
Distribution	 Agreement	

In	 presenting	 this	 thesis	 as	 a	 partial	 fulfillment	 of	 the	 requirements	 for	 a	 degree	 from	 Emory	
University,	 I	 hereby	 grant	 to	 Emory	 University	 and	 its	 agents	 the	 non-‐exclusive	 license	 to	
archive,	 make	 accessible,	 and	 display	 my	 thesis	 in	 whole	 or	 in	 part	 in	 all	 forms	 of	 media,	 now	 or	
hereafter	 now,	 including	 display	 on	 the	 World	 Wide	 Web.	 I	 understand	 that	 I	 may	 select	 some	
access	 restrictions	 as	 part	 of	 the	 online	 submission	 of	 this	 thesis.	 I	 retain	 all	 ownership	 rights	 to	
the	 copyright	 of	 the	 thesis.	 I	 also	 retain	 the	 right	 to	 use	 in	 future	 works	 (such	 as	 articles	 or	
books)	 all	 or	 part	 of	 this	 thesis.	

	

Johnathan	 Jia	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 April	 15,	 2015	

	

Investigating	 heterogeneity	 in	 the	 dynamics	 of	 virus	 and	 immune	 response	 following	 a	 yellow	
fever	 vaccination.	

	

by	

Johnathan	 Jia	

	

Dr.	 Rustom	 Antia	
Adviser	

	

Department	 of	 Biology	

	

Dr.	 Rustom	 Antia	

Adviser	

	

Dr.	 Arri	 Eisen	

Committee	 Member	

	

Dr.	 Jacobus	 De	 Roode	

Committee	 Member	

	

Dr.	 Lance	 Waller	

Committee	 Member	

	

2015	

	

	

Investigating	 heterogeneity	 in	 the	 dynamics	 of	 virus	 and	 immune	 response	 following	 a	 yellow	
fever	 vaccination.	

	

By	

	

Johnathan	 Jia	

	

Dr.	 Rustom	 Antia	

Adviser	

	

	

	

	

An	 abstract	 of	
a	 thesis	 submitted	 to	 the	 Faculty	 of	 Emory	 College	 of	 Arts	 and	 Sciences	

of	 Emory	 University	 in	 partial	 fulfillment	
of	 the	 requirements	 of	 the	 degree	 of	
Bachelor	 of	 Sciences	 with	 Honors	

	

Department	 of	 Biology	

	

2015	

	

Abstract	

Investigating	 heterogeneity	 in	 the	 dynamics	 of	 virus	 and	 immune	 response	 following	 yellow	
fever	 vaccination	
By	 Johnathan	 Jia	

A	 key	 feature	 of	 the	 dynamics	 of	 infection	 in	 humans	 is	 that	 different	 individuals	 form	 different	
responses	 to	 a	 given	 pathogen.	 This	 has	 been	 demonstrated	 in	 recent	 studies	 conducted	 by	
Akondy	 et	 al.	 (2015)	 following	 immunization	 of	 the	 yellow	 fever	 vaccine.	 Their	 results	 show	 that	
there	 is	 a	 104	 fold	 variation	 in	 the	 peak	 viral	 titer	 and	 102	 fold	 variation	 in	 the	 peak	 immune	 cell	
density	 among	 human	 participants.	 We	 used	 simple	 mathematical	 models	 of	 the	 within	 host	
dynamics	 of	 infection	 to	 investigate	 what	 gives	 rise	 to	 variation	 between	 individuals	 in	 the	
dynamics	 of	 infection	 and	 immunity.	 We	 found	 that	 changes	 in	 most	 parameters	 over	
biologically	 reasonable	 ranges	 resulted	 in	 greater	 changes	 in	 peak	 viral	 load	 compared	 to	 the	
peak	 immune	 cell	 density.	 Only	 changes	 in	 the	 killing	 rate	 of	 adaptive	 immunity	 resulted	 in	
similar	 changes	 in	 the	 peak	 viral	 load	 and	 peak	 immune	 cell	 density.	 Our	 simple	 model	 does	 not	
recapitulate	 the	 yellow	 fever	 vaccination	 data.	 This	 indicates	 that	 our	 model	 assumptions	 are	
incorrect.	 Since	 our	 model	 is	 the	 simplest	 case,	 we	 must	 have	 failed	 to	 consider	 an	 important	
process	 or	 factor	 that	 would	 be	 necessary	 to	 recapitulate	 the	 observed	 variation	 in	 the	 yellow	
fever	 vaccination	 data.	 However	 our	 model	 makes	 predictions	 which	 can	 be	 experimentally	
tested,	 and	 in	 doing	 so	 it	 sets	 the	 stage	 for	 a	 quantitative	 understanding	 of	 what	 gives	 rise	 to	
heterogeneity	 in	 the	 responses	 of	 different	 individuals	 and	 infection.	

	

Investigating	 heterogeneity	 in	 the	 dynamics	 of	 virus	 and	 immune	 response	 following	 yellow	
fever	 vaccination.	

	

By	

	

Johnathan	 Jia	

	

Dr.	 Rustom	 Antia	

Adviser	

	

	

	

	

	

	

	

A	 thesis	 submitted	 to	 the	 Faculty	 of	 Emory	 College	 of	 Arts	 and	 Sciences	
of	 Emory	 University	 in	 partial	 fulfillment	
of	 the	 requirements	 of	 the	 degree	 of	
Bachelor	 of	 Sciences	 with	 Honors	

	

Department	 of	 Biology	

	

2015	

	

Acknowledgements	

We	 thank	 Dr.	 Veronika	 Zarnitsyna	 and	 Dr.	 Philip	 Johnson	 for	 their	 help	 with	 the	 completion	 of	
the	 honor’s	 thesis.	

We	 also	 thank	 Dr.	 Eisen,	 Dr.	 Jacobus	 De	 Roode,	 and	 Dr.	 Lance	 Waller	 for	 the	 helpful	 comments	
on	 the	 thesis.	

Lastly	 we	 thank	 the	 publishers	 at	 Elsevier	 for	 granting	 us	 copyright	 permission	 for	 the	 figure	 in	
our	 background.

	

Table	 of	 Contents	

Abstract	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 pg.	 1	

Background	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 pg.	 2	

	 The	 Question	 and	 the	 Problem	 	 	 	 	 	 	 	 	 	 	 pg.	 2	

	 Sources	 of	 Heterogeneity	 	 	 	 	 	 	 	 	 	 	 	 pg.	 5	

	 How	 do	 genetic	 factors	 impact	 the	 within-‐host	 dynamics	 of	 infection?	 	 	 	 	 	 pg.	 6	

	 How	 do	 environmental	 factors	 impact	 the	 dynamics	 of	 infection	 within	 a	 host?	 	 	 	 	 pg.	 7	

	 How	 does	 pathogen	 heterogeneity	 affect	 the	 immune	 response?	 	 	 	 	 	 	 pg.	 8	

	 How	 do	 other	 heterogeneous	 factors	 influence	 the	 dynamics	 of	 an	 acute	 infection?	 pg.	 9	

	 Our	 Approach	 	 	 	 	 	 	 	 	 	 	 	 	 	 pg.	 9	

Model	 	 	 	 	 	 	 	 	 	 	 pg.	 10	

	 Model	 Schematic	 	 	 	 	 	 	 	 pg.	 10	 	

	 Assumptions	 	 	 	 	 	 	 	 	 pg.	 11	

	 Model	 Equations	 	 	 	 	 	 	 	 pg.	 11	

	 Parameterization	 	 	 	 	 	 	 	 pg.	 12	

Results	

	 Variation	 in	 Viral	 Growth	 Rate:	 r	 	 	 	 	 	 pg.	 16	

	 Variation	 in	 Immune	 Growth	 Rate:	 s	 	 	 	 	 	 pg.	 17	

Variation	 in	 the	 Pathogen	 Density	 at	 which	 Immunity	 Responds:	 Φ pg. 18	

	 Variation	 in	 the	 Rate	 of	 Killing	 of	 Pathogen	 by	 Adaptive	 Immunity:	 k	 pg.	 19	

	 Variation	 in	 the	 Initial	 Viral	 Load:	 V(0)	 	 	 	 	 pg.	 20	

	 Variation	 in	 Initial	 Immunity:	 X(0)	 	 	 	 	 	 pg.	 21	

	 Summarization	 of	 the	 Results	 	 	 	 	 	 	 pg.	 22	

Discussion	 	 	 	 	 	 	 	 	 	 	 pg.	 23	

	 Viral	 Growth	 Rate	 	 	 	 	 	 	 	 pg.	 23	 	 	

	 Immune	 Growth	 Rate	 	 	 	 	 	 	 	 pg.	 24	

	 Pathogen	 Density	 at	 which	 Immunity	 Responds	 	 	 	 pg.	 25	

	 Killing	 Rate	 by	 Adaptive	 Immunity	 	 	 	 	 	 pg.	 25	

	 Initial	 Viral	 Inoculum	 	 	 	 	 	 	 	 pg.	 26	

	 Initial	 Immunity	 	 	 	 	 	 	 	 pg.	 27	

	 Summary:	 The	 Questions	 Revisited	 	 	 	 	 	 pg.	 27	

	 Limitations	 and	 Future	 Directions	 	 	 	 	 	 pg.	 30	

References	 pg.	 31	

Appendix	 pg.	 34	

	 Code	 pg.	 34	

	

	

	

	

	

	

	

	

	

	

	

	

Figures	 and	 Tables	

Figures	

Dynamics	 of	 the	 CD8	 T-‐Cell	 Response	 in	 mice	 after	 infection	 by	 Lymphocytic	
choriomeningitis	 	 	 	 	 	 	 	 	 pg.	 4	

	 Dynamics	 of	 Infection	 and	 Immunity	 in	 humans	 after	 yellow	 fever	 vaccination	 	 pg.	 5	

	 Model	 Schematic	 	 	 	 	 	 	 	 	 pg.	 10	

	 Model	 simulation	 with	 parameters	 equal	 to	 the	 mean	 values	 	 	 	 pg.	 14	

	 Variation	 in	 Viral	 Growth	 Rate:	 r	 	 	 	 	 	 	 pg.	 16	

	 Variation	 in	 Immune	 Growth	 Rate:	 s	 	 	 	 	 	 	 pg.	 17	

	 Variation	 in	 the	 Pathogen	 Density	 at	 which	 Immunity	 Responds:	 Φ pg. 18

 Variation in the Rate of Killing of Pathogen by Immunity: k pg. 19

 Variation in the Initial Viral Load: V(0) pg. 20

 Variation in Initial Immunity: X(0) pg. 21

 Summarization of Results pg. 23	

Tables	

	 Model	 parameter	 units,	 definitions,	 mean	 values,	 and	 simulation	 ranges	 	 	 pg.	 12	

	 Summarization	 of	 the	 results	 	 	 	 	 	 	 	 pg.	 22	

	

1

Investigating heterogeneity in the dynamics of

virus and immune response following a yellow

fever vaccination.

Johnathan Jia

April 21, 2015

1 Abstract

A key feature of the dynamics of infection in humans is that di↵erent individu-
als form di↵erent responses to a given pathogen. This has been demonstrated
in recent studies conducted by Akondy et al. (2015) following immunization
of the yellow fever vaccine. Their results show that there is a 104 fold vari-
ation in the peak viral titer and 102 fold variation in the peak immune cell
density among human participants. We used simple mathematical models of
the within host dynamics of infection to investigate what gives rise to vari-
ation between individuals in the dynamics of infection and immunity. We
found that changes in most parameters over biologically reasonable ranges
resulted in greater changes in peak viral load compared to the peak immune
cell density. Only changes the mass action killing rate of adaptive immu-
nity resulted in similar changes in the peak viral load and peak immune cell
density. Our simple model does not recapitulate the yellow fever vaccina-
tion data. This indicates that our model assumptions are incorrect. Since
our model is the simplest case, we must have failed to consider an impor-
tant process or factor that would be necessary to recapitulate the observed
variation in the yellow fever vaccination data. However our model makes
predictions which can be experimentally tested, and in doing so it sets the
stage for a quantitative understanding of what gives rise to heterogeneity in
the responses of di↵erent individuals and infection.

2

2 Background

2.1 The Question and The Problem

The majority of the information we have about infections and immunity has
been discovered through experimentation upon laboratory bred mice. The
actual goal is to learn about the human immune system and how it interacts
with foreign microbes after they have infected the body. We use mice as
a model system because the mouse immune system is similar to the human
immune system, and the model system can be utilized to learn more about the
adaptive immune system’s dynamics when a foreign pathogen is introduced
into the host.

When using laboratory mice to discover the rules for the dynamics of
infection and immunity, it is best to minimize variation to prevent any con-
founding factors from a↵ecting the results. In order to minimize variation
the experimental system controls for variation from genetics, age, gender,
and environmental factors such as the previous exposure to other pathogens.

Studies use laboratory mice that are inbred which results in a genetically
homogenous group of mice. These mice also share the same living environ-
ment so that heterogeneity that may arise from the environment is minimized
as well. Furthermore, in experiments conducted with mice, the mice are also
controlled to have the same age and sex to further minimize any variation
in the experiments. As a result, the data on the dynamics of infection in
laboratory mice has low amounts of variation. This can be best seen in the
small error bars present in Figure 1. Figure 1 shows the population dynamics
of the epitope specific CD8 T cells over the course of an LCMV infection.
Murali-Krishna et al. (1998) quantified the number of the CD8 T cells spe-
cific for two di↵erent structural protein epitopes over the time course of a
Lymphocytic choriomeningitis virus (LCMV) infection in mice [1]. We know
the relation between sample size (n), standard error (SE), and standard de-
viation (s). The equation is SE = sp

n

. The sample sizes used at each time
point varied between three to five mice. In Figure 1 the width of the stan-
dard error bars of the immune cell density at each point indicates that the
standard error is low. Using the equation, given that n = 3 or n = 5, we find
that the standard deviation is even lower. The standard deviation is even
lower therefore the variation in the mice is low.

In contrast to laboratory mice, humans are usually not genetically inbred
and do not live in a controlled environment which results in a heterogenous

3

human population. While the general rules of the immune response are the
same for both mice and humans, the outcomes of infection in a human have
greater variation compared to the outcomes of infection in a mouse.

There are data present on the pathogen and immune cell dynamics over
the time course of infection in a mouse host, but there are less data present on
the dynamics of infection within a human host. More specifically there is very
little quantified data on the size of pathogen and immune cell populations
over the time course of an acute infection within a human host. Since we
lack access to such data, the biological causes of the heterogeneity in the
dynamics of infection in the human population are currently unknown.

The yellow fever vaccine contains a live attenuated form of the virus. This
form replicates and causes a mild acute infection in immunized individuals.
It also generates a very robust and protective immune response. Indeed it
is one of our best vaccines, having been distributed to approximately 1 bil-
lion individuals worldwide [2]. Recently Akondy et al. (2015) measured the
dynamics of the yellow fever virus and the CD8+ T- cell response following
immunization [3]. Interestingly even though the viral inoculum dose is con-
trolled for immunizations, there is an enormous amount of variation present
in the peak viral load (104) in di↵erent individuals as well as the magnitude of
the immune responses elicited (102). This variation is best shown by Figure
2.

4

Figure 1: Dynamics of the CD8 T-Cell Response towards 2 di↵erent epitopes
in mice after infection by Lymphocytic chroriomeningitis virus (LCMV).
Murali-Krishna et al. (1998) infected BALB/c laboratory mice with LCMV
to measure two CD8 T-cell population specific for the nucleoprotein (NP)
and the glycoprotein (GP) epitopes after infection. Nucleoprotein and glyco-
protein are two of the three major structural proteins of Lymphocytic chori-
omeningitis virus [4]. They found that the NP epitope elicited a higher peak
CD8 T-cell density, and it can be seen from the figure that the di↵erences
in peak e↵ector CD8 T cells per spleen specific for the two LCMV epitopes
di↵ered by less than 100 fold. It can be seen that the mice have relatively
low variation because the standard error bars are narrow and the number
of mice used for the experiments was low as well. As a result, the standard
deviation and variance are low.

5
Figure 1

Vi
ra

l l
oa

d
(g

en
om

es
/m

l)

101

102

103

104

Ef
fe

ct
or

 C
D

8+

(%
 K

i−
67

+ Bc
l−

2lo
)

0.1

1

10

0 2 5 7 9 14 30

Day
Pe

ak
 v

ira
l l

oa
d

101

102

103

104

of individuals
Pe

ak
 %

 e
ffe

ct
or

 C
D

8+
0 5 10 15 20 25

0.1

1

10

A

B

Day

Vi
ra

l l
oa

d
(g

en
om

es
/m

l)

Ef
fe

ct
or

 C
D

8+ (%
 K

i−
67

+ Bc
l−

2lo
)

102
104

A01 A02 A03 A04 A05 A06 A07 A08

A09 A10 A11 A12 B01 B02 B03

2
5
10
20

B04

102
104

B05 B06 B07 B08 B09 B10 B11 B12

B13 B14 B15 B16 B17 B18 B19

2
5
10
20

B20

102
104

B21 C01 C02 C03 D01 D02 D03 D04

D05 D06 E01 E02 E03 E04 E05

2
5
10
20

E06

102
104

E07 E08 E09 E10 E11 E12 E13 F01

F02 F03 F04 F05 F06 F07 F08

2
5
10
20

F09

102
104

F10 F11 F12 F13 F14 F15 F16 F17

510 20

G01 G02

510 20

G03 G04

510 20

G05 G06

510 20

G07

2
5
10
20

H01

C
Figure 2: Dynamics of Infection and Immunity within humans after Immu-
nization by the Yellow Fever Vaccine. Peak viral load and peak % e↵ector
CD8 T cell density along with the dynamics of the yellow fever virus and
the YFV specific CD8 T cells were measured after immunization by the live-
attenuated yellow fever virus. There were 80 participants and all were young
adults between the ages of 18 and 40. Viral load was measured using quanti-
tative reverse transcriptase polymerase chain reaction (qRT-PCR), and the
activated CD8 T cells were measured using activation markers or tetramers
that recognized specific CD8 T cells. It can be seen that there is variation
present in the peak viral load (104) and a smaller amount of variation in the
peak % e↵ector CD8 T cell population (102).

2.2 Sources of Heterogeneity

Here are some of the sources of heterogeneity that have been studied and
how they a↵ect the dynamics of infection within a host. They have been
categorized into larger categories which are then stratified into smaller sub-
categories to elucidate how certain genetic, environmental, pathogen, or other
heterogenous characteristics a↵ect the dynamics of infection.

