at the time of visit was also recorded (figure

6.1). The 1D-DUS device was an AngelSounds Fetal 1D-DUS JPD-100s (Jumper

Medical Co., Ltd., Shenzhen, China) with an ultrasound transmission frequency of

3.3 MHz. Data were captured using a bespoke Android client at 44.1 kHz, using a

low-cost smartphone (Samsung S3 mini) and stored as uncompressed WAV files at

7056/s bits) [237].
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6.3.2 Maternal healthcare assessment

Monitoring the enrollment and frequency of visits can help to detect underlying barri-

ers to care and access for patients and is one of the important aspect of managing the

health research since lengthy assessment intervals could miss essential health prob-

lems.

The distribution of the visits was determined to probe the frequency of visits in

this study. The Poisson distribution was fitted to the histogram of the visits. In fitting

a Poisson distribution to the data, each of the number of visits has the probability

mass function:

πk = P (X = k) =
λke−λ

k!
(6.1)

In order to fit the Poisson distribution, value for λ was estimated from the observed

data which is also the expected value and variance of a Poisson distributed random

variable.

6.3.3 Multiple measurement fusion

A pregnant woman may be admitted at the clinic or by the midwife several times

throughout the pregnancy, resulting in multiple traces of the fetal Doppler recording

at different gestational ages. Let a(t) denote the reported gestational age acquired

during a clinical visit on date t. Therefore, the anticipated conception date can be

calculated by equation c = t− a(t). Next suppose that a total number of N Doppler

signal have been recorded from a pregnant woman at dates tk (k = 1, . . . , N), resulting

in the gestational age labels {a(t1), . . . , a(tN)}. Each of these labels gives an estimate

of the “true conception date” c, i.e.,

ck = tk − a(tk), k = 1, . . . , N (6.2)
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The N conception date estimates can be merged together to obtain a more accurate

estimate of the true conception date. For each patient a set of estimated conception

dates is available which were subject to some kind of random error, either due to

error in recalling the LMP date or entering incorrect gestational age label. In order

to reduce the effect of outliers in the final estimation we took the median of the

resulting measures and denoted by ĉ. After estimating the conception date using

multiple measurement fusion, the distance from the estimated date has been used as

a metric to score the reliability of the recorded gestational age.

6.4 Results

6.4.1 Distribution of the visits

The recording of the data has been started since 2016. In this section we investigated

the number of visits for patients in the study at each year. In figure 6.2 we illustrated

the histogram and fitted Poisson distribution. This emphasizes the fact that number

of visits follow the Poisson distribution and the resultant long-tail distribution is

based on a nature of this count data. Therefore, large number of visits should not be

considered as an outlier in analysis of gestational age label.

6.4.2 Evaluation of gestational age labels

In order to use multiple data fusion to evaluate the accuracy of gestational age la-

bels preprocessing of data was needed. Hence, the data was filtered based on three

conditions which are prerequisite to the analysis of quality of the labels. First, the

existence of gestational age labels, second the existence of date of visit and the last

one, existence of more than one visit after filtering based on first two conditions. The

filtered data includes 565 patients which had all the information needed for evaluating

the labels. In figure 6.3 distribution of visits and labels are provided after filtering.
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Figure 6.2: Distribution of number of visits from 2016 to 2019.

Figure 6.3: Distribution of the data for analysing the quality of the gestational age labels.
a),b) illustrate the histogram of visits and gestational age labels after filtering the data.

To analyze the reporting gestational age we have evaluated the distribution of the

error based on variables of the study as follows:

• Patient and midwife IDs.

• Date and month of visit.

• Label of gestational age.
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6.5 Discussion and conclusion

The recorded data in visits of the study may not include all the expected modalities

such as Doppler recording and gestational age label. In the processing of Doppler

signal to estimate gestational age we will consider the error in recorded gestational

age labels based on the proposed evaluation metric. The logic behind this process is to

determine which inputs to use as a clean data to train and evaluate the deep learning

model. It should be noted that we do not have enough information to evaluate the

accuracy of the gestational age label for patients with just one visit. Therefore, it is

not possible to draw a concrete conclusion based on this part of the data.
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Figure 6.4: Difference of estimated conception date (ĉ) and dates from multiple observations
(ck) based on patient index and midwife index.

(a) (b)

Figure 6.5: Difference of estimated conception date (ĉ) and dates from multiple observations
(ck) a) based on date of visit and b) based on month of visit.
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Figure 6.6: Difference of estimated conception date (ĉ) and dates from multiple observations
(ck) a) based on date of visit and b) based on month of visit.
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Chapter 7

Hierarchical attention network for

gestational age estimation

7.1 Abstract

Assessing fetal development is essential to provide a standard of care medical man-

agement for both mother and fetus. In low- and middle-income countries, conditions

that increase the risk of intrauterine growth restriction (IUGR) are often more preva-

lent. In these regions, barriers to access health care and social services exacerbate the

issue. This work introduces a series of machine learning algorithms for use on an af-

fordable hand-held Doppler and smartphone-based system for estimating gestational

age (GA), and by inference, IUGR.

