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Abstract 
 

Statistical Modeling of C-kit+ Progenitor Cell Extracellular Vesicles to Predict Clinical Trial 
Outcomes 

 
By 

Jessica Reggan Hoffman 
 
Congenital heart disease is the most common form of birth defect and affects nearly 1% of live 
births in the US, annually. Complex forms of congenital heart disease, including hypoplastic left 
heart syndrome, require surgical palliation and often lead to pediatric heart failure. Originally 
studied for use in adult populations, cardiac cell therapy is gaining traction for pediatric 
populations as a therapeutic strategy to address underlying damage and potentially repair and 
regenerate myocardium. Specifically, our group is involved in the CHILD clinical trial 
(NCT03406884), investigating the use of autologous cardiac-derived c-kit+ progenitor cells 
(CPCs). Unfortunately, cardiac cell therapy preclinical and clinical investigations have been 
hampered by mixed results, primarily too much variation in cell populations and patient 
outcomes. Finally, there has been a shift in our understanding of how cardiac cell therapy works: 
functional effects may be attributed to paracrine signaling and the release of extracellular 
vesicles (EVs), rather than direct cell engraftment and differentiation. The purpose of this 
dissertation is to understand sources of variability and determine the biological signals 
contributing to repair in CPCs and CPC-derived extracellular vesicles (CPC-EVs). We analyzed 
transcriptomic data (bulk and single cell) and used machine learning regression models to link 
our RNA-sequencing data to functional outcomes. The subsequent dissertation chapters are 
designed to explore (1) differences between neonate- and child-derived CPCs at the single cell 
level, (2) bulk transcriptomic differences between patient matched CPCs and CPC-EVs, and (3) 
the relationship between CPC-EV cargo and in vitro, cardiac-relevant outcomes. Overall, we 
uncovered a more heterogenous population in child CPCs, enriched in pro-fibrotic and 
inflammatory cell subpopulations. We determined that CPC-EVs contain different RNA cargo 
than EVs derived from other cell types, and CPC-EVs are particularly enriched in miRNAs 
involved in cardiac development and cell proliferation. Finally, we used machine learning 
models to link CPC-EV RNA cargo from the CHILD trial samples to in vitro functional 
outcomes for the purposes of building a predictive and informative clinical tool.  
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1 Chapter 1. Introduction 

1.1 Congenital heart disease 

Congenital heart disease (CHD) is the most common type of birth defect, affecting nearly 1% of 

live births in the US annually. Approximately 25% of CHD patients require invasive treatment 

within the first year of life. Improvements in surgical outcomes and medical management has led 

to an aging CHD population: the median age of death from severe CHD has increased from 2 to 

23 years between 1987 and 2005 (Khairy et al., 2010).  

1.1.1 Forms 

There are many forms of CHD ranging in severity and complexity��DIIHFWLQJ�WKH�KHDUW¶V�

chambers, septum, valves, arteries, and veins. Simple defects include atrial and ventricular septal 

defects, patent ductus arteriosus, and pulmonary stenosis. Many simple defects do not require 

intervention; openings may close and stenoses may improve over time. The mortality rate of 

simple CHDs has been estimated at 2.2 per 1,000 patient years (Buratto et al., 2016).  

On the other hand, critical defects often require invasive intervention (Table 1-1). Critical 

CHD affects ~0.2% of newborns in the US annually and includes abnormalities like Ebstein 

anomaly, coarctation of the aorta, and hypoplastic left heart syndrome (HLHS), among others. 

Critical CHD cases may comprise of multiple defects. For example, tetralogy of Fallot is made 

up of a combination four defects: ventricle septal defect, pulmonary valve stenosis (or atresia), 

over-riding of the aorta, and right ventricular hypertrophy. Tetralogy of Fallot may be palliated 

with a shunt from the aorta to the pulmonary artery, balloon dilation, or stent in the right 

ventricle outflow. Additionally, a complete repair of this condition may be achieved by closing 

the ventricle septal defect and removing the pulmonary obstruction  (Apitz et al., 2009). Other 

interventions for critical CHD conditions include cardiac catheterization and bandings.  
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Table 1-1. Critical congenital heart diseases.  

Condition Description Occurrence 
(US births) 

Treatment 

Coarctation of the 
aorta 

Narrow aorta 1 in 1,800  Cardiac catheterization, balloon 
angioplasty 

Double-outlet right 
ventricle 

Aorta connected to right 
ventricle instead of left 
ventricle 

1 in 10,000 Biventricular repair (arterial switch) 
or intraventricular repair or Fontan 
operation  

D-Transposition of 
the great arteries 

Pulmonary artery and aorta 
are switched 

1 in 3,400 Arterial switch operation (common) 
or atrial switch operation 

Ebstein anomaly Tricuspid valve and right 
ventricle are malformed 

1 in 10,000 Tricuspid valve repair or 
replacement. Removal of atrial 
septal defect. 

Hypoplastic left 
heart syndrome 

Underdeveloped left 
ventricle (often with 
underdeveloped mitral 
valve, aortic valve, aorta 
ascending portion, and atrial 
septal defect) 

1 in 3,800 Series of 3 surgeries: 
(1) Norwood procedure, (2) bi-
directional Glenn shunt, (3) Fontan 
procedure 

Interrupted aortic 
arch 

Discontinuous aortic arch 1 in 50,000 Close aortic gap 

Pulmonary atresia 
(with intact 
septum) 

Pulmonary valve is not 
formed 

1 in 7,100 Cardiac catheterization and balloon 
angioplasty  

Total anomalous 
pulmonary venous 
return 

Pulmonary veins return 
blood to the right atrium by 
an abnormal connection 

1 in 7,800 Connect pulmonary veins to left 
atrium  

Tetralogy of Fallot 4 defects: ventricle septal 
defect, pulmonary stenosis, 
enlarged aortic valve, right 
ventricular hypertrophy 

1 in 2,500 Replace pulmonary valve and 
enlarge passage to pulmonary 
artery. Patch ventricular septal 
defect. 

Tricuspid atresia Tricuspid valve is not 
formed 

1 in 9,750 Septostomy (enlarge atrial septal 
defect) 
Temporary pulmonary artery 
banding 
Sunt from aorta to pulmonary artery 
Bi-directional Glenn 
Fontan 

Truncus arteriosus Aorta and pulmonary artery 
are not properly separated 

<1 in 10,000 Separation of the aorta and 
pulmonary artery 

Sources: CDC.gov, clevlandclinic.org, (Mai et al., 2019) 

Despite improvements in palliative and reparative surgery, many CHD patients require 

heart transplantation. Single ventricle (including HLHS), d-transposition of the great arteries, and 
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right ventricular outflow tract lesion conditions represent the top three diagnostic categories for 

patients undergoing heart transplantation (Lamour et al., 2009). Many issues remain regarding 

transplant, including donor availability and immune rejection. An estimated 15-20% of CHD 

patients on a transplant list die before receiving a donor heart, and 1-year survival rates after 

transplantation remain high, between 20 and 25% (Hsu and Lamour, 2015). Symptomatic heart 

failure is often an indication for heart transplantation in CHD patients. Unlike adult heart failure, 

however, there are fewer alternative treatment strategies: the mechanisms behind heart failure in 

children are unknown, and mechanical support devices (e.g. ventricular assist devices) are not 

designed for children and have rarely been tested in pediatric populations (Hsu and Lamour, 

2015).  

1.1.2 Etiology 

The etiology for most CHDs is unknown. In fact, an estimated 90% of CHD is caused by 

multifactorial etiologies (Chung and Rajakumar, 2016). Several genetic and environmental, 

modifiable and non-modifiable risk factors have been identified. Modifiable risk factors 

contributing to CHDs include maternal dietary deficiency, substance abuse, obesity, diabetes, 

and air pollution. Conversely, non-modifiable factors include maternal rheumatologic disorders, 

genetics, medications, metabolic disorders, and viral infections (Mullen et al., 2021). Within the 

category of genetic causes, syndromic CHD can be caused by chromosomal aneuploidy, 

chromosomal translocation, chromosomal deletions, or single-gene defects. Chromosomal 

aneuploidy was the first discovered genetic cause and is associated with a large proportion of 

CHDs (Muntean et al., 2017). The well-studied single-gene disorders Alagille, Holt-Oram, 

Noonan, LEOPARD, Costello, Cardiofaciocutaneous, and CHARGE syndromes are also linked 

to CHDs (Muntean et al., 2017).  



 

 

4 

Non-syndromic CHD make up the majority of cases and are much more challenging to 

identify, due to genetic phenomena like genetic heterogeneity and polygenes. Currently, genes 

implicated in CHD include transcription factors (GATA4, NKX2.5, TBX5, HAND2), signaling 

genes (FOXH1, NOTCH1, NOTCH2, JAG1), and structural genes (GJA1, ELN, FLNA) (Pierpont 

et al., 2007). Importantly, next-generation sequencing (NGS) technology offers greater 

opportunity to identify novel CHD mutations. For example, single-cell RNA sequencing 

(scRNAseq) has further elucidated cardiac development mechanisms and given insight into 

particular progenitor cell types causing defects (de Soysa et al., 2019; Miao et al., 2020). 

Notably, racial minorities are disproportionately affected by CHDs, potentially due to 

environmental and genetic disparities (Oster et al., 2011). Recent efforts using induced 

pluripotent stem cell disease model may uncover genetic causes and connections to racial 

disparities.  

1.1.3 Hypoplastic left heart syndrome 

HLHS is a complex single ventricle CHD characterized by an underdeveloped left ventricle 

(Figure 1-1). Neonates with HLHS often display cyanosis, difficult breathing, poor feeding, cold 

extremities, and weak pulses. HLHS occurs in 2-3 per 10,000 live births in the US and accounts 

for ~1% of all CHD cases. Despite a lower prevalence rate, HLHS accounts for 

disproportionately high mortality: 25-40% of all neonatal cardiac mortality (Siffel et al., 2015). 

HLHS used to be a universally fatal diagnosis within the first week of life; an underdeveloped 

left ventricle has insufficient pumping capability to supply systemic circulation. However, HLHS 

is now palliated by a series of three operations which redirect blood flow such that the right 

ventricle sustains systemic circulation. Surgical intervention has provided better outcomes for 

HLHS patients with survival probabilities increasing from 0% before 1984 to 42% in 2005. 
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Currently, the highest mortality for HLHS patients occurs in the first year of life, before the stage 

II surgery, and children who survive to 1 year old have a long-term survival rate of 90% (Siffel 

et al., 2015).  

 

Figure 1-1. HLHS anatomy and circulation. 
Comparison of blood flow in normal vs. HLHS heart. RA: right atrium; RV: right ventricle; LA: left atrium; LV: left ventricle. 

The 3-stage palliation of HLHS is depicted in Figure 1-2. The stage I surgery, Norwood 

procedure, is performed within the first few weeks of life and begins the conversion of the right 

ventricle into the main ventricle providing for systemic circulation. The Norwood procedure 

redirects the right ventricle outflow to the aorta using a shunt either from the systemic artery to 

pulmonary artery (Blalock-Taussig shunt) or right ventricle to pulmonary artery (Sano shunt). 

The Norwood procedure causes right ventricle volume and pressure overload and necessitates the 

stage II surgery, the bidirectional Glenn procedure, performed four to six months later. The 

Glenn procedure redirects blood flow from the superior vena cava to the right pulmonary artery, 

reducing pulmonary vascular pressure and right ventricle volume overload. Finally, the stage III 

surgery, the Fontan procedure, is performed at around three years of age. The Fontan procedure 

redirects the remainder of systemic venous blood from the inferior vena cava to the right 



 

 

6 

pulmonary artery. The Fontan procedure further reduces the right ventricle volume load and 

completely separates oxygenated and deoxygenated blood. 

 

Figure 1-2. Three-stage palliation of HLHS. 
Diagram depicting (a) stage I Norwood, (b) stage II bi-directional Glenn, and (c) Fontan operations. Illustration from (Wehman 
and Kaushal, 2015) shows the Transcoronary Infusion of Cardiac Progenitor Cells in Patients with Single Ventricle Physiology 
(TICAP) trial strategy. 

Overall, surgical palliation supports single-ventricle physiology. However, the right 

ventricle is not physiologically adapted to sustain systemic circulation. In normal physiology, the 

right ventricle pumps blood into pulmonary circulation with low vascular resistance. Unlike the 

left ventricle, the right ventricle is crescent-shaped and contracts longitudinally without much 

twisting. The right ventricle has thinner walls, is more compliant, and has a greater volume than 

the left ventricle. Taken together, it is unsurprising that HLHS patients often develop RV 

dysfunction, adverse RV modeling, and eventual RV failure. RV dysfunction has been shown to 

predict mortality in HLHS patients: 18-month survival for patients with and without RV 

dysfunction are 35% and 70%, respectively (Altmann et al., 2000).  

Currently, the only curative option of HLHS is heart transplant, and unfortunately, HLHS 

patients who have undergone surgical palliation have higher mortality rates after transplant than 

other CHD conditions (Everitt et al., 2012). Given the risks and limitations associated with heart 

transplant, therapeutic intervention to prevent RV dysfunction is necessary to improve outcomes 
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for HLHS patients. More specially, intervention between stage I and II operations, where 

mortality rates are highest, is required (Siffel et al., 2015).  

1.2 Cardiac cell therapy for congenital heart disease 

Traditionally viewed as a terminally differentiated organ, the heart has limited regenerative 

capacity and cardiac injury is often irreversible. Current pharmacological and interventional 

treatment strategies do not address the underlying damage of cardiovascular injury and transplant 

remains the only curative option. Given the aforementioned limitations of transplant, stem or 

progenitor cell therapies, which may induce endogenous repair mechanisms, have gained traction 

as a strategy for improving cardiac function, preventing adverse remodeling, and potentially 

reversing cardiovascular damage. A recent estimate suggests that more than 5,000 patients have 

received cell therapy for various cardiovascular diseases (Wehman and Kaushal, 2015). Initially 

investigated in adult populations, cell therapies for pediatric patients with congenital heart 

disease are now under clinical investigation. Notably, these trials primarily investigate cell 

therapies for critical single ventricle defects, including HLHS. The handful of cell therapy trials 

for CHD are summarized in Table 1-2.  

Table 1-2. Cell therapy clinical trials for congenital heart disease. 

Cell Type Trial Name/ 
Identifier 

Year Description Status/Results 

CPC, 
autologous 

CHILD: 
NCT03406884 
*multi-center 
study with 
location at 
Children's 
Healthcare of 
Atlanta 

2018- Autologous CPC 
intramyocardial 
injection for with 
HLHS patients 

Enrolling for phase II 
Phase I completed. Results not yet 
published. 
(Kaushal et al., 2022) 

CDC, 
autologous 
 

TICAP: 
NCT01273857 

2011-
2015 

Transcoronary 
infusion of cardiac 
progenitor cells for 

Manufacturing and delivery were 
feasible. No serious adverse events 
reported.  
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single ventricle 
patients; Phase I 

CDC-treated patients showed a higher 
right ventricular ejection fraction, 
improved somatic growth, and 
reduced heart failure status 
(Ishigami et al., 2015) 

CDC, 
autologous 

PERSEUS: 
NCT01829750 

2013-
2017 

Cardiac progenitor 
cell infusion to treat 
univentricular heart 
disease; Phase II 

CDC-treatment improved ventricular 
ejection fraction after 3 months 
(+6.4% vs. 1.3% control). Also, 
increases in somatic growth, quality 
of life, and reduced heart failure 
status.  
(Ishigami et al., 2017) 

CDC, 
autologous 

APOLLON: 
NCT02781922 

2016- Cardiac stem/ 
progenitor cell 
infusion in 
univentricular 
physiology; Phase III 

Enrolling. 

Bone marrow-
derived MSCs, 
allogeneic 

ELPIS: 
NCT03525418 

2018-
2022 

Lomecel-B delivered 
during stage II 
surgery for HLHS; 
Phase I/II 

Completed. Results not yet published. 
(Kaushal et al., 2017) 

Bone marrow-
derived MSCs, 
allogeneic 

ELPIS II: 
NCT04925024 

2021- Lomecel-B delivered 
during stage II 
surgery for HLHS; 
Phase II 
(Next phase of 
ELPIS, MSCs now 
referred to as 
medicinal signaling 
cells) 

Enrolling.  

