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Abstract 

 

Assessing Motor Function in Parkinson’s disease using a Web-based, 

Computerized and User-friendly Tool 

 

By Noah Adler 

 

 

Parkinson’s disease (PD) is a neurodegenerative disease resulting in motor- and movement-

related impairments. A clinical diagnosis of Parkinson’s disease requires clinically detectable 

motor symptoms, which do not occur until six to eight years after the nigral neurons in the brain 

begin to degenerate. By detecting PD at an earlier stage, patients can begin therapy sooner, and 

consequently receive better treatment and care. Therefore, in order to detect motor defects prior 

to clinical detection, we developed a web-based, user-friendly computer task called Predictive 

Movement and Trajectory Tracking (PMATT). This task was administered to 23 PD patients and 

14 normal controls while recording computer cursor movements. Using machine learning 

techniques, we calculated fifteen significant motor-related behavioral metrics which strongly 

distinguish the two groups of patients. By implementing a J48 classifier with these behavioral 

metrics, over 97% of subjects were correctly classified with an AUC of 0.992. From these 

results, we conclude that PMATT may be a helpful tool in screening for PD. Since it is easily 

scalable and automated for individual use, PMATT can be effortlessly administered to the 

general population. Furthermore, its use in research may help provide insights into the 

development of motor impairment in pre-clinical PD and help track symptom progression with a 

higher precision than is currently possible. 
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Introduction: 

There are more than 4.1 million people worldwide living with Parkinson’s disease (PD). 

(Dorsey et al.) Michael J. Fox, a high profile actor and major advocate, who himself has 

PD, teaches us that “acceptance [of PD] doesn't mean resignation—it means understanding 

that something is what it is and that there's got to be a way through it.”(Rader) With this in 

mind, many patients with PD, specialists, and researchers are continuously in search of 

better treatments for this disabling condition. However, research into therapy, especially 

neuro-protective therapy that is designed to slow symptom progression, is currently limited 

by our inability to detect the illness until mid-stages of the disease process. Current therapy 

only addresses symptoms and does not address the disease process itself. We know that the 

motor symptoms used to make the diagnosis of PD appear ≥6-8 years after the start of the 

morbid pathology of the illness. (Schapira)  In quantitative terms, symptoms of PD appear 

only after 60% of striatal dopamine is depleted and mechanisms used to compensate for 

this loss have been exhausted. (Becker et al.)  

Since the brain’s compensatory mechanisms triggered by the disease process allow the 

patient to remain without clinically relevant motor symptoms during this prodromal phase, 

scientists have begun to identify various non-motor processes early in the course of PD that 

may serve as biomarkers to help identify those at risk, but still in early stages (pre-motor 

phase) of PD, that could be helped with neuro-protective therapy. It is the hope of current 

research strategies to identify cost-effective biomarkers that could help identify those at 

risk. Thus far, these consist of non-motor signs such as anosmia and RBD (Rapid Eye 

Movement Behavioral Disorder), which appear several years before the onset of motor 

symptoms. These biomarkers, though interesting, represent a departure of the motor core 
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of this movement disorder. As such, and given the frequency of these symptoms in the 

elderly, they lack in the sensitivity and specificity that is expected of a good biomarker. In 

order to have sufficient confidence in making the diagnosis of “prodromal PD” to initiate 

potentially life-long therapy, investigators need a biomarker closer to the core of this 

disease, that is, a ‘motor biomarker’ that antecedes the onset of motor symptoms. Such a 

motor biomarker would be ideally suited to help the development of neuro-protective 

therapies during the prodromal phase of PD. 

Today, with the widespread use of computers and the internet, researchers have 

developed methods and tasks for detection of neurologic dysfunction that could be 

administered over the internet. Such methodologies would be ideally suited to conduct 

the large epidemiologic studies needed to set the stage for the neuro-protective trials 

above. With this in mind, our laboratory developed VPCW (Web-based Visual Paired 

Comparison), a task that can identify amnestic mild cognitive impairment (aMCI), a 

common precursor of Alzheimer’s disease, which is another important neurodegenerative 

condition. The VPCW task contains two parts, a simple target tracking task and an image 

viewing task. In order to replace and simulate the tracking of eye movements in a 

previous version, the visual paired comparison (VPC) task, VPCW records and analyzes 

the user’s mouse movements. This modification allows the original laboratory-based task 

to be administered over the web. The computer-based version is simple enough that it can 

be administered to any subject, regardless of the level of computer experience. Because 

of these unique characteristics, it provides methodological advantages in the detection of 

and in the study of aMCI progression. (Agichtein et al.) 
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The goal of this Parkinson’s-focused study was to develop a web-based task sensitive to 

the fine motor deficits in PD using technology that could be implemented online using 

the toolbox provided by the VPCW study. While aMCI impairs hippocampal-based 

memory and learning, in PD a different region of brain is affected, the basal ganglia. 

Unlike the memory impairment of aMCI, the first symptoms of PD are motor defects 

linked to dopamine depletion in the basal ganglia. Because the image viewing task of 

VPCW mostly detects memory impairment, we developed the Predictive Movement and 

Trajectory Tracking (PMATT) task based on the other part of VPCW, the target tracking 

task, which allows us to focus directly on easily reproducible motor defects in PD. 

Traditional motor scales used in PD focus on gross motor movement that are functionally 

impairing such as tremor and bradykinesia. Yet, we know that fine motor skills, though 

not as impairing, appear sooner than the gross motor changes that we rely upon to make 

the diagnosis. The classic example of this is handwriting, which gradually becomes 

smaller and more cramped in the years approaching the diagnosis of PD. (Fahn) Like 

handwriting, the target tracking task of VPCW allows the recording and assessing of fine 

motor skills by asking subjects to move the cursor to randomly appearing stationary 

targets every five seconds. Since this task is accomplished by tracking mouse 

movements, and this capability is retained in PMATT, we are able to administer the task 

over the internet. The task is also simple and easy to explain to the subjects (see methods 

section).  

Correspondingly, studies by Rascol et al. and others found abnormal eye movements in 

subjects with early PD. This supports the use of tasks that directly, or as in our case 

indirectly, use eye tracking as a reliable method to detect early PD. As shown in Figure 1, 



4 
 

normal controls performed smooth, steady eye movements when following circular 

targets along a sinusoidal path. On the other hand, PD subjects were unable to follow the 

targets readily, due to a tendency for their eye movements to be jerky and shaky. (Rascol 

et al.) The previously mentioned VPCW study proved that tracking of computer mouse 

movements is an effective surrogate for the direct tracking of eye movements using 

infrared devices during cognitive testing. Thus, building on the findings of Rascol et al., 

the PMATT task implements moving targets using movements of increasing complexity 

analogous to a dose response: linear, diagonal, and sinusoidal.  

