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Abstract 

Blood Microbiota and Type 2 Diabetes: The Role of LPS  
and 16S rRNA in Altered Glucose Metabolism 

By Martha Konar 

Evidence suggests bacterial translocation from the gastrointestinal tract into the systemic 
circulation may contribute to the inflammatory processes associated with the development of 

type 2 diabetes. To evaluate this relationship, a systematic literature review was conducted using 
observational studies published within the past 15 years that measured LPS or 16S rRNA levels 
in the blood of human adults and assessed the association between this exposure and an outcome 

of type 2 diabetes. A search of the published data identified 11 studies that met the established 
criteria from 1,224 records. Analysis of the data revealed that while many studies suggest a 

relationship may be present, aspects of study design and methodology limited the validity of the 
results and the relationship between blood microbiota and type 2 diabetes remains unclear. To 
determine whether bacteria may in fact have a role in this process, additional research will be 

needed that builds upon the lessons learned. In particular, combining large, longitudinal studies 
with random sampling, full reporting of and adjustment for confounding variables, newer 

detection methods using molecular-based techniques and type 2 diabetes diagnostic criteria that 
are testing-based are the key recommendations that will allow us to better ascertain the relevance 

of this unique exposure and its affect on glucose metabolism. 
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I. Introduction 

 

A. Introduction and Rationale 

 Diabetes is a chronic condition with significant morbidity and mortality that, according to 

the World Health Organization (WHO, 2016) and International Diabetes Federation (IDF, 

2019a), affects an estimated 422 million adults (aged over 18 years) to 463 million adults (aged 

20 to 79 years) based on data from 2014 and 2019, respectively, equivalent to approximately 

9.3% of adults worldwide (IDF, 2019a). This condition occurs when the body does not produce 

appropriate levels of insulin, a hormone needed for glucose metabolism, or when the body does 

produce insulin but is unable to use it effectively. The most common types of diabetes include 

type 1, type 2, and gestational diabetes mellitus. 

 In type 1 diabetes, an autoimmune reaction targets the insulin-producing β-cells in the 

pancreas (IDF, 2019a). Without insulin, glucose in the bloodstream cannot enter the body’s cells 

to be used for energy and instead accumulates to high levels in the blood, also known as 

hyperglycemia. This occurs in type 2 diabetes as well but is due to insulin resistance, where the 

failure of the body cells to respond to the hormone leads to increasing levels of insulin in an 

attempt to get them to do so. Their failure to respond, however, leaves blood glucose levels 

elevated resulting in many of the same symptoms and complications. 

 These effects can range from so mild that individuals are unaware they have diabetes 

(American Diabetes Association [ADA], 2019c) to life-threatening (ADA, 2019a). In fact, an 

estimated 50.1% of adults with diabetes, or 231.9 million individuals, do not know they have this 

condition (IDF, 2019a). When symptoms are present, those with diabetes can experience 

increased urination, thirst, hunger, and fatigue (ADA, 2019c). Impaired wound healing and 
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blurry vision can also develop. Many of the symptoms of type 1 and type 2 diabetes overlap, but 

weight loss is associated with type 1 while numbness, tingling, or pain in the extremities is 

common in type 2. This latter set of symptoms typifies peripheral neuropathy, one of the forms 

of nerve damage possible with this condition and one of its many complications (ADA, 2019a). 

Other complications include kidney damage and eye problems such as cataracts, glaucoma, and 

retinopathy. An increased susceptibility to infections and poor circulation can lead to skin and 

foot manifestations like ulcers and amputations. 

 Often these symptoms and complications can be successfully managed, but some like 

diabetic ketoacidosis, which more commonly affects individuals with type 1 diabetes, can lead to 

coma and even death (ADA, 2019a). And because of its chronic nature, some of the features 

described above can progress to kidney failure, blindness, or life-threatening infections. 

Additionally, those with diabetes are at an increased risk for high blood pressure, stroke (ADA, 

2019a), and cardiovascular disease (IDF, 2019a). Other co-morbidities, principal among them 

cancer, further put individuals with type 2 diabetes and high body mass index (BMI) at risk, with 

the likelihood of them developing certain cancers elevated two-fold over what they would 

otherwise be. For these reasons, type 1 and type 2 diabetes are serious conditions with profound 

long-term effects on the individuals who develop them. 

 In contrast, gestational diabetes affects women unable to produce enough insulin to 

overcome the insulin resistance triggered by hormones produced by the placenta, but this is 

typically transient and does not continue beyond pregnancy (IDF, 2019a). It can, however, lead 

to adverse outcomes as these mothers are more likely to have large babies for their gestational 

age making a normal birth more difficult. Furthermore, women who develop gestational diabetes 

are at a higher risk for developing type 2 diabetes, and the risk is higher for their babies as well. 
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With hyperglycemia affecting approximately 15.8% of live births, this represents an estimated 

20.4 million pregnancies impacted by this condition in 2019 alone. 

 All told, the societal and economic impacts of diabetes are significant, with the WHO 

(2018) listing it seventh among the top 10 causes of death worldwide. This equates to 

approximately 1.6 million deaths directly caused by diabetes according to their most recent 

estimates from 2016. Yet, based on data from 2012, high blood glucose causes approximately 2.2 

million additional deaths due to its role in increasing the risk of cardiovascular disease and other 

complications for a yearly total estimated burden of 3.7 million deaths (WHO, 2016). Very 

similar are the 2019 projections by the IDF (2019a) where they estimate 4.2 million deaths to 

result from diabetes and its complications. 

 Harder to estimate, however, is the toll this places on individuals and their families as 

one’s health declines and healthcare expenditures take a larger share of earnings. One way to 

approximate this is by calculating disability-adjusted life years (DALYs) by taking into account 

years of life lost (YLL) from premature mortality and years lost due to disability (YLD) from the 

health consequences of living with this condition (WHO, 2019b). Using this measure, one 

DALY is equivalent to one lost year of healthy life. Based on data from the Global Burden of 

Diseases, Injuries, and Risk Factors Study 2017, a comprehensive assessment of all 

epidemiological data for 359 diseases and injuries in 73 age and sex groups for 195 countries and 

territories over 28 years, diabetes mellitus accounts for approximately 67.9 million all-age 

DALYs on an annual basis worldwide (GBD 2017 DALYs and HALE Collaborators, 2018). 

 As for the economic costs, the most recent estimate from a report by the WHO (2016) 

states that diabetes directly costs the world more than US$ 827 billion annually while a similar 

estimate by the IDF (2019a) puts the cost at US$ 760 billion, a figure that represents 



	 4 

approximately 10% of global health expenditure. In addition to the direct costs are significant 

indirect costs, such as the fact that this condition primarily affects working age individuals with a 

subsequent loss in work and wages when health deteriorates. In the United States alone, an 

estimated US$ 90 billion is lost annually due to the indirect costs of diabetes with global 

estimates at US$ 455 billion in 2015. Taken together, this latter figure comprises 34.7% of the 

global total estimated cost of diabetes annually, which includes both direct and indirect costs—a 

staggering US$ 1.31 trillion in 2015. 

 Of the estimated 463 million adults affected by this condition, approximately 90% have 

type 2 diabetes (IDF, 2019a). This represents a tremendous opportunity for those in public health 

because these numbers are projected to increase to 578 million by 2030, yet many of these cases 

can be prevented (see Figure 1). This is no longer solely the burden of well-developed countries; 

currently, three in four people with diabetes, approximately 79%, live in middle- and low-income 

countries making diabetes a significant global health concern. While the prevalence of diabetes is 

highest in high-incomes countries at approximately 10.4% versus 9.5% and 4.0% in middle- and 

low-income countries, respectively, the burden can often be felt most acutely in poorer regions as 

these frequently have healthcare infrastructures unable to provide the same level of care. 

 Take for instance, the rates of those with diabetes who remain undiagnosed at 

approximately 66.8% in low-income countries compared to 52.6% and 38.3% in middle- and 

high-income countries, respectively (IDF, 2019a). Furthermore, for those with a diagnosis of 

type 2 diabetes, estimates suggest that one in two do not have access to insulin when prescribed, 

with this figure higher in low- and middle-income countries. For example, approximately 86% of 

those in Africa cannot access the insulin they need due to its limited availability and 

affordability. Sometimes these barriers to access result from a complete lack of availability of  
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Figure 1 

Estimated and Projected Number of Adults (Aged 20-79 Years) with Diabetes (in Millions) 

Note. Adapted from Worldwide Toll of Diabetes, by International Diabetes Federation, 2019b 

(https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html). Copyright 2020 by 

the International Diabetes Federation. Adapted with permission. 
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insulin in the health system as a whole or disruptions of the supply in certain areas or within 

levels of a health system. Other times, the high cost of medications prevents individuals and 

families from receiving appropriate care. In low-incomes countries, approximately 26.9% of 

households cannot afford the medication metformin versus 0.7% of households in high-income 

countries. When it comes to insulin, that figure is significantly higher with approximately 63% of 

households in low-income countries unable to afford this medication versus 2.8% of households 

in high-income countries. 

 These delays in diagnosis and the inadequate treatment individuals receive because they 

cannot afford to do otherwise are a significant cause for concern. Worldwide, no region remains 

unaffected by the rise in diabetes, and current projections suggest that many of the poorest 

regions will see the sharpest increases in number of cases (IDF, 2019a). So while on a global 

scale, diabetes cases will rise approximately 51% from 463 million in 2019 to 700 million by 

2045, cases in South-East Asia, the Middle East and North Africa, and Africa will experience a 

74%, 96%, and 143% increase in number of cases, respectively (see Figure 2). With annual 

global health expenditure on diabetes expected to rise alongside these trends from an estimated 

US$ 760 billion in 2019 to US$ 845 billion by 2045 (IDF, 2019a) and estimated losses in 

worldwide gross domestic product (GDP) from both the direct and indirect costs of diabetes at 

US$ 1.7 trillion just from 2011 to 2030 (WHO, 2016), it is undeniable the economic toll diabetes 

has globally. Add to this the individual cost of worsening health and lost years of life—all due to 

a condition that is largely preventable with the appropriate interventions, diagnosis, and 

treatment—and the true price of diabetes worldwide is immeasurable. 

 Key to prevention, therefore, is an understanding of who is at risk and why so that these 

measures, for type 2 diabetes in particular, can be targeted to those in the population most likely 
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Figure 2 

Estimated and Projected Number of Adults (Aged 20-79 Years) with Diabetes Worldwide and by 

Region 

Note. Adapted from IDF Diabetes Atlas, 9th edition (p. 4-5), by International Diabetes 

Federation, 2019a, International Diabetes Federation (https://www.diabetesatlas.org/upload/

resources/2019/IDF_Atlas_9th_Edition_2019.pdf). Copyright 2019 by the International Diabetes 

Federation. Adapted with permission. 
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to benefit. According to the ADA (2019b), risk factors for developing prediabetes, a condition 

that often precedes type 2 diabetes, include being overweight; physically inactive; age 45 and 

older; or being Black, Hispanic/Latino, American Indian, Asian American, or Pacific Islander. 

Those with a parent or sibling with diabetes are at an increased risk as are those with high blood 

pressure, high triglycerides, or low high-density lipoprotein (HDL) cholesterol. Experiencing 

diabetes during a pregnancy or having a diagnosis of Polycystic Ovarian Syndrome are risk 

factors as well. While some of these traits are beyond an individual’s control, many are 

positively influenced by maintaining a healthy lifestyle focused on improving nutrition (ADA, 

2019e) and increasing fitness level (ADA, 2019d). Other recommendations include smoking 

cessation (ADA, 2019f), stress management (Hacket & Steptoe, 2017; Surwit et al., 2002), and 

sleep improvement (Walker, 2017). 

 In the progression towards type 2 diabetes, individuals transition from normal glucose 

regulation to an intermediate state of impaired glucose regulation before ultimately developing 

diabetes (WHO, 2019a). This intermediate state, described as prediabetes by the ADA (2020), is 

identified by the presence of impaired fasting glucose, impaired glucose tolerance, a hemoglobin 

A1C (HbA1C) value of 5.7-6.4% (39-47 mmol/mol), or a combination of these. To determine 

whether an individual has entered into one of these states, clinicians rely on four diagnostic tests. 

Random plasma glucose and fasting plasma glucose measure the level of glucose in plasma, but 

the former is performed at any particular point in time while the latter is after a period of no 

caloric intake for eight hours or more. Two-hour plasma glucose is similar but is measured after 

two hours during an oral glucose tolerance test where the individual first consumes a 75 g oral 

glucose load. In contrast, HbA1C represents blood glucose levels over the previous three months 

by measuring glycated hemoglobin, or glucose bound to hemoglobin, in red blood cells (National 
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Institute of Diabetes and Digestive and Kidney Diseases [NIDDK], 2018). Higher levels of 

glucose in the blood over this period of time lead to higher levels of glycated hemoglobin. 

According to the WHO (2019a), IDF (2019a), and ADA (2020), the values of these various tests 

correspond to the state of glucose regulation, whether impaired fasting glucose, impaired glucose 

tolerance, or diabetes (see Figure 3). One exception, however, is the ADA (2020) defines 

impaired fasting glucose as having a fasting plasma glucose of 5.6-6.9 mmol/L (100-125 mg/dL). 

Another is their use of the term prediabetes as described above. 

 

B. Problem Statement 

 Understanding why an individual with these risk factors develops type 2 diabetes is 

challenging as this condition results from a complex, multifactorial process involving both a 

genetic component and numerous environmental conditions (Tuomi et al., 2014). The distinction 

between type 1 and type 2 diabetes delineates a boundary that is, in actuality, sometimes unclear 

as both are polygenic in origin with over 60 associated genes identified in genome-wide 

association studies; furthermore, individuals have genetic predispositions to both. It is therefore 

likely that multiple overlapping mechanisms exist, and the interplay of this dynamic with 

environmental influences is not fully understood. There is growing consensus, however, that 

many of these pathways involve activation of systemic inflammation as more studies have 

demonstrated a link between inflammatory biomarkers and type 2 diabetes (Dandona et al., 

2004; Lontchi-Yimagou et al., 2013; Pickup, 2004; Shoelson et al., 2006; Wellen & 

Hotamisligil, 2005). Interestingly, a major site for the production of these molecules appears to 

be adipose tissue (Lontchi-Yimagou et al., 2013), but even after adjusting for BMI, that 

association remains (Pickup, 2004). 
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Figure 3 

Diagnostic Criteria for Diabetes, Impaired Glucose Tolerance and Impaired Fasting Glucose 

Note. The American Diabetes Association (2020) defines impaired fasting glucose as having a 

fasting plasma glucose of 5.6-6.9 mmol/L (100-125 mg/dL). Adapted from IDF Diabetes Atlas, 

9th edition (p. 12), by International Diabetes Federation, 2019a, International Diabetes 

Federation (https://www.diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.  

pdf). Copyright 2019 by the International Diabetes Federation. Adapted with permission. 
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 A mechanism that has been suggested to explain this process involves interactions 

between the innate immune system, the acute-phase response, and the hypothalamic-pituitary-

adrenal (HPA) axis (Pickup, 2004). The innate immune system defends against infection and 

injury via a set of reactions that are initiated to neutralize infectious agents, prevent tissue 

damage, and promote a return to homeostasis. Certain cells, both immune cells like macrophages 

but also other cells like adipocytes, contain pattern recognition receptors (PRRs) that recognize 

molecular patterns typical of certain pathogens (Pickup, 2004) as well as endogenous molecules 

from damaged cells (Takeuchi & Akira, 2010). Activating PRRs on or within a cell initiates 

signaling cascades that lead to the production of cytokines like interleukin-6 (IL-6) and tumor 

necrosis factor-α (TNF-α; Pickup, 2004). These inflammatory molecules trigger an acute-phase 

response and stimulate production of acute-phase proteins, mostly by the liver. These proteins 

have various roles but generally serve to prevent further injury and promote healing. Cytokine 

release also causes the brain to release corticotropin-releasing factor from the hypothalamus 

resulting in adrenocorticotropic hormone (ACTH) release from the pituitary, which culminates 

with cortisol release by the adrenal glands. This further stimulates production of acute-phase 

proteins by the liver. Lastly, the brain can also respond to psychological stress by triggering 

cytokine release, so it is capable of producing and mediating inflammation as well (see Figure 4). 

 Numerous authors refer to Hotamisligil et al. (1993) as the first study to demonstrate a 

relationship between an inflammatory marker, TNF-α, and insulin resistance in rodent models 

(Dandona et al., 2004; Lontchi-Yimagou et al., 2013; Wellen & Hotamisligil, 2005). Since then, 

many studies have shown an association between different inflammatory markers and type 2 

diabetes in both animal models and humans (Dandona et al., 2004; Lontchi-Yimagou et al., 

2013; Pickup, 2004; Shoelson et al., 2006; Wellen & Hotamisligil, 2005). Furthermore, clinical 
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Figure 4 

Signaling Pathways of the Innate Immune System, Acute-Phase Response and Hypothalamic-

Pituitary-Adrenal (HPA) Axis 

Note. Adapted from “Inflammation and Activated Innate Immunity in the Pathogenesis of Type 2 

Diabetes,” by J. C. Pickup, 2004, Diabetes Care, 27(3), p. 814 (https://doi.org/10.2337/diacare.

27.3.813). American Diabetes Association Diabetes Care, American Diabetes Association, 2004. 

Copyright and all rights reserved. Material from this publication has been used with the 

permission of American Diabetes Association. Macrophage and brain icons made by Freepik 

from www.flaticon.com. Liver icon made by Nikita Golubev from www.flaticon.com. 

Macrophage and liver icons adapted by Michelle Konar.
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studies have shown that different anti-inflammatory drugs have the ability to lower blood sugar 

levels (Donath, 2016), but treatment of the observed effect between inflammation and type 2 

diabetes, as some are suggesting, does not get to the root cause of this association and has the 

downside of potentially suppressing essential immune pathways (Goldfine & Shoelson, 2017). A 

better long-term approach may be to focus instead on identifying the factors that trigger this 

inflammation so as to prevent its presence and the associated risk of type 2 diabetes. Given 

current trends, a better understanding of this mechanism is a public health imperative as this 

knowledge has the potential to save millions of lives as well as reduce the strain on health 

systems worldwide. 

 Various reasons for this relationship have been proposed. Excluding those for which 

individuals have no control, such as genetics and age, other possible factors include obesity 

(Dandona et al., 2004; Lontchi-Yimagou et al., 2013), nutrition (Dandona et al., 2004; Lontchi-

Yimagou et al., 2013; Pickup, 2004), fitness level, smoking, and stress (Pickup, 2004). These 

areas of further exploration are in line with the risk factors and recommendations provided 

earlier by the ADA (2019b, 2019d, 2019e, 2019f) and other researchers (Hacket & Steptoe, 

2017; Surwit et al., 2002). Additional areas of interest include the role of oxidative stress 

(Dandona et al., 2004; Wellen & Hotamisligil, 2005), gut microbiota, air pollutants, vitamin D 

deficiency, and epigenetic changes, which occur when differences in deoxyribonucleic acid 

(DNA) methylation patterns result in different levels of gene expression (Lontchi-Yimagou et al., 

2013). Yet many of these suggestions fail to consider what the innate immune system is uniquely 

designed for, namely responding to microbial threats while the adaptive immune system prepares 

to respond. 

