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Abstract

Models for Statistical Analyses of Infectious Disease Data

By Qian An

This dissertation aims at developing new statistical methods to monitor changes
in HIV testing behaviors and to evaluate the influenza vaccine effectiveness (VE).
The proposed approaches can help evaluate the quality of public health programs
and provide guidance for expanding future public health responses.

In the first project, we propose a two-level Bayesian hierarchical model to estimate
the HIV testing rate using annual acquired immunodeficiency syndrome (AIDS) and
HIV diagnosis data. We introduce a new class of priors for the HIV incidence rate
and testing rate taking into account the temporal dependence of these parameters
to improve the estimation accuracy. We develop an efficient posterior computation
algorithm based on the adaptive rejection metropolis sampling technique (ARMS).
The proposed approach is illustrated via simulation studies and the analysis of the
national HIV surveillance data in the United States.

In the second project, we propose a novel Bayesian model to estimate the influenza
VE using data collected from the test negative design (TND). Given that a person
is sampled into TND, the joint probability of this person’s vaccination status and
influenza infection status is modeled as a function of the influenza VE. To improve
the estimation accuracy, subjective priors are elicited from published literatures. We
resort to ARMS for efficient posterior computation. To demonstrate the superiority of
our approach, we perform simulation studies where model-based estimates of influenza
VE are compared with existing odds ratio estimates.

In the third project, we propose an improved nonhomogeneous probability model
for evaluating bias and precision of the estimates of influenza VE from traditional
case-control design (CCD) and TND. The proposed model describes the data gen-
eration process in real life composed of five steps: latent health status, vaccination,
acute respiratory illness (ARI) and influenza infection; seeking medical care for ARI
and testing for influenza infection. By including a parameter for the latent health
status, this model facilitates the evaluation of an important bias resulting from the
unobserved variable. We present and compare the numerical results of the bias and
the standard error of the VE estimates from the CCD and the TND.
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Chapter 1

Introduction

Despite the progress in the diagnosis, prevention and treatment of infectious dis-

ease over the past three decades, human immunodeficiency virus infection (HIV)

and influenza still pose significant public health challenges domestically and glob-

ally. The World Health Organization (WHO) reports that HIV has claimed more

than 25 million lives over the past three decades and there were approximately 35.3

million people living with HIV in 2012. (WHO Media Centre 2013) In the United

States, more than 1.1 million people were living with the HIV infection at the end of

2010. (CDC 2012) Similarly, seasonal and pandemic influenza could also sweep the

globe, leading to hospitalization and massive death. In the United States, influenza

is responsible for more than 226,000 hospitalizations each year. (Thompson et al.

2004) The estimates of annual influenza-related death during 1976 to 2007 ranged

from 3000 to 48000. (Thompson et al. 2010; 2003) In June 2009, WHO declared the

2009 influenza A (H1N1) pandemic and in October 2009, President Obama declared

a national emergency. (Larson and Heymann 2010)
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Maintaining and expanding public health responses to HIV and influenza require

the assessment and evaluation of public health prevention and intervention programs.

Evaluating the effectiveness of the public health programs can disseminate informa-

tion on whether the programs achieve the desired results, pinpoint the areas that need

improvement and provide guidance for expanding future public health responses. Al-

though the conceptual framework for public health program evaluation is established

and systematic, evaluating specific programs or issues frequently requires sophisti-

cated statistical models. This dissertation aims to propose novel statistical methods

for estimating the HIV testing rates to monitor changes in HIV testing behaviors

and for evaluating the effectiveness of influenza vaccine. These estimates help public

health officials to evaluate the impact of HIV testing initiatives and the effectiveness

of the influenza vaccines in the United States, and provide guidance for expanding

future HIV testing and influenza vaccine services in the United States.

The first project of this dissertation is motivated by the need to make assessment

of the HIV testing behavior changes in the United States. First reported in 1981, HIV

has become one of the greatest public health challenges both domestically and glob-

ally. Unlike most other viruses, HIV attacks a key part of the human immune system

and over time it can cause badly damaged immune system, which puts people at risk

for fatal opportunistic illness. Figure 1.1 (O’Brien and Hendrickson 2013) outlines the

natural history of the HIV disease: from the primary HIV infection, the acute HIV

syndrome, and the HIV-specific immune response through a long period of clinical

latency to clinically apparent diseases or AIDS-defining illness, and finally death from

AIDS. After HIV infection, the “acute HIV viral syndrome” with influenza-like symp-

toms develops in 40-70% of patients while the symptoms may be very mild or may
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not show up at all in other people with HIV. The initial acute infection stage usually

lasts one or two weeks and during this period of time serum testing for HIV antibody

may, or may not be positive. HIV antibody test is positive in most individuals within

one to three months after primary infection and in about 95% patients within six

months. The initial symptoms are followed by a very short period of HIV-specific im-

mune response and a prolonged period called clinical latency. The duration of clinical

latency varies widely among individuals. Without treatment, the latency stage can

last for about three years to over 20 years with a median of 10 years, during which

many people are asymptomatic and others develop different symptoms at different

times. In the absence of treatment, around half of people infected with HIV develop

significant clinically apparent diseases or AIDS-defining illness. (Moore and Chaisson

1999)

HIV testing is the cornerstone for HIV prevention. It can foster early detection

of HIV infection and is the first essential step for entry to clinical care to reduce

morbidity and mortality. In addition, persons aware of their infections and on treat-

ment are less likely to transmit the virus to others. Since HIV testing first became

available in 1985, the importance of HIV testing was soon recognized, emphasized

and promoted (Branson et al. 2006). The importance of HIV testing was recognized

as early as in 1987, just two years after the first HIV test became available, when the

United States Public Health Service (USPHS) issued guidelines making HIV counsel-

ing and testing a priority as a prevention strategy for people with high risk behaviors.

In 1993, the Centers for Disease Control and Prevention (CDC) updated the recom-

mendations regarding HIV counseling and testing for patients in acute-care hospital

settings. In 1995, the first National HIV Testing Day was observed. Throughout the

3



Figure 1.1: The natural progression of HIV infection from primary infection through Acute HIV
Syndrome to clinical latency. (O’Brien and Hendrickson 2013)
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decade of 2000, a few important recommendations were published in 2001, 2003 and

2006 (Branson et al. 2006) respectively to emphasize routine HIV testing as an impor-

tant HIV prevention tool for adults, adolescents, and pregnant women in health-care

settings. In 2010, CDC implemented the Expanded Testing Initiative to focus on

increasing HIV testing among high risk populations, such as African Americans and

Latinos as well as gay, bisexual, or other men who have sex with men and injection

drug users of all races and ethnicities. In April 2013, the U.S. Preventive Services

Task Force (USPSTF) also released HIV testing recommendations that everyone aged

15 to 65 should be screened for HIV infection; teens younger than age 15 and adults

older than 65 also should be screened if they are at increased risk for HIV infection;

and all pregnant women, including women in labor who do not know if they are in-

fected with HIV, should be screened for HIV infection. Over the years, numerous

public health recommendations and initiatives on HIV testing were established. It is

important to monitor whether there has been increased HIV testing in the past years

and to assess the impact of the public health recommendations and initiatives.

In the first project of this dissertation, we focus on estimating the HIV testing

rates in the past thirty years in the United States. We define the HIV testing rate as

the probability that an HIV infected person seeks a test and gets diagnosed with HIV,

not AIDS, which is an advanced stage of HIV infection with CD4 T-lymphocyte count

less than 200/ul or opportunistic illnesses, given no previous positive test has been

obtained. We propose a Bayesian hierarchical model with two levels of hierarchy

to estimate the HIV testing rate using annual AIDS and HIV diagnoses data. At

level one, we model the latent number of HIV infections for each year using a Poisson

distribution with the intensity parameter representing the HIV incidence rate. At level
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two, the annual number of AIDS and HIV diagnosed cases and all undiagnosed cases

stratified by the HIV infections at different years are modeled using a multinomial

distribution with parameters including the HIV testing rate. We propose a new class

of priors for the HIV incidence rate and HIV testing rate taking into account the

temporal dependence of these parameters to improve the estimation accuracy. We

develop an efficient posterior computation algorithm based on the adaptive rejection

metropolis sampling technique. We demonstrate our model using simulation studies

and the analysis of the national HIV surveillance data in United States.

The second and third projects in this dissertation are motivated by the need to

assess the effectiveness of influenza vaccine. Influenza is a highly contagious viral

infection, one of the most severe illness of the winter season. Seasonal and pandemic

influenza can pose a significant threat to human health, leading to hospitalization,

disability and death. The most effective way to prevent and control influenza and its

complications is to get an annual influenza vaccine. Safe and effective vaccines have

been available and used for more than 60 years. (Osterholm et al. 2012) Because the

types and strains of influenza virus usually vary from one season to the next, a new

vaccine targeting the strains that are expected to circulate during the next season

has to be developed and used every year.

The vaccine effectiveness measures the direct protection in a vaccinated individual

and the effect of vaccine at the population level (the so-called herd immunity) in

the post-licensure phase. (Carrillo-Santisteve et al. 2012) The influenza VE reflects

proportionate reduction in the frequency of the influenza illness in those receiving the

influenza vaccine compared to individuals who did not receive the influenza vaccine.

It is calculated by comparing attack rates in the vaccinated and unvaccinated through
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the relative risk (RR) for randomized placebo-controlled clinical trials (RCT) or is

estimated by the odds ratios (OR) in case-control studies. (De Serres et al. 2013)

Assessing the influenza vaccine effectiveness (VE) every season is very important in

that: (1) it helps to understand the relationship between antigen match or mismatch

and VE in order to improve the vaccines developed for future seasons; (2) it enables

virologists and public health scientists to evaluate the ongoing impact of vaccination

efforts in the setting of antigenic drift and periodic vaccine reformulation; (3) when

a new vaccine is introduced it is important to estimate its effectiveness as early

as possible; (4) it allows the evaluation of vaccination programs and strategies in

terms of individual and population-wide benefits to help inform public health officials

of the actual impact of the vaccination program in any given season; (5) it allows

the identification of subgroups that should be targeted in the development of future

vaccines to increase overall effectiveness; and (6) it allows public health officials to

inform healthcare providers and the general public regarding what the benefits of

influenza vaccination are in a particular season.

The first population-scale use of the influenza vaccine date back to 1945 in U.S.

military personnel. (Meiklejon 1994, Osterholm et al. 2012) In 1960, the public health

recommendation of annual influenza vaccination was made for people aged 65 years

or older and other high-risk groups, such as individuals with chronic debilitating dis-

ease and pregnant women. (Burney 1960) The Advisory Committee on Immunization

Practices (ACIP) reaffirmed this recommendation in 1964. (Long 1964) Since 2006

the ACIP has substantially expanded the target population recommended for annual

influenza vaccination in the United States, first by including young children aged 6 to

59 months, then all children aged 6 months to 18 years in 2008, and finally all individ-
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uals aged 6 months or older. (Ferdinands and Shay 2012, Fiore et al. 2010) For many

years, randomized clinical trials (RCTs) that measure laboratory-confirmed influenza

virus infection as the outcome were considered to provide the most accurate estimates

of influenza VE, although these trials had to exclude individuals for whom vaccination

is recommended. The recent universal influenza vaccination recommendation made

it unethical and impossible to conduct such trials. For this reason, estimates of in-

fluenza VE in the U.S. have increasingly relied on observational studies, particularly

case-control studies for reasons of statistical power, logistics and cost. (Ferdinands

and Shay 2012) However, case-control studies innately are subject to biases, which

can lead to errors in estimates of VE.

In the second project, we propose a novel Bayesian model to estimate the ef-

fectiveness of the influenza vaccine using data collected from the newly developed

test-negative case-control design (TND). (Orenstein et al. 2007) We model the joint

probability of each person’s vaccination status and the infection of influenza status

conditional on being sampled into the TND study. We specify subjective priors that

can be elicited from published literature. We develop an efficient posterior compu-

tation algorithm based on the ARMS technique. We demonstrate the superiority of

our model compared with the existing method on the VE estimates via simulation

studies and an analysis of real data.

In the third project, we develop an improved probability model for evaluating bias

and precision of the VE estimates from the traditional case-control design (CCD) and

the TND. The proposed model describes the data generation process in real life com-

posed of five steps: latent health status, vaccination, acute respiratory illness (ARI)

and influenza infection, seeking medical care for ARI and testing for influenza infec-
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tion. Each step is represented by conditional probability parameters. By including a

parameter for the health care seeking behavior, this model facilitates the evaluation

of an important bias resulted from the unobserved care-seeking behavior. We present

and compare the numerical results of the bias and the standard error of the vaccine

effectiveness from the traditional case-control study and the test negative case-control

study.
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Chapter 2

A Bayesian Hierarchical Model

with Novel Prior Specifications to

estimate HIV Testing Rate

2.1 Background

Human immunodeficiency virus (HIV) infection is a severe infectious disease actively

spreading globally. The diagnosis of HIV infection or HIV testing is one of the most

important tools for HIV prevention and treatment. It can foster early detection of

HIV infection and is the first essential step for entry to clinical care to reduce mor-

bidity and mortality. In addition, persons aware of their infections and on treatment

are less likely to transmit the virus to others. Since HIV testing first became avail-

able in 1985, the importance of HIV testing was soon recognized, emphasized and
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promoted (Branson et al. 2006). However, a significant proportion of individuals

infected with HIV still remain undiagnosed. As of December 2010, more than 1.1

million people were living with HIV infection in the United States and about 1 in 6

were unaware of their infections (CDC 2012). The occurrence of new HIV diagnoses

among a population infected with HIV, i.e., the HIV testing rate, is an important epi-

demiological parameter for public health. Accurately and timely estimating the HIV

testing rates is crucial for public health in that 1) it facilitates monitoring changes in

HIV testing behaviors over time; 2) it can be used to assess the effectiveness of the

public health prevention and intervention programs and provide guidance for main-

taining and expanding future public health responses; and 3) it provides additional

information on the average length of time between HIV infection and the first positive

HIV test, informing how soon an HIV infection gets diagnosed.

To be more specific, at a particular time point the HIV testing rate is defined as

the probability that an HIV infected person seeks a test and gets diagnosed with

HIV, not acquired immunodeficiency syndrome (AIDS), which is an advanced stage

of HIV infection with CD4 T-lymphocyte count less than 200/ul or opportunistic ill-

nesses, given no previous positive test has been obtained. It is challenging to obtain

an accurate estimate of the HIV testing rate in that modeling the probability of HIV

testing often involves the complex time lag from HIV infection to HIV diagnosis be-

cause the time of HIV infection is rarely observable (Becker et al. 2003, Blaxhult and

Svensson 1992). The HIV testing rate was initially introduced by Marschner (1994)

and Farewell et al. (1994) independently. In Farewell’s work, the HIV testing rate

was assumed to have two constants for the pre- and post-1984 periods, respectively.

In Marschner’s work, the HIV testing rate was characterized by a three-parameter
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Weibull distribution. Following their work, various parametric models have been pro-

posed to characterize the HIV testing process using the frequentist approach. Among

them, one work models the HIV testing process using a two-parameter exponential

distribution incorporating dependence between the time since infection and the cal-

endar time (Bellocco and Marschner 2000). Other methods include the heterogeneous

mixed exponential model, leading to a Pareto distribution with a decreasing hazard

function for the duration between HIV infection and HIV diagnosis (Wand et al.

2009; 2010, Yan et al. 2011), and the additive hazards model, which partitions the

HIV testing process to the constant routine HIV testing and the symptoms-driven

testing characterized by an exponential distribution (Becker et al. 2003, Chau et al.

2003, Cui and Becker 2000). Another framework of modeling the HIV disease and

diagnosis process is through a multi-state formulation, describing the progression

through various disease stages from infection to AIDS. Often various HIV disease

stages are characterized by laboratory markers such as the CD4 T-cell count (Aalen

et al. 1997). In recent years, Sweeting and Birrell proposed to use a Bayesian formu-

lation of a similar multi-state model for estimation of HIV incidence, in which the

natural disease progression probabilities and HIV testing probabilities collectively

define the transition probabilities from one state to another. The HIV testing proba-

bilities are estimated from external HIV diagnoses data (Birrell et al. 2013, Sweeting

et al. 2005). In addition, observed longitudinal CD4 data are used to model the date

of HIV infection using joint linear mixed models (Taffe and May 2008). However,

the inclusion of additional information in the model increases the complexity of the

model. This potentially introduces bias when the observed laboratory data are not

representative of all the new diagnoses.
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Although the HIV testing rate has been explored and modeled in various frame-

works, it does not serve as a primary parameter of interest. It is an important

parameter to the so-called back-calculation or back-projection model, which mainly

focuses on reconstructing the past pattern of HIV infections in many countries using

the annual numbers of diagnosed HIV and AIDS cases (Chau et al. 2003, Hall et al.

2008, Mallitt et al. 2012, Punyacharoensin and Viwatwongkasem 2009, Wand et al.

2010). In those models, HIV testing rates are assumed to have certain parametric

forms or to be a constant for a few years. They are not flexible and do not adequately

characterize changes over time. To the best of our knowledge, there is no existing

statistical framework to systematically model and estimate the HIV testing rates over

time. To fill this gap, in this paper, we particularly focus on the Bayesian modeling

of annal HIV testing rates over the calendar years using the annual observed numbers

of persons diagnosed with HIV, with or without AIDS at HIV diagnosis. Numerous

countries have established national HIV registries or surveillance systems to collect

the numbers of HIV and AIDS diagnoses. For example, our motivating dataset comes

from the national HIV surveillance system in the United States which started collect-

ing data on the number of persons diagnosed with AIDS since 1981 and the number

of HIV diagnoses since 1994.

In this work, we assume that the HIV testing rate is only dependent on the calendar

year and these annual probabilities can be considered as the discrete-time analogue

of the HIV testing intensity. To introduce the smoothness on the HIV testing rates

and the HIV incidence rates over years, we resort to a Bayesian shrinkage approach

by developing a new class of priors. In the past decades, the Bayesian shrinkage

methods using various priors, such as Laplace priors, have been successful in many
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applications (Bae and Mallick 2004, Figueiredo and Nowak 2003, Genkin et al. 2007,

Kyung et al. 2010, Park and Casella 2008). These methods are mainly developed

for variable selection under a regression framework. In particular, the fused lasso

priors (Kyung et al. 2010, Tibshirani et al. 2005), i.e., extended Laplace priors, are

used to impose smoothness between the model parameters. In a similar fashion, for

our problem, we develop a new class of priors that can smooth the annual HIV testing

rates and the HIV incidence rates.

Compared with existing models involving the HIV testing rate, our proposed ap-

proach has the following remarkable features: 1) our model is among the very first

to propose a structured and systematic model to estimate the HIV testing rate in

the United States; 2) unlike other back-calculation models (Hall et al. 2008), our

model does not impose the constraints that HIV testing rates remain constant within

certain years, neither does it make assumptions on the parametric form of the HIV

testing rates; 3) our model has an ability to characterize the temporal dependence

and smoothness between the annual HIV testing rates, which substantially improve

the model fitting and parameter inference accuracy; and 4) our model is widely ap-

plicable in that it only needs the annual numbers of HIV and AIDS diagnoses as data

in contrast to other approaches, such as the multi-state formulation which requires

good representative laboratory data such as the CD4 data.

