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Abstract 

 

A Metabolomics Study of Plasma Biological Changes Related to  

Polybrominated Biphenyl (PBB 153) Exposure in the Michigan PBB Cohort 

 

By Yukiko Yano 

 

 The accidental contamination of the food chain with polybrominated biphenyl (PBB), a 

brominated flame retardant, in Michigan (1973-1974) has resulted in the exposure of more than 

4,000 individuals. PBBs are suspected to disrupt endocrine function, but the long-term health 

effects are unknown. In this study, newly collected blood plasma samples obtained from 

participants of the Michigan PBB registry were analyzed to investigate the long-term effects of 

PBB exposure on human metabolic pathways. Metabolic profiles were compared between 

different classes of PBB exposure, ranging from low to high body burdens of PBB, in order to 

identify biomarkers associated with the exposure or potential disease risk.  

Metabolomic analysis was performed using liquid chromatography with Fourier-

transform mass spectrometry (LCMS) on 179 plasma samples collected from subjects in the PBB 

registry. Metabolomic data were analyzed using various statistical and computational methods 

with R software package (MetBN) and the web-based tool, MetaboAnalyst. Samples were 

categorized into two or three classes of PBB exposure levels based on the measured plasma PBB 

153 concentrations. Metabolic features (mass to charge ratios of ions and their retention time) that 

discriminated between different classes of PBB exposure were identified using False Discovery 

Rate (FDR) to account for multiple testing. The separation of the data based on these 

discriminatory features was visualized and assessed using principal component analysis (PCA), 

partial least squares discriminant analysis (PLS-DA), and hierarchical clustering with heatmaps. 

Selected discriminatory features were tentatively identified using MetaboAnalyst‟s metabolite set 

enrichment analysis (MSEA) and metabolic pathway analysis (MetPA).  

Of the features strongly correlated with PBB concentrations, 44 features were 

significantly different between low and high PBB exposure classes, and 119 discriminatory 

features were identified from the 11,202 total features detected by LCMS. Although the true 

identity of these features remains uncertain, it was suggested that these discriminatory features 

contained metabolites involved with lipid metabolism. Results of the study demonstrate that 

metabolomics can be used to discover biomarkers along the exposure-disease continuum and 

provides a powerful means to explore the human exposome, which has been coined as a 

cumulative measure of environmental exposures throughout the lifespan. 
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1. Introduction 

 

Environmental exposures play an overwhelmingly important role in many of the chronic 

diseases that constitute the majority of the disease burden in the world today.
1,2

 Although the 

development of chronic diseases can be attributed to both genetic and environmental risk factors, 

current research shows that 70 – 90% of cancer as well as autoimmune, cardiovascular, 

pulmonary, and other chronic diseases are attributable to environmental factors.
3-5

 Despite this, 

previous research has predominantly focused on genetic factors, and the complex interplay 

between environmental exposures and genetic factors is only now beginning to be addressed. 

With the success of the Human Genome Project, new high-quality technologies have been 

developed to conduct genome-wide association studies that have revealed genetic associations 

and networks related to disease etiology. However, it soon became apparent that genetics alone 

can only account for a fraction of disease risk.
6
 Recognizing this limitation, Wild introduced the 

concept of the “exposome” in 2005, which encompasses the totality of life-course environmental 

exposures (e.g. chemical exposures, human behavior, diet, and lifestyle choices such as smoking 

and alcohol intake) from conception onwards, as a complement to the genome.
1
 More recently, 

the exposome definition was refined as “the cumulative measure of environmental influences and 

associated biological responses throughout the lifespan, including exposures from the 

environment, diet, behavior, and endogenous processes.”
6
 

By accounting for the temporal and multifactorial aspects of disease etiology, the 

exposome has the potential to establish important risk factors for the prevention and treatment of 

chronic diseases in the future. Unlike the genome, the exposome is a dynamic entity that evolves 

throughout the course of an individual‟s lifetime. The exposome focuses on individual 

longitudinal exposure profiles, specifically on the temporal accumulation of exposure, thereby 

considering individual exposures as dynamic and continually changing over time.
7
 There is strong 

evidence that chronic diseases are influenced by exposures early in life, and that there are critical 
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periods in life stages during which an exposure has a stronger effect or induces long-term effects 

that are carried on into later life.
8
  Temporal variation in exposure is a critical feature of the 

exposome, and the exposome can provide an integrated view of these critical periods, including in 

utero and early childhood, puberty, adulthood and old age.
7,9

 In addition, the exposome provides a 

way to shift away from the conventional reductionist approach which focuses on one-to-one 

relations between a specific exposure and disease, towards a more systematic approach capturing 

the complex association between various risk factors and disease. Chronic diseases are 

multifactorial in etiology, meaning that a given disease can be caused by more than one causal 

mechanism and with each causal mechanism involving the combined effect of a multitude of 

component causes.
10

 Most current epidemiologic studies are limited in their ability to capture this 

multifactorial nature of chronic disease etiology since they tend to concentrate on particular 

category of exposures separately. Rather than focusing on a specific exposure category such as air 

and water pollution, occupation, diet and obesity, stress and behavior, or types of infection, the 

exposome proposes an approach that investigates these exposures holistically, thereby providing a 

more cohesive view of environmental exposures.
3
  

 Characterizing the human exposome may seem overwhelming, but recent advances in 

“omics” technologies and methods offer an unprecedented opportunity to investigate complex 

human exposure profiles by identifying important biomarkers. Omics refers to the quantitative 

measurement of global sets of molecules in biological samples using high-throughput techniques, 

in combination with advanced biostatistics and bioinformatics tools.
11

 Omics technologies permit 

the rapid, parallel analysis of hundreds or thousands of these sets of molecules including profiles 

of gene transcripts (transcriptomics), proteins (proteomics), and metabolites (metabolomics).
9
 

Metabolomics entails the measurement of biochemical metabolites (e.g., lipids, sugars, amino 

acids, etc.) in a biological sample, such as urine or blood, using high-throughput techniques to 

simultaneously detect all metabolic products in a sample extract, thereby providing a metabolic 

profile. Since metabolites are the most downstream expression of biochemical pathways, 
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metabolic profiles represent an integration of the interplay between various upstream factors such 

as underlying genetics, diet, and the environment.
7,9

 By comparing metabolic profiles of different 

biological states, particularly those represented by diseased and healthy populations, it is possible 

to identify features (m/z or mass to charge ratios of ions and their retention time), or biomarkers, 

that consistently discriminate according to disease status.
12

 A prospective search for intermediate 

biomarkers that are elevated or attenuated in subjects who eventually develop disease, or a 

retrospective search for links of intermediate biomarkers to past environmental exposures can be 

conducted with metabolomics.
8
 Such intermediate biomarkers reflect intersecting regions of 

markers of exposure and disease outcome along the exposure-disease continuum, and thus relate 

to the effect of exposure (biomarker of exposure) or impact disease risk (biomarker of 

disease).
12,13

 The discovery of biomarkers is essential for characterizing health-impairing 

exposures and investigating disease causality, and further to offer new approaches for the 

prevention, diagnosis, and treatment of diseases.  

 The strength of omics techniques is in its ability to capture a wide range of exposures in a 

single measurement using only small volumes of biological samples. Today, there are more than 

84,000 chemical substances used in the market, and more than 1,000 new chemicals are 

introduced into the environment every year.
4,14

 Humans are exposed to these chemicals every day, 

and the United States Centers for Disease Control and Prevention has measured ~250 

environmental chemicals in human biological fluids so far using a targeted chemical approach.
15

 

However, such targeted investigations that focus on selected hazardous exposures known a priori 

are time-consuming and impractical for measuring all existing chemicals in the environment. 

These targeted studies are driven by a bottom-up, reductionist approach which start with a 

knowledge base of specific exogenous chemicals measured in air, water, or the diet, thus 

employing a knowledge-driven investigation. Although this approach has the benefit of being 

able to unequivocally identify and quantify these known toxicants, it fails to explore 

unrecognized exposures and also neglects the complex interactions between environmental and 
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biological systems that are inherently in a constant state of flux.
3
 In contrast, untargeted, top-

down studies initially measure all chemicals in a biological sample without any preconceived 

expectations and then narrow them down to potentially important exposures through a data-driven 

investigation.
5
 Although the top-down approach cannot unequivocally identify most chemicals 

measured, this approach allows for a thorough investigation of all exposures (some known and 

some unknown) represented in the sample extract and compares their relative importance as risk 

factors for disease. With exposomics, it is possible to conduct both targeted and untargeted 

analyses (or a combination of the two in a hybrid analysis) and explore both known and unknown 

exposures. Untargeted metabolomics analyses are used to compare metabolic profiles widely and 

identify discriminating features to be chosen as candidate biomarkers, whereas targeted 

metabolomics analyses are used to confirm and validate these biomarkers by matching with 

authentic standards or to determine exposure categories for known toxicants. In this way, 

metabolomics allows for a complete analysis of environmental exposures by integrating both 

known and unknown components of the exposure profile, thereby making it an optimal tool for 

exploring the human exposome.     

 In the present study, a metabolomics analysis is conducted to study serum biological 

changes related to polybrominated biphenyl (PBB) exposure in an exposed Michigan PBB Cohort. 

PBB belongs to the largest class of flame retardants used commercially
16

, and the chemical was 

used in the United States as a flame retardant in products such as plastics, textiles, and electronics 

in the 1970s. However, the US manufacture of PBB was discontinued in 1976 in the aftermath of 

a large-scale contamination accident that occurred in Michigan. The Michigan Chemical 

Company made two products at the same plant in the 1970s: FireMaster, a flame retardant 

mixture of PBBs and NutriMaster, a feed-grade magnesium oxide supplement for cattle. In 1973, 

the company accidentally shipped PBB instead of the magnesium oxide supplement to the Farm 

Bureau Services where it was mixed into livestock feed that was shipped to feed mills across the 

state. The PBB-contaminated feed was ingested by cattle, pigs, chickens, and ultimately residents 
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in Michigan through consumption of contaminated milk, meat, eggs, and other animal products 

between 1973 and 1974.
17

 The first health problems were observed in dairy cattle in the fall of 

1973, but the accidental PBB contamination of animal feed was not identified as the cause of the 

problem until the spring of 1974.
18

 As a result, most Michigan residents who have been tested 

have detectable levels of PBB in their serum
17

, many exceeding the US reference range value for 

PBB. High PBB concentrations (i.e., > 95
th
 percentile level of the National Health and Nutrition 

Examination Survey [NHANES] which is an estimated 16.3 pg/mL or 0.016 parts per billion 

assuming an average serum lipid concentration of 600 mg/dL)
15

 have also been detected among 

some families residing on farms that had received the contaminated feed and in neighboring 

families who purchased food from these farms. In order to assess potential long-term effects of 

PBB exposure on human health, the Michigan Department of Community Health and the US 

Public Health Service established a registry of exposed Michigan residents in 1976, named the 

Michigan Long-Term PBB Study.
19,20

 The registry initially consisted of approximately 4,000 

individuals with a wide range of PBB exposure levels and now also includes the offspring of 

those who were exposed.
21

 This registry provides an opportunity to prospectively assess not only 

the direct effects of human exposure to PBB but also its potential transgenerational effects. 

 PBBs are classes of structurally similar brominated hydrocarbons in which 2 to 10 

bromine atoms are attached to a biphenyl. Although there are 209 different molecular 

combinations, or congeners, that are possible for PBBs, only a subset of these exists in 

commercial mixtures. The isomer 2,2‟,4,4‟,5,5‟- hexabromobiphenyl (PBB 153) was the 

dominant constituent of FireMaster, which was the source of the contamination in Michigan.
17

 

Since there are no known natural sources of PBBs in the environment and PBBs are no longer 

produced in the United States, the general population exposure to PBBs will only be from past 

releases typically bioaccumulated in the food chain. However, the long-term health effects of 

PBB exposure continue to be a concern, particularly among Michigan residents who were 

exposed, because of its long environmental persistence and potential toxic effects.
20

 Although 
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various symptoms (e.g., nausea, abdominal pain, loss of appetite, joint pain, fatigue, and 

weakness) have been reported since the accident, little convincing evidence exists to definitively 

link PBB exposure to adverse health effects among Michigan residents. However, animal studies 

have shown evidence of body weight loss, skin disorders, and nervous system effects, along with 

damages to the liver, kidneys, thyroid gland, and immune system. Reproductive, developmental, 

and carcinogenic effects have also been observed from animal studies.
18

 In addition, there is 

evidence that PBBs have endocrine disrupting properties (i.e., mimic or antagonize endogenous 

hormonal activity) in humans such as its influence on the secondary sex ratio, which is the ratio 

of males to females at birth.
17

 Exposure to high levels of PBB has also been found to be 

associated with transgenerational endocrine effects such as menarche at an earlier age among 

girls
22

 and congenital urinary tract problems among boys (e.g., hernia, hydroceles, cryptorchidism, 

hypospadias, varicocele)
21

.   

Long-term exposure to PBBs is of particular concern since they tend to build up in the 

human body over many years. Once PBBs enter the human body, they are partially metabolized 

and may be excreted from the body within a few days, mainly in feces and in very small amounts 

in urine. However, highly brominated congeners tend to undergo little or no metabolic 

transformation. No major metabolites were identified in the feces or urine of animals treated with 

PBB 153, suggesting that this congener is stable and persistent.
18

 PBBs may remain in the body 

for many years since they are mainly stored in body fat and tend to concentrate in breast milk fat. 