1. Host and Pathogen Genetic Factors

6

(a) Host Gender

(b) MHC and Other Genes

(c) Antigen Presentation

(d) Pathogen Genetic Variation

2. Environmental Factors

(a) Season, Temperature, Humidity

(b) Spatial Distribution of Hosts

(c) Host Nutrition

(d) Host Exercise

(e) Host Past Infectious Background

3. Other

(a) Host Age

2.3 How Do Genetic Factors Impact the Within-host
Dynamics of Infection

2.3.1 MHC Genes and Other Genes

It is known that there is a great amount of diversity in the genes that encode
for the major histocompatibility complex (MHC) [5]. Human leukocyte anti-
gen (HLA) genes are the human MHC genes. Individuals with homozygosity
in the HLA group 2 alleles predicted treatment failure in chronic hepatitis
C infection [6]. It has been shown that HLA variation in the T helper 2
gene cluster is associated with the ability to mount an immune response to
mycobacterial epitopes [7]. Diversity in the MHC genes of a host could al-
low the host to mount di↵erent responses. It has been shown that macaques
with diverse MHC genotypes will have better clinical outcomes following SIV
infection compared to those that are homogenous for the MHC genes [8]. It
has also been shown that variation in the genes that encode for the gamma-
interferon receptor. Allelic variation of the vitamin D receptor has been
linked with variation in susceptibility to some infectious diseases [9].

7

2.3.2 Host Gender

It has also been shown that vaccination during the morning forms an in-
creased antibody response in men than vaccination during the afternoon
[10], but it was found that acute stress prior to vaccination enhances the
antibody response in women [11]. A number of immunological di↵erences
between men and women have been found, but gender specific di↵erences in
the dynamics of infection ultimately depends on the pathogen involved and
the gender specific di↵erences with the specific immune response [12].

2.3.3 Previous Antigenic History

Unlike mice, humans have di↵erent infection histories. Not every individual
has been infected by the same pathogen at the same point in their lifetimes.
Past antigenic history has the possibility of a↵ecting or changing the density
of immune cells specific for an epitope on the pathogen. If the host has had an
infection with a similar pathogen before, provided they formed an adaptive
immune response, the presence of memory cells upon secondary infection can
greatly change the dynamics of infection as the response of memory cells
to a given antigen results in faster and more aggressive proliferation of the
immune cells to clear out the antigen [13].

2.4 How Do Environmental Factors Impact the Dy-
namics of Infection Within A Host?

2.4.1 Seasonality/Humidity/Temperature

Certain seasons could make it more or less likely for the host to form a robust
immune response. It has been shown that the season can a↵ect host suscep-
tibility to anthrax infections due to seasonal gastrointestinal helminth infec-
tions [14]. There is also evidence that winter facilitates pathogen survival,
and the host immune system is relatively weakened during winter as well.
Both of these factors lead to increased host susceptibility to viral infections
during winter [15]. It has been shown that activation of adaptive immune
cells is temperature dependent, but e↵ector cell activity is nearly temper-
ature independent [16]. The season could a↵ect the dynamics of response
by changing the temperature and therefore a↵ecting activation of adaptive
immune cells. For example it has been shown that temperatures above room

8

temperature, tropical phages of tropical bacterial pathogens undergo a lytic
cycle and at room temperature undergo a temperate cycle [17].

2.4.2 Host Lifestyle/Exercise

The e↵ects of exercise upon the immune system have been studied by other
researchers. The experiments found that after exhaustive exercise, young
male mice had significantly decreased immune cell activity and memory cell
formation. On the other hand old male mice did not have a change in the
immune cell activity, and their levels of CD8 specific immune cells did not
change after intensive/exhaustive exercise [18]. Exercise could change the
growth rate of immunity or killing rate of immunity, and as a result change
the dynamics of infection between di↵erent individuals.

2.4.3 Host Nutrition

There is also evidence that nutrition, specifically protein nutrition, is linked
to increased likelihood of infection. It was shown that protein malnutrition
can cause a 2-fold decrease in the number of specific CD8 memory T cells, and
that proliferation of the CD8 memory T cells along with responsiveness had
significantly decreased in the mice with protein malnutrition [19]. There is
also evidence that intrauterine growth-retardation due to malnutrition could
disrupt the development of the immune system and cause permanent impair-
ments [20]

2.5 How does Pathogen Heterogeneity A↵ect the Im-
mune Response

Pathogen heterogeneity can generate large amounts of variation in the dy-
namics of infection. The pathogen could grow faster or slower because the
pathogen has inherent variation in the dynamics of growth once it has invaded
the host. Adaptive immune cells could also be specific for di↵erent epitopes
on a given pathogen, and the more immunogenic epitopes could elicit a more
robust immune response as seen in Figure 1. It is clear in Figure 1 that nu-
cleoprotein (NP) is more immunogenic than glycoprotein (GP), and the peak
immune cell density specific for NP is greater than the density of adaptive
immune cells specific for GP. Given pathogens can also vary their lifestyles
in response to di↵erent stimuli such as increased temperature, which causes

9

some phages to undergo a lytic cycle as opposed to a temperate cycle [17].
Herpesviruses can also epigenetically activate or deactivate genes required to
switch from a lytic to a latent cycle [21]. It has been hypothesized that the
switching of life cycles is an adaptive response to increase fitness when there
is predation from the immune system [22]. Variation in a given pathogen’s
ability to switch between di↵ering life cycles could cause variation in the
dynamics of infection as well.

2.6 How do other heterogenous factors influence the
dynamics of an acute infection?

2.6.1 Host Age

The e↵ects of age on the dynamics of immunity and microorganisms within
the host have also been studied. It has been shown that as mice get older
their ability to generate memory T cells decreases, but the homeostatic mech-
anisms that maintain the population of memory cells remain intact with age
[23]. Furthermore young mice have a suppression of specific primary T-cell
response after intense physical exercise while old mice do not [18].

2.7 Our Approach

Each of these genetic, environmental, pathogen-specific, and other factors
have specific influences and e↵ects upon the dynamics of infection within a
host. Past antigenic history could result in a higher initial immunity towards
the same pathogen, closer spatial locality of hosts could result in a higher
initial infectious inoculum, and increasing age could result in a host with a
weaker immune system. The biology of how these factors a↵ect the interplay
between the immune system and the invading pathogen is best repesented
by the parameters in a model.

We will generate a simple model of the dynamics of infection within a
host. We will then ask several questions using the model. What are the key
parameters that influence the dynamics of infection? Which parameters do
we expect to vary? Why is the variation in the peak viral load greater than
the variation in the peak e↵ector CD8 T cell number? What is the e↵ect of
variation in di↵erent parameters? Does it recapitulate the yellow fever virus
immunization data?

10

We will attempt to tease out the major biological determinants in gener-
ating the observed heterogeneity in the population. Using our simple models,
we will first introduce heterogeneity by varying a single parameter within a
certain biological range (See Model section). We will observe how varying
our model parameters over the biological range of values changes the magni-
tude of peak virus and peak immunity, and we will see how the variation in
peak viremia and peak immunity is a↵ected by heterogeneity in our model
parameters.

3 The Model

We have generated a simple model of the dynamics of an acute infection [24].
Our model incorporates the e↵ects of pathogen growth, growth of adaptive
immunity in response to the presence of a foreign microbe, and the killing and
clearance of the pathogen by the adaptive immune system. We are modeling
the dynamics of an acute infection. Our model schematic can be seen in
Figure 3.

3.1 Model Schematic

Figure 3: Model Schematic

11

3.2 Assumptions

1. Pathogen Growth

(a) The pathogen grows exponentially when immunity is not present.

(b) The pathogen density required for host mortality is extremely
high, and so host death due to pathology is assumed to not occur.

2. Immune Growth

(a) Immunity grows in a manner dependent on the pathogen density
given by V

�+V

(b) The immune system kills the pathogen by mass action

(c) The immune system grows and saturates at a high density until
the pathogen has been cleared.

(d) A high density of immune cells is needed to clear the pathogen

(e) The e↵ects of adaptive immune cell exhaustion is negligible

3.3 Model Equations

The assumptions listed above generate the simplest possible model of the
within host dynamics of a host infected by a pathogen. The equations are
given below where V is the number of virus and X is the number of adaptive
immune cells specific for the given pathogen:

(Virus)
dV

dt

= rV � kV X (1)

(Adaptive Immunity)
dX

dt

= sX

V

�+ V

(2)

12

3.4 Parameterization

Table 1: Parameter units, definitions, mean values, and simulation ranges
Parameter, units Definition Mean Value Range

r, days�1 Virus Growth Rate 2 1-3
s, days�1 Max Immune 1 0.9-1.1

Cell Growth Rate
�, V Pathogen Density 103 103-106

Needed For Half
Max Immune Growth

k, (X ⇤ days)�1 Killing rate by 10�3 10�6-10�3

adaptive immunity
V (0), V Initial Viral Inoculum 1 1-103

X(0), X Initial Immunity Present 1 1-102

3.4.1 Pathogen Growth Rate: r

The range chosen for the pathogen growth rate (1 � 10) corresponds to a
doubling time from a couple hours to a few days. This range reflects a
biologically meaningful range for the growth rate of the pathogen, and the
range used in the simulations was from 1 � 3. This was chosen because the
distribution of values used for r were centered and symmetrical about a mean
of 2. In order to increase the range to 10, using the same mean value and
distribution we were using before, r would have negative values which do not
hold any biological significance at all.

3.4.2 Maximum Rate of Immune Cell Growth: s

Our parameter s represents the maximum rate at which the adaptive immune
cells grow. The biological range of the maximum growth rate for immunity is
small because the same cell type should grow similarly even in di↵erent hosts.
We can also see that even in humans, the dynamics of the immune response
are similar enough to suggest that the rate at which immunity grows does
not vary greatly in the human population.

13

3.4.3 Pathogen density required for Half the Maximum Rate of
Immune Cell Growth: �

Our parameter � represents the pathogen density required for half of the max-
imum adaptve immune growth rate the pathogen density at which immunity
responds. The mean value chosen for � is biologically relevant because after
the pathogen enters the host, it requires time for the pathogen to grow. It is
only after the pathogen reaches a certain density that it begins to either cause
damage or provide enough epitopes/antigen to cause an immune response.

3.4.4 Rate of Killing by Adaptive Immunity: k

The rate of killing by the immune system is represented by the parameter k,
and the value chosen for k is much lower than the initial immunity present
(X(0) = 1) since we assumed that a high level of pathogen-specific immune
cells is required to clear the pathogen.

For V̇ = 0, rV = kV X. This gives the result k = r

X

and since X

max

is
approximately 103, the mean value of k is 10�3 as indicated in Table 1.

3.4.5 Initial Viral Inoculum : V (0)

We are also interested in how di↵erences in the infectious dose of a given
pathogen can a↵ect the variation of the dynamics of infection within a host.
We assume that the initial infectious dose is very small, V (0) = 1. The range
of V (0) is exponential because the virus grows exponentially, and so changes
in the initial viral inoculum also reflect this growth. Linear changes in V (0)
have little to no e↵ect upon changes in the dynamics of infection.

3.4.6 Initial Immunity Present : X(0)

We also assume that the host has no previous experience with the given
pathogen. A naive host has a very small population of immune cells specific
to the pathogen, X(0) = 1. Variance in the initial immunity reflect di↵erent
antigenic history. Individuals with a higher density of immune cells specific
to a given pathogen may have had a previous infection, or they could have
previously been immunized against the pathogen. Our range of interest ex-
tends from what would be a naive host to a host who has previous antigenic
history, but not enough memory to generate sterilizing immunity. Sterilizing
immunity describes the situation where the host has a high enough density

14

of memory cells specific to the pathogen such that the pathogen popula-
tion immediately goes to extinction after subsequent infections by the same
pathogen.

Figure 4: Model Simulation with All Parameters Equal to Mean Values.
This is a single simulation of our model, linear scale on the left and log

10

scale on the right, with all parameters equal to their respective mean values.
Similar simulations will be run with heterogeneity introduced into our model
parameters one at a time while keeping all others constant, and from each
simulation we will measure V

max

and X

max

which can be seen in this figure as
the peak of the curve for virus and the maximum of the curve for immunity.

4 Results

From our model simulations we are interested in the peak viral load, the
maximum amount of immunity generated at end of the infection, the vari-
ation in these outputs, and the mean value of these outputs. We are also
interested in the coe�cient of variation of the peak viral load and the coef-
ficient of variation of the maximum amount of immunity generated. From
these outputs we hope to determine which parameters cause the most varia-
tion in the dynamics of infection and how much variation is generated when
heterogeneity is introduced into the model parameters.

1. Parameter (denoted by x)

15

(a) Mean of the parameter: µ
x

(b) Variance of the parameter: �2

x

(c) Coe�cient of Variation: C
v

< x >= �

2

x

µ<x>

2. Pathogen

(a) The log
10

of peak viremia during an infection: log
10

V

max

(b) The variance of log
10

V

max

: �2

log

10

V

max

(c) The mean of log
10

V

max

: µ
log

10

V

max

(d) C

v

< log
10

V

max

>=
�

2

log

10

V

max

µ<log

10

V

max

>

3. Immunity

(a) The log
10

of maximum immunity generated during an infection:
log

10

X

max

(b) The variance of log
10

X

max

: �2

log

10

X

max

(c) The mean of log
10

X

max

: µ
log

10

X

max

(d) C

v

< log
10

X

max

>=
�

2

log

10

X

max

µ<log

10

X

max

>

16

4.1 Variation in Viral Growth Rate: r

0 5 10 15 20 25 30

0
4

8
12

t

lo
g

V

0 5 10 15 20 25 30

0
1
2
3
4
5

t

lo
g

X

1.0 1.5 2.0 2.5 3.0

0
4

8
12

r

lo
g

N
um

be
r Vmax

Xmax

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
10

0.
20

Cv <r>

C
v

<V
m

ax
/X

m
ax

>

Vmax
Xmax

Figure 5: The e↵ects of heterogeneity in the pathogen growth rate on the
dynamics of infection in immunity. Model simulations where the parame-
ter r was varied over the range indicated in Table 1, and log

10

V

max

and
log

10

X

max

were calculated from each simulation. It can be seen that increas-
ing r increases both V

max

and X

max

, and increasing C

v

< r > increases both
C

v

< log
10

V

max

> and C

v

< log
10

X

max

>. However C
v

< log
10

V

max

> has
a higher magnitude than C

v

< log
10

X

max

>.

We see that as r increases both log
10

X

max

and log
10

V

max

increase as well.
The magnitude of increase for log

10

X

max

is smaller compared to the increase
in V

max

which goes from approximately 106 to 1012. We can also see that as
C

v

< r > increases C
v

< log
10

V

max

> and C

v

< log
10

X

max

> increase, but
the magnitude of increase for C

v

< log
10

V

max

> is much greater than C

v

<

log
10

X

max

>. C

v

< log
10

V

max

> increases to 0.20 and C

v

< log
10

X

max

>

increases to 0.030.

17

4.2 Variation in Immune Growth Rate: s

0 5 10 15 20 25 30

0
2
4
6
8

t

lo
g

V

0 5 10 15 20 25 30

0
1
2
3
4
5

t

lo
g

X

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8

s

lo
g

N
um

be
r

Vmax
Xmax

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
10

0.
20

Cv <s>

C
v

<l
og

 V
m

ax
/X

m
ax

>

Vmax
Xmax

Figure 6: Heterogeneity in the maximum immune cell growth rate and how
it impacts the dynamics of infection and immunity. Model simulations were
run for the specified range in Table 1, and model outputs were calculated
from each simulation. It can be seen that heterogeneity in s causes significant
variation in log

10

V

max

but no changes in log
10

X

max

. This is further supported
by the di↵erences in magnitude of C

v

< log
10

V

max

> and C

v

< log
10

X

max

>.

The results indicate that as s increases, log
10

V

max

decreases very little in
magnitude and log

10

X

max

does not change. As C

v

< s > increases C

v

<

log
10

V

max

> and C

v

< log
10

X

max

> increase. The magnitude of C

v

<

log
10

V

max

> increases to 0.20 and the magnitude of C

v

< log
10

X

max

>

increases to 1.5 ⇤ 10�6 which is extremely small.

18

4.3 Variation in the Pathogen Density at which Im-
munity Responds: �

0 5 10 15 20 25 30

0
2
4
6
8

t

lo
g

V

0 5 10 15 20 25 30

0
1
2
3
4
5

t

lo
g

X

2.0 2.5 3.0 3.5 4.0

0
2
4
6
8

log phi

lo
g

N
um

be
r

Vmax
Xmax

0.00 0.05 0.10 0.15 0.20

0.
00

0.
03

0.
06

Cv <log phi>

C
v

<l
og

 V
m

ax
/X

m
ax

>
Vmax
Xmax

Figure 7: Heterogeneity in density required for half the maximum rate of
immune cell growth and the e↵ects of this variation upon the dynamics of in-
fection and immunity within the host. Variation in � only increases log

10

V

max

and does not change log
10

X

max

. Increasing C

v

< log
10

� > generates very
little variation in log

10

V

max

and yields no variation in log
10

X

max

. This can
be seen in the magnitude of C

v

< log
10

V

max

> and C

v

< log
10

X

max

> which
are approximately 0.06 and 0 respectively.

The results show that as log
10

� increases log
10

V

max

increases and log
10

X

max

does not change. log
10

V

max

increases by 100 fold. We can also see that as
C

v

< log
10

� > increases both C

v

< log
10

V

max

> and C

v

< log
10

X

max

>

increase. The magnitude of change in C

v

< log
10

V

max

> is 0.06. This change
is greater than the change in C

v

< log
10

X

max

>, which barely increases to
1.5 ⇤ 10�6.

19

4.4 Variation in the Rate of Killing of Pathogen by
Immunity: k

0 5 10 15 20 25 30

0
4

8
12

t

lo
g

V

0 5 10 15 20 25 30

0
2

4
6

t

lo
g

X

-4.0 -3.5 -3.0 -2.5 -2.0

0
4

8

log k

lo
g

N
um

be
r

Vmax
Xmax

0.00 0.05 0.10 0.15

0.
00

0.
06

0.
12

Cv <log k>

C
v

<l
og

 V
m

ax
/X

m
ax

>
Vmax
Xmax

Figure 8: Variation in the mass action killing rate of adaptive immunity
and heterogeneity in the dynamics of infection within a host. Increasing
log

10

k decreases log
10

V

max

and log
10

X

max

, and increasing C

v

< log
10

k >

yields the approximately similar amounts of variation in both log
10

V

max

and
log

10

X

max

. This can be seen in how changing C

v

< log
10

k > increases both
C

v

< log
10

V

max

> and C

v

< log
10

X

max

> similarly.

As log
10

k is increased both log
10

V

max

and log
10

X

max

decrease. The magni-
tude of decrease for log

10

V

max

is approximately 104 fold and the magnitude
of decrease in log

10

X

max

is approximately 102 fold. It can be seen that
C

v

< log
10

V

max

> and C

v

< log
10

X

max

> increase as C

v

< log
10

k > in-
creases. C

V

max

increases to 0.12 and C

X

max

increases to 0.15.