This chapter is organized as follows: in Section 2.2, we present the detailed for-

mations of our Bayesian hierarchical model for estimating annual HIV testing rates,

where two new Laplace-type prior models are introduced and the corresponding prop-

erties are discussed in Section 2.2.3, and the posterior computation strategy are de-

veloped in Section 2.2.4. We demonstrate the superiority of our proposed methods
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via simulation studies in Section 2.3, and illustrate our methods via analysis of the

United States national HIV surveillance data in Section 2.4. We conclude our paper

with a discussion of future work in Section 2.5.

2.2 The Model

2.2.1 Data and Notation

First we outline the problem and the observed data. We use January 1, 1977 as the

time origin in this analysis because the earliest diagnosis dates of AIDS cases in U.S.

were in 1977. The time unit used in this analysis is calendar year.

We consider HIV infection from year 1 to year T in this paper. When an individual

becomes infected with HIV in year i, he or she could be (1) diagnosed with HIV but

not AIDS (referred to as HIV not AIDS) in year t, where i ≤ t ≤ T ; or (2) diagnosed

with AIDS in year t, where i ≤ t ≤ T ; or (3) remain undiagnosed as of the most

recent year T . In other words, one could be diagnosed with HIV, with or without

AIDS anytime after being infected with HIV, or remain undiagnosed as of the most

recent year. The number of HIV and AIDS diagnoses in a calendar year includes

persons infected with HIV any time up to and including that year. Note that there

does not exist a diagnosis test to determine when the individual became infected.

Denote by Ait the number of persons infected in year i and diagnosed with AIDS

in year t, by Hit the number of persons infected in year i and diagnosed with HIV

not AIDS in year t and by UiT as the number of persons infected in year i but remain

undiagnosed at the end of year T . Let Ni be the total number of new HIV infections
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in year i. We have

Ni =
T∑
t=i

(Ait +Hit) + UiT , (2.1)

We observe the total number of cases diagnosed with AIDS and the total number of

cases diagnosed with HIV not AIDS in year t, denoted by At and Ht respectively. We

have

At =
t∑
i=1

Ait and Ht =
t∑
i=1

Hit. (2.2)

Table 2.1 illustrates the relationship between Ni, Ait, Hit, UiT , At and Ht, where

columns characterize the number of persons diagnosed with AIDS and HIV not AIDS,

and those undiagnosed, and rows represent the number of infections at different years.

Table 2.1: Illustration of the relationship between observed data and latent quantities
in the model. The column totals represent the number of persons diagnosed with
AIDS and HIV not AIDS in each year and those undiagnosed by the end of the most
recent year. Row totals represent the number of new infections in each year. In each
cell, Ait represents the number of persons infected in year i and diagnosed with AIDS
in year t and Hit represents the number of persons infected in year i and diagnosed
with HIV not AIDS in year t. Only column totals {At}Tt=1 and {Ht}Tt=1 are observed,
and all other quantities are latent.

Year of Year of AIDS or HIV diagnosis (t) Undiagnosed
infection (i) 1 2 · · · T by T Incidence

1 A11 H11 A12 H12 · · · · · · A1T H1T U1T N1

2 A22 H22 · · · · · · A2T H2T U2T N2

· · · · · · · · · · · · · · · · · · · · ·
T ATT HTT UTT NT

Observed A1 H1 A2 H2 · · · · · · AT HT
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2.2.2 A Hierarchical Model

The primary interest of this study is to estimate the annual HIV testing rates and

re-contruct the trend in the HIV testing processes over the years. We propose a

Bayesian hierarchical model with two levels of hierarchy. To begin with the top level,

we model the latent total number of HIV infections Ni, for i = 1, . . . , T , which are

assumed to be mutually independent and follow a Poisson distribution with intensity

λi, i.e.

[Ni | λi] ∼ Poisson(λi), (2.3)

where Poisson(µ) denotes a Poisson distribution with mean µ.

At level 2, given Ni, we model the annal numbers of AIDS and HIV diagnosed cases

and all the undiagnosed cases stratified by the HIV infections at different years. Write

NAHU
i = (Aii, Ai,i+1, . . . , AiT , Hii, Hi,i+1, . . . , HiT , UiT ) for i = 1, . . . , T . It represents

a collection of the numbers of persons diagnosed with AIDS and HIV not AIDS and

undiagnosed persons, infected with HIV in year i and diagnosed in different years.

Let Multinomial(p, n) represent a multinomial distribution with event probability p

and number of trials n, for i = 1, . . . , T , then we assume

[NAHU
i | qAHUi , Ni] ∼ Multinomial(qAHUi , Ni), (2.4)

where qAHUi = (qAii , q
A
i,i+1, . . . , q

A
iT , q

H
ii , q

H
i,i+1, . . . , q

H
iT , q

U
iT ). Given that a person is in-

fected with HIV in year i, qAit and qHit represent the probability of being diagnosed

with AIDS and HIV not AIDS in year t respectively, for 1 ≤ i ≤ t ≤ T , and
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qUiT is the probability of remaining undiagnosed at the end of year T . Note that∑T
t=i(q

A
it + qHit ) + qUiT = 1 and qAit , q

H
it , q

U
iT ≥ 0,∀i.

To characterize qAHUi we introduce two types of conditional probabilities: the

annual AIDS diagnosis rate denoted by pAt−i and the annual HIV testing rate denoted

by pHt , which is the primary interest of this study. The annual AIDS diagnosis rate

pAt−i is the probability that a person infected with HIV in year i gets diagnosed with

AIDS in year t, t ≥ i given no previous positive tests have been obtained. We assume

that all persons newly diagnosed with AIDS did not receive HIV treatment before

diagnosis. The treatment-free AIDS diagnosis rate pAt−i can be generated from the

known AIDS incubation period, which has been studied and modeled by a Gamma

distribution with the shape parameter of 2 and the scale parameter of 4 (Longini et al.

1989; 1991). The AIDS incubation period is only determined by the time interval from

HIV infection to AIDS diagnosis, i.e., the value of (t − i). This means that without

treatment, the AIDS diagnosis rate pAt−i only depends on how long a person has been

infected with HIV.

The annual HIV testing rate pHt is the probability that an HIV positive person

seeks HIV test and gets diagnosed with HIV not AIDS in year t given no previous

positive tests have been obtained. For the HIV testing rate, we assume that persons

diagnosed with HIV in the same year have the same HIV testing rate, regardless of

when they became infected. That is, pHt is only dependent on the diagnosis year t

and is independent of infection time i. In the first year of HIV infection, assuming

HIV infection happens uniformly in the calendar year, HIV testing can only happen

after HIV infection and before the calendar year-end. Therefore, the probability of

being diagnosed with HIV not AIDS in the year of HIV infection is proportional to

18



the time interval from HIV infection and the calendar year-end. On average, the HIV

testing rate in the year of HIV infection is half of the annual HIV testing rate. Thus,

for 1 ≤ i ≤ t ≤ T , we can represent qHit using pAt−i and pHt which is given by

qHit =


1
2
pHi × (1− pA0 ) t = i

pHt (1− 1
2
pHi )

∏t−1
k=i+1(1− pHk )×

∏t
k=i(1− pAk−i) t ≥ i+ 1

(2.5)

where we define
∏i

k=i+1(1 − pHk ) = 1. The term 1
2
pHi represents the conditional

probability that a person gets HIV infected and tested in year i given no AIDS

diagnosis in the same year. The term (1 − pA0 ) represents the probability that a

person is not diagnosed with AIDS in the same year of HIV infection. The term

pHt (1− 1
2
pHi )

∏t−1
k=i+1(1− pHk ) represents the conditional probability that a person gets

infected with HIV in year i but is not tested until year t given no AIDS diagnosis

between year i and year t. The term
∏t

k=i(1− pAk−i) represents the probability that a

person is not diagnosed with AIDS from year i to year t. Similarly, we can represent

qAit as

qAit =

 pA0 t = i

pAt−i
∏t−1

k=i(1− pAk−i)× (1− 1
2
pHi )

∏t−1
k=i+1(1− pHk ) t ≥ i+ 1.

(2.6)

This further implies that qUiT can be written as a function of pAk−i and pHi using

qUiT = 1−
∑T

k=i(q
A
ik + qHik).

In models (2.1)–(2.6), the only observed data are A = {At}Tt=1 and H = {Ht}Tt=1

while all other quantities are latent. The estimated values of parameter pA = {pAt−i}t≥i
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can be obtained from published literature (Longini et al. 1989; 1991). Our primary

interest is in making inference on the HIV testing rates pH = {pHt }Tt=1.

Another quantity of great interest in the public health community related to the

HIV testing rates pH is the expected time-since-infection. Let ξt denote the time

from infection to HIV or AIDS diagnosis for individuals diagnosed at a particular

time t. According to the definition of qAit and qHit , we can represent the probability

mass function for ξt as

Pr(ξt = t− i | qAit , qHit ) ∝ (qAit + qHit )λi, for i = 1, . . . , t.

This implies that the expected time-since-infection, denoted ηt, can be represented in

terms of {qAHUi }ti=1 which are functions of pH , i.e.,

ηt = E(ξt | pH) =

∑t
i=1(t− i)(qAit + qHit )λi∑t

i=1(q
A
it + qHit )λi

, for t = 1, . . . , T.

This informs on average how long individuals diagnosed with HIV or AIDS in a certain

year have been infected. Since ηt is a deterministic function of pH , the posterior

inference on ηt can be obtained straightforwardly through the posterior inference on

pH , for which we introduce a class of new priors in Section 2.2.3.

2.2.3 Prior Specifications

In this section, we discuss the prior specifications for our proposed hierarchical model.

We start from the most important parameter in our analysis, i.e., the HIV testing

rates pH . It is generally believed that the HIV testing process usually does not change
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dramatically between two succeeding years. Thus, it is meaningful to assume that the

HIV testing rate in the current year is associated with the rate in the previous year. To

characterize such an association, we propose a new family of probability distributions

defined on [0, 1], based on which we construct a prior for pH taking into account

the temporal dependence between HIV testing rates over the years. Specifically, we

introduce the following definition of the new distribution.

Definition 2.2.1 (Beta-Laplace Distribution). Let µ ∈ [0, 1], a, b, c ∈ R+. For

x ∈ [0, 1], let

π(x;µ, a, b, c) =
1

L(µ, a, b, c)
xa−1(1− x)b−1 exp(−c|x− µ|), (2.7)

where L(µ, a, b, c) =
∫ 1

0
xa−1(1 − x)b−1 exp(−c|x − µ|)dx. We refer to π(x;µ, a, b, c)

as the probability density function of a beta-Laplace distribution with the location

parameter µ, the rate parameter c and two shape parameters a and b. A random

variable X following this distribution is denoted as X ∼ Beta-Laplace(µ, a, b, c).

Remark: 1) when c = 0, the beta-Laplace distribution reduces to a beta distribu-

tion with shape parameters a and b. 2) When a = b = 1, the beta-Laplace distribution

becomes a truncated Laplace distribution with location parameter µ ∈ [0, 1] and rate

parameter c. Also, the properties of the Beta-Laplace distribution are summarized in

the following proposition.

Proposition 2.2.1. Let X ∼ Beta-Laplace(µ, a, b, c). Then

1. 1−X ∼ Beta-Laplace(1− µ, b, a, c).

21



2. The nth moment of X is given by

E[Xn] =
L(µ, a+ n, b, c)

L(µ, a, b, c)
, for n = 1, 2, . . . , (2.8)

where L(µ, a, b, c) is defined in Definition 2.2.1.

3. Given a, b ∈ R+ and µ ∈ [0, 1], we have

lim
c↑+∞

E[X] = µ and lim
c↓0

E[X] =
a

a+ b
. (2.9)

See the proof in Appendix 1.1. Proposition 2.2.1(3) implies that the parameters

c and µ control how the mean of Beta-Laplace(µ, a, b, c) deviates from the mean of

Beta(a, b). It approximately equals µ when c is sufficiently large, and it gets close to

the mean of Beta(a, b) for a small c.

Now we assign the priors for the annal HIV testing rates using beta-Laplace dis-

tributions. Specifically, we have

pH1 ∼ Beta(aH , bH) and [pHt+1 | pHt ] ∼ Beta-Laplace(pHt , a
H , bH , cHt ),(2.10)

for t = 1, . . . , T − 1. This implies as a priori, the distribution of pHt+1 borrows in-

formation from pHt . According to the property of the beta-Laplace distribution, the

parameter cHt controls the difference between E(pHt+1 | pHt ) and pHt , which reflects the

average change of the HIV testing rate from year t to t+1. The larger cHt is, the closer

E(pHt+1 | pHt ) gets to pHt . It is generally believed that the variation of the HIV testing

rates over the years usually becomes smaller when the HIV testing rate reaches a

22



certain level. A reasonable choice for cHt is to assume that it is proportional to pHt ,

i.e. cHt = cHpHt , where cH > 0 is an important parameter that controls the overall

smoothness of the HIV testing rates over the years. For hyperparameters, we choose

aH = bH = 0.5. The choice of the cH can be determined via Bayes factors (Aitkin

1991, Kass and Raftery 1995). We discuss this in Section 2.2.4.

Similar to the HIV testing rates, the annual HIV incidence which is reflected by

parameters λ = {λi}Ti=1 in (2.3) is also dependent over the years. To characterize such

temporal dependence, we introduce another new family of probability distributions

to specify the priors for λ.

Definition 2.2.2 (Gamma-Laplace Distribution). Let a, b, c, µ ∈ R+. For x ∈ R+,

let

π(x;µ, a, b, c) =
1

K(µ, a, b, c)
xa−1 exp(−bx− c|x− µ|),

where K(µ, a, b, c) =
∫∞
0
xa−1 exp(−bx − c|x − µ|)dx. We refer to π(x;µ, a, b, c) as

the probability density function of a gamma-Laplace distribution with the location

parameter µ, the shape parameter a and two scale parameters b and c. A random

variable X following this distribution is denoted as X ∼ Gamma-Laplace(µ, a, b, c).

Remark: 1) when c = 0, the gamma-Laplace distribution reduces to a gamma

distribution with shape a and rate b. 2) when a = 1 and b = 0, the gamma-Laplace

distribution becomes a truncated Laplace distribution with location µ and rate c.

The properties of the gamma-Laplace distribution are summarized in the following

proposition.

Proposition 2.2.2. Let X ∼ Gamma-Laplace(µ, a, b, c). Then
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1. For τ ∈ R+, X/τ ∼ Gamma-Laplace(µ/τ, a, τb, τc).

2. The nth moment of X is given by

E[Xn] =
K(µ, a+ n, b, c)

K(µ, a, b, c)
, for n = 1, 2, . . . , (2.11)

where K(µ, a, b, c) is defined in Definition 2.2.2.

3. Given a, b, µ ∈ R+, we have

lim
c↑+∞

E[X] = µ and lim
c↓0

E[X] =
a

b
. (2.12)

The proof is straightforward and similar to proposition 2.1. Proposition (2.2.2)(3)

implies that the parameters c and µ reflect how different the mean of Gamma-Laplace(µ, a, b, c)

is from the mean of Gamma(a, b). It gets close to µ when c is sufficiently large and it

approaches to the mean of Gamma(a, b) when c is very small. Based on this property,

we assign the following priors for λ:

λ1 ∼ Gamma(aλ, bλ) and [λt+1 | λt] ∼ Gamma-Laplace(λt, a
λ, bλ, cλ), (2.13)

for t = 1, . . . , T −1. As a priori, λt+1 is assumed to follow a distribution characterized

by λt, where the difference between E[λt+1 | λt] and λt is controlled by cλ > 0. This

prior specification implies that the number of HIV infections in the current year can

be dependent on that of the previous year to a certain extent. This further assists

better posterior inference on the HIV testing rate. We demonstrate this in simulation

studies. For hyperparameters in (2.13), we choose aλ = 1, bλ = 0.00002 so that the
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mean of Gamma(a, b) is the average of the annual number of total diagnoses. Similar

to the cH , we discuss the choice of cλ in Section 2.2.4.

2.2.4 Posterior Inference

To simplify the posterior computation, we consider an equivalent model representation

by integrating out the latent quantities NAHU
i and Ni in models (2.3) and (2.4).

Since Ni follows a Poisson distribution with mean λi, it is straightforward to show

that Ait and Hit follow Poisson distributions with means qAitλi and qHit λi, respectively,

i.e.

[Ait | λi, qAit ] ∼ Poisson(qAitλi) and [Hit | λi, qHit ] ∼ Poisson(qHit λi). (2.14)

See the proof in Appendix 1.2. Note that Ait and Hit are mutually independent given

λ, qAit and qHit . Assuming the annual numbers of HIV infections are independent,

in each calendar year t, the observed total numbers of cases diagnosed with AIDS

(At =
∑t

i=1Ait) and HIV (Ht =
∑t

i=1Hit) follow Poisson distributions with means∑t
i=1 q

A
itλi and

∑t
i=1 q

H
it λi, respectively, i.e.

[At | pH ,λ] ∼ Poisson

(
t∑
i=1

qAitλi

)
and [Ht | pH ,λ] ∼ Poisson

(
t∑
i=1

qHit λi

)
, (2.15)

where both qAit and qHit are functions of pH according to models (2.6) and (2.5). The

joint posterior distribution of pH and λ given data A and H and hyperparameters
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(cH , cλ) is given by

π(pH ,λ | A,H, cH , cλ)

∝
T∏
t=1

π(At, Ht | pH ,λ)× π(pH1 )
T−1∏
t=1

π(pHt+1 | pHt , cH)× π(λ1)
T−1∏
t=1

π(λt+1 | λt, cλ).

The posterior distribution of parameters given the data is complicated and has

no closed form solution. Thus, to sample from this posterior distribution for given

cλ and cH , we resort to the adaptive rejection metropolis sampling within Gibbs

sampling (Gilks et al. 1995). Details of the full conditional distributions of pHt and

λt are provided in Appendix 1.3. For the choice of hyperparameters (cH , cλ), we

maximize the estimated Bayes factors, where the reference model is the case when

(cH , cλ) = (0, 0), on a set of pre-specified values {(cH(k), cλ(k))}Kk=1, i.e. we choose

(ĉH , ĉλ) = (cH(k̂), cλ(k̂)) with k̂ = arg max
k

[
S∑
s=1

π−1(A,H | pH(k,s),λ(k,s))

]−1
,

where {pH(k,s),λ(k,s)}Ss=1 are the simulated samples from the posterior distribution

π(pH ,λ | A,H, cH(k), cλ(k)).