The estimated half-life of PBBs in human blood sera and fat are 10.8 years
23

 and 7.8 years
24

, 

respectively, meaning that PBBs may remain in tissues throughout the lifetime of those exposed. 

Moreover, it is possible for children to be exposed to high doses of PBBs through breast feeding, 

and children can also be exposed in utero through the placenta.
18

 This raises concerns for the 

potential transgenerational effects of PBB exposure on the development and growth of the 

children of those who were exposed in Michigan.  
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Biomarkers are useful tools to identify subjects who have been exposed to PBBs and 

detecting early signs of disease development among those exposed. Several studies have shown 

that both serum and adipose PBB levels are reliable biomarkers of exposure, but there are no 

specific biomarkers of effects for PBBs.
18

 Levels of cytochrome P450 enzymes and thyroid 

hormones have been suggested as potential biomarkers of effect, but these are not specific for 

PBB exposure. It is well documented that PBBs induce hepatic Phase I xenobiotic metabolizing 

enzymes (i.e., cytochrome P450-dependent monooxygenases).
18

 Subjects exposed to PBB in 

Michigan were found with elevated levels of two cytochrome P450-dependent enzymes, relative 

to controls. In addition, the thyroid is a sensitive target for PBBs and characteristic changes 

include reduced serum levels of T4 and other thyroid hormones. However, these biomarkers are 

likely to be common to the general class of polyhalogenated aromatic hydrocarbons, which also 

include structurally similar chemicals such as polychlorinated biphenyls, furans, and dioxins that 

cause similar endocrine disrupting effects and effects on the thyroid gland.
18

  

 The present study applies a metabolomics analysis to newly collected blood plasma 

samples obtained from participants of the Michigan PBB Registry who were (1) exposed to PBB 

as a result of accidental contamination of animal feed with PBB; or (2) were children or 

grandchildren of those exposed. The purpose of this study was twofold: first, to identify 

intermediate biomarkers that both mediate the metabolic effect of PBB exposure and its potential 

impact on disease risk; second, to investigate differences in the metabolic profiles of subjects 

divided into PBB exposure categories. We hypothesized that changes in metabolic processes 

resulting in measurable biomarkers were associated with current body burdens of PBB. Since the 

long-term health effects of PBB exposure are unknown, this study may lead to a better 

understanding of the health effects of PBB exposure and its underlying biological mechanism. 

The results of this study may also provide insight on improving biomarker discovery and 

applying metabolomics methods to investigate the human exposome.    
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2. Methods 

 

2.1 Materials 

Materials needed for plasma sample preparations included acetonitrile (HPLC grade, 

Sigma-Aldrich), an internal standard mix, and human reference plasma. The internal standard mix 

consisted of 14 stable isotopic chemicals: [
13

C6]-D-glucose, [
15

N]-indole, [1,2-
13

C2]-palmitic acid, 

[
15

N,
13

C5]-L-methionine, [2-
15

N]-L-lysine dihydrochloride, [
15

N]-choline chloride, [
13

C5]-L-

glutamic acid, [
13

C7]-benzoic acid, [
15

N]-L-tyrosine, [
15

N2]-uracil, [3,4-
13

C2]-cholesterol, [3,3-

13
C2]-cystine, [trimethyl-

13
C3]-caffeine, [U-

13
C5, U-

15
N2]-L-glutamine. Two types of pooled 

human reference plasma were used. One reference sample consisted of pooled plasma donated 

from the National Institute of Standards and Technology (NIST). This reference plasma was 

pooled from an equal number of healthy men and women aged 40 – 50 years old. The second 

reference sample, referred to as the Q standard (Qstd), consisted of pooled plasma from Equitech-

Bio, Inc. (Kerrville, TX). This was pooled from an unknown number of males and females 

without demographic information.  

 

2. 2 Samples 

 The study used a current cross-sectional sampling of a single time point in the Michigan 

Long-Term PBB Study. All protocols were reviewed and approved by the Institutional Review 

Board at Emory University (Appendix A). Blood was collected via venipuncture from 179 

participants enrolled from September 2012 through December 2013.  Samples used in the study 

were collected in October 2012 and June 2013. Study participants included members and 

descendants of farm families who were affected by the Michigan PBB accident in the 1970s. In 

addition, only plasma samples that were processed during field sampling were included in the 

present study in order to minimize differences from handling and processing of the samples. 

Blood samples were shipped to Emory and were frozen at -20   until analyzed.  Samples were 
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analyzed as a part of the PBB cohort study to determine the PBB153 levels using a solvent 

extraction, solid phase extraction clean up procedure and analysis using gas-chromatography 

tandem mass spectrometry with isotope dilution quantification.  

 

2.3 Metabolomic analysis 

2.3.1 Sample preparation 

 The 179 frozen unknown plasma samples were separated into a total of ten batches to 

process one batch of samples per run. Each batch consisted of a maximum of 20 unknown 

samples and 2 Qstds to be measured at the beginning and end of each batch. NIST plasma 

samples were included only in the beginning of the first batch and the end of the last batch.  

For each run, frozen plasma samples were thawed and a stock solution consisting of 

acetonitrile and the internal standard mix (130 µL acetonitrile and 3.25 µL internal standard mix 

per sample) was prepared. Aliquots of unknown plasma samples (65 µL), Qstds (50 µL), and 

NIST (50 µL) were all prepared in the same way. The stock solution (130 µL) was added to each 

Eppendorf tube containing aliquots of the samples. The samples were mixed and allowed to sit on 

ice for 30 min while letting acetonitrile crash proteins (i.e., causes proteins in the aliquots to 

denature and precipitate out). The samples were centrifuged at 13.2 rpm for 10 min at 4   to 

pellet the solids and precipitate out the proteins. Supernatants (~ 130 µL) were pipetted into 

autosampler vials for injection. 

 

2.3.2 Chromatography and mass spectrometry 

The metabolites in the sample extracts were temporally separated using high-performance 

C18 liquid chromatography. Reverse phase analysis was performed with a C18 column (Higgins 

Analytical, 100 2.1 mm, 5µm) and an acetonitrile gradient. The flow rate was 0.35 mL/min for 

the first 2 min and then changed to 0.40 mL/min for the remaining 8 min. The first 2-min period 

consisted of 5 % A (2 % formic acid in water), 35 % acetonitrile, 60 % water, followed by a 5-



10 
 

min linear gradient to 5 % A, 95 % acetonitrile, 0 % water. The final 3-min period was 

maintained at 5 % A, 95 % acetonitrile, 0 % water. The injection volume was 10µL for each run. 

Since mass spectrometers detect chemicals as ions in the gas phase, samples were ionized with 

electrospray ionization in the positive ion mode.  Ions were then detected using a quadrupole for 

precursor ion selection followed in tandem by a high-resolution Fourier transform ion trap (Q 

Exactive Hybrid Quadrupole-Orbitrap) mass spectrometer.  

 Data were collected continuously over the 10 min chromatographic separation, and these 

raw files were converted using Xcalibur file converter software (Thermo Fisher, San Diego, CA) 

to cdf files for further data processing. Spectral data were processed to extract peaks and quantify 

ion intensities using an adaptive processing R software package (apLCMS)
25

, which is designed 

for use with liquid-chromatography mass spectrometry (LCMS) data with high mass accuracy. 

This software provided tables containing unique mass-to-charge ratio (m/z) values, retention time, 

and integrated ion intensity for each feature. In an untargeted metabolomics analysis, unknown 

chemicals are identified as features in which the retention time and m/z are used as identifiers in 

the absence of knowledge of chemical identity. The advantage of high-resolution and high mass 

accuracy instruments is that features can be associated with disease status even without chemical 

identity, and elemental composition can often be predicted from the accurate m/z values.
26

 All 

samples were analyzed in triplicate, and the resulting spectra were averaged.  

 

2.4 Data analysis 

 Two approaches were taken to achieve the aims of the present study: (1) a biomarker 

discovery approach to identify metabolites that are associated with PBB exposure, and (2) a 

metabolome-wide approach to identify metabolites that discriminate between classes of PBB 

exposure, ranging in different body burdens of PBB. Part 1 aims to identify discriminatory 

features among the set of features that are correlated with PBB exposure. Part 2 aims to identify 

features that discriminate between different PBB exposure classes among all features that are 
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detected in the samples (i.e., the metabolome). Samples were categorized into two or three 

different classes of PBB exposure based on the measured plasma PBB concentrations in order to 

make comparisons of metabolic profiles and identify discriminatory features among different 

classes of PBB exposure.  

 

2.4.1 Correlation analysis 

Correlation coefficients were derived using the statistical software SAS for every feature 

with the known concentrations of PBB 153 for each corresponding sample in order to identify 

features that were strongly associated with PBB exposure. Measured PBB concentrations were 

used as the independent variable, and the ion intensity profile of each feature was used as the 

dependent variable. Features were listed in rank order of correlation coefficient values, and 

features with high correlation with PBB 153 concentrations were selected as candidate 

biomarkers for further analyses. Features for which the absolute value of the correlation 

coefficient was greater than or equal to 0.3 were determined to be strongly correlated with PBB 

concentrations. Features with correlation coefficient values less than -0.5 were considered to be 

insignificant due to measurement error introduced by the instrument.  

 

2.4.2 Two-class comparisons 

 All two-class differential expression analyses, which compare the metabolic profiles of 

two different groups of samples, were performed using the R software package MetBN.
27

  

MetBN performs two tasks: biomarker discovery using a False Discovery Rate (FDR) analysis 

and a metabolome-wide correlation analysis of the differentially expressed features. The feature 

table obtained from the LCMS was formatted into a table including m/z, retention time, and the 

measured ion intensity in each sample for each feature. The first two columns were the m/z and 

retention time, and the remaining columns consisted of the ion intensity profile for each sample. 

A separate file consisting of the class label information for each sample was also uploaded. 
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Samples were listed in the same order for both the feature table and the class label file. The data 

matrix was filtered by eliminating features that did not have intensities for at least 70 % of the 

samples in either of the two groups. The data matrix was also log2 transformed and quantile 

normalized.  

Features that significantly discriminated between the two classes were selected based on 

the FDR analysis using the R software package Limma.
28

 The Benjamini and Hochberg FDR was 

used to control for type I error due to multiple hypotheses testing at a significance level of q=0.05. 

The predictive accuracy of the FDR significant features was evaluated using k-fold cross-

validation (CV) with a Support Vector Machine classifier. For CV, the dataset was first divided 

into 8 subsets, with 7 subsets used for training and the remaining 1 subset for testing. The process 

was repeated 8 times, and the CV accuracy was determined as the mean of the classification 

accuracy of the 8 iterations. The best set of significant features was selected using an optimization 

score that minimizes the number of false positives and increases the classification accuracy. 

MetBN also provides several visualization tools to examine differences in the metabolic 

profiles of samples in the two classes. Principal component analysis (PCA) was used to visually 

inspect the separation of metabolomics data in relation to the dichotomous PBB exposure classes. 

PCA is an unsupervised method used to find the directions that best explain the variance in the 

dataset without referring to the class labels. PCA reduces high-dimensional metabolomics data 

into lower dimensions (e.g., two-dimensional or three-dimensional) by projecting the data into a 

new coordinate system using an optimal linear transformation for the data points such that most 

of the data variance lies in the first few principal axes (i.e., principal components [PCs]).
29

 

MetBN also performs hierarchical clustering and produces heatmaps to gain a simple overview of 

metabolomics data and find groupings or patterns in the data. Furthermore, MetBN performs a 

metabolome-wide network analysis of the selected FDR significant features using Pearson 

correlation coefficients to visualize the relationship between features.   
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2.4.3 Three-class comparisons 

 Analyses comparing the metabolic profiles of three classes of PBB exposure were 

performed using MetaboAnalyst (http://www.metaboanalyst.ca), which is an open-access, Web-

based tool designed for processing, analyzing, and interpreting metabolomics data.
29

 It is a tool 

designed to perform various types of common metabolomics data analysis tasks including data 

processing, data normalization, statistical analysis, and high-level functional interpretation.
30

 

MetaboAnalyst provides both univariate and multivariate statistical methods and multiple 

methods to produce data visualizations that facilitate the identification of significant features and 

patterns in metabolomics data. 

  To upload the dataset into MetaboAnalyst, the feature table obtained from the LCMS was 

formatted into a table with samples in columns and ion intensity profiles of each feature in rows. 

Once the dataset is uploaded, MetaboAnalyst performs data filtering to remove noise or non-

informative features in order to decrease the computational burden of downstream data analyses. 

Data filtering was performed by removing baseline noise features characterized by ion intensity 

values close to zero based on the median ion intensity. Moreover, non-informative features 

characterized by constant ion intensities across samples were removed based on the interquartile 

range of the ion intensity. Data normalization was performed on features since the distributions of 

ion intensities were skewed for many features. Features were normalized using generalized log 

transformations to reduce the impact of very large feature values and to make all features 

normally distributed. 

 Both univariate and multivariate statistical analyses were used to identify features that 

significantly discriminated the three PBB exposure classes. One-way Analysis of Variance 

(ANOVA) was performed to select features that were significantly differentially expressed 

among the three classes based on the FDR threshold of q = 0.05. Two multivariate methods were 

used in the present analysis: PCA and partial least squares discriminant analysis (PLS-DA). 