Mesoblasts: 
mesenchymal 
precursor cells 
(MPCs) 

NCT03079401 2017- Mesoblast stem cell 
therapy for single 
ventricle and 
borderline left 
ventricle patients 

Active, not enrolling. Study 
participants are receiving the cell 
therapy; no new patients are being 
recruited or enrolled. 
Anticipated study completion: 
01/2024 

Umbilical cord 
blood-derived 
MNCs, 
autologous 

NCT01883076 2013-
2019 

Autologous UCB-
MNCs for HLHS 
patients; Phase I 

Safety and feasibility: 0% operative 
mortality, one adverse event, no 
significant safety concerns over 6 
months.  
No reduction in cardiac function 
related to intramyocardial injections 
of UCBs. 
(Burkhart et al., 2019) 
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Bone marrow-
derived MNCs, 
autologous 

NCT02549625 2015-
2021 

Intracoronary 
delivery of 
autologous bone 
marrow-derived 
MNCs for patients 
with single right 
ventricular failure; 
Phase I 

Completed. Results not yet published. 
First patient demonstrated reduced 
ventricular size and ~5% increase in 
ejection fraction 
(Qureshi et al., 2017) 

Umbilical cord 
blood-derived 
MNCs, 
autologous 

NCT03779711 2019- Intramyocardial 
injection of 
autologous UCB- 
derived MNCs during 
surgical repair of 
HLHS; Phase II 

Active, not enrolling. Study 
participants are receiving the cell 
therapy; no new patients are being 
recruited or enrolled. 
Anticipated study completion: 
02/2026 

Bone marrow-
derived MSCs, 
allogeneic 

MedCaP: 
NCT04236479 

2020- MSC delivery via 
cardiopulmonary 
bypass for infants 
with CHD 
undergoing two-
ventricle repair 

Enrolling. 

CPC: c-kit+ cardiac derived progenitor cells 
CDC: cardiosphere-derived cells 
MSC: mesenchymal stem, or stromal, cells 
MNC: mononuclear cells 

1.2.1 Stem and progenitor cell types for treatment of congenital heart disease 
Several cell candidates are under investigation including mesenchymal stem, or stromal, cells 

(MSCs), mononuclear cells (MNCs), cardiosphere-derived cells (CDCs), and CPCs. These four 

cell types have differing characteristics which make them attractive in autologous (self) or 

allogenic (donor-derived) models. First, MSCs offer unique immunological properties that allow 

WKHP�WR�IXQFWLRQ�DV�DQ�µRII-the-VKHOI¶�DOORJHQLF�SURGXFW�LQ�FHOO�WKHUDS\�VWXGLHV��06&V�DUH�

immunoprivileged: they lack major histocompatibility complex (MHC) class-II and 

costimulatory CD80, CD86, and CD40 molecules, and have reduced MHC class-I. In addition to 

evading the immune system, MSCs also function in an immunosuppressive manner. MSCs 

secrete anti-inflammatory growth factors and extracellular vesicles (EVs), which decrease 

various proinflammatory cytokine expression, suppress T helper and T cytotoxic cell 
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proliferation, and stop B cell and dendritic cell maturation (Karantalis et al., 2015). Furthermore, 

MSCs can self-replicate and transdifferentiate into various tissue lineages1 (Quevedo et al., 

2009). Our group is involved in the ELPIS trial examining the use of allogeneic bone marrow-

derived MSCs during the stage II bi-directional Glenn operation in HLHS patients. The results of 

phase I of the ELPIS trial are not yet published, but allogeneic MSC use in patients with acute 

myocardial infarction and chronic ischemic cardiomyopathy did not trigger an immune response 

and showed promising results for cardiac improvement (Hare et al., 2012; Hare et al., 2009).  

 Second, autologous MNCs derived from umbilical cord blood and bone marrow have 

been examined for use in CHD pediatric patients. Notably, umbilical cord blood MNCs are the 

most prevalent cell source available, are isolated at birth, and can differentiate into non-blood 

cell types including cardiomyocyte and endothelial cells (Oommen et al., 2015). Recently, 

MNCs have been the subject of controversy with research suggesting that delivery of these cells 

induces an inflammatory-based wound healing response, responsible for observed MNC-

efficacy2 (Vagnozzi et al., 2020). Completed phase I trials of MNC treatment for HLHS patients 

have demonstrated this therapy to be safe and feasible (Burkhart et al., 2019; Qureshi et al., 

2017). 

 Third, autologous CDCs have demonstrated promise in phase I and II trials for single 

ventricle patients (Ishigami et al., 2017; Ishigami et al., 2015). CDCs were developed in 2007 

and are comprised of a heterogenous population of cells derived from cardiac tissue explants. 

 
1 Recognized primary trans differentiation of MSCs include adipocytic, chondrocytic, or osteocytic lineages. 
Differentiation into cardiomyocytes in vivo remains controversial. Malliaras K and Marban E (2011) Cardiac cell 
therapy: where we've been, where we are, and where we should be headed. Br Med Bull 98:161-185. 
2 CPCs were also implicated in this study but were not included in most timepoints of the ischemia/reperfusion 
animal study. CPCs were only included in experiments testing differentiation into endothelial cells/cardiomyocytes 
and for functional effects 2 weeks injury. 
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CDCs are CD105+/CD45- and multipotent, differentiating into cardiomyocytes, endothelial 

cells, and smooth muscle cells. The first CDC trial, CADUCEUS, showed autologous CDC 

delivery were safe, feasible, and regenerative in adult patients with left ventricular dysfunction 

after myocardial infarction. These results spurred interest and resulted in the TICAP, PERSEUS, 

and APOLLON trials for single ventricle pediatric patients. A drawback to CDCs is the potential 

for populations to include fibroblasts. Given the demonstrated regenerative potential of CDCs, 

current and future work involves optimizing more translatable approaches. Ongoing studies 

investigating the use of the cell-free alternative, CDC-derived EVs, show promise (Marban, 

2018).  

 Finally, our group is directly involved in the CHILD clinical trial examining use of 

autologous CPCs for HLHS during the stage II bi-directional Glenn operation. The subsequent 

section describes the design and rationale of this trial. Overall, CPCs represent another cardiac-

derived cell option that is more homogenous than CDCs. CPCs are isolated via c-kit and are self-

renewing, endothelial progenitors. Unfortunately, CPC research has been tainted by scientific 

misconduct and initial research indicating differentiation of CPCs into cardiomyocytes has been 

retracted (Bolli and Tang, 2022). However, several preclinical and clinical studies continue to 

demonstrate the therapeutic potential of CPCs and have now attributed their efficacy to the 

&3&V¶�VHFUHWRPH�(Agarwal et al., 2017; Saha et al., 2019; Sharma et al., 2017; Trac et al., 

2019a). Discussed in the following section, CPC-EVs are packaged with pro-reparative 

molecules and represent an attractive, alternative cell-free therapy. 

1.2.2 CHILD clinical trial 

As mentioned previously, mortality for HLHS patients remains high and is largely attributed to 

right ventricle dysfunction. Preclinical rat and swine studies investigating the use of CPCs in a 
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pulmonary artery banding model²a model of right ventricular dysfunction²have shown that 

CPCs may attenuate cardiac dysfunction, increase angiogenesis, decrease wall thickness, and 

reduce fibrosis (Agarwal et al., 2016; Wehman et al., 2017). The CHILD clinical trial 

(NCT03406884: autologous cardiac stem cell injection in patients with hypoplastic left heart 

syndrome) was designed to test the safety, feasibility, and potential efficacy of autologous CPC 

use in HLHS infants. Of note, the CPCs used in the trial are isolated from otherwise discarded 

right atrial appendage tissue, collected the stage I Norwood procedure. Phase I of CHILD is now 

complete, and phase II is currently enrolling HLHS patients to test efficacy of the CPC therapy 

(Kaushal et al., 2022). 

 The CHILD trial was designed to leverage (1) the potency of neonatal CPCs, and (2) the 

adaptive myocardia of young HLHS patients. First, several preclinical studies have demonstrated 

that CPCs derived from neonate patients (nCPCs) outperform cells derived from adults (aCPCs) 

(Agarwal et al., 2016; Mishra et al., 2011; Sharma et al., 2017; Simpson et al., 2012). Analysis of 

the right atrial cardiac tissue show that CPC density declines with age: 9% in neonates and 3% in 

older children (Mishra et al., 2011). Additionally, nCPCs are shown to be more reparative than 

aCPCs due to their retention of pluripotent gene expression and enhanced secretion of 

cardioprotective factors, including EVs (Sharma et al., 2017). In the CHILD trial, biopsies are 

collected from patients ~ 1 week old, and the cells used in trial may represent the most reparative 

CPC population possible. Second, HLHS infants may represent an ideal candidate for cardiac 

cell therapy, as their myocardium may be more adaptive and responsive. Previous research has 

shown that cardiomyocyte renewal and cell activity reduce with age (Bergmann et al., 2009; 

Mollova et al., 2013). Therefore, the delivery of nCPCs to HLHS infants may represent an ideal 

cardiac cell therapy strategy.  
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 For the modeling work described in chapter four, we grew and expanded CPCs from the 

first seven lead-in phase I patients. We collected EVs from the conditioned media of cultured 

CPCs and sequenced both the patient-derived CPCs and their respective EVs. For now, we have 

constructed models combining CPC-EV RNA sequencing data with cardiac-relevant in vitro 

experimental outcomes. In the future, we aim to correlate these in vitro outcomes to the clinical 

cardiac functional outcomes (e.g. right ventricle ejection fraction, stroke volume) to determine 

the most useful and representative in vitro experiments, as well as the EV RNAs driving 

therapeutic efficacy.  

1.3 Extracellular vesicles  

The work contained in this section is adapted from our 2020 review published in Nanomedicine. 
Bheri S, Hoffman JR, Park HJ, Davis ME. Biomimetic nanovesicle design for cardiac tissue 
repair. Nanomedicine (Lond). 2020 Aug;15(19):1873-1896. doi: 10.2217/nnm-2020-0097. 

Extracellular vesicles (EVs) are lipid bilayer vesicles, containing protein and nuclear cargo (Saha 

et al., 2019). EVs are released from all cell types and the cell VRXUFH�LV�UHIHUUHG�WR�DV�WKH�µSDUHQW�

FHOO¶��The International Society of Extracellular Vesicles classifies EVs on physical 

characteristics including size, density, and origin (Thery et al., 2018). Exosomes and 

microvesicles are derived from viable cells, whereas apoptotic vesicles are derived from 

apoptotic bodies (Figure 1-3). Within these classes, there exists large heterogeneity and no 

current consensus markers.  
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Figure 1-3. Schematic of subpopulations of extracellular vesicles. 
Exosomes and microvesicles are derived from viable cells. Apoptotic vesicles are derived from apoptotic cells. Exosomes are the 
smallest vesicles surrounded by a lipid bilayer membrane with lipid rafts, tetraspanins, immunoregulatory proteins, membrane 
trafficking proteins, integrins and flotillins embedded in it. Microvesicles are slightly larger than exosomes and apoptotic bodies 
can have the largest vesicles. Of the three types of extracellular vesicles, exosomes are known to be cardio protective and 
reparative. (Bheri, Hoffman, Park, Davis, 2020). 

  Small EVs, historically referred to as exosomes, are less than 150-nm vesicles, contain 

protein and/or nuclear cargo, and are the most well-studied type of EV. These vesicles form in 

the cytoplasm from the inward budding of endosomes. They were initially discovered in sheep 

reticulocytes and were labeled as nothing more than carriers for waste export (Johnstone et al., 

1987). After several decades of EV-related research, they have now been accepted as major 

players in paracrine signaling and potential biomarkers for several disease (Barile et al., 2017a). 

Small EVs traffic mRNA, miRNA, DNA, and proteins between cells. As cell-free components, 

these vesicles are often enriched in specific cargo, as compared to their parent cells, allowing 

EV-based therapies to become a potential alternative to cell therapies (Haraszti et al., 2019). 

 Next, medium or large EVs, historically referred to as microveicles, range from 100 to 

�����QP�LQ�VL]H��7KHVH�(9V�ZHUH�RULJLQDOO\�WKRXJKW�WR�EH�µGXVW�material¶�derived from platelets 

and their role in cellular interaction was only uncovered more recently (Wolf, 1967). 
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0LFURYHVLFOHV�IRUP�IURP�WKH�RXWZDUG�EXGGLQJ�RI�D�FHOO¶V�SODVPD�PHPEUDQH�(Williams et al., 

2007). Like small EVs, they also play a role in cell-cell communication with the transport of 

miRNA, mRNA, DNA, and proteins between cells (Camussi et al., 2010). The precise 

differences between small EVs and microvesicle-mediated transport are still unclear, but being 

larger in size, microvesicles can successfully carry plasmid DNA (Lamichhane et al., 2015). 

Despite this, microvesicles remain poorly explored as a therapeutic for tissue repair and 

regeneration.  

 Finally, medium or large EVs produced during apoptosis, referred to as apoptotic 

vesicles, can range in size from 50 nm to 10 µm, depending on the parent cell type. Apoptotic 

vesicles are formed by indiscriminate blebbing of a cell membrane during apoptosis (Saraste and 

Pulkki, 2000). Consequently, apoptotic vesicle cargo typically consists of parent cell remnants, 

including cytoplasm, organelles, and nuclear content. Apoptotic vesicles could play an important 

role in regulating local disease microenvironments as the frequency of cellular apoptosis is 

higher in disease states. For example, apoptotic vesicles from mature endothelial cells induced 

differentiation in endothelial progenitor cells (Hristov et al., 2004). Nonetheless, the detailed role 

of apoptotic vesicles and their cargo in tissue homeostasis and repair remains unclear.  

1.3.1 Biogenesis 

Small EV biogenesis and release occurs through a series of endocytic steps: inward budding of 

the plasma membrane and formation of the early endosome; transformation of the early 

endosome into the late endosome; inward budding of the late endosome or multivesicular body 

(MVB); and fusion of the MVB with the plasma membrane for release of small EVs into the 

extracellular space (Figure 1-4). This generalized process results in EV release and subsequent 
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signaling. However, the MVB may also fuse with lysosome, instead of the plasma membrane, 

resulting in vesicle degradation (Pan et al., 1985; Tian et al., 2013). 

 
Figure 1-4. Small EV biogenesis and uptake. 
Small EV biogenesis may occur in the parent cell (orange) through a series of endocytic steps, which conclude with EV release from the MVB. 
Several protein complexes (not shown) are involved at each stage of biogenesis (e.g., ESCRT proteins). During inward budding, some membrane 
proteins and lipids are also incorporated (not shown). Once EVs are released into the extracellular fluid, they get trafficked to the recipient cell 
(blue). Here, EV uptake occurs through one of many methods: macropinocytosis, receptor±ligand mediated uptake, lipid raft mediated uptake 
(including clathrin-coated pits and caveolin) or direct fusion. In the recipient cell, the EV is either degraded in the lysosome or activates 
intracellular signaling. ESCRT: Endosomal sorting complex required for transport; ILV: Intraluminal vesicle; MVB: Multivesicular body. 
(Bheri, Hoffman, Park, Davis, 2020). 

Each step in the biosynthesis of small EVs allows the vesicles to acquire certain cargo 

and membrane components. EVs contain membrane proteins, including tetraspanins and 

LQWHJULQV��WKDW�RULJLQDWH�IURP�WKH�FHOO¶V�SODVPD�PHPEUDQH��:KHQ�WKH�LQLWLDO�HQdocytosis of this 

membrane occurs, these proteins become incorporated into the early endosome and are carried 

along during the formation of EVs (Stoorvogel et al., 1991). Additionally, during the process of 

inward budding of the late endosomal membrane, cytosolic proteins, RNAs and other molecules 
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are encapsulated, forming cargo-loaded ILVs inside the MVB. These ILVs are eventually 

released as small EVs ZKHQ�WKH�09%�IXVHV�WR�WKH�FHOO¶V�SODVPD�PHPEUDQH (Jaiswal et al., 2002). 

Once released into the extracellular space, EVs may be taken up by recipient cells via 

endocytic processes including lipid-raft-based uptake (including clathrin-coated pits, and 

caveolin), direct membrane fusion, macropinocytosis or through receptor±ligand interactions 

(Figure 1-4) (Costa Verdera et al., 2017; Hemler, 2003; Svensson et al., 2013; Vinas et al., 

2018). Furthermore, there are known membrane proteins that play a role in the uptake process. 