 This is a tremendous gap in our understanding of this public health problem as our 
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attitudes towards bacteria and other microorganisms have led us to see them as primarily acute 

exposures that result in certain symptoms or disease outcomes separate from those we classify as 

non-communicable. But bacteria are within us, on us, and exist throughout our environment 

(Yong, 2016). Estimates suggest there are roughly 39 trillion microbial cells interacting with the 

30 trillion human cells that make up our bodies. Furthermore, these organisms persist from the 

bottom of ocean trenches all the way into the clouds. So a shift in perspective is necessary where, 

in addition to the traditional environmental exposures and lifestyle factors, we begin to consider 

bacteria and other microorganisms as chronic exposures as well and open up to the possibilities 

that presents for us. One area of interest is the increasing evidence that suggests these organisms 

can be found in the blood, a site typically thought to be sterile (Potgieter et al., 2015). They 

translocate, or move from one body site to another, without causing acute infection. The 

predominant source of this blood microbiota is the gut with studies supporting translocation from 

the oral cavity as well. So taken together, we have a highly significant exposure in a highly 

significant location, yet current thinking has largely overlooked this possibility and the number 

of studies examining it remain limited. This is a mistake and a missed opportunity. 

 As discussed earlier, various cells throughout the body contain PRRs that trigger the 

inflammatory pathways attributed to the development of type 2 diabetes (Pickup, 2004; Takeuchi 

& Akira, 2010). One group of PRRs are toll-like receptors (TLRs), which includes TLR-4. This 

surface receptor is known for binding lipopolysaccharide (LPS), a molecule specific to gram-

negative bacteria, which then initiates the same processes that lead to increased levels of 

cytokines and acute-phase proteins (see Figure 4). Intracellular PRRs also exist that recognize 

viral components while others are secreted and circulate throughout the body, for example C-

reactive protein (CRP), that flag microbial antigens for clearance by the immune system. 
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Therefore, a microbial component could in fact be the trigger that initiates this cascade of events. 

If so, this presents unique opportunities in terms of prevention, diagnosis, and treatment. 

 Rather than watching the number of diabetes cases continue to rise with strategies that 

have thus far been ineffective to curb this trend, we could instead explore an entirely new avenue 

of research and if this relationship does in fact exist, use it to develop novel diagnostic 

techniques that better predict who is at risk of developing type 2 diabetes. This would allow us to 

target therapies where they would have the greatest impact as well as begin to consider whether 

other treatment modalities typically reserved for infectious processes, such as antibiotics and 

vaccines, could have beneficial effects. Additionally, if we better understand the mechanisms 

underlying this association, we could identify relevant upstream factors, perhaps gut microbiota 

balance and intestinal permeability, that play into this process and target new diagnostic and 

treatment strategies towards these factors as well. Ultimately, information is one of our greatest 

tools as public health professionals in affecting change, and understanding the relationship 

between microorganisms and the development of type 2 diabetes places us one step closer 

towards finding real solutions. 

 

C. Purpose Statement 

 In order to determine what is currently known about this relationship and to begin to 

piece together the possible role of bacteria in the development of type 2 diabetes, this systematic 

literature review examined current research focusing on the presence of microbiota in human 

blood and its association with this condition. Studies that detected LPS, also known as 

endotoxin, were taken into consideration as were studies that detected 16S ribosomal ribonucleic 

acid (16S rRNA), a method of identifying bacteria using molecular techniques. Data from the 
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selected studies were then evaluated to determine the strength of this association as well as the 

conclusions that could be drawn from this information. 

 Prior to this, one systematic literature review was published examining studies from 1984 

to 2014 that looked at the presence of LPS in human blood and its role in numerous health 

conditions, including type 2 diabetes (Gnauck et al., 2016). However, as this gained more 

attention in recent years and molecular techniques became both increasingly sophisticated and 

more commonly utilized in research, this review ceased to contain the most current or 

comprehensive information on the topic. Therefore, an updated look into the subject that takes 

into account newer publications with stronger study designs and a shifting focus towards 

molecular methods was required to truly capture what is known about this relationship. 

 

D. Research Questions 

• Question 1: Is the presence of LPS in human blood associated with the presence of or 

 development of type 2 diabetes? 

• Question 2: Is the presence of 16S rRNA in human blood associated with the presence 

 of or development of type 2 diabetes? 

 

E. Significance Statement 

 It is easy to lose sight of the significance of something that cannot be seen. We have, 

since the very beginning, always lived in a microbial context, evolving alongside microbes yet 

unaware of their presence for most of human history (Yong, 2016). With their discovery, 

humanity could, for the first time, understand and address some of the most feared scourges of 

mankind with the unintended consequence of unfortunately locking us into the mindset of 
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microbe as pathogen. 

 What we often fail to recognize is the vastness of the domain of bacteria. They may be 

small and unseen to us but taken together, potentially the greatest form of life in biomass 

(Johnson, 2006). For humans, less than 100 species cause infectious disease while an untold 

number make up the remaining bacterial diversity of the biosphere (Yong, 2016). It is only more 

recently that scientists have begun to see these other microbes as beneficial and for the 

technology necessary to really study them and their relationships with us to become available. 

 Therefore, the research examining the link between blood microbiota and the 

development of type 2 diabetes marks an important shift. We have for the longest time either 

ignored bacteria or tried to get rid of them. Without an overt cause of type 2 diabetes tied to an 

infectious process, we assumed bacteria had no role to play and maintained this perspective for 

years. But our relationship with bacteria is more complex than choosing between pathogen or 

insignificant, and current data suggests a more nuanced view. It is possible for bacteria to have a 

myriad of different roles and for their presence in our bodies to exert an influence we have yet to 

fully understand. 

 At its very simplest, this idea helps to position us to identify individuals at risk of 

developing type 2 diabetes far earlier than would otherwise be possible should the presence of 

LPS or 16S rRNA prove useful as reliable biomarkers. From this, one could then explore other 

bacterial components or markers of bacterial presence to discover which are the strongest 

indicators and find interventions that work long before altered glucose metabolism becomes 

apparent. These interventions may be aimed at the bacteria themselves by adapting treatments 

already in use or towards various upstream factors that likely play a role. 

 This possibility has been overlooked in favor of focusing on lifestyle factors such as diet 
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and exercise. But why do these changes work as well as they do? Diet affects gut microbiota 

balance and intestinal permeability (Gentile & Weir, 2018; Tremaroli & Bäckhed, 2012), which 

appears to be the main source of bacteria present in the blood (Potgieter et al., 2015). Once 

present, it triggers a systemic inflammatory response amplified by adipose tissue (Creely et al., 

2007), which decreases as individuals exercise more and improve their diet. But remove bacteria 

from the blood and you stop the inflammatory response from being amplified by adipose tissue. 

Alter one’s gut microbiota balance and intestinal permeability and you prevent them from 

entering into the circulation in the first place. In all of this, bacteria play a key role. Seeing them 

as such opens up tremendous possibility in terms of prevention and further research. 

 This is why beyond the more immediate gains described above, the most significant may 

be an idea, some of which are the hardest to see when we think we already know. But to take the 

stance that our understanding of any given phenomenon, even its core principles, is complete 

because of where we stand currently and how far we have come to gather and test that 

information would be in error as new details, and sometimes complete revisions of previously 

held knowledge, occur as science progresses. For this is not a static process, but one of continued 

exploration. 

 Had it been assumed that there was no worth in looking at a drop of water through a 

microscope because our understanding of single-celled organisms did not yet exist, we would not 

have seen them (Yong, 2016). Nor would we have challenged the prevailing theory of “miasma,” 

or bad air, to uncover the true cause of cholera in 1854 (Johnson, 2006) leaving John Snow 

thereafter regarded as the father of epidemiology (Centers for Disease Control and Prevention 

[CDC], 2017). Other conditions considered to have no infectious cause have turned out to have 

one after all, such as the relationships between human papilloma virus and cervical cancer 
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(Skloot, 2010), Epstein Barr virus and Burkitt’s lymphoma (Shannon-Lowe & Rickinson, 2019), 

as well as Helicobacter pylori and gastric ulcers (Graham, 2014). 

 That is not to say that all scientific exploration should be pursued, but there is evidence to 

suggest bacteria can be present in the blood, a site where we did not previously believe them to 

be (Potgieter et al., 2015), and this contributes to a systemic inflammatory response that may 

play a role in the development of type 2 diabetes (Creely et al., 2007; Dandona et al., 2004; 

Lontchi-Yimagou et al., 2013; Pickup, 2004; Shoelson et al., 2006; Wellen & Hotamisligil, 

2005). Thus, in summary, not only could this aid in prevention by identifying new biomarkers 

and new intervention strategies but perhaps the greatest benefit may in fact be how the concept 

of bacteria as a chronic exposure changes our thinking about and our approach to the treatment 

of diabetes in ways yet unseen. 

 

F. Definition of Terms 

Adult = 18 years and older 

Significant = p value < 0.05 
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II. Literature Review 

	

 What information is currently known about this relationship was gathered primarily 

through searches of Google Scholar and PubMed although no systematic process was used. 

Topics are organized to first provide an introduction to the microbiome then a closer look at the 

relationship between diet and gut microbiota followed by the relationship between gut 

microbiota and type 2 diabetes. Next is an examination of LPS, proposed mechanisms of entry 

into the systemic circulation, and methods of detection with a similar look at 16S rRNA. Many 

of these interactions are summarized in the directed acyclic graph shown in Figure 5. 

 

A. Exploring Host-Microbiome Interactions 

 We have entered into a new age of scientific inquiry with the development of molecular-

based techniques, allowing us to first map our own human genome to subsequently mapping the 

microbial communities throughout our bodies (Proctor et al., 2019). One of the key efforts in this 

has been the National Institutes of Health (NIH) Human Microbiome Project (HMP), initiated in 

2007 and conducted in two phases. The initial phase, or HMP1, sought to characterize microbial 

communities in the nose, mouth, gut, vagina, and skin of healthy adults with a subset of 

demonstration projects examining certain disease states. This research identified that on their 

own, the composition of these communities, often referred to as the microbiome or microbiota, 

do not consistently correspond with a state of health versus disease; this is likely because there is 

a great deal of variability in microbiota, even among healthy individuals (Huttenhower et al., 

2012). Rather, what did appear consistent were the sets of metabolic pathways that these groups 

of organisms represent (see Figure 6). 

 The following phase, or HMP2, built upon these findings by exploring host-microbiome 
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Figure 5 

Directed Acyclic Graph of the Relationships Between Blood Microbiota, Type 2 Diabetes and 

Associated Variables 

Note. Green = exposure, yellow = outcome, blue = confounder or possible confounder (indicated 

by presence of a dashed arrow), pink = mediator.

Figure 5 

Directed Acyclic Graph of the Relationships Between Blood Microbiota, Type 2 Diabetes and 

Associated Variables 

Note. Green = exposure, yellow = outcome, blue = confounder or possible confounder (indicated 

by presence of a dashed arrow), pink = mediator. 
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Figure 6 

The First Phase (HMP1) and Second Phase (HMP2) of the National Institutes of Health Human 

Microbiome Project 

Note. Adapted from “The Integrative Human Microbiome Project,” by L. M. Proctor, H. H. 

Creasy, J. M. Fettweis, J. Lloyd-Price, A. Mahurkar, W. Zhou, G. A. Buck, M. P. Synder, J. F. 

Strauss, G. M. Weinstock, O. White, and C. Huttenhower, 2019, Nature, 569, p. 642 (https://

doi.org/10.1038/s41586-019-1238-8). CC BY 4.0. 

http://creativecommons.org/licenses/by/4.0/
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interactions as it became clear that the bacteria present from a taxonomic standpoint is not as 

relevant to health outcomes as what those bacteria are doing and how the host responds (Proctor 

et al., 2019). Therefore, developing a functional understanding of the microbiome commenced 

including projects related to preterm birth, inflammatory bowel diseases, and prediabetes as these 

have known microbiome associations. Looking at dynamic molecular activity, these studies 

considered not only the microbial communities but also viruses present in both host and 

microbiome, known as the virome, and how all of these influence gene expression through 

epigenetic changes that affect RNA transcription, protein levels, and metabolism, also referred to 

as metatranscriptomics, metaproteomics, and metabolomics, respectively. Furthermore, host 

immunity was measured with antibody and cytokine profiles, and all of these multi-omic 

analyses occurred at multiple points to examine host-microbiome interactions over time (see 

Figure 6). 

 

B. Relationship Between Diet and Gut Microbiota 

  As research into our microbiota began to identify what a healthy microbiome looks like 

and how it functions, we also became better able to identify the features of an imbalance or 

dysbiosis (Petersen & Round, 2014). These variations in our commensal communities can 

involve a decrease in beneficial organisms, an increase in potentially harmful organisms, 

reduction of overall diversity, or a combination of these. Interestingly, higher levels of gut 

microbial diversity exist in hunter-gatherers and those with rural agrarian diets compared to 

Westerners (Sonnenburg et al., 2016) with the highest levels seen in previously uncontacted 

Yanomami Amerindians (Clemente et al., 2015). One proposed explanation is the shift towards a 

Western diet high in fat and simple sugars and low in dietary fiber that contains an abundance of 
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microbiota-accessible carbohydrates (MACs), the primary source of energy for gut microbiota 

(Sonnenburg et al., 2016).  

In a study in mice with a human microbiota, switching from a high-MAC diet to a low-

MAC diet resulted in a loss of microbial diversity, only some of which was recoverable after 

switching back to a high-MAC diet. Subsequent generations inherited this loss, which was 

further amplified when placed on a low-MAC diet themselves. By generation four, most 

taxonomic groups did not return even after switching back to a high-MAC diet with an 

approximately 68% overall loss of high-confidence operational taxonomic units (OTUs). These 

groups of sequences represent a group of organisms due to the high degree of genetic similarity 

they share with a reference sequence (Nguyen et al., 2016) and were considered high-confidence 

in this study as they were chosen for their prevalence and abundance to ensure reliable and 

consistent detection (see Figure 7). It was shown that, in addition to a loss of organisms, these 

mice also experienced a loss of function whenever all the microbiota with a particular enzyme 

were lost and not recovered. Therefore, this process results not just in changes to microbial 

diversity but also in how the microbiota works and what it can do.. 

 Diets with reduced levels of MACs may not be the sole factor driving this shift in the gut 

microbiome since when we consume less of one substance, we invariably consume more of 

another (Sonnenburg & Bäckhed, 2016). It may be the increase in fat content of diets that plays a 

role, and although the dynamics are not fully understood, the connection to gut microbiota and 

obesity is clear. Firstly, germ-free mice that have no gut microbiota were shown to be resistant to 

weight gain and glucose intolerance on a Western diet until given gut microbiota from obese 

mice, which transferred the obese phenotype to them as well. Furthermore, gut microbiota from 

obese humans had the same effect when transferred to mice (Ridaura et al., 2013); thus, it 
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Figure 7 

Operational Taxonomic Unit (OTU) Abundance in Generations of Mice Switching Between Diets 

Low and High in Microbiota-Accessible Carbohydrates (MACs) 

Note. Taxonomic category indicated above each column by color with green for Bacteroidetes, 

orange for Firmicutes and gray for other. Diet-switching group above and controls below with 

microbiota of each mouse represented by each row. Adapted by permission from Springer 

Nature: Springer Nature Nature “Diet-Induced Extinctions in the Gut Microbiota Compound 

Over Generations,” E. D. Sonnenburg, S. A. Smits, M. Tikhonov, S. K. Higginbottom, N. S. 

Wingren, and J. L. Sonnenburg, Copyright 2016 
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Figure 2 | Inefficient inter-generational transfer of taxa driven to low 
abundance by low dietary MACs. a, Schematic of multigeneration mouse 
experiment. Second- (n = 6), third- (n = 6) and fourth- (n = 6) generation 
mice were weaned onto a low-MAC diet. After mice generated a litter of 
pups that were weaned, low-MAC-diet mice were switched to the high-
MAC diet for 6 weeks. A parallel group of control mice were maintained 
on the high-MAC diet throughout (generation 2, n = 6; generation 3, n = 6; 
generation 4, n = 5). b, Microbiota diversity as measured by Shannon 
index observed in the microbiota of mice at 5 weeks old (top panel, n = 6 
for each group) or 4 weeks after shift to high-MAC diet (bottom panel, 
n = 6 for each group) from three generations of diet-switching mice (grey) 
or control high-MAC-diet mice (black). Error bars are s.e.m, and P values 
are from two-tailed Student’s t-test. c, Principal coordinate analysis of 
UniFrac distance for 16S rRNA amplicon profiles from faecal samples 

collected from first-generation mice from the control group consuming a 
high-MAC diet (green, n = 5) or the diet-switching group from generation 
one (G1; yellow, n = 5), two (G2; blue, n = 6), three (G3; red, n = 6) and 
four (G4; purple, n = 6). d, Heat map of abundance of high-confidence 
OTUs (number of sequencing reads, columns) from the diet-switching 
group (top) and controls (bottom); taxonomic assignment is indicated at 
the top of each column (Bacteroidetes, green; Firmicutes, orange; other, 
grey). Each row represents an individual mouse microbiota from 4 weeks 
post-humanization (initial), while consuming the low-MAC diet (week 9,  
lo, shaded yellow), and 4 weeks after switching to the high-MAC diet 
(week 15, hi, shaded grey). Corresponding time points from controls are 
similarly shaded. n = 5, 6, 6 and 6 for the diet-switching group and n = 5, 
6, 6 and 5 for the control group for generations one to four, respectively.
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Figure 3 | Reintroduction of lost taxa and a 
high-MAC diet restores microbiota diversity and 
composition. a, Schematic of faecal transplant 
mouse experiment. b, Principal coordinate analysis 
of UniFrac distance for 16S rRNA amplicon 
profiles from faecal samples collected from fourth-
generation control mice on a high-MAC diet 
(green, n = 6), fourth-generation diet-switching 
mice that received a faecal transplant (red, n = 3), 
or did not (blue, n = 3). c, Microbiota diversity 
as measured by Shannon index observed in the 
microbiota of mice that received a faecal transplant 
(red, n = 3) or did not (blue, n = 3). A green circle 
denotes the number of OTUs observed in fourth-
generation control mice consuming a high-MAC 
diet (n = 6). Error bars are s.e.m. d, Heat map of 
abundance of high-confidence OTUs (number of 
sequencing reads) from fourth-generation diet-
switching mice (n = 3) 3–14 days after FMT, and 
no-FMT controls (n = 3); taxonomic assignment is 
indicated at the top of each column (Bacteroidetes, 
green; Firmicutes, orange; other, grey). FMT donor 
(fourth-generation control mice, n = 5) and fourth-
generation diet-switching mice (n = 5) 4 weeks 
after consuming high-MAC diet are also shown.
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appears these commensal organisms may be a necessary link between diet and its effects on 

metabolism. Secondly, germ-free mice became less resistant to obesity when on a high-fat diet 

with lower levels of sucrose than that described above, and this protective effect was lost when 

sucrose was not present at all, indicating that increasing the proportion of fat may be the reason 

for the observed effect (Sonnenburg & Bäckhed, 2016). Lastly, different types of fat have 

different influences with unsaturated fat resulting in a gut microbiota that prevents weight gain 

from saturated fat. 