Doppler ultrasound signals were collected from 401 pregnancies between 5 and 9

months GA by traditional birth attendants in highland Guatemala. A subset of the

data were labelled for quality and a method for automatically classifying quality was

implemented.

A model for GA estimation was then proposed based on a hierarchical sequence

learning method with attention. This resulted in an state-of-the-art performance,
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with an average GA estimation error of 0.72 months. This is close to the theoretical

minimum for a quantization level of one month. Using a balanced batch generator

with assigned weights based on the inverse class frequency, the error in estimating

label five was reduced from 1.77 to 1.21 months.

The methods developed in this thesis are readily deployable to provide AI-guided

diagnostics This AI-enabled edge computing device is intuitive to use, even for low-

literacy populations.

7.2 Introduction

Accurate estimation of gestational age (GA) is crucial to identify infants at risk for

adverse health outcomes. GA is a proxy for fetal development and is used for delivery

scheduling, and preterm birth management [5]. The prevalence of growth restriction

is known to be high where an estimated twenty million infants are born globally

with low birth weight (less than 2500 g) every year, and the majority are born in

low-and middle-income countries (LMICs) [264]. Fetuses with intrauterine growth

restriction (IUGR) conditions are more vulnerable to mortality and morbidity in the

neonatal period and beyond. Therefore, early prediction of IUGR could help manage

the condition and lower mortality risk.

Maternal and child mortality is an important public health issue since most of

them are preventable by addressing inequalities that affect maternity care. Almost

half of women in low-and middle-income countries (LMICs) do not receive adequate

antenatal care, and worldwide an estimated two million early neonatal deaths occur

annually in these areas primarily due to lack of access to quality care [149, 77]. In

high-income countries ultrasound imaging is currently most frequently used for fetal

health monitoring and estimating GA. Nonetheless, the cost of purchase, the technical

skills required for maintenance and the user-dependent accuracy have limited the
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application of this technique in resource-limited settings [189]. Therefore, low-cost

alternative methods are used in LMICs to estimate GA. A common method used for

GA estimation is the last menstrual period (LMP), in which a 28-days menstrual cycle

is assumed. Although previous studies have criticized LMP due to the inconsistency

in the menstrual cycle length [68], and the difficulty to recall the day of the last

menstrual period [16], the LMP method has shown to be a somewhat useful method

for LMICs, particularly in rural areas lacking medical equipment. However, recently

the increasing proliferation of mobile technology is bringing up new opportunities to

permit safe, accessible, cost-effective, and coordinated maternal health care, which

could reduce many of the pregnancy complications that afflict populations in LMICs.

Fetal cardiac assessment is crucial to identify high risk fetuses [154]. The Auto-

nomic Nervous System (ANS) regulates fetal heart rate [218, 261], which modifies

FHR dynamics during pregnancy. Therefore, FHR is associated with fetal develop-

ment and gestational age, which could facilitate the detection of pathological fetal

development [258]. Studies on the detection of growth restriction using FHRV showed

that IUGR fetuses have a lower percentage of heart rate variability compared with

the normal population [238]. It should be noted that FHRV is influenced by not only

maturation but also the fetal behavioral state. Originally, the behavioral states are

defined as quiet sleep, active sleep and active awakeness after 32 weeks of gestation.

Before then, it is only possible to distinguish between quiet and active states [214].

Besides FHRV, another indicator of fetal state can be seen as a concept based on

movement patterns and accelerations. In conclusion, FHRV markers, together with

information on behavioral states, can contribute to the detection of fetal development

issues. Cardiotocography is an inexpensive Doppler-based method that is routinely

performed during pregnancy for fetal heart monitoring. However, it has low specificity

and is endowed with an auto-correlation of the beats, which reduces the resolution of

the estimated heart rate. Another type of device for recording fetal cardiac activity
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using Doppler technology is in-home fetal Doppler transducers. This non-invasive and

low-cost technique can be easily adapted to connect to mobile devices such as smart-

phones for recording and processing, motivating their use in mobile-health (mhealth)

systems for risk screening in low-resource environments [237].

Using the Doppler technique, the flow of blood through the heart’s chambers and

valves can be captured. Therefore, analyzing 1D-DUS in the time and frequency do-

main provides comprehensive information regarding fetal health. However, the mor-

phology of 1D-DUS signals is highly variable. This intra- and inter-subject variability

is caused by fetal movement and location of the transducer. Therefore, learning heart

rate patterns from 1D-DUS is challenging due to transient nature and changes in the

statistical characteristics of the signal. Machine learning approaches, especially deep

learning techniques, have achieved significant progress in processing physiological sig-

nals. This work presents the Hierarchical deep sequence learning model to estimate

gestational age from fetal 1D-DUS recordings. The network consists of two levels of

attention mechanism to capture long and short-term variability of cardiac activity.