Other studies in early PD subjects have shown that these subjects perform normally on 

simple motor tasks, since the mechanism compensating for lower dopamine levels in the 

striatum is functioning properly. However, their performance deteriorates as the 

complexity of the task increases, thus readily separating their dose-response curve from 

that of controls. In one such study by Stern et al., both PD and normal control (NC) 

participants traced segments of patterns as shown in Figure 2. Results showed that PD 

subjects made more errors and their errors were more significant compared to those in 

controls. Moreover, as the complexity of the tasks increased, relative performance of PD 

subjects declined further. Stern et al. concluded from their results that “perceptual motor 

impairment in Parkinson's disease is a form of intellectual impairment associated with 

higher-order motor control of sequential and predictive voluntary movements.” Based on 

these findings, we chose to add layers of complexity to PMATT by progressively 

reducing target size. As PMATT focuses on these same motor control movements, we 

expect it will be very sensitive and accurate at detecting perceptual motor impairment, 

and thus, defects in fine motor control in PD.  If true, the PMATT task and these findings 
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could contribute to the study of pre-motor phases of PD and help with the design of 

future neuro-protective trials in PD. 

Current methods for detection and diagnosis of Parkinson’s: 

A common problem in PD research is that a clinical diagnosis cannot be established until 

the neurobiology of the illness is well established, as noted above, >6 years into the 

course of its morbid pathology. Becker et al. highlight this limitation of the study of early 

PD in describing how 60% the nigrostriatal neurons of the substantia nigra (SN) are lost 

before a neurologists can establish the diagnosis of PD.  In order to open the possibility 

of introducing neuro-protective therapies before the ‘late’ onset of classic motor 

symptoms, we need tools to detect PD motor dysfunction during its pre-clinical stages.  

A seemingly logical first step at trying to make an earlier diagnosis would be to ask a 

target population if they have relevant symptoms. Dahodwala et al. reviews how a 

screening questionnaire based on awareness of motor symptoms called the PDSQ 

(Parkinson’s Disease Screening Questionnaire) has been used to detect mild parkinsonian 

signs in the general population. With it, the highest sensitivity and specificity found were 

59% and 63% respectively (Dahodwala et al.). Other screening questionnaires tested so 

far have shown comparably low sensitivity and specificity, creating a need for alternative 

strategies. This has led to the focus on parkinsonian non-motor symptoms, which have 

been shown to antedate the onset of clinically important motor symptoms.  

Non-motor symptoms of PD include anosmia and RBD. (Schapira) Early studies have 

shown that “thirty-eight percent (11/29) [of subjects with RBD] were eventually 

diagnosed as having a parkinsonian disorder (presumably Parkinson's disease) at a mean 

interval of 3.7 ± 1.4 (SD) years after the diagnosis of RBD+, and at a mean interval of 
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12.7 ± 7.3 years after the onset of RBD.” (Schenck et al.) However, the low percentage of 

subjects with RBD who developed PD disqualified RBD by itself as a sufficiently 

sensitive discriminative tool for detecting prodromal PD.  

Similarly, smell identification tests seem to do well at identifying subjects with early PD. 

Picillo et al. evaluated the presence of anosmia in early PD subjects and controls using 

the University of Pennsylvania Smell Identification Test (UPSIT). Applying logistic 

regression to the results, “84.5% of subjects were correctly classified into control or PD 

group[s]. Reliability measures (95% CI) were: specificity 88.2% and sensitivity 82%.” 

(Picillo et al.) The UPSIT thus seems to be a substantial improvement over the motor 

screening questionnaires. However, its positive predictive value in prodromal stages of 

PD when applied to a general asymptomatic population remains to be established. The 

test itself is not practical or cost effective in large populations ($25-30/test + time and 

personnel to analyze). It also not amenable to, and thus lacks the features and advantages 

of, a computer based task. For example, computer based tasks can provide strong data 

gathering and analytic capacity for large field studies. The PMATT task has a web-based 

recording system to track mouse movement data. This data is more objective than smell 

identification and is much easier to collect and interpret. Other benefits provided by a 

computer- based task include services like explanatory visual aids and game-like 

interfaces to deliver the detection tool in a user-friendly manner. For these reasons, 

PMATT may provide an efficient and convenient tool for prodromal detection of PD and 

the monitoring of symptoms during its pre-clinical and clinical phases. 

Hypothesis/Expected Results: 
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Utilizing the PMATT task, this pilot study aims to extract behavioral metrics that 

correlate with the subject’s fine motor skills. These metrics (further explained in 

methods) are expected to separate normal age-matched control subjects from a cross 

section of PD subjects and patients with early PD. We expect to increase the 

discriminative ability of this task by using a dose response approach in presenting 

increasingly complex movements during task administration. The ultimate aim is to 

create a tool that will allow us to test the motor system in PD before clinical motor 

symptoms are apparent. It may also allow us to detect small, clinically unapparent 

changes in motor control that may be important in detecting neuro-protective effects of 

drugs or therapies.  

Methods: 

Study population: 

We compared two groups of volunteers: 23 with Parkinson’s disease (PD) diagnosed 

according to standard criteria (Hughes et al.) and 14 normal controls (NC). We recruited 

PD subjects through the Movement Disorders Clinic at Emory University with the 

assistance of Dr. Jorge Juncos and his colleagues. The PD volunteers represented a cross 

section of early to mid-stage levels of disability as classified by the modified Rankin 

Scale (mRS; see below). They were all optimally treated for their motor and non-motor 

symptoms. We recruited NC participants from the community, many of which were the 

spouses of the PD subjects. Exclusion criteria included known neurologic condition or 

motor disorder (except for PD). Normal controls could not be on any medication known 

to alter dopaminergic transmission. All subjects completed the informed consent process 

in accordance with the Institutional Review Board at Emory University. 
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There were 8 men and 6 women in the control group and 13 men and 10 women in the 

PD group. Table 1 shows there was no significant difference in age between groups (NC 

mean ± SD = 71.3 ± 8.1 and PD = 67.7 ± 7.3; p > .05) and no significant difference in 

levels of education (NC mean ± SD = 17.57 ± .79 and PD = 17.74 ± 1.02; p > .05). There 

was no significant group difference in general cognition as measured by the Montreal 

Cognitive Assessment (MoCA) test as shown in Table 1. All participants scored > 22/30 

on MoCA with some individuals having mild cognitive impairment (i.e., scores between 

22 and 26) (Aggarwal et al). The disability levels of PD subjects was established by Dr. 