 Others have shown consumption of simple sugars including glucose, sucrose, and 

fructose alters gut microbiota composition in mice (Khan et al., 2020). Alpha diversity is a 

measure of how varied and abundant organisms in a community are while beta diversity is a 

measure of how divergent the composition of one community is from another (Wagner et al., 

2018). Both can be affected by a diet containing simple sugars as it was shown that glucose 

decreased species richness, a change in alpha diversity, whereas sucrose and fructose did not 

(Khan et al., 2020). However, all three sugars caused a change in beta diversity with a significant 

shift in microbial populations from that of controls. Similarly to that described above, the 

downstream effects of these changes were transferred to germ-free mice after colonization with 

microbiota from glucose-fed mice as well as prevented by antibiotic administration, indicating 

once again the role the gut microbiota likely play in modulating the effects of diet. 

 It is challenging, however, to say exactly what dietary factors are responsible, especially 

in humans. Our relationship with diet is complex and difficult to study as dietary interventions 

can be hard to maintain and self-reporting may be inaccurate (Sonnenburg & Bäckhed, 2016). 

Furthermore, different types of fiber, fat, and sugar as well as different proportions in every meal 

make it hard to discern which variations illicit which effects on the gut microbiota. Studies in 
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mice have allowed us to see what happens in more controlled environments, and this is 

beginning to make the relationships involved more clear. 

 

C. Relationship Between Gut Microbiota and Type 2 Diabetes 

 Continued exploration into the connections between the gut microbiota and obesity and 

type 2 diabetes will enable us to say with greater certainty which features contribute to health 

and which to disease as diet alone does not determine outcomes. This has been demonstrated in 

genetically identical mice housed together and fed the same high-fat diet (Burcelin et al., 2002). 

While approximately 47% developed obesity and diabetes, others developed only one condition 

or none at all. The past few years have seen a rapid increase in interest and research in an attempt 

to answer why. Numerous studies have examined various mechanisms to explain the role of gut 

microbiota in metabolic disease with data supporting its influence in glucose metabolism and 

insulin sensitivity, lipid metabolism and energy expenditure, gut permeability, as well as 

inflammation (Gurung et al., 2020). Additionally, from a taxonomic perspective, common 

findings included Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia, and Roseburia 

genera to be negatively associated with the development of type 2 diabetes and Ruminococcus, 

Fusobacterium, and Blautia genera to be positively associated with the development of type 2 

diabetes (see Figure 8). The Lactobacillus genus had varied results (Gurung et al., 2020), which 

may be due to the fact that different species within genera have different roles within the gut 

microbiota and therefore different effects (Moreno-Indias et al., 2014). 

 Interestingly, while broader measures of gut microbiota health such as alpha and beta 

diversity have demonstrated positive associations with type 2 diabetes, other studies have found 

no association (Gurung et al., 2020). This was true as well for the ratio of the phyla Bacteroides 
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Figure 8 

Association Map Between Gut Microbiota Genera, Microbial Products and Host Response 

  

Note. From “Role of Gut Microbiota in Type 2 Diabetes Pathophysiology,” by M. Gurung, Z. Li, 

H. You, R. Rodrigues, D. B. Jump, A. Morgun, and N. Shulzhenko, 2020, EBioMedicine, 51, p. 4 

(https://doi.org/10.1016/j.ebiom.2019.11.051). CC BY-NC-ND. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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to Firmicutes, which has also been explored as a possible marker. These two phyla make up over 

90% of the gut microbiota and display plasticity in that they quickly return to their original 

composition after experiencing a change (Magne et al., 2020). Modern stressors, however, exert 

effects that could lead to chronic modifications of relevance to obesity and type 2 diabetes. Thus, 

it may be more so that great variability exists in study methods or participant characteristics that 

leads to these contradictory results (Magne et al., 2020) in addition to the fact, as mentioned 

previously, that different members of the same taxonomic category may have different roles 

(Moreno-Indias et al., 2014). Furthermore, the relationships between gut microbiota, obesity, and 

type 2 diabetes are complex. We may as yet not fully know which factors are important to 

control for and every person is different. Interventions that work in some individuals have no 

effect in others and possibly depend on existing microbial diversity and functional capacity 

(Sonnenburg & Bäckhed, 2016). What is becoming apparent is the need for further research to 

clarify the mechanisms involved and to identify intervention points as the gut microbiota is a 

potentially powerful factor not only in the development of obesity and type 2 diabetes but also in 

its reversal. 

 

D. LPS, Intestinal Absorption, and the Limulus Amoebocyte Lysate (LAL) Assay 

 Although diet influences the development of type 2 diabetes, perhaps through its effect 

on gut microbiota, additional research suggests there could be more at play to explain why. A 

shift towards a Western diet, with its abundance of fats and carbohydrates, often results in higher 

calories and nutritional density from the foods consumed. This results in weight gain and as the 

body repeatedly contends with elevated glucose levels after a meal, insulin resistance develops 

when the body's cells become less responsive to the elevated insulin levels the pancreatic β-cells 
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produce to maintain homeostasis. Ultimately reaching a state of fatigue, they no longer secrete 

adequate amounts of insulin and type 2 diabetes develops. However, variations in diet also affect 

absorption of intestinal contents as well as gut permeability, an interesting thing to note as the 

gut has an abundance of bacteria that can and do enter into the systemic circulation along with 

food. LPS, found in the outer cell membrane of gram-negative bacteria, contains an inner lipid A 

portion responsible for its toxic activity as well as a core polysaccharide and an antigenic O-

specific polysaccharide (Mahon et al., 2015). The gut is known for being the site in the body 

where numerous members of the family Enterobacteriaceae reside, all gram negative and all 

harboring LPS. Especially after a high-fat meal, studies have shown LPS entering into the 

systemic circulation likely via the absorption of fatty acids following their incorporation into 

chylomicrons (Gnauck et al., 2016). This allows for transcellular passage into the lymphatic 

system thereby bypassing the hepatic-portal vein and clearance by the liver. Normally, bacteria 

and bacterial components that cross into the blood are removed in this manner, but absorption 

along with fats allows for entry into the systemic circulation through the lymphatic system. The 

extent to which this process contributes to the development of type 2 diabetes is unknown, but it 

may be one pathway that induces inflammation and puts an individual at increased risk. 

 This rise in LPS after a high-fat meal has been demonstrated in mice; furthermore, 

maintaining such a diet not only caused LPS levels to remain elevated throughout the day, it also 

shifted gut microbiota towards a higher ratio of LPS-containing bacteria in the first place (Cani 

et al., 2007). The role of the gut microbiota in this process is significant since treatment with 

antibiotics was shown to reduce LPS levels in the blood of mice on a high-fat diet similar to that 

seen in controls as well as improve numerous parameters related to obesity and diabetes such as 

weight gain and plasma glucose levels (Cani et al., 2008). In humans, similar effects have been 
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observed after consuming equicaloric drinks of water, glucose, and cream; of these, only cream 

was associated with elevated levels of LPS in the blood (Deopurkar et al., 2010). Consuming a 

mixed meal, however, reduces this effect as those who ate an equicaloric meal high in fruit and 

fiber with fat making up only 27% of calories experienced no rise in LPS whereas those who ate 

a high-fat, high-carbohydrate meal with fat accounting for 42% of calories did experience a 

significant rise (Ghanim et al., 2009). Determining the role of LPS, especially after a meal when 

it may be elevated, will be important since mice infused with LPS for 4 weeks demonstrated 

changes in glucose and insulin homeostasis as well as weight gain (Cani et al., 2007), which 

indicates a similar process may be occurring in humans. 

 To detect LPS in the blood, researchers have utilized the LAL assay, which uses a protein 

found in the blood of the North American horseshoe crab, or Limulus polyphemus, to initiate a 

clotting cascade (Gnauck et al., 2016). This was discovered when it was noted that L. 

polyphemus blood clots upon exposure to gram-negative bacteria. Thus, a lysate of amoebocytes, 

a cellular component of that blood, began to be used to identify the presence of LPS. Originally, 

the gel-clot LAL assay relied on the formation of a rigid gel, but the improved ability to isolate 

and purify the enzymes and proteins involved in the reaction led to the creation of turbidimetric 

and chromogenic LAL assays. The turbidimetric LAL assay measures the turbidity within the 

sample when exposed to LPS, and the chromogenic LAL assay measures a synthetic 

chromogenic substrate that replaces one of the proteins in the clotting cascade and produces a 

yellow color when activated. Both were approved by the Food and Drug Administration (FDA) 

to quantify LPS in pharmaceuticals and other medical products and have since been adapted by 

researchers for use in animal and human studies, although the assays were not developed nor 

approved for this purpose. 
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E. 16S rRNA, Bacterial Translocation, and Molecular-Based Techniques 

 With newer molecular-based techniques, researchers began to move away from a reliance 

on LPS to gauge bacterial presence in the blood and instead turned towards identifying bacterial 

16S rRNA to provide that information. One of the advantages to this approach is this molecule, a 

subunit of ribosomes, is found in all bacteria and not just those that are gram negative (Matsuda 

et al., 2007). Additionally, multiple copies within each cell make its detection more sensitive 

than assays relying on detection of genomic sequences. But how do these bacteria enter the 

systemic circulation? Intestinal permeability depends upon the regulation of tight junctions 

between epithelial cells, which contain certain transmembrane and peripheral membrane proteins 

including claudins, occludin, and zonula occludens-1 (ZO-1; Turner, 2009). Studies in mice fed a 

high-fat diet have shown a significant reduction in the expression of ZO-1 and increased 

intestinal permeability (Cani et al., 2008). Similar to that described above, this effect resolved 

with antibiotic treatment suggesting that gut microbiota are involved in the regulation of this 

process. However, this may not be sufficient to explain the presence of 16S rRNA in the blood, 

an indicator of intact bacteria. 

 While some have suggested altered expression and distribution of tight junction proteins 

as a mechanism driving gut permeability in obese mice (Everard & Cani, 2013), other research 

supports a different hypothesis. Using fluorescently-labeled Escherichia coli (GFP-E. coli) 

administered to mice on a high-fat diet for one week, it was shown that these organisms adhered 

to gut mucosal surfaces at increased rates compared to controls as well as translocated into the 

blood and mesenteric adipose tissue (Amar et al., 2011a). This adherence continued into the 

fourth week on a high-fat diet at which point the mice had developed diabetes and interestingly, 

co-localization was observed between GFP-E. coli and dendritic cells. These and other 
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phagocytic cells such as macrophages ingest bacteria, and because it was previously shown that 

macrophage infiltration into adipose tissue increases with increasing BMI in humans (Weisberg 

et al., 2003), the study also looked for the presence of GFP-E. coli in mesenteric lymph nodes 

(Amar et al., 2011a). It was found that continued duration on a high-fat diet led not only to 

increased numbers of GFP-E. coli detected in blood and mesenteric adipose tissue but to their 

presence within mesenteric lymph nodes after four weeks as well. Therefore, a connection may 

exist between bacteria and innate immune cells in the gut that is driven by diet and leads to 

changes in adipose tissue. 

 These advances in our understanding of this process would not have be possible without 

developments in molecular-based techniques, which have led us to the point where we can not 

only sequence the full genome of an organism, but can also rapidly sequence the genomes of an 

entire community of microbes. This has led to the creation of databases where researchers can 

compare sequences identified in samples with reference sequences as well as to the growth of 

bioinformatics to analyze the vast quantities of information generated from multi-omic analyses 

that are now exploring metagenomic, metatranscriptomic, metaproteomic, and metabolomic 

relationships between these organisms with health and disease. In the past, it could take years 

and hundreds of thousands of dollars to undertake sequencing projects, but this has changed as 

we moved through the big revolutions that came with shotgun sequencing, next-generation 

sequencing, and single-molecule long-read sequencing (Loman & Pallen, 2015). 

 In shotgun sequencing, genomic material is broken into small fragments, which are 

sequenced individually (National Human Genome Research Institute [NHGRI], n.d.). Software 

then finds where these sequences overlap and uses these data to place fragments into the correct 

order thereby recreating the full genomic sequence (see Figure 9). Next-generation sequencing 
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Figure 9 

Steps Involved in Shotgun Sequencing 

Note. Adapted from Shotgun Sequencing, by National Human Genome Research Institute, n.d. 

(https://www.genome.gov/genetics-glossary/Shotgun-Sequencing). In the public domain.

http://genome.gov
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allows for higher throughput because numerous small fragments can be sequenced 

simultaneously but sacrifices read length and therefore, the ability to reconstruct entire genomes 

as accurate assembly is not possible across long repeats (Loman & Pallen, 2015). This led to the 

development of single-molecule long-read sequencing that allows for sequencing of longer 

fragments (Goodwin et al., 2016). Using this technique, genomic material either moves along a 

bound polymerase that separates fluorophores from dNTPs as they are incorporated into a 

matching DNA strand with the color of light emitted used to generate sequences or moves 

through a nanopore with current passing through to generate shifts in voltage that can be 

interpreted. 

 In preparation for sequencing, nucleic acids may need to be isolated and amplified using 

either polymerase chain reaction (PCR) in the case of DNA or reverse transcription PCR (RT-

PCR) in the case of RNA (Buckingham, 2012). A related technique known as quantitative PCR 

(qPCR), or real-time PCR, allows for measurement of the PCR product during the reaction and 

enables quantification of the starting material (Buckingham, 2012), which can complement or 

compete with next-generation sequencing (Goodwin et al., 2016). To amplify microbial content 

in a sample, these methods require the use of primers specific to either bacteria in general or to 

individual species of interest that will bind to the template (Amar et al., 2011b; Sato et al., 2014). 

This makes 16S rRNA particularly well suited as it contains conserved sequences that remain the 

same in all bacteria interspersed with hypervariable regions that are more unique and can be used 

to identify a sequence as belonging to a single genus or species (Jenkins et al., 2012). This allows 

one to use primers targeting the conserved regions to amplify nucleic acids within the 

hypervariable regions and compare the sequences generated to those within a database (Jenkins 

et al., 2012) or to use more specific primers to look for just the microbiota a researcher may be 
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interested in (Matsuki et al., 2004). 

 This strategy, as compared to using LPS, enables both quantification as well as 

identification, which is significant as LPS molecules are not all the same (Gnauck et al., 2016). 

Variations in the configuration of the inner lipid A portion, which is dependent upon species, 

result in differing levels of endotoxicity as measured by the LAL assay. Therefore, being able to 

not only say bacteria is present in the blood but also which bacteria are present has tremendous 

value. All of this data is suggestive of a possible relationship between bacteria and changes in 

health that result in type 2 diabetes. Using both measures, LPS and 16S rRNA, enables a review 

of what is known from studies before and after this shift towards molecular-based techniques 

occurred. As research continues into the taxonomic and functional changes that happen in 

response to external exposures such as diet, we will begin to better understand the downstream 

factors that result and how the interplay between all these relationships can lead to disease within 

individuals. 
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III. Methods 

 

A. Inclusion Criteria  

 Prior to commencing this systematic literature review, parameters for included studies 

were set forth; these criteria identified cross sectional, cohort, and case-control studies published 

within the past 15 years that examined LPS or 16S rRNA in the blood of human adults, 18 years 

and older, and whether this exposure was associated with an outcome of type 2 diabetes (see 

Figure 10). 

 

B. Exclusion Criteria 

 During this process, exclusion criteria were also implemented to remove records that did 

not meet the parameters set forth for included studies. If these were not clearly present, records 

remained included until the next round of review. 

 

1. Population 

 As the intention of this systematic literature review was to assess studies in 

human adults, any records focused on models of type 2 diabetes either in animals or using 

in vitro methods such as culturing of human cell lines were excluded from consideration. 

Furthermore, records that referred to children or adolescents were excluded as were those 

in which the participants were deceased. 

 

2. Exposure 

 With the goal of identifying the role of bacteria and bacterial components as an 
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Figure 10 

Inclusion Criteria for Studies 

Population Human adults 18 years and older

Intervention or 
Exposure

Presence of LPS or 16S rRNA in blood

Comparison Preferred but not required

Outcome Development of type 2 diabetes

Timing Published within past 15 years

Setting Any setting

Study Design Cross sectional, cohort, case-control

Language Any language
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exposure through the presence of LPS or 16S rRNA in blood, records focused on other 

infectious agents including viruses and helminths were excluded. In addition, although 

originating from bacteria themselves, records examining bacterial metabolites were 

excluded as these are downstream byproducts and do not indicate the presence of intact 

bacteria or parts thereof. Likewise, indirect markers of bacterial presence such as 

antibodies, procalcitonin, LPS-binding protein, and CRP were excluded as these are made 

by the body in response to bacteria but are not bacteria or bacterial components 

themselves. Furthermore, records discussing the cellular proteins which make up the 

multi-receptor complex that binds LPS, namely TLR-4, CD14, and MD-2 (Zanoni & 

Granucci, 2013), were excluded as these are involved in the recognition and signaling 

processes that occur downstream following this exposure. Another category of records 

that were excluded involved treatments that impact bacteria rather than the presence or 

absence of bacteria or bacterial components. These include dietary interventions as well 

as drugs and supplements such as antibiotics, prebiotics, plants, plant extracts, and 

antioxidants in addition to fecal transplantation, probiotics, and probiotic foods where the 

treatment is bacteria itself. 

 A key component in regards to exposure was location, and records examining the 

effect of microbiota in areas other than blood or tissue, such as the gut and mouth, were 

excluded from consideration. The term tissue was included because blood is regarded as a 

connective tissue (MedlinePlus, 2019). In the case of specific bacteria or bacterial 

components, when no mention of location was made or implied using terms such as 

translocation or biomarker, records remained included if the entity was known to enter 

the systemic circulation whereas those that remain primarily localized to a particular site 
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were excluded. Examples include Helicobacter pylori, Mycobacterium spp., and 

Chlamydophila pneumoniae. 

 

3. Outcome 

 Records focused on outcomes such as inflammation that did not also specifically 

mention type 2 diabetes or conditions like insulin resistance that can lead to it were 

excluded from consideration. In addition, records where infection was the outcome rather 

than the exposure were excluded as well. 

 

4. Study Design 

 To identify peer-reviewed cross sectional, cohort, and case-control studies, 

records whose method differed were excluded such as editorials, list of papers of note by 

editors, letters, articles in response to another article, case reports, meeting proceedings, 

conference abstracts, and review protocols. Reviews remained included if no other 

exclusion criteria were present. 

