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Abstract 

Using Lagged Outpatient Visits to Improve Forecasts of  

Patient Arrivals at an Inpatient Hospital  

By: Gabriel R. Vece 

 

Introduction: Recent increases in healthcare expenditures have incentivized hospitals to 
reduce labor costs without adversely affecting patient outcomes, requiring administrators 
to forecast when and where patients will arrive for care.  Many forecasting approaches 
involve subjective judgement and, among those that employ statistical methods, finding 
sources of data that can help predict trends in arrivals presents a significant difficulty.  
Meanwhile, the “gatekeeper” structure of many large healthcare systems is such that 
patients are incentivized to visit outpatient clinics, specialists, or primary care providers 
before coming to hospital, which may imply that surges in hospital visits could be 
preceded by similar surges in outpatient visits.  The goal of this paper will be to 
investigate the improvement, if any, gained by the inclusion of lagged outpatient visits in 
a model for forecasting daily inpatient arrivals, modeling the outpatient visits as 
distributed-lag predictors in a Poisson regression model. 

Methods: Several canonical time-series models were fit to the data to establish the 
performance some common forecasting models.  Afterwards, series of outpatient visits  to 
neurologists and to neurosurgeons were modelled as distributed-polynomials using the 
Aikake Information Criteria (AIC) to select the optimal values of several key parameters, 
such as lag length and polynomial degree.  The polynomials were included in a Poisson 
regression for forecasting inpatient arrivals, with the model performance assessed by its 
root mean square error (RMSE) and mean absolute error (MAE) compared to the 
canonical time series model and a Poisson model excluding the distributed-lag terms. 

Results: Although the Poisson model including the distributed-lag terms failed to 
outperform the naïve or univariate time-series models at making short-term (7-day) 
forecasts, it achieved better performance with a longer forecast window (30 days).  
However, this improvement was also seen in the Poisson model excluding the lagged 
covariates, suggesting that the outpatient series contributed little, if any, added predictive 
power.  Furthermore, a sensitivity analysis showed that the improvements did not hold 
when the models were fitted at various seasonal subsets of the dataset. 

Conclusion:  Although the data used in this study constitute only the patterns observed at 
a particular hospital system at a particular point in time, the results suggest that the 
outpatient series were unable to significantly improve the model’s forecasts.  In practice, 
forecasters may benefit from the use of other multivariate modeling approaches or from 
more thorough searches for useful predictors. 



 

Using Lagged Outpatient Visits to Improve Forecasts of  

Patient Arrivals at an Inpatient Hospital  

 

By 

 

Gabriel R. Vece 

 

B.S 

Kennesaw State University 

2008 

 

 

Thesis Advisor: Howard Chang, PhD 

Reader: Eugene Huang, PhD 

 

 

A Thesis  

Submitted to the Faculty of the  

Rollins School of Public Health of Emory University  

in partial fulfillment of the requirements for the degree of  

Master of Science in Public Health in Biostatistics 

2017 



 

Acknowledgements 

I would like to thank Dr. Howard Chang for his invaluable support throughout 
this project.  He must have seen something in this project which I—at the time—could 
not, as he volunteered his time and expertise to help me think and work through all of the 
obstacles I faced during the writing of this thesis.  This project would not have been 
possible without Dr. Robert Palmer and Nikolay Braykov, who provided me with the 
resources and knowledge I needed to learn how to work with the (often very alien) claims 
data used herein.  I would like to thank Dr. Eugene Huang, who was actually the first 
person whose advice I sought concerning this thesis project and who volunteered to 
become my reader, offering insightful commentary and advice that has been immensely 
beneficial.  I would also like to thank the faculty of the Department of Biostatistics and 
Bioinformatics at the Rollins School of Public Health, who have shared with me their 
collective knowledge, support, and guidance during the last two years. 

Finally, I would like to thank my friends and family for all the times they’ve been 
there, with a special acknowledgement to Kirstie and Deauxbac. 

To Deauxbac: “ma-goot.” 

To Kirstie: I love you so much and you have made all of this possible; I hope you 
will always know how much that means to me. 

  



 

Table of Contents 
 

1. Introduction ............................................................................................................1 
1.1 Problem Statement .................................................................................2 

1.2. Purpose Statement .................................................................................3 

1.2. Purpose Statement .................................................................................3 

2. Background/Literature Review ....................................................................................4 
2.1. Staffing Models .....................................................................................4 

2.2. Distributed Lag Models ........................................................................8 

3. Methodology .................................................................................................................10 
3.1. Dataset.................................................................................................10 
3.2. Statistical Approach ............................................................................12 

4. Results ...........................................................................................................................15 
4.1. Exploratory Data Analysis ..................................................................15 

4.2. Univariate Models ...............................................................................17 

4.3. Multivariate Model .............................................................................19 

5. Discussion......................................................................................................................24 
5.1. Implications.........................................................................................24 

5.2. Recommendations ...............................................................................28 

References .........................................................................................................................30 
 

 



1 

1. Introduction 

Growth in U.S healthcare systems has led to dramatic and unprecedented changes 

in the ways that health services are distributed, accessed, and consumed by patients. A 

report by the Kaiser Family Foundation (2012) concluded that national healthcare 

expenditures rose from $4878 per person (overall, 13.8% of gross domestic product[ 

[GDP]) to $8402 per person (17.9% of GDP)  from 2000 to 2010, with costs expected to 

continue rising in subsequent years.  Furthermore, this growth rate is accelerating, and is 

expected to exceed the rate of GDP growth, becoming increasingly unsustainable 

(Follette & Sheiner, 2005).  Of these costs, inpatient care expenses represent the largest 

proportion, accounting for 29.3% of expenditures in 2009 (Kashihara & Carper, 2012); as 

a result, many strategies that are targeted at reducing the burden of healthcare costs 

wisely focus on inpatient expenses as the primary driver of overall costs.  However, 

inpatient care settings themselves are complex facilities, often serving a large and diverse 

region or pool of patients through a similarly large network of professionals and 

resources; as a result, addressing the largest drivers of costs within inpatient facilities is 

often a nontrivial endeavor. 