Juncos and measured using the mRS. (Simuni et al.) The distribution was: Stage 1 

(unilateral symptoms with no balance problems) = 5; Stage 2 (bilateral symptoms with no 

balance problems) = 8; Stage 3 (balance problems but ambulatory and independent) = 10. 

The self-administered PDQ-39 questionnaire was used to assess quality of life. (Tan et 

al.) 

Clinical Features: 

Cognition: Aggarwal et al. validate the Montreal Cognitive Assessment (MoCA) as an 

adequate screening tool to evaluate gross cognitive abilities in the general population.  It 

has also been used extensively and validated in PD. (Aggarwal et al.) The investigator 

(Noah Adler) administered the assessment to all study participants.  

Quality of Life: The 39-item, self-administered Parkinson's Disease Questionnaire (PDQ-

39, Appendix 1) is validated by Tan et al. as a tool for assessing health-related quality of 

life (HRQoL) in PD patients. It contains thirty-nine questions divided into eight unique 

domains of PD: mobility, activities of daily living (ADLs), emotional wellbeing, stigma, 
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social support, cognition, communication, and bodily discomfort. All PD volunteers 

completed this questionnaire. 

Depression: The Patient Health Questionnaire-2 (PHQ-2) contains two multiple choice 

questions that Kroenke et al. validate for evaluating depression. Kroenke et al. describe 

the tool itself:  

“The stem question is, ‘Over the last 2 weeks, how often have you been 

bothered by any of the following problems?’ The 2 items are ‘little interest 

or pleasure in doing things’ and ‘feeling down, depressed, or hopeless.’ For 

each item, the response options are ‘not at all,’ ‘several days,’ ‘more than 

half the days,’ and ‘nearly everyday’ scored as 0, 1, 2, and 3, respectively.” 

Every subject in this study answered both of the PHQ-2 questions.  

Data Security: 

In order to securely store personal healthcare data, we used REDCap, which 

allowed us “to build and manage online surveys and databases quickly and 

securely.” (Harris et al.) 

Task Overview: 

Each participant was seated in front of a 15” laptop computer in a brightly lit room with 

no distractions. The PMATT task was explained prior to its administration. This included 

a detailed demonstration video and specific instructions. The test itself was conducted 

under the supervision of the investigator (Noah Adler) to establish that the subject was 

following the instructions correctly. 

Participants performed the task in full screen mode to avoid distractions, but a smaller 

rectangle (1024 x 768 pixels) of the screen was used for the task itself. Targets emerged 
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in 3 different sizes: large (radius 45 pixels), medium (radius 36 pixels), and small (radius 

26 pixels). 

The PMATT Task: 

This task requires the user to move the computer mouse such that the cursor remains on 

the circular white targets, and only on the circular white targets on the screen. While the 

mouse is on the circle, the circle turns green to indicate the correct placement of the 

mouse. The targets travel in pre-defined patterns designed to create a dose response of 

movement complexity. To challenge attention and capacity for response inhibition, 

different visuo-spatial ‘distractors’ appear on the screen during the task. These are the 

patterns: 

● Stationary: Circular, white targets appear in random locations on the screen and 

remain on the screen for 5 seconds. Six targets of each size appear: first the large 

targets, then the medium targets, and finally the small targets. In addition to the 

circular white targets, blue and white square distractors randomly appear, 

interspersed throughout the pattern. A total of 18 stationary targets emerge: 9 

without distractors, 6 with blue distractors (2 large, 2 medium, 2 small), and 3 

with white distractors (1 large, 1 medium, 1 small). 

● Long Stationary: Two long stationary targets appear for 15 seconds each.  

● Linear motion: Targets move horizontally across the screen from left to right for 

11 seconds each at a speed of 93 pixels/second (shown in Figure 3). These targets 

emerge at random heights. The user must follow two targets of each size, totaling 

6 linear trajectories. 
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● Diagonal motion: Targets move from the top left to the bottom right or bottom 

left to top right for 13 seconds at a speed of 98.5 pixels/second (shown in Figure 

4). The user is expected to follow one medium target and one small target along 

each of these paths, totaling 4 diagonal trajectories.  

● Sinusoidal motion: Targets travel in a sinusoidal pattern horizontally across the 

screen. The sinusoidal pattern has amplitude of 60 pixels and completes a total of 

4 full sine periods (a total of 8π radians) as it travels across the screen from left to 

right. These targets move at three speeds: slow (16 seconds), moderate (12 

seconds), and fast (8 seconds). A total of nine targets of this pattern appear: one 

slow target of each size, then one moderate speed target of each size, and finally 

one fast target of each size. Thus, a total of 9 targets must be tracked on the 

sinusoidal trajectory.  

Data processing: 

We record mouse movements throughout the task to track timestamps, the cursor’s x and 

y coordinates, and the target’s x and y coordinates. For consistency in analysis, these data 

points were interpolated every 20 milliseconds using a nearest-neighbor interpolation 

method.  

Behavioral Metrics: 

We calculated numerous behavioral metrics as seen in Appendix 2. After some 

preliminary analysis (further discussed in the results and discussion sections), we 

determined that the three primary behavioral metrics for the PMATT task are: 

1) TimeOnTarget 

2) NumberOfEntriesIntoTarget 
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3) MotorPersistence 

TimeOnTarget is the number of milliseconds in which the cursor remains on the target, 

which is an indirect measure of “higher-order motor control of sequential and predictive 

voluntary movement,” as described in Stern et al. NumberOfEntriesIntoTarget is the 

number of times the cursor goes from outside the area of the target into the area enclosed 

by the target, which is an indirect measure of tremor. MotorPersistence monitors the 

ability to keep the cursor on target throughout the task, not just for a particular portion of 

the task. To do this, using time intervals of 300 milliseconds, we count how many times 

the cursor is on the target. We used time intervals of 300 milliseconds because it provided 

better indicators of PD than similar time intervals. Thus, MotorPersistence determines the 

participant’s ability to remain on the target throughout the task and can detect minute 

changes and fluctuations that TimeOnTarget does not accurately detect. 

We subcategorized these three metrics by motion pattern (e.g. stationary, linear, and 

sinusoidal) and then further split by target size. This allowed the detection of minuscule 

differences in the subject’s actions.  

Classification models: 

In order to discriminate if a subject’s behavioral metrics came from the PD or NC group, 

we use classification models. The first constructed models used Weka’s NBTree (naïve 

bayes tree) classifier with single behavioral metrics to determine the assignment of group 

label for the subject. The NBTree classifier finds the optimal threshold to distinguish PD 

and NC subjects and uses this threshold as the basis for the classification model. 