 

C. Search Methods 

 Search terms were generated for use in PubMed and EMBASE (see Figure 11).  As 

microbial influence in the pathogenesis of type 2 diabetes has been largely unexplored, words 

that describe bacteria both more broadly (i.e. microbiota, microbiome, dysbiosis, bacteria, 

metagenome, metagenomic, metatranscriptome, metatranscriptomic) and more narrowly (i.e. 

endotoxin, lipopolysaccharide, 16S ribosomal RNA) were selected in addition to adjective, 

plural, and abbreviated forms of the above. This was done to ensure a sufficiently wide pool of 
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Figure 11 

PubMed and EMBASE Search Strategy 

PubMed Search Strategy

Search Terms Used Entries 
Recovered

1

(“microbiota”[MeSH] OR “microbiota”[TIAB] OR “microbiome”[TIAB] OR “dysbiosis”[MeSH] OR 
“dysbiosis”[TIAB] OR “bacteria”[MeSH] OR “bacteria"[TIAB] OR “bacterial”[TIAB] OR 
“bacteriologic”[TIAB] OR “bacteriological”[TIAB] OR “endotoxins”[MeSH] OR “endotoxin”[TIAB] OR 
“endotoxins”[TIAB] OR “lipopolysaccharides”[MeSH] OR “lipopolysaccharide"[TIAB] OR 
“lipopolysaccharides”[TIAB] OR “LPS”[TIAB] OR “metagenome”[MeSH] OR “metagenomics”[MeSH] 
OR “metagenome”[TIAB] OR “metagenomic”[TIAB] OR “metagenomics”[TIAB] OR 
“metatranscriptome”[TIAB] OR “metatranscriptomic”[TIAB] OR “metatranscriptomics”[TIAB] OR “RNA, 
ribosomal, 16S”[MeSH] OR “16S ribosomal RNA”[TIAB] OR “16S rRNA”[TIAB] OR “shotgun 
sequencing”[TIAB]) AND (”blood”[MeSH] OR “blood”[TIAB]) AND (“diabetes mellitus, type 2”[Majr] 
OR (“type 2”[TI] AND “diabetes”[TI]) OR “type 2 diabetes”[TI])

403

2

(“microbiota”[MeSH] OR “microbiota”[TIAB] OR “microbiome”[TIAB] OR “dysbiosis”[MeSH] OR 
“dysbiosis”[TIAB] OR “bacteria”[MeSH] OR “bacteria"[TIAB] OR “bacterial”[TIAB] OR 
“bacteriologic”[TIAB] OR “bacteriological”[TIAB] OR “endotoxins”[MeSH] OR “endotoxin”[TIAB] OR 
“endotoxins”[TIAB] OR “lipopolysaccharides”[MeSH] OR “lipopolysaccharide"[TIAB] OR 
“lipopolysaccharides”[TIAB] OR “LPS”[TIAB] OR “metagenome”[MeSH] OR “metagenomics”[MeSH] 
OR “metagenome”[TIAB] OR “metagenomic”[TIAB] OR “metagenomics”[TIAB] OR 
“metatranscriptome”[TIAB] OR “metatranscriptomic”[TIAB] OR “metatranscriptomics”[TIAB] OR “RNA, 
ribosomal, 16S”[MeSH] OR “16S ribosomal RNA”[TIAB] OR “16S rRNA”[TIAB] OR “shotgun 
sequencing”[TIAB]) AND (”blood”[Majr] OR “blood”[TI]) AND (“diabetes mellitus, type 2”[MeSH] OR 
(“type 2”[TIAB] AND “diabetes”[TIAB]) OR “type 2 diabetes”[TIAB])

159

3 (“bacteremia”[MeSH] OR “bacteremia”[TIAB] OR “endotoxemia”[MeSH] OR “endotoxemia”[TIAB]) 
AND (“diabetes mellitus, type 2”[Majr] OR (“type 2”[TI] AND “diabetes”[TI) OR “type 2 diabetes”[TI]) 91

EMBASE Search Strategy

Search Terms Used Entries 
Recovered

1

‘microflora’/exp OR ‘dysbiosis’/exp OR ‘bacterium’/exp OR ‘endotoxin’/exp OR ‘lipopolysaccharide’/exp 
OR ‘metagenome’/exp OR ‘metagenomics’/exp OR ‘metatranscriptome’/exp OR ‘metatranscriptomics’/exp 
OR ‘RNA 16S’/exp OR ‘shotgun sequencing’/exp OR (microbiota OR microbiome OR dysbiosis OR 
bacteria OR bacterial OR bacteriologic OR bacteriological OR endotoxin OR endotoxins OR 
lipopolysaccharide OR lipopolysaccharides OR LPS OR metagenome OR metagenomic OR metagenomics 
OR metatranscriptome OR metatranscriptomic OR metatranscriptomics OR ‘16S ribosomal RNA’ OR ‘16S 
rRNA’ OR ‘shotgun sequencing’):ti,ab AND (‘blood’/exp OR blood:ti,ab) AND (‘non insulin dependent 
diabetes mellitus’/exp/mj OR (‘type 2’:ti AND diabetes:ti) OR ‘type 2 diabetes’:ti)

603

2

‘microflora’/exp OR ‘dysbiosis’/exp OR ‘bacterium’/exp OR ‘endotoxin’/exp OR ‘lipopolysaccharide’/exp 
OR ‘metagenome’/exp OR ‘metagenomics’/exp OR ‘metatranscriptome’/exp OR ‘metatranscriptomics’/exp 
OR ‘RNA 16S’/exp OR ‘shotgun sequencing’/exp OR (microbiota OR microbiome OR dysbiosis OR 
bacteria OR bacterial OR bacteriologic OR bacteriological OR endotoxin OR endotoxins OR 
lipopolysaccharide OR lipopolysaccharides OR LPS OR metagenome OR metagenomic OR metagenomics 
OR metatranscriptome OR metatranscriptomic OR metatranscriptomics OR ‘16S ribosomal RNA’ OR ‘16S 
rRNA’ OR ‘shotgun sequencing’):ti,ab AND (‘blood’/exp/mj OR blood:ti) AND (‘non insulin dependent 
diabetes mellitus’/exp OR (‘type 2’:ti,ab AND diabetes:ti,ab) OR ‘type 2 diabetes’:ti,ab) 

234

3 ‘bacteremia’/exp OR ‘endotoxemia’/exp OR (bacteremia OR endotoxemia):ti,ab AND (‘non insulin 
dependent diabetes mellitus’/exp/mj OR (‘type 2’:ti AND diabetes:ti) OR ‘type 2 diabetes’:ti) 129
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studies to capture those focused on this exposure of interest and either paired with the term blood 

to specify body site in search 1 and 2 or replaced with terms already indicating this location (i.e. 

bacteremia, endotoxemia) in search 3. In all searches, these terms for the exposure of interest 

were paired with terms for the outcome of interest, namely type 2 diabetes, and included both 

intact phrasing as well as alternative phrasing where type 2 and diabetes may be written 

separately. If MeSH or Emtree equivalents for any of these terms were available in PubMed or 

EMBASE, respectively, these were included as well. 

 

D. Search Process 

 This systematic literature review had one reviewer and all searches were performed on 

July 3rd, 2019. After saving each individually, searches 1, 2, and 3 were combined within 

PubMed and within EMBASE to remove duplicates resulting in 526 and 834 records retrieved, 

respectively. After applying a filter to limit results to those published within the past 15 years, 

that number changed to 456 and 768 records retrieved, respectively (see Figure 12). These were 

transferred into EndNote version X9.2 with a total of 1,224 records. During manual 

deduplication, identical results were removed if the first author, year of publication, and title 

were an exact match. Otherwise, such as in the case of small variations in spelling, a decision 

was made based on the digital object identifier or if not available, the international standard 

serial number. After this process, the final number of records remaining was 906. 

 All records went through title review and 33 remained after exclusion criteria were 

applied. These then entered abstract review after which, 16 articles were identified for full text 

review. Five reviews were identified (Gnauck et al., 2016; Klekotka et al., 2018; Piya et al., 

2013; Pomytkin et al., 2015; Sato et al., 2017), and any studies cited related to the exposure of 
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Figure 12 

Study Flow Diagram 

Note. Adapted from “Preferred Reporting Items for Systematic Reviews and Meta-analyses: The 

PRISMA Statement,” by D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and The PRISMA 

Group, 2009, PLoS Medicine, 6(7), e1000097 (https://doi.org/10.1371/journal.pmed.1000097). 

CC BY 4.0.
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interest entered title review followed by abstract review. One additional study was identified in 

this manner (Hawkesworth et al., 2013). Of the original 16 articles that entered full text review, 

one study was excluded because no English translation was available (Liu et al., 2013). 

Therefore, the total number of articles requiring full text review was 17 with 11 studies 

ultimately included in the results of this systematic literature review. 

 

E. Extraction 

 Various data were extracted including study design and sample size along with 

descriptive statistics, measurements of LPS or 16S rRNA, type 2 diabetes-related indices, and 

associations between these variables. Descriptive statistics included details and measurements 

such as type 2 diabetes diagnosis method, setting, sex, age, family history of diabetes, BMI, 

dietary macronutrients, physical activity, smoking, blood pressure, and lipid profile. 

Measurements of LPS and 16S rRNA included information regarding fasting status, sample type, 

and assay method in addition to quantitative values. Type 2 diabetes-related indices included 

HbA1C, fasting plasma glucose, two hour plasma glucose, impaired fasting glucose, type 2 

diabetes prevalence, fasting plasma insulin, homeostasis model assessment of insulin resistance 

(HOMA-IR), insulin sensitivity index (ISI), quantitative insulin sensitivity check index 

(QUICKI), disposition index (DI), homeostasis model assessment of β-cell function (HOMA-B), 

and insulinogenic index (IGI). In instances where there were discrepancies between values for a 

particular measure, the value that was reported the same way numerous times was chosen over a 

single value that differed from the others. Otherwise, when all were used equally, the most 

conservative was selected.  
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F. Analysis 

 The data were analyzed and the results of the systemic literature review presented as a 

qualitative synthesis. 

 

G. Reporting 

 While aspects of PRISMA were utilized, such as in the creation of the study flow 

diagram in Figure 12 (Moher et al., 2009), it was not used in its entirety to guide reporting. 

 

H. Limitations 

 One of the greatest challenges was the diversity of language used to describe similar 

observations as the terminology regarding these microbial communities became more consistent 

and widely accepted over time. Some terms have been used interchangeably although subtle 

differences exist between them (Ursell et al., 2012) thereby necessitating a comprehensive 

strategy to identify records most likely to meet the search criteria. However, even with this in 

mind, the process of a systematic literature review may not capture relevant studies in the results 

if the vocabulary used differs from that of the search terms. The use of MeSH and Emtree 

equivalents reduces this likelihood, but in the case of newly published literature, these may not 

yet be assigned (Mao & Lu, 2017). In addition, as an understudied topic, there may be challenges 

researchers face in making their results more widely available. Thus, publication bias could be 

present due to a lack of interest for such manuscripts, especially those with nonsignificant 

findings. 

 Furthermore, in order to narrow in on the relationship between a particular exposure and 

outcome, the selection of individual search terms often comes at the exclusion of others. This can 
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be a difficult balance but is necessary so that specific interactions can be evaluated. To 

accomplish this goal in regards to exposure, the scope of the project remained focused on 

bacteria in general and LPS or 16S rRNA in particular. No other microorganisms or bacterial 

components were included in the search terms. Similarly, in regards to outcome, the scope of the 

project remained focused on type 2 diabetes. No other conditions, even those that may 

subsequently lead to it, were included in the search terms. There may exist studies outside of this 

scope with relevance to the topic; however, this approach was chosen to identify those that 

would most clearly demonstrate a relationship if present. 

 

I. Ethical Considerations 

 This project was not considered human subjects research and therefore, did not require 

approval by the Emory University Institutional Review Board. 
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IV. Results 

 

A. Cross Sectional Studies Examining the Relationship Between LPS and Type 2 Diabetes 

 Of the 11 studies included in this systematic literature review, seven provided data that 

were cross sectional in nature (Al-Obaide et al., 2017; Creely et al., 2007; de Waal et al., 2018; 

Hawkesworth et al., 2013; Huang et al., 2019; Jayashree et al., 2014; Pussinen et al., 2011). One 

study involved random sampling where both LPS and type 2 diabetes status were unknown at the 

time of recruitment (Huang et al., 2019) while five studies involved cross sectional data 

collection where type 2 diabetes status was known and part of the recruitment criteria (Al-Obaide 

et al., 2017; Creely et al., 2007; de Waal et al., 2018; Hawkesworth et al., 2013; Jayashree et al., 

2014). One study provided baseline measurements of LPS and type 2 diabetes status within a 

cohort before those with prevalent diabetes were excluded from further analysis (Pussinen et al., 

2011). 

 

1. Descriptive Statistics 

 Descriptive statistics of the participants in these studies are summarized in Table 

1. Only the sample sizes were available for all studies and ranged from 21 to 7,169 

participants. Six studies provided details about age and five provided details about 

setting, sex, and BMI; these were the next most commonly reported variables. Four 

studies provided complete information regarding type 2 diabetes diagnosis method while 

an additional study provided partial information. These methods were used either on their 

own or in combination to delineate comparison groups with testing being the strongest as 

it relied on measurement of type 2 diabetes-related indices within the study whereas 
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Table 1 

Descriptive Statistics From Cross Sectional Studies Examining the Relationship Between LPS and T2DM 

Study Groups T2DM diagnosis method a Setting b n Sex, n (%) Age (years) Family history, n (%)

Male Female

Al-Obaide et 
al., 2017 c

Control Physician-diagnosed Hospital 20 54.3 ± 3.2 d

T2DM Physician-diagnosed or physician-diagnosed and testing f Hospital 20 64.4 ± 2.3 d

NS

Creely et al., 
2007 c

Control 25 20 (80) g 5 (20) g 48.1 ± 19.2 g

T2DM 25 20 (80) g 5 (20) g 52.2 ± 11.7 g

NS NS

de Waal et al., 
2018 c

Control 11 5 (45.5) 6 (54.5) 48 ± 3.240 d

T2DM 10 5 (50) 5 (50) 57.5 (51 - 67.5)

Hawkesworth 
et al., 2013 c

Non-obese control Community 31 0 (0) 31 (100) 41.5 ± 6.2

Obese control Community 33 0 (0) 33 (100) 43.4 ± 5.4

T2DM Physician-diagnosed Hospital 29 0 (0) 29 (100) 45.1 ± 5.2

p = 0.06

Huang et al., 
2019 i

T1 j Self-reported or testing Research 851 325 (38.2) 526 (61.8) 43.93 ± 15.05

T2 j Self-reported or testing Research 851 372 (43.7) 479 (56.3) 44.62 ± 15.63

T3 j Self-reported or testing Research 851 391 (45.9) 460 (54.1) 48.38 ± 15.76

p = 0.004 p < 0.001

Jayashree et 
al., 2014 c

Control Testing Research 45 25 (55.5) 20 (44.5) 46 ± 9

T2DM Testing Research 45 23 (51.5) 22 (48.5) 51 ± 6

p = 0.402 p < 0.05

Pussinen et 
al., 2011 n

Control Self-reported and physician-diagnosed Community 6,632

T2DM Self-reported or physician-diagnosed Community 537

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. BMI = body mass index; BP = blood pressure; eMERGE = electronic medical records and genomics; EU = endotoxin unit; 
HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; LPS = lipopolysaccharide; NS = non-significant at p < 0.05; SEM = standard error of the mean; T1 = tertile 1 
(LPS < 0.29 EU/ml); T2 = tertile 2 (LPS = 0.29 - 0.52 EU/ml); T2DM = type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Cross sectional data collection. d M ± SEM. e mg/dl. f eMERGE phenotype 
definition for T2DM (Richesson et al., 2013; Pacheco & Thompson, 2011). g Sex-, age-, and BMI-matched. h Hypertension defined as systolic BP > 140 mm Hg. i Cross sectional. j LPS Mdn (IQ) = 
0.36 (0.27 - 0.62) EU/ml. k Estimated by the International Physical Activity Questionnaire. l Unclear whether former smokers were included. m Mean of two measurements. n Baseline measurement 
within a cohort.
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Study Groups BMI (kg/m2) Dietary macronutrients (%) Weekly physical activity, n (%) Smoking, n (%)

Protein Fat Carbohydrate < 0.5 hr 0.5 - 1 hr ≥ 1 hr

Al-Obaide et 
al., 2017 c

Control 28.17 ± 1.1 d 17 32.7 52

T2DM 33.2 ± 2.9 d 12 50.0 47

NS p < 0.05 p < 0.03 NS

Creely et al., 
2007 c

Control 29.5 ± 4.3 g

T2DM 31.8 ± 4.5 g

NS

de Waal et al., 
2018 c

Control

T2DM

Hawkesworth 
et al., 2013 c

Non-obese control 20.8 ± 1.8

Obese control 34.3 ± 4.5

T2DM 33.3 ± 5.7

Huang et al., 
2019 i

T1 j 22.83 ± 3.38 502 (59.0) k 215 (25.3) k 134 (15.7) k 170 (20.0) l

T2 j 23.36 ± 3.55 503 (59.2) k 202 (23.8) k 145 (17.1) k 178 (20.9) l

T3 j 24.28 ± 3.90 509 (59.9) k 193 (22.7) k 148 (17.4) k 177 (20.8) l

p < 0.001 p = 0.732 p = 0.879

Jayashree et 
al., 2014 c

Control 26.9 ± 3.9

T2DM 27.2 ± 6.0

p = 0.766

Pussinen et 
al., 2011 n

Control

T2DM

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. BMI = body mass index; BP = blood pressure; eMERGE = electronic medical records and genomics; EU = endotoxin unit; 
HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; LPS = lipopolysaccharide; NS = non-significant at p < 0.05; SEM = standard error of the mean; T1 = tertile 1 
(LPS < 0.29 EU/ml); T2 = tertile 2 (LPS = 0.29 - 0.52 EU/ml); T2DM = type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Cross sectional data collection. d M ± SEM. e mg/dl. f eMERGE phenotype 
definition for T2DM (Richesson et al., 2013; Pacheco & Thompson, 2011). g Sex-, age-, and BMI-matched. h Hypertension defined as systolic BP > 140 mm Hg. i Cross sectional. j LPS Mdn (IQ) = 
0.36 (0.27 - 0.62) EU/ml. k Estimated by the International Physical Activity Questionnaire. l Unclear whether former smokers were included. m Mean of two measurements. n Baseline measurement 
within a cohort.
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Study Groups Blood pressure (mm Hg) Hypertension (%) Cholesterol (mmol/L) Triglycerides (mmol/L)

Systolic Diastolic Total HDL LDL

Al-Obaide et 
al., 2017 c

Control 195 ± 11 d,e 58 ± 3.3 d,e 72 ± 3.2 d,e 85 ± 4.1 d,e

T2DM 175.7 ± 13 d,e 37.7 ± 3.0 d,e 99 ± 10 d,e 206.9 ± 21 d,e

p < 0.05 p < 0.05 p < 0.03 p < 0.001

Creely et al., 
2007 c

Control

T2DM

de Waal et al., 
2018 c

Control

T2DM

Hawkesworth 
et al., 2013 c

Non-obese control 114.0 ± 14.1 73.3 ± 8.8 6.7 h

Obese control 126.6 ± 19.7 84.0 ± 12.3 26.7 h

T2DM 125.3 ± 17.1 84.2 ± 9.3 13.8 h

Huang et al., 
2019 i

T1 j 126.32 ± 19.22 m 3.09 ± 0.99 1.28 ± 1.12

T2 j 129.62 ± 18.46 m 3.21 ± 0.96 1.39 ± 1.10

T3 j 134.03 ± 20.16 m 3.39 ± 1.01 1.72 ± 1.68

p < 0.001 p < 0.001 p < 0.001

Jayashree et 
al., 2014 c

Control 127 ± 16 80 ± 11 171 ± 37 e 43 ± 5 e 99 ± 28 e 111 ± 40 e

T2DM 132 ± 19 82 ± 11 189 ± 36 e 36 ± 6 e 120 ± 38 e 156 ± 66 e

p = 0.187 p = 0.466 p < 0.01 p < 0.001 p < 0.01 p < 0.001

Pussinen et 
al., 2011 n

Control

T2DM

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. BMI = body mass index; BP = blood pressure; eMERGE = electronic medical records and genomics; EU = endotoxin unit; 
HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; LPS = lipopolysaccharide; NS = non-significant at p < 0.05; SEM = standard error of the mean; T1 = tertile 1 
(LPS < 0.29 EU/ml); T2 = tertile 2 (LPS = 0.29 - 0.52 EU/ml); T2DM = type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Cross sectional data collection. d M ± SEM. e mg/dl. f eMERGE phenotype 
definition for T2DM (Richesson et al., 2013; Pacheco & Thompson, 2011). g Sex-, age-, and BMI-matched. h Hypertension defined as systolic BP > 140 mm Hg. i Cross sectional. j LPS Mdn (IQ) = 
0.36 (0.27 - 0.62) EU/ml. k Estimated by the International Physical Activity Questionnaire. l Unclear whether former smokers were included. m Mean of two measurements. n Baseline measurement 
within a cohort.
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physician-diagnosed utilized healthcare providers or medical records to establish a 

diagnosis. Otherwise, type 2 diabetes status was self-reported by participants. 