Within the inpatient care setting, many solutions to reduce costs are focused on 

either directly or indirectly control labor costs.  In 2016, labor costs represented the single 

largest hospital expense, accounting for nearly half of total operating costs (Glied, Ma, & 

Solis-Roman, 2016).  However, simply cutting staff or reducing hours worked has been 

shown to have detrimental effects on patient outcomes, so more sophisticated solutions 

are necessary.  For example Weiss, Yakusheva, and Bobay (2011) showed that lower 
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nurse staffing rates significantly reduced patients’ likelihoods of being readmitted or 

having an emergency department admission within 30 days of discharge. 

For this reason, resource planners must know when it will be necessary to have a 

fully-staffed hospital floor and when fewer resources will be sufficient.  As a result, 

knowing when—and where—to expect peak volumes is very valuable.  In many cases, 

demand forecasts such as these are informal in nature, constituting a “best guess” by an 

experienced manager or resource planner.  In many other cases—particularly in 

emergency departments and large hospital institutions—statistical models spanning a 

wide variety of modelling approaches have been used to varying degrees of success 

(Wiler, Griffey & Olsen, 2011).  

1.1.  Problem Statement 

An implicit assumption in many common statistical models using linear 

regression to predict hospital inpatient arrivals is that, after accounting for one or more 

known effects, residual variation represents an independent random process.  In many 

hospitals, patients may arrive for inpatient care only after first visiting a specialist or 

primary care physician at an outpatient setting, as part of a sequence of episodes of care 

(EOC), such as a series of follow-up visits after diagnosing a serious disorder.  Under 

ideal circumstances, these visits are scheduled in advance and are therefore available to 

resource planners. However, identifying and locating all the pertinent and useful sources 

of information is often difficult logistically and, when this information is not available, 

incorporating this temporal sequence of patient encounters can be very difficult.  Hence, 

in practice, planners typically use simpler, naïve modeling approaches that fail to 
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consider “upstream” patient encounters, leading to potentially biased and uncertain 

forecasts. 

1.2.  Purpose Statement 

The purpose of this investigation is twofold: 1) to examine and compare the 

performance of a number of univariate models for forecasting daily inpatient volumes at 

a Children’s Hospital in Atlanta, Georgia (henceforth known as “Test Hospital”), and 2) 

to evaluate the utility of lagged outpatient arrivals in terms of forecasting inpatient 

arrivals.  Primarily, the goal of this investigation is to evaluate the improvement, if any, 

achieved by incorporating historical outpatient arrival data as predictors in models for 

forecasting inpatient arrival volumes.  We hypothesize that outpatient centers, by serving 

overlapping patient populations and by acting as “upstream reservoirs” for patients, will 

be able to significantly improve forecasters’ abilities to anticipate inpatient arrivals. 

1.3.  Significance Statement 

Firstly, this paper critically evaluates potentially useful sources of information 

that can be readily incorporated into hospital staffing models, improving forecast 

accuracy and reducing costs.  Secondly, as hospital systems grow, there is an increasing 

need to make use of the large amounts of data available, and the analytic procedures 

presented here could suggest innovative ways to integrate separate sources of healthcare 

data. 
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2. Background/Literature Review 

2.1.  Staffing Models 

The period 2000–2010 saw unprecedented increases in the costs of healthcare that 

have led to much reexamination of the ways in which healthcare is offered and delivered 

in order to emplace more efficient systems.  In response to increasing inpatient costs, 

many hospitals are incentivized to do so through “value-based” reimbursement structures 

that encourage the elimination of wasteful spending and the provision of evidence-based 

and effective care.  Since labor costs constitute the largest single contributor to hospital 

costs4, it is naturally one of the first expenses to which managers turn when considering 

strategies for reducing costs.  However, since unilaterally reducing the number of medical 

staff (such as nurses) has negative consequences for patient outcomes (Weiss, Yakusheva 

& Bobay, 2011), managers must respond by anticipating needs on a shift-by-shift basis 

and allocate their staff accordingly. 

In practice, forecasts for patient volumes within hospital units are frequently made 

based on expert testimony from experienced resource managers, since building statistical 

models can present difficulties associated with obtaining (and cleaning) the required data 

and with having the expertise needed to build such a model.  In addition, the data 

sometimes require specialized approaches for dealing with time-series data that managers 

and planners may not be trained to use.  For example, day-to-day patient volumes tend to 

exhibit seasonal trends (particularly in emergency departments; Asplin, Flottemesch, & 

Gordon, 2006) that pertain to certain department-specific trends in care, such as high 

volumes occurring in the early months of each year due to flu.  Ensuring that a model can 

capture such a trend requires a combination of both clinical and statistical expertise.  
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Furthermore, serial observations with trends often leads to autocorrelation that violates 

the basic assumptions regression modeling, and diagnosing the severity of these 

violations to recommend corrective measures is needed.  Finally, the processes that 

govern patients’ movements into and out of the healthcare system are often difficult to 

forecast, even when there is a great deal of current information present.   

Much healthcare data being collected—which frequently tracks patient-level 

information—may inform about the “trajectory” of the current patient arrivals (presenting 

symptoms, prognoses, etc.) but does little to predict what a completely different set of 

patients might present with on a different day, since individual clinical data do not 

necessarily reflect the population-level trends that govern when and where patients move 

from one episode of care to another.  For these reasons time series analysis techniques, 

which estimate trends over time based on historical data (that are easily extrapolated into 

forecasts) have become a widely used tool for forming predictive models that can 

forecast patient volumes.  However, while time-series models can easily handle 

autocorrelated observations, model interpretation and the incorporation of external 

information can often be more difficult (Wargon 2009). 