Recognizing that additional information provides a better model, we used Weka’s J48 

classifier with a confidence factor of 0.25 and a minimum number of objects in each leaf 
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of five to simultaneously calculate the optimal thresholds of multiple, jointly used 

behavioral metrics. Therefore, the resulting model is defined by a decision tree, splitting 

at each of the thresholds that have been optimized for joint use among the selected 

behavioral metrics. (Bhargava et al.)  

Linear Regression: 

Linear regression models, built using python’s scikit library, helped to calculate the PD 

subjects’ level of impairment. To do this, we used the lasso method with all fifteen 

behavioral metrics as inputs. (Efron et al.) 

Evaluating Models: 

The most common method of evaluating a model involves testing it on the same data that 

it used to train the model. This is advantageous when using small datasets because the 

model can be built utilizing all the data. Additionally, each model’s performance metrics 

are easily calculated, allowing for a simple, straightforward comparison between different 

models. On the other hand, this method of evaluation does not account for the unforeseen 

variability in new data. Thus, in order to strengthen our analysis, we also look at five-fold 

cross validation.  

Five-fold cross validation is often used to evaluate a model’s expected performance on 

new data. It involves splitting the dataset, causing a smaller sample of 80% of the data to 

be used in the model creation. Thus, the held out 20% can be treated like new data. By 

splitting the model five times and averaging the results, any errors caused by only using a 

smaller portion of the data for training the model will be minimized. By testing the 

models on new data, cross validation determines the predicted performance of these 

models when used on a larger sample. Since the subjects in this study are controls and 
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patients with PD at early to mid-stages of illness, they closely resemble our eventual 

target population. Therefore, the cross validation performance metrics used here are a 

statistically sound approximation of the anticipated PMATT task results if were to use it 

in screening field studies. 

Performance Metrics: 

Performance metrics evaluate the strength of a model. For classification models, we 

report accuracy, AUC, precision, recall, and F-measure. Accuracy is the number of 

subjects correctly classified by the model. AUC is the Area under the ROC (Receiver 

Operating Characteristic) Curve. Precision is calculated as true positive results divided by 

the total number of positive results. Recall is calculated as true positive results divided by 

the total number of positive subjects. F-measure is the harmonic mean of precision and 

recall, thus providing a single value that evaluates these two metrics together. 

For linear regression models, we report R-squared and RMSE metrics. R-squared is the 

coefficient of determination representing how well the model performs when compared 

with a model determined by the mean value of the data. RMSE stands for root mean 

squared error. All these performance metrics are commonly used and well validated; 

therefore, we use these metrics to evaluate the results of this study.  

Results: 

Overview: 

One of the main goals of the PMATT study is to provide a tool to detect early defects and 

small changes in PD motor control that simultaneously consider high (e.g., response 

inhibition) and low order (e.g., movement time) variables with high accuracy. To achieve 

this, we generated numerous behavioral metrics associated with motor function and, 
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based on analysis, chose the metrics most suitable for further analysis. Then, using the 

selected behavioral metrics, we built classification models to screen for PD. To 

accomplish this, we first built models using each individual behavioral metric and 

analyzed its contribution to discriminative ability of the model.  After realizing that a 

better model would provide an improved classification method, we used a J48 classifier 

to select optimal feature thresholds simultaneously. This classifier resulted in a model 

dependent on two behavioral metrics: MotorPersistenceDiagonalSmall and 

NumberOfEntriesIntoTargetSinusoidalSmall. Using these models, our data analysis 

suggests that PMATT can successfully detect PD in most subjects. 

The long term goal of this project is to examine these behavioral metrics, in order to 

study the progression of pre-clinical and clinical motor defects in PD. To keep the project 

anchored on clinically relevant motor function, we first showed that PMATT’s behavioral 

metrics correlate strongly with mRS, PDQ-39 scores, and depression scores, which can 

indirectly affect motor function. At the same time, we showed that our behavioral metrics 

do not correlate with age or cognitive ability. Therefore, we conclude that PMATT is 

linked to motor signs and symptoms of PD and not linked to other common elderly 

ailments. We used this information and linear regression models to optimize the use of 

the behavioral metrics to fit mRS, PDQ-39 scores and depression scores. This provided 

insight into the advantages and limitations of PMATT by using the behavioral metrics, 

which do not fit models regressing to emotional well-being or disease associated stigma, 

to successfully fit models for regressing motor skills. 

Significant Behavioral Metrics: 
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Many of the selected individual behavioral metrics correspond with fine motor skills. To 

increase the power of our analysis, we used a two-tailed two-sample unequal variance t-

test between the PD and NC groups to determine the optimal metrics. As seen in Table 2, 

TimeOnTarget, NumberOfEntriesIntoTarget, and MotorPersistence represent the 

behavioral metrics with significance (p) values less than 0.0001. To further optimize 

these metrics, each one is separated into diagonal and sinusoidal target motions, and then 

even further into the different target sizes. Thus, we determined that these fifteen 

behavioral metrics are optimal for additional analysis. Of these fifteen metrics, three are 

not significant (p > .05) when comparing the PD and NC groups: 

NumberOfEntriesIntoTargetDiagonalMedium, 

NumberOfEntriesIntoTargetSinusiudalBig, and 

NumberOfEntriesIntoTargetSinusiudalMedium.  

Table 2 also shows that TimeOnTarget, NumberOfEntriesIntoTarget, and 

MotorPersistence remain significant (p < .05) even when comparing NC to the smaller 

subset of early PD subjects (mRS <= 2; n = 13). Due to the smaller dataset, the p-values 

are higher. In contrast, when comparing early PD with moderate PD (mRS = 3; n = 10), 

only 2 behavioral metrics show significance (p < .05): TimeOnTargetSinusoidalMedium 

and MotorPersistenceSinusoidalMedium. 

Classification Results: 

The best performing models using individual behavioral metrics for classifying the PD 

and NC groups are MotorPersistenceDiagonalSmall and 

NumberOfEntriesIntoTargetSinusoidalSmall. As seen in Table 3, model 1 classifies PD 

subjects as those with MotorPersistenceDiagonalSmall less than 190, while model 2 



17 
 

classifies PD subjects as those with NumberOfEntriesIntoTargetSinusoidalSmall less 

than 17.33. Table 4 displays the performance measures of these comparable models. 