Whereas PCA is an unsupervised method, PLS-DA is a supervised clustering method that uses 
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class labels to maximize the difference between classes. Therefore, prior knowledge of PBB 

exposure classifications can be incorporated into the analysis with PLS-DA. It uses multiple 

linear regression techniques to extract information in the dataset, via linear combination of 

features that best predict the class membership.
30

 One concern with PLS-DA is that it tends to 

over-fit the data. In order to address this issue, the model needs to be validated to see whether the 

separation is statistically significant by using permutation tests. In each permutation, a PLS-DA 

model is built between the data and the permuted class labels using the optimal number of 

components.
30

 The test statistic that was used as the performance measure for the permutation test 

was the separation distance. The separation distance is defined as the ratio of the between-group 

sum of squares and the within-group sum of squares (B/W-ratio). The empirical p-value is 

calculated as the percentage of times that the B/W of the permutated data achieves the same or 

better results than the B/W calculated from the original data. If the observed B/W-ratio is part of 

the distribution based on the permutated class assignments, the class discrimination is not 

statistically significant.
29

 Similar to MetBN, MetaboAnalyst also performs hierarchical clustering 

and generates heatmaps to visually identify clusters or patterns in the data.   

 

2.4.4 Feature annotation and pathway mapping 

 Identification of significant features is often only the beginning of metabolomics analysis. 

In order to make implications on the effect of PBB exposure on human health, these selected 

features need to be identified as metabolites and mapped in the context of metabolic pathways. 

Discriminatory features were annotated and mapped using several metabolomic databases. First, 

the experimental m/z values of the discriminatory features were searched for matches using 

Metlin (http://metlin.scripps.edu/), which is a pre-compiled database of known metabolites and 

their mass, chemical formula, and structures. Matches were searched with mass accuracy within 

10 ppm for ion forms of M+H
+
, M+Na

+
, M+K

+
, M+H

+
(-H2O), and M+H

+
(2H2O). Metlin also 

provides the Kyoto Encyclopedia of Genes and Genomes identification numbers (KEGG IDs) of 
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the matched metabolites, and these IDs were used to map identified metabolites in human 

metabolic pathways. Batches of metabolites were searched by their corresponding KEGG IDs 

using the pathway search in KEGG (http://www.genome.jp/kegg/). KEGG visually displays and 

highlights metabolites that are matched in the database. Metlin and KEGG consist of an extensive 

library of metabolites, and both databases provide a long list of matched metabolites or pathways. 

However, since there are frequently multiple matches to each feature that is searched, it is often 

difficult to tease out the matches that are most meaningful or appropriate for the purposes of the 

study.  

MetaboAnalyst provides two functions to facilitate this process: metabolite set 

enrichment analysis (MSEA) and metabolic pathway analysis (MetPA). Both MSEA and MetPA 

perform statistical tests to rank matches of metabolite sets or metabolic pathways to facilitate 

interpretation of the results. MSEA is a method that has been developed as a metabolomic 

counterpart of the gene set enrichment analysis, which has been used widely in gene expression 

analysis. The purpose of MSEA is to investigate the enrichment of predefined groups of 

metabolites (or metabolite sets) instead of looking at metabolites individually.
30

 Instead of 

identifying metabolites independently, MSEA matches groups of features to metabolite sets 

which consist of metabolites that are functionally related to each other. This allows for higher-

level functional interpretation since metabolites are often interrelated and multiple metabolites 

can derive from the same metabolic pathway. MSEA was performed using over-representation 

analysis as the algorithm for enrichment analysis. Over-representation analysis uses a 

hypergeometric test to evaluate whether a particular metabolite set is represented more than 

expected by chance within the given list of metabolites. A reference metabolome is used to 

calculate a background distribution to determine if the matched metabolite set is more enriched 

for certain metabolites compared to random chance. MSEA uses all the metabolites of the 

metabolite set library as the reference metabolome. The pathway associated metabolite set library 

was used for the present analysis. However, interpretation of results from over-representation 
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analyses should be done with caution since the results may be intrinsically biased toward 

metabolite sets containing compounds that are more abundant or more easily detected because of  

limitations in current analytical technologies.
30

   

MetPA is a tool that helps to identify metabolic pathways that are most likely to be 

associated with the given list of metabolites. MetPA combines pathway enrichment analysis and 

pathway topology analysis to identify the pathway that is most significantly associated. Pathway 

enrichment analysis performs an over-representation analysis using hypergeometric tests. 

Pathway topology analysis measures the importance of a metabolite in the given metabolic 

network by using a centrality measure. The degree centrality, which is defined as the number of 

links occurred upon a node (or a metabolite), was used as the centrality measure for analyses in 

the present study. This analysis takes into consideration that changes in more important positions 

of a pathway network will trigger more severe impacts on the pathway. The metabolic pathways 

used in MetPA are obtained from the KEGG database and presented as networks of chemical 

compounds, with metabolites represented as nodes and reactions as edges.
30

  

 

3. Results 

 

3.1 Descriptive analysis of PBB exposure among the sample cohort 

 The distribution of the measured plasma PBB concentrations from the 179 exposed 

subjects was positively skewed with a median concentration of 0.26 ng/mL and a standard 

deviation of 14.83 ng/mL. There were 6 samples with no detectable levels of PBB, and the 

maximum PBB concentration was 164.52 ng/mL. 

 The 179 PBB exposed plasma samples were classified into different PBB exposure 

classes using three classification methods (Table 3.1) for further data analyses. Classification 

Methods 1 and 2 use binary classes (i.e., low and high PBB exposure) with the threshold based on 

the median PBB concentration (i.e., 0.26 ng/mL) and 1.00 ng/mL, respectively. Classification 
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Method 3 categorized samples into three classes based on the PBB concentration: less than 0.10 

ng/mL (low), 0.10 to 1.00 ng/mL (medium), greater than 1.00 ng/mL (high).  

 
Table 3.1 Descriptive statistics of plasma PBB concentrations of the 179 exposed subjects 

Classification 
Method 

Class PBB concentration 
range (ng/mL) 

Frequency Percent (%) 

1 1 (Low) < 0.26 (median) 89 49.72 

2 (High) ≥ 0.26 90 50.28 

2 1 (Low) < 1.00 138 77.09 

2 (High) ≥ 1.00 41 22.91 

3 1 (Low) < 0.10  60 33.52 

2 (Medium) 0.10 – 1.00 78 43.58 

3 (High) > 1.00 41 22.91 

 

3.2 Metabolomic data 

 Extraction of mass spectral data obtained from the LCMS yielded 11,202 features defined 

by their unique m/z, retention time, and the measured ion intensity for each sample. The m/z 

values ranged from 85.020 to 1,274.922. The averaged ion intensity values of the triplicates were 

used for further data analyses. The quality of the data was checked to confirm there were no 

significant systematic variations among samples measured in different batches (i.e., batch effects) 

by using PCA prior to analyses.  

  

3.3 Part 1. Biomarker discovery: Identification of discriminatory features associated with PBB 

exposure 

 Correlation analysis was used to identify features that were strongly associated with PBB 

exposure. Spearman‟s rank correlation coefficient was determined for every feature with the 

measured PBB 153 concentrations of the 179 exposed samples. Spearman‟s rank correlation was 

used since the distribution of PBB concentrations was skewed and the ion intensity profiles of the 

features were not normally distributed. Of the 11,202 detected features, a total of 73 features 



18 
 

(0.65 %) were found to be strongly correlated with PBB concentrations based on Spearman‟s 

rank correlation. Correlation coefficients (rs) of the 11,202 features were normally distributed 

with a mean of -0.0041 and a standard deviation of 0.102. Of the 73 significant features, 

approximately half of the features were negatively correlated with PBB exposure (34 features, 

46.58 %) and the other half was positively correlated with PBB exposure (39 features, 53.42 %). 

The feature with the strongest correlation had a rs = 0.477.   

Two-class differential expression analysis was performed on the 73 features strongly 

correlated with PBB exposure to determine if any of these features discriminated between binary 

classes of PBB exposure.  None of the features were filtered out for the following analyses since 

all 73 features had ion intensities for more than 70 % of the samples in either of the two exposure 

classes.  

 

3.3.1 Feature selection based on Classification Method 1 

First, analysis was performed with Classification Method 1, where exposed samples were 

classified based on the median PBB concentration. The 73 features that were significantly 

correlated with PBB exposure were first examined globally to get an overview of the data. Global 

PCA was performed to visually examine if there were sample groupings without referring to the 

assigned PBB exposure classes. The global scree plot shows the amount of variance explained by 

the top five PCs (Fig 3.1.a). Most of the variance in the data was contained in the first PC 

(approximately 90 %). Global pair-wise score plots between the first three PCs are shown in Fig 

3.1. The scores in these plots are the values of the samples in the PC coordinate system. Low 

PBB exposure samples are represented in red, and high PBB exposure samples are represented in 

green. Based on the 73 features, the pair-wise score plot of PC1 and PC2 (Fig 3.1.b) shows that 

the two classes were somewhat separated but not completely. Low PBB samples are clustered in 

the top half and high PBB samples are clustered in the bottom half of the plot. There was more 

overlap between the two classes and the separation was not clear in the other two score plots (Fig 
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3.1.c and Fig 3.1.d). This indicated that there was no natural separation (i.e., without referring to 

PBB exposure classification) of samples according to the level of PBB exposure based on the 73 

features that were associated with PBB concentrations.  

The global Manhattan plot shows the FDR analysis of the 73 features comparing 89 low 

exposure subjects with 90 high exposure subjects (Fig 3.2). The negative log p-value is plotted 

against the m/z values of the features on the x-axis, ordered in increasing value from 102.128 to 

1,178.440. The horizontal dashed line represents the FDR significance threshold (q = 0.05). 

Green dots above the threshold line represent features that were significantly differentially 

expressed between the two classes. With Classification Method 1, there were 37 FDR significant 

features with a CV accuracy of 80.45 %.  
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Figure 3.1 Classification Method 1: Global PCA of the 73 features correlated with PBB exposure 
(red: low PBB, green: high PBB) 

 
     a) Scree plot          b) Score plot: PC1 vs. PC2   

 
     c) Score plot: PC1 vs. PC3          d) Score plot: PC2 vs. PC3   
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Figure 3.2 Classification Method 1: Global Manhattan plot 

 

 

A focused PCA was performed to examine whether there were sample groupings based 

on the 37 FDR significant features. The scree plot of the 37 FDR significant features shows that 

most of the variance was explained by the first three components (PC1: approximately 33 %, 

PC2: approximately 28 %, PC3: 16 %) (Fig 3.3.a). A comparison of PC1 and PC2 (Fig 3.3.b) 

shows a good separation between the two classes where low PBB samples were clustered to the 

left and high PBB samples to the right side of the plot. The remaining two score plots also show 

signs of separation with little overlap (Fig 3.3.c and Fig 3.3.d). By comparing the global PCA 

with the focused PCA, it can be seen that the 37 FDR significant features selected from the initial 

set of 73 features led to a noticeable separation of samples based on PBB exposure levels. Fig 3.4 

shows a heatmap overview of the standardized z-score of the ion intensities with hierarchical 

clustering performed on both samples (horizontal axis) and the 37 FDR significant features 

(vertical axis). Low PBB samples are represented in red, and high PBB samples are represented 

in green. The dendrogram on the top showed that several small clusters of samples were 
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identified. There were no obvious patterns of change in the metabolic profiles of the samples that 

could be discerned from the heatmap. Box-and-whisker plots comparing the mean and standard 

error of features for low PBB exposure and high PBB exposure samples were also examined for 

each of the 37 selected features (Appendix B: Fig S1).  

 

Figure 3.3 Classification Method 1: Focused PCA of the 37 FDR significant features correlated with 
PBB exposure (red: low PBB, green: high PBB) 

 
     a) Scree plot          b) Score plot: PC1 vs. PC2   

 
     c) Score plot: PC1 vs. PC3          d) Score plot: PC2 vs. PC3   
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Figure 3.4 Classification Method 1: Hierarchical clustering and heatmap of the 37 FDR significant 
features (red: low PBB, green: high PBB)

 

 

The correlation network based on the metabolome-wide correlation analysis of the 37 

differentially expressed features is shown in Fig 3.5. The correlations between features were 

assessed based on Pearson correlation coefficients. The 37 FDR significant features are 

represented as circles, and all other features from the initial set of 73 features are represented as 

rectangles. Only features with a significant correlation based on the FDR threshold of q = 0.05 

are shown in the figure. Negative correlations between features are represented with red lines, 

whereas positive correlations are represented with blue lines. There was one large cluster and 4 

smaller clusters of features that were significantly correlated with one another. Most features 

were positively correlated with each other.  
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Figure 3.5 Classification Method 1: Correlation network based on the 37 FDR significant features 

 

 

3.3.2 Feature selection based on Classification Method 2 

Next, two-class differential expression analysis was performed with Classification 

Method 2, where samples were classified based on the threshold PBB concentration of 1 ng/mL. 