20

4.5 Variation in the Initial Viral Load: V (0)

0 5 10 15 20 25 30

0
4

8
12

t

lo
g

V

0 5 10 15 20 25 30

0
1
2
3
4
5

t

lo
g

X

0 1 2 3 4 5 6

0
4

8
12

log V(0)

lo
g

N
um

be
r

Vmax
Xmax

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
06

Cv <log V(0)>

C
v

<l
og

 V
m

ax
/X

m
ax

>
Vmax
Xmax

Figure 9: Heterogeneity in the initial infectious dose causes changes in the
dynamics of infection within the host. As log

10

V (0) increases log
10

V

max

increases. However log
10

X

max

does not increase with increasing log
10

V (0).
Furthermore as C

v

< log
10

V (0) > increases, C
v

< log
10

V

max

> increases
much more than C

v

< log
10

X

max

>.

We see that as log
10

V (0) increases there is no change in log
10

V

max

until
log

10

V (0) > 3. Once log
10

V (0) > 3, log
10

V

max

increases as log
10

V (0)
increases. As V (0) increases there is no change in log

10

X

max

. As C

v

<

log
10

V (0) > increases both C

v

< log
10

V

max

> and C

v

< log
10

X

max

> in-
crease as well. C

v

< log
10

V

max

> increases to 0.10, and C

v

< log
10

X

max

>

increases to 0.01.

21

4.6 Variation in Initial Immunity: X(0)

0 5 10 15 20 25 30

0
2

4
6

8

t

lo
g

V

0 5 10 15 20 25 30

0
1
2
3
4
5

t

lo
g

X

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

log X(0)

lo
g

N
um

be
r

Vmax
Xmax

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
10

Cv <log X(0)>

C
v

<l
og

 V
m

ax
/X

m
ax

>
Vmax
Xmax

Figure 10: Di↵erences in the initial immune cell density specific to the
pathogen elicits variation in the intrahost dynamics of infection. Hetero-
geneity in log

10

X(0) causes more variation in log
10

V

max

but less variation in
log

10

X

max

. As log
10

X(0) increases there is a reduction in log
10

V

max

but no
change in log

10

X

max

. It can also be seen that as C
v

< log
10

X(0) > increases
C

v

< log
10

V

max

> and C

v

< log
10

X

max

> both increase as well.

We see that by increasing log
10

X(0), log
10

V

max

decreases and log
10

X

max

has no change. The magnitude of change in log
10

V

max

is about 104. As
C

v

< X(0) > increases both C

v

< log
10

V

max

> and C

v

< log
10

X

max

>

increase. The magnitude of change in C

v

< log
10

V

max

> is 0.15 and the
magnitude of change in C

v

< log
10

X

max

> is 0.020.

22

4.7 Summarization of the Results

Parameter (units) C

v

< log V
max

> C

v

< logX
max

>

C

v

<log V

max

>

C

v

<logX

max

>

r, days�1 0.20 0.030 6.67
s, days�1 0.20 1.5e-6 1.33e5

�, V 0.06 1.2e-5 5e3
k, (X ⇤ days)�1 0.12 0.15 0.8

V (0), V 0.10 0.01 10
X(0), X 0.15 0.025 6

Table 2: A summarization of the results: Parameters and their coe�cients
of variation for V

max

and X

max

. The range of the coe�cients of variation
for both log V

max

and logX
max

were measured for each parameter, and they
are shown in Table 2 with the corresponding parameter. These results are
also displayed in Figure 11 which best encapsulates the relative amount of
variation present in peak viral load and peak immune cell density caused by
heterogeneity in each parameter. It can also be seen that none of the ratios
of the coe�cient of variation of V

max

to the coe�cient of variation of X
max

are equal to 100 for each parameter. This also shows that our model output
does not recapitulate the data

23

r s phi k V(0) X(0)

Vmax
Xmax

Parameters

C
v

<l
og

 V
m

ax
/X

m
ax

>

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 11: Variation in all parameters generate more heterogeneity in the
peak viral load than the peak immune cell density. The coe�cients of vari-
ation for both log V

max

and logX
max

for each parameter are shown above in
red and blue bars respectively. It can be seen that the amount of variation
in log V

max

is greater than the amount of variation present in logX
max

for
all parameters, and that only k causes similar changes in both log V

max

and
logX

max

.

5 Discussion

We will first discuss the consequences of variation in each of the model pa-
rameters on the variation in the peak viral load and the maximum immune
cell density, and the possible mechanisms that this variation could be caused.
Then we will discuss the limitations of our model and future directions.

5.1 Viral Growth Rate

We have found that varying the viral growth rate causes changes in the peak
viral load and the peak immune cell density. By changing the growth rate, a
pathogen is able to grow either more or less e�ciently in its host. Increases

24

in r increase V
max

because the pathogen can grow more quickly before it can
be controlled and cleared by the immune system. On the other hand a higher
density of immune cells is needed to clear a faster growing pathogen which
corresponds to the increase in X

max

after r has been increased.
We can approximate how varying r a↵ects X

max

looking at the steady
state equation. The steady state equation is calculated by setting V̇ = 0.
Solving for X yields the equation X = r

k

. It can be seen that the density
of immune cells needed to clear the infection, X

max

, is proportional to the
growth rate divided by the mass action killing rate of the immune system, k.
This equation shows why increases in r increase X

max

.
It has been shown that single nucleotide polymorphisms (SNPs) in the

cytokine-inducible SRC homology 2 domain (CISH) are associated with sus-
ceptibility to tuberculosis (TB) in the Chinese Han population and in the
global population [25]. It could be that variation in this domain causes
cytokine production to be di↵erent between individuals, which could be re-
flected in the model as a higher pathogen growth rate. Deficiencies in type
2 helper T cell cytokine secretions cause orthopoxvirus infection to be worse
for the host [26]. Furthermore studies have shown that racial and gender dif-
ferences in natural killer p46, a natural cytotoxicity receptor, were associated
with di↵erences in immunity towards hepatitis C. It was found that NKp46
expression was correlated with more antiviral activity [27]. Since our model
does not consider the e↵ects of the innate system this could also be reflected
as di↵erences in the pathogen growth rate.

5.2 Immune Growth Rate

Changes in s reflect changes in the maximum growth rate of immunity. This
means that the immune system either grows more or less rapidly after stim-
ulation by a given pathogen. Increasing s decreases V

max

because a faster
growing immune system reaches the density required to control and clear
the pathogen more quickly. It does not a↵ect X

max

because the number of
immune cells needed to control the pathogen has not changed. As indicated
by the steady state equation above, the clearing density is dependent on r

and k.
Recent studies have shown the fruits of black pepper plants contain a

compound known as piperine, and piperine is an inhibitor of interleukin 2
driven T cell proliferation [28]. It could be possible that di↵erences in host
diet could a↵ect adaptive immune cell dynamics. The e↵ects of piperine

25

on the immune system could be represented in the model as a decrease in
the immune cell growth rate. It has also been shown that variation in the
HLA-DRB1, a class II HLA gene, is associated with resistance to typhoid
fever [29]. This could be represented in our model as a faster immune cell
growth rate. More diverse antigen presentation could allow for a mounting of
di↵erent immune responses, and allows for faster clearance of the pathogen
because the max immune cell density is reached more quickly.

5.3 Pathogen Density at which Immunity Responds

By increasing �, the density at which the immune system responds increases.
Increases in � mean that the immune system will respond at higher densities,
which in this case means a later time. As a result the pathogen has more
time to grow and increase V

max

before it is brought under control. X

max

does not change because the clearing density of the immune system is mostly
dependent on the killing rate which has not changed.

Increases in � might reflect lower a�nity of the adaptive immune cell
receptor for the antigen. If the a�nity for the antigen is lower, more antigen
may need to be present before an adaptive response is formed.

Changes in � might also be caused by the ability of the pathogen to avoid
the adaptive immune system. This could be done by somehow inhibiting
the action of cytokines that stimulate the adaptive immune system. Some
pathogens are known to secrete soluble receptors for cytokines to prevent the
inhibitory e↵ects of these cytokines on replication.

It been shown that influenza A viruses have a protein called PA-X that
allows for inhibition of the host immune response [30]. A given pathogen may
also have di↵erent strategies or mechanisms to avoid or suppress di↵erent
aspects of the immune system, and this could be reflected as a higher density
needed for the maximum rate of immune cell proliferation. By suppressing
the immune system, the pathogen has more time to grow and therefore can
reach a higher density before the immune system responds. HIV has also
been shown to block the induction of interferon genes when the virus infects
macrophage and dendritic cells by inhibiting the kinase activity of TBK1
[31].

26

5.4 Killing Rate by Adaptive Immunity

An individual whose immune system has a higher k has an immune system
that kills at a faster rate compared to a lower k. An immune system that
kills more e�ciently decreases V

max

because the immune system is able to
kill more of the pathogen in a given amount of time. If the immune system
is better at killing the pathogen then X

max

is decreased because the amount
of immune cells needed to control the infection is lower as well.

We assumed that the density of immune cells needed to clear the pathogen
was very high, and so k was assumed to be at a very low value. It has been
shown that the tyrosine kinase Lyn is a regulator of survival for plasma cells
and that it limits plasma cell accumulation [32]. Plasma cells are B cells
that have been activated, moved to the bone marrow, and become antibody
secreting cells. Host di↵erences in genes that a↵ect the survivability of plasma
cells and e↵ector cells could change the killing rate.

It has also been shown that di↵erent HLA alleles can greatly a↵ect the
amount of liver damage from a chronic hepatitis C infection [33]. In this
study, the researchers found one allele that had a protective e↵ect and another
that predisposed the host for severe liver damage. Di↵erences in the host
HLA alleles could also be reflected in the killing rate where protective alleles
have a higher killing rate and vice versa.

Recent studies also showed that homozygosity in the HLA class I genes
resulted in faster disease progression in HIV infected humans, and the re-
sults suggest that diversitiy and sequence specificity can a↵ect the dynamics
of disease progression [34]. In our model this could be represented as a de-
crease in k which would allow the pathogen to grow more quickly despite the
presence of immunity.

5.5 Initial Viral Inoculum

Increasing the initial infectious dose increases V

max

because the starting
amount of pathogen in the host is higher. As a result the peak viral load will
be higher compared to a host infected with a smaller infectious dose. How-
ever the maximum amount of immunity will not change because the killing
rate of the pathogen by the adaptive immune system has not changed, and
as a result the same density of immune cells is needed to clear the pathogen
from the host.

A decrease in the proviral load of human T cell lymphotropic virus was

27

shown to be associated with heterozygosity in the HLA class I alleles. The
researchers found that individuals who were heterozygous at all three HLA
class I loci had a lower proviral load, and they were thought to have a reduced
risk of disease [35]. This could be represented in our model as changes in the
initial infectious dose. Studies have also shown that MHC diversity also
results in resistance against coinfection and multiple-strain infections [36,
37].

5.6 Initial Immunity

Increasing the initial immunity present decreases V
max

because more immune
cells that are specific to the pathogen are already present. When the immune
cells are in the presence of the pathogen, they clonally expand but if more
immune cells are present then the density at which the immune cells control
and clear the infection is reached earlier. On the other hand the density at
which the immune system controls and clears the infection is not changed
because the immune cells are still killing the pathogen at a rate of k.

The amount of initial immune cells specific for a given pathogen could
be increased due to previous antigenic history or vaccination. Both of these
processes form memory cells specific for the given pathogen. However het-
erozygosity in the HLA genes could also increase the diversity of antigens
presented and allow for better clinical outcomes in hepatitis B infections
[38]. This diversity could allow for adaptive immune cells specific for dif-
ferent epitopes on a given pathogen to respond, which could be reflected in
our model as a change in the initial density of immune cells specific to the
pathogen.

5.7 Summary: The Questions Revisited

Earlier we mentioned the questions we wanted to ask using our simple models.
We wanted to ask what are the key parameters that influence the dynam-
ics of infection and immunity? Which model parameters do we expect to
vary? Why is there more variation in peak viremia compared to peak im-
munity? What is the e↵ect of variation in each parameter? Does our model
recapitulate the yellow fever virus vaccination data?

28

5.7.1 What are the key parameters?

The key parameters areX(0), V (0), and k. When these parameters are varied
over the ranges in Table 1 and all others are held constant, there is more
variation present in V

max

compared to X

max

. Heterogenety in the parameter
k, the mass action killing rate, generates more variation in X

max

compared
to V

max

which is the opposite trend of the data in Figure 2. Lastly varying
the parameters s and � do not generate any heterogeneity in X

max

and only
generate variation in V

max

. This indicates that these two parameters are not
key in generating the heterogeneity observed in the yellow fever imunization
data.

5.7.2 Which parameters do we expect to vary?

We expect the parameters r, s, �, and k to vary. We do not expect V (0)
and X(0) to vary. The initial viral inoculum, V (0), should not vary because
viral load is controlled. All individuals received the same viral dose from
the vaccine, and so we do not expect V (0) to vary in the context of our
data. However in a more general setting, we would expect V (0) to vary.
We also do not expect X(0) to vary because these vaccinations were given
to naive individuals. These were not booster shots that were given to the
individuals, and so none of the individuals in the studies had any previous
antigenic history with yellow fever virus. Therefore we would not expectX(0)
to vary between individuals in the yellow fever vaccination data. However,
more generally, we could expect X(0) to vary between individuals in the
natural human population because of di↵ering immunization and infections
history. This is because some individuals may have been previously infected
or had immunization to a given pathogen, and if di↵erent individuals get
infected/vaccinated at di↵erent times then their population of cells specific
for that given pathogen will be di↵erent upon subsequent infection as well.

5.7.3 Why is there more variation in peak viral load compared to
peak immune cell density?

There is more variation present in the peak viral load compared to the peak
immune cell density in our model because of the number of parameters that
a↵ect V

max

and X

max

. The steady state equation for virus, V̇ = rV � kV X,
once solved yields the equation X = r

k

. The density at which the immune
system is able to stop the virus from growing and clear it from the host, also

29

X

max

, is only dependent on two parameters, r and k. On the other hand
V

max

is a↵ected by all model parameters. It can be seen in our results that
varying any one parameter while holding all others constant will cause V

max

to be changed. Since X

max

is dependent on two parameters while V

max

is
dependent on six parameters, there is more heterogeneity in V

max

compared
to X

max

.

5.7.4 What is the e↵ect of variation in each parameter?

There is a greater amount of variation, due to the heterogeneties considered,
present in V

max

compared to X

max

as seen in Figure 11. We have found that
heterogeneity in parameters r and k generate the greatest amount of varia-
tion in X

max

, and that varying k has a significantly greater e↵ect upon the
variation in X

max

. We also found that varying parameters r and s generates
the most amount of variation in V

max

of the variables considered. Further-
more, we can see in Figure 11 that heterogeneity in parameters s and � does
not result in any variation in X

max

. Lastly, variation in V (0) and X(0) gen-
erate the same magnitude of heterogeneity in X

max

, but variation in X(0)
generates more variation in V

max

compared to variation in V (0).

5.7.5 Does our model recapitulate the yellow fever immunization
data?

Our model output does not recapitulate the yellow fever vaccination data.
Using the ranges indicated in Table 1, we varied each model parameter while
holding all others constant. When we use the coe�cient of variation C

v

, we
are measuring the relative amount of variation. After we varied a parameter,
we looked for a 100 fold di↵erence in the peak viral load and peak immune
cell density. However, none of our model outputs recapitulated the data, and
we did not find a 100 fold di↵erence in V

max

and X

max

.
We cannot tease out whether this is a model limitation or whether the ranges
we have used for our simulations are wrong. When we vary r in Figure 5, it
can be seen that between the values of 1 and 2 there is a 100 fold di↵erence in
V

max

andX

max

. Since all individuals in the yellow fever vaccination studies all
received the same pathogen, the heterogeneity in r must be due to variation in
host factors. However we do not know which host factors cause this variation,
and we would not be able to measure how variation in host factors a↵ects the
pathogen growth rate in vitro. As a result we cannot determine whether our

30

model does not recapitulate the yellow fever vaccination data due to model
limitations, incorrect values for parameter ranges, or both.

5.8 Limitations and Future Directions

1. Our model is the simplest possible case. In the future we will add fur-
ther complexity and realism to the model by introducing the following
factors, and analyzing how variation with the new parameters could
a↵ect the dynamics of infection.

(a) Resource limitation could be modeled in our equation by intro-
ducing a carrying capacity.

(b) Host Lethal Density could be introduced into our models by end-
ing simulations when a certain threshold for pathogen density has
been crossed.

(c) Innate Immunity could be introduced with a new set of equations
that model macrophage response.

(d) Immune Cell Exhaustion would be introduced in the form of a new
parameter that represents the rate at which adaptive immune cells
inactivate or die.

(e) Stochasticity would be introduced to the model by using stochastic
tau-leaping algorithm to model the course of infection [39].

2. Our analysis was limited to varying a single parameter while keeping
all others constant. Future directions include:

(a) Multiparameter Variation - More than one parameter could be
varied while all others are held constant.

(b) Introducing probability density functions - Parameters could be
assumed to have a prior probability density function with its own
variance and mean, and how the variance of this distribution af-
fects the dynamics of infection could be explored.