2.3 Simulation Study

To demonstrate the performance of the proposed model, we conducted simulation

studies to estimate the HIV testing rates and the time-since-infection. We specify the

AIDS diagnosis rate (pA) from the hazard function of Gamma(2, 4), shown in Table

2.2. To simulate the observed numbers of HIV and AIDS diagnoses over the years (A
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and H), we specify the true values for the mean numbers of new HIV infections over

the years (λ) and the HIV testing rates (pH) (see Table 2.3). In particular, we have

two scenarios for testing rates. In Scenario 1, we consider a 34-year period with a

gradual increasing trend in the HIV testing rate. In Scenario 2, we consider a 20-year

period with an increasing trend followed by a decreasing trend in the HIV testing

rate.

Table 2.2: Values of AIDS diagnosis rate generated from the hazard function of a
Gamma distribution with shape parameter of 2 and scale parameter of 4. t is year of
AIDS diagnosis and i is year of infection.
t− i pAt−i t− i pAt−i t− i pAt−i t− i pAt−i t− i pAt−i

0 0.00934 7 0.14701 14 0.17670 21 0.18941 28 0.19648
1 0.04761 8 0.15346 15 0.17910 22 0.19066 29 0.19724
2 0.07934 9 0.15889 16 0.18126 23 0.19181 30 0.19795
3 0.10124 10 0.16351 17 0.18321 24 0.19288 31 0.19863
4 0.11727 11 0.16749 18 0.18498 25 0.19387 32 0.19926
5 0.12952 12 0.17095 19 0.18659 26 0.19480 33 0.19986
6 0.13919 13 0.17400 20 0.18806 27 0.19567 34 0.20043

Given a set of values of λ, pH and pA, the HIV infections and diagnoses data are

simulated from a process that mimics data generation and collection in real-life: a

person becomes infected with HIV in year i, and he or she gets diagnosed in a later

year t ≥ i or remains undiagnosed as of the most recent year T . At the time of

diagnosis, he or she can be diagnosed with HIV and AIDS in the same year (AIDS)

or in different years (HIV not AIDS). The diagnosis date and disease status are

determined and reported to a national surveillance registry. Annual numbers of HIV

and AIDS diagnoses are thus summarized. This process is simulated as follows:

Step 1: For each year i, i = 1, · · · , T , the number of new HIV infections, Ni is

generated through a Poisson distribution based on a mean λi.
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Table 2.3: Values for the parameters used in the simulation studies. λ is the mean
annual number of new HIV infections, pH is the annual HIV testing rate, A is the
observed annual number of AIDS diagnoses and H is the observed annual number
of HIV diagnoses. Scenario 1 is for a 34-year period with a gradual increasing trend
in pH and Scenario 2 is for a 20-year period with an increasing trend followed by a
decreasing trend in pH .

Scenario 1 Scenario 2
year λ pH A H λ pH A H
1 24 0.060 0 1 24 0.060 0 1
2 86 0.060 2 4 86 0.060 2 4
3 86 0.060 6 8 86 0.060 6 8
4 244 0.060 14 17 244 0.060 14 17
5 244 0.096 28 46 244 0.096 28 46
6 862 0.096 49 91 862 0.096 49 91
7 862 0.096 92 156 862 0.096 92 156
8 2521 0.120 161 361 2521 0.120 161 361
9 2521 0.120 285 586 2521 0.120 285 586
10 3337 0.120 439 815 3337 0.120 439 815
11 3337 0.156 618 1356 3337 0.156 618 1356
12 4675 0.156 780 1649 4675 0.156 780 1649
13 4675 0.156 965 1970 4675 0.156 965 1970
14 5305 0.156 1151 2262 5305 0.156 1151 2262
15 5305 0.156 1335 2529 5305 0.156 1335 2529
16 5305 0.156 1500 2728 5305 0.144 1500 2518
17 3429 0.156 1619 2730 3429 0.144 1640 2547
18 3429 0.156 1647 2582 3429 0.144 1687 2431
19 3429 0.180 1621 2840 3429 0.120 1678 1944
20 2000 0.180 1522 2542 2000 0.120 1674 1835
21 2000 0.180 1379 2196
22 1500 0.180 1227 1895
23 1500 0.192 1074 1739
24 2346 0.192 934 1596
25 2346 0.192 852 1576
26 2346 0.192 808 1569
27 2346 0.192 784 1568
28 2642 0.192 775 1597
29 2642 0.204 783 1750
30 2642 0.204 786 1772
31 2400 0.204 789 1763
32 2400 0.204 785 1733
33 2400 0.204 777 1711
34 2400 0.204 769 1694
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Step 2: For each case of infection in year i,

1. Simulate the time of HIV infection in the year from Uniform(0,1), assuming

an HIV infection happens uniformly throughout the year.

2. Simulate the time interval from HIV infection to AIDS diagnosis (i.e., the

AIDS incubation period) using a Gamma(2, 4) distribution.

3. Determine the year of diagnosis and categorize the case as either “HIV not

AIDS” or “AIDS” at the time of diagnosis.

(a) If the AIDS incubation period is smaller than one (i.e., AIDS diagnosis

happens in the same year of HIV infection), the case is categorized as

”AIDS” and the year of diagnosis is the year of HIV infection.

(b) If the AIDS incubation period is greater than one (i.e., AIDS is diag-

nosed in years after the year of HIV infection), determine whether the

case had an HIV test before the year of AIDS diagnosis based on the

HIV testing rates in each year before AIDS diagnosis.

• If a case has an HIV test before AIDS diagnosis, then it is catego-

rized as ”HIV not AIDS” and the year of diagnosis is the year of

HIV test;

• Else if the year of AIDS diagnosis is earlier than the most recent

year, the case is an AIDS case and the year of diagnosis is the year

of AIDS diagnosis.

• Otherwise, the case remains undiagnosed as of the most recent

year.

Step 3: After looping through each infection and each year, summarize the diagnosed
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HIV not AIDS cases (H) and AIDS cases (A) over years.

Given the simulated A and H, we set the initial values for λ as a half of the

annual observed numbers of HIV and AIDS diagnoses and set pH as random values

between 0 and 1, respectively. We choose the hyperparameters (cH , cλ) by maxi-

mizing the Bayes factors as discussed in Section 2.2.4 on a set of pre-specified val-

ues (0,0), (300,0.001), (500,0.001), (800,0.001), (300,0.002), (500,0.002), (800,0.002),

(300,0.004), (500,0.004), (800,0.004). We run the proposed posterior simulation al-

gorithm 2,000 iterations with 200 burn-in for each set of (cH , cλ) in both scenarios.

We check the convergence of the simulated Markov chains using the Gelman and Ru-

bin diagnostic (Gelman and Rubin 1992) by running five additional Markov chains

with different initial values. The potential scale reduction factors (PSRF) of the log-

likelihood for scenarios 1 and 2 are respectively 0.99 and 1.06, which are both close

to 1, indicating the convergence of the posterior simulations.

The selected values of (cH , cλ) are (300, 0.002) for scenarios 1 and 2. The posterior

mean and 95% credible interval of pHt and ηt are shown in Figure 2.1. For scenarios

1 and 2, the estimated posterior means of pHt and ηt, for t = 1, . . . , T , are quite

close to the true values of the HIV testing rates and the time-since-infection and the

associated 95% credible intervals cover the true values for all years. The results show

that our model can provide accurate estimates under different trends and different

periods of time. In Table 2.4, for both scenarios, we compare the model fitting results

for different choices of hyperparameters (cH , cλ). For both pHt and ηt, Table 2.4

summarizes the average mean square error (AMSE) over years, the average length

of 95% credible intervals (ACI) over years and the estimated Bayes factors (BF).

A special case (shown in Figure 2.1) is when (cH , cλ) = (0, 0), corresponding to a
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regular choice of independent beta priors for pHt and independent gamma priors for

λt, compared to which our method has a better model fitting (larger BF) and provide

more accurate estimates and inference on the HIV testing rate and the time-since-

infection (smaller AMSE and ACI).

Table 2.4: Simulation model fitting results for different choices of hyperparameters
(cH , cλ). log(BF) is the estimated log Bayes factor. AMSE is the average mean square
error, ACI is the average length of 95% credible intervals.

Scenario 1 Scenario 2
pH η pH η

(cH , cλ) log(BF) AMSE ACI AMSE ACI log(BF) AMSE ACI AMSE ACI
(0,0) 0 5.7e-05 0.038 0.008 0.36 0 4.4e-05 0.039 0.008 0.37

(300,0.001) 10.2 2.2e-05 0.029 0.005 0.31 6.5 3.3e-05 0.030 0.006 0.32
(500,0.001) 8.7 3.6e-05 0.024 0.005 0.32 7.5 4.4e-05 0.030 0.006 0.35
(800,0.001) 12.2 3.4e-05 0.023 0.004 0.28 7.9 4.8e-05 0.027 0.004 0.33
(300,0.002) 13.8 2.5e-05 0.025 0.003 0.28 8.5 3.3e-05 0.031 0.007 0.33
(500,0.002) 11.9 2.3e-05 0.024 0.003 0.29 5.8 3.2e-05 0.029 0.008 0.32
(800,0.002) 10.8 4.0e-05 0.022 0.004 0.27 4.8 5.3e-05 0.027 0.006 0.34
(300,0.004) 4.1 2.4e-05 0.026 0.004 0.28 6.9 3.6e-05 0.030 0.006 0.31
(500,0.004) 11.1 3.1e-05 0.025 0.004 0.28 5.2 4.0e-05 0.028 0.005 0.31
(800,0.004) 13.6 2.6e-05 0.023 0.004 0.27 -3.9 4.3e-05 0.027 0.006 0.29

2.4 Application

In this section, we apply the proposed Bayesian hierarchical model to the data from

national HIV surveillance in the United States.

2.4.1 Analysis of the United States HIV surveillance data

Since 1982, all 50 states and the District of Columbia have reported AIDS cases to

the Centers for Disease Control and Prevention (CDC) using a standardized case re-

port form. In 1994, the CDC implemented data management for national reporting

of HIV integrated with AIDS case reporting, at which time 25 states with confiden-
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tial name-based HIV surveillance started submitting case reports to the CDC. Over

time, additional states implemented name-based HIV surveillance, and all states had

implemented such surveillance in 2008.

In this study, we use HIV and AIDS data reported to the CDC through June 2012.

The data are adjusted for incomplete reporting, reporting delay and misclassification

of the diagnosis dates (Green 1998, Song et al. 2005). We estimate the annual numbers

of HIV and AIDS diagnosed cases each year from 1977 (the beginning of the HIV

epidemic) to 2010.

The initial values for HIV testing rates are randomly assigned to be values between

0 and 1. The annual numbers of new HIV infections are initially assigned a half of

the observed number of HIV and AIDS diagnoses. We choose the hyperparameters

(cH , cλ) as (500, 0.0005), which has the maximal value (3.1) of the Bayes factor on

the log scale among a set of pre-specified values (0, 0), (300, 0.0001), (300, 0.0003),

(300, 0.0005), (300, 0.0008), (400, 0.0005), (500, 0.0001), (500, 0.0003), (500, 0.0004),

(500, 0.0005), (500, 0.0006), (500,0.0008), (600, 0.0005), (800,0.0001), (800,0.0003),

(800,0.0005), (800,0.0008). We run the posterior simulation algorithm 2,000 iterations

with 200 burn-in. The PSRF of the loglikelihood is 1.04 from running five additional

chains, indicating the convergence of the posterior simulations.

Figure 2.2 presents the posterior means and 95% credible intervals for the HIV

testing rate and the expected time-since-infection (in years) from 1985 when the

first HIV test became available in the United States, to 2010. In the first few years

after HIV test became available, HIV testing was widely adopted and it continued

to increase until 1990. The testing rate went down in early 1990s. This is likely

caused by the change in the CDC AIDS definition during that time resulting in
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a high proportion of simultaneous AIDS diagnoses, which could indicate low HIV

testing rate. Another possible reason could be a sudden increase in the number

of new HIV infections in early 1990s resulting in a high number of undiagnosed

HIV infections and consequently low HIV testing rate. After that, the HIV testing

rate gradually increased and sustained the increasing trend ever since. In the most

recent years since 2007, the annual HIV testing rate has been stable around 0.22.

As for the expected time interval (in years) since HIV infection to HIV diagnosis

among individuals diagnosed in a specific calendar year, there was an increasing trend

followed by a decreasing trend. The expected time-since-infection was short among

those diagnosed in the early years of the epidemic, which is likely because (1) the

early infections were mainly concentrated among men who have sex with men and

the targeted HIV testing among this population could result in shorter time interval

from infection to diagnoses; and (2) without proper treatment, cases diagnosed in the

early years could be fast progressors and the estimated expected time-since-infection

might be limited by the short history of the disease. As time went by, with the

HIV epidemic spread to a more general population and the treatment improving, the

expected time-since-infection gradually increased and reached the peak of 4.2 years

among cases diagnosed in 1997. Since 1997, because of the increased HIV testing rate,

the estimated expected time-since-infection decreased and was 3.3 years in 2010.

The estimated HIV testing rates and expected time-since-infection reflect the im-

pact of important public health initiatives and recommendations on HIV testing. As

shown in the results, the HIV testing rate increased when the first HIV test became

available in 1985. In 1987, the United States Public Health Service (USPHS) issued

guidelines making HIV counseling and testing a priority as a prevention strategy for
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people with high risk behaviors. (CDC et al. 1987) As a result, the HIV testing rate

increased in the late 1980s. Though HIV testing went down during 1991 to 1993,

the HIV testing rate started increasing since 1993 when CDC updated the recom-

mendations regarding HIV counseling and testing of patients in acute-care hospital

settings. (Ward et al. 1993) In 1995, when National HIV Testing Day was observed,

the HIV testing rate sustained the upward trend until 2000. Throughout the first

decade of 2000, a few important recommendations were published in 2001 (Allen

et al. 1999), 2003 (Janssen et al. 2003) and 2006 (Branson et al. 2006) respectively to

emphasize routine HIV testing as an important HIV prevention tool. The HIV test-

ing rate increased after each recommendation and it maintained an increasing trend

since 2001. As a result of the increased HIV testing, the expected time-since-infection

decreased for cases diagnosed since 2001. These results indicate that public health

recommendations on HIV testing have a consistently positive impact on people’s HIV

testing awareness and testing behavior.

2.4.2 Model Assessment

We conduct a posterior predictive model assessment using the χ2 discrepancy, which

is a summary statistic for the sum of squares of standardized residuals of the data

with respect to their expectations under the model (Gelman et al. 1996). For our

model, the χ2 discrepancy is defined as:

χ2(H; pH ,λ) =
34∑
t=1

(Ht − E(Ht|pH ,λ))2

Var(Ht|pH ,λ)
.
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Figure 2.2: Estimated posterior mean and 95% credible intervals for the annual HIV testing rates
and expected time-since-infection from 1985 to 2010 in United States

We calculate the posterior predictive p-value based on χ2 as p = P (χ2(Hrep; pH ,λ) ≥

χ2(H ; pH ,λ)), where Hrep represents the predictive replication and H represents the

observed data. The p-value of the predictive versus realized χ2 discrepancies is 0.48.

This implies that the model fits the data pretty well.

2.5 Discussion

In this paper, we develop a Bayesian hierarchical model to estimate the intensities

of HIV testing from 1977 to 2010 using annual numbers of HIV and AIDS diagnosed

cases collected through national HIV surveillance in the United States. Our model

takes the most general form and makes no parametric assumptions for HIV testing

rates. We assume that the HIV testing rate is only dependent on the calendar year and
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Figure 2.3: Scatterplot of predictive versus realized χ2 discrepancies under the joint posterior
distribution; the p-value is estimated by the proportion of points above the 45 degree line.

these annual probabilities can be considered the discrete-time analogue of the HIV

testing intensity. We propose beta-Laplace and gamma-Laplace priors to characterize

the temporal dependence for annual HIV testing rates and annual HIV incidence rates

respectively, which greatly improve the estimation accuracy and the model fitting.

The simulation studies show that our model can make much more accurate inference

on HIV testing rates and the time-since-infections of different trends for either long

or short periods of time compared to a regular choice of priors.

The proposed beta-Laplace and gamma-Laplace priors are general and can have

different applications. For example, in spatial statistics, these two prior distributions

can impose the smoothness over the spatial parameters, which are alternatives to

the use of Gaussian random fields requiring the normality assumption which are not

valid in certain cases. In the spatial modeling of disease mapping, the disease infection

probabilities over space can be assigned with beta-Laplace priors and the intensity of

the disease clusters can be modeled by gamma-Laplace priors. Also, in the analysis
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of functional neuro-imaging data, the voxel-wise probabilities of activation can be

modeled with beta-Laplace priors and the gamma-Laplace model should be a good

choice for the intensity of peak activation locations.

There are several possible future directions that extend our current work. One ex-

tension is to include covariates such as sex, race/ethnicity, or transmission category

in the model, which can adjust for the confounding factors that might affect the HIV

testing rates. Also, in contrast to the current modeling of the whole population in

the United States, this extension can provide stratified estimates for sub-populations,

e.g., HIV testing rates for demographic groups or different regions in the country,

which are of particular interest for public health officials and program evaluation.

Another direction is that we can develop alternative strategies to choose the hyper-

parameters (cH , cλ) which are strongly related to the performance of model fitting

and parameter estimations. A fully Bayesian approach can be considered by jointly

updating (cH , cλ) in the posterior simulation and using the Bayesian model averaging

to make the inference. The key steps are to choose appropriate priors for (cH , cλ) and

to develop an efficient posterior sampling strategy which is worthy of investigation in

that this approach would take into account more sources of variation in the model

and potentially produce better posterior inference on the model parameters.
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Chapter 3

A Bayesian Model to Estimate the

Influenza Vaccine Effectiveness

from a Test Negative Design

3.1 Background

A highly contagious viral infection, influenza can pose a significant threat to human

health and a great cost to the economy. In the United States, influenza is responsible

for more than 226,000 hospitalizations each year. (Thompson et al. 2004) During

1976 to 2007, the estimates of annual influenza-related death ranged from 3000 to

48000. (Thompson et al. 2010; 2003) It was estimated that the annual influenza

epidemics could lead to a $87.1 billion economic burden in the U.S. (Molinari et al.

2007). Annual influenza vaccination is the most effective way to prevent influenza
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and its complications. Because the types and strains of influenza virus usually vary

from one season to the next, a new vaccine targeting the strains that are expected to

circulate during the next season has to be developed and used every year.

Accurate and precise assessment of the influenza vaccine effectiveness (VE) is im-

portant for (1) understanding the relationship between antigen match or mismatch

and VE to improve the vaccines developed for future seasons; (2) assessing the ongo-

ing impact of vaccination efforts in the setting of antigenic drift and periodic vaccine

reformulation; (3) evaluating of vaccination programs and strategies in terms of in-

dividual and population-wide benefits; (4) identifying risk factors for vaccine failure

to assist in determining strategies to improve effectiveness; and (5) identifying sub-

groups that should be targeted in future vaccination campaigns to increase overall

effectiveness.