Global PCA showed that there was no clear separation of the two classes based on the 73 features 

using Classification Method 2 (Fig 3.6), thus indicating that there was no natural separation of 

samples according to PBB exposure levels. Most of the variance was explained by PC1 (Fig 

3.6.a), and all pair-wise score plots showed overlap between the two PBB exposure classes (Fig 

3.6.b, Fig 3.6.c, Fig 3.6.d). The global Manhattan plot shows the FDR analysis of the 73 features 

comparing 138 low exposure subjects with 41 high exposure subjects (Fig 3.7). With 

Classification Method 2, 39 FDR significant features were identified above the threshold, and the 

CV accuracy was 84.92 %. Compared to Classification Method 1, more features were selected 

using Classification Method 2. The CV accuracy was also higher with Classification Method 2, 
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indicating that more samples were correctly classified into their assigned PBB exposure class 

based on the discriminatory features selected using Classification Method 2.  

 

Figure 3.6 Classification Method 2: Global PCA of the 73 features correlated with PBB exposure 
(red: low PBB, green: high PBB) 

 
     a) Scree plot          b) Score plot: PC1 vs. PC2   

 
     c) Score plot: PC1 vs. PC3          d) Score plot: PC2 vs. PC3   
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Figure 3.7 Classification Method 2: Global Manhattan plot 

 

 

The PCA scree plot of the 39 FDR significant features show that PC1, PC2, and PC3 

explained approximately 25 %, 22 %, and 17 % of the variance in the data, respectively (Fig 

3.8.a). Pair-wise score plots of PC1 vs. PC2 (Fig 3.8.b) and PC1 vs. PC3 (Fig 3.8.c) show good 

separation of the two classes, meaning that PC1 contributed in the separation of the classes the 

most. With the 39 FDR significant features, there appears to be a separation of samples according 

to differences in the level of PBB exposure. Although there were no obvious differences in the 

ion intensity profiles between the two classes based on the heatmap, multiple clusters of low PBB 

exposure samples were found from the dendrogram on the horizontal axis (Fig 3.9). Low PBB 

samples tended to cluster more since a larger portion of the sample set was classified as low PBB 

exposure based on Classification Method 2. Box-and-whisker plots of 39 FDR significant 

features can be found in Appendix B (Fig S2). 
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Figure 3.8 Classification Method 2: Focused PCA of the 39 FDR significant features correlated with 
PBB exposure (red: low PBB, green: high PBB) 

  
     a) Scree plot          b) Score plot: PC1 vs. PC2   

 
     c) Score plot: PC1 vs. PC3          d) Score plot: PC2 vs. PC3   
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Figure3.9 Classification Method 2: Hierarchical clustering and heatmap of the 39 FDR significant 
features (red: low PBB, green: high PBB) 

 

 

The correlation network in Fig 3.10 shows the relationships between selected features 

with significant correlations. There was one large cluster and three smaller clusters of features 

that were significantly correlated with one another. Similar to the results from Classification 

Method 1, most of the features were positively correlated with each other. There were fewer 

clusters identified with Classification Method 2 compared to Method 1. 
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Figure 3.10 Classification Method 2: Correlation network based on the 39 FDR significant features 

 

 

3.3.3 Feature annotation and mapping selected features to metabolic pathways 

 Metabolomic database searches were used to tentatively identify the significant 

discriminatory features associated with PBB exposure that were selected based on Classification 

Method 1 and 2. Classification Method 1 and 2 identified 37 and 39 significant features, 

respectively. Of these significant features, 32 features were selected by both methods (Fig 3.11). 

With the two classification methods combined, a total of 44 features associated with PBB 

exposure were found to discriminate between low and high PBB exposures. With the 32 features 

mutually selected by both Classification Method 1 and 2, 815 metabolites were listed as potential 

matches using Metlin. Multiple features were assigned several matched metabolites, and some of 

the metabolites were similar forms of one another. Of the 815 metabolites suggested by Metlin, 

59 were identified with KEGG IDs. The 59 metabolites with KEGG IDs were then analyzed 

using MetaboAnalyst‟s MSEA and MetPA.  
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Figure 3.11 Comparison of discriminatory features correlated with  
PBB exposure selected by Classification Method 1 and 2 

 

 

 Of the 59 metabolites with KEGG IDs, 38 were exactly matched with compounds 

contained in MetaboAnalyst‟s metabolite set library (Appendix C: Table S1). Over-representation 

analysis of the matched metabolites was performed using the hypergeometric test to evaluate 

whether a particular metabolite set was represented more than expected by chance within the 

given list of metabolites. Fig 3.12 shows the summary plot of MSEA performed on the 32 

discriminatory features that were mutually selected by both Classification Method 1 and 2. Table 

3.2 shows the results of the over-representation analysis providing the raw and adjusted p-values 

of the matched metabolite sets. The metabolite set that had the most number of matches was the 

arachidonic acid metabolite set, but this was not statistically significant at the FDR significance 

level of q = 0.05 (FDR adjusted p-value = 1.000). A total of 37 compounds are included in the 

arachidonic acid metabolism set, and 4 metabolites matched the compounds in this set.  
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Figure 3.12 Summary plot of the Metabolite Set Enrichment Analysis (MSEA) of the 32 
discriminatory features mutually selected by both Classification Method 1 and 2 

 

 

Table 3.2 MSEA: Results of over-representation analysis of the 32 discriminatory features mutually 
selected by both Classification Method 1 and 2 

Metabolite set Total* Expected* Hits* Raw p* Holm p* FDR p* Match* 

ARACHIDONIC 

ACID 

METABOLISM 

37 1.700 4 0.085 1.000 1.000 14,15-DHET;  

8,9-DHET;  

11,12-DHET;  

5,6-DHET 
+
 

SPHINGOLIPID 

METABOLISM 

15 0.691 1 0.510 1.000 1.000 Sphinganine 

PHOSPHOLIPID 

BIOSYNTHESIS 

19 0.875 1 0.596 1.000 1.000 PC(16:0/16:0) 

* Total number of compounds in the metabolite set (Total), number of matched compounds (Hits), the original p-
value calculated from the enrichment analysis (Raw p), the adjusted p-value using the Holm-Bonferroni method 
(Holm p), the adjusted p-value using the FDR (FDR p), matched metabolites (Match)  
+
 DHET: dihydroxyeicosatrienoic acid 
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 The 59 metabolites with KEGG IDs were then analyzed with MetPA. Again, the 59 

metabolites were matched with 38 compounds in MetaboAnalyst‟s library and these were used 

for further analysis. Over-representation analysis using the hypergeometric test was performed to 

test if compounds involved in a particular pathway were enriched compared to random chance. 

The pathway topology analysis was performed using degree centrality to measure the amount of 

impact the matched compounds present within the particular pathway. Fig 3.13 shows the 

summary plot and Table 3.3 shows the full results of MetPA performed on the 32 discriminatory 

features that were mutually selected by both Classification Method 1 and 2. In Fig 3.13, all the 

matched pathways are displayed as circles, with red and orange circles indicating lower p-values. 

The size of each circle is based on the pathway impact value. The x-axis represents the pathway 

impact values from the topology analysis, and the y-axis represents the negative log of the p-

values from the enrichment analysis. Pathways lying near the top part of the diagonal line (y = x) 

indicate higher number of matches in compounds and that these compounds are more likely to 

have larger impacts on the pathway. From the summary plot, it can be seen that the valine, 

leucine, and isoleucine biosynthesis pathway lies closest to the diagonal. However, this pathway 

did not significantly match the set of 32 features that were analyzed since only 3 compounds 

matched the metabolites involved in this pathway (FDR adjusted p-value = 0.218). Although the 

arachidonic acid metabolism pathway had the highest number of matched compounds, this was 

still statistically not significant at the FDR threshold of q = 0.05 (FDR adjusted p-value = 0.198). 

Similar results were obtained when MSEA and MetPA were performed with the total of 44 

discriminatory features that were selected using Classification Method 1 and 2. 
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Figure 3.13 Summary plot of the Metabolic Pathway Analysis (MetPA) of the 32 discriminatory 
features mutually selected by both Classification Method 1 and 2

 
 

Table 3.3 MetPA: Results of the enrichment analysis and topology analysis of the 32 discriminatory 
features mutually selected by both Classification Method 1 and 2 

Pathway  Total* Expected* Hits*
+
 Raw p* Holm p* FDR p* Impact* 

Arachidonic acid 
metabolism 62 0.979 5 0.003 0.201 0.198 0.000 
Ascorbate and 
aldarate metabolism 45 0.710 4 0.005 0.391 0.198 0.078 
Valine, leucine and 
isoleucine 
biosynthesis 27 0.426 3 0.008 0.638 0.218 0.111 
Glycerophospholipid 
metabolism 39 0.616 2 0.125 1.000 1.000 0.151 
Pentose and 
glucuronate 
interconversions 53 0.837 2 0.203 1.000 1.000 0.033 
* Total number of compounds in the metabolite set (Total), number of matched compounds (Hits), the original p-
value calculated from the enrichment analysis (Raw p), the adjusted p-value using the Holm-Bonferroni method 
(Holm p), the adjusted p-value using the FDR (FDR p); the pathway impact value (Impact) 
+ Only pathways with more than one matched compound are shown in the table 
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 The results of MSEA and MetPA suggest that some of the selected discriminatory 

features associated with PBB exposure are likely to be metabolites in the arachidonic acid 

metabolic pathway. The arachidonic acid metabolic pathway entails the production and 

subsequent metabolism of arachidonic acid, which is an omega-6 fatty acid. The five matched 

compounds in this pathway consisted of 14,15- DHET; 8,9- DHET; 11,12- DHET; 5,6-DHET 

(DHET: dihydroxyeicosatrienoic acid); and phosphatidylcholine. These DHET metabolites are 

generated as a result of cytochrome p450 (CYP) enzymes converting arachidonic acid into 

epoxyeicosatrienoic acids, which are then converted into vicinal diols with epoxide hydrolases.
31

 

However, when checking the input m/z values that these compounds were matched on, it was 

found that all four DHET metabolites were matched based on the same single feature (m/z = 

339.251). Phosphatidylcholine was matched on 2 features (m/z = 758.570, 780.552) (Table S1). 

Therefore, only 3 of the 32 selected discriminatory features were contained in the arachidonic 

acid metabolic pathway. Since the ascorbate and aldarate metabolic pathway was the second best 

match, the m/z values of the matched compounds in this pathway were also checked. However, all 

4 of the matched compounds in the pathway were based on the same 1 feature (m/z = 113.024) 

(Table S1). 

 

3.4 Part 2. Metabolome-wide identification of discriminatory features between PBB exposure 

classes  

 A metabolome-wide FDR analysis was used to identify features that significantly 

discriminated between different classes of PBB exposure among the initial set of 11,202 features 

that were detected in the metabolome. Two-class differential expression analysis was applied for 

binary classification methods (i.e., Classification Methods 1 and 2), and MetaboAnalyst was used 

for Classification Method 3, where PBB exposure was classified into three groups (i.e., low, 

medium, high).  
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3.4.1 Feature selection based on Classification Method 1 

 A global PCA was performed to look at the variation in the metabolic profiles of the 

samples for the 11,202 detected features. The scree plot showed that approximately 90 % of the 

variance in the ion intensity profiles was explained by the first PC (Fig S3.a). Pair-wise 

comparisons of the global score plots showed that there was no clear natural separation of the 

11,202 features between the low PBB exposure high PBB exposure samples using Classification 

Method 1 (Score plot of PC1 vs. PC2 shown in Fig 3.14; Score plots of other PCs shown in 

Appendix B: Fig S3.b and Fig S3.c ). Fig 3.15 shows the global Manhattan plot of the FDR 

analysis of 11,202 features comparing low PBB exposure with high PBB exposure samples. The 

m/z values of features on the x-axis ranged from 85.020 to 1,274.922. There were 47 FDR 

significant features, and the CV accuracy was 88.27 %.   

 

Figure 3.14 Classification Method 1: Global PCA score plot (PC1 vs. PC2) of the 11,202 features of 
the metabolome (red: low PBB, green: high PBB) 
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Figure 3.15 Classification Method 1: Global Manhattan plot of the 11,202 features of the 
metabolome  

 
 

 

 

The scree plot of the 47 FDR significant features showed that PC1, PC2, and PC3 

explained approximately 21 %, 7%, and 6% of the variation, respectively (Fig S4.a). Pair-wise 

score plots of PC1 vs. PC2 (Fig 3.16.a), and also PC1 vs. PC3 (Fig 3.16.b) show signs of 

separation between the two classes, where low PBB exposure samples are clustered to the left and 

high PBB exposure samples are clustered to the right of the plot. There was more overlap 

between the two classes in the score plot between PC2 and PC3 (Fig S4.b). The heatmap 

overview of the ion intensity profiles of the samples shows that low PBB exposure samples 

cluster more to the right of the dendrogram on the horizontal axis and high PBB exposure 

samples to the right (Fig 3.17). The box-and-whisker plots of the 47 FDR significant features can 

be seen in Appendix B (Fig S5). 
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Figure 3.16 Classification Method 1: Focused PCA of the 47 FDR significant features of the 
metabolome (red: low PBB, green: high PBB) 

  

     a) Score plot: PC1 vs. PC2          b) Score plot: PC1 vs. PC3   
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Figure 3.17 Classification Method 1: Hierarchical clustering and heatmap of the 47 FDR significant 
features (red: low PBB, green: high PBB) 

 

 

The correlation network in Fig 3.18 shows the relationships between the 47 FDR 

significant features and others from the initial set of 11,202 features. Features with significant 

correlations are displayed. It can be seen that there was one large complex cluster with three 

central hubs and seven smaller clusters of features that were significantly correlated with one 

another. In the large cluster, the hubs consisted of FDR significant features, and these hubs were 

surrounded by features that did not significantly discriminate between the PBB exposure classes. 