When model 1 is tested on the training data, it correctly classified 32 out of 37 of the 

subjects with an AUC of 0.821 and an F-measure of 0.857. These performance measures 

are very similar to model 2, which correctly classified 31 out of 37 of the subjects with an 

AUC of 0.842 and an F-measure of 0.840. Additionally, the table shows that, when tested 

using five-fold cross validation, model 1 correctly classified 31 out of 37 of the subjects 

with an AUC of 0.744 and an F-measure of 0.831, while model 2 correctly classified 30 

out of 37 of the subjects with an AUC of 0.750 and an F-measure of 0.809. From these 

results, we conclude that these models perform strongly compared to the current methods 

of screening, such as questionnaires (sensitivity of 59% and specificity of 63%) or 

olfactory testing (accuracy of 84.5%). Can a better model be built? 

To build a better model, we implemented weka’s J48 decision tree classifier in order to 

utilize multiple behavioral metrics simultaneously. This model took all the features as 

inputs and determined two jointly assessed behavioral metrics to provide an exceptional 

model for classifying subjects as PD or NC: NumberOfEntriesIntoTargetSinusoidalSmall 

and MotorPersistenceDiagonalSmall. As seen in Table 3, the J48 model classifies PD 

subjects as those with NumberOfEntriesIntoTargetSinusoidalSmall less than 17.33 and 

MotorPersistenceDiagonalSmall less than 215. All other subjects are classified as NC. 

When tested on training data, the model correctly classified 36 out of 37 of the subjects 

with an AUC of 0.992 and an F-measure of 0.973. Furthermore, when using five-fold 

cross validation, 32 out of the 37 subjects were correctly classified with an AUC of 0.882 
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and an F-measure of 0.867. These results indicate that the joint model detects PD with 

extraordinary accuracy. 

Correlation: 

Table 5 depicts the correlation coefficients between the modified Rankin Scale (mRS), 

age, MoCA, depression scores, PDQ and the fifteen behavioral metrics mentioned above. 

These provide insights into many important aspects of PD presumed relevant to fine and 

gross motor control. As expected, the mRS and PDQ are highly correlated to each other. 

Additionally, the mRS, depression scores, and PDQ all have high correlations (> .4) with 

many of the behavioral metrics. In contrast, age and MoCA scores are not correlated with 

any other fields. From this we conclude that PMATT is a strong tool for calculating 

behavioral motor metrics. 

Linear Regression Models: 

In an attempt to gain knowledge and understanding about how these models inform 

motor and cognitive defects in PD, we built linear regression models. Table 6 portrays 

depression, PDQ, and mRS fields and their R-squared and RMSE values when tested on 

the training data and on five-fold cross validation. As evident from the R-squared values, 

these models perform strongly when tested on the training data. However, when using 

five-fold cross validation, only the models for the depression scores, PDQ mobility and 

ADLs (activities of daily living), and mRS fit well. In contrast, those fields with negative 

R-squared values, meaning they perform worse than using the average, include PDQ 

emotional wellbeing, stigma, and total.  

Discussion: 

Significant Behavioral Metrics: 
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In this analysis, many motor metrics of PMATT showed significant (p<.05) differences 

between the NC group and our cross section of PD patients. Some of these metrics 

include: movement time, reaction time, maximum velocity, time on target, number of 

entries into the target, and motor persistence. In the past, the use of these metrics to 

distinguish a subject with early PD and age-matched controls has been difficult because 

of their lack of sensitivity and their huge variance in aging populations plagued by 

cognitive changes, tremors unrelated to PD (e.g., drug induced or essential tremor), and 

non-specific slowing due to arthritis and other factors. For example, Jahanshahi et al. 

reviewed many studies that tried to use reaction time to distinguish PD and controls. 

They concluded that reaction time (RT) appears to be “a slowness in response initiation 

in Parkinson's disease, which is a stage of processing common to all RT conditions,” 

(Jahanshahi et al.) and this commonly seen in the elderly population. Other studies 

proved the inadequacy of RT as a metric to discern early PD from normal aging, again 

due to lack of sensitivity. Accordingly, these behavioral and motor metrics have fallen 

into disfavor in recent years for use in these investigations. 

To address these historical, but we think remediable, limitations of these metrics, we 

chose to focus on a subset of these metrics that are more likely to provide precision, 

sensitivity, and simplicity in the task of separating early PD motor dysfunction from 

normal ranges of functioning. After reviewing available data and studying the likely 

reasons for previous failures, we chose parameters that are closely linked to the 

fundamental motor defects in PD. We then selected behavioral metrics for their high 

precision (p<.0001).  In the process, we found that simple linear measures at low speeds 

using a standard target size have been previously incapable of discriminating PD subjects 
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and controls. Thus, as part of the PMATT task, we opted to administer the targets at 

different speeds, using both linear and non-linear movements, and targeting different size 

objects. 

Using this strategy we found that the most discriminant metrics were TimeOnTarget, 

NumberOfEntriesIntoTarget, and MotorPersistence. As anticipated, the hardest motions 

for the subjects were the diagonal and sinusoidal ones.  As such, these patterns were also 

the most likely to discriminate between PD and NC groups. Additionally, the higher level 

of difficulty created by the progressive reduction in target size led to an increase in the 

significance level for many of the metrics. This early finding informed our subsequent 

analysis using the fifteen most sensitive behavioral metrics. 

Three behavioral metrics were insignificant (p > .05): 

NumberOfEntriesIntoTargetDiagonalMedium, 

NumberOfEntriesIntoTargetSinusoidalBig, and 

NumberOfEntriesIntoTargetSinusoidalMedium. The NumberOfEntriesIntoTarget 

behavioral metrics is an indirect measure of tremor; thus, we determine that these larger 

target sizes are incapable of detecting minor tremors. This is likely caused by two 

reasons. First, the target size is larger than the tremor amplitude, so the tremor does not 

cause the cursor to leave the target. Secondly, following the trajectory of the larger 

targets is simpler, so it does not cause a dose response of movement complexity. To 

account for this issue in future studies, target sizes must be optimized to account for 

minor tremors and to cause a dose response of movement complexity. 

Following this analysis, we compared the NC group with the early PD group (mRS <= 2). 

This allowed us to determine the effectiveness of the behavioral metrics at distinguishing 
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those at early stages of the disease. Not surprisingly, all the significant metrics for 

distinguishing NC from PD are also significant for distinguishing NC from early PD. 

This validates the ongoing investigation of PMATT as a tool that could serve as a ‘motor-

biomarker’ of the pre-clinical phase of PD. 