To date, much has been done to describe methods used to form patient volume 

forecasts using both regression and time-series methods.  Jones et al. (2008) performed a 

detailed review of several univariate (using only historical data) time-series approaches to 

modelling patient volumes, including neural networks, exponential smoothing, 

autoregressive integrated moving average (ARIMA; Box, Jenkins, & Reinsel, 2008) 

models, and several regression methods using calendar-based binary covariates (e.g., 

holidays, seasons, etc.).  Despite the added complexity of the time-series methods, only 
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marginal improvements in out-of-sample forecasts were achieved compared to the 

regression approaches; however since the data were from only three different hospital 

facilities, these results may not generalize well.  Kam, Sung and Park (2010) utilized a 

similar approach of time-series models with calendar time as covariates but also 

demonstrated a multivariate ARIMA model incorporating weather patterns (rain, snow, 

temperature, relative humidity, and air velocity) which outperformed the univariate time-

series models in terms of out-of-sample performance based on mean average percent 

error (MAPE).  Similar efforts have tended to arrive at similar conclusions, and these 

investigations have collectively identified univariate time-series methods as powerful 

alternatives for forecasting models, although models with multiple covariates can be 

promising if the added complexity is acceptable and justifiable (Jones et al., 2009; Bergs, 

Heerinckx & Verelst, 2014; Sun, Heng, Seow & Seow, 2009). 

One limitation of the most common time-series approaches (e.g., ARIMA, Holt-

Winters Smoothing) is that they exclude information related to potential predictors of 

patient volumes.  Although resource planners may be enabled to better anticipate volume 

patterns through forecasts from univariate models, having no awareness of the relevant 

predictors of these patterns means that they have no basis by which appropriate 

interventions may be constructed to modify the patterns.  Since being able to modify 

patterns in patient volumes is potentially quite valuable, forecasters hoping to better 

anticipate patient trends have a strong incentive to turn to models that permit the 

inclusion of possible covariates.  For example, Kam, Sung and Park’s (2010) model using 

weather variables represents a successful attempt to identify predictors that can improve 

forecasting models; however, even in this case, the weather is a similarly uncontrollable 
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process and does not present a solution for resource planners to influence the trends 

affecting their departments.   

One area of study which has appeared to hold some promise is related to the flow 

of patients through the healthcare system.  It is well-known that networks of healthcare 

providers are intentionally designed to afford some level of control over the way in which 

individuals access and navigate hospitals, specialists, and clinics (e.g., “gatekeeping”; 

Forrest, 2003).  Furthermore, research has increasingly demonstrated that these 

movements are, in many cases, predictable and useful with respect to resource planning.  

Broyles, Cochran, and Montgomery (2010) used a discrete-time Markov Chain approach 

to describe patient influx and exodus as arrival and service rates, using maximum 

likelihood to estimate transition probabilities between different inpatient units at an 

Arizona hospital.  This procedure allowed the analytic derivation of the probability 

distribution of unit volumes at an hourly level, permitting resources planners to determine 

the probability of being understaffed given a particular number of onsite staff.  

Additionally, this model was found to have less predictive variance than the more typical 

seasonal ARIMA models.  In a similar effort, Littig and Isken (2007) build a predictive 

occupancy model using multinomial logistic regression to estimate the probability of 

patient movements from unit-to-unit (or unit-to-exit) while also incorporating arrival 

processes such as scheduled surgeries and randomly-modelled emergency department 

arrivals with similar success. 

These approaches to modelling patient movements, however, depend on discrete 

perspectives of time which are often very small (such as shift-by-shift or hourly) in order 

to capture individual movements, which may be less useful for forecasting further into 
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the future, such as predictions for a subsequent week or month.  At this level, patient 

pools increasingly become the unit of concern for which one can visualize, on a particular 

day, a surge in outpatient appointments among which only a few may require follow-up 

care at an inpatient unit.  From a forecasting point of view, it may be possible to build 

models that incorporate this temporal sequence of patient encounters that improve our 

ability to anticipate inpatient visits.  In this framework one might, for example, infer that 

recent outpatient activity would allow one to anticipate changes in the number of future 

inpatient arrivals, constituted by the patients whose needs required resources only 

available at an inpatient unit.  For this present study, I propose that recent outpatient 

activity can have usable predictive power with respect to forecasting future inpatient 

arrivals, and that models incorporating this outpatient information will have improved 

forecast accuracy compared to similar models that do not. 

2.2.  Distributed Lag Models 

In modeling situations where autocorrelation is suspected to be present, it is a 

common practice to include lagged values of one or more predictors as covariates in a 

linear regression; however, a number of methodological issues must be considered.  

Primarily, the presence of autocorrelation among values of the outcome variable implies 

that a fundamental assumption of regression (independence of observations) has been 

violated and that, as a result, the variances of the estimated parameters will be incorrect.  

In addressing this problem, one must specify a particular lag structure—namely, which 

specific lags to include in the model— with the understanding that this proposed structure 

may underspecify or overspecify the true structure.  Generally, models that include too 

few lags suffer from bias due to omitted variable bias (Clarke 2005) whereas models that 
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include too many lags often can easily encounter issues of multicollinearity that can lead 

to inflated variances on the parameters. 

This second issue of multicollinearity among the predictors is especially 

problematic when serial autocorrelation is present: for a given association between some 

value observed at time t and another value observed at time t – k, nontrivial associations 

with other nearby values (say, at time t – k – 1 or t – k + 1) are also likely to be present, 

which encourages the inclusion of additional lagged covariates in the model.  As a result, 

a large set of candidate lags may be suspected for inclusion into the model, with little 

hypothetical foundation by which to judge their relevance. One approach to avoid these 

issues involves the selection of a lag range and a mathematical structure by which to 

model the lag-response relationship.  Constraining the lag-response relationship to some 

particular form—such as a polynomial function of the lag—allows one to flexibly model 

a complex dynamic relationship using a much smaller number of model terms.   