The test negative design (TND) is a type of observational study that was recently

developed by scientists in the British Columbia Centre for Disease Control (BCCDC)

as a convenient approach to assessing the influenza vaccine effectiveness (VE) using

the available sentinel physician network. (Skowronski et al. 2005; 2007) Since 2007,

the TND has been popularly used to estimate the influenza VE by investigators in

Europe (Hardelid et al. 2011, Kissling et al. 2009, Valenciano et al. 2011), the United

States (Belongia et al. 2009, Treanor et al. 2012) and Australia (Fielding et al. 2011,

Kelly et al. 2009). This design is popular because of its ease to implement and its

advantage to reduce the risk of a particular type of confounding due to underlying

differences in health and health care-seeking behavior between persons who choose

to receive influenza vaccine and persons who do not (Jackson et al. 2006a;b). In the

TND, patients seeking health care for an acute respiratory illness (ARI) are recruited
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into the study and tested for influenza using a highly sensitive and specific laboratory

test, usually a polymerase chain reaction (PCR) assay. Those tested positive are cases

and those tested negative are controls. Patients’ vaccination status can be ascertained

through patient’s report or medical record review. Therefore, the observed data from

a TND study can be summarized by four numbers: N11, the number of persons

who are influenza-negative and vaccinated; N21, the number of persons influenza-

positive and vaccinated; N10, the number of persons who are influenza-negative and

not vaccinated; and N20, the number of persons influenza-positive and not vaccinated.

The TND is different from the traditional case-control design (CCD) in three

ways: (1) persons are sampled into the CCD based on their case status (i.e. cases

vs. controls), however, persons are sampled into the TND before their case status is

known; (2) the marginal ratio of cases to controls is often known and specified in the

CCD but not in the TND; and (3) the TND only includes persons with ARI who seek

medical care, while the CCD includes both persons with and without ARI. Influenza

VE is estimated the same way in the TND and the CCD by 1 minus the ratio of the

odds of vaccination in cases to that in controls, i.e. 1− N10N21

N11N20
.

The first application of the TND as a pilot study for assessing the 2004/2005

season influenza VE in Canada was reported in 2005 (Skowronski et al. 2005) and

subsequently in 2007 for the 2005/2006 season influenza VE (Skowronski et al. 2007).

Since then, the TND has been used in Canada to evaluate the influenza VE within the

existing surveillance structures annually. (Janjua et al. 2012, Skowronski et al. 2013;

2010; 2009; 2011; 2012) Since 2007, researchers began theoretical work to examine the

validity, accuracy, and assumptions of the TND for estimating influenza VE. Among

them, one work examined the impact of the sensitivity and specificity of diagnostic
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tests on VE and found that test specificity is the most critical factor influencing the

VE estimate in the TND. (Orenstein et al. 2007). Another study verified a core

assumption of the TND that the vaccine has no effect on other respiratory viruses

that may cause influenza-like-illness and compared the VE estimates from TND to

randomized placebo-controlled clinical trials. (De Serres et al. 2013) Findings showed

that as long as the core assumption is met, VE estimates from TND have comparable

accuracy and precision to those from randomized clinical trial analysis of the same

data sets, however, assessment for bias and confounding is still needed when used

in observational studies. Following this result, two studies assessed the bias and

confounding for TND used in observational studies. (Foppa et al. 2013, Jackson and

Nelson 2013) Jackson found that compared to traditional CCD and cohort study, TND

is less susceptible to bias due to misclassification of infection and to confounding by

health care-seeking behavior. Foppa found that VE estimates from TND are valid

and unbiased under a wide range of assumptions. However, if vaccinated cases are

less severely ill and seek care less frequently than unvaccinated cases, then adjustment

for illness severity or general health status is required to avoid bias in VE estimates.

Although researches have shown that estimates of the influenza VE from the TND

are generally valid and less susceptible to bias due to misclassification of infection

status and health care seeking behavior, all the studies treat the TND the same as the

CCD and estimate the influenza VE from TND using the odds ratio (OR) estimate.

However, a TND study is not a strict case-control study and to our knowledge, there

does not exist a study that assesses whether the OR estimate is appropriate and

the amount of bias of the OR estimate under the TND framework. To fill this gap,

in this work we propose to estimate the influenza VE from the TND using a novel
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Bayesian model. We model the probability of each person’s status determined jointly

by vaccination status and the influenza infection status conditional on being sampled

into the TND. We take the most basic approach to estimate the influenza VE from

the TND. We compare the model-based estimate to OR estimate and assess whether

both estimates are accurate and precise.

3.2 The model

Consider a study population from which a TND will be conducted during an influenza

season. Some persons in the study population develop ARI symptoms and seek

medical care, while others either develop ARI symptoms but do not seek medical

care or simply do not develop ARI symptoms. Note that ARI symptoms may be due

to infection with the influenza virus or with another pathogen. For persons with ARI

symptoms seeking medical care, assume they are tested for influenza using PCR test

which is assumed to be 100% sensitive and specific.

Denote by V a person’s vaccination status, where V = 1 for vaccination and V = 0

for un-vaccination. We define

α = P (V = 1).

Denote by E a variable that contains the information about a person’s ARI symp-

toms and influenza infection status, where E = 0 for persons not developing ARI

symptoms, E = 1 for symptomatic persons who are influenza-negative and E = 2 for

symptomatic persons who are influenza-positive. We assume that whether a person

develops ARI symptoms and his infection status depend on his vaccination status.
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We define

βev = P (E = e|V = v), where e = 0, 1, 2 and v = 1, 0

and
2∑
e=0

βev = 1.

Denote by M a variable indicating whether a person seek medical care for ARI,

where M = 1 representing a person seeking medical care and M = 0 for persons

not seeking medical care. We assume that a person’s medical care seeking behavior

depends on his ARI/influenza infection status and his vaccination status. We define

δev = P (M = 1|E = e, V = v), where e = 1, 2 and v = 1, 0.

Normally, a person with no ARI symptoms won’t seek medical care for ARI, therefore

we define δ0v = P (M = 1|E = 0) = 0.

Consider a study population of size N , from which a TND study will be conducted.

Only persons who develop ARI symptoms and seek medical care (i.e. M = 1) will

be enrolled in a TND study. The probability that a person with ARI symptoms and

seeking medical care is:

P (M = 1) =
∑
v,e

P (M = 1|V = v, E = e)P (E = e|V = v)P (V = v)

where e = 1, 2 and v = 0, 1.

Each subject enrolled in the TND study will fall into one of the four categories

determined by his/her infection status and vaccination status, i.e. the values of E

and V . Let Ei be subject i’s ARI and influenza infection status, Vi be his vaccination
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status and Mi be his medical care seeking status. For subject i in the TND, we have

P (Ei = e, Vi = v|Mi = 1) = P (Ei = e|Vi = v,Mi = 1)P (Vi = v|Mi = 1)

=
αδevβev

α(δ11β11 + δ21β21) + (1− α)(δ10β10 + δ20β20)

where i = 1, · · · , N , e = 1, 2 and v = 0, 1. The above probabilities can be calculated

using the law of total probability and conditional probability. All the details can be

found in the Appendix 2.1.

The likelihood function for the observed data N = (N10, N11, N20, N21) is:

π(N11, N21, N20, N10|βev, α, δev)

=
N∏
i=1

P (Ei = e, Vi = v|Mi = 1)

=
αN11+N21(1− α)N10+N20(δ11β11)

N11(δ21β21)
N21(δ10β10)

N10(δ20β20)
N20

[α(δ11β11 + δ21β21) + (1− α)(δ10β10 + δ20β20)]N

3.2.1 Model representation

The primary interest of this study is the influenza VE against symptomatic influenza.

Based on a model we developed in a previous paper (Haber et al. 2014), the true VE

against the symptomatic influenza from a TND study is 1 − β21
β20

. We define a few

probability ratios from the base parameters: ρβ1 = β11
β10

is the vaccine-related ratio

in the probability of non-influenza ARI; ρβ2 = β21
β20

is the vaccine-related ratio in the

probability of influenza ARI; ρδ1 = δ11
δ10

is the vaccine-related ratio in the probability
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of seeking medical care for non-influenza ARI; ρδ2 = δ21
δ20

is the vaccine-related ratio

in the probability of seeking medical care for influenza ARI; θδ = ρδ2
ρδ1

measures the

inequality in ρδ resulted from the type of infection leading to ARI. With the definition

of the probability ratios, the influenza VE = 1−ρβ2, making ρβ2 the primary interest

of this study. A list of all the model parameters and the range of their values are

provided in the Table 3.1.

With the newly defined ratios, the likelihood of observed data can be represented

as:

αN11+N21(1− α)N10+N20(ρδ1δ10ρβ1β10)
N11(δ20θδρδ1ρβ2β20)

N21(δ10β10)
N10(δ20β20)

N20

[α(ρδ1δ10ρβ1β10 + δ20θδρδ1ρβ2β20) + (1− α)(δ10β10 + δ20β20)]N

3.2.2 Prior specifications

In this section, we discuss the prior specifications for the proposed model.

According to the most recent publication (CDC 2013), influenza vaccine coverage in

the US in the 2011-12 season ranged between 30% to 70%. We assigned the proportion

of influenza vaccine coverage α as 0.6 for this study. The influenza vaccine coverage

will be treated as a constant in this study as it does not affect the influenza VE

estimates.

Priors for other parameters were determined based on knowledge from published

literature. To determine the potential ranges of these parameters, we used data from

randomized clinical trials (RCT) from a recent review paper (Osterholm et al. 2012)

and other sources. We found five publications (Beran et al. 2009, Edwards et al.

1994, Frey et al. 2010, Jackson et al. 2010, Madhi et al. 2011) where the numbers of
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vaccinated and unvaccinated RCT participants who developed ARI with and without

influenza infection could be determined. In all these RCTs, culture or RT-PCR was

used to confirm influenza infection. Because some of the publications included RCT

data from more than one season or RCTs with more than one active vaccine, we

identified 14 comparisons of an active influenza vaccine and a placebo in a specific

influenza season from the five publications.(Haber et al. 2014) For each of the compar-

isons, we obtained estimates of β1v and β2v (V = 0, 1) from the numbers of influenza

and non-influenza cases of ARI stratified by vaccination status. A list of these com-

parisons and the corresponding estimates for β1v and β2v is given in Table 3.2. Based

on the results, we assigned β10 and β20 both uniform priors with the ranges slightly

larger than the minimum and maximum values regardless of vaccination status from

the 14 comparisons.

The influenza VE varies by demographic groups. But it’s generally believed that

the mean influenza VE is around 0.6, with a range between 0.3 and 0.8 and skewed

to the left. We therefore assigned a lognormal prior distribution for ρβ2. We defined

y = log ρβ2 and selected -0.96 as the mean and 0.32 as the standard deviation for y

respectively so that the mean of ρβ2 is 0.4 and the 95% CI is (0.2, 0.7). This makes

the VE has a mean of 0.6 and the 95% CI of (0.3, 0.8).

The probability of seeking medical care for ARI in the US has been estimated to

be between 0.2 and 0.5 (Ferdinands and Shay 2012). We therefore assigned a uniform

prior with ranges (0, 0.5) for both δ10 and δ20.

For the other three parameters, ρβ1, ρδ1 and θδ, they could range from 0.25 to

4, with a mean around 1. We therefore assigned a lognormal prior distribution for

each of them. We defined x = log ρβ1 , zδ1 = log ρδ1 and zδ = log θδ. We selected the
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Table 3.2: Estimates of β1v and β2v from the 14 comparisons identified through 5
publications

Total ARI influenza infection

Comparison Group N N N β̂1v β̂2v
1 Vaccine 872 89 6 0.0952 0.0069

Placebo 878 92 28 0.0729 0.0319
2 Vaccine 878 75 6 0.0786 0.0068

Placebo 878 92 28 0.0729 0.0319
3 Vaccine 1029 103 12 0.0884 0.0117

Placebo 1064 125 29 0.0902 0.0273
4 Vaccine 1060 122 9 0.1066 0.0085

Placebo 1064 125 29 0.0902 0.0273
5 Vaccine 1114 95 3 0.0826 0.0027

Placebo 1125 119 32 0.0773 0.0284
6 Vaccine 1126 89 8 0.0719 0.0071

Placebo 1125 119 32 0.0773 0.0284
7 Vaccine 999 78 8 0.0701 0.0080

Placebo 1016 93 18 0.0738 0.0177
8 Vaccine 1016 75 4 0.0699 0.0039

Placebo 1016 93 18 0.0738 0.0177
9 Vaccine 4011 254 28 0.0563 0.0070

Placebo 2003 120 18 0.0509 0.0090
10 Vaccine 3776 189 42 0.0389 0.0111

Placebo 3843 353 140 0.0554 0.0364
11 Vaccine 3638 243 49 0.0533 0.0135

Placebo 3843 353 140 0.0554 0.0364
12 Vaccine 1703 181 19 0.0951 0.0112

Placebo 1725 233 38 0.1130 0.0220
13 Vaccine 2011 181 11 0.0845 0.0055

Placebo 2043 194 22 0.0842 0.0108
14 Vaccine 255 51 3 0.1882 0.0118

Placebo 251 57 12 0.1793 0.0478
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mean and standard deviation to be 0 and 0.7 respectively so that the mean of the

probability ratio is about 1.28 and the 95% CI is (0.25, 3.94).

The above priors are summarized as below:

β10 ∼ Uniform{0, 0.2}

β20 ∼ Uniform{0, 0.1}

x ∼ Normal{0, 0.72}

y ∼ Normal{−0.96, 0.322}

δ10 ∼ Uniform{0, 0.5}

δ20 ∼ Uniform{0, 0.5}

zδ1 ∼ Normal{0, 0.72}

zδ ∼ Normal{0, 0.72}

3.2.3 Posterior Inference

The posterior distribution of parameters given the data is complicated and has no

closed form solution. Thus, to sample from the posterior distribution for given param-

eters, we resort to the adaptive rejection metropolis sampling within Gibbs sampling

(Gilks et al. 1995). Details of the full conditional posterior distributions of β10, β20,

x, y, δ10, δ20, zδ1 and zδ are provided in Appendix 2.2. The model-based estimate is

the posterior mean.
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3.3 Simulation Study

To demonstrate the performance of the proposed model, we conducted simulation

studies to estimate ρβ2 for a few different scenarios. Based on previous studies (De Ser-

res et al. 2013, Haber et al. 2014), three factors can affect the bias of the influenza

VE from TND study: sample size, vaccine-related ratios in the probability of non-

influenza ARI, ρβ1 and the ratio in vaccine-related probability ratio of seeking medical

care for ARI, θδ. We considered two different sample sizes (large versus small), two

different values for ρβ1 (equal to 1 versus unequal to 1, we chose 1.012 as the value

close to 1 and 0.709 as the value not close to 1), and two different values for θδ (1

versus 1.5). The values of ρβ1 and θδ equal to 1 make the VE estimates unbiased.

Therefore, there were 8 scenarios in total. The true values of the parameters for each

scenario are shown in Table 3.3.

Table 3.3: True values for each parameter and each scenario used in the simulation
studies
Scenario Sample ρβ1 θδ β10 β20 β11 β21 δ10 δ11 δ20 δ21

1 large 1.012 1 0.084 0.011 0.085 0.005 0.2 0.3 0.4 0.6
2 large 1.012 1.5 0.084 0.011 0.085 0.005 0.2 0.3 0.4 0.9
3 large 0.709 1 0.055 0.036 0.039 0.011 0.2 0.3 0.4 0.6
4 large 0.709 1.5 0.055 0.036 0.039 0.011 0.2 0.3 0.4 0.9
5 small 1.012 1 0.084 0.011 0.085 0.005 0.2 0.3 0.4 0.6
6 small 1.012 1.5 0.084 0.011 0.085 0.005 0.2 0.3 0.4 0.9
7 small 0.709 1 0.055 0.036 0.039 0.011 0.2 0.3 0.4 0.6
8 small 0.709 1.5 0.055 0.036 0.039 0.011 0.2 0.3 0.4 0.9

Assume a study population from which a TND will be conducted have a population

size of N . The probability that a person will be enrolled into a TND study is the

probability that a person seeking medical care, i.e. P (M = 1). Given the values of

the parameters, we first simulated the number of persons enrolled in a TND study
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based on a binomial distribution with sample size N and the probability P (M =

1) = α(δ11β11 + δ21β21) + (1 − α)(δ10β10 + δ20β20). The selected parameters making

P (M = 1) around 0.03, we considered the population size of N = 50000 and N=10000

respectively, corresponding to the large sample size of about 1500 persons and the

small sample size of about 300 persons in the TND study.

For each person enrolled in the TND study, he or she is assigned to one of the four

categories determined by the vaccination status (V , Yes/1 or No/0) and influenza

infection status (E, uninfected/1 or infected/2) based on a multinomial distribution

with sample size one and probabilities (p11, p10, p21, p20). The probabilities of being

in each category are calculated as following:

p11 =
αβ11δ11

α(β11δ11 + δ21β21) + (1− α)(δ10β10 + δ20β20)

p10 =
(1− α)β10δ10

α(β11δ11 + δ21β21) + (1− α)(δ10β10 + δ20β20)

p21 =
αβ21δ21

α(β11δ11 + δ21β21) + (1− α)(δ10β10 + δ20β20)

p20 =
(1− α)β20δ20

α(β11δ11 + δ21β21) + (1− α)(δ10β10 + δ20β20)

We summarized the simulated numbers of persons in each of the four categories

N = (N11, N10, N21, N20).

For each scenario, we simulated 500 N . For each simulated N , we set the initial

values for β10, β20, δ10 and δ20 random values in their corresponding value ranges

and the initial values for x, y, zδ1 and zδ random values between -1 and 1. We

run the proposed posterior simulation algorithm 5000 iterations with 1000 burn-in.
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We calculated the odds ratio (OR) estimate for ρβ2 = N10N21

N11N20
and the model-based

estimate for ρβ2 as the posterior mean. We calculated the average bias and the mean

square error (MSE) across the 500 OR and model-based estimates. The average bias

was calculated as 1
500

∑500
i=1(ρ̂

(i)
β2−ρ

(i)
β2). The MSE was the calculated as 1

500

∑500
i=1(ρ̂

(i)
β2−

ρ
(i)
β2)

2.

Table 3.4: Simulation model fitting results for each scenario: model-based estimates
versus OR estimates. MSE is the mean square error.

True OR Model-based
Scenario Sample ρβ1 θδ ρβ2 Bias MSE Bias MSE

1 large 1.012 1 0.455 0.002 0.006 -0.022 0.001
2 large 1.012 1.5 0.455 0.230 0.068 0.006 0.001
3 large 0.709 1 0.305 0.124 0.018 0.113 0.013
4 large 0.709 1.5 0.305 0.346 0.126 0.131 0.018
5 small 1.012 1 0.455 0.050 0.075 -0.025 0.001
6 small 1.012 1.5 0.455 0.294 0.211 0.002 0.001
7 small 0.709 1 0.305 0.133 0.034 0.114 0.013
8 small 0.709 1.5 0.305 0.360 0.165 0.139 0.020

Table 3.4 presents the average bias and the MSE for the OR and model-based

estimates for ρβ2 (true VE = 1− ρβ2) for all the scenarios. The results show that in

all 8 scenarios, the model-based estimates have smaller average bias and MSE than

the OR estimates, implying that the model-based estimates are more accurate and

reliable than the OR estimates. Comparison of the estimates for ρβ1 equal to 1 versus

unequal to 1 show that both estimators have larger average bias and MSE when ρβ1

is unequal to 1, confirming that ρβ1 = 1, that is equal probability of non-influenza

ARI among vaccinees and nonvaccinees is the core assumption for TND. Sample size

and θδ seemed to have different impact on the two estimators. For OR estimates,

both the average bias and the MSE are bigger for small sample size as compared to

big sample size and are bigger when θδ = 1.5 as compared to 1. However, neither of
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them seem to affect the model-based estimates.