Only two metrics remained significant when comparing early vs moderate PD: 

TimeOnTargetSinusoidalMedium and MotorPersistenceSinusoidalMedium. As a possible 

explanation, both metrics are heavily dependent on remaining on the target, making the 

size of the target critical. Since subjects with moderate PD have more severe motor 

dysfunction, they were unable to remain on the medium target, but those with early PD, 

and consequently only minor motor dysfunction, were capable of tracking the target 

successfully on the medium target size. As seen in Table 2, the smaller the target, the 

more significant the behavioral metric is at discriminating between NC and early PD. 

Thus, on the small target, the early PD subjects likely experience similar motor 

dysfunction as moderate PD subjects, causing a lack of significance at distinguishing 

early PD from moderate PD. Further work is needed to confirm this explanation.  

Classification: 

We built individual behavioral metric models for classifying participants into PD and NC 

groups. The top performing single metric model, model 1, uses 

MotorPersistenceDiagonalSmall, classifying 86.49% of subjects correctly on training 

data. Model 2 is the second best single metric model using 

NumberOfEntriesIntoTargetSinusoidalSmall to classify 83.78% of subjects correctly on 

training data. Both these models accurately classify over 81% of subjects in cross 

validation.  
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However, we aimed to build a better model by simultaneously using all the behavioral 

metrics employing a J48 classifier. This classifier utilized a double metric classification 

model that performs significantly better than the single metric models, correctly 

classifying 97.30% on training data. Thus, the J48 model validates our hypothesis that 

PMATT can distinguish between NC and a cross section of PD subjects. By correctly 

classifying 86.49% of subjects in cross validation, we validate utilizing PMATT’s 

behavioral metrics to classify new subjects. 

Due to the small size of our subject pool, implementing a model using three or more 

features would cause substantial over fitting. Thus, by increasing the size of the subject 

pool, we would be able to utilize multi-dimensional models, which would strengthen the 

detection abilities of this tool.  

Correlations: 

Table 5 shows the correlation between the behavioral metrics discussed above and the 

many clinical features of the Parkinson’s patients. By gaining understanding about the 

correlation between these different attributes, we hope to refine the behavioral metrics 

that PMATT produces and determine their clinical significance. For instance, we found 

that unlike the effects of aging on motion and cognition, our experimental metrics did not 

correlate with age or MoCA scores. Accordingly, the PMATT behavioral metrics, the 

mRS, the depression index, and the PDQ score were all independent of age and 

cognition.  

In contrast, the high correlation between the PMATT behavioral metrics and the 

clinically important indices of mRS, depression, and PDQ suggest that PMATT is 

anchored on clinically relevant measures of PD and may serve to detect small changes in 
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clinical symptoms during neuro-protective therapies that we have failed to detect using 

conventional clinical measures like the United Parkinson Disease Rating Scale (UPDRS). 

As a result of this, we conclude that PMATT’s behavioral metrics are sensitive to PD-

specific change and not a function of common elderly ailments such as aging or cognitive 

decline.  

Linear Regression Models: 

One of the main goals of this ongoing work is to use the PMATT task to learn about 

motor symptoms related to early PD. Since the linear regression models built using 

PMATT’s behavioral metrics fit the PDQ-39 mobility scores and mRS scores well, 

PMATT scores may help as surrogates to track these areas of dysfunction in PD by 

possibly adding precision without sacrificing simplicity to the process.  

We also attempted to fit PMATT behavioral metrics to non-motor domains of the PDQ-

39, such as emotional wellbeing and stigma. These linear regression models show an 

unequivocal lack of correlation in these domains, with these models performing worse 

than a model that just returns the average of the input data. One potential explanation is 

that PMATT was designed to assess motor function and thus appears insensitive to other 

forms of disability in PD. Given the multiple domains of the PDQ-39, it is not surprising 

to find that the linear regression models did not correlate with the total score of the PDQ-

39.  

Future Work: 

How will PMATT inform the study of PD? 

Discriminant analysis: Using a cross sectional sample of patients with mild to moderate 

PD we have shown that PMATT can distinguish PD from NC subjects with high 
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accuracy. Even when we limit our analysis to those with the earlier stages of PD, 

PMATT can still distinguish both groups with a robust statistical significance. PMATT 

could thus be developed as a tool to screen elderly populations for PD. Current detection 

tools require big, “clinically relevant” changes in motor function for detection of PD. 

These changes may be “too much to ask for” when using drugs that address the lack of 

dopamine production in the brain instead of addressing specific PD motor symptoms like 

bradykinesia and tremor.  

Better understanding motor function:  Additionally, while the linear regression models 

may not accurately fit all aspects of PD, PMATT provides a useful tool to better 

understand motor (e.g., movement execution) and cognitive (e.g., motor planning) 

aspects of motor control in PD. With this information, we hope to detect defects in motor 

performance before they become clinically apparent. This would have important 

implications for neuro-protective therapy. In the ideal world this information will be 

necessary to study early intervention in asymptomatic individuals and to help track the 

results of early interventions in minimally affected individuals. The presumption is that it 

would be easier to slow or reverse these changes with pharmacologic interventions in PD 

when the changes are minor. Other potential uses of this technology include the use of 

PMATT as a surrogate to index and track an individual’s disability and its correlation 

with his/her ability to perform activities of daily living like driving and using tools at 

home.  These reports could also be used to predict the level of assistance a patient is 

likely to need at home. 

Beyond screening: Since PMATT can be implemented and administered over the web, it 

can easily be accessed and completed by anyone in the world. Therefore, it can be used as 
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a screening tool in large scale projects in Parkinson’s disease and other 

neurodegenerative conditions. Potential users for this include researchers, clinicians, and 

individuals. Additional uses include long term tracking of the clinical effects of drugs 

during development or post-marketing. An example of this would be the detection of 

small, otherwise clinically unimportant changes in motor function that can track the 

effects of neuro-protective agents. An additional, and potentially important, use would be 

as a biomarker to pre-clinical (not yet apparent on clinical exam) motor involvement in 

individuals at risk of developing PD. Based on current research, these individuals include 

those with genetic forms of PD, those with RBD and those with anosmia. (Mollenhauer)  

Potential research directions: 

This study provides new insights into the usage of mathematical models that can improve 

the use of cognitive and motor indices of dysfunction in PD. By modeling and analyzing 

various parameters simultaneously, we achieved significant improvements in detection 

capabilities of PMATT’s calculated behavioral metrics. More complex models would 

likely increase the power of the PMATT tool, but since this is a pilot study aiming for 

simplicity, we kept our models simple and straightforward. We also expect that 

simultaneous modeling of various symptoms commonly seen in PD, such as motor 

symptoms, RBD, and anosmia, would create a more advanced tool that encompasses all 

facets of the disease, thus providing a multifaceted tool for detection. 