The hierarchical attention network has been introduced for document classification

[283] and designed to capture two basic insights about document structure. First,

a hierarchical structure of the documents, a document representation is constructed

by first building the representations of sentences and then aggregating those into a

document representation. Second, the fact that different words and sentences in a

document are deferentially informative.

7.3 Related Work

Previous works on GA estimation are based on finding a relation between fetal de-

velopment and FHRV metrics. Specifically, it has been shown that using FHRV

parameters extracted from magnetocardiographic recordings as an input of regres-
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sion model fetal maturation age can be assessed [110, 240]. However, this approach

requires high resolution fetal magnetocardiographic recordings which is costly and

non-portable equipment, making its use in LMICs impractical.

In earlier works, Marzbanrad et al. presented a method on estimating GA using a

step-wise regression based on cardiac wall intervals derived from 1D-DUS and electro-

cardiagram signals [170]. In further work, Marzbanrad et al. improved the estimation

accuracy by incorporating 1D-DUS and fECG quality assessment algorithms and ex-

cluding poor quality signals [171]. Recently, Valderrama et al. presented a study on

using fHRV indexes derived from 1D-DUS and maternal blood pressure to estimate

GA using support vector regression [248]. Although the presented Doppler based

methods achieved significant results, they need additional recordings such as electro-

cardiagram signals or maternal blood pressure, which increases costs and complicates

implementation, particularly in LMICs.

Deep learning models with the capability of automatic feature extraction provide a

significant performance in processing of physiological data. Most of the presented al-

gorithms on cardiac signal classification using deep learning approach in the literature

are based on ECG signals. Recent works on deep sequence learning with attention

based models improved the interpretability and performance of the learning process.

To provide an interpretable model with high performance for automatic estimation

of gestational age, in this study, we proposed a deep learning model powered by

hierarchical attention networks.

7.4 Method

In this paper, we focus on modeling of the fetal cardiac sequence to estimate gesta-

tional age. Let x(t; d) denote the time series of a 1D-DUS signal with discrete time

index t, acquired during a clinical visit of a pregnant woman on date d. For simplicity,
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the date and gestational age are represented in units of weeks. The “true gestational

age” at date d is denoted a(d) = d − c, where c is the date of conception, while the

presumed or reported gestational age is ã(t) = t − c̃, where c̃ is the anticipated con-

ception date. Therefore, the presumed (anticipated) and true gestational ages can be

related as follows:

ã(t) = a(t) + η (7.1)

where η = c − c̃ is the gestational age presumption error, which without additional

priors (such as 2D-Doppler) remains an unknown stochastic constant over pregnancy.

The error η accounts for lack of knowledge of the last menstrual period and uncer-

tainties in the exact ovulation, intercourse and conception dates. We further denote

the 2-dimensional scalogram feature extracted from the 1D-DUS by f(x(t; d)) ∈ R2.

The objective is to design a deep network that estimated the true gestational age

from a single or a set of 1D-DUS acquired during pregnancy, i.e.,

â(t) = Γ
[
ã(t), {f(x(t; dk))}Lk=1

]
(7.2)

where â(t) is an estimate of the true gestational age, dk (k = 1, . . . , L) denote the L

dates that 1D-DUS is acquired from the pregnant woman, and Γ(·) denotes the 1D-

DUS to gestational age transform that is learned by the neural network, as shown in

Fig. 7.1. In this scheme, the presumed gestational age ã(t) is used for model training.

7.4.1 Hierarchical attention network for modeling long- and

short-term temporal patterns

We leveraged hierarchical attention network to test the hypothesis that better repre-

sentations can be obtained by incorporating knowledge of long-term and short-term

fetal cardiac activity in the model architecture. The intuition underlying our model

is that not all parts of a signal are equally relevant for estimating gestational age.
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Figure 7.1: The architecture of the proposed hierarchical attention network. It contains
three main components: 1) convolutional feature extractor, 2) beat encoder and 3) window
encoder.

Determining the relevant sections involves modeling the sequence of windows which

are the group of the beats. This model includes two levels of attention mechanisms,

one at the time sample level focusing on the scalogram of the Doppler signal and one

at the window level. By applying successive attention layers the model attempts to

learn which time samples and windows play the most important role in the signal

classification. By determining the importance of segments of Doppler signals we can

also attain better understanding about fetal movements and behavioral states.

The network Γ(·) has three components, feature extractor (Gf (., θf )), beat encoder

(Gb(., θb)) and window encoder(Gw(., θw)). Both beat and window encoders include

attention layer. The feature extractor is a space invariant neural network that learns

a representation based on training data by finding a robust transformation. The

beat encoder network is a recurrent network that learns the dynamic of set of beats.