(c) Parameter Correlation - Certain parameters could have biological
correlation, and the correlation between these parameters and how
it a↵ects the dynamics of infection could be analyzed in the future
as well

31

6 References

[1] Reprinted from Immunity, 8, Murali-Krishna K, et al., Counting Antigen-
Specific CD8 T Cells: A Reevaluation of Bystander Activation during Viral
Infection. 177-187, Copyright(1998), with permission from Elsevier.
[2] Monath TP. (2005) Yellow fever vaccine. Expert Rev. Vaccines 4(4):553-
574.
[3] Akondy RS, et al. (2015) Initial viral load determines the magnitude of
the human CD8 T cell response to yellow fever vaccination. PNAS.
[4] Lee KJ, et al. (2000) NP and L Proteins of Lymphocytic Choriomeningi-
tis Virus (LCMV) Are Su�cient for E�cient Transcription and Replication
of LCMV Genomic RNA Analogs. InJ Virol 74(8):3470-3477.
[5] Apanius V, et al. (1997) The Nature of Selection On The Major Histocom-
patibility Complex. Crit Rev Immunol 17(2):179-224.
[6] Collison M, et al. (2015) Homozygosity for HLA group 2 alleles predicts
treatment failure with interferon-I’s and ribavirin in chronic hepatitis C virus
genotype 1 infection. J Interferon Cytokine Res 35(2):126-133.
[7] Blackwell JM. (1998) Genetics of host resistance and susceptibility to
intra-macrophage pathogens: a study of multicase families of tuberculo-
sis,leprosy, and leishmaniasis in north-eastern Brazil. Int J Parasitol 28(1):21-
28.
[8] O’Connor SL, et al. (2010) MHC heterozygote advantage in simian im-
munodeficiency virus-infected Mauritian cynomolgus macaques. Sci Transl
Med 2(22):22ra18.
[9] Hill AV. (1998) The immunogenetics of human infectious diseases. Annu
Rev Immunol 16:593-617.
[10] Phillips AC, et al. (2008) Preliminary evidence that morning vaccination
is associated with an enhanced antibody response in men. Psychophysiology
45:633-666.
[11] Edwards KM, et al. (2006) Acute Stress exposure prior to influenza
vaccination enhances antibody response in women”. Brain, Behavior, and
Immunity 20:159-168.
[12] McClelland EE, Smith JM. (2011) Gender Specific Di↵erences in the
Immune Response to Infection. Arch. Immunol. Ther. Exp. 59:203-213.
[13] Gasper DJ, Tejera MM, Suresh M. (2014) CD4 T-cell Memory Genera-
tionand Maintenance. Crit Rev Immunol 34(2):121-146.
[14] Cizauskas CA, et al. (2014) Gastrointestinal helminths may a↵ect host
susceptibility to anthrax through seasonal immune trade-o↵s. BMC Ecol

32

14(27).
[15] Fisman D. (2012) Seasonality of viral infections: mechanisms and un-
knowns.Clin Microbiol Infect 18(10):946-954.
[16] Hanson DF. (1997) Fever, temperature, and the immune response. Ann
N Y Acad Sci 453464.
[17] Shan J, et al. (2014) Temperature dependent bacteriophages of a tropi-
cal bacterial pathogen. Front Microbiol 14(5):599.
[18] Kapasi ZF, Mcrae ML, Ahmed R. (2005) Suppression of viral specific
primary T-cell response following intense physical exercise in young but not
old mice. J Appl Physiol 98:663-671.
[19] Iyer SS, et al. (2012) Protein Energy Malnutrition Impairs Homeostatic
Proliferation of Memory CD8 T Cells. J. Immunol 188(1):77-84.
[20] Moore SE, et al. (1999) Prenatal or early postnatal events predict infec-
tious deaths in young adulthood in rural Africa. Int J Epidemiol 28(6):1088-
1095.
[21] Toth Z, et al. (2010) Epigenetic analysis of KSHV latent and lytic
genomes.PLoS Pathog 6(7).
[22] Chen Y, et al. (2005) Population Fitness and the Regulation of Es-
cherichiacoli Genes by Bacterial Viruses. PLoS Biol 3(7):e229.
[23] Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R. (2002) Defective
generation but normal maintenance of memory T cells in old mice. Eur. J.
Immunol 32:1567-1573.
[24] Antia R, Levin BR, May RM. (1994) Within-Host Population Dynamics
and the Evolution And Maintenance of Microparasite Virulence. American
Naturalist 144(3):457-472.
[25] Ji LD, et al. (2014) Polymorphisms in the CISH gene are associated with
susceptibility to tuberculosis in the Chinese Han population.” Infect Genet
Evol 28:240-244.
[26] Sakala IG, et al. (2015) Deficiency in th2 cytokine responses exacerbate
orthopoxvirus infection. PloS One 10(3).
[27] Golden-Mason L, Stone AE, Bambha KM, Cheng L, Rosen HR. (2012)
Race-and gender-related variation in natural killer p46 expression associated
with di↵erential anti-hepatitis C virus immunity. Hepatology 56(4):1214-
1222.
[28] Doucette CD, Greenshields AL, Liwski RS, Hoskin DW. (2015) Piperine
blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes
by inhibiting multiple signal transduction pahtways. ToxicolLett 234(1):1-12.
[29] Dunstan SJ, et al. (2014) Variation at HLA-DRB1 is associated with

33

resistance to enteric fever. Nat Genet. 46(12):1333-1336.
[30] Hayashi T, MacDonald LA, Takimoto T. (2015) Influenza A virus pro-
tein PA-X contributes to viral growth and suppression of the host antiviral
and immune responses.” J Virol. [31] Harman AN, et al. (2015) HIV Blocks
Interferon Induction in Human Dendritic cells and Macrophages by Dysreg-
ulation of TBK1. J Virol.
[32] Infantino S, et al. (2014) The tyrosine kinase Lyn limits the cytokine re-
sponsiveness of plasma cells to restrict their accumulation in mice. SciSignal
7(338).
[33] Marangon AV, et al. (2012) Protective e↵ect of HLA-DRB1 11 and
predisposition of HLA-C 04 in the development of severe liver damage in
Brazilian patients with chronic hepatitis C virus infection. Scand J Immunol
76(4):440-447.
[34] Tang J, et al. (1999) HLA class I homozygosity accelerates disease pro-
gression in human immunodeficiency virus type 1 infection. AIDS Res Hum
Retroviruses 15(4): 317-324.
[35] Je↵ery KJ, et al. (2000) The influence of HLA class I alleles and heterozy-
gosity on the outcome of human T cell lymphotropic virus type I infection.
J Immunol 165(12): 7278-7284.
[36] Penn DJ, Damjanovich K, Potts WK. (2002) MHC heterozygosity con-
fers a selective advantage against multiple-strain infections. Proc Natl Acad
Sci USA 99(17):11260-11264.
[37] McClelland EE, Penn DJ, Potts WK. (2003) Major histocompatibility
complex heterozygote superiority during coinfection.Infect Immun 71(4):2079-
2086.
[38] Thursz MR, Thomas HC, Greenwood BM, Hill AV. (1997) Heterozygote
advantage for HLA class-II type in hepatitis B virus infection. Nat Genet.
17(1):11-12.
[39] Cao Y, Li H, Petzold L. (2004) E�cient formulation of the stochastic
algorithm for chemically reacting systems”. J Chem Phys 121: 4059-4067.

34

7 Appendix

7.1 Code

7.1.1 Variation in r

> require(deSolve)
> require(rootSolve)
> require(zoo)
> require(cacheSweave)
> #setwd("/Volumes/HDD/Dropbox/Antia-Jonathan/
> #WorkInProgress/current/Ebola")
> setCacheDir("Cache")
> set.seed()
> ODE_Ebola <- function(t, y, parms)
+ {
+ with(as.list(c(y,parms)),
+ # allows the parameter file parms
+ #to be as a list
+ { # and the state variables to be the
+ #same as chosen in the init conditions
+
+ dV = r*V - k*V*X
+ dX = s*X*V/(phi+V)
+
+ dY=c(dV,dX)
+ return(list(dY)) #
+ })
+ }
> ## define initial conditions
> initial.conditions = c(
+ V = 1, # Virus
+ X = 1 # Adaptive immunity
+)
> ## define parameters
> parameters = c(
+ r = 2, # viral growth rate
+ s = 1, # growth of adaptive immunity

35

+ phi = 1e3, # parasite density at
+ # which immunity responds
+ k = 1e-3, # killing of virus by immunity
+ p = 1e3, # cytokine production rate
+ phi_c = 1e3, # cytokine production begins
+ # when virus reaches this value
+ d_c = 72 # cytokine decay
+)
> maxtime=30
> ntimepoints=200
> time.points = seq(0, maxtime,
+ maxtime/ntimepoints)
> rootfun <- function(t, y, parms) return(y[1]-1)
> solution.of.ode = lsodar(ODE_Ebola, y=initial.conditions,
+ times=time.points,
+ parms = parameters)
> soln = as.data.frame(solution.of.ode)
> C = (parameters["p"]*soln$X*soln$V)/
+ (parameters["d_c"]*(parameters["phi_c"]+soln$V))
> soln = cbind(soln,C)
> par(mfcol=c(1,2))
> ymax=max(soln)
> ymin=min(soln)
> plot(soln$V ~ soln$time,col="red", type="l",
+ ylim=c(0,ymax),
+ ylab="number",xlab="time (days)")
> lines(soln$X ~ soln$time, col = 'blue', type = 'l')
> lines(soln$C ~ soln$time, col = 'green', type = 'l')
> plot(log10(soln$V) ~ soln$time,col="red", type="l",
+ ylim=c(1,log10(ymax)),
+ ylab="log number",xlab="time (days)")
> lines(log10(soln$X) ~ soln$time, col = 'blue', type = 'l')
> lines(log10(soln$C) ~ soln$time, col = 'green', type = 'l')
> legend("topright", c("Virus", "Adaptive", "Cytokines"),
+ lty = 1, lwd = 2, col=c("red","blue","green"),
+ cex = 2)
> #####################################
> ##create these empty vectors so

36

> #that the results can be stored later
> #####################################
> ##vector for duration of infection
> durationofinfectionvec = NULL
> ##vector for measures of pathology
> Vmaxvec = NULL
> ##vector for total transmission
> total_Vvec = NULL
> total_lnVvec = NULL
> ##vector for total immunity
> Xmaxvec= NULL
> total_Xvec = NULL
> ##total cytokine amount generated
> Cmaxvec = NULL
> total_Cvec = NULL
> haltingTransitionvec = NULL
> numdeathvec = NULL
> V_simvec = NULL
> X_simvec = NULL
> t_simvec = NULL
> ##
> #integrating function
> ##
> Tfunction <- function(x, y)
+ ##
+ {
+ #use the sum function to add the numbers
+ #diff function finds the
+ ##difference between the times
+ #rollmean finds the average
+ ##between the two numbers in y
+ #this method leaves out one number
+ ##(the last number in the list)
+ #so it underestimates transmission
+ sum(diff(x)*rollmean(y,2))
+ }
> ##
> #simulation function

37

> ##
> Simulation <- function(initialconditions,params)
+ {
+ solution.of.ode = lsodar(ODE_Ebola,
+ y=initialconditions,
+ times=time.points,
+ parms = params)
+ soln = as.data.frame(solution.of.ode)
+ C = (params["p"]*soln$X*soln$V)/
+ ((params["phi_c"]+soln$V)) - params["d_c"]
+ soln = cbind(soln,C)
+ y = soln
+ return(y)
+ }
> ##
> #calculation function
> ##
> Calculation <- function(x)
+ {
+ ###storing data#####
+ V_sim = x$V
+ X_sim = x$X
+ t_sim = x$time
+
+ #####Calculations######
+ durationofinfection = max(x$time)
+
+ #####Pathology######
+ #max parasite density as a m
+ ##easure of pathology
+ #we are measuring total pathology
+ ##and max parasitemia
+ ##find the maximum of the total
+ #pathogen and store in vector
+ Vmax = max(x$V)
+ ##Store the value in a vector
+ total_V = Tfunction(xt,xV)
+

38

+ temp = log(x$V)
+ temp[!is.finite(temp)] <- 0
+ #t_list = x[which(x$V!=0),"t"]
+ t_list = x$t
+
+ if(all.equal(length(temp),0)==TRUE)
+ {
+ total_lnV = 0
+ }
+ else
+ {
+ total_lnV = Tfunction(t_list,temp)
+
+ }
+
+ ##Total Immunity Generated
+ #integral of immune density for duration of infection
+ #maximizing immunity is desired in antibiotic treatment
+ #might increase likelihood of generating memory
+ #we calculate the max and total immunity generated
+ Xmax = max(x$X)
+ #integrate the curve and store the value
+ total_X = Tfunction(xt,xX)
+
+ ##total cytokine production
+ #also taking the max amount of cytokines
+ ##and total cytokine production
+ Cmax = max(x$C)
+ total_C = Tfunction(xt,xC)
+
+ y = list(durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,

39

+ V_sim = V_sim, X_sim = X_sim,
+ t_sim = t_sim)
+ }
> ##
> a = Simulation(initial.conditions,parameters)
> b = Calculation(a)
> #averaging function
> ##
> Averaging <- function(initialconditions,params,N)
+ {
+ numdeath = 0
+ for(i in 1:N)
+ {
+ a = Simulation(initialconditions,params)
+ b = Calculation(a)
+ durationofinfectionvec[i] = b$durationofinfection
+ Vmaxvec[i] = b$Vmax
+ total_Vvec[i] = b$total_V
+ total_lnVvec[i] = b$total_lnV
+ Xmaxvec[i] = b$Xmax
+ total_Xvec[i] = b$total_X
+ Cmaxvec[i] = b$Cmax
+ total_Cvec[i] = b$total_C
+ haltingTransitionvec[i] = b$haltingTransition
+ V_simmat[,i] = b$V_sim
+ X_simmat[,i] = b$X_sim
+ time_simmat[,i] = b$t_sim
+ }
+ durationofinfection = mean(durationofinfectionvec)
+ Vmax = mean(Vmaxvec)
+ total_V = mean(total_Vvec)
+ total_lnV = mean(total_lnVvec)
+ Xmax = mean(Xmaxvec)
+ total_X = mean(total_Xvec)
+ Cmax = mean(Cmaxvec)
+ total_C = mean(total_Cvec)
+ numdeath = sum(haltingTransitionvec)
+

40

+ y = list(durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ numdeath = numdeath,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> numsim = 1
> V_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> X_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> time_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> results = Averaging(initial.conditions,parameters,
+ numsim)
> ##
> ##defining functions
> #hold all other parameters constant, vary one
> ##
> # averaging functions
> ##
> # r averaging function
> ###
> AveragingRange_r <- function(inputvec,
+ initialconditions,
+ params, N)
+ {
+ for(i in 1:length(inputvec))
+ {
+ params["r"] = inputvec[i]

41

+ c = Averaging(initialconditions,params,1)
+ durationofinfectionvec[i] = c$durationofinfection
+ Vmaxvec[i] = c$Vmax
+ total_Vvec[i] = c$total_V
+ total_lnVvec[i] = c$total_lnV
+ Xmaxvec[i] = c$Xmax
+ total_Xvec[i] = c$total_X
+ Cmaxvec[i] = c$Cmax
+ total_Cvec[i] = c$total_C
+ numdeathvec[i] = c$numdeath
+ V_simmat[,i] = c$V_simmat[,1]
+ colnames(V_simmat) <- c(inputvec)
+ X_simmat[,i] = c$X_simmat[,1]
+ colnames(X_simmat) <- c(inputvec)
+ time_simmat[,i] = c$time_simmat[,1]
+ }
+ y = list(
+ durationofinfectionvec = durationofinfectionvec,
+ Vmaxvec = Vmaxvec,
+ total_Vvec = total_Vvec,
+ total_lnVvec = total_lnVvec,
+ Xmaxvec = Xmaxvec,
+ total_Xvec = total_Xvec,
+ Cmaxvec = Cmaxvec,
+ total_Cvec = total_Cvec,
+ numdeathvec = numdeathvec,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> ###
> r_dist = runif(150,1,3)
> #rvec = sample(r_dist, 150)
>
> quartz()
> par(mfcol=c(2,2))
> #hist(r_dist,prob=TRUE, main = paste(""),

42

> #xlab = "r", cex = 2)
> #hist(rvec,prob=TRUE)
>
> #define the matrices before you begin
> ##the multiple simulation as the size
> #is completely dependent on the time points
> #and number of values in the input vector
> V_simmat = matrix(nrow = length(time.points),
+ ncol = length(r_dist))
> X_simmat = matrix(nrow = length(time.points),
+ ncol = length(r_dist))
> time_simmat = matrix(nrow = length(time.points),
+ ncol = length(r_dist))
> #leave it at 1 simulation for now
> #numsim actually tells you the number of times
> #to run the simulation at the same values
> #held more use for stochastic simulations
> #in finding the averaging simulation values
> numsim = 1
> #solve our function for the sample data we have used
> results_r = AveragingRange_r(r_dist,
+ initial.conditions,
+ parameters,numsim)
> #plot multisimulation of V
> for(i in 1:ncol(results_r$V_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_r$V_simmat[,i]) ~
+ results_r$time_simmat[,i],
+ type = "l", col = "red", lty = i, lwd = 0.1,
+ ylab = "log V", xlab = "t", ylim = c(0,12),
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_r$V_simmat[,i]) ~
+ results_r$time_simmat[,i],

43

+ col = "red", lty = i, lwd = 0.1,
+ ylab = "Log V", xlab = "t",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot multsimulation of X
> for(i in 1:ncol(results_r$X_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_r$X_simmat[,i]) ~
+ results_r$time_simmat[,i],
+ type = "l", col = "blue", lty = i,
+ lwd = 0.1, xlab = "t",
+ ylab = "log X", ylim = c(0,5),
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_r$X_simmat[,i]) ~
+ results_r$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot how our values of interest
> #change with changing r
> #sort command orders the values in ascending order
> #so that they can be plotted as lines
> plot(log10(sort(results_r$Vmax)) ~ sort(r_dist),
+ type = "l",col = "red", lty = 1,
+ xlab = "r", ylab = "log Number",
+ ylim = c(0, max(log10(results_r$Vmax))),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(log10(sort(results_r$Xmax)) ~ sort(r_dist),
+ type = "l", col = "blue", lty = 1, xlab = "r",

44

+ cex.axis = 1.5, cex.lab = 1.5)
> ##add a legend
> legend("topleft", c("Vmax", "Xmax"), lty = 1,
+ lwd = 1, col=c("red","blue"), cex = 1.2)
> #create a vector for one of the shape parameters
> #as a increases, the variance
> #of the distribution decreases
> #r_unif = runif(1e3, min = 2, max = 2)
> #for a uniform distribution
> #the mean is the median (max - min)/2
> #for a uniform distribution
> #the variance is 1/12(xmax -xmin) or 1/12(range)
> r_varvec = NULL
> r_meanvec = NULL
> r_Vmax_varvec = NULL
> r_Vmax_meanvec = NULL
> r_totalV_varvec = NULL
> r_Xmax_varvec = NULL
> r_Xmax_meanvec = NULL
> rangevec = seq(0,1,0.1)
> for(i in 1:length(rangevec))
+ {
+ rvec = runif(100,
+ min = (2-rangevec[i]),
+ max = (2+rangevec[i]))
+
+ #define the matrices before you
+ #begin the multiple simulation as the size
+ #is completely dependent on the time points
+ #and number of values in the input vector
+ V_simmat = matrix(nrow = length(time.points),
+ ncol = length(rvec))
+ X_simmat = matrix(nrow = length(time.points),
+ ncol = length(rvec))
+ time_simmat = matrix(nrow = length(time.points),
+ ncol = length(rvec))
+
+ r_varvec[i] = var(rvec)