All features were positively correlated with each other.  
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Figure 3.18 Classification Method 1: Correlation network based on the 47 FDR significant features 

 

 

3.4.2 Feature selection based on Classification Method 2 

 Next, metabolome-wide feature selection was performed using Classification Method 2. 

The global PCA scree plot showed that approximately 90 % of the variance in the 11,202 features 

was explained by PC1 with Classification Method 2 (Fig S6.a). Similar to the results from 

Classification Method 1, pair-wise comparisons of the score plots of the first three PCs showed 

no clear separation between the two classes based on Classification Method 2 (Fig S6.b, S6.c, 

S6.d). The global Manhattan plot of the FDR analysis based on Classification Method 2 is shown 

in Fig 3.19. There were 44 FDR significant features, and the CV accuracy was 92.18 %. 

Compared to Classification Method 1, there were fewer significant features, but the CV accuracy 

improved with discriminatory features selected using Classification Method 2.  
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Figure 3.19 Classification Method 2: Global Manhattan plot of the 11,202 features of the 
metabolome  

 

 

 The focused PCA scree plot of the 44 FDR significant features showed that PC1, PC2, 

and PC3 explained approximately 25 %, 10 %, and 9 % of the variance in the data, respectively 

(Fig S7.a). The pair-wise comparison of the score plot between PC1 and PC2 shows a separation 

of samples, where low PBB exposure samples are clustered to the left and high PBB exposure 

samples are clustered to the right (Fig 3.20.a). The score plot of PC1 and PC3 also shows 

relatively good separation (Fig 3.20.b), whereas overlap was present in the score plot of PC2 and 

PC3 (Fig S7.b). The heatmap in Fig 3.21 shows small clusters of high PBB exposure samples on 

the right side of the horizontal dendrogram and larger clusters of low PBB exposure samples on 

the left side. In the left bottom corner of the heatmap, there was a cluster of 14 features with low 

ion intensities among high PBB exposure samples. The box-and-whisker plots of the 44 FDR 

significant features can be found in Appendix B (Fig S8). 
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Figure 3.20 Classification Method 2: Focused PCA of the 44 FDR significant features of the 
metabolome (red: low PBB, green: high PBB) 

  

     a) Score plot: PC1 vs. PC2          b) Score plot: PC1 vs. PC3    
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Figure 3.21 Classification Method 2: Hierarchical clustering and heatmap of the 44 FDR significant 
features (red: low PBB, green: high PBB)

 
 

 

One large and complex cluster of features was identified from the metabolome-wide 

correlation analysis based on the 44 discriminatory features selected using Classification Method 

2 (Fig 3.22). There was one main hub within this cluster. In contrast to the correlation network 

from Classification Method 1, there were a few positive correlations among features.  
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Figure 3.22 Classification Method 2: Correlation network based on the 44 FDR significant features 

 

 

3.4.3 Feature selection based on Classification Method 3  

 MetaboAnalyst was used to identify features that significantly discriminated between the 

three different classes of PBB exposure (i.e., low, medium, high) based on Classification Method 

3. Data filtering resulted in the reduction of the dataset to 2,999 features with m/z values ranging 

from 85.040 to 1,273.585. Features were normalized using generalized log transformations since 

the distributions of ion intensity values were skewed for many features (Fig S9).  

 Univariate statistical analysis was used to perform an analysis of differences in the ion 

intensity profiles of features between the three classes. One-way ANOVA was used to compare 

the mean ion intensities of the three exposure classes for each feature. There were 235 features 

that were identified to be significantly different among the three classes based on ANOVA with a 
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p-value threshold of p = 0.05 (Fig 3.23). With a FDR significant threshold of q = 0.05, there were 

43 significant features. The full list of m/z values of the 43 FDR significant features and the 

results of the post-hoc analysis, Tukey‟s Honestly Significant Difference, is provided in 

Appendix C (Table S2).  

 

Figure 3.23 Selection of discriminatory features using one-way ANOVA*  

 
*Significant features above the p-value threshold (p=0.05) are represented in red 

 
 

PCA was used to detect natural groupings of the dataset without referring to the three-

class PBB exposure classes among the 2,999 features included in the analysis. PC1 explained 

most of the variance by itself (95.2 %, Fig S10.a), and the pair-wise score plot of PC1 and PC2 is 

shown in Fig 3.24. Samples are represented by dots and corresponding colors of PBB exposure 

class (i.e., red = low PBB; green = medium PBB; blue = high PBB). The dotted lines represent 

the 95 % confidence limit for each exposure class. It can be seen from Fig 3.24 that there was no 

clear separation among the three PBB exposure classes based on the 2,999 features. Similar to the 
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score plot of PC1 and PC2, pair-wise score plots of PC1 vs. PC3 (Fig S10.b) and PC2 vs. PC3 

(Fig S10.c) also showed overlap between the three PBB exposure classes.  

 
Figure 3.24 Classification Method 3: Global PCA score plot (PC1 vs. PC2) of the 2,999 
features included in the analysis (red: low PBB, green: medium PBB, blue: high PBB) 

 
 
 

 PLS-DA was used to see if the data separated well based on the 2,999 features using the 

prior knowledge of PBB exposure classifications. Pair-wise score plots between the first five PCs 

and the explained variance of each PC is shown in the corresponding diagonal cell in Fig 3.25. It 

can be seen that only approximately 1 % of the variance was explained by all of the five PCs. 

Three clusters of low (red), medium (green), and high (blue) PBB exposure samples can be seen 

in the score plot between PC1 and PC2 (Fig 3.26.a). There was more overlap between the three 

classes in the remaining two score plots between PC1 and PC3 (Fig 3.26.b) and between PC2 and 

PC3 (Fig S11). A permutation test was performed to assess whether there was a statistically 

significant separation between the three classes (Fig S12). In each permutation, a PLS-DA model 
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was built between the data and the permuted PBB exposure classes using the first three PCs. The 

separation distance based on the ratio of the B/W ratio was used as the test statistic for measuring 

the significance of the class discrimination. Based on 1,000 permutations, there was no 

statistically significant separation between the three PBB exposure classes based on the 2,999 

features included in the analysis at the significance level of 0.05 (p-value = 0.511).  

 

Figure 3.25 Classification Method 3: PLS-DA score plot matrix of the 2,999 features: Amount of 
variance explained by each PC (red: low PBB, green: medium PBB, blue: high PBB) 
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Figure 3.26 Classification Method 3: PLS-DA score plots (red: low PBB, green: medium PBB, blue: 
high PBB) 

 
     a) Score plot: PC1 vs. PC2             b) Score plot: PC1 vs. PC3    

 

 Next, PCA and PLS-DA were performed on the 43 features selected by one-way 

ANOVA to assess how well these features discriminated between the three PBB exposure classes. 

PCA showed that most of the variance in the data was explained by the first PC (99.8 %, Fig 

S13.a). The pair-wise score plot of PC1 vs. PC2 showed overlap between the three PBB exposure 

classes, but the high exposure class showed a larger, scattered cluster compared to the other two 

classes (Fig 3.27). Similar patterns were observed in the pair-wise score plots of PC1 vs. PC3 

(Fig S13.b) and PC2 vs. PC3 (Fig S13.c) where the high exposure class had a scattered cluster.  
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Figure 3.27 Classification Method 3: PCA score plot (PC1 vs. PC2) of the 43 selected 
features (red: low PBB, green: medium PBB, blue: high PBB) 

 

 

 PLS-DA was used to assess whether there was a significant separation of data between 

the three exposure classes based on the 43 discriminatory features.  Pair-wise score plots between 

the first five PCs and the explained variance of each PC is shown in the corresponding diagonal 

cell in Fig 3.28. Similar to the results from PCA, pair-wise score plots of PC1 vs. PC2 (Fig 

3.29.a) and PC1 vs. PC3 (Fig 3.29.b) from PLS-DA showed a larger, scattered cluster for the high 

exposure class. In the score plot between PC2 and PC3, the three exposure classes showed 

equally dispersed, overlapping clusters (Fig S14). The statistical significance of the separation 

between the three exposure classes based on the 43 discriminatory features was tested with a 

permutation test. PLS-DA models were built using five PCs, which was determined as the 

optimal number of components based on the cross-validated sum of squares captured by the 

model (Fig S15). Based on 1,000 permutations, there was a statistically significant separation 

between the three PBB exposure classes based on the 43 discriminatory features (p-value < 0.001, 

Fig 3.30). 
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Figure 3.28 Classification Method 3: PLS-DA score plot matrix of the 43 selected features: Amount 
of variance explained by each PC (red: low PBB, green: medium PBB, blue: high PBB 

 

 

Figure 3.29 Classification Method 3: PLS-DA score plots of the 43 selected features (red: low PBB, 
green: medium PBB, blue: high PBB) 

 

     a) Score plot: PC1 vs. PC2             b) Score plot: PC1 vs. PC3 
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Figure 3.30 Classification Method 3: PLS-DA model validation by permutation tests based on 
separation distance (based on the 43 selected features) 

 

 

A heatmap was generated to visually identify patterns or groupings of features that were 

expressed differently among the three PBB exposure classes (Fig. 3.31). The heatmap was 

generated using Pearson‟s correlation coefficients as distance measures and Ward‟s method as the 

clustering algorithm. Samples are displayed on the vertical axis from low PBB exposure (red) on 

the top through medium PBB exposure (blue) to high PBB exposure (green) on the bottom. The 

m/z values of the 43 discriminatory features are displayed on the horizontal axis. Hierarchical 

clustering was performed on the features, and the dendrogram on the horizontal axis shows the 

observed clusters of features. The horizontal color key indicates the ion intensities of the features 

(blue: lowest, red: highest). There were three clusters of features for which the low PBB exposure 

class generally showed lower ion intensities compared to the medium and high exposure classes. 

The first cluster consisted of features with m/z values of 411.770 to 806.567 from the left of the 

horizontal axis. The second cluster consisted of features with m/z values from 158.154 to 782.570, 

and the third from 780.552 to 784.584 from the left of the horizontal axis. Therefore, features 
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included in these three clusters on the heatmap may be particularly important for discriminating 

the low PBB exposure class.  

 

Figure 3.31 Classification Method 3: Hierarchical clustering and heatmap of the top 50 features 
selected based on ANOVA (red: low PBB, green: high PBB) 

 

 

3.4.4 Mapping selected features to metabolites and metabolic pathways 

 Metabolomic database searches were used to tentatively identify the significant features 

that discriminated between the different PBB exposure classes. Classification Methods 1, 2, and 3 

identified 47, 44, and 43 significant features, respectively. Of these significant features, 1 feature 



52 
 

was selected by all three methods, and 13 features were selected by two of the three methods (Fig 

3.32). With the three classification methods combined, a total of 119 features were found to 

discriminate between PBB exposure classes among the 11,202 features detected in the 

metabolome. There were 769 potential matches when the 14 mutually selected features were 

searched using Metlin, and 32 of these were identified with KEGG IDs. The 32 metabolites were 

then analyzed using MetaboAnalyst‟s MSEA and MetPA.  

 

Figure 3.32 Comparison of metabolome-wide discriminatory features  
selected by Classification Method 1, 2, and 3 

 

 

 Of the 32 metabolites with KEGG IDs, 10 were exactly matched with compounds in 

MetaboAnalyst‟s metabolite set library (Table S3). Over-representation analysis was performed 

on the matched metabolites using the hypergeometric test (Table 3.4). Fig 3.33 shows the 

summary plot of MSEA performed on the 14 discriminatory features that were mutually selected 

by at least two of the three PBB exposure classification methods. There were two metabolite sets 

with matches, and the metabolite set that had the most number of matches was the arachidonic 

acid metabolite set. There were 4 matched metabolites out of the 37 compounds included in the 

arachidonic acid metabolite set. Although this was identified as a statistically significant match 
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(FDR adjusted p-value = 0.0476), this is thought to have been caused by the small number of 

metabolites that were analyzed with MSEA. 