Distributed lag (DL) models are a class of statistical model that capture this type 

of behavior.  Within the context of time-series observations DL models permit the 

modeling of the effect of a predictor variable—observed over a period of time—that 

exerts a dynamic influence on the current and subsequent values of an outcome variable, 

which is observed over the same period of time.  These models have been used in a 

variety of settings, such as for estimating the longitudinal effects of prolonged uranium 

exposure on mortality (Gasparrini 2014) and the effects of socioeconomic factors on 

productivity in the long and short run (Wang et al., 2016).   

Typically, these models have been a mainstay of econometric investigations but 

have been shown to be of similar use in modelling relationships with hospital admissions: 



10 

For example, Shrestha (2007) used a DL model to demonstrate the time-dependent 

relationship between air pollution (PM10) and subsequent hospital admissions.  The value 

of DL models in this present investigation lies in the fact that, when an outcome series 

can be shown to be associated with distant lagged values, this relationship may be 

intuitively utilized to make a forecasting equation based on the lagged values.  In this 

way, DL models represent a flexible and convenient framework with which external data 

can be included in a more traditional regression model while also permitting the creation 

of forecasts. 

This present investigation proposes the use of DL models to capture the 

relationship between outpatient specialist arrivals and inpatient admissions at the 

Neurosciences department of Test Hospital, a large pediatric hospital that is part of a 

large network incorporating dozens of outpatient specialist clinics.  The primary focus 

will be assessing the predictive power obtainable by including lagged specialist visits into 

forecasting models, to address the question of how forecasts may be impacted by 

explicitly building models that consider patient arrivals at outpatient clinics.  In doing so, 

the forecasts from univariate time series models, regression models, and multivariate 

models with and without the inclusion of the outpatient data will be evaluated. 

 

3. Methodology 

3.1.  Dataset 

The data used for this present study were obtained from hospital account record 

within a large network of hospitals and clinics during the period from January 6, 2013 to 
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January 31, 2016; included in the network was one major pediatric hospital (Test 

Hospital) and 100 different pediatric outpatient sites, which spanned 40 different unique 

provider specialties.  When this project was initiated, our goal was to use the outpatient 

information to make patient arrival forecasts at only one department (Neurosciences) of 

Test Hospital, so I decided to consider only outpatient visits to a related specialist: a 

neurologist or a neurosurgeon.  For each specialist, patient visits were aggregated across 

locations into daily counts to produce two separate time series of daily arrivals (those to a 

neurologist and those to a neurosurgeon) in addition to the time series of daily inpatient 

arrivals at the neurosciences department of Test Hospital.  With respect to forecasting, 

models were trained on the data prior to 2016, reserving the first 30 days (approximately 

the month of January) of 2016 as a test set from which to evaluate the forecasts.  During 

the period covered by the training data, 2,796 inpatient encounters among 2,277 different 

patients were recorded in addition to 35,332 visits to a neurologist (among 6,821 patients) 

and 26,076 visits to a neurosurgeon (among 4,152 patients).   

One notable feature of the data is that, while the inpatient department received 

patients on every day of the week, all of the neurological and neurosurgical outpatient 

clinics in the dataset operated on a 5-day work week, only receiving patients from 

Monday through Friday.  As a result, observations pertaining to Saturdays and Sundays 

always had exactly zero arrivals throughout the study period.  This meant that, in terms of 

weekly arrivals, the inpatient arrivals had a period of seven days while the outpatient 

arrivals had a period of only five days.  To adjust for this offset, outpatient observations 

from Saturdays and Sundays were imputed using a simple 7-day moving average with 

exponentially increasing (with further lag) weights. 
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3.2.  Statistical Approach 

The primary goal of this present study was to evaluate the predictive content of 

the two outpatient arrival series with respect to making forecasts of inpatient arrivals. 

Initially, several univariate and naïve models common to the time-series literature were 

used to make forecasts, using ARIMA, exponential smoothing, autoregressive neural 

networks, and a Poisson generalized linear regression having day-of-the-week and 

holiday covariates.  Naïve models such as random walk, seasonal naïve, and baseline 

mean forecasts were also used to establish the relative performance of more complex 

models.  Finally, a Poisson model incorporating the same day-of-week and holiday 

variables was modified to include distributed lag terms to capture the relationships 

between the inpatient arrivals and lagged outpatient visits to neurologists or 

neurosurgeons.  This structure of the two distributed lag terms was chosen based on the 

model having the minimum AIC among all other possible candidate models.  Ultimately, 

the comparison of the forecast accuracy for short (7-day) and long (30-day) forecasts 

between this model and the other models were evaluated based on the root mean squared 

error (RMSE) and mean absolute error (MAE) of the forecasted values and the actual 

values. 

One important feature of DL models is their straightforward incorporation into a 

generalized regression model.  A simple polynomial DL model of order q over the lag 

range 1 to n, where t denotes the time index, has the form: 
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In the above model, only the weights b0, α0, α1, … αq need to be estimated.  This model 

has the equivalent representation: 

 

from which it becomes apparent that distributed-lag terms can be added to a regression 

model as a simple linear combination of terms.  Note that, in this model, the effect at lag 

zero is ignored (it represents a same-day effect and is therefore not useful in a forecasting 

context). In addition, it is important to note that, for a q-degree polynomial lag-response 

structure, only q + 1 coefficients need to be estimated, allowing even dozens of lag terms 

to be used with relatively flexible restrictions on their structure. 