In the future, to further PMATT as a potential pre-symptomatic tool to detect ‘pre-motor’ 

PD, we would want to validate the discriminant ability of PMATT in patients with very 

early and untreated disease and compare them to a larger sample of controls, controlling 

for age, education, cognitive function, medical conditions and non-PD medications. Once 
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we can establish and validate detection thresholds for individual PMATT parameters, we 

would be ready to begin detecting ‘incipient PD’ in populations at risk. Currently, it is 

very difficult to make presumptive diagnosis of ‘incipient PD’ in patients with RBD or 

anosmia in the absence of motor signs since the discriminant ability of these non-motor 

signs independent of motor indices remains poor. Once established as a pre-clinical index 

of PD, PMATT could then be used as a practical tracking tool during the pre-clinical 

course of the illness.  

Potential Limitations: 

Test subjects may find the PMATT task to be boring, in which case attention to the 

testing may be compromised during task administration. To curtail this, we attempted to 

keep the task as short as possible (total run time of eight minutes). Additionally, to ensure 

the subjects remained motivated and attentive, their performance was constantly 

monitored by the study investigator (Noah Adler). After careful observation, we 

confirmed that the task was suitably completed by all the subjects. Since we have now 

validated the PMATT task, it can be made more interesting by adding elaborate attention 

and ‘gaming style’ graphics and sound effects.  

Another limitation is that the elderly subjects may find the computer game to be daunting 

and intimidating due to little or no computer experience. Many attributes of the task aid 

in resolving these issues. First of all, before starting the task, demonstration videos are 

shown to explain the task to the user. Secondly, written and verbal instructions assist the 

user throughout. Lastly, the task was kept simple and straightforward. With these aids 

employed, all subjects in this study were capable of participating and completing 

PMATT (monitored by Noah Adler). 
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A third limitation is that this study only confirms PMATT as a screening tool. The 

hypothesized diagnosis must be confirmed by a physician. Since this is just a pilot study, 

concluding that this task can be used as a screening tool is a very significant step. The 

next significant step for us is extending this tool to an early detection tool. In order to do 

this, a much larger, longitudinal dataset must be gathered including a large number of 

untreated, early-stage PD subjects. Additionally, the task must be evaluated when 

compared to supplementary PD scales such as UPDRS, which was not implemented at 

this stage due to time and personnel constraints.  

Lastly, when the PMATT task is implemented in practice, we expect to find a learning 

effect in subjects that participate multiple times. Lumos Labs, also known as Lumosity, 

performed studies on the cognitive effects of training on attention and working memory. 

They compared a group of trained subjects against a control group to find that “the 

trained group improved significantly more than the control group on untrained measures 

of visual attention and working memory.” (Hardy et al.) Similar to these results, if 

subjects were to use PMATT regularly, for example to track the effects of a new drug on 

motor function, they would likely begin to experience a training effect that would result 

in improved performance unrelated to the drug itself. This effect could be diminished by 

providing additional versions of the task and implementing various randomization 

algorithms. Furthermore, by modeling this training effect, we aim to detect previously 

unnoticed variations in the learning abilities of PD patients.  

Conclusion:  

The data presented here supports the view that the PMATT may be an effective tool to 

detect early, and possibly pre-motor stages, of PD. If true, PMATT could be simplified to 



28 
 

serve as a practical and cost effective tool to screen large populations for early signs of 

Parkinsonism. Such a tool has a significant potential in facilitating current and future 

research in neuro-protective and other therapies in PD. With further refinements, it could 

aid physicians in monitoring the effectiveness of treatment or produce summary reports 

on a patient’s ability to perform activities of daily living. Similar examples elaborated on 

throughout this paper show that PMATT can provide an additional tool to investigate 

symptomatic and neuro-protective treatments in PD.  
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Figures and Tables: 

Figure 1 

  

Rascol, O., M. Clanet, J. L. Montastruc, M. Simonetta, M. J. Soulier-Esteve, B. Doyon, 

and A. Rascol. "Abnormal Ocular Movements In Parkinson's Disease." Brain 112.5 

(1989): 1193-214. Web. 
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Figure 2 

 

Stern, Yaakov, Richard Mayeux, Jeffrey Rosen, and Joyce Ilson. "Perceptual Motor 

Dysfunction in Parkinson's Disease: A Deficit in Sequential and Predictive Voluntary 

Movement." Journal of Neurology, Neurosurgery & Psychiatry 46.2 (1983): 145-51. 

Web. 

Figure 3 

  

Target traveling in a linear pattern  

Figure 4 

 

Target traveling in diagonal pattern 
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Table 1 

 

Subjects demographics and neuropsychological assessment scores. Legend: NC – normal 

control, PD – Parkinson’s disease, mRS – modified Rankin Score. Columns 2-5 are the 

scores obtained by the groups for the descriptors in Column 1. Column 5 is the p value for 

a two-tailed two-sample unequal variance t-test. Significance (p) values are reported when 

below 0.05, otherwise reported as NS (not significant). 

  

  NC (N=14) PD (N=23) 
PD vs. 

NC 

    
mRS: 1 

(N=5) 

mRS: 2 

(N=8) 

mRS: 3 

(N=10) 
 

Age 

 
71.33(2.15) 67.50 (1.77) 64.58(2.23) 70.50(2.63) NS 

Years of Education 

 
17.57(0.79) 17.20(1.20) 17.50(0.98) 18.20(0.96) NS 

Montreal Cognitive 

Assessment 
27.71(0.46) 27.60(0.40) 26.50(0.63) 26.20(0.65) NS 
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Table 2 

Behavioral Metric NC(n=14) PD(n=23) NC vs. PD NC vs. 

Early PD 

Early PD 

vs. 