Finally, the window encoder learns the relation of segments of multiple beats.
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7.4.2 Sequence Encoder

In order to model the sequence of beats and segments, gated recurrent units (GRU)

[24] are used. The GRU uses a gating mechanism to track the state of sequences

without using separate memory cells. We denote input vector at time t as xt, one can

adapt the GRU architecture as:

zt = σ(Uzxt +Wzht−1 + bz),

rt = σ(Urxt +Wrht−1 + br),

h̃t = φ(Uhxt +Wh(rt � ht−1) + bh),

ht = zt � h̃t + (1− zt)� ht−1,

(7.3)

where rt is a reset gate and zt update gate. rt decides how much information should

be preserved and zt decides the contribution proportion of the past and new informa-

tion. σ and φ are point-wise nonliniarity, � is point-wise product and W , U , b are

parameters of the model. Both beat encoder Gb(., θb) and window encoder Gw(., θb)

networks include GRU layers.

7.4.3 Hirarchical Attention

As mentioned earlier, the hierarchy in the network tries to incorporate long and

short-term dynamics in 1D-DUS. It is obvious that some parts of the signal are more

involved in a given task due to fetal behavioral states, movement patterns and quality

of the signal. Therefore, this model utilizes two levels of attention mechanism along

with hierarchical training of beat-level and window level networks.

Suppose that hit is a hidden representation of the time sample t in window i in

vector space, the attention layer in Gb(., θb) network first projects hit into hyperbolic

space (uit). Then, it combines the components of uit according to their relevance to

the problem and estimate the normalized importance weight αit through a softmax
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function. After that, the weighted sum of the time sample representations creates the

window vector si.

uit = tanh(Wbhit + cb),

αit =
exp(uTitub)∑
τ

exp(uTiτub)
,

si =
∑
t

αithit.

(7.4)

The Window vectors s1, ..., si are then fed to the Gw(., θw) network. The window-level

attention gets hidden representation of windows after processing in GRU layer. In Eq

7.5, v is a high level representation and summarizes the information in one recording

of 1D-DUS. The window-level attention mechanism works as follow:

ui = tanh(Wwhi + cw),

αi =
exp(uTi uw)∑
i

exp(uTi uw)
,

v = Σtαihi.

(7.5)

7.5 Experimental set-up

7.5.1 Data

1D-DUS recordings were captured from 401 pregnant women (415 visits and 693

recordings) at 5 to 9 months of gestation. The data includes 15, 77, 162, 186, 253

recordings corresponding to gestational ages of 5, 6, 7, 8 and 9 months, respectively.

The data were collected as part of a randomized control trial, conducted in rural

highland Guatemala [167, 251]. The dataset includes 1D-DUS signals recorded by

traditional birth attendants, who were trained to use the hand-held 1D-DUS device

and were provided with a mobile application. The app guides the user to enter

the anticipated gestational age in months based on the last menstrual period before
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recording the 1D-DUS signals. The 1D-DUS device is an AngelSounds Fetal 1D-

DUS JPD-100s (Jumper Medical Co., Ltd., Shenzhen, China) with an ultrasound

transmission frequency of 3.3 MHz. Data were captured using a bespoke Android

client at 44.1 kHz, using a low-cost smartphone (Samsung S3 mini) and stored as

uncompressed WAV files at 7056/s bits) [237]. The first five minutes of each recording

are used in this study.

7.5.2 Preprocessing

Given the nature of the physiological time-series, 1D-DUS signals are corrupted with

internal and external interference such as respiration, movement, and environmental

noise. In this work, a second-order band-pass Butterworth filter is used to reduce

the noise. By observing the frequency components of the 1D-DUS signals, the cut-off

frequencies are set to 25 and 600 Hz, corresponding to cardiac oscillations. After the

preprocessing steps, scalogram of Each 20-second window is generated followed by

logarithmic scaling.

7.5.3 Network implementation

Feature extractor network (Gf (., θf )) gets the scalogram of the signal and consists of

three layers of 2-D convolutional neural network (kernel size=(3,3)). Each layers is

followed by batch normalization, rectified linear (ReLU) units, and max pooling units.

A mean absolute error (MAE) is used as a loss function and mini batch stochastic

gradient decent (SGD) is leveraged to optimaze the parameters of the network. To

address the class imbalance, balanced batch generator method is employed to improve

the generalization on less frequent categories. In addition, weights are assigned to

training samples proportional to the inverse class frequency. The proposed method

is implemented in tensorflow 2.0 and Python3.
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Table 7.1: Mean and standard deviation of the MAE (Mean (STD)) for gestational ages of
5-9 months, together with the average over all months tested (All).

Gestational Age (months since reported LMP)
5 6 7 8 9 All

ErrorBBG∗ 1.77 (0.80) 0.98 (0.62) 0.65 (0.41) 0.40 (0.41) 0.87 (0.51) 0.72
ErrorBBG-SW∗∗ 1.21 (0.81) 0.93 (0.64) 0.69 (0.43) 0.43 (0.46) 0.94 (0.54) 0.74

* BBG: Balanced batch generator ≥ 24 weeks.
** BBG-SW: Balanced batch generator and assigning sample weight.