Tetraspanins are highly enriched in EV membranes and are involved in cell fusion and 

penetration events (Hemler, 2003). Additionally, tetraspanin-rich domains are implicated in 

sorting receptors and intracellular molecules into EVs. Heat-shock proteins (including HSP70 

and HSP90) are implicated in antigen binding and presentation in exosomes, and annexins and 

Rab play a part in membrane fusion (Gastpar et al., 2005; Jeppesen et al., 2019). 

Finally, once internalized by recipient cells, EVs either remain functional and transfer 

materials into recipient cells or are shuttled to the lysosome for degradation (Tian et al., 2013). In 

the former case, EVs fuse to endosomes, allowing for horizontal genetic transfer of the cargo to 

WKH�UHFLSLHQW�FHOO¶V�F\WRSODVP�(Pegtel et al., 2010). Here, the delivered intravesicular molecules 

can be involved in epigenetic reprogramming of recipient cells through the delivery of proteins, 

lipids and RNAs. Nonetheless, the effects of EVs are not limited to their cargo; EVs may also 

affect recipient cells via receptor±ligand-mediated signaling and the transfer of receptors to the 

cell surface (Al-Nedawi et al., 2008). It is evident that EVs are highly tuned to be efficient 

messengers between cells and regulating such nanovesicles could be impactful for cell therapies. 
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1.3.2 Structure and function 

An EV can be split into two main regioQV��WKH�PHPEUDQH�DQG�WKH�LQWHUQDO�FRUH��)LUVW��WKH�(9¶V�

bilayer membrane is composed predominately of amphiphilic molecules, lipid rafts, and 

membrane proteins. The lipid classes typically found in an EV membrane include cholesterol, 

sphingomyelin, phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine 

(Llorente et al., 2013)��7KH�OLSLG�GLVWULEXWLRQ�LQ�WKH�ELOD\HU¶V�LQQHU�DQG�RXWHU�OHDIOHWV�LV�

asymmetric with sphingomyelin and phosphatidylcholine enriched in the outer leaflet. The 

orientation and distribution of the lipids is associated with their packing parameter, dependent on 

the shape of the fatty acid tails (Llorente et al., 2013). Previous research has shown that 

membrane lipids play an important role in vesicle trafficking (Huijbregts et al., 2000; Ikonen, 

2001). Interestingly, the ratio of lipid classes in EVs is dependent on cellular microenvironment 

conditions and is different to that of parent cells, suggesting active packing of lipids (Haraszti et 

al., 2019). The exact rationale and advantage of certain lipid enrichments in EVs remains 

unclear.  

EV proteins may be found on the membrane or in the core. EV membrane proteins 

include tetraspanins, immunoregulatory proteins, membrane trafficking proteins, integrins, and 

flotillins. EV core proteins include chaperones, cytoskeleton proteins, enzymes, signal 

transduction proteins, and exosome biogenesis proteins (Conigliaro et al., 2017). Small EVs 

formed through the endocytic process acquire general vesicle proteins (EV markers), as well as 

parent cell-specific proteins (origin markers). Common EV markers include tetraspanins CD9, 

CD63, and CD81, as well as ALIX, TSG101, and HSP70 (Thery et al., 2018). EV marker 

proteins may serve important roles in the biogenesis of EVs. ALIX and TSG101 are members of 

the endosomal sorting complex required for transport, the four-complex mechanism involved 
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with cargo sorting and EV biogenesis (Li et al., 2018). EV origin markers tend to be lineage and 

disease-specific, dependent on the proteins expressed on the parent cell. For example, EVs 

derived from hypoxic cardiomyocytes often include HSP60. Like EV lipids, EV proteins are 

present in different ratios than parent cells, suggesting selective or active protein loading 

(Haraszti et al., 2016).  

 EV nucleic acids may be found in the core. In fact, a large part of exosome cargo consists 

of nucleic acids such as miRNA, mRNA, long noncoding RNA (lncRNA), and DNA. Nucleic 

acids are loaded into EVs from the cell cytoplasm during the formation of intraluminal vesicles. 

EV nucleic cargo composition is highly dependent on parent cell state and milieu (Agarwal et al., 

2017; Gray et al., 2015). 

1.3.3 Role of stem/progenitor cell-derived extracellular vesicles in cardiac repair 

Cell therapy studies have shown that reparative effects may be attributed to paracrine 

signaling²intercellular communication wherein cell-free components are trafficked to nearby 

cells (Bao et al., 2017; Barile et al., 2017a; Lee et al., 2012; Ong et al., 2015). In addition to 

soluble growth factors and cytokines, these signals include EVs. EV cargo is dependent on 

parent cell type and environment, and stem/progenitor cell-derived EVs have been shown to 

mimic the tissue reparative effects of their parent cells. Studies have shown that inhibition of EV 

secretion reduces the effectiveness of cardiac cell therapy (Kishore and Khan, 2016; Lang et al., 

2016; Marban, 2018). Combined with the previously mentioned disputes surrounding stem cell 

differentiation potential, transplanted cells also exhibit low retention. These limitations, 

combined with the lack of immunogenicity associated with EVs, make stem and progenitor cell-

derived EVs an attractive alternative strategy to cardiac cell therapy. 
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A few studies of stem/progenitor cell EV cargo have identified beneficial molecules and 

follow up preclinical trials are underway directly overexpressing these RNAs. A handful of EV 

RNA involved in cardiac repair are listed in Table 1-3. Importantly, we and others have shown 

that it is groups of covarying EV cargo molecules, rather than single molecules, which contribute 

to repair in vivo. Given the inherent heterogeneity of EV cargo and dependency on the parent cell 

niche, we need more quantitative studies to understand the full landscape of stem/progenitor cell-

derived EV-induce cardiac repair. 

Table 1-3. Representative EV RNAs involved in cardiac repair. 

RNA Cell source Outcome 
miR-146a CDC Promote cardiac regeneration and enhance sytosolic 

function in mouse model of myocardial infarction 
(Ibrahim et al., 2014)  

miR-21a-5p MSC Reduce pro-cell death target genes; cardioprotective 
(Luther et al., 2018) 

miR-125b-5p MSC Protection against ischemia-reperfusion injury  
(Varga et al., 2014) 

miR-126 and 
miR-130a 

CD34+ 
hematopoietic 
stem cells 

Promote angiogenesis  
(Sahoo et al., 2011) 

miR-292 CPC Anti-fibrotic 
(Gray et al., 2015) 

miR-451 CPCs from 
cardiospheres 

Protection against ischemia-reperfusion injury  
Reduce fibrotic effect in cardiac fibrosis, promote 
angiogenesis, increase cardiomyocyte survival 
(Chen et al., 2013b; Zhang et al., 2010) 

PI3K/AKT 
pathway-
associated mRNA 

Endothelial 
progenitor cell 

Increased endothelial cell angiogenesis  
(Deregibus et al., 2007) 

MALAT1 
lncRNA 

UCB-MSC Reduced age-induced cardiac dysfunction 
(Zhu et al., 2019) 

NEAT1 lncRNA MSC Inhibit cardiomyocyte apoptosis 
(Chen et al., 2020) 
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1.4 Machine learning ± unsupervised vs. supervised learning 

An unfortunate consequence of next-generation sequencing (NGS) experiments is that the 

number of variables (p) far exceeds the number of samples (n). In the context of bulk total 

RNAseq, >15,000 RNAs are measured for typically a handful of samples. Considering we cannot 

view or model thousands of dimensions, or variables, machine learning strategies can help us 

make sense of large data sets, reducing the complexity so that we may visualize and interpret 

results. Fortunately, the collinearity of variables, inherent to sets as large at RNAseq data, allow 

one to implement machine learning techniques. The overall goal of machine learning is to build 

or train models to make decisions without being explicitly being told to do so. There are two 

main types of machine learning methods: unsupervised learning and supervised learning (Figure 

1-5)3. Unsupervised learning involves learning patterns and structure from unlabeled, or 

uncategorized, data. Supervised learning involves learning functions that map inputs to outputs 

based on labeled data. 

 
Figure 1-5. Machine learning: unsupervised and supervised learning.  
Unsupervised learning strategies utilize unlabeled data and identify structures and patterns. Supervised learning strategies utilize 
labeled data and generate predictions. 

 
3 Two other types include semi-supervised learning and reinforcement learning. As the name suggests, semi-
supervised learning (ex. low density separation models) combines unlabeled data with a small amount of labeled 
data, a mixture of unsupervised and supervised learning. In reinforcement learning (ex. Monte Carlo methods, 
Heuristic methods) agents take action to maximize reward in a feedback system.  

Machine 
Learning

Supervised 
Learning

Labeled data Æ develop 
predictive model

Unsupervised 
Learning

unlabeled data Æ group, 
interpret, visualize

Dimension 
Reduction

Clustering

Classification

Regression
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1.4.1 Dimension reduction and clustering 

Unsupervised learning can be broken into two main forms: dimension reduction and clustering. 

A main goal of dimension reduction strategies is to project variables into lower dimensional 

space, either transforming data in a linear or nonlinear manner. The most commonly used 

method in bioinformatics is principal component analysis (PCA). In PCA, variables are linearly 

mapped into lower dimensional space to describe, or represent, the greatest amount of variance. 

The principal components are eigenvectors of the covariance matrix²the square matrix holding 

the joint variability between each pair of variables. The PCA algorithm computes components 

orthogonal to the previous component, thereby maximizing the variance described by each 

subsequent component. In bioinformatics, data are typically displayed in 2 or 3 dimensional plots 

with each axis representing a principal component. PCA allow us to visualize the similarity of 

VDPSOHV�DV�ZHOO�DV�GHWHUPLQH�WKH�³ZHLJKW´�RU�FRUUHODWLRQ�RI�HDFK�YDULDEOH�DQG�HDFK�SULQFLSDO�

component. Other examples of dimensionality reduction methods include t-distributed stochastic 

neighbor embedding (t-SNE) and uniform manifold approximation and project (UMAP), 

nonlinear techniques often used in single cell RNA sequencing analyses. 

Clustering involves grouping similar objects. In bioinformatics, clustering algorithms can 

reveal co-expressed genes or identify similar samples. Some clustering algorithms include 

hierarchical clustering, k-means or centroid-based clustering, distribution-based clustering, and 

density-based clustering. As the name suggests, hierarchical clustering seeks to build a hierarchy 

RI�FOXVWHUV��,Q�DJJORPHUDWLYH�³ERWWRP-XS´�DSSURDFKHV��items start in their own cluster and pairs 

RI�FOXVWHUV�DUH�PHUJHG��,Q�GLYLVLYH�³WRS-GRZQ´�DSSURDFKHV��DOO�LWHPV�EHJLQ�LQ�RQH�FOXVWHU�DQG�

clusters are split recursively. Hierarchical clustering can be used in pathway analyses to 

understand gene set enrichment in similar gene ontology terms (Harris et al., 2004). K-means 
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clustering involves randomly setting k-number of central vectors, assigning items to a center, and 

iteratively updating the centers to minimize the distances of items. In k-means clustering, users 

may set the number of clusters to identify in an RNA sequencing data set and determine k-many 

clusters of similarly expressed genes (Kolde, 2012). Finally, shared nearest neighbor clustering is 

an example of density-based clustering algorithm. Shared nearest neighbor clustering is 

implemented in the Seurat package, used to identify cell clusters in single cell RNA sequencing 

data (Satija et al., 2015).  

1.4.2 Weighted correlation network analysis 

Weighted correlation network analysis (WGCNA) is an unsupervised learning algorithm 

originally designed to provide a user-friendly correlation network method. WGCNA has many 

applications, but the focus of this approach is the construction of co-expression gene networks. 

WGCNA was written as an R package and designed for use in microarray experiments that 

suffer from the p>n problem (Langfelder and Horvath, 2008). WGCNA achieves multiple goals, 

it (1) finds clusters of highly correlated genes, and (2) summarizes clusters with eigengenes, or 

hub genes, to (3) relate clusters to sample traits (e.g. disease status, age, survival time, etc.) and 

(4) relate clusters to each other. 

WGCNA begins by computing the adjacency matrix of the dataset and then transforming 

it to form the topological overlap matrix (TOM). Then, the corresponding dissimilarity matrix, 1-

TOM, is used to perform hierarchical clustering and detect co-expression clusters. Cluster 

eigengenes are computed and used to test correlation to sample traits. Unlike traditional 

differential expression analysis, WGCNA is free from the multiple comparisons problem: the 

approach forms a discrete number of clusters before testing for eigengene significance, or the 

correlation between clusters and sample traits. For example, in chapter four, we constructed a 
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network and bin >12,000 RNAs into 33 clusters. These clusters were then tested for correlation 

to in vitro outcomes. Once a network is formed and clusters are determined, gene clusters may 

then be related to biological processes (e.g. gene ontology) with pathway analysis.  

1.4.3 Regularized regression models  

Supervised learning can be broken into classification and regression-type problems. In 

classification tasks, models assign labels to a set of data. A classic example includes identifying 

healthy controls vs. diseased samples. Classification algorithms include decision trees, naïve 

Bayes classifiers, and logistic regression, among others. For the purposes of this work, I will pay 

attention to regression methods to estimate relations between RNA sequencing data and 

experimental or clinical outcomes. For example, this dissertation is concerned with estimating 

improvements in patient ejection fraction rather than classifying patients. In fact, phase I of the 

CHILD clinical trial does not include a control patient group. 

Within regression algorithms, the simplest type, ordinary least-squares linear regression, 

is ill-suited for RNA sequencing data sets given that p>n; this strategy yields infinitely many 

solutions! To address this issue, one may implement regularized, or penalized, regression 

models, including least absolute selection and shrinkage (lasso) regression, ridge regression, and 

elastic net regression. Regularized regression involves invoking a penalty to minimize the weight 

of variables. All regularized regression models use hyperparameters to control the learning 

process. Hyperparameters are set a priori by the user but may be tuned using cross validation to 

minimize error. 

Lasso regression shrinks variable coefficients towards 0 and allows for coefficients to 

equal 0. Variables with a coefficient equal to 0 are dropped from the multiple regression model, 

and in this way, lasso performs feature selection and often creates sparse models. Lasso uses L1 
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regularization; it adds a penalty that is equal to the absolute value of the magnitude of the 

coefficients. The hyperparameter used in lasso regression, Ȝ, dictates the amount of shrinkage. 

When Ȝ = 0, all variables are considered, and linear regression is performed. When Ȝ Æ  �, all 

coefficients are set to 0 and no variables are considered. As Ȝ increases, bias increases (under-

fitting); As Ȝ decreases, variance increases (over-fitting). As with all regularized regression 

models, the goal is to find an optimized value for Ȝ that balances bias and variance. Lasso 

regression is a particularly useful approach for problems with only a few informative or 

predictive variables, cases where models will benefit from dropping variables entirely. However, 

a considerable drawback of this method is that it in problems with collinear variable sets, lasso 

will retain one variable and drop the others. In this way, information may be lost. Pairing lasso 

with other methods like WGCNA and ridge regression helps bolster and validate lasso results. 

Ridge regression shrinks variable coefficients towards 0 as well, but coefficients cannot 

equal 0. In ridge regression, variables are not dropped, extreme coefficients are only minimized. 

Ridge regression uses L2 regularization which adds a penalty equal to the square of the 

magnitude of the coefficients. Ridge regression also has one hyperparameter, Ȝ, controlling 

shrinkage in a similar manner as lasso. Ridge regression is useful when predicting power is 

spread over many variables (typically > n). In this situation, explained variance is not lost by 

dropping variables.  

Finally, elastic net regression combines lasso and ridge, using both L1 and L2 

regularization. Elastic net has two hyperparameters: Ȝ controls shrinkage (similar to lasso and 

ridge), and ܤ�FRQWUROV�WKH�UDWLR�RI�/��DQG�/��SHQDOWLHV��:KHQܤ�� ����RQO\�/��ULGJH�UHJUHVVLRQ�LV�

XVHG��:KHQܤ�� ����RQO\�/��ODVVR�LV�XVHG��(ODVWLF�QHW�LV�D�PRUH�FRPSOH[�DOJRULWKP and thus more 
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computationally intensive. Elastic net requires testing many combinations of Ȝ and ܤ�WR�PLQLPL]H�

error. 