45

+ r_meanvec[i] = mean(rvec)
+
+ results2_r = AveragingRange_r(rvec,
+ initial.conditions,
+ parameters,
+ numsim)
+
+ r_Vmax_varvec[i] = var(log10(results2_r$Vmax))
+ r_Vmax_meanvec[i] = mean(log10(results2_r$Vmax))
+ r_totalV_varvec[i] = var(results2_r$total_V)
+ r_Xmax_varvec[i] = var(log10(results2_r$Xmax))
+ r_Xmax_meanvec[i] = mean(log10(results2_r$Xmax))
+ }
> r_cvvec = sqrt(r_varvec)/r_meanvec
> r_Vmax_cvvec = sqrt(r_Vmax_varvec)/r_Vmax_meanvec
> r_Xmax_cvvec = sqrt(r_Xmax_varvec)/r_Xmax_meanvec
> plot(r_Vmax_cvvec ~ r_cvvec,
+ type = "b", col = "red",
+ lty = 1, xlab = "Cv <r>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(r_Vmax_cvvec)),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(r_Xmax_cvvec ~ r_cvvec,
+ type = "b", col = "blue",
+ lty = 1, xlab = "Cv <r>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(r_Xmax_cvvec)),
+ cex.axis = 1.5, cex.lab = 1.5)
> legend("topleft", c("Vmax", "Xmax"), lty = 1,
+ lwd = 1, col=c("red","blue"), cex = 1.2)

7.1.2 Variation in s

> require(deSolve)
> require(rootSolve)
> require(zoo)
> require(cacheSweave)
> #setwd("/Volumes/HDD/Dropbox/

46

> #Antia-Jonathan/WorkInProgress/current/Ebola")
> setCacheDir("Cache")
> set.seed()
> ODE_Ebola <- function(t, y, parms)
+ {
+ with(as.list(c(y,parms)),
+ # allows the parameter
+ #file parms to be as a list
+ { # and the state variables to be the
+ #same as chosen in the init conditions
+
+ dV = r*V - k*V*X
+ dX = s*X*V/(phi+V)
+
+ dY=c(dV,dX)
+ return(list(dY)) #
+ })
+ }
> ## define initial conditions
> initial.conditions = c(
+ V = 1, # Virus
+ X = 1 # Adaptive immunity
+)
> ## define parameters
> parameters = c(
+ r = 2, # viral growth rate
+ s = 1, # growth of adaptive immunity
+ phi = 1e3, # parasite density at
+ #which immunity responds
+ k = 1e-3, # killing of virus by immunity
+ p = 1e3, # cytokine production rate
+ phi_c = 1e3, # cytokine production begins
+ #when virus reaches this value
+ d_c = 72 # cytokine decay
+)
> maxtime=30
> ntimepoints=200
> time.points = seq(0,

47

+ maxtime,
+ maxtime/ntimepoints)
> rootfun <- function(t, y, parms) return(y[1]-1)
> solution.of.ode = lsodar(ODE_Ebola,
+ y=initial.conditions,
+ times=time.points,
+ parms = parameters)
> soln = as.data.frame(solution.of.ode)
> C = (parameters["p"]*soln$X*soln$V)/
+ (parameters["d_c"]*(parameters["phi_c"]
+ +soln$V))
> soln = cbind(soln,C)
> par(mfcol=c(1,2))
> ymax=max(soln)
> ymin=min(soln)
> plot(soln$V ~ soln$time,col="red",
+ type="l",ylim=c(0,ymax),
+ ylab="number",xlab="time (days)")
> lines(soln$X ~ soln$time,
+ col = 'blue', type = 'l')
> lines(soln$C ~ soln$time,
+ col = 'green', type = 'l')
> plot(log10(soln$V) ~ soln$time,col="red",
+ type="l",ylim=c(1,log10(ymax)),
+ ylab="log number",xlab="time (days)")
> lines(log10(soln$X) ~ soln$time,
+ col = 'blue', type = 'l')
> lines(log10(soln$C) ~ soln$time,
+ col = 'green', type = 'l')
> legend("topright", c("Virus", "Adaptive",
+ "Cytokines"),
+ lty = 1, lwd = 2,
+ col=c("red","blue","green"), cex = 2)
> ##
> ##create these empty vectors so
> #that the results can be stored later
> ##
> ##vector for duration of infection

48

> durationofinfectionvec = NULL
> ##vector for measures of pathology
> Vmaxvec = NULL
> ##vector for total transmission
> total_Vvec = NULL
> total_lnVvec = NULL
> ##vector for total immunity
> Xmaxvec= NULL
> total_Xvec = NULL
> ##total cytokine amount generated
> Cmaxvec = NULL
> total_Cvec = NULL
> haltingTransitionvec = NULL
> numdeathvec = NULL
> V_simvec = NULL
> X_simvec = NULL
> t_simvec = NULL
> ##
> #integrating function
> ##
> Tfunction <- function(x, y)
+ ##
+ {
+ #use the sum function to add the numbers
+ #diff function finds the
+ ##difference between the times
+ #rollmean finds the average
+ ##between the two numbers in y
+ #this method leaves out one number
+ ##(the last number in the list)
+ #so it underestimates transmission
+ sum(diff(x)*rollmean(y,2))
+ }
> ###
> #simulation function
> ###
> Simulation <- function(initialconditions,
+ params)

49

+ {
+ solution.of.ode = lsodar(ODE_Ebola,
+ y=initialconditions,
+ times=time.points,
+ parms = params)
+ soln = as.data.frame(solution.of.ode)
+ C = (params["p"]*soln$X*soln$V)/
+ ((params["phi_c"]+soln$V))-params["d_c"]
+ soln = cbind(soln,C)
+ y = soln
+ return(y)
+ }
> ###
> #calculation function
> ###
> Calculation <- function(x)
+ {
+ ###storing data#####
+ V_sim = x$V
+ X_sim = x$X
+ t_sim = x$time
+
+ #####Calculations######
+ durationofinfection = max(x$time)
+
+ #####Pathology######
+ #max parasite density as a
+ #measure of pathology
+ ##we are measuring total
+ #pathology and max parasitemia
+ ##find the maximum of the
+ #total pathogen and store in vector
+ Vmax = max(x$V)
+ ##Store the value in a vector
+ total_V = Tfunction(xt,xV)
+
+ temp = log(x$V)
+ temp[!is.finite(temp)] <- 0

50

+ #t_list = x[which(x$V!=0),"t"]
+ t_list = x$t
+
+ if(all.equal(length(temp),0)==TRUE)
+ {
+ total_lnV = 0
+ }
+ else
+ {
+ total_lnV = Tfunction(t_list,temp)
+
+ }
+
+ ##Total Immunity Generated
+ #integral of immune density
+ ##for duration of infection
+ #maximizing immunity is
+ ##desired in antibiotic treatment
+ #might increase likelihood
+ ##of generating memory
+ #we calculate the max
+ #and total immunity generated
+ Xmax = max(x$X)
+ #integrate the curve and store the value
+ total_X = Tfunction(xt,xX)
+
+ ##total cytokine production
+ #also taking the max amount of cytokines
+ #and total cytokine production
+ Cmax = max(x$C)
+ total_C = Tfunction(xt,xC)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,

51

+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ V_sim = V_sim, X_sim = X_sim,
+ t_sim = t_sim)
+ }
> ##
> a = Simulation(initial.conditions,
+ parameters)
> b = Calculation(a)
> #averaging function
> ##
> Averaging <- function(initialconditions,
+ params,N)
+ {
+ numdeath = 0
+ for(i in 1:N)
+ {
+ a = Simulation(initialconditions,params)
+ b = Calculation(a)
+ durationofinfectionvec[i] = b$durationofinfection
+ Vmaxvec[i] = b$Vmax
+ total_Vvec[i] = b$total_V
+ total_lnVvec[i] = b$total_lnV
+ Xmaxvec[i] = b$Xmax
+ total_Xvec[i] = b$total_X
+ Cmaxvec[i] = b$Cmax
+ total_Cvec[i] = b$total_C
+ haltingTransitionvec[i] = b$haltingTransition
+ V_simmat[,i] = b$V_sim
+ X_simmat[,i] = b$X_sim
+ time_simmat[,i] = b$t_sim
+ }
+ durationofinfection = mean(durationofinfectionvec)
+ Vmax = mean(Vmaxvec)
+ total_V = mean(total_Vvec)
+ total_lnV = mean(total_lnVvec)
+ Xmax = mean(Xmaxvec)

52

+ total_X = mean(total_Xvec)
+ Cmax = mean(Cmaxvec)
+ total_C = mean(total_Cvec)
+ numdeath = sum(haltingTransitionvec)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ numdeath = numdeath,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> numsim = 1
> V_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> X_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> time_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> results = Averaging(initial.conditions,
+ parameters,
+ numsim)
> ##
> ##defining functions
> #hold all other parameters constant, vary one
> ##
> # averaging functions
> ##
> # r averaging function
> ##

53

> AveragingRange_s <- function(inputvec,
+ initialconditions,
+ params, N)
+ {
+ for(i in 1:length(inputvec))
+ {
+ params["s"] = inputvec[i]
+ c = Averaging(initialconditions,params,1)
+ durationofinfectionvec[i] = c$durationofinfection
+ Vmaxvec[i] = c$Vmax
+ total_Vvec[i] = c$total_V
+ total_lnVvec[i] = c$total_lnV
+ Xmaxvec[i] = c$Xmax
+ total_Xvec[i] = c$total_X
+ Cmaxvec[i] = c$Cmax
+ total_Cvec[i] = c$total_C
+ numdeathvec[i] = c$numdeath
+ V_simmat[,i] = c$V_simmat[,1]
+ colnames(V_simmat) <- c(inputvec)
+ X_simmat[,i] = c$X_simmat[,1]
+ colnames(X_simmat) <- c(inputvec)
+ time_simmat[,i] = c$time_simmat[,1]
+ }
+ y = list(
+ durationofinfectionvec = durationofinfectionvec,
+ Vmaxvec = Vmaxvec,
+ total_Vvec = total_Vvec,
+ total_lnVvec = total_lnVvec,
+ Xmaxvec = Xmaxvec,
+ total_Xvec = total_Xvec,
+ Cmaxvec = Cmaxvec,
+ total_Cvec = total_Cvec,
+ numdeathvec = numdeathvec,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }

54

> ##
> smean = 1
> s_dist = runif(150,0.9,1.1)
> quartz()
> par(mfcol=c(2,2))
> #hist(s_dist,prob=TRUE,
> #main = paste(""), xlab = "s", cex = 2)
> #hist(svec,prob=TRUE)
>
> #define the matrices before you
> #begin the multiple simulation as the size
> #is completely dependent on the time points
> #and number of values in the input vector
> V_simmat = matrix(nrow = length(time.points),
+ ncol = length(s_dist))
> X_simmat = matrix(nrow = length(time.points),
+ ncol = length(s_dist))
> time_simmat = matrix(nrow = length(time.points),
+ ncol = length(s_dist))
> #leave it at 1 simulation for now
> #numsim actually tells you the number of times
> #to run the simulation at the same values
> #held more use for stochastic simulations in
> #finding the averaging simulation values
> numsim = 1
> #solve our function for the sample data we have used
> results_s = AveragingRange_s(s_dist,
+ initial.conditions,
+ parameters,numsim)
> #plot multisimulation of V
> for(i in 1:ncol(results_s$V_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_s$V_simmat[,i])
+ ~ results_s$time_simmat[,i],
+ type = "l", col = "red", lty = i,
+ lwd = 0.2, ylab = "log V", xlab = "t",

55

+ ylim = c(0,10), cex.axis = 1.5,
+ cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_s$V_simmat[,i])
+ ~ results_s$time_simmat[,i],
+ col = "red", lty = i, lwd = 0.2,
+ ylab = "Log V", xlab = "t",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot multsimulation of X
> for(i in 1:ncol(results_s$X_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_s$X_simmat[,i])
+ ~ results_s$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.2,
+ xlab = "t", ylab = "log X",
+ ylim = c(0,5),
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_s$X_simmat[,i])
+ ~ results_s$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.2,
+ xlab = "t", ylab = "log X",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot how our values of interest
> ##change with changing r
> #sort command orders the

56

> ##values in ascending order
> #so that they can be plotted as lines
> plot(log10(sort(results_s$Vmax,
+ decreasing = TRUE))
+ ~ sort(s_dist),
+ type = "l",col = "red", lty = 1,
+ xlab = "s", ylab = "log Number",
+ ylim = c(0,max(log10(results_s$Vmax))),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(log10(sort(results_s$Xmax)) ~ sort(s_dist),
+ type = "l", col = "blue", lty = 1,
+ cex.axis = 1.5, cex.lab = 1.5)
> #add a legend
> legend("bottomleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)
> #mean = a/(a+b) for beta distribution
> #variance = a*b/((a+b)^2(a+b+1))
>
> #as a increases, the variance of the
> #distribution decreases
> s_unif = runif(1e3, min = smean, max = smean)
> #for a uniform distribution
> #the mean is the median (max - min)/2
> #for a uniform distribution
> #the variance is 1/12(xmax -xmin) or 1/12(range)
> s_varvec = NULL
> s_meanvec = NULL
> s_Vmax_varvec = NULL
> s_Vmax_meanvec = NULL
> s_totalV_varvec = NULL
> s_Xmax_varvec = NULL
> s_Xmax_meanvec = NULL
> rangevec = seq(0,0.5,0.1)
> for(i in 1:length(rangevec))
+ {
+ svec = runif(150, min = (smean-rangevec[i]),
+ max = (smean+rangevec[i]))

57

+
+ #define the matrices before you
+ #begin the multiple simulation as the size
+ #is completely dependent on the time points
+ #and number of values in the input vector
+ V_simmat = matrix(nrow = length(time.points),
+ ncol = length(svec))
+ X_simmat = matrix(nrow = length(time.points),
+ ncol = length(svec))
+ time_simmat = matrix(nrow = length(time.points),
+ ncol = length(svec))
+
+ s_varvec[i] = var(svec)
+ s_meanvec[i] = mean(svec)
+
+ results2_s = AveragingRange_s(svec,
+ initial.conditions,
+ parameters,
+ numsim)
+
+ s_Vmax_varvec[i] = var(log10(results2_s$Vmax))
+ s_Vmax_meanvec[i] = mean(log10(results2_s$Vmax))
+ s_totalV_varvec[i] = var(results2_s$total_V)
+ s_Xmax_varvec[i] = var(log10(results2_s$Xmax))
+ s_Xmax_meanvec[i] = mean(log10(results2_s$Xmax))
+ }
> s_cvvec = sqrt(s_varvec)/s_meanvec
> s_Vmax_cvvec = sqrt(s_Vmax_varvec)/s_Vmax_meanvec
> s_Xmax_cvvec = sqrt(s_Xmax_varvec)/s_Xmax_meanvec
> plot(s_Vmax_cvvec ~ s_cvvec,
+ type = "b", col = "red",
+ lty = 1, xlab = "Cv <s>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(s_Vmax_cvvec)),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(s_Xmax_cvvec ~ s_cvvec,
+ type = "b", col = "blue",
+ lty = 1, xlab = "Cv <s>",

58

+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(s_Xmax_cvvec)),
+ cex.axis = 1.5, cex.lab = 1.5)
> legend("topleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)

7.1.3 Variation in �

> require(deSolve)
> require(rootSolve)
> require(zoo)
> require(cacheSweave)
> #setwd("/Volumes/HDD/Dropbox/
> #Antia-Jonathan/WorkInProgress/current/Ebola")
> setCacheDir("Cache")
> #set.seed()
>
> ODE_Ebola <- function(t, y, parms)
+ {
+ with(as.list(c(y,parms)),
+ # allows the parameter file
+ #parms to be as a list
+ { # and the state variables to be
+ #the same as chosen
+ #in the init conditions
+
+ dV = r*V - k*V*X
+ dX = s*X*V/(phi+V)
+
+ dY=c(dV,dX)
+ return(list(dY)) #
+ })
+ }
> ## define initial conditions
> initial.conditions = c(
+ V = 1, # Virus
+ X = 1 # Adaptive immunity

59

+)
> ## define parameters
> parameters = c(
+ r = 2, # viral growth rate
+ s = 1, # growth of adaptive immunity
+ phi = 1e3, # parasite density at
+ #which immunity responds
+ k = 1e-3, # killing of virus by immunity
+ p = 1e3, # cytokine production rate
+ phi_c = 1e3, # cytokine production
+ #begins when virus reaches this value
+ d_c = 72 # cytokine decay
+)
> maxtime=30
> ntimepoints=200
> time.points = seq(0, maxtime,
+ maxtime/ntimepoints)
> rootfun <- function(t, y, parms) return(y[1]-1)
> solution.of.ode = lsodar(ODE_Ebola,
+ y=initial.conditions,
+ times=time.points,
+ parms = parameters)
> soln = as.data.frame(solution.of.ode)
> C = (parameters["p"]*soln$X*soln$V)/
+ (parameters["d_c"]*(parameters["phi_c"]+soln$V))
> soln = cbind(soln,C)
> par(mfcol=c(1,2))
> ymax=max(soln)
> ymin=min(soln)
> plot(soln$V ~ soln$time,col="red",
+ type="l",ylim=c(0,ymax),
+ ylab="number",xlab="time (days)")
> lines(soln$X ~ soln$time,
+ col = 'blue', type = 'l')
> lines(soln$C ~ soln$time,
+ col = 'green', type = 'l')
> plot(log10(soln$V) ~ soln$time,
+ col="red", type="l",

60

+ ylim=c(1,log10(ymax)),
+ ylab="log number",
+ xlab="time (days)")
> lines(log10(soln$X) ~ soln$time,
+ col = 'blue', type = 'l')
> lines(log10(soln$C) ~ soln$time,
+ col = 'green', type = 'l')
> legend("topright", c("Virus", "Adaptive",
+ "Cytokines"),
+ lty = 1, lwd = 2,
+ col=c("red","blue","green"),
+ cex = 2)
> ###
> ##create these empty vectors
> #so that the results can be stored later
> ###
> ##vector for duration of infection
> durationofinfectionvec = NULL
> ##vector for measures of pathology
> Vmaxvec = NULL
> ##vector for total transmission
> total_Vvec = NULL
> total_lnVvec = NULL
> ##vector for total immunity
> Xmaxvec= NULL
> total_Xvec = NULL
> ##total cytokine amount generated
> Cmaxvec = NULL
> total_Cvec = NULL
> haltingTransitionvec = NULL
> numdeathvec = NULL
> V_simvec = NULL
> X_simvec = NULL
> t_simvec = NULL
> ###
> #integrating function
> ###
> Tfunction <- function(x, y)

61

+ #######################################
+ {
+ #use the sum function to add the numbers
+ #diff function finds the
+ ##difference between the times
+ #rollmean finds the average
+ ##between the two numbers in y
+ #this method leaves out one number
+ ##(the last number in the list)
+ #so it underestimates transmission
+ sum(diff(x)*rollmean(y,2))
+ }
> ###
> #simulation function
> ###
> Simulation <- function(initialconditions,
+ params)
+ {
+ solution.of.ode = lsodar(ODE_Ebola,
+ y=initialconditions,
+ times=time.points,
+ parms = params)
+ soln = as.data.frame(solution.of.ode)
+ C = (params["p"]*soln$X*soln$V)/
+ ((params["phi_c"]+soln$V))-params["d_c"]
+ soln = cbind(soln,C)
+ y = soln
+ return(y)
+ }
> ##
> #calculation function
> ##
> Calculation <- function(x)
+ {
+ ###storing data#####
+ V_sim = x$V
+ X_sim = x$X
+ t_sim = x$time