 

Table 3.4 MSEA: Results of the over-representation analysis for the 14 discriminatory features 
mutually selected by at least two of the three classification methods 

Metabolite set Total* Expected* Hits* Raw p* Holm p* FDR p* Match* 

ARACHIDONIC 

ACID 

METABOLISM 

37 0.448 4 < 0.001 0.048 0.048 14,15-DiHETrE;  

8,9DiHETrE;  

11,12DiHETrE;  

5,6-DHET 

PHOSPHOLIPID 

BIOSYNTHESIS 

19 0.230 1 0.209 1.000 1.000 PC(16:0/16:0) 

* Total number of compounds in the metabolite set (Total), number of matched compounds (Hits), the original p-value 

calculated from the enrichment analysis (Raw p), the adjusted p-value using the Holm-Bonferroni method (Holm p), 

the adjusted p-value using the FDR (FDR p), matched metabolites (Match) 

  

Figure 3.33 Summary plot of the Metabolite Set Enrichment Analysis (MSEA) of the 14 
discriminatory features mutually selected by at least two of the three classification methods 
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 The 10 metabolites that were matched with MetaboAnalyst‟s metabolite library were next 

analyzed with MetPA. Fig 3.34 shows the summary plot and Table 3.5 shows the results of 

MetPA performed on the 14 discriminatory features that were mutually selected by at least two of 

the three PBB exposure classification methods. In Figure 3.34, there are no matched pathways 

along the diagonal y = x line, indicating that there were no matched pathways that had a high 

number of matched compounds and for which matched compounds had a high impact on the 

pathway. Although the arachidonic acid metabolic pathway had the highest number of matched 

compounds, these compounds were identified to have little impact on the pathway itself (impact 

value = 0.000). There were 5 matched metabolites out of the 62 compounds that are included in 

the arachidonic acid metabolic pathway (FDR adjusted p-value < 0.001). Although the 2 matched 

metabolites in the glycerophospholipid metabolic pathway had the highest impact on the pathway 

(impact value = 0.151), this match was not statistically significant (FDR adjusted p-value = 

0.424).  
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Figure 3.34 Summary plot of the Metabolic Pathway Analysis (MetPA) of the 14 discriminatory 
features mutually selected by at least two of the three classification methods 

  
 

 

 
Table 3.5 MetPA: Results of the enrichment analysis and topology analysis of the 14 discriminatory 
features mutually selected by at least two of the three classification methods 

Pathway  Total* Expected* Hits*
+
 Raw p* Holm p* FDR p* Impact* 

Arachidonic acid 
metabolism 62 0.258 5 < 0.001 < 0.001 < 0.001 0.000 
Glycerophospholipid 
metabolism 39 0.162 2 0.011 0.838 0.424 0.151 
* Total number of compounds in the metabolite set (Total), number of matched compounds (Hits), the original p-
value calculated from the enrichment analysis (Raw p), the adjusted p-value using the Holm-Bonferroni method 
(Holm p), the adjusted p-value using the FDR (FDR p); the pathway impact value (Impact) 
+ Only pathways with more than one matched compound are shown in the table 

  

 Analysis with MSEA and MetPA were similarly performed for the 119 features that were 

collectively selected from the three classification methods. When these features were searched 

using Metlin, there were 5,205 potential matches and 273 of these were identified with KEGG 

IDs. The 273 metabolites were analyzed with MSEA and MetPA.  
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 Of the 273 metabolites with KEGG IDs, 126 were matched with compounds in 

MetaboAnalyst‟s metabolite set library (Table S4). Fig 3.35 shows the summary plot of MSEA 

performed on the combined 119 discriminatory features that were selected by the three 

classification methods. Results of the over-representation analysis are shown in Table 3.6. There 

were four metabolite sets with at least 2 matches. The matched metabolite set with the lowest p-

value was the α-linolenic and linoleic acid metabolite set with 3 matched compounds, but this 

match was statistically not significant (FDR adjusted p-value = 1.000). The metabolite set with 

the highest number of matched compounds was the arachidonic acid metabolite set but this was 

also statistically insignificant (FDR adjusted p-value = 1.000).  

 

Figure 3.35 Summary plot of the Metabolite Set Enrichment Analysis (MSEA) of the 119 
discriminatory features selected by the three classification methods 
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Table 3.6 MSEA: Results of the over-representation analysis for the 119 discriminatory features 
selected by the three classification methods 

Metabolite set Total* Expected* Hits* Raw p* Holm p* FDR p* Match* 

ALPHA 
LINOLENIC ACID 
AND LINOLEIC 
ACID 
METABOLISM 

9 1.370 3 0.146 1.000 1.000 Linoleic acid;  
Alpha-Linoleic 
acid; Gamma-
Linoleic acid 

GLUTAMATE 
METABOLISM 

18 2.750 2 0.788 1.000 1.000 Gamma- 
Glutamylcysteine;  
Succinic acid 
semialdehyde 

PHOSPHOLIPID 
BIOSYNTHESIS 

19 2.900 2 0.814 1.000 1.000 PC(16:0/16:0); 
PS(16:0/16:0) 

ARACHIDONIC 
ACID 
METABOLISM 

37 5.650 4 0.844 1.000 1.000 14,15- DHET; 8,9- 
DHET; 11,12-
DHET; 5,6-DHET 

VALINE, LEUCINE 
AND ISOLEUCINE 
DEGRADATION 

36 5.500 2 0.983 1.000 1.000 Acetoacetic acid;  
(S)-
Methylmalonic 
acid 
semialdehyde 

* Total number of compounds in the metabolite set (Total), number of matched compounds (Hits), the original p-value 

calculated from the enrichment analysis (Raw p), the adjusted p-value using the Holm-Bonferroni method (Holm p), 

the adjusted p-value using the FDR (FDR p), matched metabolites (Match) 

+ Only metabolite sets with more than one matched compound are shown in the table 

 

 When the 119 features were analyzed with MetPA, there was one metabolic pathway 

with a significant match. In the summary plot (Fig 3.36), the linoleic acid metabolic pathway lies 

along the y = x diagonal line in the right top corner, indicating that this pathway had a high 

number of matching compounds (FDR adjusted p-value < 0.001) and that these matched 

compounds also have a high impact on the pathway (impact value = 0.923). Table 3.7 provides 

the full result of MetPA performed on the 119 features that were selected by the three PBB 

exposure classification methods. The linoleic acid metabolic pathway had 10 matching 

compounds out of 15 compounds included in the pathway. Although statistically insignificant, the 

valine, leucine, and isoleucine biosynthesis metabolic pathway had the second highest proportion 

of matched compounds, followed by the arachidonic acid metabolic pathway. However, it can be 

seen from the summary plot that the linoleic acid metabolic pathway was the most important 
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matched pathway (Fig 3.36). The results of MetPA are concordant to the results from MSEA, 

which identified that the 119 features matched best with the α-linolenic and linoleic acid 

metabolite set.   

 

Figure 3.36 Summary plot of the Metabolic Pathway Analysis (MetPA) of the 119 discriminatory 
features selected by the three classification methods  
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Table 3.7 MetPA: Results of the enrichment analysis and topology analysis of the 119 
discriminatory features selected by the three classification methods 

Pathway  Total* Expected* Hits*
+
 Raw p* Holm p* FDR p* Impact* 

Linoleic acid 
metabolism 

15 0.785 10 < 0.001 < 0.001 < 0.001 0.923 

Valine, leucine and 
isoleucine biosynthesis 

27 1.413 4 0.049 1.000 1.000 0.148 

Arachidonic acid 
metabolism 

62 3.246 6 0.102 1.000 1.000 0.016 

Glycerophospholipid 
metabolism 

39 2.042 4 0.144 1.000 1.000 0.192 

Butanoate metabolism 40 2.094 4 0.154 1.000 1.000 0.080 

Ascorbate and aldarate 
metabolism 

45 2.356 4 0.207 1.000 1.000 0.078 

Propanoate 
metabolism 

35 1.832 3 0.276 1.000 1.000 0.125 

alpha-Linolenic acid 
metabolism 

29 1.518 2 0.454 1.000 1.000 0.167 

Valine, leucine and 
isoleucine degradation 

40 2.094 2 0.629 1.000 1.000 0.070 

Glycine, serine and 
threonine metabolism 

48 2.513 2 0.727 1.000 1.000 0.000 

Fatty acid metabolism 50 2.617 2 0.747 1.000 1.000 0.033 

Pentose and 
glucuronate 
interconversions 

53 2.774 2 0.776 1.000 1.000 0.033 

Cysteine and 
methionine 
metabolism 

56 2.931 2 0.802 1.000 1.000 0.012 

Tyrosine metabolism 76 3.978 2 0.916 1.000 1.000 0.011 

Drug metabolism - 
cytochrome P450 

86 4.502 2 0.947 1.000 1.000 0.025 

* Total number of compounds in the metabolite set (Total), number of matched compounds (Hits), the original p-
value calculated from the enrichment analysis (Raw p), the adjusted p-value using the Holm-Bonferroni method 
(Holm p), the adjusted p-value using the FDR (FDR p); the pathway impact value (Impact) 
+ Only pathways with more than one matched compound are shown in the table 

 

 Based on the combined 119 discriminatory features that were selected using the three 

classification methods, results of MSEA and MetPA suggest that these features include 

metabolites in the linoleic acid metabolic pathway. The 10 metabolites that were matched with 

compounds in this pathway were: phosphatidylcholine (KEGG ID: C00157); 13S-

hydroxyoctadecadienoic acid (C14762); linoleic acid (C01595); 9,10-epoxyoctadecenoic acid 

(C14825); 9,10-DHOME (C14828); 12,13-EpOME (C14826); 12,13-DHOME (C14829); bovinic 
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acid (C04056); crepenynate (C07289); and γ-linolenic acid (C06426) (Fig 3.37). 

Phosphatidylcholine was matched to 13 features with different m/z values (Table S4). Of the 10 

compounds, 7 were matched to the same 1 feature with the m/z value = 279.232 (13S-

hydroxyoctadecadienoic acid; 9,10-epoxyoctadecenoic acid; 9,10-DHOME; 12,13-EpOME; 

12,13-DHOME; crepenynate; and γ-linolenic acid). Linoleic acid and bovinic acid were matched 

on the same three features with m/z value = 263.237, 281.248, 281.247. Since many of the 

features were matched to multiple metabolites, there is uncertainty in the true identity of the 

features. 

 
Figure 3.37 The linoleic acid metabolic pathway (matched metabolites indicated in red, 
metabolites represented by KEGG IDs) 
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4. Discussion 

 

 The purpose of the present study was to investigate the metabolic effects of PBB 

exposure to identify biomarkers associated with PBB exposure and its potential impact on disease 

risk. PBB exposure was classified into two or three categories in order to compare the metabolic 

profiles and identify features that discriminate between exposure groups. In the first part, a total 

of 44 discriminatory features were selected from features that were strongly correlated with 

plasma PBB concentrations. In the second part, a total of 119 discriminatory features were 

collectively selected from the 11,202 features that were detected in the metabolome. This study 

demonstrates the ability of current analytical technologies and methods in metabolomics to 

discover biomarkers along the exposure-disease continuum, and further, to explore the exposome.  

 In metabolomics studies, it is often expected that the majority of observed changes in 

features are within normal physiological variations (i.e., background noise), and that only a small 

proportion of these are associated with the exposure or disease status of interest.
30

 The aim of the 

present study was to identify these „key features‟ that discriminate different classes of PBB 

exposure. This was done by selecting discriminatory features based on the FDR threshold of q = 

0.05, and confirming the separation of PBB exposure classes using multivariate statistical 

analyses (i.e., PCA and PLS-DA) and visualization methods (hierarchical clustering and 

heatmaps). On average, approximately 40 discriminatory features were successfully identified 

from the initial set of 11,202 features that were detected in the plasma samples for each analysis 

that was performed in this study. This demonstrates that high-resolution metabolic profiling with 

LCMS is a powerful means of capturing this small window of key features.  

 Although discriminatory features were successfully identified between subjects exposed 

to different levels of PBB in the Michigan cohort, it is possible that there may be more 

discriminatory features when comparing subjects exposed and not exposed to PBB. PBBs are 

artificial compounds and do not occur naturally in the environment.
18

 Subjects with current body 
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burdens of PBB were either exposed previously when PBB was still being produced or from 

bioaccumulation through the food chain. Therefore, unexposed subjects should have little or no 

detectable level of PBB in their blood. Thus, comparing metabolic profiles with a control group 

consisting of subjects unexposed to the Michigan PBB accident may have resulted in the 

discovery of an increased number of important features associated with PBB exposure.    

 In order to compare metabolic profiles and identify discriminatory features, PBB 

exposure was classified into groups using three classification methods. The use of these different 

classification methods gave rise to differences in the selected discriminatory features, although 

there were also features that were mutually selected by more than one PBB exposure 

classification method. This shows that the selection of discriminatory features depends on the 

choice of the threshold by which PBB exposure is classified. The threshold concentrations used in 

the present analyses were based on the distribution of the measured plasma PBB concentrations. 

The inclusion of a control group with little or no detectable level of PBB would have been 

informative to compare the changes in metabolic profiles with increasing PBB exposure.  

 Discriminatory features were selected based on two different approaches, and this 

resulted in the identification of two discrete sets of selected features. In the first part, a total of 44 

discriminatory features were selected from the 73 features that were strongly correlated with the 

measured plasma PBB concentrations. The second approach identified a total of 119 

discriminatory features from the complete set of 11,202 features that were detected in the 

metabolome. Of the two sets of discriminatory features identified from the two approaches, only 

one feature was selected by both approaches (m/z value = 710.474), leaving a total of 162 unique 

discriminatory features. The 162 discriminatory features that were collectively identified from the 

two approaches were tentatively identified to be metabolites predominantly involved in lipid 

metabolism and xenobiotic metabolism (Fig S16). Whereas the first approach focused on 

identifying features directly associated with PBB exposure, the latter was based on a 

metabolome-wide approach. As can be seen from the metabolome-wide correlation networks (Fig 
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3.5; 3.10; 3.18; 3.22), metabolites are interrelated with one another in a complex network. 

Therefore, the metabolome-wide approach allows for the investigation of indirect effects of PBB 

exposure. With the metabolome-wide approach, potential signs of disease risk can be investigated 

by exploring multiple metabolic pathways. With the two approaches combined, it is possible to 

discover biomarkers associated with both exposure and disease risk, thereby encompassing the 

exposure-disease continuum. Since most of the discriminatory features associated with PBB 

exposure did not overlap with features identified from the metabolome-wide approach, this 

indicates that PBB exposure may induce alterations in multiple metabolic pathways both directly 

and indirectly.  