1.4.4 Partial least squares regression  

Partial least squares regression (PLSR) is a method that achieves both dimension reduction and 

regression. Using a latent variable approach, PLSR projects both the X and Y data into new 

spaces to model the covariance between the two. Simply put, PLSR creates components in X 

space that maximize the variance in the Y space. In this way, PLSR can be thought as a hybrid of 

multiple linear regression (correlating X and Y) and PCA (capturing maximum X variance). This 

method is well suited for bioinformatics due to the dimension reduction aspect of the algorithm: 

X variables in RNAseq data are highly collinear and are captured well in lower dimensional 

space. The general form for PLS is written in below:  

�� ൌ ���் � ��� 

�� ൌ ���் �ܧ� 

In these equations, X is a matrix of predictor variables of size n x p (samples x RNA), and 

Y is a matrix of response variables of size n x m (samples x outcomes/y). E represents the error 

term for X and Y. P and Q are the loading matrices for X and Y. T and U are the score matrices 

(or latent variables) of X and Y. T and U can be written as follows:  

� ൌ �� 

� ൌ �� 

Here, W and C are the weight matrices that can be computed by singular value 

decomposition (a quick and efficient method to factorize matrices). The goal is to maximize to 

the covariance of T and U, or the scores of X and Y. There are a few different algorithms for 
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PLSR including, nonlinear iterative partial least squares (NIPALS), orthogonal projections to 

latent structures, and the statistically inspired modification of partial least squares (SIMPLS). 

The original algorithm, NIPALS is numerical and requires matrix deflation, a computationally 

intensive technique whereby the covariance matrix is modified to remove eigenvectors. On the 

other hand, the SIMPLS algorithm is a statistical method (similar to PCA) with the objective to 

maximize covariance. SIMPLS does not require matrix deflation and derives T directly as linear 

combinations of X variables. SIMPLS solutions are merely linear combinations of the original 

variables and are thus more easily interpretable (De Jong, 1993). The work presented in this 

dissertation uses 6,03/6�DV�LW�KDQGOHV�PXOWLYDULDWH�<¶V�DQG�LV�WKH�PRVW�HIILFLHQW� 

As with other regression models PLSR has a hyperparameter to tune: the number of 

components in the model. Selecting the number of components is a matter of balancing 

performance with complexity: the best, most robust models do not over nor underfit! Identifying 

the number of components to include can be achieved by using cross-validation techniques and 

examining error measurements, like root-mean-square error (RMSE).  

1.4.5 Random forest regression 

Random forest is an ensemble machine learning method4 that can perform classification and 

regression. Random forests are constructed from several decision trees, a method with a 

flowchart-like structure which maps decisions and outcomes. The basic steps of random forest 

include (1) random sampling features (RNAs) and data points (experimental samples), (2) 

constructing decision trees for each random sample and computing predictions for each, and (3) 

aggregating results to take the mean or median of the tree outputs (Figure 1-6). By aggregating 

 
4 As the name suggests, ensemble methods combine multiple models to improve predictability and produce one 
optimal model. 
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several models, random forest constructs a better model with less bias. Random forest can also 

model nonlinear relationships, a distinct advantage over the aforementioned regularized 

regression methods.  

 

Figure 1-6. Random forest diagram. 
In the ensemble learning technique, random forest regression, decision trees are generated from random samples of the dataset. 
Decision trees are ultimately aggregated to form final predictions. 

 Nevertheless, there are drawbacks associated with this method. Random forest is a 

³EODFNER[´�DSSURDFK�WKDW�JLYHV�UHDVRQDEOH�SUHGLFWLRQV�EXW�KDV�OLWWOH�LQWHUSUHWDELOLW\��$GGLWLRQDOO\��

random forest has several hyperparameters which need to be tuned with cross validation. The 

QXPEHU�RI�YDULDEOHV�UDQGRPO\�VDPSOHG�DW�HDFK�WUHH�QRGH��GHQRWHG�µPWU\¶�LQ�WKH�5�UDQJHU�

package) is one of the most important parameters to tune. As a rule of thumb, this parameter may 

be set to the square root or one-third of the number of total features for classification problems 

and regression problems, respectively. For noisy data, this parameter may be set higher to 

increase the probability of sampling an informative variable that is predictable; Increasing this 

parameter decreases bias. However, as with all hyperparameter tuning, increasing this parameter 
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(and decreasing bias) also increases variance. Additional hyperparameters involved in random 

forest include the number of decision trees, the maximum depth of the individual trees, criteria to 

split trees (e.g. error estimates), etc. Although random forest contains many more 

hyperparameters, it is generally resilient to over-fitting due to the ensemble nature of aggregating 

many models.  

1.5 Research objectives 

The purpose of this dissertation research was to investigate patient variability of CPCs for the 

improvement of cardiac cell therapy. Previous research has shown that CPC reparative function 

may be attributed to the release of EVs. Here, we explore the two main sources of variability, 

likely responsible for mixed clinical results: CPCs and CPC-derived EVs (CPC-EVs). We 

analyzed transcriptomic data (bulk and single cell) and use machine learning regression models 

to link our RNAseq data to functional outcomes. The subsequent dissertation chapters are 

designed to explore (1) differences between neonate- and child-derived CPCs at the single cell 

level, (2) bulk transcriptomic differences between patient matched CPCs and CPC-EVs, and (3) 

the relationship between CPC-EV cargo and in vitro, cardiac-relevant outcomes.  

Chapter 2 is a submitted manuscript, co-authored with Arun Jayaraman, which identifies 

differences between neonate- and child-derived CPCs with scRNAseq. In this work, we observed 

a more heterogenous population in child samples and uncovered pro-fibrotic and inflammatory 

cell clusters, enriched with child CPCs. We identified markers of the pro-fibrotic cell cluster and 

validated their expression with flow cytometry. Chapter 3 is a published manuscript in Genomics 

that investigates the differences between patient matched CPCs and CPC-EVs. In this work, we 

identified miRNAs involved in cardiac development and cell proliferation, which may be 

selectively exported to EVs. We used data mining to compare enriched CPC-EV miRNAs to 
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EVs derived from other cell types and distinguish generic EV-biogenesis related miRNAs from 

potentially pro-reparative miRNAs. We also examined bulk transcriptomic differences in 

neonate- and child- derived CPCs with competitive endogenous RNA networks and discovered 

overall enrichment of non-coding RNAs in child CPCs. Finally, chapter 4 is a manuscript 

preparation which uses various machine learning regression methods to link CPC-EV RNAseq to 

experimental outcomes. This work contains samples from the CHILD clinical trial and the 

overall goal is build an in vitro model, predictive of clinical outcomes. 
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2 Chapter 2: Single cell RNA sequencing reveals distinct c-kit+ progenitor 
cell populations 

 
Arun R. Jayaraman*1, Jessica R. Hoffman*1,2, Michael E. Davis1,2,3 
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2.1 Abstract 

Human c-kit+ cardiac progenitor cells (CPCs) have demonstrated efficacy in preclinical trials for 

the treatment of heart failure and myocardial dysfunction. Unfortunately, large variability in 

patient outcomes and cell populations remains a problem. Previous research has demonstrated 

that the reparative capacity of CPCs may be linked to the age of the cells: CPCs derived from 

neonate patients increase cardiac function and reduce fibrosis. However, age-dependent 

differences between CPC populations have primarily been explored with bulk sequencing 

methods. In this work, we hypothesized that differences in CPC populations, and subsequent cell 

therapy outcomes, may arise from differing cell subtypes within donor CPC samples. We 

performed single cell RNA-sequencing on four neonatal CPC (nCPC) and five child CPC 

(cCPC) samples. Subcluster analysis revealed cCPC-enriched clusters upregulated in several 

fibrosis- and immune response-related genes. Module-based analysis identified upregulation of 

chemotaxis and ribosomal activity related genes in nCPCs and upregulation of immune response 

and fiber synthesis genes in cCPCs. Further, we identified versican and integrin alpha 2 as 
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potential markers for a fibrotic cell subtype. By investigating differences in patient-derived CPC 

populations at the single-cell level, this research aims to identify and characterize CPC subtypes 

to better optimize CPC based therapy and improve patient outcomes. 

2.2 Introduction 

Cell therapy has emerged as a promising therapeutic strategy for the treatment of disease, 

including auto-immune disease, blood disorders, cancer, neurodegenerative disease and 

cardiovascular disease. Various tissue-specific cells, blood cells, and stem cells have been 

clinically approved, including the use of autologous mesenchymal stem (or stromal) cells for 

acute myocardial infarction.  Unfortunately, cell therapy has been hampered by mixed results, in 

part due to high cell heterogeneity. Unlike small molecule drugs, cells are highly variable, 

adaptive to biological cues, and complex in their mechanisms of action. Inconsistencies in cell 

therapy trials may be explained by batch-to-batch or patient-to-patient variation. We and others 

have demonstrated that cell donor characteristics affect the phenotype and resulting efficacy of 

cells. Age and disease have been shown to negatively impact cell efficacy, reducing the 

effectiveness of cardiac-derived progenitor cells (Agarwal et al., 2016; Sharma et al., 2017; 

Shoja-Taheri et al., 2019), adipose stem cells (Efimenko et al., 2014; Jumabay et al., 2015), and 

mesenchymal stem cells (Fan et al., 2010; Khong et al., 2019; Kim et al., 2015; Stolzing et al., 

2008), among others (Vasa et al., 2001). Given, the high heterogeneity of cell populations, 

HPSKDVLV�KDV�EHHQ�SODFHG�RQ�LGHQWLI\LQJ�PHFKDQLVPV�RI�UHSDLU�DQG�PDUNHUV�RI�³JRRG´�FHOOV��

Recent studies have leveraged single cell RNA-sequencing to identify subpopulations of cells 

which may be driving therapeutic efficacy. By identifying potential cell surface markers of 

reparative cells, researchers will be able to isolate and/or enrich for optimal cell populations. 
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 Currently, autologous human cardiac-derived c-kit+ stromal cells (CPCs) are under 

investigation in the CHILD clinical trial for the treatment of hypoplastic left heart syndrome, a 

critical congenital heart disease (NCT03406884).(Kaushal et al., 2022) Preclinical results 

indicate CPCs induce repair in damaged myocardium.(Agarwal et al., 2016; Saha et al., 2019; 

Sharma et al., 2017; Tang et al., 2010) Additionally, recent results from the phase II CONCERT-

HF trial (NCT02501811) suggest that a combination of CPCs and MSCs improve clinical 

outcomes from patients with ischemic heart failure.(Bolli et al., 2021) Previous research 

investigating CPC heterogeneity has demonstrated that cell culture conditions (e.g. hypoxia 

(Hernandez et al., 2018; Tang et al., 2009; Yan et al., 2012) and cell aggregation (Trac et al., 

2019b)), as well as donor age (Agarwal et al., 2016) and disease status affect CPC composition 

and therapeutic potential. We and others have shown that CPC reparative outcomes may be 

linked to age: CPCs derived from neonate patients (nCPCs) outperform cells derived from older 

patients (Agarwal et al., 2016; Fuentes et al., 2013; Hernandez et al., 2018; Mishra et al., 2011; 

Shoja-Taheri et al., 2019). For example, nCPCs possess greater anti-fibrotic signaling, reduced 

immune response, and increased chemotaxis capabilities, in comparison to child CPCs 

(cCPCs)(Agarwal et al., 2016). 

 Nevertheless, differences among CPC populations have been primarily investigated using 

bulk sequencing methods which treat patient-derived cells as a homogenous sample. Here, we 

hypothesized that variance in patient outcomes may be driven by differences in cell subtypes or 

subpopulations, and that CPCs transition to reduced reparative states as patients age. To address 

this hypothesis, we used single-cell RNA sequencing to (1) identify potentially phenotypically 

different cell subpopulations and (2) map transcriptomic trajectories of cells from CPCs of 

neonate (n=4) and child (n=5) congenital heart disease patients as shown in Figure 2-1. Overall, 
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we uncovered a more heterogenous cell population among older patient samples and identified 

fibrotic and inflammatory cell subpopulations within these samples, which may explain 

differences in therapeutic outcomes. We identified and confirmed surface expression of versican 

and integrin subunit alpha 2, markers of a fibrotic cell subpopulation. Furthermore, our analyses 

unveiled major differences and traced trajectories from cells belonging to a fibrotic cell cluster to 

cells belonging to clusters enriched in cell cycle and cell proliferation processes. Ultimately, by 

identifying and selecting for pro-reparative CPC populations, it may be possible to improve 

therapeutic outcomes. 

2.3 Methods 

2.3.1 C-kit+ progenitor cell (CPC) culture and expansion 

Cells collected from the right atrial appendage of five neonatal (< 1 month) and five child (3.43 

years ± 2.6 years) patients with congenital heart disease were separated for c-kit+ CPCs using 

magnetic cell sorting. Cells were cultured in +DP¶V�)-12 medium (Corning Cellgro®, Corning, 

NY, USA) with 10% fetal bovine serum, 1% penicillin-streptomycin, 1% L-glutamine and 

0.04% human fibroblast growth factor-ȕ� Cells were used between passage 5 and 15. To identify 

the functional differences between neonate and child CPCs, sorted cells were expanded in culture 

and submitted for single cell RNA sequencing (10x Genomics). Patient characteristics for 

samples used in the study are listed in Supplemental Table 2-1. 

2.3.2 Cell sorting of CPC subpopulation 

Flow cytometry was utilized for characterization of CSC subpopulations based on expression of 

the versican and integrin alpha 2 surface proteins. Anti-versican (Creative Biolabs, CBMAB-

C9301-LY) and anti-integrin alpha 2 (R&D Systems, FAB1233P) antibodies conjugated to 
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$OH[D�)OXRU�����DQG�3(��UHVSHFWLYHO\��ZHUH�VHOHFWHG�IRU�DQDO\VLV��=RPELH�<HOORZ��G\H�

(Biolegend) was used to assess cell viability. Pooled child CSCs from patients 926, 938, and 902 

(4-year-old patient with atrial septal defect) were cultured, collected, resuspended in flow buffer 

����)%6�LQ�3%6���DQG�VWDLQHG�DW�URRP�WHPSHUDWXUH��XVLQJ�WKH�PDQXIDFWXUHU¶V�VXJJHVWHG�

concentration. Samples (including unstained and single stain controls) were analyzed with an 

Aurora Flow Cytometer (Cytek). The compensations were computed using FlowJo software. 

2.3.3 Computational Methods 

Raw reads from single cell sequencing were processed using CellRanger (10x Genomics, v6.0.0) 

(Zheng et al., 2017). The doublets were filtered using Scrublet and Scanpy and the raw counts 

data was processed using the Seurat package in R (Hao et al., 2021; Wolf et al., 2018; Wolock et 

al., 2019). Cells with 1,000-7,000 distinctly expressed genes and mitochondrial gene fraction 

totalling <5% of total transcript counts were kept. One neonatal patient sample (Patient 985) was 

removed due to low transcript counts (<4,000) and a small number of distinctly expressed genes 

(<2,000).  

Data from patient samples were integrated by first normalizing counts using the 

SCTransform method with variation due to mitochondrial gene fraction regressed out of the 

datasets (Hafemeister and Satija, 2019). The datasets were combined using the comprehensive 

integration methodology implemented in Seurat. Cells were then clustered using the Louvain 

community finding algorithm and differential expression was computed on non-batch corrected 

data using the Wilcoxon rank sum method.  

7UDMHFWRULHV�ZHUH�FRQVWUXFWHG�XVLQJ�0RQRFOH���ZLWK�WKH�³QFHQWHU´�SDUDPHWHU�LQ�WKH�

learn_graph function set to 500. Pseudotimes were computed by setting the root node as the 

cluster of interest and allowing monocle to compute pseudotime values for the remaining cells. 
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The dataset was batch corrected using the Batchelor alignment methodology implemented in 

Monocle. Co-H[SUHVVLRQ�RI�JHQHV�ZDV�FRPSXWHG�DORQJ�WUDMHFWRULHV�XVLQJ�WKH�0RUDQ¶V�,�VWDWLVWLF�

as implemented in Monocle and highly co-expressed genes with a q-value <0.05 were clustered 

into 21 gene modules using the Leiden community detection algorithm (Cao et al., 2019; 

Haghverdi et al., 2018; Levine et al., 2015; Qiu et al., 2017; Traag et al., 2019; Trapnell et al., 

2014). A summary of the analysis pipeline is shown in Figure 2-1. 