Information about blood pressure and lipid profile was less consistent. Three studies 

reported values for systolic blood pressure, two for diastolic blood pressure, and one for 

hypertension. Three studies provided details regarding low-density lipoprotein (LDL) 

cholesterol and triglycerides while two studies provided details regarding total and HDL 

cholesterol. Lastly, information about dietary macronutrients, weekly physical activity, 

and smoking each was available from a single study, and family history of type 2 diabetes 

was not reported by any study. 

 

2. Measurement of LPS 

 At the time of LPS sampling, participants were either fasting or semifasting; 

however, details about fasting status were unknown for two studies (de Waal et al., 2018; 

Jayashree et al., 2014). LPS levels were determined using either serum or platelet poor 

plasma with a range of assays that included enzyme-linked immunosorbent assay 

(ELISA), fluorescent antibody staining, endpoint chromogenic LAL, and kinetic 

chromogenic LAL. These details are presented in Table 2 along with measurements of 

LPS and type 2 diabetes-related indices. In all studies, LPS levels were higher in the type 

2 diabetes group as compared to controls with the exception of one study whose 

comparison groups were based on tertiles of LPS rather than type 2 diabetes status in 

which case, higher levels of LPS corresponded to a higher prevalence of type 2 diabetes 

(Huang et al., 2019). These differences were significant in six of the seven studies 

(Creely et al., 2007; de Waal et al., 2018; Hawkesworth et al., 2013; Huang et al., 2019; 



52

Table 2 

Measurements of LPS and T2DM-Related Indices From Cross Sectional Studies Examining the 

Relationship Between LPS and T2DM 

Study Groups Fasting Sample type Assay method LPS (EU/ml) LPS activity a

Al-Obaide et 
al., 2017 e

Control Fasting Serum ELISA 21.04 (14.12 - 32.9) f

T2DM 36.46 (17.96 - 48.52) f

p = 0.094

Creely et al., 
2007 e

Control Fasting Serum Endpoint chromogenic 
LAL

3.1 ± 1.7 g,h

T2DM 5.5 ± 1.6 g,h

p = 0.0031

de Waal et al., 
2018 e

Control Platelet poor 
plasma

Fluorescent antibody 
staining

0.5612 (0.2898 - 0.6275) k

T2DM 1.847 (1.387 - 2.012) k

p < 0.0001

Hawkesworth 
et al., 2013 e

Non-obese control Fasting Serum Endpoint chromogenic 
LAL

3.89 (3.20 - 4.73) m

Obese control 3.86 (3.30 - 4.52) m

T2DM 5.19 (3.43 - 7.87) m

p = 0.02

Huang et al., 
2019 p

T1 q Fasting Serum Endpoint chromogenic 
LALT2 q

T3 q

Jayashree et 
al., 2014 e

Control Serum Endpoint chromogenic 
LAL

0.47 ± 0.02 l,v,w — l,w

T2DM 0.57 ± 0.028 l,v,w — l,w

p < 0.05 p < 0.05

Pussinen et 
al., 2011 y

Control Semifasting z Serum Kinetic chromogenic 
LAL

62.18 ± 36.77 u

T2DM 70.73 ± 42.62 u

p < 0.001

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; BMI = body mass index; CI = 
confidence interval; DI = disposition index; ELISA = enzyme-linked immunosorbent assay; EU = endotoxin unit; FPG = fasting plasma 
glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HDL = high-density lipoprotein; HOMA-B = homeostasis model 
assessment of beta cell function; HOMA-IR = homeostasis model assessment of insulin resistance; IFG = impaired fasting glucose; IGI = 
insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; LAL = limulus amoebocyte lysate; LPS = lipopolysaccharide; 
QUICKI = quantitative insulin sensitivity check index; SEM = standard error of the mean; T1 = tertile 1 (LPS < 0.29 EU/ml); T2 = tertile 2 
(LPS = 0.29 - 0.52 EU/ml); T2DM = type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a LPS activity = LPS/HDL cholesterol. b Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 
3. c HOMA-IR = fasting serum insulin (mU/L) x FPG (mmol/L)/22.5. d QUICKI = 1/(log(insulin) + log(glucose)). e Cross sectional data 
collection. f ng/ml. g Geometric mean. h Sex-, age-, and BMI-matched. i Serum. j IU/ml. k Mean fluorescence intensity normalized by secondary 
antibody control to account for non-specific binding. l M ± SEM. m Geometric mean (95% CI). n Plasma or serum unspecified. o pg/ml. p Cross 
sectional. q LPS Mdn (IQ) = 0.36 (0.27 - 0.62) EU/ml. r n = 2,494. s N (%) = 247 (9.7). t mU/L. u Log transformed. v Unclear whether EU/ml or 
µg/ml. w Age-adjusted. x mg/dl. y Baseline measurement within a cohort. z Participants asked to fast for 4 hr and avoid heavy meals; Mdn (IQ) = 
5 (3 - 7) hr; no correlation between fasting time and log LPS; additional details about meals unknown.
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Study Groups HbA1C (%) FPG (mmol/L) 2 hr PG (mmol/L) IFG (%) T2DM (%) b

Al-Obaide et 
al., 2017 e

Control

T2DM

Creely et al., 
2007 e

Control 5.6 ± 0.9 h,i

T2DM 8.6 ± 2.5 h,i

p < 0.0001

de Waal et al., 
2018 e

Control

T2DM 7.4 ± 0.456 l

Hawkesworth 
et al., 2013 e

Non-obese control 5.00 (4.84 - 5.17) m 3.5 0.0

Obese control 5.51 (5.23 - 5.80) m 12.5 3.1

T2DM 9.19 (7.75 - 10.89) m 82.1 67.9

Huang et al., 
2019 p

T1 q 5.52 ± 0.70 5.10 ± 0.88 6.30 ± 2.17 r 4.1 s

T2 q 5.59 ± 0.82 5.28 ± 1.05 6.68 ± 2.54 r 8.5 s

T3 q 5.81 ± 1.20 5.62 ± 1.76 7.62 ± 3.79 r 16.5 s

p < 0.001 p < 0.001 p < 0.001 p < 0.001

Jayashree et 
al., 2014 e

Control 5.6 ± 0.4 91 ± 7 x 115 ± 26 x 0.0

T2DM 8.0 ± 2.2 144 ± 62 x 241 ± 92 x 100.0

p < 0.01 p < 0.01 p < 0.01

Pussinen et 
al., 2011 y

Control

T2DM

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; BMI = body mass index; CI = 
confidence interval; DI = disposition index; ELISA = enzyme-linked immunosorbent assay; EU = endotoxin unit; FPG = fasting plasma 
glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HDL = high-density lipoprotein; HOMA-B = homeostasis model 
assessment of beta cell function; HOMA-IR = homeostasis model assessment of insulin resistance; IFG = impaired fasting glucose; IGI = 
insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; LAL = limulus amoebocyte lysate; LPS = lipopolysaccharide; 
QUICKI = quantitative insulin sensitivity check index; SEM = standard error of the mean; T1 = tertile 1 (LPS < 0.29 EU/ml); T2 = tertile 2 
(LPS = 0.29 - 0.52 EU/ml); T2DM = type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a LPS activity = LPS/HDL cholesterol. b Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 
3. c HOMA-IR = fasting serum insulin (mU/L) x FPG (mmol/L)/22.5. d QUICKI = 1/(log(insulin) + log(glucose)). e Cross sectional data 
collection. f ng/ml. g Geometric mean. h Sex-, age-, and BMI-matched. i Serum. j IU/ml. k Mean fluorescence intensity normalized by secondary 
antibody control to account for non-specific binding. l M ± SEM. m Geometric mean (95% CI). n Plasma or serum unspecified. o pg/ml. p Cross 
sectional. q LPS Mdn (IQ) = 0.36 (0.27 - 0.62) EU/ml. r n = 2,494. s N (%) = 247 (9.7). t mU/L. u Log transformed. v Unclear whether EU/ml or 
µg/ml. w Age-adjusted. x mg/dl. y Baseline measurement within a cohort. z Participants asked to fast for 4 hr and avoid heavy meals; Mdn (IQ) = 
5 (3 - 7) hr; no correlation between fasting time and log LPS; additional details about meals unknown.
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Study Groups FPI (pmol/L) Measures of insulin resistance Measures of insulin secretion

HOMA-IR c ISI QUICKI d DI HOMA-B IGI

Al-Obaide et 
al., 2017 e

Control

T2DM

Creely et al., 
2007 e

Control 8.9 ± 1.9 g,h,i,j

T2DM 12.0 ± 1.8 g,h,i,j

p = 0.08

de Waal et al., 
2018 e

Control

T2DM

Hawkesworth 
et al., 2013 e

Non-obese control 4.31 (3.28 - 5.65) m,n,o 0.35 ± 0.08

Obese control 11.08 (9.08 - 13.52) m,n,o 0.25 ± 0.04

T2DM 12.11 (9.71 - 15.09) m,n,o 0.22 ± 0.03

Huang et al., 
2019 p

T1 q 5.45 (4.18 - 7.28) i,t — u

T2 q 6.91 (5.21 - 8.53) i,t — u

T3 q 9.97 (7.63 - 12.82) i,t — u

p < 0.001 p < 0.001

Jayashree et 
al., 2014 e

Control

T2DM

Pussinen et 
al., 2011 y

Control

T2DM

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; BMI = body mass index; CI = 
confidence interval; DI = disposition index; ELISA = enzyme-linked immunosorbent assay; EU = endotoxin unit; FPG = fasting plasma 
glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HDL = high-density lipoprotein; HOMA-B = homeostasis model 
assessment of beta cell function; HOMA-IR = homeostasis model assessment of insulin resistance; IFG = impaired fasting glucose; IGI = 
insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; LAL = limulus amoebocyte lysate; LPS = lipopolysaccharide; 
QUICKI = quantitative insulin sensitivity check index; SEM = standard error of the mean; T1 = tertile 1 (LPS < 0.29 EU/ml); T2 = tertile 2 
(LPS = 0.29 - 0.52 EU/ml); T2DM = type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a LPS activity = LPS/HDL cholesterol. b Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 
3. c HOMA-IR = fasting serum insulin (mU/L) x FPG (mmol/L)/22.5. d QUICKI = 1/(log(insulin) + log(glucose)). e Cross sectional data 
collection. f ng/ml. g Geometric mean. h Sex-, age-, and BMI-matched. i Serum. j IU/ml. k Mean fluorescence intensity normalized by secondary 
antibody control to account for non-specific binding. l M ± SEM. m Geometric mean (95% CI). n Plasma or serum unspecified. o pg/ml. p Cross 
sectional. q LPS Mdn (IQ) = 0.36 (0.27 - 0.62) EU/ml. r n = 2,494. s N (%) = 247 (9.7). t mU/L. u Log transformed. v Unclear whether EU/ml or 
µg/ml. w Age-adjusted. x mg/dl. y Baseline measurement within a cohort. z Participants asked to fast for 4 hr and avoid heavy meals; Mdn (IQ) = 
5 (3 - 7) hr; no correlation between fasting time and log LPS; additional details about meals unknown.



	 55 

Jayashree et al., 2014; Pussinen et al., 2011), yet there was high variability among the 

values. Of the five studies whose assay method included LAL and thus measured LPS in 

EU/ml, or endotoxin units per milliliter, means and geometric means ranged from 0.47 to 

70.73 within groups (Creely et al., 2007; Hawkesworth et al., 2013; Huang et al., 2019; 

Jayashree et al., 2014; Pussinen et al., 2011). LPS measurements from two studies were 

obtained by assay methods that differed with one using ELISA to quantify LPS in 

nanograms per milliliter (Al-Obaide et al., 2017) and the other using fluorescent antibody 

staining to quantify LPS in mean fluorescence intensity as shown in Figure 13 (de Waal 

et al., 2018). Conversion to EU/mL was not available since an EU is a measure of LPS 

activity, not quantity, as determined by the LAL assay after comparison to a standard 

(Gnauck et al., 2016). A final measure of LPS was LPS activity defined as LPS/HDL 

cholesterol, a separate assessment to that described above that takes into account HDL 

cholesterol levels since they may affect the clearance of LPS from the bloodstream 

(Jayashree et al., 2014). Only one study provided this information and found significantly 

higher levels in those with type 2 diabetes as compared to controls. 

 

3. Measurement of Type 2 Diabetes-Related Indices 

 Four studies included information about fasting plasma glucose while three 

provided details regarding type 2 diabetes prevalence and fasting plasma insulin. HbA1C 

values were available for two studies with an additional study providing values for the 

type 2 diabetes group but not for controls. Two-hour plasma glucose was reported by two 

studies as well. Lastly, impaired fasting glucose, HOMA-IR, and QUICKI were each 

provided by one study while ISI, DI, HOMA-B, and IGI were not reported by any study. 
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Figure 13 

Fluorescent Antibody Staining of Platelet Poor Plasma With Anti-E. coli LPS Antibody 

    Control       Type 2 Diabetes 

 

 

Note. Adapted from “Correlative Light-Electron Microscopy Detects Lipopolysaccharide and its 

association with fibrin fibres in Parkinson’s Disease, Alzheimer’s Disease and Type 2 Diabetes 

Mellitus,” by G. M. de Waal, L. Engelbrecht, T. Davis, W. J. S. de Villiers, D. B. Kell, and E. 

Pretorius, 2018, Scientific Reports, 8, Article 16798 p. 7 (https://doi.org/10.1038/

s41598-018-35009-y). CC BY 4.0.

http://creativecommons.org/licenses/by/4.0/
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4. Associations Between LPS and Type 2 Diabetes-Related Indices 

 Statistical analysis of the associations between LPS and various type 2 diabetes-

related indices, as summarized in Table 3, revealed no relationships between fasting 

glucose (Creely et al., 2007), fasting insulin (Hawkesworth et al., 2013), or QUICKI 

index and LPS in two studies. Of the values that indicated a positive association, many 

were weak, age-adjusted correlations between HbA1C, fasting glucose, or two-hour 

plasma glucose with LPS activity (Jayashree et al., 2014). However, there was also a 

significant difference in total cholesterol, LDL cholesterol, and triglycerides between 

those with type 2 diabetes and controls. Further analysis found no correlation between 

total and LDL cholesterol and LPS activity (total: r = 0.137, p = 0.184; LDL: r = 0.179, p 

= 0.198), but there was a weak, age-adjusted, positive correlation between triglycerides 

and LPS activity (r = 0.353, p < 0.001) that was unadjusted for. An additional value 

showed an unadjusted, positive association between fasting glucose and LPS with the 

difference in age between groups analyzed and found to be nonsignificant but no other 

comparisons were made (Hawkesworth et al., 2013). Only one study showed a moderate 

to strong relationship between any type 2 diabetes-related indices and LPS with a 

moderate, unadjusted, positive association between HOMA-IR and LPS (r = 0.692, p < 

0.001) as well as a strong; sex-, age-, and BMI-adjusted; positive association between 

fasting insulin and LPS (r = 0.731, p < 0.001; Creely et al., 2007). It is important to note 

that this relationship was examined in the control group only, which included 25 

participants, and no other information about possible confounding variables was reported. 

 Four studies provided data exploring the relationship between LPS and type 2 

diabetes prevalence (Hawkesworth et al., 2013; Huang et al., 2019; Jayashree et al., 2014; 
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Table 3 

Cross Sectional Associations Between LPS and T2DM-Related Indices

Variable Study Positive association No association p Adjusted for a

S A B L BP LI SE BI

HbA1C b,c Jayashree et al., 2014 d r = 0.334 e < 0.001

FPG c,f Creely et al., 2007 d — g,h NS

Hawkesworth et al., 2013 d 0.24 [0.09 - 0.38] g,i,j,k 0.001

Jayashree et al., 2014 d r = 0.229 e,l 0.026

2 hr PG c,f Jayashree et al., 2014 d r = 0.341 e,l < 0.001

FPI c,m Creely et al, 2007 d r = 0.623g,h,n,o,p < 0.001

r = 0.731g,h,n,o,p < 0.001

Hawkesworth et al., 2013 d 0.20 [-0.12 - 0.51] g,j,k,n,q 0.22

HOMA-IR c,r Creely et al., 2007 d r = 0.692 g,p < 0.001

QUICKI c,s Hawkesworth et al., 2013 d — NS

T2DM t Hawkesworth et al., 2013 d 0.43 [0.16 - 0.70] g,u,v 0.002

— g,u,v < 0.05

Huang et al., 2019 w 2.16 [1.42 - 3.27] x
< 0.001 y

4.59 [3.13 - 6.74] z

2.05 [1.33 - 3.17] x
< 0.001 y

3.28 [2.18 - 4.93] z

Jayashree et al., 2014 d 13.43 [1.998 - 18.9] 0.003

5.45 [0.216 - 6.25] 0.303

Pussinen et al., 2011 aa,bb 1.043 [0.759 - 1.433] g,cc 0.79

1.717 [1.290 - 2.284] g,dd  < 0.001

2.232 [1.689 - 2.949] g,ee < 0.001

1.005 [1.003 - 1.008] g,ff < 0.001

Note. LPS measured in EU/ml. Data presented as OR [95% CI] unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; BMI = body mass 
index; CI = confidence interval; EU = endotoxin unit; FPG = fasting plasma glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; 
HDL = high-density lipoprotein; HOMA-IR = homeostasis model assessment of insulin resistance; LDL = low-density lipoprotein; LPS = 
lipopolysaccharide; NS = non-significant at p < 0.05; OR = odds ratio; Q1 = quartile 1; Q2 = quartile 2; Q3 = quartile 3; Q4 = quartile 4; 
QUICKI = quantitative insulin sensitivity check index; T1 = tertile 1 (LPS < 0.29 EU/ml); T2 = tertile 2 (LPS = 0.29 - 0.52 EU/ml); T2DM = 
type 2 diabetes mellitus; T3 = tertile 3 (LPS > 0.52 EU/ml).  
a Blue = variable adjusted; S = sex; A = age; B = BMI or obesity; L = lifestyle (physical activity, smoking, or drinking); BP = blood pressure 
(systolic); LI = lipid profile (HDL cholesterol, LDL cholesterol, or triglycerides); SE = socioeconomic factors (education, assets owned, water 
within the home, flush toilet, or urban region); BI = biomarkers (zonula occludens-1). b %. c Independent variable. d Cross sectional data 
collection. e LPS activity = LPS/HDL cholesterol. f mmol/L. g LPS log transformed. h Serum. i Glucose log transformed. j Plasma or serum 
unspecified. k β [95% CI]. l mg/dl. m pmol/L. n Insulin log transformed. o IU/ml. p Measured in control group only. q pg/ml. r HOMA-IR = FPI 
(mU/L) x FPG (mmol/L)/22.5 (Matthews et al., 1985; Wallace et al., 2004). s QUICKI = 1/(log(insulin) + log(glucose)). t Dependent variable. u 

T2DM defined as FPG ≥ 7.0 mmol/L (WHO & IDF, 2006), which differs from original group criteria. v Mean difference [95% CI]. w Cross 
sectional. x T2 versus T1. y p for trend. z T3 versus T1. aa Baseline measurement within a cohort. bb LPS quartile ranges unspecified. cc Q2 versus 
Q1. dd Q3 versus Q1. ee Q4 versus Q1. ff Per unit increase.
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Pussinen et al., 2011). One showed no association between these variables once lipid 

profile and biomarkers, specifically ZO-1, were added to the model (Jayashree et al., 

2014). Those that demonstrated a positive relationship included one that examined the 

mean difference between groups and found an association between LPS and type 2 

diabetes after adjusting for age, obesity, and socioeconomic factors (Hawkesworth et al., 

2013). Two showed a strong, positive association with the highest LPS levels 

corresponding to a 2.2- to 3.3-fold greater prevalence of type 2 diabetes, respectively, 

after adjusting for sex and age (quartile 4 (Q4) to quartile 1 (Q1): odds ratio (OR) [95% 

confidence interval (CI)] = 2.232 [1.689-2.949], p < 0.001; Pussinen et al., 2011) or for 

sex, age, BMI, lifestyle, blood pressure, lipid profile, and socioeconomic factors (tertile 3 

(T3) to tertile 1 (T1): OR [95% CI] = 3.28 [2.18-4.93], p for trend < 0.001; Huang et al., 

2019). However, the former used baseline measurements of LPS and type 2 diabetes 

within a cohort. Those with the condition were excluded from further analysis making it 

difficult to determine if any confounding variables were present at a significant level 

whereas the latter compared and adjusted for a wider range of factors. 