In addition to the estimates for the parameter of primary interest, the proposed

model also provides estimates for all other parameters. Table 3.5 presents the absolute

relative bias for model-based estimates for all the parameters of each scenario. The

results show that the relative bias are pretty large for some parameters and this is

likely due to the small scales of the parameters’ true values.

Table 3.5: Simulation model fitting results: absolute relative bias for estimates of all
parameters for each scenario

Scenario
Parameter 1 2 3 4 5 6 7 8

β10 0.616 0.614 0.245 0.226 0.638 0.635 0.396 0.183
β20 1.466 1.513 0.738 0.667 1.791 1.899 0.791 0.553
β11 1.380 1.235 1.429 1.136 1.449 1.316 1.595 1.006
β21 1.333 1.527 1.401 1.412 1.579 1.843 1.459 1.247
δ10 0.472 0.481 0.237 0.185 0.561 0.527 0.895 0.806
δ20 0.015 0.009 0.475 0.430 0.051 0.029 0.928 0.867
δ11 0.138 0.492 0.522 0.355 0.177 0.442 0.918 0.816
δ21 0.927 0.858 0.212 0.225 0.957 0.839 0.110 0.070

The simulation studies show that the model-based estimates are more accurate and

reliable than the OR estimates. The model-based estimates also have the advantage

over the OR estimates in that the former is not affected by sample size or θδ. In

addition, the proposed model can provide estimates for other parameters that cannot

be estimated through any other existing methods.
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3.4 Application

In this section, we apply the bayesian model to estimate the influenza VE to data

from the a large TND study conducted during 2010-2011 in the United States re-

ported by Treanor et al. (2012). This study was conducted to assess the 3 types

of seasonal influenza vaccines that were antigenically similar to circulating influenza

viruses during the 2010-2011 US influenza season.

3.4.1 Analysis of the seasonal 2010-2011 influenza vaccine

TND study

The study population included children and adults who resided in the counties and

zip codes surrounding the study centers: Marshfield Clinic and St. Joseph’s Hospital,

Marshfield, Wisconsin; the University of Michigan Health System, Ann Arbor, and

Henry Ford Health System, Detroit, Michigan; the Strong Memorial and Rochester

General Hospitals from the University of Rochester, Rochester, New York; and Van-

derbilt University, Summit, St. Thomas, and Baptist Hospitals, Nashville, Tennessee.

More than 5000 subjects who were aged ≥ 6 months and had an ARI with a duration

of ≤ 7 days with documented fever or history of feverishness or cough were enrolled

in the study and about 4700 were included in the analysis.

Participants’ receipt of seasonal 2010-2011 influenza vaccine was ascertained through

patient or parental report and confirmed by medical record review, state registries

or a real-time internet-based vaccine registry for Wisconsin participants. Those who

received at least 1 dose of seasonal influenza vaccine at least 14 days before illness

55



onset were defined as being vaccinated. Cases of medically-attended lab-confirmed

influenza were defined as individuals meeting the medically attended ARI definition

with rRT-PCR-confirmed influenza. Controls were medically-attending ARI individ-

uals whose rRT-PCR was negative for influenza.

Since influenza vaccine effectiveness may vary by age group, especially it may be

lower among individuals aged ≥ 65 years, we assessed the influenza VE for each age

group. Data from the US 2010-2011 case-control study for each type of the seasonal

influenza vaccine for each age group are presented in Table 3.6. There are 10 groups

in total.

Table 3.6: Number of patients by influenza status and vaccination status for each age
group and each vaccine component in the 2010-2011 TND study

Influenza positive Influenza negative
Age Group Vaccinated unvaccinated Vaccinated unvaccinated
Any seasonal vaccine
6 months-2 years 47 46 465 210
3-8 years 79 190 438 318
9-49 years 104 375 534 891
50-64 years 47 77 263 207
>= 65 years 40 23 258 100
Inactivated seasonal vaccine
2-8 years 66 217 443 390
9-49 years 91 375 477 891
>= 50 years 79 100 491 307
Live attenuated seasonal vaccine
2-8 years 22 217 128 390
9-49 years 9 375 34 891

We applied the proposed model to estimate the influenza VE for each age group

and vaccine type. The initial values for all the parameters were assigned random

values in their corresponding value ranges. We calculated the posterior mean and
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95% credible intervals (CI) for the influenza VE. We checked the convergence of

the simulated Markov chains using the Gelman and Rubin diagnostic (Gelman and

Rubin 1992) by running five additional Markov chains with different initial values.

The potential scale reduction factors (PSRF) of the log likelihood for the simulated

scenarios ranged between 1 and 1.04, which are close to 1, indicating the convergence

of posterior simulations.

Table 3.7: The model-based and unadjusted odds ratio (OR) influenza VE estimates
for each age group and each vaccine type in the 2010-2011 TND study

Unadjusted OR Model-based
Model checking

Age Group VE 95% CI1 VE 95 % CI2 P-value3

Any seasonal vaccine
6 months-2 years 0.54 0.28-0.70 0.58 0.26-0.78 0.07
3-8 years 0.70 0.59-0.78 0.62 0.34-0.81 0.06
9-49 years 0.54 0.41-0.64 0.62 0.39-0.80 0.07
50-64 years 0.52 0.28-0.68 0.58 0.28-0.78 0.07
>= 65 years 0.33 -0.18-0.62 0.56 0.25-0.77 0.09
Inactivated seasonal vaccine
2-8 years 0.73 0.64-0.80 0.62 0.35-0.80 0.06
9-49 years 0.55 0.42-0.65 0.62 0.38-0.79 0.06
>= 50 years 0.51 0.31-0.64 0.59 0.28-0.77 0.00
Live attenuated seasonal vaccine
2-8 years 0.69 0.50-0.81 0.65 0.41-0.81 0.08
9-49 years 0.37 -0.32-0.70 0.68 0.45-0.83 0.05

1. CI stands for confidence interval.
2. CI stands for credible interval.
3. Model checking P-value refers to the posterior predictive p-values based on the
chi-square discrepancy test described in section 3.4.2.

Table 3.7 presents the OR influenza VE estimate and 95% confidence interval

and the model-based influenza VE estimate and 95% credible interval for each age

group and each vaccine type. The results show that the model-based and the OR
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estimates are comparable for most groups except for the any seasonal vaccine ≥ 65

years group and the live attenuated seasonal vaccine 9-49 years group. The model-

based 95% credible intervals overlap with the OR 95% confidence intervals for all

groups and the former is slightly larger than the latter for most groups except for

those two groups. For the two groups, the model-based estimates are higher than the

OR estimates and the model-based 95% credible intervals are smaller than the OR

95% confidence intervals. The number of influenza positive nonvaccinees in the any

seasonal vaccine ≥ 65 years group is 23 and the number of influenza positive vaccinees

in the live attenuated seasonal vaccine 9-49 years group is only 9. The small numbers

of participants in these groups may affect the accuracy and the uncertainty for both

the model-based and OR the estimates. However, the model-based estimates may be

less affected by the small sample size as demonstrated in the simulation studies.

3.4.2 Model assessment

We conducted a posterior predictive model assessment using the χ2 discrepancy for

each age group. The χ2 discrepancy is a summary statistic for the sum of squares

of standardized residuals of the data with respect to their expectations under the

model (Gelman et al. 1996). For our model, the χ2 discrepancy is defined as:

χ2(N ; β10, β20, x, y, δ10, δ20, zδ1 , zδ) =
∑

e=1,2;v=1,0

(N − E(N ))2

Var(N |β10, β20, x, y, δ10, δ20, zδ1 , zδ)
.

where N = (N11, N10, N21). We calculated the posterior predictive p-value based on

χ2 as P = P (χ2(N rep; β10, β20, x, y, δ10, δ20, zδ1 , zδ) ≥ χ2(N ; β10, β20, x, y, δ10, δ20, zδ1 , zδ)),

where N rep represents the predictive replication and N represents the observed data.

58



The model checking p-values of the predictive versus realized χ2 discrepancies are

presented in Table 3.7. The p-values are greater than or equal to 0.05 among 9

out of the 10 age groups, indicating the difference between observed and predictive

N are not significant. This implies that the model fits the data pretty well except

for the inactivated seasonal vaccine ≥ 50 years group. Potential reasons for the big

discrepancy in this group may be: (1) the influenza VE may differ between persons

aged 50-64 and persons aged 65 years and older, therefore, a single VE estimate

for this group may not be sufficient and (2) the specified priors may not be specific

enough for this age group, which may result in biased estimate for this group.

3.4.3 Sensitivity Analysis

We also performed a sensitivity analyses to assess the impact of priors on the model-

based VE estimates. Because the influenza VE = 1− β21
β20

, β10 and β20 are important

factors that will affect VE estimates. We therefore specified different priors for β10

and β20 while keeping the priors for the other parameters unchanged. We estimated

the influenza VE with different prior specifications for β10 and β20 and assessed how

different priors would affect the model-based estimates for influenza VE.

In the proposed model, we assigned non-informative priors for β10 and β20 through

Uniform(0, 0.2) and Uniform(0, 0.1), respectively. In the sensitivity analyses, we con-

sidered two additional prior specifications for β10 and β20 through Beta distributions

with wider or smaller ranges. For β10, we assigned Beta (2, 20), which has a mean

of 0.17 and 95% CI of (0.01, 0.24) and Beta (2, 8), which has a mean of 0.2 and

95% CI of (0.03, 0.48). For β20, we assigned Beta (2, 40), which has a mean of 0.09
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Table 3.8: The priors for β10 and β20 used in the sensitivity analysis
Analysis Prior for β10 Prior for β20

1 Unif(0, 0.2) Unif(0, 0.1)
2 Unif(0, 0.2) Beta(2, 40)
3 Unif(0, 0.2) Beta(2, 16)
4 Beta(2, 20) Unif(0, 0.1)
5 Beta(2, 20) Beta(2, 40)
6 Beta(2, 20) Beta(2, 16)
7 Beta(2, 8) Unif(0, 0.1)
8 Beta(2, 8) Beta(2, 40)
9 Beta(2, 8) Beta(2, 16)

and 95% CI of (0.006, 0.13) and Beta (2, 16), which has a mean of 0.1 and 95% CI

of (0.015, 0.29). Together with the non-informative priors specified in the proposed

model, there are 9 prior specifications for β10 and β20. The nine prior specifications

are summarized in the Table 3.8.

For each prior specification, we estimated the influenza VE estimates for each age

group. Table 3.9 presents the mean, minimum, median and maximum of the VE

estimates from the sensitivity analyses for each age group. The results show that the

VE estimates from using nine different prior specifications are very close and they

only vary in a very tight range, implying that the influenza VE estimates are not

affected by the prior specifications of β10 and β20.

3.5 Discussion

In this paper, we develop a novel Bayesian model to estimate the influenza VE using

data collected from the test negative study. Our model is based on the joint probabil-

ity of a person’s vaccination status and influenza infection status conditional on the
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Table 3.9: The mean, minimum, median, and maximum of VE estimates from sensi-
tivity analyses

Name Mean Minimum Median Maximum
Any seasonal vaccine
6 months-2 years 0.577 0.564 0.578 0.590
3-8 years 0.613 0.602 0.611 0.622
9-49 years 0.611 0.594 0.612 0.629
50-64 years 0.595 0.582 0.599 0.607
>= 65 years 0.557 0.550 0.556 0.565
Inactivated seasonal vaccine
2-8 years 0.621 0.609 0.621 0.636
9-49 years 0.615 0.594 0.619 0.630
>= 50 years 0.584 0.563 0.582 0.601
Live attenuated seasonal vaccine
2-8 years 0.645 0.641 0.646 0.650
9-49 years 0.676 0.670 0.676 0.680

person seeking medical care for ARI symptoms and is tested for influenza infection.

We elicit the subjective priors from published literature. Through the simulation

studies, we demonstrate that the estimates from the proposed model are superior to

the OR estimates in the following aspects: (1) the model-based estimates are more

accurate and reliable than the OR estimates; (2) the model-based estimates are not

affected by the sample size, θδ, the inequality of the vaccine related probability ratios

of seeking medical care for ARI , while the OR estimates can be affected by both

factors; and (3) in addition to the influenza VE estimates, the proposed model can

provide estimates for other parameters that are of interest to researchers in the area

of influenza research but have not been estimated through any existing methods from

observational studies previously.

Our model is the very first that estimates the influenza VE through a modeling

approach instead of the odds ratio estimate. The priors for our model are chosen
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subjectively based on current literature. As shown in the application, the influenza

VE estimates from the proposed model are mostly comparable to the OR estimates,

indicating that the simple OR approach can usually provide good estimates. However,

when sample sizes are small, the OR estimates can be more biased and less precise

than the model-based estimates. The 95% credible intervals of the model-based esti-

mates are slightly larger than the 95% confidence intervals of the OR estimates, this

might be due to the prior setup. In addition, the limited input data (only four data

points) can affect the precision and power of the model-based estimates.

Our current work can be extended in several possible directions. One extension is

to develop a hierarchical Bayesian model that includes covariates such as age effect

and health status in the model. Assuming parameters among different age groups

can be characterized through a certain relationship, inclusion of the age effect in

the model has the advantage of making use of all the data points in one analysis

instead of separate stratified analyses. Another issue is the prior setup. Although

the priors in the current model are selected subjectively based on literature, they are

general priors. Our sensitivity analyses demonstrate that the VE estimates are not

affected by different priors for β10 and β20, however, impact of different priors for

other parameters on the VE estimates are unclear and worthy of investigation. For

example, influenza VE differs by age group, therefore, a specific prior for influenza

VE of each age group could help improve the estimates.
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Chapter 4

A Nonhomogeneous Probability

Model for Evaluating Bias and

Precision of Estimates of the

Influenza Vaccine Effectiveness

from Case-Control Studies

4.1 Background

Many factors make accurate estimation of influenza VE very challenging. Firstly,

the predominant influenza virus types, subtypes and phenotypes change from one

season to the next, necessitating a new vaccine targeting different strains and a new
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VE estimate in every season. Secondly, for many years, randomized clinical trials

(RCTs) that measure laboratory-confirmed influenza virus infection as the outcome

have been considered to provide the most accurate estimates of influenza VE. How-

ever, such trials have become unethical to conduct because influenza vaccination is

now recommended for all persons 6 months of age and older in the U.S. and in other

countries. (CDC 2013) Lately, estimates of influenza VE have increasingly relied on

observational studies, especially case-control studies for reasons of statistical power,

logistics and cost. However, observational studies innately are subject to more biases.

Thirdly, it is not easy to find all or most influenza patients in a given community, be-

cause influenza symptoms can be mild and many patients do not seek medical care to

alleviate them. Fourth, symptoms of influenza are not specific, hence many patients

who develop an acute respiratory illness (ARI) are not infected with the influenza

virus. Fifth, special laboratory tests are required to confirm influenza infection, and

these tests are not 100% sensitive and specific, causing misclassification bias. For

these reasons, there is increasing need to carefully design observational studies to

avoid, or at least to minimize the various sources of bias in the estimates of influenza

VE.

Because of the advantages in cost and logistics, case-control studies are commonly

used observation studies to estimate influenza VE. Two commonly used observational

study designs for estimating the effectiveness of influenza vaccine against seasonal and

pandemic influenza illness are: traditional case-control design (CCD) and the test

negative design (TND). In both study designs, individuals of the study population

who seek care for an ARI and test positive for influenza infection are considered cases.

In the CCD, controls are asymptomatic persons randomly chosen from all members
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of the study population who have not reported to the clinic because of ARI either at

the same time when the case was reported or at the end of the study. In the TND,

ARI patients who test negative for influenza infection serve as controls.

4.1.1 Main sources of bias in case-control studies

Both CCD and TND are based on subjects who have ARI that could result from

an influenza infection and seek medical care. This restriction, along with the fact

that vaccination is not randomized, underlies many sources of bias in influenza VE

estimates from case-control studies. Below we list a summary of the main sources of

bias:

1. Ascertainment of cases (selection bias): A person who develops an ARI may or

may not decide to seek medical care. In both CCD and TND, only a person

who seeks medical care for ARI can be tested and be considered as a case. In

other words, the cases are drawn from a subset of the population (persons who

seek care for ARI) that may not be a representative sample of all cases.

2. Confounding by propensity of seeking medical care: The likelihood of seeking

medical care may be related to a person’s vaccination status, as a vaccinated

individual may be more health-conscious so that her/his probability of seeking

medical care for ARI may be different from that of an unvaccinated person.

In CCD, only persons who seek medical care for ARI can be considered cases,

while controls are selected from the entire population. This may confound the

association between vaccination status and being considered a case and lead to

falsely low estimates of VE. This source of confounding is eliminated in TND, as
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both cases and controls are persons seeking care for ARI. However, the selection

bias discussed above may become even more pronounced in TND.

3. Probabilities of non-influenza ARI may depend on vaccination status: In TND,

persons with non-influenza ARI serve as controls. Therefore one of the assump-

tions underlying this study design is that vaccinees and non-vaccinees have the

same probability of developing ARI as a result of a non-influenza infection. This

assumption has not yet been verified. In fact, a recent randomized controlled

influenza vaccine trial (Cowling et al. 2012) found that vaccinees had a signifi-

cantly increased risk of virologically-confirmed non-influenza infection that may

lead to ARI.

4. Other confounders: such as health status (Hak et al. 2002, Jackson et al. 2006a),

age, exposure, education, SES, may be associated with both the likelihood of

being vaccinated and the likelihoods of becoming infected, developing ARI and

seeking medical care.

5. Misclassification of influenza infection status and/or vaccination status: As

already mentioned, even the best diagnostic tests for influenza infection are not

100% sensitive and specific. Vaccination status may also be misclassified.