Surface proteins were identified using the cell surface protein atlas validated surface 

proteomes dataset (Bausch-Fluck et al., 2015). The surface proteome dataset was filtered for 

proteins for which there was a high confidence of expression on the cell surface. The dataset was 

also further filtered for cluster of differentiation (CD) proteins for better identification of cell 

surface proteins. The dataset was analyzed for differentially expressed genes that are conserved 

across donor samples within the same cluster. The differentially expressed genes were then 

filtered for only genes present in the filtered surface proteome dataset for determination of 

highest transcriptionally expressing surface proteins. 
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Figure 2-1. Single-cell analysis pipeline.  
Top sequence: CPCs were isolated via-kit+ magnetic sorting from tissue biopsies of CHD patients and grown in 2D culture. 
Bottom sequence: Live cells were analyzed on the 10X Genomics platform. Single cell RNA-sequencing data were filtered, batch 
corrected, and clustered. Downstream, cells were analyzed with trajectory, differential expression, and pathway analysis tools. 
Figure generated using BioRender. CPC: c-kit+ cardiac progenitor cell; CHD: congenital heart disease. 

2.4 Results 

2.4.1 Clustering and compositional analysis reveal differences in neonate and child CPCs 

Initial clustering with Louvain identified twelve CPC subpopulations (Figure 2-2 a and b). 

Neonate-derived samples were largely enriched in clusters 0 and 1, while child-derived samples 

were enriched in clusters 3, 6, 8, and 9 (Figure 2-2 c and d). Notably, we observed a higher 

level of sample-to-sample variability in child-derived samples. Patients 896 and 926 possessed a 

more neonate-like clustering profile, whereas patients 938, 1048, and 1092 produced a more 

dissimilar clustering profile with less cells represented in clusters 0 and 1 and more cells 

represented in clusters 3, 6, 8, and 9 (Figure 2-2 d). Pathway analysis indicated that nCPC-

enriched clusters 0 and 1 are involved in tissue reparative processes with upregulated genes 
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connected to angiogenesis and fiber organization (Figure 2-2 e). The cCPC-enriched cluster 6 is 

related to supramolecular fiber organization. Finally, clusters 2 and 5 (representative of both 

nCPCs and cCPCs) are highly enriched in cell proliferation and cell cycle processes. 

 

Figure 2-2. Cluster compositions of nCPCs and cCPCs. 
UMAP projections display all patient-derived CPCs colored by (a) cell cluster and (b) age group in 2-dimmensional space. Cell 
clustering was determined by the Louvain community finding algorithm. Cluster composition as grouped by (c) age group and 
(d) patient sample show differential composition of cell subpopulations. (e) Pathway analysis of upregulated genes in each cluster 
shows enrichment of growth factor, blood vessel development, cell cycle, and vesicle transport-related pathways. CPCs: c-kit+ 
cardiac progenitor cell; UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction 
 

2.4.2 Trajectory analysis identifies co-expressed genes within CPC populations 

To understand how transcriptomic profiles change as cells move between CPC subpopulations, 

we performed trajectory analysis with Monocle 3 (Figure 2-3 a). We computed psudotimes 

using various clusters as the starting, or root, node. Notably, pseudotimes computed using cluster 

2 cells (enriched in proliferative and cell cycle processes) as the root node resulted in the highest 

pseudotimes in cluster 8 cells (enriched in processes associated with oxidative stress and 
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stimuli), indicating the transcriptomic profiles of these cells to be the most distinct from the 

cluster 2 cells (Figure 2-3 b). Alternatively, pseudotimes computed using cluster 6 (enriched in 

fiber organization) as the root node resulted in the largest pseudotimes at cluster 2 (Error! 

Reference source not found.b).  

Next, to relate the previously determined cell clusters to gene sets, we computed co-

expressed gene modules from our trajectory analysis. Co-expression of genes were computed 

along trajectRULHV�FDWHJRUL]HG�EDVHG�RQ�WKH�0RUDQ¶V�,�VWDWLVWLF�FRPSXWHG�LQ�0RQRFOH��ZKHUH�D�

higher value indicates a higher level of co-expression with cells in similar positions of the 

trajectory. Highly co-expressed genes were clustered using the Leiden algorithm into 21 gene 

modules (Figure 2-3 c). Some modules corresponded strongly with certain cell clusters from the 

Seurat analysis. For example, cluster 4 cells had high expression of genes in module 8, while 

cluster 2 and 5 cells had high expression of module 12 genes. 

Relating gene modules to CPC age groups, we determined that nCPCs are highly 

upregulated in genes belonging to modules 9, 13, 14, and 21 and cCPCs are upregulated in genes 

belonging to modules 1, 3, 8, 15, and 16. Pathway analysis of module 13 and 21 genes 

(upregulated in nCPCs) indicates enrichment of pathways related to small molecule biosynthesis 

and ribosomal activity, respectively (Figure 2-3 d and e). Module 8 genes (upregulated in 

cCPCs) contained several immune-related cytokines including IL6 and IL1B. Additionally, 

module 9 contained notable gene members CD34 and PDGFB and module 9 contained FGF2. 

Across both age groups, modules 8 and 9 contained genes associated with chemotaxis and 

modules 3, 9, 13, and 15 contained genes linked to ECM organization.  
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Figure 2-3. Trajectory analysis and gene modules. 
UMAP projections with trajectories determined by Monocle colored by (a) monocle clusters and (b) pseudotime with root nodes 
set to cluster 2 (left) and cluster 6 (right) from the Seurat analysis. (c) gene module expression heatmap by Seurat cluster. 
Modules were determined through a Leiden clustering of highly co-expressed genes along trajectories. Module expression levels 
computed by age group and are shown in the two rightmost columns in the heatmap. Cluster proportions by age group illustrated 
by bar charts on top of the heatmap. Pathway analysis for highest expressing modules among (d) neonates and (e) children 
highlights important biological differences between the age groups. UMAP: Uniform Manifold Approximation and Projection for 
Dimension Reduction. 
 

2.4.3 Cell cluster four is upregulated in cytokines 

Differential gene expression analysis identified several cytokines upregulated in cluster 4 cells 

such as IL1B, IL6, and IL33 (Figure 2-4 a). Pathway analysis indicates strong enrichment of 

immune-related signalling pathways, including genes involved in the IL-10 and IL-17 signalling 

pathways (Figure 2-4 b). In addition, cluster 4 is enriched in apoptotic signalling and negative 

regulation of cell proliferation processes. Many of the differentially expressed genes from this 

cluster were captured by the module 8 gene cluster, potentially indicating many of the cytokines 

expressed by these cells are specific to this cell cluster and are driven by similar biological 

processes. This cell subpopulation is enriched in cCPCs; however, analysis of donor-specific 

clustering profiles indicates one nCPC sample (Patient 2016) has a high proportion of these cells 

(Figure 2-2 d). 
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Figure 2-4. Characteristics of clusters 4 and 6. 
(a) Top 25 differentially expressed genes ordered by log fold change between cluster 4 cells and non-cluster 4 cells. (b) Pathway 
analysis barplot of upregulated differentially expressed genes for cluster 4 cells. (c) Top 25 differentially expressed genes ordered 
by log fold change between cluster 6 cells and non-cluster 6 cells. (d) Dotplot of selected genes relating to fibrosis, angiogenesis, 
and proliferation. (e) Pathway analysis barplot of upregulated differentially expressed genes for cluster 6 cells. 
 

2.4.4 Cell cluster six is upregulated in several fibrosis-associated factors 

A detailed analysis of several fibrosis-related genes indicates Cluster 6 cells may be a potential 

driver of fibrotic activity. This population is enriched in cCPCs and has high expression of 

several different types of collagen and genes associated with fibrosis including TGFB2, CCN1, 

CCN2, and FBN1 (Figure 2-4 c and d) (Bouzeghrane et al., 2005; Ding et al., 2020). In addition, 

the upregulated genes PDGFRA and FAP are known fibroblast markers and correlate with an 

epithelial-to-mesenchymal transition (Jechlinger et al., 2006; Kahounova et al., 2018). The 

cluster is also upregulated in angiogenic markers like VEGFA and downregulation of the 

proliferation-related gene H2AFZ. Pathway analysis indicates this cluster is especially correlated 

with supramolecular fiber organization and angiogenesis (Figure 2-4 e). Pathways associated 
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with TGF-ȕ�VLJQDOLQJ�were also enriched in this cluster (not shown). Differentially expressed 

genes associated with this cluster co-cluster heavily within gene modules 3 and 6. 

 

2.4.5 Confirmation of cluster six surface proteins 

Differentially expressed surface proteins were selected using the cell surface protein atlas 

database (Figure 2-5 a) (Bausch-Fluck et al., 2015). Primary anti-versican and anti-ITGA2 

antibodies were selected for characterization of pooled child CSC subpopulations using flow 

cytometry. The child CSCs were pooled previously and are comprised of patients 926, 938, and 

902 (4-year-old patient with atrial septal defect). Cell viability was confirmed with a Zombie 

<HOORZ� dye (85.7%, data not shown). A subpopulation of cells with high versican and ITGA2 

expression make up approximately 14% of the pooled child CSCs (Figure 2-5 b).

 

Figure 2-5. Cluster six surface protein confirmation.  
(a) Transcriptional expression of conserved differentially expressed surface proteins in cluster 6 cells. Proteins were identified 
from the surface proteome dataset. (b) Flow cytometry analysis identified the population of interest in pooled child CPCs: 
ITGA2+, VCAN+. CPC: c-kit+ cardiac progenitor cell; ITGA2: Integrin alpha-2; VCAN: versican.  
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2.5 Discussion 

There are clear age-dependent therapeutic differences in neonate and child CPC 

populations demonstrated by our prior studies.(Agarwal et al., 2016; Shoja-Taheri et al., 2019) In 

comparison to cCPCs, nCPCs demonstate greater anti-fibrotic potential, cell proliferation and 

chemotaxis, and enhanced secretion of cardioprotective paracrine factors.(Agarwal et al., 2016) 

Importantly, previous studies have isolated CPCs from patient cardiac biopsies using c-kit+ 

selection and explored age-dependent differences between nCPCs and cCPCs using bulk RNA 

sequencing. This approach, however, masks the identity of potential cell subpopulations and 

attributes sample variance to patient variables. Here, we aimed to understand how these 

macroscopic dynamics present at the single cell level, and whether we would be able to discern 

CPC subpopulations for selection with cell surface markers. To do so, we computed initial cell 

clusters²our CPC subpopulations. Then, to determine the major differences between cell 

clusters we examined both differentially expressed genes and enrichment of co-expressed gene 

modules. By combining multiple single-cell analysis methods, we uncovered potential 

phenotypes of CPC subpopulations which may explain CPC variability. 

Given previous research, we expected to first find major differences in nCPCs and 

cCPCs. Indeed, nCPCs largely clustered among clusters 0-5, whereas a considerable portion of 

cCPCs clustered in the offshoot branches of the UMAP projection, namely clusters 3, 4, 6, 8, and 

9 (Figure 2-2 a-c). Furthermore, given the demonstrated reduced performance of cCPCs, we 

hypothesized that cCPC samples are more heterogenous and may represent cells transitioning to 

a less reparative state. Here, we identified a high level of sample-to-sample variability among 

child patients, with some cells having more neonate-like clustering profiles than others (Figure 

2-2 c and d). Most obvious, the two cCPC samples with neonate-like clustering profiles also 
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corresponded to the youngest of the child patient cohort (Patients 896 and 926, 12 months and 14 

months old). Based on this observation, we ran a quasi-poisson regression model to assess gene 

expression variability dependent on patient age. Ultimately, the results of the model mirrored the 

results from the clustering-based analysis (Supplemental Figure 2-1; Supplemental Table 2-2). 

Genes such as ABI3BP and CXCL6 that were upregulated in cCPC-enriched clusters also 

expressed highly in older patients, while genes like CXCL12 and CXCR4 that are upregulated in 

nCPC-enriched clusters had higher expression in younger patients.   

Interestingly, we found evidence for enrichment of pro-inflammatory cell subpopulations 

and gene modules in cCPC samples, as compared to nCPC samples. First, cluster 4 cells, showed 

high expression of several inflammation- and immune-related cytokines including ,/�ȕ, CXCL8, 

CCL2, CXCL6, IL33, CXCL1-3, and IL6 (Figure 2-4 a). While some CPCs from neonate patient 

2016 were found in this cluster, cluster 4 was overall enriched in cCPCs (Figure 2-2 e). Second, 

we identified age-related differences among the composition of cytokine gene modules 8 and 9, 

determined with trajectory analysis. nCPC-enriched module 9 cytokines were more strongly 

associated with chemotaxis, whereas cCPC-enriched module 8 included inflammatory-related 

cytokines (Figure 2-3 c-e). Furthermore, we found a high positive correlation between cluster 4 

and gene module 8. These results contradict a recent study by Vagnozzi et al. which challenged 

the efficacy of CPCs, attributing reparative function to an acute inflammatory-based wound 

healing response after cell delivery.(Vagnozzi et al., 2020) Of note, this work was completed in a 

mouse model of ischemia-reperfusion injury with murine CPCs, and CPC efficacy was evaluated 

2 weeks after injection. Nevertheless, other studies investigating human CPCs from neonate 

patients corroborate our single-cell results. The results reported here are consistent with our 

previous research indicating cCPCs drive an increased immune response and nCPCs induce 
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higher levels of mesenchymal stem cell chemotaxis.(Agarwal et al., 2016) Pathway analysis of 

gene array data comparing nCPCs and cCPCs demonstrated enrichment of anti-inflammatory 

response in nCPCs.(Agarwal et al., 2016) Additionally, in a rat model of myocardial infarction, 

nCPCs reduced macrophage infiltration in the myocardium post-injury, compared to adult 

CPCs.(Sharma et al., 2017)  

Another cCPC-enriched subpopulation, cluster 6 showed high expression of genes related 

to fibrosis and angiogenesis, including ITGB1, FBN1, DST, FN1, FST, COL3A1/4A1/8A1, and 

ADAMTS1 (Figure 2-4 b and c). Known fibroblast markers, FAP and PDGFRA, as well ȕ-

catenin were also upregulated in this cell cluster. Well-studied long non-coding RNAs NEAT1, 

MEG3, and MALAT1 are among the most upregulated RNAs in cell cluster 6 and have been 

shown to contribute to myocardial injury and adverse remodeling. Multiple groups have 

determined MALAT1 and NEAT1 play a role in cardiac fibrosis.(Ge et al., 2022; Huang et al., 

2019) Specifically, MALAT1 expression is upregulated in mouse myocardial infarction models 

and siRNA knockdown of MALAT1 attenuates infarction-induced fibrosis.(Huang et al., 2019) 

Further, MEG3 has been shown to promote myocardial damage in a rat model of cardiac 

ischemia-reperfusion and overexpression of MEG3 enhances myocyte apoptosis and decreases 

cell proliferation.(Zou et al., 2019) Interestingly, this cluster also has very high levels of 

fibronectin expression, which has been implicated as a critical protein during cardiac 

repair.(Konstandin et al., 2013) Given the strong connection of cluster 6 to adverse remodeling 

processes and upregulation of fibrotic genes, we sought to identify markers for this cell 

subpopulation. We identified ITGA2 and VCAN, a proteoglycan extracellular matrix regulator, as 

candidate markers for cluster 6 cells. We used flow cytometry to confirm surface protein 
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expression on pooled child CSCs and demonstrated that the population of interest is discernable 

with from ITGA2 and VCAN surface protein expression (Figure 2-5 b).  