7.6 Evaluation metrics

To evaluate the performance of the model, MAE of estimating GA based on reported

LMP are determined. In addition, box plots of errors are provided to show the

range of error and outliers for each label. Results of using balanced batch generator

and assigning sample weights are provided in section 7.7. In addition, to assess the

performance of the model based on quality of labels, we have used the approach

presented in 6 and created a set of clean labels to train and test the model. The cross

validated results of estimating gestational age on clean labels using the attention

based model and the model presented in chapter 5 are also provided in the result

section.

7.7 Results

Stratified five-fold cross-validation is used to assess the performance of gestational

age estimation. Training strategies for imbalanced dataset and effect of label noise

are considered in this work. Table 7.1 shows the MAE of estimating GA in each

month of pregnancy based on reported LMP. The results of the experiments show

that, assigning sample weights in the training process reduced MAE of estimating

label five from 1.77 to 1.21 and increased the error in estimating label nine from 0.87

to 0.94. Figure 7.2 shows the result of gestational age estimation using the defined

training strategies for imbalanced data.
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Figure 7.2: Cross-validated result of estimating gestational age using balance batch gener-
ator (BBG) and balance batch generation following by assigning sample weight (BBG-SW)

Table 7.2: Mean and standard deviation of the MAE (Mean (STD)) for gestational ages of
5-9 months, together with the average over all months tested (All).

Gestational Age (months since reported LMP)
5 6 7 8 9 All

ErrorCLSTM∗ 1.83 (0.22) 1.21 (0.57) 0.60 (0.40) 0.66 (0.48) 0.84 (0.58) 0.80
ErrorHAN∗∗ 1.29 (0.46) 0.81 (0.73) 0.7 (0.57) 0.36 (0.32) 0.68 (0.57) 0.64

* CLSTM: Convolutional LSTM.
** HAN: Hierarchical Attention Network.

In another experiment, we tested the performance of the model on a set of data

with clean labels. The data includes 5, 26, 56, 49 and 107 recordings corresponding to

gestational ages of 5, 6, 7, 8 and 9 months, respectively. The results of the hierarchical

attention network and convolutional LSTM model (chapter 5) are provided in this

section. As it has been shown in table 7.2 and figure 7.3 the proposed hierarchical

attention network outperforms the previously presented model based on convolutional

LSTM network.

7.8 Discussion and conclusion

In this work, a hierarchical sequence learning with attention mechanism was proposed

for the fetal gestational age estimation. The quality of the fetal cardiac signals and

behavioral state of fetus at the time of recording of the data are essential factors which

should be considered for estimating gestational age. The proposed model, weights the
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Figure 7.3: Cross-validated results of estimating gestational age on clean data using hier-
archical attention network (HAN) and convolutional LSTM (CLSTM) networks.

important segments and time samples of the data according to the defined task using

two levels of attention layers. In addition, since the imbalanced dataset used in this

work could affect the generalizability of the model on less frequent labels, imbalanced

learning strategies such as balanced batch generator and assigning sample weights

were employed. The proposed method achieves the state-of-the-art performance on

estimating gestational age using only Doppler signals.
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Chapter 8

Discussion and conclusions

8.1 Summary and contributions

The work presented in this thesis addressed assessing fetal health using a low-cost

monitoring system appropriate for low- and middle-income countries (LMICs) to en-

hance healthcare for disadvantaged populations by developing AI-enabled edge com-

puting devices. Specifically, the monitoring system collects 1D-Doppler ultrasound

signals (1D-DUS) of fetuses using a mobile health system previously introduced by

Stroux et al. [234, 238] in a Guatemalan highland rural community. Theoretically,

this thesis focuses on extracting temporal and spectral features from 1D-DUS sig-

nals to detect pregnancy complications using signal processing and machine learning

methods. Tracking gestational development is crucial since growth restriction condi-

tions increase the risk of perinatal mortality. In rural Guatemala, the rate of fetal

maternal mortality is alarmingly high [244] and a leading contributor to this burden

is IUGR [151], which is a slowdown of fetal growth leading to low birth weight. Low

birthweight, in turn, is associated with lower neurodevelopmental scores and other

adverse sequelae [182, 153]. Automating the detection of critical cases of restricted-

growth fetuses can assist in managing timely referrals and interventions. One of the
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approaches for assessing fetal development is fetal heart rate (FHR) monitoring which

is widely used and recommended by obstetrical societies [154].