Because the two case-control studies are subject to various sources of bias as de-

scribed above, it is essential to carefully evaluate the properties (bias and precision)

of the VE estimates from these study designs. The evaluation of the TND (Orenstein

et al. 2007) is especially important, because this design is relatively new and is becom-

ing very popular due to its simplicity. In fact, over 90% of all observational influenza

VE studies conducted since 2008 have followed this design. However, the properties
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of the TND (bias and precision) have never been evaluated while accounting for all

potential sources of bias. The comparison of the TND and the traditional CCD is

also of special importance. On one hand, using only ARI patients seeking medical

care for their symptoms as controls in the TND should eliminate the impact of an

important confounder, namely the propensity to seek medical care, since both cases

and controls are selected from the same sub-population of persons seeking care for

ARI. On the other hand, this sub-population on which the TND is based may not

represent the entire population, resulting in selection bias. In addition, VE may be

different for persons who are more likely and less likely to seek care for an ARI. For

example, persons with underlying medical conditions may be more likely to have an

inferior immune response to vaccination than healthy persons, and they may also be

more or less likely to seek care. Very few field studies (Belongia et al. 2009) used both

study designs to obtain concurrent estimates of influenza VE in the same population

in the same season. The results of this evaluation can help guide the development of

new study design or improve existing study designs.

4.1.2 Medically-attended influenza and symptomatic influenza

Another important issue related to the influenza VE estimates and evaluation of the

estimation biases is the outcome measures, i.e. the outcome against which the vaccine

is supposed to protect.

In both CCD and TND, a study participant becomes a case if and only if she/he

seeks medical care for an ARI and tests positive for influenza infection. Therefore

these studies are considered appropriate for estimating VE against medically-attended
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influenza (MI), where we define a true case of MI as a truly influenza-infected person

who reports to a clinic because of her/his ARI. (Note that testing positive for influenza

infection is not required to be a true case of MI). It can be argued that MI is indeed the

outcome of interest, as individuals who do not seek medical care when they develop

an ARI do not increase health-care costs. On the other hand, persons with ARI who

do not seek medical care are still capable of infecting others, missing work or school

and developing severe or even deadly complications. Therefore we will also consider in

this work a more general definition of influenza illness, namely symptomatic influenza

(SI). This definition, which includes everyone who is infected with the influenza virus

and develops an ARI, is more appropriate from the public health perspective. Since

both CCD and TND are based on persons seeking medical care for an ARI as cases,

they miss cases of SI who do not seek medical care. This may further contribute to

the bias of VE estimates when SI is the outcome of interest (Orenstein et al. 2007).

One should note that when evaluating the biases of VE estimates resulting from CCD

and TND, the distinction between MI and SI only affects the true value of VE. The

study designs and VE estimates are considered the same, regardless of the outcome

of interest.

Recently, several models have been developed to evaluate and compare influenza

VE study designs (De Serres et al. 2013, Ferdinands and Shay 2012, Foppa et al. 2013,

Haber et al. 2014, Jackson and Nelson 2013, Orenstein et al. 2007). However, these

models suffer from the following limitations: (1) they assume random vaccination; (2)

they assume that the population is homogeneous with respect to the parameters de-

termining probabilities of infection, illness, seeking medical care, etc.; and (3) they do

not consider the precision of VE estimates. Our proposed probability model accounts
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for these and other factors that may impact the bias and precision of VE estimates

from observational studies.

The goal of this article is to evaluate and compare the bias and precision of esti-

mates of influenza VE resulting from TND and CCD. Specifically, we will (a) evaluate

the bias of each of the VE estimates by comparing the expected value of the estimate

with the true VE for each of the outcomes of interest, MI and SI, (b) evaluate and

compare the standard errors of the VE estimates under equal sample sizes. To con-

duct these evaluations and comparisons we will develop a detailed stepwise probability

model of the process involved in collecting data in these studies and obtaining VE

estimates. The model will allow us derive both general and numerical results under

different scenarios.

4.2 Method

We first describe the real-life process involved in conducting the two kinds of studies

and obtaining the estimates of VE. We then describe the model that will be used to

mimic the process.

4.2.1 The study population and designs

The source population for both CCD and TND consists of all individuals who receive

most of the health care at a single clinic or at a given network of clinics. Since

influenza VE varies by age, we assume that the model pertains to a subpopulation

corresponding to a specific age group.
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When a member of the study population develops an ARI, she/he may decide to

report to a clinic for treatment. At the clinic, the health care provider will ask the

person to be tested for influenza infection. If the person agrees, a swab is taken and

sent to a laboratory for testing. The test may not be 100% sensitive or specific. In

both study designs, a person who tests positive for influenza is eligible to be considered

a case. In the traditional CCD, controls are usually selected when cases are identified

by randomly contacting members of the population and asking each of them if he has

had an ARI since the beginning of the season. Those who have not developed an ARI

are eligible to be included as controls. In the TND, an individual who reports to the

clinic, is tested and the test result is negative is eligible to be considered as a control.

In both study designs, the vaccination status of every case or control is determined

from manual or electronic records.

4.2.2 The model

The model we develop and use for comparing the estimates from the two study designs

follows the scheme described above with a few simplifications. We include a latent

variable X for health status. The probabilities of vaccination, ARI, influenza infection

and seeking medical care may depend on X. We assume that (1) when a person

seeks medical care for ARI, the probability of being tested for influenza infection

does not depend on health status, vaccination status or influenza infection status;

(2) given a person’s health status and influenza infection status, the probability of

seeking medical care no longer depends on the vaccination status; (3) given a person’s

symptoms and influenza infection status, the sensitivity and specificity of the test do

not depend on the tested person’s health status or vaccination status; (4) a person’s
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vaccination status is determined without error; and (5) controls in the CCD are a

random sample from the subpopulation of all asymptomatic individuals.

Our model consists of five steps, where the value of a single variable is determined

at each step. The distribution of this variable may depend on the values of the

variables from the previous steps. Below we define the five steps, the associated

variables and the probabilities determining each variable’s distribution.

Step 1: Health status. We assume the members of the population may be clas-

sified as ”healthy” or ”frail”. Define a binary variable X, where X = 1 for

a ”healthy” person, and denote π = P (X = 1). Note that X (health status)

is considered latent (unobservable); we are unable to estimate separate VE in

healthy and frail persons or adjust for health status when estimating overall

VE.

Step 2: Vaccination. A person may be vaccinated against influenza. The prob-

ability of vaccination may depend on X. Define a binary variable V , where

V = 1 for a vaccinated person. Denote αx = P (V = 1 | X = x), x = 0, 1.

Step 3: Influenza infection and ARI. During the influenza season, a person may

become infected with an influenza virus. Both influenza infected and unin-

fected individuals may develop an ARI. Since our outcome measures only in-

volve symptomatic individuals, we do not distinguish between asymptomatic

individuals who are or are not influenza-infected. Therefore, we define a vari-

able E for the illness/infection status with 3 levels as follows: E = 0 in-

dicating no ARI, E = 1 for ARI without influenza infection (i.e. an ARI

resulting from a different pathogen) and E = 2 for ARI and influenza in-
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fection (symptomatic influenza). The distribution of E may depend on V

and X. Denote βvx = P (E = 1 | V = v,X = x), v = 0, 1 x = 0, 1 and

γvx = P (E = 2 | V = v,X = x), v = 0, 1 x = 0, 1. βvx + γvx ≤ 1 for all v, x.

Step 4: Seeking medical care for ARI. A person with ARI may seek medical

care and get tested for influenza infection. Define a binary variable M with

M = 1 for a person seeking medical care for his/her ARI. The probability of

this event depends on E (only individuals with an ARI seek medical care) and

X. Denote δex = P (M = 1 | E = e,X = x), e = 1, 2 x = 0, 1. Note that

P (M = 1 | E = 0) = 0. Because of assumption (2), P (M = 1) does not

directly depend on V when X and E are given.

Step 5: Testing for influenza infection. Although only individuals who seeks med-

ical care for ARI are tested for influenza infection, it will be convenient to define

a binary variable T as the (possibly unobserved) test result for any person with

an ARI, regardless of whether or not he is actually tested. Define T = 1

(T = 0) if a person would test positive (negative) for influenza if tested. Be-

cause of assumption (3) above, the probability of testing positive given the

person’s influenza infection status does not depend on X, V or M . Denote

τe = P (T = 1 | E = e) for e = 1, 2. Note that τ1 is one minus the test’s

specificity and τ2 is the test’s sensitivity. In this study, we assume the test has

100% sensitivity and 100% specificity, i.e. P (T = 1 | E = 1) = τ1 = 0 and

P (T = 1 | E = 2) = τ2 = 1.

Our model has 17 parameters, which specify the conditional distribution of each

variable in terms of the values of the variables determined in the previous steps. The
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list of the random variables are provided in Table 4.1.

Table 4.1: Random variables used to define the five steps of the latent-class process
model and in the calculation

Variable Definition Values
X Health status 0 - frail persons

1 - healthy persons
V Vaccination status 0 - unvaccinated

1 - vaccinated
E Influenza infection and ARI status 0 - no ARI

1 - ARI, not influenza infected
2 - ARI, influenza infected

M Seeking medical care for ARI 0 - no
1 - yes

T Result of test for influenza infection 0 - negative
1 - positive

CA Case/control status in TND study 0 - control
1 - case

CB Case/control status in CCD study 0 - control
1 - case

4.2.3 Outcome of interest and true VE

As mentioned previously, we consider both medically-attended influenza (MI) and

symptomatic influenza (SI) as outcomes of interest. A person is considered a true

case of MI if he/she is influenza-infected, develops an ARI and seeks medical care. A

person is considered a true case of SI if he/she is influenza-infected and developed an

ARI because of the infection. The true VE is defined as one minus the ratio of the

probability of the outcome in vaccinees and non-vaccinees.

The true VE against MI is:

V ETMI = 1−RRTMI where RRTMI =
P (E = 2,M = 1 | V = 1)

P (E = 2,M = 1 | V = 0)
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The true VE against SI is:

V ETSI = 1−RRTSI where RRTSI =
P (E = 2 | V = 1)

P (E = 2 | V = 0)

Using the parameters defined above, and V ETMI and V ETSI can be written as:

V ETMI = 1−RRTMI = 1− [δ20γ10α0(1− π) + δ21γ11α1π][1− α0(1− π)− α1π]

[α0(1− π) + α1π][δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π]

V ETSI = 1−RRTSI = 1− [γ10α0(1− π) + γ11α1π][1− α0(1− π)− α1π]

[α0(1− π) + α1π][γ00(1− α0)(1− π) + γ01(1− α1)π]

In Appendix 3.1, we show how we derive these expressions.

4.2.4 VE estimates

We only consider estimates of VE that are not adjusted for possible confounders. In

both study designs, VE is estimated as one minus odds ratio (OR) in the C×V table

corresponding to the individuals included in the study, where C is a binary indicator

of case/control status (C = 1 for a case). The bias is defined as the difference between

the expectation of the estimated VE and the true VE. For convenience, the TND and

CCD will be represented by the letters A and B, respectively.

In the TND, the case/control variable is denoted CA, where {CA = 1} = {M =

1, T = 1} and {CA = 0} = {M = 1, T = 0}. Then the estimate of VE is:

V EA = 1−ORA where ORA =
P (CA = 1, V = 1 |M = 1)P (CA = 0, V = 0 |M = 1)

P (CA = 1, V = 0 |M = 1)P (CA = 0, V = 1 |M = 1)
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Note that all the probabilities conditional on M = 1 as only individuals who seek

medical care for ARI can be included in the TNC study. ORA can be further written

as:

ORA =
P (M = 1, T = 1, V = 1)P (M = 1, T = 0, V = 0)

P (M = 1, T = 1, V = 0)P (M = 1, T = 0, V = 1)

Using the parameters defined above, V EA can be written as:

V EA = 1− [δ20γ10α0(1− π) + δ21γ11α1π][δ10β00(1− α0)(1− π) + δ11β01(1− α1)π]

[δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π][δ10β10α0(1− π) + δ11β11α1π]

The proof can be found in Appendix 3.2.

In the CCD, denote CB as the case/control variable. Cases are defined the same

way as in the TNC study, i.e. {CB = 1} = {CA = 1} = {M = 1, T = 1}. Controls

are those included in a random sample drawn from all the asymptomatic individuals.

In other words, {CB = 0} is a random subset of {E = 0}. In addition, we define a

binary variable B indicating whether or not a person is included in the CCD study,

i.e. {B = 1} = {CB = 1 or CB = 0}. The VE estimates is based on the OR in the

CB×V table when all the probabilities conditional on B = 1. The VE estimate from

CC study is:

V EB = 1−ORB where ORB =
P (CB = 1, V = 1 | B = 1)P (CB = 0, V = 0 | B = 1)

P (CB = 1, V = 0 | B = 1)P (CB = 0, V = 1 | B = 1)

ORB can be further written as:

ORB =
P (M = 1, T = 1, V = 1)P (E = 0, V = 0)

P (M = 1, T = 1, V = 0)P (E = 0, V = 1)
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Using the parameters defined above, V EB can be written as:

V EB = 1− [δ20γ10α0(1−π)+δ21γ11α1π][(1−β00−γ00)(1−α0)(1−π)+(1−β01−γ01)(1−α1)π]
[δ20γ00(1−α0)(1−π)+δ21γ01(1−α1)π][(1−β10−γ10)α0(1−π)+(1−β11−γ11)α1π]

The proof can be found in Appendix 3.2.

4.2.5 Standard errors of the VE estimates

We use approximations to the standard errors (SE) of odds ratios (Agresti, 2013)

based on the delta method to derive expressions for the SE of both VE estimates

in terms of the parameters and the corresponding sample size(s). For evaluating

the standard errors we consider the observed odds ratios, where the probabilities are

replaced by the observed relative frequencies.

For the TND, the approximate standard error of V EA is:

SE(V EA) = SE(ORA) ≈ (ORA)× SE(log(ORA))

≈ pA11(1−pA01)
pA01(1−pA11)

√
1
NA [ 1

pAV 1p
A
11

+ 1
(1−pAV 1)p

A
01

+ 1
pAV 1(1−p

A
11)

1
(1−pAV 1)(1−p

A
01)

]

where NA is the number of persons who were tested for influenza (M = 1), i.e.,

the total sample size for the TND. The probabilities (pAV 1, p
A
11, p

A
01) can be written in

terms of the parameters defined earlier:

pAV 1 = P (V = 1 |M = 1) =
P (M = 1, V = 1)

P (M = 1)

= α0(1−π)(δ20γ10+δ10β10)+α1π(δ21γ11+δ11β11)
(1−π)[α0(δ20γ10+δ10β10)+(1−α0)(δ20γ00+δ10β00)]+π[α1(δ21γ11+δ11β11)+(1−α1)(δ21γ01+δ11β01)]
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pA11 =
P (M = 1, T = 1 | V = 1)

P (M = 1 | V = 1)
=
P (M = 1, T = 1, V = 1)

P (M = 1, V = 1)

=
δ20γ10α0(1− π) + δ21γ11α1π

α0(1− π)(δ20γ10 + δ10β10) + α1π(δ21γ11 + δ11β11)

pA01 =
P (M = 1, T = 1 | V = 0)

P (M = 1 | V = 0)
=
P (M = 1, T = 1, V = 0)

P (M = 1, V = 0)

=
δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π

(1− α0)(1− π)(δ20γ00 + δ10β00) + (1− α1)π(δ21γ01 + δ11β01)

In the CCD, the approximate standard error of V EB is:

SE(V EB) = SE(ORB) ≈ (ORB)× SE(log(ORA))

≈ pB11(1− pB10)
pB10(1− pB11)

√
1

NB
C1p

B
11

+
1

NB
C1(1− pB11)

+
1

NB
C0p

B
10

+
1

NB
C0(1− pB10)

where NB
C1 is the number of cases and NB

C0 is the number of controls. The proba-

bilities (pB11, p
B
10) can be written in terms of the parameters defined earlier:

pB11 = P (V = 1 | CB = 1, B = 1) =
P (M = 1, T = 1, V = 1)

P (M = 1, T = 1)

=
δ20γ10α0(1− π) + δ21γ11α1π

δ20(1− π)[γ00 + α0(γ10 − γ00)] + δ21π[γ01 + α1(γ11 − γ01)]

pB10 = P (V = 1 | CB = 0, B = 1) =
P (E = 0, V = 1)

P (E = 0)

=
(1−β10−γ10)α0(1−π)+(1−β11−γ11)α1π

(1−π)[(1−β00−γ00)+α0(β00−β10+γ00−γ10)]+π[(1−β01−γ01)+α1(β01−β11+γ01−γ11)]

77



4.2.6 Determining the values of the parameters

We distinguish between biological and non-biological parameters. The biological pa-

rameters are the probabilities of non-influenza and influenza ARIs in non-vaccinees

and vaccinees, namely β0x, β1x, γ0x and γ1x. Baseline values for these parameters

among healthy persons (i.e. β01, β11, γ01 and γ11) were estimated from randomized

clinical trials (RCT) data using the numbers of influenza and non-influenza cases of

ARI in vaccinees and non-vacccinees. More details about the determination of these

values can be found in Chapter 3 and Haber et al. (2014).

The non-biological parameters include proportion of healthy persons, proportion

of vaccinees and probability of seeking medical care for ARI. Baseline values for these

parameters were determined from published literature. In this study, we assume the

proportion of healthy persons is 0.7. According to the most recent publication (CDC

2013), influenza vaccine coverage in the US in the 2011-12 season ranged between

30% to 70%. The probability of seeking medical care for ARI has been estimated

to be between 0.2 and 0.5 (Ferdinands and Shay 2012). We used 0.3 as the baseline

value of this probability for influenza-infected ARI cases and 0.2 as the baseline value

of this probability for non-influenza ARI cases. The sensitivity and specificity of the

test for influenza infection were assumed to be 100%.

We also define a few probability ratios from the base parameters, to simplify the

expressions for the bias of the VE estimates and to examine the impact of the latent

health status on the VE estimates: ρβx = β1x
β0x

is the vaccine-related relative increase

or decrease in the probability of non-influenza ARI; ηβv = βv1
βv0

is the health status-

related relative increase or decrease in the probability of non-influenza ARI; ργx = γ1x
γ0x
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is the vaccine-related relative increase or decrease in the probability of influenza ARI;

θγ = ργ1
ργ0

measures the inequality in ργ resulted from health status; ηδ1 = δ11
δ10

is the

heath status-related relative increase or decrease in the probability of seeking medical

care for non-influenza ARI; ηδ2 = δ21
δ20

is the heath status-related relative increase

or decrease in the probability of seeking medical care for influenza ARI; θδ = ηδ2
ηδ1

measures the inequality in ηδ resulted from the type of infection leading to ARI.

A list of all the model parameters and their values is provided in the Table 4.2.

4.3 Results

The results presented below are based on the assumption that the influenza test has

perfect sensitivity and specificity, i.e. τ1 = 0, τ2 = 1.

4.3.1 Analytic results

The analytic results are studied under an additional assumption: the probability of

non-influenza ARI is the same for all persons regardless of their vaccine status and

health status, i.e. β00 = β01 = β10 = β11. We found that the conditions for TND

estimates to be unbiased are different for SI and MI.

For SI, the TND estimate is unbiased if θδ = 1 (i.e. ηδ1 = ηδ2). For MI, the TND

estimate is unbiased if ηδ1 = 1 .
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4.3.2 Numeric results

Numerical results of the bias and standard errors of VE estimates are presented in

Table 4.3 - Table 4.5 and Figure 4.1 - Figure 4.6. The bias was defined as the difference

between the estimated and true VE. For example, if the true VE is 0.6 (60%) and the

estimated VE is 0.56 (56%), bias is -0.04(-4%). The standard error was calculated

for the VE estimates from TND and CCD respectively.