Simultaneous characterization of single cell protein and gene expression is now possible 

using the Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) 

technology. Future work would allow for genetic profiles to be linked to protein expression of 

interest. Future CITE-seq experiments would allow for more rapid detection of subpopulation 

surface markers which when combined with cell sorting, would aid in compositional 

optimization of CSC samples. The combination of the RNA sequencing data presented in this 

study along with protein expression and in vitro or in vivo testing could be used to build 

predictive models for clinical trial outcomes and indicate where potential areas of optimization 

may exist by tuning cluster-specific compositions. Ideally, quickly matching protein expression 

or bulk RNA-sequencing data to subcluster proportions may allow practitioners to quickly assess 

the viability of the patient sample or optimize cluster compositions before injection to improve 

clinical outcomes and reduce the undesirable variability inherent to autologous CSC-based 

therapies. 
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2.6 Supplemental Information 

 
Supplemental Figure 2-1. Pathway analysis for genes from patient age regression. 
Quasi-poisson regression was used to assess gene expression variability dependent on patient age. The results recapitulate our 
categorical age analyses: neonate CPCs are related to cell cycle and blood-vessel development, whereas child CPCs are closely 
related to cell adhesion processes. 
 
Supplemental Table 2-1. Patient characteristics for single cell analysis. 

Sample Patient Age 
Group Passage Age Heart Disease Sex 

1 903 Neonate 11 < 1 
Week Hypoplastic left heart syndrome F 

2 925 Neonate 5 
< 1 
Week 

Total anomalous pulmonary venous 
return F 

3 930 Neonate 5 < 1 
Week 

Total anomalous pulmonary venous 
return M 

4 926 Child 6 14 
Months Ventricular septal defect M 

5 1048 Child 12 6 Years Atrial septal defect F 

6 896 Child 9 12 
Months Ventricular septal defect F 

7 938 Child 6 5 Years Subaortic Membrane Resection M 
8 1092 Child 15 5 Years Atrial septal defect F 
9 985 Neonate 7 2 Weeks Interrupted aortic arch M 

10 2016 Neonate 12 1-2 
Weeks Atrial septal defect F 

 



 

 

48 

Supplemental Table 2-2. Regression analysis of gene expression and patient age. 
Top 20 genes from each age group using the quasi-poisson regression model implemented in Monocle to assess variability of 
gene expression based on patient age. Negative estimate values correspond to genes whose expression values that decrease with 
age, while positive values indicate genes with expression values that increase with age. The model formula also accounted for 
variability caused by batch effects. Values were sorted first on q-value, then by estimate. 

Gene Estimate Age Group 
LIPG -0.76 Neonate 
FIBIN -0.73 Neonate 
PCOLCE -0.52 Neonate 
TNNT1 -0.52 Neonate 
AEBP1 -0.52 Neonate 
CXCL12 -0.50 Neonate 
KCNG1 -0.48 Neonate 
BGN -0.48 Neonate 
PHGDH -0.46 Neonate 
COL6A3 -0.42 Neonate 
HRH1 -0.42 Neonate 
EDN1 -0.41 Neonate 
PSAT1 -0.41 Neonate 
PPP1R13L -0.41 Neonate 
NCK2 -0.40 Neonate 
SLC1A5 -0.40 Neonate 
INHBA -0.38 Neonate 
ANGPTL4 -0.37 Neonate 
SOX17 -0.37 Neonate 
U2AF1 -0.35 Neonate 
CXCL6 0.70 Child 
PCOLCE2 0.70 Child 
RDH10 0.71 Child 
BMPER 0.71 Child 
ADIRF 0.72 Child 
CACNA2D1 0.73 Child 
TSLP 0.77 Child 
MGARP 0.77 Child 
F3 0.78 Child 
APOA1 0.79 Child 
EPDR1 0.84 Child 
CPA4 0.87 Child 
SLIT3 0.89 Child 
ABI3BP 0.90 Child 
RARRES1 0.98 Child 
MEST 1.00 Child 
NTN4 1.05 Child 
PTGIS 1.07 Child 
RGS5 1.09 Child 
LOXL4 1.10 Child 
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3.1 Abstract 

Stem/progenitor cells, including cardiac-derived c-kit+ progenitor cells (CPCs), are under 

clinical evaluation for treatment of cardiac disease. Therapeutic efficacy of cardiac cell therapy 

can be attributed to paracrine signaling and the release of extracellular vesicles (EVs) carrying 

diverse cargo molecules. Despite some successes and demonstrated safety, large variation in cell 

populations and preclinical/clinical outcomes remains a problem. Here, we investigated this 

variability by sequencing coding and non-coding RNAs of CPCs and CPC-EVs from 30 

congenital heart disease patients and used unsupervised learning methods to determine potential 

mechanistic insights. CPCs retained RNAs related to extracellular matrix organization and 

exported RNAs related to various signaling pathways to CPC-EVs. CPC-EVs are enriched in 

miRNA clusters related to cell proliferation and angiogenesis. With network analyses, we 

identified differences in non-coding RNAs which give insight into age-dependent functionality 
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of CPCs. By taking a quantitative computational approach, we aimed to uncover sources of CPC 

cell therapy variability. 

3.2 Introduction 

Heart disease remains the leading cause of morbidity and mortality in the US, and often results in 

irreversible damage to the myocardium (Kochanek et al., 2020). Initially treated by surgery, 

drugs, or transplant, cardiac cell therapy emerged in the early 2000s with the goal to regenerate 

healthy myocardium after injury or disease. Over the years, several stem or progenitor cell types 

have been investigated for the treatment of various ischemic and congenital heart diseases (Bittle 

et al., 2018; Marban, 2018). In particular, previous preclinical research has shown that cardiac-

derived c-kit+ cells (CPCs) repair the myocardium after injury (Agarwal et al., 2016; Saha et al., 

2019; Trac et al., 2019b). Of note, our group is involved in a current phase I clinical trial 

investigating CPCs for treatment of hypoplastic left heart syndrome, a complex single ventricle 

congenital heart disease (NCT03406884). 

Despite demonstrated safety and some efficacy in cardiac cell therapy preclinical and clinical 

trials, large variation in cell populations and patient outcomes remains a significant problem for 

further developing larger-scale, reliable therapies (Marban, 2018; Nguyen et al., 2016). Some of 

the variance in cell populations can be attributed to donor age. Additionally, once isolated, in 

vitro cell culture conditions or manipulations, like hypoxia and cell aggregation, also affect cell 

reparative effects (Gray et al., 2015; Trac et al., 2019b). Considering the high variability of cell 

populations, it is thus important to identify specific mechanisms of action in order to enhance 

cell therapy efficacy for patients. To this extent, our group has demonstrated that CPCs can 

repair rat right ventricle failure in an age-dependent manner, with neonatal CPCs having the 

greatest reparative capacity (Agarwal et al., 2017; Agarwal et al., 2016; Shoja-Taheri et al., 
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2019). However, there is a dearth of quantitative studies investigating the underlying RNA cues 

driving CPC therapeutic efficacy. We have previously investigated the molecular basis for the 

differences between reparative and non-reparative CPCs with RNAseq experiments (Agarwal et 

al., 2016; Shoja-Taheri et al., 2019), however these studies were not comprehensive, with low 

sample sizes and consideration of only one or two types of RNA.  

Originally, transplanted cells for cardiac disease treatment were thought to function via 

engraftment, proliferation, and differentiation. However, transplanted cellular retention is low 

and much of the therapeutic benefit is now attributed to paracrine signaling, including the release 

of extracellular vesicles (EVs) (Marban, 2018). EVs are lipid-bilayer vesicles released from cells 

via exocytosis or budding of the plasma membrane into the extracellular space. Once released, 

neighboring recipient cells may internalize EVs via endocytic processes, including direct 

membrane fusion, lipid-raft based uptake, and receptor-ligand interactions (Bheri et al., 2020). 

Importantly, EVs carry and protect diverse molecules, including RNAs, proteins, and lipids. The 

crucial role of EVs in cell therapy has been highlighted in previous work demonstrating that the 

inhibition of EV release diminishes the reparative effect of stem and progenitor cells (Ibrahim et 

al., 2014). In the context of cardiac cell therapy, this suggests CPCs themselves are not the only 

source of variable RNA signals contributing to repair. Studies have shown that the uptake of EVs 

by resident cardiac cells allows for the transfer of stem or progenitor cell EV cargo and 

stimulates repair in the injured tissue (Marban, 2018). Despite the well-established link between 

EV release/uptake and repair, our understanding of the signals or cargo molecules contributing to 

these effects is poor, especially given that EV cargo is highly heterogeneous (Willms et al., 

2016). Importantly, CPCs and CPC-EV RNA content have been studied separately, but never 

together, comparatively.  
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Given the current limitations surrounding cardiac cell therapy variability, we aimed to 

investigate these discrepancies by performing bulk sequencing of primary CPCs from pediatric 

heart patients and their released EVs. First, we performed conventional differential expression 

analyses to identify key differences between cells and EVs and used unsupervised learning 

methods to reduce dataset dimensionality and summarize the data. Then, we systematically 

investigated the biological significance of our RNA-seq experiments with pathway and 

competitive endogenous RNA network analyses. We utilized publicly available datasets to 

provide greater context and determine the specificity of our CPC-EV results, in comparison to 

other cell types and EVs. Our results highlight the need for more quantitative investigations of 

cardiac cell therapy, and more personalized medicine approaches to cell therapy. 

3.3 Methods 

3.3.1 Isolation and Culture of c-kit+ Progenitor Cells (CPCs) 

This study was approved by the Institutional Review Board at Children's Healthcare of Atlanta 

and Emory University. CPCs were isolated by c-kit magnetic bead sorting from cardiac biopsies 

of congenital heart disease patients (Supplementary Table 1) as previously described(Agarwal et 

al., 2016; French and Davis, 2014). CPCs were cultured using Hams F-12 medium with 10% 

fetal bovine serum, 1% Penicillin-Streptonmycin, 1% L-glutamine, and 0.04% fibroblast growth 

factor 2.  

3.3.2 Extracellular Vesicle (EV) Collection and Characterization 

EVs were successfully isolated from 27 of the 30 CPC populations. Briefly, CPCs were grown to 

90% confluency, washed with PBS, and quiesced with serum free medium for 24 hours. 

Conditioned media was collected and subjected to sequential centrifugation: 3000 g for 10 min to 
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remove cells, 28,000 g for 30 min to remove cell debris, and 118,000 g for 1 hr 54 min to pellet 

EVs (Optima XPN-100 ultracentrifuge; Beckman Coulter SW 41 Ti rotor). EV size and 

concentration was determined by NanoSight NS300. Samples were diluted 1:10 in PBS, and 

three, 60-second video images were captured per sample and analyzed by NanoSight NTA 3.4 

software. 

3.3.3 Next Generation Sequencing 

RNA from CPCs and CPC-EVs were isolated with the miRNeasy Mini Kit (Qiagen), according 

to manufacturer¶V�LQVWUXFWLRQV��3XULILHG�51$�ZDV�DQDO\]HG�������%LRDQDO\]HU�DQG�7DSH6WDWLRQ�

Controller, Agilent Genomics) for miRNA and RNA size, quality, and quantity. RNA library 

preparation and sequencing was conducted by Novogene Co., Ltd (Illumina NovaSeq 6000 with 

PE150 platform) or the Emory Yerkes Nonhuman Primate Genomics core (Illumina HiSeq 

3000). Sequencing source information for each CPC patient is displayed in Supplementary Table 

1.  

Small RNA sequencing performed at Novogene were trimmed and filtered in the FASTQ 

Toolkit Illumina Basespace app. Truseq adapters (AGATCGGAAGAGC) were trimmed with an 

adapter trim stringency set to 0.90. Reads were filtered to 18-51 length with reads passing the 

FASTQ Toolkit filter. Then, reads were mapped with Bowtie aligner and hg19 and miRBase v21 

references, and mature miRNA hits were determined using the small RNA Illumina Basespace 

app. Small RNA sequencing performed at Emory Yerkes Nonhuman Primate Genomics core 

were aligned and hits were determined using the Qiagen GeneGlobe console with QIAseq 

PL51$�4XDQWLILFDWLRQ�WRRO��'HIDXOW�SDUDPHWHUV�ZHUH�XVHG���¶�DGDSWHUV�ZHUH�WULPPHG�XVLQJ�

cutadapt, reads with less than 16 base pair insert sequences or less than 10 base pair unique 
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molecular index sequences were removed, reads were aligned with Bowtie aligner, GRCh38 and 

miRBase v21 references. 

Total RNAseq files from Novogene and Emory Yerkes Nonhuman Primate Genomics core 

were aligned, and gene counts were determined with the STAR aligner in the Illumina 

BaseSpace app, RNA-Seq Alignment. Reads were aligned with hg19 reference genome. 

Biotypes were matched to alignment results using the Ensembl based annotation package 

(EnsDb.Hsapiens.v79). miRNAs were considered only from small RNA sequencing and were 

thus removed from the total RNA sequencing set. All of CPC lncRNAseq was performed with 

Novogene. lncRNAs were aligned using STAR with the quantMode GeneCounts option and 

GRCh38 reference (Dobin et al., 2013). Total RNA sequencing counts after filtering are 

presented in Supplementary Tables 11 and 12; miRNA sequencing counts after filtering are 

presented in Supplementary Tables 13 and 14. RNA sequencing and alignment metrics are 

presented in Supplementary Tables 15 and 16. 

3.3.4 RNA Sequencing Data Analysis 

Data analysis was completed in R. First, raw aligned RNA counts for CPC and CPC-EVs were 

filtered: we removed RNA with zero count entries in ten or more samples and used edgeR 

SDFNDJH¶V�µILOWHU%\([SU¶�IXQFWLRQ�XVLQJ�WKH�GHIDXOW�SDUDPHWHU�VHWWLQJV��51$�FRXQWV�ZHUH�

normalized using the edgeR weighted trimmed mean of M-values method (default parameters), 

and transformed into log2 counts per million (logCPM). Principal component analyses (PCA) 

ZHUH�SHUIRUPHG�XVLQJ�WKH�µSUFRPS¶�EXLOW�LQ�IXQFWLRQ��+HDWPDSV�ZHUH�JHQHUDWHG�XVLQJ�WKH�

pheatmap package with Manhattan distance calculations and ward.D2 clustering method. 

%DWFK�FRUUHFWLRQ�RI�VHTXHQFLQJ�GDWD��LQ�ORJ&30��ZDV�LPSOHPHQWHG�XVLQJ�WKH�VYD�SDFNDJH¶V�

µ&RP%DW¶�IXQFWLRQ�WR�FRUUHFW�IRU�VHTXHQFLQJ�SHUIRUPHG�DW�VHSDUDWH�VLWHV��1RYRJHQH�DQG�(PRU\�
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Yerkes Nonhuman Primate Genomics Core (Supplementary Table 1)(Leek et al., 2012). PCA 

plots before and after batch correction are displayed in Supplemental Figure 3-3 a and b. 

Variance explained by each covariate (patient, sex, age (in log10months), type (cell or EV), and 

sequencing site) was assessed before and after batch correction with variancePartition package 

(Supplemental Figure 3-3 c and d) (Hoffman and Schadt, 2016). Age was treated as a fixed 

effect and all other categorical covariates were treated as random effects.  

For differential expression analysis of CPC and CPC-EV RNA content, we used the dream 

(differential expression for repeated measures) linear mixed modeling approach from the 

variancePartition package to account for patient matched cell and EV data (Hoffman and Roussos, 

2021). Patient was treated as a random effect and the following co-variates were considered: 

patient, sex, age (in log10months), type (cell or EV), batch (sequencing site). Weights were 

estimated with the voomWithDreamWeights function and the cell vs. EV hypothesis test was 

conducted with the dream function (Satterthwaite approximation method). Cell vs. EV differential 

expression analyses were conducted for n=26 patients: Patient 894 was removed because sex was 

not known, and cell sequencing from patients 938, 1048, and 1092, were not included as EVs were 

not sequenced from these patients. 

Volcano plots were constructed from linear mixed model results using the EnhancedVolcano 

package. Correspondence between PCA variable loadings and differential expression analysis 

results, presented in volcano plots, is displayed in Supplemental Figure 3-4. miRTarBase was 

used to identify miRNAs with known targets (validated by at least three assays) (Hsu et al., 

2011). Biological pathway enrichment analyses were performed using Metascape (Zhou et al., 

2019).  
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3.3.5 Data Mining 

We probed previously published datasets containing miRNA data from parent cells and their 

EVs (Kanlikilicer et al., 2016; Melo et al., 2014; Mittelbrunn et al., 2011; Ono et al., 2014; 

Tadokoro et al., 2013; Umezu et al., 2014; Vignard et al., 2020; Yokoi et al., 2018). GEO2R was 

used to determine the differential expression of EV vs. cell miRNAs (Benjamini Hochberg p-

value adjustment)(Barrett et al., 2013). miRNAs in each dataset were ranked from largest to 

smallest log2fold-change (EV/Cell). To account for different sized datasets, ranks were scaled 

ZLWKLQ�WKHLU�UHVSHFWLYH�VWXG\�XVLQJ�WKH�µVPRRWK3DOHWWH¶�IXQFWLRQ�LQ�WKH�WDJFORXG�SDFNDJH��EHIRUH�

plotting with the scales package in R. Data mining results are presented in Supplementary Table 

17. 