62

+
+ #####Calculations######
+ durationofinfection = max(x$time)
+
+ #####Pathology######
+ #max parasite density as a
+ ##measure of pathology
+ ##we are measuring total pathology
+ ##and max parasitemia
+ ##find the maximum of the
+ ##total pathogen and store in vector
+ Vmax = max(x$V)
+ ##Store the value in a vector
+ total_V = Tfunction(xt,xV)
+
+ temp = log(x$V)
+ temp[!is.finite(temp)] <- 0
+ #t_list = x[which(x$V!=0),"t"]
+ t_list = x$t
+
+ if(all.equal(length(temp),0)==TRUE)
+ {
+ total_lnV = 0
+ }
+ else
+ {
+ total_lnV = Tfunction(t_list,temp)
+
+ }
+
+ ##Total Immunity Generated
+ #integral of immune density
+ ##for duration of infection
+ #maximizing immunity is
+ ##desired in antibiotic treatment
+ #might increase likelihood
+ ##of generating memory
+ #we calculate the max

63

+ ##and total immunity generated
+ Xmax = max(x$X)
+ #integrate the curve and store the value
+ total_X = Tfunction(xt,xX)
+
+ ##total cytokine production
+ #also taking the max amount of
+ ##cytokines and total cytokine production
+ Cmax = max(x$C)
+ total_C = Tfunction(xt,xC)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ V_sim = V_sim, X_sim = X_sim,
+ t_sim = t_sim)
+ }
> ##
> a = Simulation(initial.conditions,parameters)
> b = Calculation(a)
> #averaging function
> ##
> Averaging <- function(initialconditions,
+ params,N)
+ {
+ numdeath = 0
+ for(i in 1:N)
+ {
+ a = Simulation(initialconditions,params)
+ b = Calculation(a)
+ durationofinfectionvec[i] =
+ b$durationofinfection

64

+ Vmaxvec[i] = b$Vmax
+ total_Vvec[i] = b$total_V
+ total_lnVvec[i] = b$total_lnV
+ Xmaxvec[i] = b$Xmax
+ total_Xvec[i] = b$total_X
+ Cmaxvec[i] = b$Cmax
+ total_Cvec[i] = b$total_C
+ haltingTransitionvec[i] =
+ b$haltingTransition
+ V_simmat[,i] = b$V_sim
+ X_simmat[,i] = b$X_sim
+ time_simmat[,i] = b$t_sim
+ }
+ durationofinfection =
+ mean(durationofinfectionvec)
+ Vmax = mean(Vmaxvec)
+ total_V = mean(total_Vvec)
+ total_lnV = mean(total_lnVvec)
+ Xmax = mean(Xmaxvec)
+ total_X = mean(total_Xvec)
+ Cmax = mean(Cmaxvec)
+ total_C = mean(total_Cvec)
+ numdeath = sum(haltingTransitionvec)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ numdeath = numdeath,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)

65

+ }
> numsim = 1
> V_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> X_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> time_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> results = Averaging(initial.conditions,
+ parameters,numsim)
> ##
> ##defining functions
> #hold all other parameters constant, vary one
> ###
> # averaging functions
> ###
> # r averaging function
> ###
> AveragingRange_phi <- function(inputvec,
+ initialconditions,
+ params, N)
+ {
+ for(i in 1:length(inputvec))
+ {
+ params["phi"] = inputvec[i]
+ c = Averaging(initialconditions,params,1)
+ durationofinfectionvec[i] =
+ c$durationofinfection
+ Vmaxvec[i] = c$Vmax
+ total_Vvec[i] = c$total_V
+ total_lnVvec[i] = c$total_lnV
+ Xmaxvec[i] = c$Xmax
+ total_Xvec[i] = c$total_X
+ Cmaxvec[i] = c$Cmax
+ total_Cvec[i] = c$total_C
+ numdeathvec[i] = c$numdeath
+ V_simmat[,i] = c$V_simmat[,1]
+ colnames(V_simmat) <- c(inputvec)

66

+ X_simmat[,i] = c$X_simmat[,1]
+ colnames(X_simmat) <- c(inputvec)
+ time_simmat[,i] = c$time_simmat[,1]
+ }
+ y = list(
+ durationofinfectionvec = durationofinfectionvec,
+ Vmaxvec = Vmaxvec,
+ total_Vvec = total_Vvec,
+ total_lnVvec = total_lnVvec,
+ Xmaxvec = Xmaxvec,
+ total_Xvec = total_Xvec,
+ Cmaxvec = Cmaxvec,
+ total_Cvec = total_Cvec,
+ numdeathvec = numdeathvec,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> ###
> phimean = 3
> phi_dist = runif(1e3,2,4)
> phivec = sample(phi_dist,150)
> quartz()
> par(mfcol=c(2,2))
> #hist(phi_dist,prob=TRUE,
> #main = paste(""), xlab = "phi", cex = 2)
> #hist(phivec,prob=TRUE)
>
> #define the matrices before you begin
> #the multiple simulation as the size
> #is completely dependent on the time
> #points and number of values
> #in the input vector
> V_simmat = matrix(nrow = length(time.points),
+ ncol = length(phivec))
> X_simmat = matrix(nrow = length(time.points),
+ ncol = length(phivec))

67

> time_simmat = matrix(nrow = length(time.points),
+ ncol = length(phivec))
> #leave it at 1 simulation for snow
> #numsim actually tells you the number of times
> #to run the simulation at the same values
> #held more use for stochastic simulations
> #in finding the averaging simulation values
> numsim = 1
> #solve our function for the
> #sample data we have used
> results_phi = AveragingRange_phi(10^(phivec)
+ ,initial.conditions
+ ,parameters
+ ,numsim)
> #plot multisimulation of V
> for(i in 1:ncol(results_phi$V_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_phi$V_simmat[,i])
+ ~ results_phi$time_simmat[,i],
+ type = "l", col = "red",
+ lty = i, lwd = 0.1,
+ ylab = "log V", xlab = "t",
+ ylim = c(0,10),
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_phi$V_simmat[,i])
+ ~ results_phi$time_simmat[,i],
+ col = "red", lty = i, lwd = 0.1,
+ ylab = "Log V", xlab = "t",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot multsimulation of X
> for(i in 1:ncol(results_phi$X_simmat))

68

+ {
+ if(i == 1)
+ {
+ plot(log10(results_phi$X_simmat[,i])
+ ~ results_phi$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1, xlab = "t",
+ ylab = "log X", ylim = c(0,5),
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_phi$X_simmat[,i])
+ ~ results_phi$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1, xlab = "t",
+ ylab = "log X",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot how our values of interest
> #change with changing r
> #sort command orders
> #the values in ascending order
> #so that they can be plotted as lines
> plot(log10(sort(results_phi$Vmax))
+ ~ sort(phivec),
+ type = "l",col = "red",
+ lty = 1, xlab = "log phi",
+ ylab = "log Number",
+ ylim = c(0,
+ max(log10(results_phi$Vmax))),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(log10(sort(results_phi$Xmax,
+ decreasing = TRUE))
+ ~ sort(phivec),
+ type = "l", col = "blue",
+ lty = 1,

69

+ cex.axis = 1.5, cex.lab = 1.5)
> #add a legend
> legend("bottomleft", c("Vmax", "Xmax"),
+ lty = 1,
+ lwd = 1,
+ col=c("red","blue"), cex = 1.2)
> #mean = a/(a+b) for beta distribution
> #variance = a*b/((a+b)^2(a+b+1))
>
> #as a increases, the variance of
> #the distribution decreases
> phi_unif = runif(1e3, min = phimean,
+ max = phimean)
> #for a uniform distribution
> #the mean is the median (max - min)/2
> #for a uniform distribution
> #the variance is 1/12(xmax -xmin) or 1/12(range)
> phi_varvec = NULL
> phi_meanvec = NULL
> phi_Vmax_varvec = NULL
> phi_Vmax_meanvec = NULL
> phi_totalV_varvec = NULL
> phi_Xmax_varvec = NULL
> phi_Xmax_meanvec = NULL
> rangevec = seq(0,1,0.1)
> for(i in 1:length(rangevec))
+ {
+ phivec = runif(150, min = (phimean-rangevec[i]),
+ max = (phimean+rangevec[i]))
+
+ #define the matrices before you begin
+ #the multiple simulation as the size
+ #is completely dependent on the time points
+ #and number of values in the input vector
+ V_simmat = matrix(nrow = length(time.points),
+ ncol = length(phivec))
+ X_simmat = matrix(nrow = length(time.points),
+ ncol = length(phivec))

70

+ time_simmat = matrix(nrow = length(time.points),
+ ncol = length(phivec))
+
+ phi_varvec[i] = var(phivec)
+ phi_meanvec[i] = mean(phivec)
+
+ results2_phi = AveragingRange_phi(10^(phivec)
+ , initial.conditions
+ , parameters
+ , numsim)
+
+ phi_Vmax_varvec[i] = var(log10(results2_phi$Vmax))
+ phi_Vmax_meanvec[i] = mean(log10(results2_phi$Vmax))
+ phi_totalV_varvec[i] = var(results2_phi$total_V)
+ phi_Xmax_varvec[i] = var(log10(results2_phi$Xmax))
+ phi_Xmax_meanvec[i] = mean(log10(results2_phi$Xmax))
+ }
> phi_Vmax_cvvec = sqrt(phi_Vmax_varvec)/phi_Vmax_meanvec
> phi_cvvec = sqrt(phi_varvec)/phi_meanvec
> phi_Xmax_cvvec = sqrt(phi_Xmax_varvec)/phi_Xmax_meanvec
> plot(phi_Vmax_cvvec ~ phi_cvvec, type = "b",
+ col = "red", lty = 1, xlab = "Cv <log phi>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim= c(0,max((phi_Vmax_cvvec))),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(phi_Xmax_cvvec ~ phi_cvvec,
+ type = "b", col = "blue",
+ lty = 1, xlab = "Cv <log phi>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max((phi_Xmax_cvvec))),
+ cex.axis = 1.5, cex.lab = 1.5)
> legend("topleft", c("Vmax", "Xmax"),
+ lty = 1,lwd = 1,
+ col=c("red","blue"), cex = 1.2)

71

7.1.4 Variation in k

> require(deSolve)
> require(rootSolve)
> require(zoo)
> require(cacheSweave)
> #setwd("/Volumes/HDD/Dropbox/
> #Antia-Jonathan/WorkInProgress/current/Ebola")
> setCacheDir("Cache")
> #set.seed()
>
> ODE_Ebola <- function(t, y, parms)
+ {
+ with(as.list(c(y,parms)),
+ # allows the parameter
+ #file parms to be as a list
+ { # and the state variables to be the
+ #same as chosen in the init conditions
+
+ dV = r*V - k*V*X
+ dX = s*X*V/(phi+V)
+
+ dY=c(dV,dX)
+ return(list(dY)) #
+ })
+ }
> ## define initial conditions
> initial.conditions = c(
+ V = 1, # Virus
+ X = 1 # Adaptive immunity
+)
> ## define parameters
> parameters = c(
+ r = 2, # viral growth rate
+ s = 1, # growth of adaptive immunity
+ phi = 1e3, # parasite density at
+ #which immunity responds
+ k = 1e-3, # killing of virus by immunity

72

+ p = 1e3, # cytokine production rate
+ phi_c = 1e3, # cytokine production
+ #begins when virus reaches this value
+ d_c = 72 # cytokine decay
+)
> maxtime=30
> ntimepoints=200
> time.points = seq(0, maxtime,
+ maxtime/ntimepoints)
> rootfun <- function(t, y, parms) return(y[1]-1)
> solution.of.ode = lsodar(ODE_Ebola,
+ y=initial.conditions,
+ times=time.points,
+ parms = parameters)
> soln = as.data.frame(solution.of.ode)
> C = (parameters["p"]*soln$X*soln$V)/
+ (parameters["d_c"]*(parameters["phi_c"]+soln$V))
> soln = cbind(soln,C)
> par(mfcol=c(1,2))
> ymax=max(soln)
> ymin=min(soln)
> plot(soln$V ~ soln$time,col="red",
+ type="l",ylim=c(0,ymax),
+ ylab="number",xlab="time (days)")
> lines(soln$X ~ soln$time,
+ col = 'blue', type = 'l')
> #lines(soln$C ~ soln$time,
> #col = 'green', type = 'l')
>
> plot(log10(soln$V) ~ soln$time,col="red",
+ type="l",ylim=c(1,log10(ymax)),
+ ylab="log number",xlab="time (days)")
> lines(log10(soln$X) ~ soln$time,
+ col = 'blue', type = 'l')
> #lines(log10(soln$C) ~ soln$time,
> #col = 'green', type = 'l')
>
> legend("topright", c("Virus", "Adaptive"),

73

+ lty = 1, lwd = 2,
+ col=c("red","blue"), cex = 2)
> ###
> ##create these empty vectors
> #so that the results can be stored later
> ###
> ##vector for duration of infection
> durationofinfectionvec = NULL
> ##vector for measures of pathology
> Vmaxvec = NULL
> ##vector for total transmission
> total_Vvec = NULL
> total_lnVvec = NULL
> ##vector for total immunity
> Xmaxvec= NULL
> total_Xvec = NULL
> ##total cytokine amount generated
> Cmaxvec = NULL
> total_Cvec = NULL
> haltingTransitionvec = NULL
> numdeathvec = NULL
> V_simvec = NULL
> X_simvec = NULL
> t_simvec = NULL
> ###
> #integrating function
> ###
> Tfunction <- function(x, y)
+ ###
+ {
+ #use the sum function to add the numbers
+ #diff function finds the difference
+ #between the times
+ #rollmean finds the average
+ #between the two numbers in y
+ #this method leaves out one number
+ #(the last number in the list)
+ #so it underestimates transmission

74

+ sum(diff(x)*rollmean(y,2))
+ }
> ##
> #simulation function
> ##
> Simulation <- function(initialconditions
+ ,params)
+ {
+ solution.of.ode = lsodar(ODE_Ebola,
+ y=initialconditions,
+ times=time.points,
+ parms = params)
+ soln = as.data.frame(solution.of.ode)
+ C = (params["p"]*soln$X*soln$V)/
+ ((params["phi_c"]+soln$V)) - params["d_c"]
+ soln = cbind(soln,C)
+ y = soln
+ return(y)
+ }
> ##
> #calculation function
> ##
> Calculation <- function(x)
+ {
+ ###storing data#####
+ V_sim = x$V
+ X_sim = x$X
+ t_sim = x$time
+
+ #####Calculations######
+ durationofinfection = max(x$time)
+
+ #####Pathology######
+ #max parasite density
+ #as a measure of pathology
+ ##we are measuring total pathology
+ #and max parasitemia
+ ##find the maximum of the total pathogen

75

+ #and store in vector
+ Vmax = max(x$V)
+ ##Store the value in a vector
+ total_V = Tfunction(xt,xV)
+
+ temp = log(x$V)
+ temp[!is.finite(temp)] <- 0
+ #t_list = x[which(x$V!=0),"t"]
+ t_list = x$t
+
+ if(all.equal(length(temp),0)==TRUE)
+ {
+ total_lnV = 0
+ }
+ else
+ {
+ total_lnV = Tfunction(t_list,temp)
+
+ }
+
+ ##Total Immunity Generated
+ #integral of immune density
+ #for duration of infection
+ #maximizing immunity is desired
+ #in antibiotic treatment
+ #might increase likelihood of
+ #generating memory
+ #we calculate the max and
+ #total immunity generated
+ Xmax = max(x$X)
+ #integrate the curve
+ #and store the value
+ total_X = Tfunction(xt,xX)
+
+ ##total cytokine production
+ #also taking the max amount of cytokines
+ #and total cytokine production
+ Cmax = max(x$C)

76

+ total_C = Tfunction(xt,xC)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ V_sim = V_sim, X_sim = X_sim,
+ t_sim = t_sim)
+ }
> ###
> a = Simulation(initial.conditions,parameters)
> b = Calculation(a)
> #averaging function
> ###
> Averaging <- function(initialconditions
+ ,params,N)
+ {
+ numdeath = 0
+ for(i in 1:N)
+ {
+ a = Simulation(initialconditions,params)
+ b = Calculation(a)
+ durationofinfectionvec[i] =
+ b$durationofinfection
+ Vmaxvec[i] = b$Vmax
+ total_Vvec[i] = b$total_V
+ total_lnVvec[i] = b$total_lnV
+ Xmaxvec[i] = b$Xmax
+ total_Xvec[i] = b$total_X
+ Cmaxvec[i] = b$Cmax
+ total_Cvec[i] = b$total_C
+ haltingTransitionvec[i] =
+ b$haltingTransition

77

+ V_simmat[,i] = b$V_sim
+ X_simmat[,i] = b$X_sim
+ time_simmat[,i] = b$t_sim
+ }
+ durationofinfection =
+ mean(durationofinfectionvec)
+ Vmax = mean(Vmaxvec)
+ total_V = mean(total_Vvec)
+ total_lnV = mean(total_lnVvec)
+ Xmax = mean(Xmaxvec)
+ total_X = mean(total_Xvec)
+ Cmax = mean(Cmaxvec)
+ total_C = mean(total_Cvec)
+ numdeath = sum(haltingTransitionvec)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ numdeath = numdeath,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> numsim = 1
> V_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> X_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> time_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> results = Averaging(initial.conditions,parameters,

78

+ numsim)
> ##
> ##defining functions
> #hold all other parameters constant, vary one
> ##
> # averaging functions
> ##
> # r averaging function
> ##
> AveragingRange_k <- function(inputvec,
+ initialconditions,
+ params, N)
+ {
+ for(i in 1:length(inputvec))
+ {
+ params["k"] = inputvec[i]
+ c = Averaging(initialconditions,params,1)
+ durationofinfectionvec[i] = c$durationofinfection
+ Vmaxvec[i] = c$Vmax
+ total_Vvec[i] = c$total_V
+ total_lnVvec[i] = c$total_lnV
+ Xmaxvec[i] = c$Xmax
+ total_Xvec[i] = c$total_X
+ Cmaxvec[i] = c$Cmax
+ total_Cvec[i] = c$total_C
+ numdeathvec[i] = c$numdeath
+ V_simmat[,i] = c$V_simmat[,1]
+ colnames(V_simmat) <- c(inputvec)
+ X_simmat[,i] = c$X_simmat[,1]
+ colnames(X_simmat) <- c(inputvec)
+ time_simmat[,i] = c$time_simmat[,1]
+ }
+ y = list(
+ durationofinfectionvec = durationofinfectionvec,
+ Vmaxvec = Vmaxvec,
+ total_Vvec = total_Vvec,
+ total_lnVvec = total_lnVvec,
+ Xmaxvec = Xmaxvec,