For both the neurologist arrivals and the neurosurgeon arrivals, the maximum lag 

length of the range to be considered was fixed at 30 days. In other words, I chose to 

model the relationship between the inpatient arrivals and the history of outpatient arrivals 

up to and including observations from 30 days prior, with the minimum lag allowed to 

vary in order to create a set of competing candidate models.  Ultimately, the primary goal 

of making accurate forecasts led to this decision, since the smallest lag in the chosen 

window would determine when and how the forecasts could be used.  For example, for a 

model forecasting series Y based on the 10-, 11-, and 12-day lagged observations of some 

exogenous series X, these forecasts could be available no sooner than 10 days prior to the 

date being forecasted since the 10-day lagged observation of X would simply not be 

available before then.  Therefore, it became of practical benefit to focus on models that 

emphasized the effect of historically older data and the model selection process employed 

considered the maximum lag to be fixed in order to use the older data as much as 
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possible. Meanwhile, the minimum lag and polynomial were selected to achieve a 

minimal AIC, arriving at a final model.  Once the number of lags to be included in the 

distributed-lag terms were chosen, the terms were added to a model including day-of-the-

week and holiday factors and were estimated in R (version 3.3.2; R Core Team, 2016). 

 Finally, since the available data pertains only to a particular hospital system at a 

particular time, I sought to test the robustness of the multivariate model by refitting it to 

various time points.  For example, since the models would be trained on data spanning a 

nearly 3-year period and evaluated on relatively short 7- and 30-day forecasts, retraining 

the data on less data or at different points may avoid bias due to the model estimates 

being trained over long-term cycles that are irrelevant with respect to the forecasts.  For 

this reason, both Poisson models (including and excluding the outpatient data) were 

refitted to all possible annual and quarterly windows within the available data period and 

the results were averaged to imply a mean level of performance. To illustrate this process 

in the case of using an annual window, both models were trained on data spanning a 365-

day period that began on a different dates (such as 1/1/2015–1/1/2016, or 2/15/2013–

2/15/2014), with the models being compared on the basis of 7- and 30-day forecasts 

extending just beyond the training data.  This sensitivity analysis was intended to 

demonstrate how the model performed over different time periods and on different 

amounts of data allow more general statements about the relative performance of the 

models to be made. 
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4. Results 

4.1.  Exploratory Data Analysis 

Before attempting to fit any models, characterizing the three time series being 

investigated was necessary, as these properties could inform the model-fitting process 

and suggest the structure of the time-varying relationships between the three series.  Due 

to the nature of the time series data being investigated, some serial dependence was 

expected from the observations; In particular, dealing with time series data in a regression 

context puts the model at risk of identifying spurious relationships unless certain 

precautions are taken (Granger & Newbold, 1974).  Initially, Kwiatkowski-Philips-

Schmidt-Shin (KPSS; 1992) tests were used to check the stationarity of the data.   

 

Figure 1. Autocorrelation plots for the three series of inpatient arrivals, neurologist visits, and 

neurosurgeon visits.  Of note are the frequent significant associations among lags at multiples of seven, 

implying weekly periodicity (seasonality). 
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Figure 2. Time plots of the daily inpatient arrivals at Test Hospital, neurologist clinics, and 

neurosurgeon clinics from January 2013 to December 2015. 

 

Both the inpatient arrivals and the neurosurgeon arrivals were found to be stationary 

over the study period and thusly remained untransformed, entering the model in their 

original state.  However, the series of neurologist arrivals showed an increasing trend 

over time (and therefore failed to be stationary), so subsequent model fitting included the 

observation time as a predictor in order to account for the trend.  Subsequent KPSS 

indicated that the detrended series showed no significant evidence of nonstationarity.  In 

examining the autocorrelation structure within and between the three series, weekly 
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patterns were apparent with each series showing significant and persistent 

autocorrelations repeating every 7th day.  This appeared to be  

the major source of autocorrelation in the inpatient arrivals series; in the outpatient 

arrivals, some significant autocorrelations were observed for very small lags (i.e., very 

recent observations at lags 1 and/or 2), although this relationship quickly decayed after 

two to three lags.  In general, far fewer inpatient arrivals were observed over the data 

period (median = 2 per day, range = [0, 10]) compared to outpatient arrivals 

(neurologists: median = 26 per day, range = [0, 203]; neurosurgeons: median = 21 per 

day, range = [0, 162]) since the outpatient arrivals were collected and aggregated over 

many different clinics (11 different neurological clinics and 6 different neurosurgical 

clinics). 

4.2.  Univariate Models 

In order to determine the added value of incorporating the outpatient time series data, the 

effectiveness of several univariate models of increasing complexity was first evaluated. 

The simplest (naïve) models generally involve no covariates, instead merely extending 

recent information into the forecasting period. For example, the seasonal naïve model 

simply assumes that the next k forecasted values will precisely equal the values observed 

during the most recent season (the previous week, for this study), repeating the most 

recent observations, if necessary.  Slightly more complex, the seasonally adjusted random 

walk first estimates the seasonal cycle (through LOESS regression) and then removes it 

from the data, yielding a deseasonalized series of observations which is forecasted using  
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Figure 3. Forecasts from two naïve models (seasonal naïve and seasonal random walk) and two optimal 

time-series models (ARIMA and exponential smoothing).  Forecasts (blue, with 95% and 80% prediction 

intervals) begin just prior to week 158 (1/1/2016) are provided to demonstrate common approaches, and the 

accuracy achievable (compared to actuals, in black) even without incorporating covariates into the model.  