 

B. Prospective Cohort Studies Examining the Relationship Between LPS and Type 2 

Diabetes 

 Two studies included in this systematic literature review provided information on LPS 

and the development of type 2 diabetes from prospective cohorts (Camargo et al., 2019; Pussinen 

et al., 2011). One was discussed previously, although with limited data, since it also provided 

cross sectional measures of LPS and type 2 diabetes prevalence at the outset of the study 

(Pussinen et al., 2011). This cohort had a median follow-up period of 10.8 years (Pussinen et al., 
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2011) while the other had a median follow-up period of five years (Camargo et al., 2019). 

 

1. Descriptive Statistics 

 Descriptive statistics of the participants in these studies are summarized in Table 

4. Details regarding type 2 diabetes diagnosis method, setting, sample size, sex, age, 

BMI, total, HDL and LDL cholesterol, as well as triglycerides were available from both 

whereas details regarding family history of type 2 diabetes, dietary macronutrients, 

physical inactivity, smoking, systolic and diastolic blood pressure, as well as 

hypertension were provided by only one. Sample sizes for these two studies were 462 and 

6,632 participants, and neither used self-reported methods to establish a type 2 diabetes 

diagnosis. However, one study chose testing to identify individuals with incident diabetes 

(Camargo et al., 2019) whereas the other did not (Pussinen et al., 2011). 

 

2. Measurement of LPS 

 Participants provided both fasting and semifasting samples in one study (Camargo 

et al., 2019) whereas only semifasting samples were provided in the other (Pussinen et 

al., 2011). These were taken four hours after consuming a standardized mixed meal with 

fat content adjusted by body weight in the former and at a range of times in the latter 

(median = 5; interquartile range = 3-7 hours) with the only instructions being to avoid 

heavy meals. LPS levels were determined using either plasma or serum by endpoint or 

kinetic chromogenic LAL assay. These details are presented in Table 5 along with 

measurements of LPS and type 2 diabetes-related indices.  

In regard to LPS, the two studies provided contradictory results. One found no 
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Table 4 

Descriptive Statistics From Prospective Cohort Studies Examining the Relationship Between LPS and T2DM 

Study Groups T2DM diagnosis method a Setting b n Sex, n (%) Age (years) Family history, n (%)

Male Female

Camargo et 
al., 2019 c

Control Testing d Research 355 302 (85.1) 53 (14.9) 57.33 ± 0.50 e

T2DM Testing d Research 107 87 (81.3) 20 (18.7) 58.75 ± 0.87 e

p = 0.171

Pussinen et 
al., 2011 h

Control Physician-diagnosed Community 6,170 2,962 (50.5) 2,900 (49.5) 53.2 ± 11.0 1,278 (20.7) i

T2DM Physician-diagnosed Community 462 261 (60.1) 173 (39.9) 57.3 ± 9.4 129 (27.9) i

p < 0.001 p < 0.001 p < 0.001

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. BMI = body mass index; HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; LF = low-
fat diet intervention; LPS = lipopolysaccharide; MED = mediterranean diet intervention; SEM = standard error of the mean; T2DM = type 2 diabetes mellitus.  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Median follow-up = 5 years. d (ADA, 2011). e M ± SEM. f Nonsignificant 
difference in LPS between LF and MED. g mg/dl. h Median follow-up = 10.8 years. i Mother or father. j Level 1 on a scale of 1 to 4 from a self-administered questionnaire. k Never = never smoked 
regularly; former = smoked regularly but quit ≥ 1 month ago; current = smoking regularly for ≥ 1 year and within the previous month (Vartiainen et al., 2010). l Mean of two measurements. m 

Hypertension defined as systolic or diastolic BP > 140 or 90 mm Hg, respectively, or antihypertensive medication. n Semifasting. o Log transformed. p Calculated fasting triglycerides (mmol/L) = 1.34 
± 0.85 and 2.01 ± 1.18 for control and T2DM, respectively (p < 0.001); log transformed.
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Study Groups BMI (kg/m2) Dietary macronutrients (%) Physical inactivity, n (%) Smoking, n (%)

Protein Fat Carbohydrate Never Former Current

Camargo et 
al., 2019 c

Control 29.88 ± 0.22 e 15 LF < 30 
MED ≥ 35 f

LF ≥ 55  
MED ≤ 50 f

T2DM 31.39 ± 0.47 e

p = 0.002

Pussinen et 
al., 2011 h

Control 26.7 ± 4.1 1,271 (20.6) j 3,321 (53.8) k 1,507 (24.4) k 1,342 (21.8) k

T2DM 31.6 ± 5.2 169 (36.6) j 234 (50.6) k 117 (25.3) k 111 (24.0) k

p < 0.001 p < 0.001 p = 0.374

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. BMI = body mass index; HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; LF = low-
fat diet intervention; LPS = lipopolysaccharide; MED = mediterranean diet intervention; SEM = standard error of the mean; T2DM = type 2 diabetes mellitus.  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Median follow-up = 5 years. d (ADA, 2011). e M ± SEM. f Nonsignificant 
difference in LPS between LF and MED. g mg/dl. h Median follow-up = 10.8 years. i Mother or father. j Level 1 on a scale of 1 to 4 from a self-administered questionnaire. k Never = never smoked 
regularly; former = smoked regularly but quit ≥ 1 month ago; current = smoking regularly for ≥ 1 year and within the previous month (Vartiainen et al., 2010). l Mean of two measurements. m 

Hypertension defined as systolic or diastolic BP > 140 or 90 mm Hg, respectively, or antihypertensive medication. n Semifasting. o Log transformed. p Calculated fasting triglycerides (mmol/L) = 1.34 
± 0.85 and 2.01 ± 1.18 for control and T2DM, respectively (p < 0.001); log transformed.
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Study Groups Blood pressure (mm Hg) Hypertension, n (%) Cholesterol (mmol/L) Triglycerides (mmol/L)

Systolic Diastolic Total HDL LDL

Camargo et 
al., 2019 c

Control 160.65 ± 1.62 e,g 44.58 ± 0.53 e,g 91.10 ± 1.33 e,g 119.45 ± 3.24 e,g

T2DM 164.97 ± 3.41 e,g 43.52 ± 1.04 e,g 93.40 ± 2.66 e,g 132.60 ± 6.60 e,g

p = 0.217 p = 0.355 p = 0.421 p = 0.059

Pussinen et 
al., 2011 h

Control 138.3 ± 20.4 l 83.8 ± 10.8 l 3,080 (50.0) m 5.7 ± 1.0 1.40 ± 0.36 3.61 ± 0.91 1.48 ± 0.95 n,o,p

T2DM 148.3 ± 20.0 l 88.7 ±11.5 l 341 (73.8) m 5.9 ± 1.1 1.21 ± 0.33 3.81 ± 0.94 2.19 ± 1.30 n,o,p

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. BMI = body mass index; HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; LF = low-
fat diet intervention; LPS = lipopolysaccharide; MED = mediterranean diet intervention; SEM = standard error of the mean; T2DM = type 2 diabetes mellitus.  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Median follow-up = 5 years. d (ADA, 2011). e M ± SEM. f Nonsignificant 
difference in LPS between LF and MED. g mg/dl. h Median follow-up = 10.8 years. i Mother or father. j Level 1 on a scale of 1 to 4 from a self-administered questionnaire. k Never = never smoked 
regularly; former = smoked regularly but quit ≥ 1 month ago; current = smoking regularly for ≥ 1 year and within the previous month (Vartiainen et al., 2010). l Mean of two measurements. m 

Hypertension defined as systolic or diastolic BP > 140 or 90 mm Hg, respectively, or antihypertensive medication. n Semifasting. o Log transformed. p Calculated fasting triglycerides (mmol/L) = 1.34 
± 0.85 and 2.01 ± 1.18 for control and T2DM, respectively (p < 0.001); log transformed.
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Table 5 

Measurements of LPS and T2DM-Related Indices From Prospective Cohort Studies Examining the Relationship Between LPS and 

T2DM 

Study Groups Fasting Sample type Assay method LPS (EU/ml) Baseline ΔLPS 3 year ΔLPS a HbA1C (%) FPG (mmol/L)

Camargo et 
al., 2019 g

Control Fasting and semifasting h Plasma Endpoint chromogenic LAL i — j,k — k,l,m,n — k,l,m,n 5.86 ± 0.02 o 92.59 ± 0.53 o,p

T2DM — j,k — k,m,s,t — k,m,n,u 6.03 ± 0.03 o 96.18 ± 1.04 o,p

NS p = 0.925 p = 0.252 p < 0.001 p = 0.002

Pussinen et 
al., 2011 v

Control Semifasting w Serum Kinetic chromogenic LAL 61.06 ± 36.11 k 5.06 ± 0.63 q,x,y

T2DM 77.03 ± 42.03 

k
5.84 ± 1.92 q,x,y

p < 0.001 p < 0.001

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; BMI = body mass index; DI = disposition index; EU = endotoxin unit; FPG = fasting plasma 
glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HOMA-B  = homeostasis model assessment of beta cell function; HOMA-IR = homeostasis model assessment of insulin resistance; 
IFG = impaired fasting glucose; IGI = insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; LAL = limulus amoebocyte lysate; LPS = lipopolysaccharide; NS = non-significant 
at p < 0.05; OGTT = oral glucose tolerance test; QUICKI = quantitative insulin sensitivity check index; SEM = standard error of the mean; T2DM = type 2 diabetes mellitus.  
a ΔLPS = change in LPS between fasting and semifasting. b Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 3. c HOMA-IR = fasting insulin (µIU/
ml) x fasting glucose (mmol/ml)/22.5 (Blanco-Rojo et al., 2016; Song et al., 2007). d ISI = 10,000/√(fasting insulin (pmol/L) x fasting glucose (mmol/L) x mean OGTT insulin (pmol/L) x mean OGTT 
glucose (mmol/L)) (Blanco-Rojo et al., 2016). e DI = ISI x (AUC30 min insulin/AUC30 min glucose), where AUC30 min is the area under the curve between baseline and 30 min of the OGTT for insulin (pmol/
L) and glucose (mmol/L), respectively, calculated by the trapezoidal method (Blanco-Rojo et al., 2016). f IGI = (30 min insulin (pmol/L) - fasting insulin (pmol/L))/(30 min glucose (mmol/L) - fasting 
glucose (mmol/L)) (Blanco-Rojo et al., 2016). g Median follow-up = 5 years. h Semifasting samples taken 4 hours after consuming a standardized mixed meal with fat content adjusted by body weight. 
i (Lonza, n.d.-b). j Fasting. k Log transformed. l Within control group at 5 years. m Sex-, age-, and BMI-adjusted. n p within group = NS. o M ± SEM. p mg/dl. q Serum. r mU/L. s Within T2DM group at 5 
years. t p within group < 0.05. u Within T2DM group at 3 years (n = 78 out of 107). v Median follow-up = 10.8 years. w Participants asked to fast for 4 hr and avoid heavy meals; Mdn (IQ) = 5 (3 - 7) 
hr; no correlation between fasting time and log LPS; additional details about meals unknown. x Semifasting. y n = 5,691.



65

Study Groups 2 hr PG (mmol/L) IFG (%) T2DM (%) b FPI (pmol/L) Measures of insulin resistance Measures of insulin secretion

HOMA-IR c ISI d QUICKI DI e HOMA-B IGI f

Camargo et 
al., 2019 g

Control 0.0 8.34 ± 0.31 o,q,r 2.58 ± 0.09 o 4.32 ± 0.14 o 1.03 ± 0.03 o 1.08 ± 0.06 o

T2DM 0.0 10.51 ± 0.66 o,q,r 3.37 ± 0.30 o 3.35 ± 0.20 o 0.83 ± 0.05 o 0.64 ± 0.30 o

p = 0.001 p = 0.001 p = 0.001 p = 0.003 p = 0.025

Pussinen et 
al., 2011 v

Control

T2DM

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; BMI = body mass index; DI = disposition index; EU = endotoxin unit; FPG = fasting plasma 
glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HOMA-B  = homeostasis model assessment of beta cell function; HOMA-IR = homeostasis model assessment of insulin resistance; 
IFG = impaired fasting glucose; IGI = insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; LAL = limulus amoebocyte lysate; LPS = lipopolysaccharide; NS = non-significant 
at p < 0.05; OGTT = oral glucose tolerance test; QUICKI = quantitative insulin sensitivity check index; SEM = standard error of the mean; T2DM = type 2 diabetes mellitus.  
a ΔLPS = change in LPS between fasting and semifasting. b Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 3. c HOMA-IR = fasting insulin (µIU/
ml) x fasting glucose (mmol/ml)/22.5 (Blanco-Rojo et al., 2016; Song et al., 2007). d ISI = 10,000/√(fasting insulin (pmol/L) x fasting glucose (mmol/L) x mean OGTT insulin (pmol/L) x mean OGTT 
glucose (mmol/L)) (Blanco-Rojo et al., 2016). e DI = ISI x (AUC30 min insulin/AUC30 min glucose), where AUC30 min is the area under the curve between baseline and 30 min of the OGTT for insulin (pmol/
L) and glucose (mmol/L), respectively, calculated by the trapezoidal method (Blanco-Rojo et al., 2016). f IGI = (30 min insulin (pmol/L) - fasting insulin (pmol/L))/(30 min glucose (mmol/L) - fasting 
glucose (mmol/L)) (Blanco-Rojo et al., 2016). g Median follow-up = 5 years. h Semifasting samples taken 4 hours after consuming a standardized mixed meal with fat content adjusted by body weight. 
i (Lonza, n.d.-b). j Fasting. k Log transformed. l Within control group at 5 years. m Sex-, age-, and BMI-adjusted. n p within group = NS. o M ± SEM. p mg/dl. q Serum. r mU/L. s Within T2DM group at 5 
years. t p within group < 0.05. u Within T2DM group at 3 years (n = 78 out of 107). v Median follow-up = 10.8 years. w Participants asked to fast for 4 hr and avoid heavy meals; Mdn (IQ) = 5 (3 - 7) 
hr; no correlation between fasting time and log LPS; additional details about meals unknown. x Semifasting. y n = 5,691.
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significant differences between those with type 2 diabetes and controls, which included 

comparisons of fasting LPS levels at baseline as well as the change in LPS levels 

between fasting and semifasting at baseline and three years into the study (Camargo et 

al., 2019). However, when a comparison was made between baseline measurements of 

fasting and semifasting LPS levels within each group, there was a significant increase in 

LPS following the standardized mixed meal after adjusting for sex, age, and BMI in those 

who developed type 2 diabetes at 5 years that was not present in controls at 5 years. A 

similar assessment between three year measurements of fasting and semifasting LPS 

levels after the standardized mixed meal did not find a significant difference in those who 

developed type 2 diabetes at 3 years (n = 87 out of 107). In comparison, the other study 

showed significantly higher semifasting LPS levels in the type 2 diabetes group as 

compared to controls (Pussinen et al., 2011). 

 

3. Measurement of Type 2 Diabetes-Related Indices 

 Details regarding fasting plasma glucose were provided by two studies while 

those regarding HbA1C, type 2 diabetes prevalence, fasting plasma insulin, HOMA-IR, 

ISI, DI, and IGI were each provided by one. No studies reported information about two-

hour plasma glucose, impaired fasting glucose, QUICKI, and HOMA-B. 

 

4. Associations Between LPS and Type 2 Diabetes-Related Indices 

 Statistical analysis of the associations between LPS and various type 2 diabetes-

related indices, as summarized in Table 6, revealed both studies showed a moderate to 

strong, positive association between the highest LPS levels (Pussinen et al., 2011), or 
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Table 6 

Prospective Cohort Associations Between LPS and T2DM-Related Indices

Variable Study Positive association No association p Adjusted for a

S A F B L BP LI SE BI T2

T2DM b Camargo et al., 2019 c 1.752 [0.966 - 3.177] d,e,f,g NS

2.074 [1.147 - 3.747] d,e,g,h < 0.05

Pussinen et al., 2011 i 1.073 [0.768 - 1.498] e,j 0.681
< 0.001 k1.703 [1.255 - 2.309] e,l 0.001

2.751 [2.071 - 3.654] e,m < 0.001

0.939 [0.652 - 1.351] e,j,n 0.733
0.012 k1.233 [0.885 - 1.718] e,l,n 0.216

1.518 [1.090 - 2.114] e,m,n 0.013

1.008 [1.006 - 1.010] e,n,o < 0.001

1.004 [1.001 - 1.007] e,.n,o 0.019

Note. LPS measured in EU/ml. Data presented as HR [95% CI] unless otherwise indicated. BMI = body mass index; CI = confidence interval; EU = endotoxin unit; HbA1C = hemoglobin A1C; HDL 
= high-density lipoprotein; HR = hazard ratio; ISI = insulin sensitivity index; LPS = lipopolysaccharide; NS = non-significant at p < 0.05; Q1 = quartile 1 (LPS = 2.40 - 38.10 EU/ml); Q2 = quartile 2 
(LPS = 38.20 - 54.10 EU/ml); Q3 = quartile 3 (LPS = 54.20 - 77.0 EU/ml); Q4 = quartile 4 (LPS = 77.10 - 475.8 EU/ml); T1 = tertile 1; T2 = tertile 2; T2DM = type 2 diabetes mellitus; T3 = tertile 3.  
a Blue = variable adjusted; S = sex; A = age; F = family history; B = BMI; L = lifestyle (diet, physical activity, or smoking); BP = blood pressure (hypertension); LI = lipid profile (total cholesterol, 
HDL cholesterol, or triglycerides); SE = socioeconomic factors (education); BI = biomarkers (gamma-glutamyltransferase or C-reactive protein); T2 = T2DM-related indices (HbA1C or ISI). b 

Dependent variable. c Median follow-up = 5 years. d Association between baseline LPS fold change = semifasting LPS/fasting LPS and T2DM at 5 years. e LPS log transformed. f T2 versus T1. g LPS 
fold change tertile ranges unspecified. h T3 versus T1. i Median follow-up = 10.8 years. j Q2 versus Q1. k p for trend. l Q3 versus Q1. m Q4 versus Q1. n Adding semifasting serum glucose (n = 5,691) or 
replacing semifasting with calculated fasting triglycerides did not notably affect the results. o Per unit increase.
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highest change in LPS levels (Camargo et al., 2019), corresponding to a 1.5- to 2.1-fold 

higher risk of incident type 2 diabetes, respectively, after adjusting for sex, age, family 

history, BMI, lifestyle, blood pressure, lipid profile, socioeconomic factors, and 

biomarkers, specifically gamma-glutamyltransferase and CRP, in the former (Q4 to Q1: 

hazard ratio (HR) [95% CI] = 1.518 [1.090-2.114], p = 0.013, p for trend = 0.012) or for 

sex, age, BMI, lifestyle, lipid profile, and type 2 diabetes-related indices, specifically 

HbA1C and ISI, in the latter (T3 to T1: HR [95% CI] = 2.074 [1.147-3.747], p < 0.05).  