Moderate 

PD 

TimeOnTarget      

Diagonal movements      

Medium targets 318.46(13.85) 211.91(18.03) 4.12E-05 0.002242 NS 

Small targets 247.82(12.61) 156.35(14.05) 2.69E-05 0.001205 NS 

Sinusoidal movements      

Big targets 459.21(15.73) 335.86(25.36) 0.000223 0.012246 NS 

Medium targets 400.71(18.55) 268.74(24.11) 0.000116 0.021961 0.015968 

Small targets 278.79(22.31) 175.26(19.86) 0.001595 0.040168 NS 

NumberOfEntriesIntoTarget      

Diagonal movements      

Medium targets 7.46(0.85) 9.09(0.75) NS NS NS 

Small targets 13.11(0.66) 10.52(0.73) 0.012812 0.048825 NS 

Sinusoidal movements      

Big targets 7.62(1.04) 8.58(0.56) NS NS NS 

Medium targets 12.43(1.10) 10.61(0.62) NS NS NS 

Small targets 17.88(0.73) 12.28(0.99) 6.05E-05 0.000895 NS 

MotorPersistence      

Diagonal movements      

Medium targets 241.07(6.67) 176.30(12.95) 0.000101 0.003550 NS 

Small targets 218.93(7.02) 149.13(11.33) 8.66E-06 0.000529 NS 

Sinusoidal movements      

Big targets 333.57(7.37) 259.13(16.96) 0.000368 0.012014 NS 

Medium targets 309.76(9.39) 222.90(15.99) 4.64E-05 0.008716 0.024067 

Small targets 257.38(11.16) 170.87(15.95) 8.60E-05 0.005528 NS 

 

The mean scores and standard errors values for the PMATT behavioral metrics. For each 

behavioral metric we report the p-value from the two-tailed two-sample unequal variance 

t-test. Significance (p) values are reported when below 0.05, otherwise reported as NS (not 

significant). Data = mean ± SD. 
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Table 3 

 Single Behavioral Metric 
Model 

Double Behavioral 
Metric Model 

 Model 1 Model 2 J48 Model 
MotorPersistence 

DiagonalSmall 
<190 NA <215 

NumberOfEntriesIntoTarget 

SinusoidalSmall 
NA <17.33 <17.33 

 

The inequalities show the dependency of each model on each behavioral metric that is 

needed for a subject to be classified as PD. When two behavioral metrics are present, 

both inequalities must hold true for the subject to be classified as PD by the model. 

 

Table 4 

  Accuracy AUC Precision Recall 

(sensitivity) 

F-

Measure 

Model 1 Training 86.49% (32/37) 0.821 0.889 0.865 0.857 

5-fold 

Cross 

Validation 

83.78% (31/37) 0.744 0.847 0.838 0.831 

Model 2 Training 83.78% (31/37) 0.842 0.846 0.838 0.840 

5-fold 

Cross 

Validation 

81.08% (30/37) 0.750 0.809 0.811 0.809 

J48 Model Training 97.30% (36/37) 0.992 0.975 0.973 0.973 

5-fold 

Cross 

Validation 

86.49% (32/37) 0.882 0.880 0.865 0.867 

 

The training data and five-fold cross validation performance metrics for the three 

classification models. For each model, we report accuracy, AUC, precision, recall, and F-

measure. 
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Table 5 

 

Pearson correlation values among PD subjects comparing horizontally: modified Rankin 

Scale, Age, MoCA, Depression, and PDQ to vertically: modified Rankin Scale, Age, 

MoCA, Depression, PDQ, and PMATT behavioral metrics. Bolded values show strong 

correlation. 

 

  

*PD subjects only mRS Age MoCA Depression PDQ 

Modified Rankin Score 1 0.2290 -0.2909 0.1473 0.6124 

Age 0.2290 1 0.2075 0.0513 0.0481 

MoCA -0.2909 0.2075 1 -0.0140 -0.1232 

Depression 0.1473 0.0513 -0.0140 1 0.5468 

PDQ 0.6124 0.0481 -0.1232 0.5468 1 

TimeOnTarget      

Diagonal movements      

Medium targets -0.4376 -0.2773 0.0150 -0.3783 -0.4751 

Small targets -0.4128 -0.2022 0.0150 -0.4359 -0.5147 

Sinusoidal movements      

Big targets -0.5011 -0.2394 0.0655 -0.4612 -0.4950 

Medium targets -0.6447 -0.1142 0.1229 -0.3594 -0.5412 

Small targets -0.5080 -0.0191 0.0204 -0.4421 -0.5595 

NumberOfEntriesIntoTarget      

Diagonal movements      

Medium targets -0.2695 -0.1719 0.0483 -0.3249 -0.1437 

Small targets -0.2782 -0.0940 -0.0568 -0.3875 -0.2561 

Sinusoidal movements      

Big targets 0.0946 -0.0208 -0.0457 -0.5037 -0.0382 

Medium targets 0.1467 -0.1376 -0.1021 -0.4794 -0.0759 

Small targets -0.4395 -0.0667 0.1702 -0.5296 -0.4899 

MotorPersistence      

Diagonal movements      

Medium targets -0.4479 -0.2732 0.0069 -0.4231 -0.4761 

Small targets -0.4214 -0.2197 0.0175 -0.4523 -0.4853 

Sinusoidal movements      

Big targets -0.4747 -0.2618 0.0552 -0.5166 -0.4861 

Medium targets -0.6119 -0.1129 0.0921 -0.4201 -0.5547 

Small targets -0.5038 -0.0256 0.0673 -0.5126 -0.5668 
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Table 6 

 Training data Cross validation 

 R squared RMSE R squared RMSE 

depQ1 0.989 0.944 0.594 0.969 

depQ2 0.978 0.787 0.697 0.834 

pdqMobility 0.909 0.710 0.430 0.815 

pdqADLs 0.985 0.720 0.758 0.770 

pdqEmotionalWellbeing 0.924 0.863 -8.448 0.957 

pdqStigma 1 0.822 -1.944 0.823 

pdqTotal 0.982 0.610 -0.386 0.677 

mRS 0.908 0.651 0.283 0.718 

 

Comparison of linear regression models using the behavioral metrics to fit depression, 

PDQ, and mRS. For each model we report R-squared and RMSE. Bolded R-squared 

values show well fit regression models.  
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Appendix 2: 

Behavioral metrics: 

1. reachTargetTime 

2. startMoveTime 

3. reachTargetTimeMinusStartMoveTime 

4. maxVelocity 

5. timeIdle 

6. timeInMotion 

7. totalDistanceTravelled 

8. initialDistanceFromTarget 

9. normTotalTravelled 

10. TimeOnTarget 

11. NumberOfEntriesIntoTarget 

12. numberOfExitsFromTarget 

13. MotorPersistence 

 

Each of the above behavioral metrics was calculated for the following: 

 average for entire task 

 average for each pattern (stationary, long stationary, linear, 

diagonal, and sinusoidal) 

 average for each target size (large, medium, and small) 

 average for each pattern at each target size (examples: stationary 

large and linear small) 

 average for stationary targets without distractors  

 average for stationary targets with distractors  

 average for stationary targets with blue distractors  

 average for stationary targets with white distractors  

 average for each speed on sinusoidal task (fast, moderate, and 

slow) 

  

  

 