 

a random walk from the most recent observation before adding the seasonal cycle back 

into the forecasted values.  Plots of the forecasts from these models are presented in 

Figure 2.  Afterwards, more sophisticated canonical time series models (exponential 

smoothing, SARIMA, and neural network) were fitted using the forecast package 

available in R (version 8.0; Hyndman, 2017), which allows for convenient selection of 

model tuning parameters and assumptions based on having the minimum AIC among 

other possibilities. In general, the simpler models performed well where short-term (7-
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day) forecasts were concerned, but were outperformed by the more complex models at 

30-day forecasts, although this is not true in all cases.  One important feature of the 

models is that the naïve models have the property of extending static trends outward 

indefinitely, while the more complex models do not.  For example, a stationary ARIMA 

model can be shown to eventually converge to the mean of the series (which can be 

observed in Figure 3); this implies that, although the dependence structure of the series 

means that recent observations will resemble future observations to some degree, this 

relationship decays into the long term and is less informative for forecasting.  

4.3.  Multivariate Model 

 Model selection was carried out over all models in which the two separate 

outpatient series, indexed by j, were represented as distributed-lag polynomials of degree 

kj over the minimum lag nj through 30, in which the values of kj (ranging from 1 to 20) 

and nj (ranging from 1 to 30) were chosen as the values which minimized the model AIC.  

After testing all the possible models, the neurologist arrivals and the neurosurgeon 

arrivals were modelled separate cubic and quartic polynomials over lags 10–30 and lags 

4–30, respectively.  The model equation can be written as: 

Model 1: 

 

 

In Model 1, changes in the outpatient series (X1 = neurologist, X2 = 

neurosurgeon) are allowed to have a dynamic relationship with the inpatient arrivals over 

the defined lags, but the estimated magnitudes of this relationship were typically small (a 
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summary of the model’s fitted estimated parameters is provided in Table 1). An 

important assumption of Model 1 is that, after accounting for the covariates, the inpatient 

visits on different days were considered independent; a residual plot confirmed that 

accounting for day-of the week and lagged effects removed the autocorrelation observed 

in the original series (Figure 4) with only a few slight correlations remaining. 

 

Figure 4. Autocorrelation plot of residuals of model 1 (accounting for holiday, day-of-the-week, and 

lagged outpatient visits). 

In interpreting the distributed lag terms, it is important to note that these terms are 

defined over the predictor-lag-response space, for which it is perhaps easiest to consider 

the lag-response dimension given some fixed change in the value of the predictor.  For 

example, the effect of a 10-unit change in daily neurologist arrivals was significant only 

at short (e.g., 10 days prior) and long (e.g., 30 days prior) lags.  On the other hand , an 

equivalent unit change in the neurosurgeon arrivals implied significant positive effects at 
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a range of early lags (approximately 7-13 days) and again, briefly, at lag 24 (risk ratio = 

1.01 [Wald 95% CI: 1.0008–1.0123]), with negative associations again occurring at short 

and long lags. 

Using this model to build 7- and 30-day forecasts, the model’s forecasting 

performance was typically poorer than the naïve or more complex univariate time series 

models in the short (7-day) term but more accurate as the forecast window became longer  

 

Figure 5. Plot of the lag-specific effects of a 10-visit increase in daily arrivals at outpatient neurological 

and neurosurgical clinics.  Separate polynomials were fitted in the model, with the neurological visits 

represented as a cubic polynomial over lags 10–30, and the neurosurgical visits represented by a 4th-order 

polynomial over lags 4–30. 

(30-days).  However, it is not apparent that this improvement is due strictly to the 

inclusion of the lagged outpatient information; the univariate Poisson model using only 
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day-of-the-week and holiday factors achieved similar performance, implying that the 

improvement from incorporating the lagged terms is small at best.  

 

 

 

 

 

 

 

 

 

 

 

Table 1. Estimated coefficients and standard errors from the distributed lag model with day-of-the-week 

and holiday factors (left).  Also shown (right) are the parameters from the model excluding the distributed 

lag terms. 

Since only one particular data period was observed in this study (1/6/2013–

12/31/2015), general statements about the relative performance of the models being 

examined were difficult to make.  In analyzing time series data, the presence of serial 

dependence makes it unlikely that each observation may be considered independent, and 

frequently the entire series must be considered as a single realization of some underlying 

process.  In addition, the forecast period itself spanned a particular period of time 

 Model with Outpatient Series   Model without Outpatient Series 

Effect 
Estimate 

(Rate Ratio) 
SE p   

Estima

te 
SE p 

Monday 0.309 0.0683 <<0.0001   0.325 0.0655 <<0.0001 

Tuesday -0.434 0.0813 0.21519   0.122 0.0682 0.0734 

Wednesday -0.399 0.0815 0.12720   0.142 0.0679 0.0360 

Thursday -0.0417 0.0738 0.57227   -0.0313 0.0710 0.6589 

Saturday 0.0885 0.0714 <<0.0001   -0.461 0.0799 <<0.0001 

Sunday 0.108 0.0710 <<0.0001   -0.446 0.0795 <<0.0001 

Holiday -0.588 0.144 <<0.0001   -0.537 0.138 <<0.0001 

Lag Term: Neurologist, degree 0 -0.0207 0.00733 0.00475   

 

Lag Term: Neurologist, degree 1 0.101 0.0361 0.00510   

Lag Term: Neurologist, degree 2 -0.157 0.0564 0.00530   

Lag Term: Neurologist, degree 3 0.0781 0.0281 0.00536   

Lag Term: Neurosurgeon, degree 0 -0.00859 0.00322 0.00758   

Lag Term: Neurosurgeon, degree 1 0.0882 0.0304 0.00372   

Lag Term: Neurosurgeon, degree 2 -0.279 0.0953 0.00342   

Lag Term: Neurosurgeon, degree 3 0.354 0.121 0.00337   

Lag Term: Neurosurgeon, degree 4 -0.156 0.0532 0.00329   
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(approximately January 2016) and may be subject to some bias due to its particular 

“location” in seasonal cycles or the presence of holidays.  To address this, the two 

primary models (Poisson without distributed-lag covariates and Poisson with distributed-

lag covariates) were refit to all possible annual and quarterly windows, summarizing the 

mean RMSE, and MAE of the 7- and 30-day forecasts.   