We considered three scenarios with different probabilities of vaccination for healthy

and frail persons. In scenario 1, we consider random vaccination with α0 = α1 = 0.6.

In scenario 2, we assume that healthy persons are twice more likely to get vaccinated

than frail persons with α0 = 0.4, α1 = 0.8. In scenario 3, we assume that frail persons

are twice more likely to get vaccinated than healthy persons with α0 = 0.8, α1 = 0.4.

For each scenario, we examine the effects of various deviations from the baseline

assumptions on the bias and standard errors of the VE estimates. The baseline

assumptions are listed below:

A: Probabilities of non-influenza ARI do not depend on vaccination status or health

status, i.e. β00 = β10 = β01 = β11. Here the baseline values are β00 = β10 =

β01 = β11 = 0.1.

B: Probabilities of influenza ARI do not depend on health status, i.e. ηγ0 = 1, ηγ1 = 1.

This implies that ργ1 = ργ0 , i.e. VE is the same for healthy and frail persons.

The baseline values are γ00 = γ01 = 0.5, γ10 = γ11 = 0.2.

C: Probabilities of seeking medical care do not depend on health status, i.e. ηδ1 =

ηδ2 = 1. The baseline values are δ10 = δ11 = 0.2, δ20 = δ21 = 0.3.
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We first examine deviations from baseline assumption A, while assumptions B and

C remain in place.

A1: Healthy and frail persons have equal probabilities of non-influenza ARI (i.e.

ηβ = 1), but vaccinees and non-vaccinees have unequal probabilities of non-

influenza ARI (i.e. ρβ 6= 1). We examine how vaccine-related ratio in the

probability of non-influenza ARI (i.e. ρβ ranging 0.25-4) affects the bias and

standard error of VE estimates.

A2: Vaccinees and non-vaccinees have equal probabilities of non-influenza ARI (i.e.

ρβ = 1), but healthy and frail persons have unequal probabilities of non-

influenza ARI (i.e. ηβ 6= 1). We examine how health status-related ratio in

the probability of non-influenza ARI (i.e. ηβ ranging 0.25-4) affects the bias

and standard error of VE estimates.

Next, we examine deviations from baseline assumption B, while assumptions A

and C remain in place.

B1: Probabilities of influenza ARI may depend on health status but the ratio of these

probabilities is the same in vaccinees and nonvaccinees, i.e. ηγ1 = ηγ0 = ηγ 6= 1.

This still implies ργ1 = ργ0 , i.e. VE does not depend on health status. We

examine how health status related ratio in the probability of influenza ARI (i.e.

ηγ ranging 0.25-4) affects the bias and standard error of VE estimates.

B2: We now drop the assumption ηγ1 = ηγ0 . In this case, ργ1 6= ργ0 , i.e. VE may

depend on health status. We set the ratio of probabilities of influenza ARI

comparing vaccinees and nonvaccinees for frail persons at 0.4 and examine how
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the ratio θγ = ργ1
ργ0

ranging 0.25-2 affects the bias and standard error of VE

estimates.

Finally, we examine deviations from baseline assumption C, while assumptions A

and B remain in place.

C1: Probabilities of seeking medical care for ARI may depend on health status, but

the ratio of these probabilities are the same for ARI patients with and without

influenza infection (i.e. θδ = 1 but ηδ 6= 1 or ηδ1 = ηδ2 = ηδ 6= 1). We examine

how the common value of ηδ (ηδ ranging 0.25-4) affects the bias and standard

error of VE estimates.

C2: Assuming non-homogeneity of the probability ratios of seeking medical care for

ARI, (i.e. θδ 6= 1 or ηδ1 6= ηδ2). We examine how the inequality in health

status-related ratio in the probability of seeking medical care for ARI (i.e. ηδ)

by the type of infection leading to ARI (i.e. θδ = ηδ2
ηδ1

ranging 0.25-4) affects the

bias and standard error of VE estimates.

Figure 4.1 corresponds to deviations defined in A1. It presents the bias of VE

estimates from TND and CCD for SI and MI with ρβ, vaccine-related ratio in the

probability of non-influenza ARI, ranging from 0.25 to 4 in Scenarios 1, 2 and 3.

The bias plot is the same for all three scenarios. For both TND and CCD, the bias

of VE estimates for SI and MI are the same. For TND, the bias is negative when

ρβ < 1 and becomes positive when ρβ > 1. The absolute bias of TND due to unequal

probabilities of non-influenza ARI may be quite substantial, especially when ρβ < 1,

i.e. when vaccinated persons have a lower probability of non-influenza ARI compared
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Table 4.3: Bias and standard errors of VE estimates for SI and MI from TND and
CCD for scenario 1 when vaccination is random (α0 = α1 = 0.6)

Bias Standard Error
Effect Parameter TND-SI CCD-SI TND-MI CCD-MI TND CCD
A1 ρβ = 0.25 -1.200 0.044 -1.200 0.044 0.218 0.047

ρβ = 0.5 -0.400 0.034 -0.400 0.034 0.105 0.048
ρβ = 1 0.000 0.014 -0.000 0.014 0.056 0.050
ρβ = 2 0.200 -0.036 0.200 -0.036 0.032 0.056
ρβ = 4 0.300 -0.186 0.300 -0.186 0.020 0.075

A2 ηβ = 0.25 -0.000 0.013 -0.000 0.013 0.052 0.050
ηβ = 0.5 0.000 0.013 -0.000 0.013 0.053 0.050
ηβ = 1 0.000 0.014 -0.000 0.014 0.056 0.050
ηβ = 2 0.000 0.015 -0.000 0.015 0.063 0.050
ηβ = 4 0.000 0.018 -0.000 0.018 0.077 0.050

B1 ηγ = 0.25 -0.000 0.006 0.000 0.006 0.067 0.051
ηγ = 0.5 -0.000 0.009 0.000 0.009 0.061 0.051
ηγ = 1 -0.000 0.014 -0.000 0.014 0.056 0.050
ηγ = 2 -0.000 0.024 -0.000 0.024 0.052 0.049
ηγ = 4 -0.000 0.044 0.000 0.044 0.053 0.046

B2 θγ = 0.25 0.000 0.007 0.000 0.007 0.041 0.032
θγ = 0.5 0.000 0.008 0.000 0.008 0.048 0.038
θγ = 1 0.000 0.009 0.000 0.009 0.061 0.051
θγ = 2 0.000 0.009 0.000 0.009 0.088 0.078

C1 ηδ = 0.25 0.000 0.014 -0.000 0.014 0.030 0.050
ηδ = 0.5 -0.000 0.014 -0.000 0.014 0.042 0.050
ηδ = 1 0.000 0.014 -0.000 0.014 0.056 0.050
ηδ = 2 0.000 0.014 -0.000 0.014 0.067 0.050
ηδ = 4 -0.000 0.014 -0.000 0.014 0.075 0.050

C2 θδ = 0.25 0.000 0.014 -0.000 0.014 0.058 0.050
θδ = 0.5 0.000 0.014 -0.000 0.014 0.063 0.050
θδ = 1 0.000 0.014 -0.000 0.014 0.067 0.050
θδ = 2 -0.000 0.014 -0.000 0.014 0.078 0.050
θδ = 4 0.000 0.014 0.000 0.014 0.120 0.050

Note: See text for definition of effects of deviations from baseline assumptions.
Shaded rows correspond to baseline.
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Table 4.4: Bias and standard errors of VE estimates for SI and MI from TND and
CCD for scenario 2 when healthy persons are twice more likely to get vaccination
than frail persons (α0 = 0.4, α1 = 0.8)

Bias Standard Error
Effect Parameter TND-SI CCD-SI TND-MI CCD-MI TND CCD
A1 ρβ = 0.25 -1.200 0.044 -1.200 0.044 0.208 0.047

ρβ = 0.5 -0.400 0.034 -0.400 0.034 0.103 0.048
ρβ = 1 0.000 0.014 -0.000 0.014 0.056 0.051
ρβ = 2 0.200 -0.036 0.200 -0.036 0.033 0.057
ρβ = 4 0.300 -0.186 0.300 -0.186 0.021 0.075

A2 ηβ = 0.25 -0.303 0.025 -0.303 0.025 0.089 0.050
ηβ = 0.5 -0.131 0.021 -0.131 0.021 0.069 0.050
ηβ = 1 0.000 0.014 -0.000 0.014 0.056 0.051
ηβ = 2 0.085 -0.004 0.085 -0.004 0.051 0.053
ηβ = 4 0.133 -0.054 0.133 -0.054 0.052 0.059

B1 ηγ = 0.25 -0.000 0.007 -0.000 0.007 0.039 0.030
ηγ = 0.5 0.000 0.009 0.000 0.009 0.047 0.039
ηγ = 1 0.000 0.014 0.000 0.014 0.056 0.051
ηγ = 2 -0.000 0.021 0.000 0.021 0.067 0.064
ηγ = 4 -0.000 0.033 -0.000 0.033 0.080 0.075

B2 θγ = 0.25 0.000 0.005 0.000 0.005 0.026 0.020
θγ = 0.5 0.000 0.007 0.000 0.007 0.033 0.026
θγ = 1 0.000 0.009 0.000 0.009 0.047 0.039
θγ = 2 0.000 0.011 0.000 0.011 0.074 0.066

C1 ηδ = 0.25 0.000 0.180 -0.172 0.008 0.037 0.030
ηδ = 0.5 0.000 0.109 -0.099 0.010 0.047 0.039
ηδ = 1 0.000 0.014 -0.000 0.014 0.056 0.051
ηδ = 2 0.000 -0.090 0.107 0.017 0.064 0.065
ηδ = 4 0.000 -0.180 0.200 0.020 0.070 0.077

C2 θδ = 0.25 0.163 0.109 0.064 0.010 0.038 0.039
θδ = 0.5 0.085 0.014 0.085 0.014 0.051 0.051
θδ = 1 0.000 -0.090 0.107 0.017 0.064 0.065
θδ = 2 -0.073 -0.180 0.127 0.020 0.080 0.077
θδ = 4 -0.125 -0.243 0.141 0.023 0.109 0.085

Note: See text for definition of effects of deviations from baseline assumptions.
Shaded rows correspond to baseline.
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Table 4.5: Bias and standard errors of VE estimates for SI and MI from TND and
CCD for scenario 3 when frail persons are twice more likely to get vaccination than
healthy persons (α0 = 0.8, α1 = 0.4)

Bias Standard Error
Effect Parameter TND-SI CCD-SI TND-MI CCD-MI TND CCD
A1 ρβ = 0.25 -1.200 0.044 -1.200 0.044 0.234 0.047

ρβ = 0.5 -0.400 0.034 -0.400 0.034 0.110 0.048
ρβ = 1 -0.000 0.014 0.000 0.014 0.057 0.051
ρβ = 2 0.200 -0.036 0.200 -0.036 0.032 0.058
ρβ = 4 0.300 -0.186 0.300 -0.186 0.019 0.078

A2 ηβ = 0.25 0.169 0.002 0.169 0.002 0.031 0.053
ηβ = 0.5 0.092 0.006 0.092 0.006 0.041 0.052
ηβ = 1 -0.000 0.014 0.000 0.014 0.057 0.051
ηβ = 2 -0.087 0.031 -0.087 0.031 0.078 0.049
ηβ = 4 -0.154 0.073 -0.154 0.073 0.108 0.043

B1 ηγ = 0.25 -0.000 0.004 0.000 0.004 0.116 0.088
ηγ = 0.5 0.000 0.008 0.000 0.008 0.079 0.066
ηγ = 1 0.000 0.014 0.000 0.014 0.057 0.051
ηγ = 2 -0.000 0.024 0.000 0.024 0.045 0.041
ηγ = 4 -0.000 0.044 0.000 0.044 0.040 0.034

B2 θγ = 0.25 0.000 0.007 0.000 0.007 0.062 0.049
θγ = 0.5 0.000 0.008 0.000 0.008 0.068 0.055
θγ = 1 0.000 0.008 0.000 0.008 0.079 0.066
θγ = 2 0.000 0.007 0.000 0.007 0.103 0.090

C1 ηδ = 0.25 -0.000 -0.270 0.294 0.024 0.025 0.085
ηδ = 0.5 -0.000 -0.102 0.120 0.018 0.038 0.065
ηδ = 1 -0.000 0.014 0.000 0.014 0.057 0.051
ηδ = 2 -0.000 0.083 -0.072 0.011 0.078 0.043
ηδ = 4 -0.000 0.121 -0.111 0.010 0.099 0.038

C2 θδ = 0.25 -0.233 -0.102 -0.114 0.018 0.083 0.065
θδ = 0.5 -0.087 0.014 -0.087 0.014 0.078 0.051
θδ = 1 -0.000 0.083 -0.072 0.011 0.078 0.043
θδ = 2 0.048 0.121 -0.063 0.010 0.098 0.038
θδ = 4 0.074 0.141 -0.059 0.009 0.250 0.036

Note: See text for definition of effects of deviations from baseline assumptions.
Shaded rows correspond to baseline.
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to unvaccinated persons. For CCD, the bias is positive when ρβ < 1 and becomes

negative when ρβ > 1. The effect of departure of ρβ from one on the bias of CCD

estimates is much smaller than the effect on the bias from TND estimates, and the

impact of ρβ does not depend on the proportion of vaccinated persons.

Figure 4.2 corresponds to the deviations defined in A2. It presents the bias of VE

estimates for SI and MI from TND and CCD with ηβ, health status-related ratio in

the probability of non-influenza ARI, ranging from 0.25 to 4 in Scenarios 1, 2 and 3.

For all three scenarios, the VE estimates for SI and MI are the same for both TND

and CCD. In Scenario 1 (random vaccination), the TND estimate remains unbiased,

while the bias of CCD is positive, small and slightly increases with the increase in ηβ.

In Scenario 2, the bias of TND is negative when ηβ < 1 and becomes positive when

ηβ > 1, while the bias of CCD is positive when ηβ < 1 and becomes negative when

ηβ > 1. The absolute bias of TND is more substantial than that of CCD. In Scenario

3, the bias of TND is positive when ηβ < 1 and becomes negative when ηβ > 1. The

bias of CCD remains positive and increases as ηβ increases. The absolute bias of

TND is again more substantial than that of CCD. In summary, when vaccination is

random, TND is always unbiased and the bias of CCD is also close to 0. However,

when vaccination is not random, the effect of changing ηβ on the bias from CCD is

much smaller than that from TND.

Figure 4.3 corresponds to the deviations defined in B1. It presents the bias of

VE estimates for SI and MI from TND and CCD with ηγ, health status-related ratio

in the probability of influenza ARI, ranging from 0.25 to 4 in Scenarios 1, 2 and 3.

For all three scenarios, the VE estimates for both TND and CCD studies are the

same for SI and MI. The bias of TND remains 0 while the bias of CCD is positive

93



and increases as ηγ increases. The bias of CCD are the same for Scenario 1 and 3,

i.e., when healthy persons have equal or smaller probabilities of vaccination than frail

persons. Compared to Scenarios 1 and 3, the bias of CCD are somewhat smaller in

Scenario 2 when healthy persons have higher probabilities of vaccination than frail

persons. The health status-related ratio in the probability of influenza ARI has no

impact on the VE estimates from TND, which is always unbiased, but a positive

impact on the bias of VE estimates from CCD. Although the VE estimates from

TND is always unbiased, the standard errors of the TND estimates are slightly bigger

than those of the CCD estimates (Table 4.4).

Figure 4.4 corresponds to the deviations defined in B2. It presents the bias of VE

estimates for SI and MI from TND and CCD with θγ, inequality in vaccine related

ratio in the probability of influenza ARI resulted from health status, ranging from

0.25 to 2 in Scenarios 1, 2 and 3. For all three scenarios, the VE estimates for SI and

MI are the same for both TND and CCD, and the bias of TND remains 0 while the

bias of CCD is positive, close to 0 and changes slightly as θγ increases. The bias of

CCD differ slightly across the three scenarios. The inequality in vaccine-related ratio

in the probability of influenza ARI resulting from health status has no impact on

VE estimates from TND, which is always unbiased, and a small impact on CCD VE

estimates. Although the VE estimates from TND is always unbiased, the standard

errors of the TND estimates are slightly bigger than those of the CCD estimates

(Table 4.3-4.5).

Figure 4.5 corresponds to the deviations defined in C1. It presents the bias of VE

estimates for SI and MI from TND and CCD as functions of ηδ, health status-related

ratio in the probability of seeking medical care for ARI, ranging from 0.25 to 4 in
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Scenarios 1, 2 and 3. The TND-SI estimate remains unbiased in all three scenarios.

The TND-MI estimate is only unbiased in Scenario 1 or when ηδ = 1 in Scenarios

2 and 3. Otherwise, the bias of TND-MI is more substantial. The bias of CCD-MI

estimates is small and positive in all three scenarios. The bias of CCD-SI estimates

is the same as that of CCD-MI in Scenario 1, but more substantial than that of

CCD-MI in Scenarios 2 and 3. With the increase of ηδ, the bias of TND-MI change

from negative to positive in Scenario 2 and vice versa in Scenario 3; and the bias of

CCD-SI change from positive to negative in Scenario 2 and vice versa in Scenario 3.

The absolute bias of TND-MI and CCD-SI is about the same for the same value of ηδ.

The heath status-related ratio in the probability of seeking medical care for ARI has

no impact on the bias of TND-SI estimate and little impact on the bias of CCD-MI

estimate. When the vaccination is random, there is no effect of ηδ on the bias of VE

estimates. However, when the vaccination is not random, departure of ηδ from one

increases the biases of TND-MI estimate and the CCD-SI estimate.

Figure 4.6 corresponds to the deviations defined in C2. It presents the bias of VE

estimates for SI and MI from TND and CCD with θδ, inequality in health status-

related ratio in the probability of seeking medical care for ARI resulted from the type

of infection leading to ARI, ranging from 0.25 to 4 in Scenarios 1, 2 and 3. In Scenario

1, the TND-SI and TND-MI are both unbiased and the bias of CCD is a positive and

close to 0. In both Scenarios 2 and 3, TND-SI is only unbiased when θδ = 1 and

the bias of CCD-MI are small and positive. The biases of both TND-SI and CCD-SI

estimates change from positive to negative in Scenario 2 and from negative to positive

in Scenario 3 with the increase of θδ and the absolute bias of TND-SI is bigger than

that of CCD-SI when θδ < 1 but less when θδ > 1. The inequality in heath status-
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related ratio in the probability of seeking medical care for ARI resulted from the type

of infection leading to ARI has no impact on the bias of VE estimates when there is

random vaccination. When the vaccination probability depends on health status, the

effect of changing θδ on the bias of CCD-MI is minimal. The departure of θδ from

one increases the bias of TND-SI and CCD-SI estimates. The impact of changing θδ

on the bias of CCD-MI depends on the vaccination status. The TND estimates are

less precise than CCD estimates. For SI, the absolute bias of CCD is smaller than

that of TND when θδ < 1, and the reverse is true when θδ > 1. For MI, CCD has

smaller bias than TND for all values of θ.