 

C. Studies Examining the Relationship Between 16S rRNA and Type 2 Diabetes 

 As the method of using 16S rRNA to identify bacteria was developed more recently, only 

three studies in this systematic literature review utilized this approach to examine the 

relationship between bacteria in the blood and the development of type 2 diabetes (Amar et al., 

2011b; Qui et al., 2019; Sato et al., 2014). Each adopted a different study design: one looked at a 

prospective cohort with a follow-up period of 9 years (Amar et al., 2011b), another chose a 

nested case-control design with a follow-up period of 2 years (Qui et al., 2019), and the final 

approach analyzed data from a cross sectional study (Sato et al., 2014). 

 

1. Descriptive Statistics 

 Descriptive statistics of the participants in these studies are summarized in Table 

7. All provided data on type 2 diabetes diagnosis method, setting, sample size, sex, age, 

BMI, total cholesterol, and triglycerides. Information about smoking, hypertension, and 

HDL cholesterol were reported by two studies while family history of type 2 diabetes, 

dietary macronutrients, systolic and diastolic blood pressure, as well as LDL cholesterol 
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Table 7 

Descriptive Statistics From Studies Examining the Relationship Between 16S rRNA and T2DM

Study Groups T2DM diagnosis method a Setting b n Sex, n (%) Age (years) Family history, n (%)

Male Female

Amar et al., 
2011b c,d

Control Physician-diagnosed or testing Research 3,149 1,516 (48) 1,633 (52) 47 ± 10 574 (18)

T2DM Physician-diagnosed or testing Research 131 98 (75) 33 (25) 51 ± 9 30 (23)

p = 0.0001 p = 0.0001 p = 0.2

Qui et al., 
2019 i,j

Control Physician-diagnosed Research 100 64 (64) k 36 (36) k 51.98 ± 8.05 k

T2DM Physician-diagnosed Research 50 35 (70) k 15 (30) k 51.64 ± 6.18 k

p = 0.465 p = 0.775

Sato et al., 
2014 n

Control Testing Hospital 50 26 (52) 24 (48) 60.2 ± 12.9

T2DM Physician-diagnosed Hospital 50 26 (52) 24 (48) 62.5 ± 10.8

NS NS

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 16S rRNA = 16S ribosomal ribonucleic acid; BDHQ = brief-type self-administered diet history questionnaire; BMI = body 
mass index; BP = blood pressure; HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; NS = non-significant at p < 0.05; T2DM = type 2 diabetes mellitus.  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Prospective cohort. d Follow-up = 9 years. e Former smokers not included. f 

Hypertension defined as systolic or diastolic BP ≥ 140 or 90 mm Hg, respectively, or antihypertensive medication. g n = 3,242. h Log transformed. i Nested case-control. j Follow-up = 2 years. k Sex- 
and age-matched. l Unclear whether former smokers were included. m Hypertension criteria unspecified. n Cross sectional data collection. o Dietary habits in the preceding month assessed by BDHQ. p 

mg/dl.
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Study Groups BMI (kg/m2) Dietary macronutrients (%) Physical inactivity, n (%) Smoking, n (%)

Protein Fat Carbohydrate

Amar et al., 
2011b c,d

Control 23.8 ± 2.8 586 (19) e

T2DM 25.8 ± 2.5 36 (27) e

p = 0.0001 p = 0.01

Qui et al., 
2019 i,j

Control 23.42 ± 2.93 k 45 (45) k,l

T2DM 25.14 ± 2.88 k 21 (42) k,l

p = 0.001 p = 0.727

Sato et al., 
2014 n

Control 21.7 (20.9 - 23.5) 17.5 ± 3.0 o 28.6 ± 5.1 o 53.9 ± 6.6 o

T2DM 25.5 (23.5 - 30.8) 17.1 ± 3.5 o 26.8 ± 5.7 o 56.1 ± 7.9 o

p < 0.01 NS NS NS

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 16S rRNA = 16S ribosomal ribonucleic acid; BDHQ = brief-type self-administered diet history questionnaire; BMI = body 
mass index; BP = blood pressure; HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; NS = non-significant at p < 0.05; T2DM = type 2 diabetes mellitus.  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Prospective cohort. d Follow-up = 9 years. e Former smokers not included. f 

Hypertension defined as systolic or diastolic BP ≥ 140 or 90 mm Hg, respectively, or antihypertensive medication. g n = 3,242. h Log transformed. i Nested case-control. j Follow-up = 2 years. k Sex- 
and age-matched. l Unclear whether former smokers were included. m Hypertension criteria unspecified. n Cross sectional data collection. o Dietary habits in the preceding month assessed by BDHQ. p 

mg/dl.
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Study Groups Blood pressure (mm Hg) Hypertension, n (%) Cholesterol (mmol/L) Triglycerides (mmol/L)

Systolic Diastolic Total HDL LDL

Amar et al., 
2011b c,d

Control 984 (31) f 5.69 ± 0.97 0.90 (0.65 - 1.28) g,h

T2DM 71 (54) f 6.01 ± 1.10 1.29 (0.97 - 1.78) g,h

p = 0.0001 p = 0.0002

Qui et al., 
2019 i,j

Control 119.68 ± 14.50 k 77.96 ± 9.82 k 6 (6) k,m 4.54 ± 0.87 k 1.17 (0.95 - 1.48) k 2.80 (2.32 - 3.60) k 1.26 (0.93 - 1.79) k

T2DM 128.64 ± 20.61 k 82.78 ± 12.94 k 12 (24) k,m 4.92 ± 0.97 k 0.99 (0.84 - 1.35) k 3.16 (2.49 - 3.60) k 2.04 (1.34 - 3.09) k

p = 0.007 p = 0.023 p = 0.001 p = 0.017 p = 0.013 p = 0.057 p < 0.001

Sato et al., 
2014 n

Control 212.9 ± 28.1 p 61.5 ± 16.3 p 109.5 ± 83.3 p

T2DM 190.3 ± 45.5 p 46.8 ± 13.9 p 124.9 ± 59.1 p

p < 0.01 p < 0.01 p < 0.05

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 16S rRNA = 16S ribosomal ribonucleic acid; BDHQ = brief-type self-administered diet history questionnaire; BMI = body 
mass index; BP = blood pressure; HDL = high-density lipoprotein; IQ = interquartile range; LDL = low-density lipoprotein; NS = non-significant at p < 0.05; T2DM = type 2 diabetes mellitus.  
a Physician-diagnosed = physician or medical record indicated T2DM diagnosis, medication or both; testing = measurement of T2DM-related indices; self-reported = T2DM status provided by 
participants. b Community = general population; hospital = outpatient clinic; research = participants from existing studies. c Prospective cohort. d Follow-up = 9 years. e Former smokers not included. f 

Hypertension defined as systolic or diastolic BP ≥ 140 or 90 mm Hg, respectively, or antihypertensive medication. g n = 3,242. h Log transformed. i Nested case-control. j Follow-up = 2 years. k Sex- 
and age-matched. l Unclear whether former smokers were included. m Hypertension criteria unspecified. n Cross sectional data collection. o Dietary habits in the preceding month assessed by BDHQ. p 

mg/dl.
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were reported by one. No studies provided details regarding physical inactivity. Sample 

sizes ranged from 100 to 3,280 participants, and none used self-reported methods to 

establish a type 2 diabetes diagnosis. These three studies instead used testing, physician-

diagnosed, or a combination to determine comparison groups. 

 

2. Measurement of 16S rRNA 

 Participants provided fasting samples and either plasma or peripheral blood 

leukocytes were used to assess 16S rRNA by targeting the gene encoding it (16S rDNA) 

or 16S rRNA directly. The assay methods varied and included qPCR, reverse 

transcription qPCR (RT-qPCR), and next-generation sequencing. These details are 

presented in Table 8 along with measurements of 16S rRNA and type 2 diabetes-related 

indices. Overall, two of the three studies showed significantly higher 16S rDNA or 16S 

rRNA in the type 2 diabetes group as compared to controls by either measuring the 

concentration (Amar et al., 2011b) or determining the rate of detection in participants 

(Sato et al., 2014). However, one used peripheral blood leukocytes to do so, and there 

was a significant difference in leukocyte count between the two groups (control: 6.3 ± 1.7 

x 109/L, type 2 diabetes: 6.7 ± 2.0 x 109/L, p = 0.002, n = 3,242) as well as an unadjusted, 

positive association between 16S rDNA and leukocyte count (r = 0.041, p = 0.02, n = 

891), which may have contributed to the results observed (Amar et al., 2011b). In 

addition, the second study used 21 group-, genus-, and species-specific primer sets to 

amplify bacterial sequences rather than universal primers (Sato et al., 2014). These would 

have identified many but not all bacteria. Still, by targeting 16S rRNA, these three studies 

provided more comprehensive information about bacterial presence than LPS-based 
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Table 8 

Measurements of 16S rRNA and T2DM-Related Indices From Studies Examining the Relationship Between 16S rRNA and T2DM

Study Groups Fasting Sample type Assay method 16S rRNA, n (%) 16S rDNA (ng/µl) HbA1C (%) FPG (mmol/L) 2 hr PG (mmol/L)

Amar et al., 
2011b c,d

Control Fasting Peripheral blood 
leukocytes e,f

qPCR 0.057 (0.032 - 0.120) g,h 5.39 ± 0.38 5.23 ± 0.49

T2DM 0.076 (0.042 - 0.141) g,h 5.83 ± 0.51 6.07 ± 0.55

p = 0.04 p = 0.0001 p = 0.0001

Qui et al., 
2019 k,l

Control Fasting Plasma Next-generation 
sequencing

62,442 m,n 6.05 (5.23 - 6.28)

T2DM 60,007 m,o 6.12 (5.95 - 6.43)

p = 0.453

Sato et al., 
2014 p

Control Fasting Plasma RT-qPCR 2 (4) 5.6 (5.4 - 5.8) 94.1 ± 12.3 q,r

T2DM 14 (28) 8.7 (8.0 - 9.5) 155.3 ± 44.7 q,r

p < 0.01 p < 0.01 p < 0.01

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; 16S rDNA = gene encoding 16S rRNA; 16S rRNA = 16S ribosomal ribonucleic acid; DI = 
disposition index; FPG = fasting plasma glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HOMA-B = homeostasis model assessment of beta cell function; HOMA-IR = homeostasis 
model assessment of insulin resistance; IFG = impaired fasting glucose; IGI = insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; qPCR = quantitative polymerase chain 
reaction; QUICKI = quantitative insulin sensitivity check index; RT-qPCR = reverse transcription-qPCR; T2DM = type 2 diabetes mellitus.  
a Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 3. b Computed using software downloaded from www.dtu.ox.ac.uk. c Prospective cohort. d 

Follow-up = 9 years. e Leukocyte count for control and T2DM was 6.3 ± 1.7 and 6.7 ± 2.0 x 109/L, respectively (p = 0.002); n = 3,242. f Unadjusted, positive association between log 16S rDNA and 
leukocyte count (g/L) (r = 0.041, p = 0.02); n = 891. g Glass microbeads were not used to improve extraction because isolation of bacterial DNA was not the intended use during sample preparation; 
validation of this method showed microbeads increased extraction 10-fold but the proportion between samples remained the same and allowed for comparison. h Log transformed. i Plasma or serum 
unspecified. j n = 3,242. k Nested case-control. l Follow-up = 2 years. m High-quality sequences per sample. n Total high-quality sequences = 6,244,227. o Total high-quality sequences = 3,000,391. p 

Cross sectional data collection. q Serum. r mg/dl.
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Study Groups IFG (%) T2DM (%) a FPI (pmol/L) Measures of insulin resistance Measures of insulin secretion

HOMA-IR b ISI QUICKI DI HOMA-B b IGI

Amar et al., 
2011b c,d

Control 37.14 (27.46 - 50.62) h,i,j 0.97 ± 0.45 83.35 ± 25.73

T2DM 51.70 (36.28 - 79.52) h,i,j 1.41 ± 0.76 79.01 ± 32.59

p = 0.0001 p = 0.0009

Qui et al., 
2019 k,l

Control

T2DM

Sato et al., 
2014 p

Control 0.0

T2DM

Note. Data presented as M ± SD or Mdn (IQ) unless otherwise indicated. 2 hr PG = 2 hr plasma glucose; 16S rDNA = gene encoding 16S rRNA; 16S rRNA = 16S ribosomal ribonucleic acid; DI = 
disposition index; FPG = fasting plasma glucose; FPI = fasting plasma insulin; HbA1C = hemoglobin A1C; HOMA-B = homeostasis model assessment of beta cell function; HOMA-IR = homeostasis 
model assessment of insulin resistance; IFG = impaired fasting glucose; IGI = insulinogenic index; IQ = interquartile range; ISI = insulin sensitivity index; qPCR = quantitative polymerase chain 
reaction; QUICKI = quantitative insulin sensitivity check index; RT-qPCR = reverse transcription-qPCR; T2DM = type 2 diabetes mellitus.  
a Testing performed at baseline and participants met at least one T2DM diagnostic criteria from Figure 3. b Computed using software downloaded from www.dtu.ox.ac.uk. c Prospective cohort. d 

Follow-up = 9 years. e Leukocyte count for control and T2DM was 6.3 ± 1.7 and 6.7 ± 2.0 x 109/L, respectively (p = 0.002); n = 3,242. f Unadjusted, positive association between log 16S rDNA and 
leukocyte count (g/L) (r = 0.041, p = 0.02); n = 891. g Glass microbeads were not used to improve extraction because isolation of bacterial DNA was not the intended use during sample preparation; 
validation of this method showed microbeads increased extraction 10-fold but the proportion between samples remained the same and allowed for comparison. h Log transformed. i Plasma or serum 
unspecified. j n = 3,242. k Nested case-control. l Follow-up = 2 years. m High-quality sequences per sample. n Total high-quality sequences = 6,244,227. o Total high-quality sequences = 3,000,391. p 

Cross sectional data collection. q Serum. r mg/dl.



	 75 

methods since they could and did detect gram-positive as well as gram-negative bacteria 

present in participants. 

 

3. Measurement of Type 2 Diabetes-Related Indices 

 All studies provided information about fasting plasma glucose while two provided 

details regarding HbA1C. Fasting plasma insulin, HOMA-IR, and HOMA-B were each 

reported by one, with partial information about type 2 diabetes prevalence available from 

one study as well, whereas details regarding two-hour plasma glucose, impaired fasting 

glucose, ISI, QUICKI, DI, and IGI were not reported by any study. 

 

4. Associations Between 16S rRNA and Type 2 Diabetes-Related Indices 

 Statistical analysis of the associations between 16S rRNA and various type 2 

diabetes-related indices, as summarized in Table 9, revealed no association between 16S 

rDNA and fasting insulin, HOMA-B, and HOMA-IR and a negative, unadjusted 

association between 16S rDNA and fasting plasma glucose (Amar et al., 2011b). Only 

one study provided this data, and the analysis was performed in 27% of participants (n = 

891 out of 3,280). In contrast, the relationship between 16S rDNA and type 2 diabetes 

was assessed in all individuals and showed a weak, positive association with a 1.35-fold 

higher risk of incident type 2 diabetes after adjusting for sex, age, family history, BMI, 

waist circumference, lifestyle, blood pressure, and type 2 diabetes-related indices, 

specifically fasting plasma glucose (standardized OR [95% CI] of incident type 2 

diabetes for 1 standard deviation of log(16S rDNA) = 1.35 [1.11-1.64], p = 0.002). 

However, total cholesterol was not included in this model although it was significantly 
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Table 9 

Associations Between 16S rRNA and T2DM-Related Indices

Variable Study Positive association Negative association No association p Adjusted for a

S A F B L BP T2

FPG b,c Amar et al., 2011b r = -0.04 d,e 0.02

FPI b,f Amar et al., 2011b r = -0.0013 d,e,g,h 0.94

HOMA-B b Amar et al., 2011b r = -0.0047 d,e,i 0.80

HOMA-IR b Amar et al., 2011b r = -0.033 d,e,i 0.07

T2DM b Amar et al., 2011b 1.36 [1.08 - 1.72] j,k 0.009

1.15 [0.84 - 1.58] k,l 0.38

1.10 [0.87 - 1.39] m 0.45

1.61 [1.23 - 2.10] n 0.0005

1.29 [1.08 - 1.55] —

1.35 [1.11 - 1.64] 0.002

Note. Data presented as standardized OR [95% CI] of incident type 2 diabetes for 1 SD of log(16S rDNA) unless otherwise indicated. 16S 
rDNA = gene encoding 16S rRNA; 16S rRNA = 16S ribosomal ribonucleic acid; BMI = body mass index; CI = confidence interval; FPG = 
fasting plasma glucose; FPI = fasting plasma insulin; HOMA-B = homeostasis model assessment of beta cell function; HOMA-IR = 
homeostasis model assessment of insulin resistance; NS = non-significant at p < 0.05; OR = odds ratio; T2DM = type 2 diabetes mellitus.  
a Blue = variable adjusted; S = sex; A = age; F = family history; B = BMI or waist circumference; L = lifestyle (smoking); BP = blood pressure 
(hypertension); T2 = T2DM-related indices (FPG). b Dependent variable. c mmol/L. d 16S rDNA log transformed. e n = 891. f pmol/L. g Plasma 
or serum unspecified. h Insulin log transformed. i Computed using software downloaded from www.dtu.ox.ac.uk. j FPG < 6.1 mmol/L. k p 
between FPG strata = NS. l FPG ≥ 6.1 mmol/L. m Incident type 2 diabetes within 0 - 3 years. n Incident type 2 diabetes within 6 - 9 years.
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different between comparison groups. 

 An additional finding was a weak, positive association between 16S rDNA and 

type 2 diabetes in those without elevated fasting plasma glucose (< 6.1 mmol/L) that was 

not present in those with higher levels (standardized OR [95% CI] of incident type 2 

diabetes for 1 standard deviation of log(16S rDNA) = 1.36 [1.08-1.72], p = 0.009; Amar 

et al., 2011b). Furthermore, the study showed a moderate, positive association between 

these variables in those who developed type 2 diabetes within six to nine years that was 

not present in those who developed it within zero to three years (standardized OR [95% 

CI] of incident type 2 diabetes for 1 standard deviation of log(16S rDNA) = 1.61 [1.23-

2.10], p = 0.0005). Both of these measures were adjusted for sex, age, family history, 

BMI, waist circumference, lifestyle, and blood pressure with the latter value adjusted for 

type 2 diabetes-related indices as well, specifically fasting plasma glucose. The study also 

reported a C statistic of 0.564 for 16S rDNA and type 2 diabetes, which demonstrated it 

had limited ability to provide predictive discrimination of this outcome. 
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V. Discussion 

 

 While in numerous instances the data in this systematic literature review seem to indicate 

a relationship between LPS or 16S rRNA and type 2 diabetes may be present, details in the study 

design, population, and assessment of the exposure and outcome variables ultimately limit what 

conclusions may be drawn. 