 7 – Day Forecasts 30-Day Forecasts 
Forecast Method RMSE MAE RMSE MAE 

Mean Forecast 1.43 1.24 2.01 1.61 
     

Seasonal Naïve Forecast 1.25 1.00 2.10 1.53 
     

Seasonally Adjusted Naïve 
Random Walk 

1.06 0.92 2.23 1.60 

     
SARIMA(0, 0, 0)(2,0,0)7 1.27 0.95 2.00 1.53 

     
Seasonally Adjusted 

Exponential Smoothing  
(Additive Errors) 

 
1.25 

 
0.87 

 
1.94 

 
1.52 

 
 

Neural Network:  NNAR(29, 
1, 15)7 

1.73 1.47 1.96 1.62 
 
 

Poisson Regression 
(Without Outpatient 

Predictor Series) 

 
1.44 

 
1.35 

 
1.86 

 
1.44 

 
 

Poisson Regression (With 
Outpatient Predictor Series) 

1.35 1.31 1.83 1.45 

Table 2. Performance of short- and long-term forecasts (compared to actual observations) from all tested 

models, including univariate time series models, and Poisson regression with and without the lagged 

outpatient data.  The multivariate Poisson model performed the best in terms of 30-day forecasts with the 

exception of MAE error, although the Poisson model excluding the outpatient data performed nearly 

equivalently. 

Although the results using the entire dataset showed slightly improved 

performance using the Poisson model with the outpatient information (compared to the 
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model using only day-of-the-week and holiday variables), refitting the model using fewer 

data points (e.g., fitting to a single quarter or year of data) resulted in poorer performance 

using the outpatient information even after considering all the possible time periods. 

 

Table 3. Summarized RMSE and MAE of 7- and 30-day forecasts from the Poisson-Distributed-Lag model 

incorporating the outpatient information compared to the same Poisson model excluding the outpatient 

covariates.  The models were fitted to every possible fixed-length time period in the time frame represented 

by the data to permit informed generalizations about the predictive power of the outpatient information at 

different time points. 

 

5. Discussion 

5.1.  Implications 

  7 – Day Forecasts 30-Day Forecasts 

 
Training Data 

 
Model 

Mean RMSE  
[5%, 95% 

percentiles] 

Mean MAE  
[5%, 95% 

percentiles] 

Mean RMSE  
[5%, 95% 

percentiles] 

Mean MAE  
[5%, 95% 

percentiles] 
 

All Possible 
Quarterly  
 (120-day) 

Periods, n = 970 

Includes 
Outpatient 

Data 

 
2.37 [1.11, 5.81] 

 
2.01 [0.91, 4.90] 

 
2.24 [1.42, 4.55] 

 
2.14 [1.51, 4.16] 

     
Excludes 

Outpatient 
Data 

 
1.56 [0.88, 2.32] 

 
1.27 [0.70, 1.89] 

 
1.61 [1.29, 1.89] 

 
1.27 [1.02, 1.51] 

      
 

All Possible 
Yearly  

(365-day) 
Periods,   n = 725 

Includes 
Outpatient 

Data 

 
1.56 [1.15, 1.97] 

 
1.32 [0.96, 1.67] 

 
1.58 [1.27, 1.91] 

 
1.65 [1.47, 1.82] 

     
Excludes 

Outpatient 
Data 

 
1.48 [0.82, 2.22] 

 
1.21 [0.66, 1.79] 

 
1.55 [1.22, 1.86] 

 
1.22 [0.96, 1.46] 

      
 

All Possible 
Two-Year  
(730-day) 

Periods,   n = 360 

Includes 
Outpatient 

Data 

 
1.49 [1.11, 1.85] 

 
1.28 [1.00, 1.57] 

 
1.57 [1.30, 1.88] 

 
1.66 [1.52, 1.79] 

     
Excludes 

Outpatient 
Data 

 
1.49 [0.85, 2.27] 

 
1.20 [0.67, 1.77] 

 
1.55 [1.24, 1.85] 

 
1.21 [0.97, 1.46] 
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The goal of this investigation was to determine the improvement, if any, obtained 

by incorporating lagged outpatient data into a forecasting model for predicting the 

number of daily arrivals at an inpatient of Test Hospital.  The model selection process, 

which was performed by finding the combination of lagged terms and parameters having 

the minimum AIC, yielded a Poisson model incorporating both recent and older (up to 30 

days) outpatient information, with several points at which the lagged outpatient 

information showed a significant effect on the estimated rate parameter.  Short-term 

forecasts from the chosen model were outperformed by nearly all the common univariate 

time-series approaches employed (random walk, ARIMA, exponential smoothing, neural 

network) but this trend was reversed when longer-term forecasts were considered.   

Furthermore, refitting the model to other time periods within the available dataset 

showed that the observed performance of the two Poisson models did not necessarily 

represent the conceivable range of performance when fit to different data.  To investigate 

this form of robustness, the models were fit to differently sized periods of data ranging 

from 120 days (quarterly) to 730 days (two years; the original data spanned nearly 3 

years—1090 days) that were allowed “slide” across all possible starting dates.  Based on 

these simulations, the simpler model tended on average to outperform the model 

containing the outpatient information.   

Although these differences tended to become smaller as more data was used to 

train the models, it would not be appropriate to interpret this as necessarily a sign of 

improved precision; after all, the 360 different datasets used to train and compute the 

performance of the two-year models were mostly trained using a shared set of common 

data points (e.g., the model trained on data from January 2013 to January 2015 used 
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nearly the same data as the model taking data from February 2013 to February 2015).  