79

+ total_Xvec = total_Xvec,
+ Cmaxvec = Cmaxvec,
+ total_Cvec = total_Cvec,
+ numdeathvec = numdeathvec,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> ##
> kmean = -3
> k_dist = runif(1e3,-4,-2)
> kvec = sample(k_dist, 150)
> quartz()
> par(mfcol=c(2,2))
> #hist(k_dist,prob=TRUE, main = paste(""),
> #xlab = "k", cex = 2)
> #hist(kvec,prob=TRUE)
>
> #define the matrices before you begin
> #the multiple simulation as the size
> #is completely dependent on the time points
> #and number of values in the input vector
> V_simmat = matrix(nrow = length(time.points),
+ ncol = length(kvec))
> X_simmat = matrix(nrow = length(time.points),
+ ncol = length(kvec))
> time_simmat = matrix(nrow = length(time.points),
+ ncol = length(kvec))
> #leave it at 1 simulation for snow
> #numsim actually tells you the number of times
> #to run the simulation at the same values
> #held more use for stochastic simulations
> #in finding the averaging simulation values
> numsim = 1
> #solve our function for the sample data we have used
> results_k = AveragingRange_k(10^(kvec)
+ ,initial.conditions

80

+ ,parameters
+ ,numsim)
> #plot multisimulation of V
> for(i in 1:ncol(results_k$V_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_k$V_simmat[,i])
+ ~ results_k$time_simmat[,i],
+ type = "l", col = "red",
+ lty = i, lwd = 0.1,
+ ylab = "log V", xlab = "t",
+ ylim = c(0,12),
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ else
+ {
+ lines(log10(results_k$V_simmat[,i])
+ ~ results_k$time_simmat[,i],
+ col = "red", lty = i, lwd = 0.1,
+ ylab = "Log V", xlab = "t",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot multsimulation of X
> for(i in 1:ncol(results_k$X_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_k$X_simmat[,i])
+ ~ results_k$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ ylim = c(0,6), cex.axis = 1.5,
+ cex.lab = 1.5)
+ }
+ else

81

+ {
+ lines(log10(results_k$X_simmat[,i])
+ ~ results_k$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ cex.axis = 1.5, cex.lab = 1.5)
+ }
+ }
> #plot how our values of interest change with changing r
> #sort command orders the values in ascending order
> #so that they can be plotted as lines
> plot(log10(sort(results_k$Vmax,
+ decreasing = TRUE))
+ ~ sort(kvec),
+ type = "l",col = "red", lty = 1,
+ xlab = "log k", ylab = "log Number",
+ ylim = c(0,max(log10(results_k$Vmax))),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(log10(sort(results_k$Xmax,
+ decreasing = TRUE))
+ ~ sort(kvec),
+ type = "l", col = "blue", lty = 1,
+ cex.axis = 1.5, cex.lab = 1.5)
> #add a legend
> legend("bottomleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)
> #mean = a/(a+b) for beta distribution
> #variance = a*b/((a+b)^2(a+b+1))
>
> #as a increases, the variance of
> #the distribution decreases
> k_unif = runif(1e3, min = kmean, max = kmean)
> #for a uniform distribution
> #the mean is the median (max - min)/2
> #for a uniform distribution
> #the variance is 1/12(xmax -xmin) or 1/12(range)

82

> k_varvec = NULL
> k_meanvec = NULL
> k_Vmax_varvec = NULL
> k_Vmax_meanvec = NULL
> k_totalV_varvec = NULL
> k_Xmax_varvec = NULL
> k_Xmax_meanvec = NULL
> rangevec = seq(0,1,0.1)
> for(i in 1:length(rangevec))
+ {
+ kvec = runif(150, min = (kmean-rangevec[i]),
+ max = (kmean+rangevec[i]))
+
+ #define the matrices before you begin
+ #the multiple simulation as the size
+ #is completely dependent on the time points
+ #and number of values in the input vector
+ V_simmat = matrix(nrow = length(time.points),
+ ncol = length(kvec))
+ X_simmat = matrix(nrow = length(time.points),
+ ncol = length(kvec))
+ time_simmat = matrix(nrow = length(time.points),
+ ncol = length(kvec))
+
+ k_varvec[i] = var(kvec)
+ k_meanvec[i] = mean(kvec)
+
+ results2_k = AveragingRange_k(10^(kvec)
+ , initial.conditions
+ , parameters
+ , numsim)
+
+ k_Vmax_varvec[i] = var(log10(results2_k$Vmax))
+ k_Vmax_meanvec[i] = mean(log10(results2_k$Vmax))
+ k_totalV_varvec[i] = var(results2_k$total_V)
+ k_Xmax_varvec[i] = var(log10(results2_k$Xmax))
+ k_Xmax_meanvec[i] = mean(log10(results2_k$Xmax))
+ }

83

> k_Vmax_cvvec = sqrt(k_Vmax_varvec)/k_Vmax_meanvec
> k_Xmax_cvvec = sqrt(k_Xmax_varvec)/k_Xmax_meanvec
> ##might need to use the absolute value
> #command to ensure positive results
> k_cvvec = sqrt(k_varvec)/abs(k_meanvec)
> plot(k_Vmax_cvvec ~ k_cvvec, type = "b",
+ col = "red", lty = 1,
+ xlab = "Cv <log k>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(k_Vmax_cvvec)),
+ cex.axis = 1.5, cex.lab = 1.5)
> lines(k_Xmax_cvvec ~ k_cvvec, type = "b",
+ col = "blue", lty = 1,
+ xlab = "Cv <log k>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(k_Xmax_cvvec)),
+ cex.axis = 1.5, cex.lab = 1.5)
> legend("topleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)

7.1.5 Variation in V(0)

> require(deSolve)
> require(rootSolve)
> require(zoo)
> require(cacheSweave)
> #setwd("/Volumes/HDD/Dropbox/
> #Antia-Jonathan/WorkInProgress/current/Ebola")
> setCacheDir("Cache")
> #set.seed()
>
> ODE_Ebola <- function(t, y, parms)
+ {
+ with(as.list(c(y,parms)),
+ # allows the parameter file parms
+ # to be as a list
+ { # and the state variables to be the same

84

+ #as chosen in the init conditions
+
+ dV = r*V - k*V*X
+ dX = s*X*V/(phi+V)
+
+ dY=c(dV,dX)
+ return(list(dY)) #
+ })
+ }
> ## define initial conditions
> initial.conditions = c(
+ V = 1, # Virus
+ X = 1 # Adaptive immunity
+)
> ## define parameters
> parameters = c(
+ r = 2, # viral growth rate
+ s = 1, # growth of adaptive immunity
+ phi = 1e3, # parasite density at
+ #which immunity responds
+ k = 1e-3, # killing of virus by immunity
+ p = 1e3, # cytokine production rate
+ phi_c = 1e3, # cytokine production begins
+ #when virus reaches this value
+ d_c = 72 # cytokine decay
+)
> maxtime=30
> ntimepoints=200
> time.points = seq(0, maxtime,
+ maxtime/ntimepoints)
> rootfun <- function(t, y, parms) return(y[1]-1)
> solution.of.ode = lsodar(ODE_Ebola,
+ y=initial.conditions,
+ times=time.points,
+ parms = parameters)
> soln = as.data.frame(solution.of.ode)
> C = (parameters["p"]*soln$X*soln$V)/
+ (parameters["d_c"]*(parameters["phi_c"]

85

+ +soln$V))
> soln = cbind(soln,C)
> par(mfcol=c(1,2))
> ymax=max(soln)
> ymin=min(soln)
> plot(soln$V ~ soln$time,col="red",
+ type="l",ylim=c(0,ymax),
+ ylab="number",xlab="time (days)")
> lines(soln$X ~ soln$time,
+ col = 'blue', type = 'l')
> lines(soln$C ~ soln$time,
+ col = 'green', type = 'l')
> plot(log10(soln$V) ~ soln$time,col="red",
+ type="l",ylim=c(1,log10(ymax)),
+ ylab="log number",xlab="time (days)")
> lines(log10(soln$X) ~ soln$time,
+ col = 'blue', type = 'l')
> lines(log10(soln$C) ~ soln$time,
+ col = 'green', type = 'l')
> legend("topright", c("Virus", "Adaptive",
+ "Cytokines"),
+ lty = 1, lwd = 2,
+ col=c("red","blue","green"), cex = 2)
> ###
> ##create these empty vectors so
> ##that the results can be stored later
> ###
> ##vector for duration of infection
> durationofinfectionvec = NULL
> ##vector for measures of pathology
> Vmaxvec = NULL
> ##vector for total transmission
> total_Vvec = NULL
> total_lnVvec = NULL
> ##vector for total immunity
> Xmaxvec= NULL
> total_Xvec = NULL
> ##total cytokine amount generated

86

> Cmaxvec = NULL
> total_Cvec = NULL
> haltingTransitionvec = NULL
> numdeathvec = NULL
> V_simvec = NULL
> X_simvec = NULL
> t_simvec = NULL
> ##
> #integrating function
> ###
> Tfunction <- function(x, y)
+ ###
+ {
+ #use the sum function to add the numbers
+ #diff function finds the
+ #difference between the times
+ #rollmean finds the average
+ #between the two numbers in y
+ #this method leaves out one number
+ #(the last number in the list)
+ #so it underestimates transmission
+ sum(diff(x)*rollmean(y,2))
+ }
> ###
> #simulation function
> ###
> Simulation <- function(initialconditions
+ ,params)
+ {
+ solution.of.ode = lsodar(ODE_Ebola,
+ y=initialconditions,
+ times=time.points,
+ parms = params)
+ soln = as.data.frame(solution.of.ode)
+ C = (params["p"]*soln$X*soln$V)/
+ ((params["phi_c"]+soln$V)) - params["d_c"]
+ soln = cbind(soln,C)
+ y = soln

87

+ return(y)
+ }
> ###
> #calculation function
> ###
> Calculation <- function(x)
+ {
+ ###storing data#####
+ V_sim = x$V
+ X_sim = x$X
+ t_sim = x$time
+
+ #####Calculations######
+ durationofinfection = max(x$time)
+
+ #####Pathology######
+ #max parasite density as
+ #a measure of pathology
+ ##we are measuring total pathology
+ #and max parasitemia
+ ##find the maximum of the
+ #total pathogen and store in vector
+ Vmax = max(x$V)
+ ##Store the value in a vector
+ total_V = Tfunction(xt,xV)
+
+ temp = log(x$V)
+ temp[!is.finite(temp)] <- 0
+ #t_list = x[which(x$V!=0),"t"]
+ t_list = x$t
+
+ if(all.equal(length(temp),0)==TRUE)
+ {
+ total_lnV = 0
+ }
+ else
+ {
+ total_lnV = Tfunction(t_list,temp)

88

+
+ }
+
+ ##Total Immunity Generated
+ #integral of immune density
+ #for duration of infection
+ #maximizing immunity is
+ #desired in antibiotic treatment
+ #might increase
+ #likelihood of generating memory
+ #we calculate the max
+ #and total immunity generated
+ Xmax = max(x$X)
+ #integrate the curve and store the value
+ total_X = Tfunction(xt,xX)
+
+ ##total cytokine production
+ #also taking the max amount of cytokines
+ #and total cytokine production
+ Cmax = max(x$C)
+ total_C = Tfunction(xt,xC)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ V_sim = V_sim, X_sim = X_sim,
+ t_sim = t_sim)
+ }
> ##
> a = Simulation(initial.conditions,
+ parameters)
> b = Calculation(a)

89

> #averaging function
> ##
> Averaging <- function(initialconditions,
+ params,N)
+ {
+ numdeath = 0
+ for(i in 1:N)
+ {
+ a = Simulation(initialconditions,params)
+ b = Calculation(a)
+ durationofinfectionvec[i] =
+ b$durationofinfection
+ Vmaxvec[i] = b$Vmax
+ total_Vvec[i] = b$total_V
+ total_lnVvec[i] = b$total_lnV
+ Xmaxvec[i] = b$Xmax
+ total_Xvec[i] = b$total_X
+ Cmaxvec[i] = b$Cmax
+ total_Cvec[i] = b$total_C
+ haltingTransitionvec[i] =
+ b$haltingTransition
+ V_simmat[,i] = b$V_sim
+ X_simmat[,i] = b$X_sim
+ time_simmat[,i] = b$t_sim
+ }
+ durationofinfection =
+ mean(durationofinfectionvec)
+ Vmax = mean(Vmaxvec)
+ total_V = mean(total_Vvec)
+ total_lnV = mean(total_lnVvec)
+ Xmax = mean(Xmaxvec)
+ total_X = mean(total_Xvec)
+ Cmax = mean(Cmaxvec)
+ total_C = mean(total_Cvec)
+ numdeath = sum(haltingTransitionvec)
+
+ y = list(
+ durationofinfection = durationofinfection,

90

+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ numdeath = numdeath,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> numsim = 1
> V_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> X_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> time_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> results = Averaging(initial.conditions,
+ parameters,numsim)
> ###
> ##defining functions
> #hold all other parameters constant, vary one
> ###
> # averaging functions
> ###
> # r averaging function
> ###
> AveragingRange_V0 <- function(inputvec,
+ initialconditions,
+ params, N)
+ {
+ for(i in 1:length(inputvec))
+ {
+ initialconditions["V"] = inputvec[i]
+ c = Averaging(initialconditions,params,1)

91

+ durationofinfectionvec[i] =
+ c$durationofinfection
+ Vmaxvec[i] = c$Vmax
+ total_Vvec[i] = c$total_V
+ total_lnVvec[i] = c$total_lnV
+ Xmaxvec[i] = c$Xmax
+ total_Xvec[i] = c$total_X
+ Cmaxvec[i] = c$Cmax
+ total_Cvec[i] = c$total_C
+ numdeathvec[i] = c$numdeath
+ V_simmat[,i] = c$V_simmat[,1]
+ colnames(V_simmat) <- c(inputvec)
+ X_simmat[,i] = c$X_simmat[,1]
+ colnames(X_simmat) <- c(inputvec)
+ time_simmat[,i] = c$time_simmat[,1]
+ }
+ y = list(
+ durationofinfectionvec = durationofinfectionvec,
+ Vmaxvec = Vmaxvec,
+ total_Vvec = total_Vvec,
+ total_lnVvec = total_lnVvec,
+ Xmaxvec = Xmaxvec,
+ total_Xvec = total_Xvec,
+ Cmaxvec = Cmaxvec,
+ total_Cvec = total_Cvec,
+ numdeathvec = numdeathvec,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> ###
> V0mean = 3
> V0_dist = runif(1e3,0,6)
> V0vec = sample(V0_dist, 150)
> quartz()
> par(mfcol=c(2,2))
> #hist(V0_dist,prob=TRUE, main = paste(""),

92

> #xlab = "V(0)", cex = 2)
> #hist(V0vec,prob=TRUE)
>
> #define the matrices before you begin
> #the multiple simulation as the size
> #is completely dependent on the time points
> #and number of values in the input vector
> V_simmat = matrix(nrow = length(time.points),
+ ncol = length(V0vec))
> X_simmat = matrix(nrow = length(time.points),
+ ncol = length(V0vec))
> time_simmat = matrix(nrow = length(time.points),
+ ncol = length(V0vec))
> #leave it at 1 simulation for snow
> #numsim actually tells you the number of times
> #to run the simulation at the same values
> #held more use for stochastic simulations
> #in finding the averaging simulation values
> numsim = 1
> #solve our function for the sample data we have used
> results_V0 = AveragingRange_V0(10^(V0vec)
+ ,initial.conditions
+ ,parameters
+ ,numsim)
> #plot multisimulation of V
> for(i in 1:ncol(results_V0$V_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_V0$V_simmat[,i])
+ ~ results_V0$time_simmat[,i],
+ type = "l", col = "red",
+ lty = i, lwd = 0.1,
+ ylab = "log V", xlab = "t",
+ ylim = c(0,12),
+ cex.lab = 1.5, cex.axis = 1.5)
+ }
+ else

93

+ {
+ lines(log10(results_V0$V_simmat[,i])
+ ~ results_V0$time_simmat[,i],
+ col = "red", lty = i, lwd = 0.1,
+ ylab = "Log V", xlab = "t",
+ cex.lab = 1.5, cex.axis = 1.5)
+ }
+ }
> #plot multsimulation of X
> for(i in 1:ncol(results_V0$X_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_V0$X_simmat[,i])
+ ~ results_V0$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ ylim = c(0,5),
+ cex.lab = 1.5,
+ cex.axis = 1.5)
+ }
+ else
+ {
+ lines(log10(results_V0$X_simmat[,i])
+ ~ results_V0$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ cex.lab = 1.5, cex.axis = 1.5)
+ }
+ }
> #plot how our values of interest change with changing r
> #sort command orders the values in ascending order
> #so that they can be plotted as lines
> plot(log10(sort(results_V0$Vmax))
+ ~ sort(V0vec),
+ type = "l",col = "red", lty = 1,

94

+ xlab = "log V(0)", ylab = "log Number",
+ ylim = c(0,max(log10(results_V0$Vmax))),
+ cex.lab = 1.5, cex.axis = 1.5)
> lines(log10(sort(results_V0$Xmax)) ~ sort(V0vec),
+ type = "l", col = "blue", lty = 1,
+ cex.lab = 1.5, cex.axis = 1.5)
> #add a legend
> legend("bottomleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)
> #mean = a/(a+b) for beta distribution
> #variance = a*b/((a+b)^2(a+b+1))
>
> #as a increases, the variance of
> #the distribution decreases
> V0_unif = runif(1e3, min = V0mean, max = V0mean)
> #for a uniform distribution
> #the mean is the median (max - min)/2
> #for a uniform distribution
> #the variance is 1/12(xmax -xmin) or 1/12(range)
> V0_varvec = NULL
> V0_meanvec = NULL
> V0_Vmax_varvec = NULL
> V0_Vmax_meanvec = NULL
> V0_totalV_varvec = NULL
> V0_Xmax_varvec = NULL
> V0_Xmax_meanvec = NULL
> rangevec = seq(0,3,0.3)
> for(i in 1:length(rangevec))
+ {
+ V0vec = runif(150, min = (V0mean-rangevec[i]),
+ max = (V0mean+rangevec[i]))
+
+ #define the matrices before you begin
+ #the multiple simulation as the size
+ #is completely dependent on the time points
+ #and number of values in the input vector
+ V_simmat = matrix(nrow = length(time.points),