4.3.3 Summary of sources of bias under non-random vacci-

nation

Table 4.6 lists all the situations where severe bias occurres under non-random vacci-

nation scenarios (i.e. scenarios 2 and 3) for each study type. We define severe bias

as the absolute value of bias greater than 0.1 (i.e. |bias| > 0.1).

4.4 Discussion

In this study, we developed a step-wise latent-class model that generates data for

an observational study aimed at estimating VE against medically attended influenza

and symptomatic influenza. The process is composed of five steps: health status,

vaccination, developing of infection and illness, seeking medical care for ARI and

testing for influenza infection. The bias and standard error of VE estimates for both
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Table 4.6: Situations for severe bias (|bias| > 0.1) under non-random vaccination
Source of bias/Scenario Study type Situations for severe bias
A1 (ρβ 6= 1)
2 TND ρβ < 0.8 or ρβ > 1.4

CCD ρβ > 3.0
3 TND ρβ < 0.8 or ρβ > 1.4

CCD ρβ > 3.0
A2 (ηβ 6= 1)
2 TND ηβ < 0.6 or ηβ > 2.4

CCD No severe bias for 0.25 <= ηβ <= 4.0
3 TND ηβ < 0.5 or ηβ > 2.3

CCD No severe bias for 0.25 <= ηβ <= 4.0
B1 (ηγ 6= 1)
2 TND Unbiased regardless of ηγ

CCD No severe bias regardless 0.25 <= ηγ <= 4
3 TND Unbiased regardless of ηγ

CCD No severe bias regardless 0.25 <= ηγ <= 4
B2 (θγ 6= 1)
2 TND Unbiased regardless of θγ

CCD No severe bias regardless 0.25 <= θγ <= 2
3 TND Unbiased regardless of ηγ

CCD No severe bias regardless 0.25 <= θγ <= 2
C1 (ηδ 6= 1)
2 TND-SI Unbiased regardless of ηδ

TND-MI ηδ < 0.5 or ηδ > 1.9
CCD-SI ηδ < 0.5 or ηδ > 2.2
CCD-MI No severe bias regardless of ηδ

3 TND-SI Unbiased regardless of ηδ
TND-MI ηδ < 0.5 or ηδ > 3.2
CCD-SI ηδ < 0.5 or ηδ > 2.6
CCD-MI No severe bias regardless of ηδ

C2 (θδ 6= 1)
2 TND-SI θδ < 0.4 or θδ > 2.8

TND-MI θδ > 0.8
CCD-SI θδ > 1.1
CCD-MI No severe bias regardless of θδ

3 TND-SI θδ < 0.4
TND-MI θδ < 0.3
CCD-SI θδ > 1.3
CCD-MI No severe bias regardless of θδ
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MI and SI based on ordinary case-control study and on test-negative study can be

written in terms of the model parameters. This model facilitates the evaluation and

comparison of the accuracy and precision of two types of estimates from the two study

designs.

Several models and methods for evaluating the bias of influenza VE estimates

from TND studies have been proposed in the past (De Serres et al. 2013, Ferdinands

and Shay 2012, Foppa et al. 2013, Haber et al. 2014, Jackson and Nelson 2013,

Orenstein et al. 2007). Compared to the previous studies, the current model has the

following advantages: (1) we studied the impact of non-random vaccination; (2) we

assumed that the population may be nonhomogeneous with respect to the parameters

determining probabilities of vaccination, infection, illness, and seeking medical care;

(3) we considered two outcomes of interest: SI and MI; and (4) we evaluated the

precision of the VE estimates.

Under the basic assumption that the test has perfect sensitivity and specificity,

we tried to find conditions under which the TND estimates are unbiased. Consider

the following 5 conditions: (1) probability of vaccination does not depend on health

status; (2) probability of non-influenza ARI does not depend on health status (ηβ =

1); (3) probability of non-influenza ARI does not depend on vaccination status (ρβ =

1); (4) probability of seeking medical care against non-influenza ARI does not depend

on health status (ηδ1 = 1); and (5) the ratio comparing healthy and frail persons of

proportion of seeking medical care is the same for influenza and non-influenza ARI

(θδ = 1).

We found that:
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• if condition (1) is satisfied, then only condition (3) is needed for unbiasedness

of the TND estimates for both SI and MI;

• if condition (1) is not satisfied, then TND-MI will be unbiased when (2), (3)

and (4) are met and TND-SI will be unbiased when (2), (3) and (5) are met.

When condition (2), which is the rational for the TND (De Serres et al. 2013), is

violated, the TND-based estimate is always biased (even when vaccination is random)

and it can be severely biased. The CCD-based estimates are also biased. Under this

situation, the absolute bias of CCD-based estimate is usually much smaller than that

of the TND-based estimates. In addition to the non-homogeneity of the probability

of non-influenza ARI, factors related to the probability of influenza ARI, probability

of seeking medical care for ARI and vaccination status affect the bias of CCD-based

estimates. The probability of seeking medical care for ARI affects the the bias of

CCD-SI more than that of CCD-MI. The CCD-based estimates may be unbiased

under an unrealistic situation that vaccine does not affect the probability of having

ARI.

This study has a few limitations: (1) we assume the diagnostic test has perfect

sensitivity and specificity; (2) we assume the probability of seeking medical care

does not depend on vaccination status in persons of the same health status; (3) we

assume that the vaccination status is determined without an error; and (4) all the

parameters in our model remain unchanged throughout the influenza season. We

could eliminate the first three limitations by including additional parameters in the

model, but it would be very difficult to determine the values or reasonable ranges of

these parameters and make the interpretation of results more difficult. Addressing
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limitation (4) would involve assumptions on the infection contact and transmission

processes and on the temporal trends in the values of the parameters. Future work

that involve modeling the influenza infection transmission process and additional

real-life factors will be developed to address this limitation.
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Appendix

Appendix 1.1: Proofs for Proposition 2.2.1

Note that X ∼ Beta-Laplace(µ, a, b, c).

1. The density function of Y = 1−X is

f(y) = π(1− x;µ, a, b, c) ∝ (1− x)a−1xb−1 exp(−c|1− x− µ|),

which implies that 1−X ∼ Beta-Laplace(1− µ, b, a, c).

2.

E(Xn) =

∫ 1

0

1

L(µ, a, b, c)
xn+a−1(1− x)b−1 exp(−c|x− µ|)dx =

L(µ, a+ n, b, c)

L(µ, a, b, c)

3. Given a, b > 0, when c→∞, π(x; a, b, c)→ I[x = µ], thus, E(X)→ µ.
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Appendix 1.2: Derivations for marginal distribu-

tions for Ait and Hit

Noting that if (X1, X2, X3) ∼ Multinormial(p1, p2, p3, N) and N ∼ Poisson(λ), then

the joint distribution of (X1, X2, X3) and N is given by

P (X1, X2, X3, N) =
N !

X1!X2!X3!
pX1
1 pX2

2 pX3
3

λN

N !
e−λ.

Integrating out N from the above joint probability density, we have

P (X1, X2) =
∞∑

N=X1+X2

pX1
1 pX2

2 (1− p1 − p2)N−X1−X2

X1!X2!(N −X1 −X2)!
λN−X1−X2e−λλX1+X2

=
∞∑

N=X1+X2

[(1− p1 − p2)λ]N−X1−X2

(N −X1 −X2)!
e−λ(1−p1−p2)e(p1+p2)λ

pX1
1 pX2

2

X1!X2!
λX1+X2

=
(p1λ)X1

X1!
e−p1λ

(p2λ)X2

X2!
e−p2λ

This implies that X1 and X2 follow independent Poisson distributions. In a similar

fashion of the derivation, it is straightforward to show that if

(Aii, · · · , AiT , Hii, · · · , Hit, UiT ) ∼ Multinormial(qAii , · · · , qAiT , qHii , · · · , qHiT , qUiT , Ni)

and

Ni ∼ Poisson(λi),

Then

Ait ∼ Poisson(qAitλi), and Hit ∼ Poisson(qHit λi), t = i, · · · , T,
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where Ait and Hit are mutually independent.

Appendix 1.3: Full conditional distributions

• Full conditional distribution of pH

π(pH | λ,A,H)

∝
T∏
t=1

e−
∑t
i=1 q

A
itλi

At!
(

t∑
i=1

qAitλi)
At
e−

∑t
i=1 q

H
it λi

Ht!
(

t∑
i=1

qHit λi)
Ht

×
T∏
t=1

(pHt )a2−1(1− pHt )b2−1

B(a2, b2)
×

T∏
t=2

exp{−cpHt |pHt − pHt−1|}

• Full conditional distribution of λ

π(λ | pH ,A,H)

∝
T∏
t=1

e−
∑t
i=1 q

A
itλi

At!
(

t∑
i=1

qAitλi)
At
e−

∑t
i=1 q

H
it λi

Ht!
(

t∑
i=1

qHit λi)
Ht

ba00
Γ(a0)

λa0−1t exp(−b0λt)

×
T∏
t=2

exp{−a|λt − λt−1|}
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Appendix 2.1: Details for the calculation of the

probabilities in Chapter 3

P (M = 1|V = v) =
∑
e

P (M = 1, E = e|V = v)

=
∑
e

P (M = 1|E = e, V = v)P (E = e|V = v)

= 0 +
∑
e=1,2

P (M = 1|E = e, V = v)P (E = e|V = v)

= δ1vβ1v + δ2vβ2v

P (V = v|M = 1) =
P (M = 1|V = v)P (V = v)

P (M = 1)

=
P (M = 1|V = v)P (V = v)∑

v=0,1 P (M = 1|V = v)P (V = v)

=
αv(δ1vβ1v + δ2vβ2v)

α(δ11β11 + δ21β21) + (1− α)(δ10β10 + δ20β20)

P (E = e|M = 1, V = v) =
P (E = e,M = 1|V = v)

P (M = 1|V = v)

=
P (M = 1|E = e, V = v)P (E = e|V = v)

P (M = 1|V = v)

=
δevβev

P (M = 1|V = v)

=
δevβev

δ1vβ1v + δ2vβ2v
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Appendix 2.2: Full conditional distributions

log(π(β10|β20, x, y, δ10, δ20, zδ1 , zδ)

∝ (N11 +N10) log β10 −N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])

log(π(β20|β10, x, y, δ10, δ20, zδ1 , zδ)

∝ (N21 +N20) log β20 −N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])

log(π(x|β10, β20, ρβ2 , δ10, δ20, zδ1 , zδ)

∝ N11x−
x2

2× 0.72
−N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])

log(π(y|β10, β20, x, δ10, δ20, zδ1 , zδ)

∝ N21y −
(y + 0.96)2

2× 0.322
−N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])

log(π(δ10|β10, β20, x, y, δ20, zδ1 , zδ)

∝ (N11 +N10) log δ10 −N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])

log(π(δ20|β10, β20, x, y, δ10, zδ1 , zδ)

∝ (N21 +N20) log δ20 −N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])
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log(π(zδ1|β10, β20, x, y, δ10, z, zδ)

∝ (N11 +N21)zδ1 −
z2δ1

2× 0.72
−N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1)

exp(y)β20] + (1− α)[δ10β10 + δ20β20])

log(π(zδ|β10, β20, x, y, δ10, z, zδ1)

∝ N21zδ −
z2δ

2× 0.72
−N log(α[exp(zδ1)δ10 exp(x)β10 + δ20 exp(zδ) exp(zδ1) exp(y)β20]

+(1− α)[δ10β10 + δ20β20])

Appendix 3.1: True V ETMI and V ETSI

The true VE against SI is:

V ETSI = 1−RRTSI where RRTSI =
P (E = 2 | V = 1)

P (E = 2 | V = 0)

P (E = 2 | V = 1)

=
∑
x=0,1

P (E = 2 | V = 1, X = x)P (X = x | V = 1)

= γ10
α0(1− π)

α0(1− π) + α1π
+ γ11

α1π

α0(1− π) + α1π

=
γ10α0(1− π) + γ11α1π

α0(1− π) + α1π
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where P (X = x | V = v) = P (V=v|X=x)P (X=x)
P (V=v)

and P (V = 1) =
∑

x=0,1 P (V = 1 |

X = x)P (X = x).

P (E = 2 | V = 0)

=
∑
x=0,1

P (E = 2 | V = 0, X = x)P (X = x | V = 0)

= γ00
(1− α0)(1− π)

1− α0(1− π)− α1π
+ γ01

(1− α1)π

1− α0(1− π)− α1π

=
γ00(1− α0)(1− π) + γ01(1− α1)π

1− α0(1− π)− α1π

Therefore,

V ETSI = 1−RRTSI = 1− [γ10α0(1− π) + γ11α1π][1− α0(1− π)− α1π]

[α0(1− π) + α1π][γ00(1− α0)(1− π) + γ01(1− α1)π]
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The true VE against medically-attended influenza is:

V ETMI = 1−RRTSI where RRTMI =
P (E = 2,M = 1 | V = 1)

P (E = 2,M = 1 | V = 0)

P (E = 2,M = 1 | V = 1)

=
∑
x=0,1

P (E = 2,M = 1 | V = 1, X = x)P (X = x | V = 1)

=
∑
x=0,1

P (M = 1 | E = 2, V = 1, X = x)P (E = 2 | V = 1, X = x)P (X = x | V = 1)

= δ20γ10
α0(1− π)

α0(1− π) + α1π
+ δ21γ11

α1π

α0(1− π) + α1π

=
δ20γ10α0(1− π) + δ21γ11α1π

α0(1− π) + α1π

P (E = 2,M = 1 | V = 0)

=
∑
x=0,1

P (E = 2,M = 1 | V = 0, X = x)P (X = x | V = 0)

=
∑
x=0,1

P (M = 1 | E = 2, V = 0, X = x)P (E = 2 | V = 0, X = x)P (X = x | V = 0)

= δ20γ00
(1− α0)(1− π)

1− α0(1− π)− α1π
+ δ21γ01

(1− α1)π

1− α0(1− π)− α1π

=
δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π

1− α0(1− π)− α1π

Therefore,

V ETMI = 1−RRTMI = 1− [δ20γ10α0(1− π) + δ21γ11α1π][1− α0(1− π)− α1π]

[α0(1− π) + α1π][δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π]
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Appendix 3.2: Model-based estimates of VE

The model based estimates from TND study is:

V EA = 1−ORA where ORA = P (CA=1,V=1|M=1)P (CA=0,V=0|M=1)
P (CA=1,V=0|M=1)P (CA=0,V=1|M=1)

Here {CA = 1} = {M = 1, T = 1} and {CA = 0} = {M = 1, T = 0} and ORA can

be written as:

ORA =
P (M = 1, T = 1, V = 1)P (M = 1, T = 0, V = 0)

P (M = 1, T = 1, V = 0)P (M = 1, T = 0, V = 1)

P (M = 1, T = 1, V = 1)

=
∑
x=0,1

P (M = 1, T = 1, V = 1 | X = x)P (X = x)

=
∑
x=0,1

[
∑
e=1,2

P (M = 1, T = 1, V = 1 | E = e,X = x)P (E = e | X = x)]P (X = x)

=
∑
x=0,1

[
∑
e=1,2

P (M = 1, T = 1 | V = 1, E = e,X = x)P (V = 1 | E = e,X = x)

P (E = e | X = x)]P (X = x)

=
∑
x=0,1

[
∑
e=1,2

P (M = 1, T = 1 | V = 1, E = e,X = x)
P (E = e | V = 1, X = x)

P (E = e | X = x)

P (V = 1 | X = x)P (E = e | X = x)]P (X = x)

In the above equation, M and T are independent given V and E. In addition, with

the assumption of perfect sensitivity and specificity, P (T = 1 | E = 1, V = v,X =

x) = 0 and P (T = 1 | E = 2, V = v,X = x) = 1. So the above equation can be
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written as:

P (M = 1, T = 1, V = v)

=
∑
x=0,1

P (T = 1 | E = 2)P (M = 1 | V = v, E = 2, X = x)P (E = 2 | V = v,X = x)

P (V = v | X = x)P (X = x)

Similarly,

P (M = 1, T = 0, V = v)

=
∑
x=0,1

P (T = 0 | E = 1)P (M = 1 | V = v, E = 1, X = x)P (E = 1 | V = v,X = x)

P (V = v | X = x)P (X = x)

Therefore,

P (M = 1, T = 1, V = 1) = δ20γ10α0(1− π) + δ21γ11α1π

P (M = 1, T = 1, V = 0) = δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π

P (M = 1, T = 0, V = 1) = δ10β10α0(1− π) + δ11β11α1π

P (M = 1, T = 0, V = 0) = δ10β00(1− α0)(1− π) + δ11β01(1− α1)π
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Therefore,

V EA = 1− [δ20γ10α0(1− π) + δ21γ11α1π][δ10β00(1− α0)(1− π) + δ11β01(1− α1)π]

[δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π][δ10β10α0(1− π) + δ11β11α1π]

The model based estimates from CC study is:

V EB = 1−ORB where ORB = P (CB=1,V=1|B=1)P (CB=0,V=0|B=1)
P (CB=1,V=0|B=1)P (CB=0,V=1|B=1)

Here {CB = 1} = {CA = 1} = {M = 1, T = 1}, {CB = 0} is a random subset of

{E = 0} and {B = 1} = {CB = 1orCB = 0}. ORB can be written as:

ORB =
P (CB = 1, V = 1)P (CB = 0, V = 0)

P (CB = 1, V = 0)P (CB = 0, V = 1)

=
P (M = 1, T = 1, V = 1)P (E = 0, V = 0)

P (M = 1, T = 1, V = 0)P (E = 0, V = 1)

As shown above,

P (M = 1, T = 1, V = 1) = δ20γ10α0(1− π) + δ21γ11α1π

P (M = 1, T = 1, V = 0) = δ20γ00(1− α0)(1− π) + δ21γ01(1− α1)π

111



For P (E = 0, V = v),

P (E = 0, V = v) =
∑
x=0,1

P (E = 0, V = v | X = x)P (X = x)

=
∑
x=0,1

P (E = 0 | V = v,X = x)P (V = v | X = x)P (X = x)

Because P (E = 0 | V = v,X = x) = 1 − P (E = 1 | V = v,X = x) − P (E = 2 |

V = v,X = x), therefore,

P (E = 0, V = 0) = (1− β00 − γ00)(1− α0)(1− π) + (1− β01 − γ01)(1− α1)π

P (E = 0, V = 1) = (1− β10 − γ10)α0(1− π) + (1− β11 − γ11)α1π

Therefore,

V EB = 1− [δ20γ10α0(1−π)+δ21γ11α1π][(1−β00−γ00)(1−α0)(1−π)+(1−β01−γ01)(1−α1)π]
[δ20γ00(1−α0)(1−π)+δ21γ01(1−α1)π][(1−β10−γ10)α0(1−π)+(1−β11−γ11)α1π]
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