The results of this sensitivity analysis permitted the observed performance of the models 

(using all of the data) to be placed in some context, allowing one to infer what the results 

may have been had the models been trained on different data and perhaps decide whether 

the models’ performances are generalizable. 

Taken together, these results imply that the inclusion of lagged outpatient 

information may not be unilaterally helpful in building models to accurately forecast 

inpatient arrivals.  Although the presence of “gatekeeping” structures and pathways 

present in many health systems suggest that various points of care could—ostensibly—

inform one another, this relationship was not observed in the current data.  This may be 

due to several reasons. 

Firstly, the outpatient data for this present study was obtained by aggregating 

across all clinics pertaining to one of two related specialties: neurologists and 

neurosurgeons.  In doing so, any between-clinic heterogeneity is ignored and the focus 

comes to be on trends between population movements related to visiting the hospital after 

having seen a specialist rather than on individual clinic-to-hospital transitions.  More 

importantly, visits to outpatient clinics that do in fact function as “upstream indicators” of 

future hospital visits will be combined with clinics that may not have this function.  For 

example, specialists that focus on patients with more severe diagnoses may frequently 

handle patients who are likely to be admitted to a hospital, while other specialists that see 

patients with fewer needs can provide care at the clinic, preventing a hospital admission 

altogether.  Differences in the types of patients seen at particular clinics or in their size or 

makeup may be critical in forming the sort of lagged relationship necessary to 
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successfully make forecasts as has been attempted in this present study, and ignoring this 

heterogeneity may have led to overestimation of the variance on the model parameters 

and subsequent failure to detect significant trends. 

Secondly, a major concern in making forecasts that is unique to time series data is 

in ensuring that the process being forecasted does not already respond to other, possibly 

similar forecasts  (Hyndman & Athanasopoulos, 2013).  In the present context, a major 

reason that a Poisson model with day-of-the-week and holiday variables was used as a 

“baseline” model from which to compare the model incorporating the lagged covariates is 

because similar models are sometimes used by nurse managers and resource planners at 

Test Hospital.  In essence, this creates problems in that the observed data originate from a 

structured process which is being actively anticipated and perhaps guided by forecasters. 

Hospital planners who are already using forecasts have the ability to modify the true 

random process of arrivals, allocating resources in such a way to avoid volatile activity or 

unplanned admissions.  For example, the observed data may not reflect a random process 

but rather one in which hospital resource planners—who, having advance knowledge 

(accurate or not) through the use of forecasts—have attempted to alleviate unwanted 

surges in arrivals and otherwise ensure that things “run smoothly.”   

In a more general sense, the type of structure presumed to describe that of Test 

Hospital and its associated outpatient clinics—in which outpatient clinics “feed into” 

inpatient clinics in a downstream fashion— implies that patients who visit an outpatient 

specialist present with symptoms or needs that can only be addressed by admission to the 

hospital, to which they are subsequently sent.  In reality, it may be more plausible that 

outpatient specialists function as “diverters” more so than as “senders,” and function 
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principally to address patient needs before they become sufficiently exacerbated as to 

require an inpatient admission.  In this way, a properly functioning outpatient clinic may 

serve to reduce, as much as possible, the number of patients that subsequently become 

admitted to the hospital and have the reverse effect that is hypothesized in this present 

study.  Although this in itself would not bias the estimated effect found by regressing on 

this data, it does call attention to the role of forward and reverse causality in the context 

of modeling lagged relationships.  Likely, the causal effect—if one exists—of patient 

surges at outpatient clinics on subsequent inpatient admissions depends on various 

patient-level characteristics (e.g., particular illnesses with seasonal prevalence or 

more/less severe needs) that cannot be observed by merely examining total counts. 

5.2.  Recommendations 

From a practical standpoint, although the results of this current study imply that 

lagged outpatient information may not improve forecasts of inpatient arrivals, the data 

represent only a particular hospital system observed at a particular window of time.  

Furthermore, although the use of distributed-lag polynomials to model the outpatient 

arrivals provides a convenient and flexible framework for dynamically modelling 

predictors that are observed as time series data, other approaches may yield different 

results.  Vector autoregressive (VAR; Jones et al., 2009) models have been used with 

success to produce accurate forecasts based on interrelated time series data.  However, 

the relative difficulty of fitting such models may make them intractable to all but the 

most statistically inclined resource planners, whereas the relatively simple regression 

model employed in this study may be more desirable among forecasters.   
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Finally, since the minimum lag modelled in the distributed-lag polynomials 

carries implications for the model, this may limit its practical applications.  For example, 

in the model proposed in this study, lagged neurosurgeon visits were modeled over lags 

4–30, which means that 4-day-old data is needed in order to compute forecasts.  Although 

it is conceivable to use previously forecasted values as predictions of the lagged values 

needed to make a forecast further into the future (indeed, this is the approach taken by 

many other techniques, such as ARIMA or Holt-Winters Smoothing), this necessarily 

injects additional variability into the forecasted values and becomes increasingly 

unstable.  For this reason, the proposed model may have little practical utility, as the 

forecasts can be made available no sooner than 4 days prior to the actual dates being 

forecasted. 

In conclusion, the present study shows that, even in a flexible distributed-lag 

framework, for which many model selection parameters can be tuned, there may be 

insufficient predictive information in outpatient arrival data to justify their inclusion into 

inpatient forecasting models.  In addition, the steps taken to ensure optimal representation 

of the distributed lag polynomials (such as selecting the lag length and degree) can 

impose restrictions on the ways in which the forecasts may be generated and used, which 

may be undesirable.  Although there still exists some hypothetical promise in the use of 

lagged outpatient data to inform future or present inpatient observations, newer and more 

creative methods of incorporating this information should be sought. 
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