This work aimed to underline the importance of taking challenges in LMICs into

account for designing a prototype, collecting data, and developing machine learning

methods. Chapter 4 proposed an unsupervised probabilistic segmentation method

to estimate fetal heart rate variability metrics from 1D-DUS signals. This method

leveraged the embedding method to reduce the effect of highly variable patterns in 1D-

DUS signals. Then the transformed data was fed to the hidden semi-Markov model

segmentation model to detect beat onsets. Previous methods of FHR estimation using

1D DUS focused on two alternative approaches with associated weaknesses. The

first approach is supervised and requires labeled data to train a segmentation model

[173, 172] and is therefore dependent on the quality of the labels and the similarity

between the labeled data and the new data encountered. The second approach ignores

beat events and involves FHR estimation using fixed temporal windows of DUS data.

The most popular approach in this latter category is based on an auto-correlation

method [252] which provides a lower resolution for heart rate timing estimation than

segmentation approaches due to averaging over a few seconds. Chapter 5 proposes an

end-to-end learning approach to extract features from 1D-DUS signals and estimate

gestational age. The recurrent network was used for deep sequence learning and

extracting time dependency in cardiac signals. Previous works on assessing fetal

development using 1D-DUS have leveraged additional recordings such as maternal

blood pressure or fetal electrocardiogram, complicating the use and raising the cost

of the smartphone-mediated perinatal screening system. This research presents the

first attempt to assess fetal development using only Doppler signals. In chapter

6 we looked at the whole system from a different angle and proposed a systematic

approach to evaluate the accuracy and reliability of the gestational age labels recorded

in the Guatemala site. The results from this study were used in the gestational age
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estimation model to improve the analysis. Finally, Chapter 7 introduced a novel deep

hierarchical sequence learning model to incorporate short- and long-term heart rate

patterns in 1D-DUS signals in estimating gestational age. The proposed model also

consists of beat-level and window-level attention layers to emphasize the importance

of different parts of the signal in estimating gestational age.

8.2 Limitations

The work presented in this thesis has some limitations. The methods presented in

chapters 5, 6 and 7 were developed to track fetal gestational development and trained

using the gestational age labels based on a last menstrual period. However, the last

menstrual period is not totally accurate, thereby introducing noise at the labeling

stage. In order to improve the accuracy and validate the labels, additional devices

such as Doppler imaging is needed. However, this device is not available in the rural

areas of Guatemala. Nevertheless, the approach presented in Chapters 6 and 7 can be

easily adjusted to a dataset with more accurate gestational age labels such as those

provided by Doppler imaging.

The deep learning approaches presented in this work are trained by backpropaga-

tion in a batch learning setting, which requires the entire training data to be made

available prior to the learning task. Therefore, the developed methods were not tested

online. The offline approach affects the scalability of the model for real-world scenario

where new data arrives sequentially in a stream form.

8.3 Future work

The resultant system could empower women across LMICs, saving millions of lives a

year. We therefore envision this system as a method of financially empowering the

local communities and aim to develop a TPU-based version of the fetal health assess-
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ment algorithms (using TensforFlow Lite). The TPU is an AI accelerator application-

specific integrated circuit developed specifically for neural network machine learning,

and is particularly suited to the TensorFlow software. The TPU will be integrated

with the Doppler device and use the mobile phone as the receiving interface.

The proposed research is not limited to assessing fetal development, and could be

extended to the detection of a wide range of maternal and fetal abnormalities using

a multi-task learning scenario. In future works, we will develop methods to learn

transferable and discriminative representations to discover the task relationships and

jointly learn transferable features using deep networks.

Additionally, we will improve our methods by considering learning strategies in

presence of label noise. Several methods have been proposed to make models more

robust to noise such as noise transition matrix [194], robust losses [161], sample

weighting [263], sample selection [185], meta-learning [203], we will also consider

combined approaches to improve the performance of the model.

In summary, the next step is to address the label noise in optimizing the param-

eters of the model and expanding the proposed approaches to comprehensive fetal

maternal health monitoring system for detecting wide range of pregnancy complica-

tions such as fetal growth restriction and hypertension in pregnancy.
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Advanced automatic detection of fetal body movements from multichannel mag-

netocardiographic signals. Physiological Measurement, 40(8):085005, 2019.

[215] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, and J. J. Struijk. Segmenta-

tion of heart sound recordings by a duration-dependent hidden Markov model.

Physiological Measurement, 31(4):513, 2010.

[216] K. Schneider and Maternal Fetal Medicine Study Group. S1-guideline on the

use of CTG during pregnancy and labor. Geburtshilfe und Frauenheilkunde,

74(08):721–732, 2014.

[217] U. Schneider, A. Fiedler, M. Liehr, C. Kähler, and E. Schleussner. Fetal

heart rate variability in growth restricted fetuses. Biomedizinische Technik,

51(4):248–250, 2006.



143

[218] U. Schneider, E. Schleussner, A. Fiedler, S. Jaekel, M. Liehr, J. Haueisen, and

D. Hoyer. Fetal heart rate variability reveals differential dynamics in the in-

trauterine development of the sympathetic and parasympathetic branches of

the autonomic nervous system. Physiological Measurement, 30(2):215, 2009.