3.3.6 ceRNA Network Construction 

Differentially expressed RNAs (neonate vs. child CPCs) were determined using edgeR and 

limma/voom method. Reads from total RNA, lncRNA, and miRNA CPC sequencing were 

filtered: we removed RNA with zero count entries in ten or more samples and used edgeR 

SDFNDJH¶V�µILOWHU%\([SU¶�IXQFWLRQ�ZLWK�WKH�GHIDXOW�SDUDPHWHU�VHWWLQJV��7RWDO�51$��PL51$��DQG�

lncRNA models were built using all CPC data (neonate, infant, and child) with the following 

covariates: age group, sex, and batch (sequencing site). Counts were transformed to logCPM 

values and weights for linear modeling were computed using the limma voom function. Linear 

models were fit. Then, contrast matrices for age groups were created (neonate ± child, neonate ± 

infant, infant ± child), coefficients were estimated, and moderated statistics were computed with 

empirical Bayes moderation. Differentially expressed RNAs between neonate and child groups 

were identified using the topTable function. Differential expression results for lncRNA 

sequencing are presented in Supplementary Table 18. The differentially expressed miRNAs (18) 
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were matched to differentially expressed lncRNAs (134) by miRcode and differentially 

expressed mRNAs (505) by miRTarBase (|fold-change|>2 and p<0.05). The resulting RNAs that 

were matched within the set were displayed in a network with Cytoscape (Shannon et al., 2003). 

The full network (107 nodes, 144 edges) was reduced to the most highly connected hubs (36 

nodes, 75 edges) using the MCODE plug in.  

Furthermore, we investigated the age-related differences in CPC RNAs in a quantitative 

approach by transforming patient age to log10months. We constructed linear models with age 

(continuous), sex, and batch (if applicable) covariates, as before. We compared the differentially 

expressed RNAs (p<0.05) determined by this quantitative method with the differentially 

expressed RNAs determined by the categorical method above (age as neonate, infant, or child). 

The results are displayed in Supplemental Figure. 3-5. 

3.4 Results 

3.4.1 Characterization of EVs from neonate, infant, and child CPCs 

To characterize CPC-EVs, CPC populations were grown and expanded in 2D culture and EVs 

were isolated from the conditioned media via differential ultracentrifugation (Figure 3-1 a). 

CPCs were previously isolated from cardiac biopsies of neonate (<1 week, n=9), infant (1 week 

± 1 year, n=13), and child (>1 year, n=8) congenital heart disease patients (Supplementary Table 

1). Bioanalyzer profiles of CPC and CPC-EV RNA revealed distinct 18S and 28S ribosomal 

peaks in the CPC RNA, but not in the CPC-EV RNA, confirming successful isolation of EVs 

without cellular contamination (Figure 3-1 b). Furthermore, total RNA from EVs was enriched 

in small RNAs with a peak ~22nt, the size of miRNAs. CPC-EVs were imaged using 

transmission electron microscopy and analyzed for size and concentration with nanoparticle 
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tracking analysis. Independent of patient cell source, all CPC-EVs were 100-140 nm, 

characteristic of exosomes or small EVs (Figure 3-1 c and d). 

 
Figure 3-1. CPC-EV isolation and characterization.  
a Schematic of study: CPCs and CPC EV miRNA and total RNA are sequenced and analyzed (created from Biorender.com).  
b Bioanalyzer profile for patient matched CPC and CPC-EV RNA content.  
c Transmission electron microscopy image of CPC EV. Scale bar, 100 nm.  
d Vesicle size distribution histogram by nanoparticle tracking analysis in neonate, infant, and child CPC-derived EVs. Shaded 
region indicates standard error. 
 

3.4.2 CPCs retain ECM-related RNAs and export signaling pathway-related RNAs to EVs 

Total RNA sequencing results identified 13,718 and 8,718 expressed RNAs in CPCs and CPC-

EVs, after filtering out lowly expressed RNAs (Figure 3-2 a) (Robinson et al., 2010). Dimension 

reduction with principal component analysis (PCA) of the 8,563 commonly expressed RNAs 

revealed distinctive separation of CPC and CPC-EV samples across the first two components, 

cumulatively representing 38% of the total variance (Figure 3-2 b). Furthermore, an unbiased 
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heatmap of the top 1% variable RNAs revealed hierarchical clustering by source: CPC vs. CPC-

EV (Figure 3-2 c).  

Given that CPC and CPC-EV samples were matched, derived from each patient, we used the 

dream (differential expression for repeated measures) approach to determine differentially 

expressed RNAs between CPCs and CPC-EVs. In total, 4,898 RNAs, or 57% of the commonly 

expressed RNAs, were differentially expressed with adjusted p-values < 0.05 (Figure 3-2 d, 

Supplementary Table 2)(Hoffman and Roussos, 2021). The top differentially expressed RNAs in 

CPCs and CPC-EVs are displayed in  

 

Table 3-1. Notably, collagen type IV and VIII chains, integrin alpha V, dystroglycan 1, and 

growth arrest ± specific 6 are upregulated in CPCs, and Ras-related protein Rab-13, 

dexamethasone-induced Ras-related protein 1, colony stimulating factor 1 receptor, and 

interleukins 33 and 16 are upregulated in CPC-EVs. To further determine the biological 

significance of these differentially expressed RNAs, we performed pathway analysis of the top 

250 RNAs upregulated in CPCs and CPC-EVs (ranked by fold-change). Metascape pathway 

analysis revealed CPCs were enriched in RNAs associated with extracellular matrix (ECM) 

organization, ECM-receptor interaction, insulin-like growth factor transport and immune 

responses; whereas CPC-EVs were enriched in RNAs involved in peptide chain elongation, 

RNA splicing, and MAPK and G alpha (q) signaling (Figure 3-2 e, Supplementary Tables 3 and 

4) (Zhou et al., 2019).   
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Figure 3-2. Differential expression of CPC and CPC-EV total RNAseq.  
a RNAs expressed in CPCs and CPC EVs.  
b PCA plot of CPC and CPC EVs show clustering by RNA source across PC1.  
c Heatmap of top 1% variable RNAs show clustering of samples by source: cell and EV.  
d Volcano plot of differentially expressed RNAs in CPCs and CPC EVs.  
e Network of top enriched terms from differentially expressed RNAs upregulated in CPCs (red) vs. EVs (blue) using the 
Metascape tool. 
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Table 3-1. RNAs preferentially released to EV and retained in cell 

RNA Log2(EV/Cell) padj RNA Log2(Cell/EV) padj 

CA11 7.56 ** CPA4 5.78 *** 

RAB13 7.26 *** OSMR 5.44 *** 

RASD1 6.56 ** COL8A1 5.40 ** 

PLEKHA4 6.51 *** OXTR 5.37 ** 

NEFM 6.49 ** FSTL3 5.36 *** 

C1orf115 6.26 ** GDF6 5.15 ** 

ANP32B 6.01 *** TNFRSF11B 5.07 ** 

NET1 5.90 *** COL4A1 5.00 *** 

C22orf46 5.76 *** RECK 4.94 ** 

CSF1R 5.57 ** CHPF 4.91 ** 

KIF21B 5.57 * SLC16A3 4.89 ** 

TRAK2 5.52 *** P3H4 4.87 *** 

ERG 5.50 ** EDIL3 4.82 ** 

CDC42BPG 5.50 ** UGCG 4.81 ** 

IL33 5.42 * TRAM2 4.79 ** 

IL16 5.31 * ANGPTL4 4.78 ** 

DNAH10 5.31 * MEGF6 4.75 ** 

CGNL1 5.26 *** GAS6 4.69 ** 

PITPNM3 5.25 ** IGFBP3 4.65 ** 

SPTBN4 5.06 * B4GALT1 4.64 ** 

ROCK1P1 5.00 * ARSJ 4.63 ** 

GUCY1A2 4.88 * CD248 4.60 ** 

KIAA1211 4.87 * PKD1 4.59 ** 

CCDC88C 4.79 * ITGA5 4.58 ** 

FLG 4.79 * DAG1 4.58 ** 
*p < 0.01, **p < 1e-5, ***p < 1e-10 
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3.4.3 CPC-EVs are enriched in miRNAs involved in cardiac development and cell 

signaling 

We then performed similar miRNAseq analyses: miRNAseq revealed 206 and 641 expressed 

miRNAs in CPCs and CPC-EVs, respectively, after filtering out lowly expressed miRNAs 

(Figure 3-3 a). PCA of the 193 commonly expressed miRNAs showed clear separation of CPC 

and CPC-EV samples across principal component 1, representing 27.9% of total variance 

(Figure 3-3 b). Linear regression using the dream approach was used to determine the 

differentially expressed miRNAs between CPCs and CPC-EVs. In total, 126 of 193, or 65% of 

miRNAs were differentially expressed with adjusted p-values <0.05 (Figure 3-3 c, 

Supplemental Table 3-5). The top differentially expressed miRNAs are displayed in 
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Table 3-2. Next, we found gene targets for the differentially expressed miRNAs using 

miRTarBase with the criteria that targets be experimentally validated by at least 3 methods 

(Supplemental Table 3-6). Pathway analysis of the gene targets revealed enrichment of gene 

ontology (GO) pathways involved in vasculature and heart development, VEGFA-VEGFR2, and 

TGF-beta signaling, as well as cell adhesion, differentiation, and apoptosis (Figure 3-3 d, 

Supplemental Tables 3-7 and 3-8).  

 

 
Figure 3-3. Differential expression of CPC and CPC EV miRNAseq.  
a miRNAs expressed in CPCs and CPC EVs.  
b PCA plot of CPC and CPC EVs show clustering by RNA source across PC1.  
c Volcano plot of differentially expressed miRNAs in CPCs and CPC EVs.  
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d GO pathway enriched terms from differentially expressed miRNA gene targets, as determined by miRTarBase. 
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Table 3-2. miRNAs preferentially released to EV and retained in cell 

miRNA Log2(EV/Cell) padj RNA Log2(Cell/EV) padj 

hsa-miR-486-5p 7.49 *** hsa-miR-29b-3p 4.05 *** 

hsa-miR-203a-3p 6.58 ** hsa-miR-379-5p 3.39 *** 

hsa-miR-589-5p 6.01 ** hsa-miR-27a-3p 3.28 *** 

hsa-miR-122-5p 5.92 ** hsa-miR-31-5p 3.24 ** 

hsa-miR-18a-5p 5.56 ** hsa-miR-411-5p 3.17 ** 

hsa-miR-130b-3p 5.25 ** hsa-miR-30a-5p 3.16 *** 

hsa-miR-320c 4.84 ** hsa-miR-454-3p 3.04 ** 

hsa-miR-1180-3p 4.27 *** hsa-let-7e-5p 2.93 *** 

hsa-miR-760 4.26 ** hsa-let-7f-5p 2.82 *** 

hsa-miR-299-5p 4.16 ** hsa-miR-27b-3p 2.73 *** 

hsa-miR-92b-5p 4.15 ** hsa-miR-29a-3p 2.61 *** 

hsa-miR-339-3p 4.15 * hsa-miR-143-5p 2.52 ** 

hsa-miR-125a-3p 3.93 * hsa-miR-30e-5p 2.48 ** 

hsa-miR-494-3p 3.82 ** hsa-miR-21-5p 2.48 *** 

hsa-miR-501-3p 3.66 ** hsa-miR-103a-3p 2.45 *** 

hsa-miR-500a-3p 3.56 * hsa-miR-27a-5p 2.41 * 

hsa-miR-184 3.26 * hsa-let-7a-5p 2.35 ** 

hsa-miR-127-5p 3.23 * hsa-miR-134-5p 2.32 * 

hsa-miR-4661-5p 3.15 * hsa-miR-143-3p 2.30 ** 

hsa-miR-197-3p 3.15 ** hsa-miR-431-5p 2.16 * 

hsa-miR-214-3p 3.00 * hsa-miR-24-3p 2.13 *** 

hsa-let-7d-3p 2.91 *** hsa-miR-493-3p 2.12 ** 

hsa-miR-1287-5p 2.90 * hsa-miR-16-5p 2.12 *** 

hsa-miR-320b 2.82 * hsa-miR-450b-5p 2.06 * 

hsa-miR-92b-3p 2.76 ** hsa-miR-152-3p 1.98 *** 

*p < 0.01, **p < 1e-5, ***p < 1e-10 
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3.4.4 CPC-EVs contain vesicle biosynthesis and cell cycle-related miRNAs 

We investigated the enrichment of well-studied miRNA families and cardiac-related 

miRNAs, with known functions in CPC-EVs (Figure 3-4 a). Most notably, members of the 

miRNA 17/92 cluster (miR-18a-5p and miR-92a-3p) involved in development and cell 

proliferation are upregulated in CPC-EVs  (Chen et al., 2013a; He et al., 2005; Lu et al., 2007). 

Additionally, members of the miRNA 99/100 family (miR-99a-5p and miR-99b-3p) involved in 

hematopoietic stem cell renewal are also upregulated in CPC-EVs (Emmrich et al., 2014).  

To understand the specificity of our CPC vs. CPC-EV results, we searched the Gene 

Expression Omnibus (GEO) database for previously published datasets with miRNAseq from 

EVs and their parent cells. We found eleven datasets comprised of many cell types, including, 

various cancer cells, immune cells, and bone marrow mesenchymal stem cells (Kanlikilicer et 

al., 2016; Melo et al., 2014; Mittelbrunn et al., 2011; Ono et al., 2014; Tadokoro et al., 2013; 

Umezu et al., 2014; Vignard et al., 2020; Yokoi et al., 2018). We calculated fold-change values 

(EV/Cell) for each data set and ranked the miRNAs in order of decreasing fold-change value 

(Figure 3-4 b). We found our data set was congruent with other data sets: our CPC-EVs were 

enriched in some miRNAs upregulated in other EV types, and our CPCs retained some similar 

miRNAs to other cell types. Specifically, well-studied miR-122-5p, which has been implicated in 

miRNA EV cargo sorting, was top ranked in multiple data sets (Temoche-Diaz et al., 2019). 

Nevertheless, there were a handful of unique miRNAs, enriched in CPC-EVs, but not in EVs 

from other cell types. These miRNAs included miR-18a-5p and miR-130b-3p. Evidence suggests 

that miR-18a-5p is anti-apoptotic (Li et al., 2017; Mogilyansky and Rigoutsos, 2013), while 

miR-130b-3p is pro-apoptotic, targets insulin-like growth factor 1, and may be cardiac harmful 

(Gan et al., 2020; Li et al., 2016b).  
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Figure 3-4. Differential expression of well-studied CPC and CPC-EV miRNAs and miRNA clusters.  
a Differential expression of well-studied miRNAs in CPCs and CPC-EVs.  
b 2XU�VWXG\¶V�WRS����PL51$V�XS��UHG��DQG�GRZQ��EOXH��UHJXODWHG�LQ�(9�VDPSOHV�SORWWHG�ZLWK�UDQN�RI�WRS�HQULFKHG�PL51$V�IURP�
11 publicly available databases. GEO database numbers listed on top; white color indicates no available miRNA expression 
(NA). 
 

3.4.5 Construction of ceRNA network 

Evidence suggests that lncRNAs act as competing endogenous RNAs (ceRNAs) and play a key 

role in regulating RNA expression (Ma et al., 2020; Qi et al., 2015; Salmena et al., 2011). 

Furthermore, previous work has demonstrated that CPCs function in an age-dependent manner: 

CPCs from neonate patients are more reparative than CPCs from older patients (Agarwal et al., 

2016; Sharma et al., 2017). To gain a comprehensive level of understanding of age-dependent 
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CPC ceRNA interactions, we investigated the differentially expressed mRNAs, lncRNAs, and 

miRNAs between neonate and child CPCs. Overall, child and neonate CPC RNA profiles were 

the most dissimilar (Supplemental Fig. 3-1). PCA of coding and non-coding RNAs showed 

separation of neonate and child CPCs across the first three components (Figure 3-5 a).  