95

+ ncol = length(V0vec))
+ X_simmat = matrix(nrow = length(time.points),
+ ncol = length(V0vec))
+ time_simmat = matrix(nrow = length(time.points),
+ ncol = length(V0vec))
+
+ V0_varvec[i] = var(V0vec)
+ V0_meanvec[i] = mean(V0vec)
+
+ results2_V0 = AveragingRange_V0(10^(V0vec),
+ initial.conditions,
+ parameters, numsim)
+
+ V0_Vmax_varvec[i] = var(log10(results2_V0$Vmax))
+ V0_Vmax_meanvec[i] = mean(log10(results2_V0$Vmax))
+ V0_totalV_varvec[i] = var(log10(results2_V0$total_V))
+ V0_Xmax_varvec[i] = var(log10(results2_V0$Xmax))
+ V0_Xmax_meanvec[i] = mean(log10(results2_V0$Xmax))
+ }
> V0_Vmax_cvvec = sqrt(V0_Vmax_varvec)/V0_Vmax_meanvec
> V0_Xmax_cvvec = sqrt(V0_Xmax_varvec)/V0_Xmax_meanvec
> V0_cvvec = sqrt(V0_varvec)/V0_meanvec
> plot(sort(V0_Vmax_cvvec) ~ sort(V0_cvvec),
+ type = "b", col = "red", lty = 1,
+ xlab = "Cv <log V(0)>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(V0_Vmax_cvvec)),
+ cex.lab = 1.5, cex.axis = 1.5)
> lines(sort(V0_Xmax_cvvec) ~ sort(V0_cvvec),
+ type = "b", col = "blue", lty = 1,
+ xlab = "Cv <log V(0)>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(V0_Xmax_cvvec)),
+ cex.lab = 1.5, cex.axis = 1.5)
> legend("topleft", c("Vmax", "Xmax"), lty = 1,
+ lwd = 1, col=c("red","blue"), cex = 1.2)

96

7.1.6 Variation in X(0)

> require(deSolve)
> require(rootSolve)
> require(zoo)
> require(cacheSweave)
> #setwd("/Volumes/HDD/Dropbox/
> #Antia-Jonathan/WorkInProgress/current/Ebola")
> setCacheDir("Cache")
> set.seed()
> ODE_Ebola <- function(t, y, parms)
+ {
+ with(as.list(c(y,parms)),
+ # allows the parameter
+ #file parms to be as a list
+ { # and the state variables to be the
+ # same as chosen in the init conditions
+
+ dV = r*V - k*V*X
+ dX = s*X*V/(phi+V)
+
+ dY=c(dV,dX)
+ return(list(dY)) #
+ })
+ }
> ## define initial conditions
> initial.conditions = c(
+ V = 1, # Virus
+ X = 1 # Adaptive immunity
+)
> ## define parameters
> parameters = c(
+ r = 2, # viral growth rate
+ s = 1, # growth of adaptive immunity
+ phi = 1e3, # parasite density at
+ #which immunity responds
+ k = 1e-3, # killing of virus by immunity
+ p = 1e3, # cytokine production rate

97

+ phi_c = 1e3, # cytokine production begins
+ #when virus reaches this value
+ d_c = 72 # cytokine decay
+)
> maxtime=30
> ntimepoints=200
> time.points = seq(0, maxtime,
+ maxtime/ntimepoints)
> rootfun <- function(t, y, parms) return(y[1]-1)
> solution.of.ode = lsodar(ODE_Ebola,
+ y=initial.conditions,
+ times=time.points,
+ parms = parameters)
> soln = as.data.frame(solution.of.ode)
> C = (parameters["p"]*soln$X*soln$V)/
+ (parameters["d_c"]*(parameters["phi_c"]
+ +soln$V))
> soln = cbind(soln,C)
> par(mfcol=c(1,2))
> ymax=max(soln)
> ymin=min(soln)
> plot(soln$V ~ soln$time,col="red",
+ type="l",ylim=c(0,ymax),
+ ylab="number",xlab="time (days)")
> lines(soln$X ~ soln$time,
+ col = 'blue', type = 'l')
> lines(soln$C ~ soln$time,
+ col = 'green', type = 'l')
> plot(log10(soln$V) ~ soln$time,col="red",
+ type="l",ylim=c(1,log10(ymax)),
+ ylab="log number",xlab="time (days)")
> lines(log10(soln$X) ~ soln$time,
+ col = 'blue', type = 'l')
> lines(log10(soln$C) ~ soln$time,
+ col = 'green', type = 'l')
> legend("topright", c("Virus", "Adaptive",
+ "Cytokines"),
+ lty = 1, lwd = 2,

98

+ col=c("red","blue","green"),
+ cex = 2)
> ###
> ##create these empty vectors so
> #that the results can be stored later
> ###
> ##vector for duration of infection
> durationofinfectionvec = NULL
> ##vector for measures of pathology
> Vmaxvec = NULL
> ##vector for total transmission
> total_Vvec = NULL
> total_lnVvec = NULL
> ##vector for total immunity
> Xmaxvec= NULL
> total_Xvec = NULL
> ##total cytokine amount generated
> Cmaxvec = NULL
> total_Cvec = NULL
> haltingTransitionvec = NULL
> numdeathvec = NULL
> V_simvec = NULL
> X_simvec = NULL
> t_simvec = NULL
> #######################################
> #integrating function
> #######################################
> Tfunction <- function(x, y)
+ #####################################
+ {
+ #use the sum function to add the numbers
+ #diff function finds the difference
+ #between the times
+ #rollmean finds the average between
+ #the two numbers in y
+ #this method leaves out one number
+ #(the last number in the list)
+ #so it underestimates transmission

99

+ sum(diff(x)*rollmean(y,2))
+ }
> ###
> #simulation function
> ##
> Simulation <- function(initialconditions
+ ,params)
+ {
+ solution.of.ode = lsodar(ODE_Ebola,
+ y=initialconditions,
+ times=time.points,
+ parms = params)
+ soln = as.data.frame(solution.of.ode)
+ C = (params["p"]*soln$X*soln$V)/
+ ((params["phi_c"]+soln$V)) - params["d_c"]
+ soln = cbind(soln,C)
+ y = soln
+ return(y)
+ }
> ###
> #calculation function
> ###
> Calculation <- function(x)
+ {
+ ###storing data#####
+ V_sim = x$V
+ X_sim = x$X
+ t_sim = x$time
+
+ #####Calculations######
+ durationofinfection = max(x$time)
+
+ #####Pathology######
+ #max parasite density as a
+ #measure of pathology
+ ##we are measuring
+ #total pathology and max parasitemia
+ ##find the maximum of the

100

+ #total pathogen and store in vector
+ Vmax = max(x$V)
+ ##Store the value in a vector
+ total_V = Tfunction(xt,xV)
+
+ temp = log(x$V)
+ temp[!is.finite(temp)] <- 0
+ #t_list = x[which(x$V!=0),"t"]
+ t_list = x$t
+
+ if(all.equal(length(temp),0)==TRUE)
+ {
+ total_lnV = 0
+ }
+ else
+ {
+ total_lnV = Tfunction(t_list,temp)
+
+ }
+
+ ##Total Immunity Generated
+ #integral of immune density
+ #for duration of infection
+ #maximizing immunity is
+ #desired in antibiotic treatment
+ #might increase likelihood
+ #of generating memory
+ #we calculate the max
+ #and total immunity generated
+ Xmax = max(x$X)
+ #integrate the curve
+ #and store the value
+ total_X = Tfunction(xt,xX)
+
+ ##total cytokine production
+ #also taking the max amount of cytokines
+ #and total cytokine production
+ Cmax = max(x$C)

101

+ total_C = Tfunction(xt,xC)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ V_sim = V_sim, X_sim = X_sim,
+ t_sim = t_sim)
+ }
> ##
> a = Simulation(initial.conditions,parameters)
> b = Calculation(a)
> #averaging function
> ##
> Averaging <- function(initialconditions,
+ params,N)
+ {
+ numdeath = 0
+ for(i in 1:N)
+ {
+ a = Simulation(initialconditions,
+ params)
+ b = Calculation(a)
+ durationofinfectionvec[i] =
+ b$durationofinfection
+ Vmaxvec[i] = b$Vmax
+ total_Vvec[i] = b$total_V
+ total_lnVvec[i] = b$total_lnV
+ Xmaxvec[i] = b$Xmax
+ total_Xvec[i] = b$total_X
+ Cmaxvec[i] = b$Cmax
+ total_Cvec[i] = b$total_C
+ haltingTransitionvec[i] =

102

+ b$haltingTransition
+ V_simmat[,i] = b$V_sim
+ X_simmat[,i] = b$X_sim
+ time_simmat[,i] = b$t_sim
+ }
+ durationofinfection =
+ mean(durationofinfectionvec)
+ Vmax = mean(Vmaxvec)
+ total_V = mean(total_Vvec)
+ total_lnV = mean(total_lnVvec)
+ Xmax = mean(Xmaxvec)
+ total_X = mean(total_Xvec)
+ Cmax = mean(Cmaxvec)
+ total_C = mean(total_Cvec)
+ numdeath = sum(haltingTransitionvec)
+
+ y = list(
+ durationofinfection = durationofinfection,
+ Vmax = Vmax,
+ total_V = total_V,
+ total_lnV = total_lnV,
+ Xmax = Xmax,
+ total_X = total_X,
+ Cmax = Cmax,
+ total_C = total_C,
+ numdeath = numdeath,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> numsim = 1
> V_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> X_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)
> time_simmat = matrix(nrow = length(time.points),
+ ncol = numsim)

103

> results = Averaging(initial.conditions,
+ parameters,numsim)
> ###
> #hold all other parameters constant, vary one
> ###
> # averaging functions
> ###
> # r averaging function
> ###
> AveragingRange_X0 <- function(inputvec,
+ initialconditions,
+ params, N)
+ {
+ for(i in 1:length(inputvec))
+ {
+ initialconditions["X"] = inputvec[i]
+ c = Averaging(initialconditions,params,1)
+ durationofinfectionvec[i] =
+ c$durationofinfection
+ Vmaxvec[i] = c$Vmax
+ total_Vvec[i] = c$total_V
+ total_lnVvec[i] = c$total_lnV
+ Xmaxvec[i] = c$Xmax
+ total_Xvec[i] = c$total_X
+ Cmaxvec[i] = c$Cmax
+ total_Cvec[i] = c$total_C
+ numdeathvec[i] = c$numdeath
+ V_simmat[,i] = c$V_simmat[,1]
+ colnames(V_simmat) <- c(inputvec)
+ X_simmat[,i] = c$X_simmat[,1]
+ colnames(X_simmat) <- c(inputvec)
+ time_simmat[,i] = c$time_simmat[,1]
+ }
+ y = list(durationofinfectionvec =
+ durationofinfectionvec,
+ Vmaxvec = Vmaxvec,
+ total_Vvec = total_Vvec,
+ total_lnVvec = total_lnVvec,

104

+ Xmaxvec = Xmaxvec,
+ total_Xvec = total_Xvec,
+ Cmaxvec = Cmaxvec,
+ total_Cvec = total_Cvec,
+ numdeathvec = numdeathvec,
+ V_simmat = V_simmat,
+ X_simmat = X_simmat,
+ time_simmat = time_simmat)
+ return(y)
+ }
> ######################################
> X0mean = 1
> X0_dist = runif(1e3,0,2)
> X0vec = sample(X0_dist, 150)
> quartz()
> par(mfcol=c(2,2))
> #hist(X0_dist,prob=TRUE, main = paste(""),
> #xlab = "X(0)", cex = 2)
> #hist(X0vec,prob=TRUE)
>
> #define the matrices before you begin
> #the multiple simulation as the size
> #is completely dependent on the time points
> #and number of values in the input vector
> V_simmat = matrix(nrow = length(time.points),
+ ncol = length(X0vec))
> X_simmat = matrix(nrow = length(time.points),
+ ncol = length(X0vec))
> time_simmat = matrix(nrow = length(time.points),
+ ncol = length(X0vec))
> #leave it at 1 simulation for snow
> #numsim actually tells you the number of times
> #to run the simulation at the same values
> #held more use for stochastic simulations
> #in finding the averaging simulation values
> numsim = 1
> #solve our function for the sample data we have used
> results_X0 = AveragingRange_X0(10^(X0vec),

105

+ initial.conditions,
+ parameters,numsim)
> #plot multisimulation of V
> for(i in 1:ncol(results_X0$V_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_X0$V_simmat[,i])
+ ~ results_X0$time_simmat[,i],
+ type = "l", col = "red",
+ lty = i, lwd = 0.1,
+ ylab = "log V", xlab = "t",
+ ylim = c(0,9),
+ cex.lab = 1.5, cex.axis = 1.5)
+ }
+ else
+ {
+ lines(log10(results_X0$V_simmat[,i])
+ ~ results_X0$time_simmat[,i],
+ col = "red", lty = i, lwd = 0.1,
+ ylab = "Log V", xlab = "t",
+ cex.lab = 1.5, cex.axis = 1.5)
+ }
+ }
> #plot multsimulation of X
> for(i in 1:ncol(results_X0$X_simmat))
+ {
+ if(i == 1)
+ {
+ plot(log10(results_X0$X_simmat[,i])
+ ~ results_X0$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ ylim = c(0,5), cex.lab = 1.5,
+ cex.axis = 1.5)
+ }
+ else

106

+ {
+ lines(log10(results_X0$X_simmat[,i])
+ ~ results_X0$time_simmat[,i],
+ type = "l", col = "blue",
+ lty = i, lwd = 0.1,
+ xlab = "t", ylab = "log X",
+ cex.lab = 1.5, cex.axis = 1.5)
+ }
+ }
> #plot how our values of interest
> #change with changing r
> #sort command orders the values in ascending order
> #so that they can be plotted as lines
> plot(log10(sort(results_X0$Vmax,
+ decreasing = TRUE))
+ ~ sort(X0vec),
+ type = "l",col = "red", lty = 1,
+ xlab = "log X(0)", ylab = "log Number",
+ ylim = c(0,max(log10(results_X0$Vmax))),
+ cex.lab = 1.5, cex.axis = 1.5)
> lines(log10(sort(results_X0$Xmax,
+ decreasing = TRUE))
+ ~ sort(X0vec),
+ type = "l", col = "blue",
+ lty = 1,cex.lab = 1.5,
+ cex.axis = 1.5)
> #add a legend
> legend("bottomleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)
> #mean = a/(a+b) for beta distribution
> #variance = a*b/((a+b)^2(a+b+1))
>
> #as a increases, the variance of
> #the distribution decreases
> X0_unif = runif(1e3, min = X0mean, max = X0mean)
> #for a uniform distribution
> #the mean is the median (max - min)/2

107

> #for a uniform distribution
> #the variance is 1/12(xmax -xmin) or 1/12(range)
> X0_varvec = NULL
> X0_meanvec = NULL
> X0_Vmax_varvec = NULL
> X0_Vmax_meanvec = NULL
> X0_Vmax_varmeanvec = NULL
> X0_totalV_varvec = NULL
> X0_Xmax_varvec = NULL
> X0_Xmax_meanvec = NULL
> X0_Xmax_varmeanvec = NULL
> rangevec = seq(0,1,0.1)
> for(i in 1:length(rangevec))
+ {
+ X0vec = runif(150, min = (X0mean-rangevec[i]),
+ max = (X0mean+rangevec[i]))
+
+ #define the matrices before you begin
+ #the multiple simulation as the size
+ #is completely dependent on the time points
+ #and number of values in the input vector
+ V_simmat = matrix(nrow = length(time.points),
+ ncol = length(X0vec))
+ X_simmat = matrix(nrow = length(time.points),
+ ncol = length(X0vec))
+ time_simmat = matrix(nrow = length(time.points),
+ ncol = length(X0vec))
+
+ X0_varvec[i] = var(X0vec)
+ X0_meanvec[i] = mean(X0vec)
+
+ results2_X0 = AveragingRange_X0(10^(X0vec),
+ initial.conditions,
+ parameters, numsim)
+
+ X0_Vmax_varvec[i] = var(log10(results2_X0$Vmax))
+ X0_Vmax_meanvec[i] = mean(log10(results2_X0$Vmax))
+ X0_totalV_varvec[i] = var(results2_X0$total_V)

108

+ X0_Xmax_varvec[i] = var(log10(results2_X0$Xmax))
+ X0_Xmax_meanvec[i] = mean(log10(results2_X0$Xmax))
+ }
> X0_cvvec = sqrt(X0_varvec)/X0_meanvec
> X0_Vmax_cvvec = sqrt(X0_Vmax_varvec)/X0_Vmax_meanvec
> X0_Xmax_cvvec = sqrt(X0_Xmax_varvec)/X0_Xmax_meanvec
> plot(sort(X0_Vmax_cvvec) ~ sort(X0_cvvec),
+ type = "b",
+ col = "red", lty = 1,
+ xlab = "Cv <log X(0)>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(X0_Vmax_cvvec)),
+ cex.lab = 1.5, cex.axis = 1.5)
> lines(sort(X0_Xmax_cvvec)
+ ~ sort(X0_cvvec),
+ type = "b", col = "blue",
+ lty = 1, xlab = "Cv <log X(0)>",
+ ylab = "Cv <log Vmax/Xmax>",
+ ylim = c(0,max(X0_Xmax_cvvec)),
+ ex.lab = 1.5, cex.axis = 1.5)
> legend("topleft", c("Vmax", "Xmax"),
+ lty = 1, lwd = 1,
+ col=c("red","blue"), cex = 1.2)

7.1.7 Creating the Barplot

> Cv_r_V = max(r_Vmax_cvvec)
> Cv_r_X = max(r_Xmax_cvvec)
> Cv_s_V = max(s_Vmax_cvvec)
> Cv_s_X = max(s_Xmax_cvvec)
> Cv_phi_V = max(phi_Vmax_cvvec)
> Cv_phi_X = max(phi_Xmax_cvvec)
> Cv_k_V = max(k_Vmax_cvvec)
> Cv_k_X = max(k_Xmax_cvvec)
> Cv_V0_V = max(V0_Vmax_cvvec)
> Cv_V0_X = max(V0_Xmax_cvvec)
> Cv_X0_V = max(X0_Vmax_cvvec)
> Cv_X0_X = max(X0_Xmax_cvvec)

109

> Cv_Vvec = c(Cv_r_V, Cv_s_V, Cv_phi_V,
+ Cv_k_V, Cv_V0_V, Cv_X0_V)
> Cv_Xvec = c(Cv_r_X, Cv_s_X, Cv_phi_X,
+ Cv_k_X, Cv_V0_X, Cv_X0_X)
> data <- rbind(Cv_Vvec, Cv_Xvec)
> data <- as.matrix(data)
> colnames(data) <- c("r", "s", "phi",
+ "k", "V(0)", "X(0)")
> quartz()
> barplot(data, xlab="Parameters",
+ ylab = "Cv <log Vmax/Xmax>",
+ col=c("red","blue"),
+ #legend = c("Vmax", "Xmax"),
+ beside=TRUE, axis.lty = 1,
+ cex.lab = 1.5, cex.axis = 1.5)
> legend("topright", c("Vmax", "Xmax"), lty = 1,
+ lwd = 1, col=c("red","blue"), cex = 1.5)