 

A. Study Design 

 One of the greatest difficulties in determining what effect the presence of bacteria or 

bacterial components in the blood, as measured by LPS or 16S rRNA, may have on the 

development of type 2 diabetes is the cross sectional nature of many of the studies (Al-Obaide et 

al., 2017; Creely et al., 2007; de Waal et al., 2018; Hawkesworth et al., 2013; Huang et al., 2019; 

Jayashree et al., 2014; Pussinen et al., 2011; Sato et al., 2014). Although this information allows 

us to assess the prevalence of type 2 diabetes in those with elevated levels of LPS or 16S rRNA 

and vice versa, one cannot infer causality as these are both measured at the same timepoint. 

Thus, determining with greater certainty whether one influences the other is only possible with a 

stronger, longitudinal study design. 

 Overall, and without taking other issues into consideration, it appears seven of the eight 

studies that provided cross sectional data found at least some indication that elevated LPS or 16S 

rRNA and type 2 diabetes are associated with each other at significantly higher levels than that 

seen in controls (Creely et al., 2007; de Waal et al., 2018; Hawkesworth et al., 2013; Huang et 

al., 2019; Jayashree et al., 2014; Pussinen et al., 2011; Sato et al., 2014). Three prospective 

cohorts (Amar et al., 2011b; Camargo et al., 2019; Pussinen et al., 2011) and one nested case-
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control (Qui et al., 2019) were also included in the review. The three prospective cohorts had 

similar findings to the cross-sectional studies. Yet the reliability of these results remains in 

question given various drawbacks in the methodology used to explore this relationship. 

 

B. Population 

 An additional consideration in assessing the quality of the results includes both sample 

size and characteristics of the populations in which these variables were measured. Of the eight 

studies that provided cross sectional data, six had sample sizes of 100 participants or less (Al-

Obaide et al., 2017; Creely et al., 2007; de Waal et al., 2018; Hawkesworth et al., 2013; 

Jayashree et al., 2014; Sato et al., 2014). Of the remaining, only one used random sampling of 

the population to recruit study participants (Pussinen et al., 2011). However, this same study also 

provided no details about possible confounding variables as it was a baseline measurement of 

LPS and type 2 diabetes status within a cohort after which those with prevalent diabetes were 

excluded. Thus, not only do these results come from studies with a weaker study design that 

already have certain limitations, but their usefulness is further limited by none truly taking a 

large, random sample of the population and accounting for, or at least reporting, information 

about other variables known to affect this outcome. 

 This remains an issue in some of the prospective cohort and nested case-control studies. 

While the sample sizes were all larger than 100 participants, only one used random sampling of 

the population to recruit study participants, the same study described above that provided both 

cross sectional measures and data from a prospective cohort (Pussinen et al., 2011). In the case 

of the prospective cohort, the study provided thorough information about possible confounding 

variables, with the exception of dietary macronutrients. This makes the moderate, adjusted, 
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positive association between LPS and type 2 diabetes with a 1.5-fold increased risk the most 

reliable when taking into account study design, sample size, sampling method, and treatment of 

confounding variables (Q4 to Q1: HR [95% CI] = 1.518 [1.090-2.114], p = 0.013, p for trend = 

0.012). The remaining prospective cohorts and nested case-control drew their participants from 

existing studies (Amar et al., 2011b; Camargo et al., 2019; Qui et al., 2019), one of which, for 

instance, included only coronary heart disease patients (Camargo et al., 2019). This approach 

restricts the ability to then make broader statements about what these results may mean for a 

population in general since most individuals at risk for type 2 diabetes do not have such a serious 

medical condition. Furthermore, none of these studies provided as thorough information about 

confounding variables leaving it unclear whether the relationship we see is truly related to LPS 

or 16S rRNA (Amar et al., 2011b; Camargo et al., 2019; Qui et al., 2019). Even the strongest 

study in this regard, by omitting data regarding diet as well as taking semifasting measurements 

at variable lengths of time after a nonstandardized meal, had a possible confounding variable in 

its population that was never addressed in addition to the variables related to diet and its 

immediate effect on LPS introduced during sampling that both could have prevented the true 

relationship from being seen (Pussinen et al., 2011). Therefore, given that no study within this 

systematic literature review fully accounted for all possible confounding variables as well as the 

preference for primarily weak study designs, small sample sizes, and convenience sampling 

means that despite whatever relationship the results may suggest, a determination as to whether 

LPS or 16S rRNA has a role in the development of type 2 diabetes cannot be made at this time 

without additional research. 

 While producing a cost-effective study is desirable, many variables affect this outcome. 

Designing a well thought-out study that ensures the results are representative of the population 
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and identifies other factors that may be influencing them is important. Thus, of additional 

relevance are the inclusion and exclusion criteria used to determine comparison groups since 

how we define who is healthy affects the comparison made. For instance, when a condition such 

as impaired liver function influences the removal of LPS (Nesseler et al., 2012) and elevated 

bilirubin interferes with the LAL assay (Gnauck et al., 2016), having studies that exclude for this 

(Al-Obaide et al., 2017; Sato et al., 2014) whereas others do not may introduce variability into 

the results seen. And this is only one example of many. Of particular concern is the fact that 

while all the studies paid careful attention to type 2 diabetes status, other forms of altered 

glucose metabolism such as impaired glucose tolerance or an elevated HbA1C indicative of 

prediabetes were handled differently. In one study, these individuals were included within the 

cohort (Camargo et al., 2019) whereas in a different study, those with impaired glucose tolerance 

were counted in the prevalent type 2 diabetes group and excluded from the cohort (Pussinen et 

al., 2011). Still another used the criteria of a HbA1C less than 6.0% to qualify as healthy, which 

excludes some but not all of those with prediabetes (Sato et al., 2014). Most, however, did not 

take these measures into account. But the changes that lead towards type 2 diabetes happen in a 

progressive manner, and fasting LPS can be elevated in other forms of altered glucose 

metabolism besides just type 2 diabetes, such as in impaired glucose tolerance (Harte et al., 

2012). Thus, how these individuals get included or excluded and what group they belong to will 

affect the results obtained. Ultimately, a consensus on what constitutes a healthy individual is 

needed unless random sampling of the population is used without any exclusion. While this latter 

approach would eliminate selection bias and is preferable as we do not as yet understand this 

process fully and all of the conditions that may or may not influence it, it is often difficult to 

undertake and does not on its own fully resolve the question of who should be considered a 
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control. Incorporating both in one’s methodology would ensure a truly well-designed study. 

 A final issue concerns the use of medication among participants. Only four studies 

provided any kind of information about the type 2 diabetes medications participants were taking 

(Al-Obaide et al., 2017; Creely et al., 2007; Hawkesworth et al., 2013; Sato et al., 2014) with 

two of these studies also providing some details regarding other medications (Al-Obaide et al., 

2017; Sato et al., 2014). This information is relevant as the initiation of treatment for type 2 

diabetes may affect gut microbial balance and permeability (Sato et al., 2017) as well as LPS 

levels (Al-Attas et al., 2009) whereas treatment for other conditions may affect the development 

of type 2 diabetes. This has been demonstrated with antidepressants (Pomytkin et al., 2015) and 

antihypertensive medications (Taylor et al., 2006). Thus, details regarding treatment for type 2 

diabetes and other conditions should be considered essential information as they may affect both 

the exposure and outcome variables. 

 

C. Assessment of LPS and 16S rRNA Levels 

 A possible flaw in the determination of LPS and 16S rRNA levels may be the decision to 

take fasting samples as opposed to postprandial or semifasting samples. Given that one of the 

proposed mechanisms for entry of LPS into the systemic circulation is via chylomicrons (Gnauck 

et al., 2016) and studies in both mice and humans have demonstrated an increase in LPS after a 

high-fat meal (Cani et al., 2007; Deopurkar et al., 2010), measurement of LPS and 16S rRNA in 

a fasted state may not be the opportune moment to examine this relationship. Only two studies 

used semifasting samples (Camargo et al., 2019; Pussinen et al., 2011), one of which had the 

novel approach of not only taking both fasting and semifasting samples but also assessing 

whether the change in levels from fasting to semifasting was significant within and between 
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groups (Camargo et al., 2019). While the results were inconsistent with some measures 

indicating a significant difference and others indicating none, this method is ideal for assessing a 

relationship if one is present. Furthermore, by providing a standardized mixed meal with fat 

content adjusted by body weight, the study helped to ensure that whatever differences were 

measured had more to do with the processes occurring within the individual than with the 

composition of the meal itself, since fat composition of the meal prior to sampling influences 

whether a rise in LPS will occur (Ghanim et al., 2009). 

 Diet and factors related to intestinal permeability may not be the only variables 

influencing this mechanism. Components in the blood whose role it is to bind and clear LPS also 

reduce the time it remains in circulation. This sequestration and neutralization occurs through 

binding to lipoproteins such as apoE (Kell & Pretorius, 2015) as well as through the action of 

LPS-binding protein and soluble CD14, which transfer LPS to monocytes and macrophages 

(Munford, 2005). Antibodies also inactivate LPS molecules until they can be removed (Munford, 

2005) and interestingly, showed greater reproducibility after two weeks within the same 

individuals (r = 0.82, n = 48) than assessing LPS directly (r = 0.2, n = 48; Hawkesworth et al., 

2013). Thus, unlike measures of type 2 diabetes risk such as BMI and HbA1C that remain stable 

over periods of time and allow for easy assessment in a clinical setting, the variability of LPS 

and 16S rRNA complicates its use in research and as a possible clinical screening tool. 

 Furthermore, numerous issues inherent in the LAL assay limit the usefulness of LPS in 

particular as this test was developed to identify bacterial contamination in pharmaceuticals and 

medical products, but not to test human samples (Gnauck et al., 2016). By adapting it for this 

purpose, it becomes important to be aware of interference from EDTA or clot activator in tubes 

as well as from biological components in plasma and serum. While dilution and heating may 
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resolve the latter, it cannot release sequestered LPS although some additional treatment steps 

have been investigated and may be able to do so. Of additional concern are the reaction kinetics 

with untreated or diluted serum initiating the reaction more quickly and with an altered reaction 

curve than standards prepared in water. In diluted and heated serum, the reaction is delayed but 

the reaction curve is not altered. Use of an endpoint LAL assay where the reaction is stopped and 

measured after a period of time would not identify these variations and either overestimate or 

underestimate LPS levels depending on pretreatment method. In comparison, a kinetic LAL 

assay takes measurements at multiple points in time (Lonza, n.d.-a) and would be better able to 

detect such deviations. Only one study in this systematic literature review used such an approach 

(Pussinen et al., 2011) while the remaining five studies that chose a LAL assay used the endpoint 

method (Camargo et al., 2019; Creely et al., 2007; Hawkesworth et al., 2013; Huang et al., 2019; 

Jayashree et al., 2014). This same study was also the only one to report any sort of pretreatment 

while the others did not use any or did not report doing so. Communicating methods fully, even 

when pretreatment was not performed, is essential given the variability that exists in adapting 

this assay for research use. Adopting a standardized approach to the information that should be 

included in a study, such as incorporating the STROBE guidelines to ensure key elements get 

reported (von Elm et al., 2008), would help to resolve this issue. Unfortunately, in this instance, 

the lack of information regarding pretreatment methods coupled with the drawbacks of using 

untreated plasma and serum with an endpoint LAL assay raises additional questions about the 

reliability of these values and what significance they may have. Lastly, a limitation of all LAL 

assays is that by measuring the endotoxicity of LPS using a clotting cascade in North American 

horseshoe crabs, the results may not necessarily correlate with its inflammatory potential in 

humans (Gnauck et al., 2016). LPS molecules also differ in their structure depending on the 
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species of bacteria that produce them and thus have differing endotoxic potentials. In effect, the 

same quantity of LPS from two unrelated bacteria may not result in the same value if measured 

in endotoxin units. These dynamics are significant as the assay appears to have a higher 

sensitivity for bacteria that North American horseshoe crabs may encounter in their environment 

as well as the potential to produce false positives since fungi can trigger the same clotting 

cascade. 

 Many of these issues are resolved by adopting a molecular-based approach that focuses 

on the detection of 16S rRNA. While fasting state and the meal prior to sampling may still affect 

the entry of bacteria or bacterial components into the systemic circulation and features of the 

innate and adaptive immune response may influence their clearance, the measurement of 16S 

rRNA using universal primers does not vary based on bacterial species nor does it face the 

challenges seen with interference and reaction kinetics as in the LAL assay. It also has the 

advantages of detecting gram-positive bacteria and providing qualitative information about the 

bacterial species present in addition to quantitative data. This is significant as our relationship 

with the microbes that inhabit us is complex, and some may prove to have a greater role in this 

process than others. By focusing solely on gram-negative bacteria, LPS could only ever provide 

a partial representation of what was happening in the body. And evidence suggests lipoteichoic 

acid from the cell walls of gram-positive bacteria stimulates the production of cytokines through 

TLR-2 similarly to that seen with LPS and TLR-4 (Sato et al., 2017). Toxic shock syndrome 

toxin-1, one of the virulence factors of the gram-positive bacteria Staphylococcus aureus, has 

also been shown to induce systemic inflammation and impaired glucose tolerance in animal 

models (Vu et al., 2015). Rather than targeting individual bacterial components, this method of 

using 16S rRNA is both more broad in being able to detect all bacteria regardless of their 
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makeup and more nuanced in being able to provide species-specific information. This was an 

advantage of the three studies within this systematic literature review that chose this approach 

(Amar et al., 2011b; Qui et al., 2019; Sato et al., 2014). But as with any newer method, a lack of 

consensus in how information is reported can limit comparison between studies and each used a 

different approach to measure 16S rRNA levels. One study reported concentration (Amar et al., 

2011b), another provided high-quality sequences per sample (Qui et al., 2019), and the last relied 

on the rate of detection in participants (Sato et al., 2014). Additionally, although analysis of the 

qualitative data from these studies was beyond the scope of this project, similar issues are likely 

to be encountered as we move this research forward and determine how best to interpret the vast 

quantities of data generated. 

 

D. Assessment of Type 2 Diabetes 

 An additional factor that affected the results in this systematic literature review was how 

type 2 diabetes was defined differently or not at all. Two studies provided no details about how 

diagnosis was established (Creely et al., 2007; de Waal et al., 2018) and one provided partial 

information (Hawkesworth et al., 2013). Of the remaining eight studies, only two relied solely on 

testing to determine comparison groups (Camargo et al., 2019; Jayashree et al., 2014), while the 

rest used physician-diagnosed or some combination of self-reported, physician-diagnosed, and 

testing for diabetes. This is significant because testing identifies clinically mild cases of type 2 

diabetes that other methods may miss resulting in an underreporting of this outcome. While self-

reported and physician-diagnosed diabetes often relies on testing at some point to diagnose a 

participant as having type 2 diabetes, it is often not clear when this occurred and whether glucose 

and insulin homeostasis may have changed since that time, especially as many individuals begin 
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lifestyle modifications and medication. This issue was demonstrated clearly in the study that 

provided partial information with a non-obese control, obese control, and type 2 diabetes group, 

only the last of which was physician-diagnosed and the rest unknown (Hawkesworth et al., 

2013). When testing was performed to determine type 2 diabetes prevalence within each group 

based on fasting plasma glucose, there were no cases in the non-obese controls but the obese 

controls and type 2 diabetes group had a prevalence of 3.1% and 67.9%, respectively. Thus, the 

study showed how when testing is not used to determine comparison groups, you may have 

misclassification whereby participants who are considered controls actually have type 2 diabetes 

as well as participants who are considered to have type 2 diabetes no longer have an elevated 

blood glucose. Variations such as this can ultimately affect the comparisons made and their 

significance. 

 With the method used to establish a type 2 diabetes diagnosis in many cases not 

dependent solely on testing, the measurement of type 2 diabetes-related indices helped to further 

support the delineation of comparison groups in these studies. While overall the values that were 

reported did provide additional confirmation that the criteria used were sufficient to identify 

meaningful differences, many gaps were evident including measures for which information was 

not available or only partially available as well as a lack of statistical analysis to determine 

significance. Even for a measure as common as HbA1C or fasting plasma glucose, only eight 

studies provided details for all groups and made a statistical comparison for at least one of these 

two variables (Amar et al., 2011b; Camargo et al., 2019; Creely et al., 2007; Huang et al., 2019; 

Jayashree et al., 2014; Pussinen et al., 2011; Qui et al., 2019; Sato et al., 2014). Furthermore, 

some of these studies measured glucose using serum samples (Creely et al., 2007; Pussinen et al., 

2011; Sato et al., 2014); however, the values obtained with plasma and serum are not the same 
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(Kang et al., 2016). With serum, the delay in sample processing results in a decrease in glucose 

concentration that can lead to a misdiagnosis. For instance, a study found when comparing both 

methods that 263 out of 1,254 individuals who met the criteria for a type 2 diabetes diagnosis 

using fasting plasma would have been missed by applying the same criteria to fasting serum 

samples. While the difference may not have a large impact when used simply to compare groups 

within a study, as it has internal validity and would affect both similarly, it does not have 

external validity and complicates the ability to easily use this measure to make comparisons 

between studies, especially when researchers will look to this variable to get a quick sense of 

glucose status among controls and those with type 2 diabetes if testing was not the criteria used 

to establish these groups. 

 

E. Final Recommendations 

 In conclusion, although this systematic literature review was unable to answer the 

question of whether LPS or 16S rRNA may have a role in the development of type 2 diabetes, 

the proposed mechanism for how this could occur and may be a contributing factor warrants 

further exploration before discounting it as a possibility. New research is needed that builds upon 

the lessons learned thus far and incorporates strong study designs, such as cohort and case-

control studies, with large sample sizes, random sampling, and a greater consensus on who 

should be considered a control, especially in regards to those with altered glucose metabolism 

who do not as yet meet the criteria for type 2 diabetes. Confounding variables should be fully 

reported and adjusted for when significant differences between comparison groups are identified, 

and information about medication needs to be reported as well. Ideally, taking both fasting and 

semifasting samples would best allow us to determine the relationship present since we do not in 



	 89 

fact know the ideal timing for assessment and having participants consume a standardized mixed 

meal before a semifasting sample would eliminate variation introduced by diet. Given the 

numerous drawbacks of LPS and the LAL assay, future studies should opt for molecular-based 

methods that focus on 16S rRNA and use universal primers, which will provide the most 

comprehensive information about the bacterial species present within samples. Since we also do 

not know what level of exposure may be significant, providing a rate of detection among 

participants along with more detailed quantitative information such as concentration or number 

of sequences per sample is necessary as we work to determine the relevance of these values. 

Lastly, utilizing testing to determine type 2 diabetes status is essential to be able to truly evaluate 

the impact of bacteria on this outcome. These details must be a part of any future studies if we 

are to make this relationship clear. 
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