  Based on the results of MSEA and MetPA, the discriminatory features associated with 

PBB exposure were suggested to be metabolites in the arachidonic acid metabolic pathway, and 

discriminatory features from the metabolome-wide approach were identified to be metabolites in 

the linoleic acid metabolic pathway. Matched metabolites in the arachidonic acid metabolic 

pathway included 14,15- DHET; 8,9- DHET; 11,12- DHET; and 5,6-DHET (DHET: 

dihydroxyeicosatrienoic acid). DHETs are cytochrome P450 (CYP)-mediated metabolites of 

arachidonic acid, which is a polyunsaturated omega-6 fatty acid found in human fat, liver, brain, 

and glandular organs.
32

 Increased levels of CYP arachidonic acid metabolites have previously 

been associated with diabetes, pregnancy, hepatorenal syndrome, cyclosporine-induced 

nephrotoxicity, and alcohol-induced liver disease.
33

 It is possible that PBB exposure induces 

alterations in this pathway since previous literatures have found PBBs to induce hepatic CYP-

dependent monooxygenases, which are Phase I xenobiotic metabolizing enzymes.
34

 Linoleic acid 

(an omega-6 fatty acid) and α-linolenic acid (an omega-3 fatty acid) are two essential fatty acids 

that are the precursors for the synthesis of a variety of other unsaturated fatty acids, including 

arachidonic acid.
35

 In the first step of linoleic acid metabolism, linoleic acid is converted to γ-

linolenic acid, which is then converted to dihomo-γ-linolenic acid and finally to arachidonic acid. 

Therefore, the arachidonic acid and linoleic acid metabolic pathways are both involved in the 
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regulation of signaling molecules called eicosanoids, which are closely related to various diseases 

such as cardiovascular disease, stroke, myocardial infarcation, asthma, hyptertension, and cancer 

when disruptions in levels occur.
31

 

 Although some of the discriminatory features were tentatively identified as metabolites in 

the arachidonic acid and linoleic acid metabolic pathways, there is much uncertainty in these 

findings. The four metabolites in the arachidonic acid metabolic pathway were matched based on 

one feature. In other words, one m/z value was matched to four metabolites. There were also 

redundancies in the m/z values of the metabolites matched in the linoleic acid metabolic pathway. 

This means that only a few features were matched to multiple metabolites in a given pathway, 

thereby introducing a false enrichment of metabolites in that pathway. Targeted analyses are 

necessary to confirm the identity of these discriminatory features.   

 Feature annotation and pathway mapping were also impeded by the lack of finding 

matches in metabolomic databases. In both Part 1 and 2 of the present study, less than half of the 

identified discriminatory features were successfully matched in MetaboAnalyst‟s MSEA. Of the 

32 PBB associated discriminatory features that were mutually selected by the two classification 

methods in Part 1, 12 features (37.5 %) were matched to compounds in MSEA. In Part 2, 51 

(42.9 %) of the 119 metabolome-wide discriminatory features had matches in MSEA. Since more 

than half of the features were unable to be matched to compounds in the database, this led to loss 

of information. In addition, this may have introduced bias in the results by matching features to 

metabolites that are more common or measureable with current technology. Discriminatory 

features identified in the analyses may have been matched to arachidonic acid and linoleic acid 

metabolic pathways since these pathways include commonly known metabolites with higher 

abundance. It is possible that the unidentified metabolites may have greater implications on the 

health effects of PBB exposure, and that this information was neglected in the process of feature 

annotation and pathway mapping. Despite the uncertainty in the true identity of features, the 

presence of discriminatory features between different classes of PBB exposure implies that there 
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are measureable alterations in metabolic processes related to different levels of exposure to PBB. 

This gives more reason to investigate the unidentified discriminatory features. Loss of 

information during feature annotation and pathway mapping raises the next major challenge of 

analyzing unidentified metabolites and low abundance features for metabolomic studies.
36

 

 Finally, this study demonstrated that advanced methods and technology are currently 

available for the investigation of the human exposome. The present study investigated the long-

term effect of PBB exposure on human metabolic pathways using metabolic profiling and 

computational methods. Non-targeted investigations of metabolic profiles were performed with 

LCMS, which was able to detect over 11,000 features. Only small amounts of samples were 

required and sample processing was minimal in this study, thereby allowing high-throughput. 

With recent advances in technology, it is possible to detect metabolites with high sensitivity, and 

in principle, the coverage can be increased to detect over 10,000 chemicals.
37

 This is particularly 

essential for exposomics, which aims to holistically investigate multiple known and unknown 

environmental exposures to account for the multifactorial nature of disease etiology. Moreover, 

quantitative measures of current body burdens of PBB were used in the present study to 

investigate the long-term effects of PBB exposure, which occurred approximately 40 years ago. 

This accounts for the temporal lag in disease onset, which is a common characteristic of many of 

the chronic diseases that are of concern today. Although the data extracted from LCMS is high-

dimensional and complex, various bioinformatics and computational methods are currently 

available to reduce the complexity and facilitate interpretations of the data. In the present analysis, 

R software packages for metabolomics analysis and MetaboAnalyst were primarily used to 

reduce the complexity of the metabolomics data by extracting information on features that most 

contributed to the variation among samples with different levels of PBB exposure. By using these 

high-resolution metabolic profiling and computational tools, exposomics can be employed to 

study the complex system of human health, where a single exposure can have multiple effects and 

multiple exposures can have a single health effect.  
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5. Conclusion 

 

In the present study, a metabolomics analysis was applied to newly collected plasma 

samples collected from subjects in the Michigan PBB cohort who were exposed to PBB in the 

1970s or were descendants of those exposed. High-resolution metabolic profiling along with 

bioinformatics and computational tools were used to study the long-term effect of PBB exposure 

on human metabolic pathways. Differences in the metabolic profiles of subjects with low to high 

current body burdens of PBB were detected, and these differences were identified as 

discriminatory features. Although the identity of these discriminatory metabolites require further 

investigation, the study demonstrated that metabolomics methods can be applied to discover 

biomarkers related to the exposure, or biomarkers indicative of potential disease risk. Moreover, 

the study provides evidence that omics technology and methods, such as those used in the present 

metabolomics analysis, are a promising means of exploring the human exposome. Although 

conventional methods have failed to account for the multifactorial etiology and long latency of 

many human diseases, exposomics holds much promise in providing new insights into disease 

prevention and treatment by accounting for these factors. Conventional methods have also 

overlooked the effect of unrecognized exposures, but exposomics provides a way to 

simultaneously explore thousands of environmental exposures, both known and unknown. 

Furthermore, exposomics has the potential to elucidate the complex interplay between genes and 

the environment that affect the complex system of human health. 
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Appendix A. IRB Approval Letter  

 

TO: Michele Marcus 
Principal Investigator 
Epidemiology 

    

DATE: October 29, 2013  

    

RE: Notification of Amendment Approval 

  AM20_IRB00045959 

  
IRB00045959 
Brominated Flame Retardants: Multigenerational Endocrine Disruption? 

 

Thank you for submitting an amendment request. The Emory IRB reviewed and approved 
this amendment under the expedited review process on 10/29/2013. This amendment 
includes the following: 
  

Personnel Change only:  Adding Tamar Wainstock as other Emory study staff. 
 

Important note:  If this study is NIH-supported, you may need to obtain NIH prior approval 
for the change(s) contained in this amendment before implementation.  Please review the 
NIH policy directives found at the following links and contact your NIH Program Officer, 
NIH Grants Management Officer, or the Emory Office of Sponsored Programs if you have 
questions. 
Policy on changes in active awards:  http://grants.nih.gov/grants/guide/notice-files/NOT-
OD-12-129.html 
Policy on delayed onset awards:  http://grants.nih.gov/grants/guide/notice-files/NOT-OD-
12-130.html 
In future correspondence with the IRB about this study, please include the IRB file ID, the 
name of the Principal Investigator and the study title. Thank you. 
Sincerely, 
Donna Thomas 
Administrative Assistant 
This letter has been digitally signed 

 

CC Fershteyn Zarina Psychiatry - Main 
  

  

Barr Dana Envir & occup Health 

Howards Penelope Epidemiology 

Manatunga Amita Biostatistics 

Pearson Melanie Envir & occup Health 

Spencer Jessica REI 

Tsai Han-Hsuan Public Health 
  

  
 

Emory University IRB 
1599 Clifton Road, 5th Floor - Atlanta, Georgia 30322 

Tel: 404.712.0720 - Fax: 404.727.1358 - Email: irb@emory.edu - Web: http://www.irb.emory.edu/ 
An equal opportunity, affirmative action university 

http://grants.nih.gov/grants/guide/notice-files/NOT-OD-12-129.html
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-12-129.html
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-12-130.html
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-12-130.html
http://www.irb.emory.edu/
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Appendix B: Supplementary Figures  
 

Figure S1. Part 1 Classification Method 1: Box-and-whisker plots of the 37 FDR significant features 
(1: low PBB, 2: high PBB) 
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Figure S1. (Continued) 
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Figure S2. Part 1 Classification Method 2: Box-and-whisker plots of the 39 FDR significant features 
(1: low PBB, 2: high PBB) 
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Figure S2. (Continued) 
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Figure S3. Part 2 Classification Method 1: Global PCA of the 11,202 features of the metabolome 
(red: low PBB, green: high PBB) 

  

     a) Scree plot          b) Score plot: PC1 vs. PC3 

 

     c) Score plot: PC2 vs. PC3  
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Figure S4. Part 2 Classification Method 1: Focused PCA of the 47 FDR significant features of the 
metabolome (red: low PBB, green: high PBB) 

  

     a) Scree plot          b) Score plot: PC2 vs. PC3 
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Figure S5. Part 2 Classification Method 1: Box-and-whisker plots of the 47 FDR significant features 
(1: low PBB, 2: high PBB) 
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Figure S5. (Continued) 
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Figure S5. (Continued) 
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Figure S6. Part 2 Classification Method 2: Global PCA of the 11,202 features of the metabolome 
(red: low PBB, green: high PBB) 

  

     a) Scree plot          b) Score plot: PC1 vs. PC3 

  

     c) Score plot: PC1 vs. PC3          d) Score plot: PC2 vs. PC3   
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Figure S7. Part 2 Classification Method 2: Focused PCA of the 44 FDR significant features of the 
metabolome (red: low PBB, green: high PBB) 

  

     a) Scree plot          b) Score plot: PC2 vs. PC3 
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Figure S8. Part 2 Classification Method 2: Box-and-whisker plots of the 44 FDR significant features 
(1: low PBB, 2: high PBB)

 



80 
 

Figure S8. (Continued) 
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Figure S8. (Continued) 
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Figure S9. Part 2 Classification Method 3: Data normalization [before (left) and after (right) 
normalization]* 

 

* The density plots are based on all 2,999 features, but the box plots are only represented for 50 features due to the 
space limit. It can be seen that features follow a more bell-shaped curve after normalization. 
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Figure S10. Part 2 Classification Method 3: PCA of the 2,999 features included in the analysis (red: 
low PBB, green: medium PBB, blue: high PBB)

 

The green line on the top shows the accumulated percentage of variance explained with the 
addition of each PC, and the blue line beneath shows the variance explained by each individual PC. 

         a) Scree plot     

 

 

         b) Score plot: PC1 vs. PC3              c) Score plot: PC2 vs. PC3 
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Figure S11. Part 2 Classification Method 3: PLS-DA score plot (PC2 vs. PC3) of the 2,999 features 
included in the analysis (red: low PBB, green: medium PBB, blue: high PBB) 

 
 

 

Figure S12. Classification Method 3: PLS-DA model validation by permutation tests based on 
separation distance (model based on 2,999 features initially included in the analysis) 
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Figure S13. Part 2 Classification Method 3: PCA of the 43 selected features (red: low PBB, green: 
medium PBB, blue: high PBB) 

 

The green line on the top shows the accumulated percentage of variance explained with the 
addition of each PC, and the blue line beneath shows the variance explained by each individual PC. 

         a) Scree plot 

 

         b) Score plot: PC1 vs. PC3              c) Score plot: PC2 vs. PC3 
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Figure S14. Part 2 Classification Method 3: PLS-DA score plot (PC2 vs. PC3) of the 43 selected 
features (red: low PBB, green: medium PBB, blue: high PBB) 

 

 

Figure S15. Part 2 Classification Method 3: Determination of the optimal number of components 
used in the PLS-DA model* 

 

* The optimal number of components is assessed based on three performance measures: the sum of squares 
captured by the model (R

2
), the cross-validated R 

2
(i.e., Q 

2
), and the prediction accuracy. The default is Q 

2
. The 

red star indicates the optimal number of components.  
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Figure S16. Overview of the 162 discriminatory metabolites selected from Part 1 and 2 collectively 
(matched metabolites are indicated as black circles) 
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Appendix C. Supplementary Tables 

 

Table S1. Part1. Discriminatory features mutually selected by Classification Method 1 and 2 with 
matched compound names in MSEA 