[219] S. Shakespeare, J. Crowe, B. Hayes-Gill, K. Bhogal, and D. James. The infor-

mation content of doppler ultrasound signals from the fetal heart. Medical and

Biological Engineering and Computing, 39(6):619–626, 2001.

[220] M. Shao, K. E. Barner, and M. H. Goodman. An interference cancellation

algorithm for noninvasive extraction of transabdominal fetal electroencephalo-

gram (TaFEEG). IEEE Transactions on Biomedical Engineering, 51(3):471–

483, 2004.

[221] C. Signore, R. K. Freeman, and C. Y. Spong. Antenatal testing–a reevalua-

tion: Executive summary of a Eunice Kennedy Shriver National Institute of

Child Health and Human Development workshop. Obstetrics and Gynecology,

113(3):687, 2009.

[222] M. G. Signorini, N. Pini, A. Malovini, R. Bellazzi, and G. Magenes. Integrating

machine learning techniques and physiology based heart rate features for an-

tepartum fetal monitoring. Computer Methods and Programs in Biomedicine,

185:105015, 2020.

[223] C. V. Smith, J. P. Phelan, R. H. Paul, and P. Broussard. Fetal acoustic stim-

ulation testing: A retrospective experience with the fetal acoustic stimulation

test. American Journal of Obstetrics and Gynecology, 153(5):567–568, 1985.

[224] C. V. Smith, J. P. Phelan, L. D. Platt, P. Broussard, and R. H. Paul. Fetal

acoustic stimulation testing: II. A randomized clinical comparison with the



144

nonstress test. American Journal of Obstetrics and Gynecology, 155(1):131–

134, 1986.

[225] V. Smith, A. Nair, R. Warty, J. A. Sursas, F. da Silva Costa, and E. M. Wallace.

A systematic review on the utility of non-invasive electrophysiological assess-

ment in evaluating for intra uterine growth restriction. BMC Pregnancy and

Childbirth, 19(1):230, 2019.

[226] S. F. V. Sondaal, J. L. Browne, M. Amoakoh-Coleman, A. Borgstein, A. S.

Miltenburg, M. Verwijs, and K. Klipstein-Grobusch. Assessing the effect of

mHealth interventions in improving maternal and neonatal care in low-and

middle-income countries: a systematic review. PloS One, 11(5):e0154664, 2016.

[227] P. Soothill, R. Ajayi, S. Campbell, and K. Nicolaides. Prediction of morbidity

in small and normally grown fetuses by fetal heart rate variability, biophysical

profile score and umbilical artery Doppler studies. BJOG: An International

Journal of Obstetrics and Gynaecology, 100(8):742–745, 1993.

[228] D. B. Springer, L. Tarassenko, and G. D. Clifford. Logistic regression-HSMM-

based heart sound segmentation. IEEE Transactions on Biomedical Engineer-

ing, 63(4):822–832, 2015.

[229] B. Sriram, M. A. Mencer, S. McKelvey, E. R. Siegel, S. Vairavan, J. D. Wilson,

H. Preissl, H. Eswaran, and R. B. Govindan. Differences in the sleep states

of IUGR and low-risk fetuses: An mcg study. Early Human Development,

89(10):815–819, 2013.

[230] K. A. Stewart, S. M. Navarro, S. Kambala, G. Tan, R. Poondla, S. Lederman,

K. Barbour, and C. Lavy. Trends in ultrasound use in low and middle income

countries: A systematic review. International Journal of Maternal and Child

Health and AIDS, 9(1):103, 2020.



145

[231] U. A. Stock and J. P. Vacanti. Cardiovascular physiology during fetal devel-

opment and implications for tissue engineering. Tissue Engineering, 7(1):1–7,

2001.

[232] J. F. Strasburger, B. Cheulkar, and R. T. Wakai. Magnetocardiography for

fetal arrhythmias. Heart Rhythm, 5(7):1073–1076, 2008.

[233] L. Stroux. A Perinatal Monitoring System for Low Resource Settings. D.phil.

dissertation, University of Oxford, Oxford, UK, 2016.

[234] L. Stroux. A perinatal monitoring system for low-resource settings. PhD thesis,

University of Oxford, 2016.

[235] L. Stroux and G. D. Clifford. An affordable multisensor perinatal monitor-

ing concept - the importance of signal quality indices for successful mhealth

implementation. In WHO Global Forum on Medical Devices ‘Priority Medical

Devices for Universal Health Coverage’, Geneva, Switzerland, 2013. WHO.

[236] L. Stroux and G. D. Clifford. The importance of biomedical signal quality

classification for successful mHealth implementation. In 2014 Tech4Dev Inter-

national Conference UNESCO Chair in Technologies for Development: What

is Essential? EPFL, Lausanne, Switzerland, 2014.

[237] L. Stroux, B. Martinez, E. Coyote, N. King, R. Hall-Clifford, P. Rohloff, and

G. D. Clifford. An mHealth monitoring system for traditional birth attendant-

led antenatal risk assessment in rural Guatemala. Journal of Medical Engineer-

ing and Technology, 40(7-8):356–371, 2016.