Input mz* dppm* KEGG ID MSEA match* 

113.024 
 

4 C01546 2-Furoic acid 

5 C00815 Citramalic acid 

5 C02614 (S)-2-Methylmalate 

5 C01087 D-2-Hydroxyglutaric acid 

5 C02266 D-Xylono-1,5-lactone 

5 C03826 2-Dehydro-3-deoxy-D-xylonate 

5 C00684 2-Dehydro-3-deoxy-L-arabinonate 

5 C01114 L-Arabinono-1,4-lactone 

5 C02630 2-Hydroxyglutarate 

5 C06032 D-erythro-3-Methylmalate 

5 C02612 (R)-2-Methylmalate 

5 C03196 L-2-Hydroxyglutaric acid 

0 C00490 Itaconic acid 

0 C00433 2,5-Dioxopentanoate 

0 C02800 Gamma-delta-Dioxovaleric acid 

0 C01732 Mesaconic acid 

0 C02214 Glutaconic acid 

0 C02226 Citraconic acid 

146.980 8 C03167 Phosphonoacetaldehyde 

149.095 7 C06577 Cuminaldehyde 

7 C10452 1-Methoxy-4-(2-propenyl)benzene 

8 C07287 Sulcatone 

7 C14147 Cyromazine 

177.164 2 C03527 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-
butanone 

198.091 4 C17249 7-Methylthioheptanaldoxime 

198.091 1 C06551 N-Ethyl trans-2-cis-6-nonadienamide 

269.248 0 C16536 (Z)-9-Heptadecenoic acid 

0 C12100 Cyclohexaneundecanoic acid 

284.295 0 C13846 Octadecanamide 

1 C00836 Sphinganine 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), 
compound name matched in MSEA (MSEA match) 
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Table S1. (Continued) 

Input mz* dppm* KEGG ID MSEA match* 

339.251 6 C14772 5,6-DHET 

6 C14773 8,9-DiHETrE 

6 C14774 11,12-DiHETrE 

6 C14775 14,15-DiHETrE 

0 C15988 (9S,10S)-9,10-dihydroxyoctadecanoate 

8 C06475 Prostaglandin F1a 

710.474 1 C00350 PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) 

666.448 2 

758.570 0 C00157 PC(16:0/16:0) 

780.552 2 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), 
compound name matched in MSEA (MSEA match) 

 

Table S2. Part2 Classification Method 3: ANOVA post hoc test (Tukey’s Honestly Significant 
Difference) 

mz FDR Tukey's HSD 

784.584 4.61E-06 2-1; 3-1 

780.552 3.25E-05 2-1; 3-1 

339.251 3.25E-05 2-1; 3-1 

228.232 1.75E-04 2-1; 3-1 

806.567 1.75E-04 2-1; 3-1 

758.570 1.99E-04 2-1; 3-1 

759.574 1.99E-04 2-1; 3-1 

146.980 3.04E-04 3-1; 3-2 

782.570 3.17E-04 2-1; 3-1 

783.574 3.17E-04 2-1; 3-1 

198.103 3.17E-04 3-1; 3-2 

759.573 5.73E-04 2-1; 3-1 

200.201 6.75E-04 2-1; 3-2 

144.982 1.15E-03 3-1; 3-2 

784.584 1.47E-03 2-1; 3-1 

760.583 1.47E-03 2-1; 3-1 

158.154 2.44E-03 2-1; 3-1 

806.569 2.49E-03 2-1; 3-1 
* input detected m/z value (mz), FDR adjusted p-value (FDR), significantly different pair-wise 
comparisons (1: low PBB, 2: medium PBB, 3: high PBB) (Tukey’s HSD) 
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Table S2. (Continued) 

mz FDR Tukey's HSD 

782.570 2.56E-03 2-1; 3-1 

198.091 3.75E-03 3-1; 3-2 

783.573 3.86E-03 2-1; 3-1 

113.024 4.15E-03 2-1; 3-1 

758.569 4.48E-03 2-1; 3-1 

453.209 8.21E-03 3-1; 3-2 

130.533 9.81E-03 3-1; 3-2 

281.247 9.88E-03 3-1; 3-2 

803.130 1.14E-02 3-1; 3-2 

1189.064 1.14E-02 2-1; 3-1 

411.770 1.24E-02 2-1; 3-1 

808.583 1.43E-02 2-1; 3-1 

359.258 1.49E-02 3-1; 3-2 

190.982 1.91E-02 2-1; 3-1 

353.341 1.91E-02 3-1; 3-2 

123.079 2.24E-02 2-1; 3-2 

169.134 2.47E-02 2-1; 3-2 

352.898 2.67E-02 3-1; 3-2 

142.123 2.72E-02 2-1; 3-1 

786.601 2.75E-02 2-1; 3-1 

238.107 2.94E-02 3-1; 3-2 

154.123 3.22E-02 2-1; 3-1 

106.035 3.71E-02 3-1; 3-2 

780.590 3.96E-02 2-1; 3-1 

679.639 4.90E-02 2-1 
* input detected m/z value (mz), FDR adjusted p-value (FDR), significantly different pair-wise 
comparisons (1: low PBB, 2: medium PBB, 3: high PBB) (Tukey’s HSD) 
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Table S3. Part2. Discriminatory features mutually selected by at least two of Classification Method 
1, 2, and 3 with matched compound names in MSEA 

Input mz* dppm* KEGG ID MSEA match* 

146.980 8 C03167 Phosphonoacetaldehyde 

198.103 0 C14416 3-Amino-1-methyl-5H-pyrido[4,3-b]indole 

339.251 6 C14772 5,6-DHET 

6 C14773 8,9-DiHETrE 

6 C14774 11,12-DiHETrE 

6 C14775 14,15-DiHETrE 

0 C15988 (9S,10S)-9,10-dihydroxyoctadecanoate 

8 C06475 Prostaglandin F1a 

780.552 2 C00157 PC(16:0/16:0) 

0 

0 C00350 PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), 
compound name matched in MSEA (MSEA match) 

 

Table S4. Part2. All discriminatory features selected by Classification Method 1, 2, and 3 with 
matched compound names in MSEA 

Input mz* dppm* KEGG ID MSEA match* 

405.167 5 C07567 Sertindole 

0 C05950 20-Carboxy-leukotriene B4 

0 C05961 6-Keto-prostaglandin F1a 

284.295 0 C13846 Octadecanamide 

1 C00836 Sphinganine 

291.048 0 C07836 D-glycero-D-manno-Heptose 7-phosphate 

0 C07838 D-glycero-D-manno-Heptose 1-phosphate 

0 C06222 Sedoheptulose 1-phosphate 

0 C05382 Sedoheptulose 7-phosphate 

4 C01736 Nebularine 

4 C05512 Deoxyinosine 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), compound name 
matched in MSEA (MSEA match) 
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Table S4. (Continued) 

Input mz* dppm* KEGG ID MSEA match* 

666.448 2 C00350 PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) 

710.474 1 

758.569 0 

758.570 0 

760.583 2 

780.552 0 

780.590 0, 3 

782.570 3 

782.570 4 

784.584 1 

784.584 1 

828.648 0 

339.251 6 C14772 5,6-DHET 

6 C14773 8,9-DiHETrE 

6 C14774 11,12-DiHETrE 

6 C14775 14,15-DiHETrE 

339.251 0 C15988 (9S,10S)-9,10-dihydroxyoctadecanoate 

281.248 3 

281.247 4 

339.251 8 C06475 Prostaglandin F1a 

758.569 0 C00157 PC(16:0/16:0) 

758.570 0 

760.583 2 

780.552 0, 2 

782.570 0, 1, 3, 4 

784.584 1 

786.601 0 

806.567 0, 2 

806.569 0, 2 

808.583 0, 2 

315.162 0 C06918 Clomipramine 

8 C02035 Gibberellin A20 

8 C11864 Gibberellin A4 

8 C11865 Gibberellin A51 

318.222 0 C08067 Butenafine 

3 C08012 Levomethadyl Acetate 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), compound name 
matched in MSEA (MSEA match) 

 



93 
 

Table S4. (Continued) 

Input mz* dppm* KEGG ID MSEA match* 

351.101 0 C08126 Penicillin V 

0 C16517 Indolylmethyl-desulfoglucosinolate 

5 C10283 2',3,4',5-Tetrahydroxy-4-prenylstilbene 

7 C07322 Olanzapine 

408.144 2 C00415 Dihydrofolic acid 

0 C11154 Trimetrexate 

459.201 5 C07007 Fluocinonide 

1 C11132 2-Methoxyestrone 3-glucuronide 

681.418 7 C08596 Fucoxanthin 

291.145 0 C10896 Benomyl 

0 C01965 Trimethoprim 

278.190 0 C06824 Amitriptyline 

0 C07107 Maprotiline 

0 C16659 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine 

708.256 0 C06371 Lacto-N-tetraose 

263.237 9 C00517 Palmitaldehyde 

9 C14499 Hexadecane 

4 C08365 Ricinoleic acid 

281.248 1 C08365 Ricinoleic acid 

281.247 2 

263.237 2 C04056 Bovinic acid 

281.248 0 

281.247 0 

263.237 2 C01595 Linoleic acid 

281.248 0 

281.247 0 

146.980 8 C03167 Phosphonoacetaldehyde 

345.108 2 C04079 D-Pantothenoyl-L-cysteine 

4 C10514 Phaseollin 

5 C09499 Matricin 

422.061 0 C08409 Glucoerucin 

489.282 9 C10009 Mucronine D 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), compound name 
matched in MSEA (MSEA match) 
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Table S4. (Continued) 

Input mz* dppm* KEGG ID MSEA match* 

279.232 0 C08364 Punicic acid 

0 C06427 Alpha-Linolenic acid 

0 C07289 Crepenynate 

0 C06426 Gamma-Linolenic acid 

8 C00249 Palmitic acid 

3 C14828 9,10-DHOME 

3 C14829 12,13-DHOME 

1 C14825 9,10-Epoxyoctadecenoic acid 

1 C14767 Alpha-dimorphecolic acid 

1 C14762 13S-hydroxyoctadecadienoic acid 

1 C14826 12,13-EpOME 

171.138 1 C07276 Limonene-1,2-diol 

1 C18066 Menthone lactone 

1 C18202 8-Methylnonenoate 

1 C17621 10-Hydroxygeraniol 

1 C16462 Citronellic acid 

198.103 0 C14416 3-Amino-1-methyl-5H-pyrido[4,3-b]indole 

251.041 1 C03872 L-2-Aminoethyl seryl phosphate 

251.051 0 C01691 Diflunisal 

3 C01817 DL-Homocystine 

251.070 0 C00669 Gamma-Glutamylcysteine 

7 C14285 Oxybenzone 

7 C09314 Trioxsalen 

6 C09312 Seselin 

6 C09925 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one 

6 C03582 Resveratrol 

6 C09833 Sakuranetin 

6 C09282 (R)-Oxypeucedanin 

6 C10274 3,4-Dihydro-8-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-
1H-2-benzopyran-1-one 

4 C00858 Formononetin 

4 C12125 Isoformononetin 

1 C19254 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), compound name 
matched in MSEA (MSEA match) 
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Table S4. (Continued) 

Input mz* dppm* KEGG ID MSEA match* 

85.028 0 C06144 3-Butynoate 

0 C17601 4-Hydroxy-2-butenoic acid gamma-lactone 

6 C06002 (S)-Methylmalonic acid semialdehyde 

6 C00232 Succinic acid semialdehyde 

6 C00164 Acetoacetic acid 

6 C00109 2-Ketobutyric acid 

6 C00349 2-Methyl-3-oxopropanoic acid 

784.584 2, 3 C02737 PS(16:0/16:0) 

198.091 4 C17249 7-Methylthioheptanaldoxime 

1 C06551 N-Ethyl trans-2-cis-6-nonadienamide 

113.024 4 C01546 2-Furoic acid 

5 C00815 Citramalic acid 

5 C02614 (S)-2-Methylmalate 

5 C01087 D-2-Hydroxyglutaric acid 

5 C02266 D-Xylono-1,5-lactone 

5 C03826 2-Dehydro-3-deoxy-D-xylonate 

5 C00684 2-Dehydro-3-deoxy-L-arabinonate 

5 C01114 L-Arabinono-1,4-lactone 

5 C02630 2-Hydroxyglutarate 

5 C06032 D-erythro-3-Methylmalate 

5 C02612 (R)-2-Methylmalate 

5 C03196 L-2-Hydroxyglutaric acid 

0 C00490 Itaconic acid 

0 C00433 2,5-Dioxopentanoate 

0 C02800 Gamma-delta-Dioxovaleric acid 

0 C01732 Mesaconic acid 

0 C02214 Glutaconic acid 

0 C02226 Citraconic acid 

123.079 8 C05853 2-Phenylethanol 

8 C06757 4-Methylbenzyl alcohol 

8 C07112 1-Phenylethanol 

8 C07213 2-Methylbenzyl alcohol acetate 

8 C07216 (3-Methylphenyl)methyl acetate 

8 C11348 (S)-1-Phenylethanol 

8 C13637 4-Ethylphenol 

8 C14386 3-Ethylphenol 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), compound name 
matched in MSEA (MSEA match) 
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Table S4. (Continued) 

Input mz* dppm* KEGG ID MSEA match* 

169.134 5 C01259 3-Hydroxy-N6,N6,N6-trimethyl-L-lysine 

142.123 1 C00729 Tropine 

1 C06179 Hygrine 

1 C06182 (+/-)-Pelletierine 

1 C10864 Physoperuvine 

154.123 0 C10865 psi-Pelletierine 

679.639 0 C02530 CE(16:1(9Z)) 

* input detected m/z value (Input mz), delta = theoretical m/z – detected m/z (dppm), compound name 
matched in MSEA (MSEA match) 
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