[238] L. Stroux, C. W. Redman, A. Georgieva, S. J. Payne, and G. D. Clifford.

Doppler-based fetal heart rate analysis markers for the detection of early in-

trauterine growth restriction. Acta Obstetricia et Gynecologica Scandinavica,

96(11):1322–1329, 2017.



146

[239] R. Tapia-Conyer, S. Lyford, R. Saucedo, M. Casale, H. Gallardo, K. Becerra,

J. Mack, R. Mujica, D. Estrada, A. Sanchez, and R. Sabido. Improving peri-

natal care in the rural regions worldwide by wireless enabled antepartum fetal

monitoring: A demonstration project. International Journal of Telemedicine

and Applications, 2015:3, 2015.

[240] F. Tetschke, U. Schneider, E. Schleussner, O. W. Witte, and D. Hoyer. Assess-

ment of fetal maturation age by heart rate variability measures using random

forest methodology. Computers in Biology and Medicine, 70:157–162, 2016.

[241] T. Todros, C. Preve, C. Plazzotta, M. Biolcati, and P. Lombardo. Fetal heart

rate tracings: Observers versus computer assessment. European Journal of

Obstetrics and Gynecology and Reproductive Biology, 68:83–86, 1996.

[242] B. Trudinger, C. Cook, L. Jones, and W. Giles. A comparison of fetal heart

rate monitoring and umbilical artery waveforms in the recognition of fetal

compromise. BJOG: An International Journal of Obstetrics and Gynaecology,

93(2):171–175, 1986.

[243] UNICEF, World Health Organization, the World Bank Group, and the United

Nations. Levels and trends in child mortality. Report 2019, 2019. Retrieved

from https://data.unicef.org/resources/levels-and-trends-in-child

-mortality/ on Jan 23 2020.

[244] UNICEF, World Health Organization, World Bank, and UN DESA Population

Division. Low birthweight. country, reginal and global estimates, 2018. Re-

trieved from https://data.worldbank.org/indicator/SH.DYN.NMRT?mos

t recent value desc=true on Jan 21 2020.

[245] UNICEF, WHO, World Bank, United Nations. Levels and trends in child mor-

tality estimation, 2013.

https://data.unicef.org/resources/levels-and-trends-in-child-mortality/
https://data.unicef.org/resources/levels-and-trends-in-child-mortality/
https://data.worldbank.org/indicator/SH.DYN.NMRT?most_recent_value_desc=true
https://data.worldbank.org/indicator/SH.DYN.NMRT?most_recent_value_desc=true


147

[246] J. Unterscheider, S. Daly, M. P. Geary, M. M. Kennelly, F. M. McAuliffe,

K. O’Donoghue, A. Hunter, J. J. Morrison, G. Burke, P. Dicker, and E. C.

Tully. Optimizing the definition of intrauterine growth restriction: the multicen-

ter prospective PORTO study. American Journal of Obstetrics and Gynecology,

208(4):290–e1, 2013.

[247] K. R. Uquillas, B. H. Grubbs, A. E. Prosper, R. H. Chmait, E. G. Grant, and

D. K. Walker. Doppler us in the evaluation of fetal growth and perinatal health.

Radiographics, 37(6):1831–1838, 2017.

[248] C. E. Valderrama, F. Marzbanrad, R. Hall-Clifford, P. Rohloff, and G. D. Clif-

ford. A proxy for detecting IUGR based on gestational age estimation in a

Guatemalan rural population. Frontiers in Artificial Intelligence, 3:56, 2020.

[249] C. E. Valderrama, F. Marzbanrad, M. Juarez, R. Hall-Clifford, P. Rohloff, and

G. D. Clifford. Estimating birth weight from observed postnatal weights in

a Guatemalan highland community. Physiological Measurement, 41(3):025008,

2020.

[250] C. E. Valderrama, F. Marzbanrad, L. Stroux, and G. D. Clifford. Template-

based quality assessment of the Doppler ultrasound signal for fetal monitoring.

Frontiers in Physiology, 8:511, 2017.

[251] C. E. Valderrama, F. Marzbanrad, L. Stroux, B. Martinez, R. Hall-Clifford,

C. Liu, N. Katebi, P. Rohloff, and G. D. Clifford. Improving the quality of

point of care diagnostics with real-time machine learning in low literacy LMIC

settings. In Proceedings of the 1st ACM SIGCAS Conference on Computing

and Sustainable Societies, pages 1–11, 2018.

[252] C. E. Valderrama, L. Stroux, N. Katebi, E. Paljug, R. Hall-Clifford, P. Rohloff,

F. Marzbanrad, and G. D. Clifford. An open source autocorrelation-based



148

method for fetal heart rate estimation from one-dimensional Doppler ultra-

sound. Physiological Measurement, 40(2):025005, 2019.
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