We used edgeR/limma to find the top differentially expressed miRNAs (18), lncRNAs 

(134), and mRNAs (505) (|fold-change|>2 and p<0.05) between neonate and child CPCs 

(Supplemental Table 3-9). Overall, child CPCs were enriched in various non-coding RNAs, as 

compared to neonate CPCs (Figure 3-5 b and c). We then matched differentially expressed 

miRNAs to differentially expressed lncRNAs and mRNAs by putative target sites using miRcode 

and miRTarBase as shown in Figure 3-5 d (Hsu et al., 2011; Jeggari et al., 2012). The resulting 

ceRNA network consisted of 107 nodes and 144 edges (Figure 3-5 e). The most highly 

connected nodes included miRNAs: miR-218-5p and -877-3p upregulated in child CPCs, and -

23a-3p, -23b-3p, and -301a-3p, upregulated in neonate CPCs. (
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Table 3-3, Supplemental Fig. 3-2). Metascape enrichment analysis revealed these nodes are 

enriched in pathways including, blood vessel development, positive regulation of cell cycle, and 

regulation of Wnt signaling pathway (Supplementary Table 10). We analyzed the hub genes in 

the full ceRNA (Figure 3-5 e) network using the Cytoscape MCODE plug-in. The full network 

was reduced to the most highly connected 36 hub nodes, including miRNAs: miR-23a-3p, -23b-

3p, -148a-3p, -181a-5p, -218-5p, -301a-3p, and -877-3p (Figure 3-5 f).  

 

 
Figure 3-5. ceRNA network of neonate and child CPCs.  
a PCA plot of CPC coding and non-coding CPC RNAs (PC1, PC2, PC3) show clustering by patient age group.  
b Volcano plot of differentially expressed non-coding RNAs between neonate and child CPCs. Thirty-six and 98 RNAs are 
upregulated in neonate and child cells, respectively.  
c Fold-change values for each RNA in various categories. RNAs upregulated in child CPCs (purple), compared to neonate CPCs 
(yellow). N represents number of measured RNAs in each category.  
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d Schematic for ceRNA network construction: differentially expressed RNAs between neonate and child CPCs were matched in 
miRcode and miRTarBase by putative target sites.  
e Full ceRNA network of differentially expressed RNAs (neonate vs. child CPCs) with 107 nodes and 144 edges.  
f Reduced MCODE network of the most highly connected RNA nodes. 
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Table 3-3. ceRNA network hub connectivity 

RNA Type Name Node Degree 

miRNA miR-218-5p 31 
miRNA miR-181a-5p 22 
miRNA miR-23a-3p 20 
miRNA miR-23b-3p 18 
miRNA miR-148a-3p 17 
miRNA miR-877-3p 13 
miRNA miR-301a-3p 13 
lncRNA RP11-115D19.1.1 5 
lncRNA PCA3 5 
lncRNA AC092594.1.1 4 
lncRNA AC108142.1.1 4 
mRNA MYLIP 3 
lncRNA CTD-2541J13.1.1 3 
lncRNA MIR143HG 3 
lncRNA RP11-184M15.1.1 3 
lncRNA RP11-3P17.4.1 3 
lncRNA RP11-471J12.1.1 3 
lncRNA SNHG5 3 
lncRNA AC016683.6.1 3 

 

3.5 Discussion 

Several cell types are being clinically evaluated for use in cardiac cell therapy, including CPCs 

(NCT02501811, NCT03351400, NCT03406884). Despite promising preclinical results, there 

remain concerns over variability from different cell populations and cell therapy outcomes 

(Rosen et al., 2014). Specifically, several groups have shown that CPC therapeutic efficacy is 

dependent on patient age and disease, as well as cell culture and expansion conditions (Agarwal 

et al., 2016; Mishra et al., 2011; Trac et al., 2019b; Yan et al., 2012). Furthermore, research has 

shown that cardiac cell therapy efficacy can be attributed to paracrine signaling and the release 
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of EVs, rather than cellular engraftment, proliferation, and differentiation (Marban, 2018). 

Therefore, to investigate sources of CPC-therapy variability, we used next generation sequencing 

methods to determine differences among pediatric primary CPCs (n=30 patients) and their 

respective EVs released in vitro. We analyzed CPC and CPC-EV coding and non-coding RNA 

content and investigated the differences (1) between patient matched CPCs and CPC-EVs, and 

(2) across CPC patient age groups. Previous research has investigated differences between stem 

cells and their EVs, but these studies were limited in sample size and focused on miRNA only 

(Adamiak et al., 2018; Xin et al., 2020). By taking a comprehensive computational approach, we 

gained insight into potential mechanisms of action and sources of variability of CPC cell therapy. 

First, we determined the differences between CPC and CPC-EV RNA content. For this study, 

we profiled coding and long non-coding RNA using total RNAseq and miRNA with small 

RNAseq. As expected, we found that the greatest contributor to variance across the entire dataset 

was source (cell vs. EV), rather than patient age or sex (Figure 3-2 b and c; Figure 3-3 b; 

Supplemental Figure 3-3 c and d). Using differential expression analysis, we discovered that a 

large portion of RNAs and miRNAs were expressed in only cells or EVs. Further, of the 

intersecting set of RNAs expressed in both cells and EVs, many were differentially expressed 

(adjusted p-values < 0.05, Figure 3-2 a and d; Figure 3-3 a and c). In total, CPCs retained 

RNAs involved in extracellular matrix organization and exported RNAs to EVs involved in 

various signaling pathways (Figure 3-2 e; Figure 3-3 d).  

Importantly, cell type and cell environment affect EV cargo (Agarwal et al., 2017; Sahoo and 

Losordo, 2014; Trac et al., 2019a). In the context of cardiac cell therapy, stem and progenitor 

cell-EVs have been shown to carry RNAs with beneficial pleiotropic effects²

immunomodulatory, anti-fibrotic, anti-apoptotic, pro-angiogenic, pro-migratory, and pro-
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proliferative²as compared to their non-progenitor cardiac cell type counterparts (Barile et al., 

2017b; Ibrahim et al., 2014; Marban, 2018). Additionally, manipulations affecting parent stem 

and progenitor cell environment, like hypoxia and cell aggregation, affect EV RNA cargo and 

resulting EV efficacy (Agarwal et al., 2017; Trac et al., 2019a). Special attention has been paid 

to EV miRNA cargo, as it plays an important role in cardiac repair: signaling between stem or 

progenitor cells and resident cardiac cells (Emanueli et al., 2015). Circulating EVs protect 

internal cargo from degradation and are thus a rich source of circulating miRNAs. Our results 

indicate that CPC-EVs are upregulated in several important and well-studied miRNA clusters 

(Figure 3-4 a). In particular, members of miRNA cluster 17/92 are upregulated in CPC-EVs. 

The miRNA 17/92 cluster was initially discovered as an oncogene and has been shown to 

promote cardiomyocyte proliferation (Chen et al., 2013a; He et al., 2005). Furthermore, miR-92a 

is highly expressed in endothelial cells and is upregulated in CPC-EVs (log2fold-change = 1.46, 

as compared to CPC). Previous studies have shown that increasing cellular expression of miR-

92a-3p specifically via EV delivery is pro-angiogenic²promoting cell cycle progression and 

endothelial-to-mesenchymal transition in endothelial cells²whereas direct cell overexpression 

of miR-92a-3p may be anti-angiogenic (Liu et al., 2019; Umezu et al., 2013; Yamada et al., 

2019). Additionally, members of the miR-23/-24/-27 cluster are implicated in both positive and 

negative regulation of neovascularization and are differentially expressed in CPC and CPC-EVs 

(Kesidou et al., 2020; Li et al., 2016a). Overall, identifying well-studied miRNA clusters with 

known biological roles in our CPC-EVs provides greater insight into their potential mechanisms 

of action in vitro or in vivo. 

Furthermore, we aimed to differentiate non-specific, EV biogenesis-related RNA cargo 

from CPC-specific, potentially pro-reparative cargo. To do so, we compared the top 15 miRNAs 



 

 

74 

enriched in CPC-EVs and CPCs to publicly available data sets from various cell types²immune 

cells, cancer cells, and mesenchymal stem cells²and we found both similarities and differences 

in the top ranked miRNAs. The 4th most upregulated miRNA in CPC-EVs, miR-122-5p 

(log2fold-change = 5.92, Table 3-2), is upregulated in EVs from other cell types (Figure 3-4 b) 

and is loaded into EVs via Lupus La protein binding (Temoche-Diaz et al., 2019). Several other 

miRNA EV sorting mechanisms have been identified, including other RNA-binding protein 

mechanisms and membrane proteins involved in EV biogenesis. For example, three of the 

miRNAs upregulated in CPC-EVs, miR-320a, -193a, and -92a (log2fold-change = 1.25, 0.80, 

1.46) have been shown to be actively loaded into EVs via Argonaute 2, major vault protein, and 

vacuolar protein sorting-associated protein 4 binding, respectively (Jackson et al., 2017; 

McKenzie et al., 2016; Teng et al., 2017).  

On the other hand, in our comparison to other datasets, we also identified miRNAs 

enriched in CPC-EVs that are not enriched in EVs from other cell types. Most notably, miR-18a-

5p is upregulated in CPC-EVs (log2fold-change = 5.56) and is a member of the pro-proliferative 

and anti-apoptotic 17/92 miRNA cluster. In contrast to some other cell type EVs, miR-501-3p 

was also identified as a top upregulated miRNA in CPC-EVs. A previous report determined that 

macrophage-derived exosome miR-501-3p promoted pancreatic ductal adenocarcinoma cell 

migration and proliferation (Yin et al., 2019). Considering treatment strategies for cardiac repair 

strive to promote cell proliferation, miR-18a-5p and miR-501-3p may be potent, progenitor cell-

specific EV signals driving therapeutic response. Further investigation of these miRNAs is 

warranted. Overall, when understanding the function of released EVs in cell therapy, it will be 

important to discriminate between non-specific, machinery-related RNA cargo vs. CPC-specific, 
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potentially beneficial RNA. Elucidating CPC-specific EV cargo molecules will help us 

understand which RNA molecules are driving cardiac cell therapy efficacy.   

We have previously examined and reported differential CPC mRNA expression across 

neonate, infant, and child age groups in a smaller sample size (Shoja-Taheri et al., 2019). We 

have not, however, investigated the full RNA landscape and potential interactions of coding and 

non-coding RNAs in CPCs. Importantly, in 2011, Salmena et al. introduced the competing 

HQGRJHQRXV�51$��FH51$��K\SRWKHVLV��VXJJHVWLQJ�WKDW�51$�WUDQVFULSWV�³WDON´�WR�HDFK�RWKHU�YLD�

miRNA response elements, forming a large-scale transcriptome regulatory network (Salmena et 

al., 2011). A growing body of evidence suggests that lncRNAs play a key role in protein-coding 

gene regulation by acting as miRNA sponges (Ma et al., 2020; Qi et al., 2015; Salmena et al., 

2011). Furthermore, non-coding RNAs play an important role in cardiac development (Frank et 

al., 2016), and  CPCs lose their therapeutic functionality as they age (Agarwal et al., 2016; 

Sharma et al., 2017). Thus, to gain a comprehensive level of understanding of age-dependent 

CPC ceRNA interactions, we investigated the differentially expressed miRNAs, lncRNAs, and 

mRNAs between neonate and child CPCs. We determined that neonate and child CPCs had the 

JUHDWHVW�GLIIHUHQFHV�LQ�51$�FRQWHQW��,QIDQW�&3&V�KDG�DQ�³LQWHUPHGLDWH´�51$�SURILOH�DQG�were 

not included in the pairwise ceRNA network analysis (Figure 3-5 a; Supplemental Figure. 3-1) 

Largely, child CPCs had higher expression of non-coding RNAs, compared to neonate CPCs 

(Figure 3-5 c). Using the miRcode and miRTarBase target prediction databases, we mapped a 

lncRNA-miRNA-mRNA network of differentially expressed RNAs between neonate and child 

CPCs (Figure 3-5 d-f). The resulting network highlighted the importance of highly connected 

miR-218-5p, -181a-5p, -23a-3p, and -23b-3p (Table 3-3).  
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Our findings presented in this report are constrained by CPC in vitro culture conditions. 

Expansion of CPCs for the collection of EVs demands tens of millions of cells, requiring in vitro 

passaging of cells and potentially introducing transcriptome drift. To limit this issue, we kept 

cultures less than or equal to passage nine. The interpretation of these results is also limited due 

to the CPC two-dimensional culture experimental design, which is not ideal to recapitulate the in 

vivo cellular environment. Furthermore, CPC-EVs released from in vitro cell cultures may vary 

from CPC-EVs released from transplanted cells in in vivo and clinical models. EV cargo is 

highly heterogenous and affected by parent cell conditions and environment. Previous research 

in allogenic cardiac cell therapy has addressed this issue by collecting exosomes released from 

human CPCs in rat plasma, after cell transplantation, via major histocompatibility complex class 

I (Saha et al., 2019). Future efforts to identify CPC-EV markers for autologous and allogenic 

transplant models will assist our efforts to understand CPC-EV cardiac repair mechanisms of 

action. 

In conclusion, we sequenced patient-derived CPCs and CPC-EVs and examined the RNA 

profiles with unsupervised learning methods to explore differences in coding and non-coding 

RNAs. We determined that CPC and CPC-EV RNA profiles differ and that there are age-

dependent differences in non-coding RNAs of CPCs. More specifically, CPCs retain cell 

adhesion-related RNAs and export both generic EV transport-related RNAs and potential 

progenitor cell-specific and pro-reparative RNAs involved in cell proliferation and 

neovascularization. Further, child CPCs contain elevated levels of non-coding RNAs, compared 

to neonate CPCs. With this study, we hope to highlight the value of using unbiased methods as 

³SUHFXUVRUV´�WR�TXLFNO\�KRQH�LQ�RQ�SRWHQWLDOO\�LPSRUWDQW�&3&�DQG�&3&-EV RNAs so that more 

targeted experimental tests may be performed. Cell therapy for children is currently in early 
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clinical trials, and data from our laboratory and others show that cells and EVs may 

independently, or in concert, repair the damaged myocardium (Ibrahim et al., 2014; Saha et al., 

2019). Using bulk sequencing to develop tools to computationally assess mechanisms and 

biomarkers in an unbiased manner could improve the outcomes of this promising approach. Our 

work provides further perspective for understanding the mechanism of action of CPCs, which is 

valuable for addressing clinical trial variability.  
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3.6 Supplemental Information 

 
Supplemental Figure 3-1. Differentially expressed RNAs in neonate, infant, and child CPCs.  
Volcano plots of differentially expressed RNAs from total RNAseq, lncRNAseq, and miRNAseq between different age CPC 
groups. p-value cutoff = 0.05, fold-change cutoff = 2. 
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Supplemental Figure 3-1. Differentially expressed RNAs in neonate and child CPCs. 
LogCPM values for top differentially expressed mRNAs, lncRNAs, and miRNAs. 
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Supplemental Figure 3-2. miRNAseq and Total RNAseq after batch correction. 
a PCA plot of miRNAseq data (logCPM) before and after ComBat batch correction 
b PCA plot of total RNAseq data (logCPM) before and after ComBat batch correction 
c Violin plot of miRNAseq variance explained by each covariate before and after batch correction. Variance calculated for each 
miRNA.  
d Violin plot of total RNAseq variance explained by each covariate before and after batch correction. Variance calculated for 
each RNA. 
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Supplemental Figure 3-3. PCA results correspond to differential expression analyses 
a Top 100 RNAs that load onto principal component (PC) 1 and 2, both positively and negatively, were compared to top 100 
differentially expressed RNAs (Cell vs. EV, by fold-change). Results correspond to PCA plot in Figure 3-2b: RNAs upregulated 
in EVs match RNAs heavily loaded on PC1- and PC2+, and RNAs upregulated in cells match RNAs heavily loaded on PC1+ and 
PC2-.  
b Top 50 miRNAs that load onto PC1 and PC2 were compared to the top 50 differentially expressed miRNAs (Cell vs. EV, by 
fold-change). Results correspond to PCA plot in Figure 3-3b: miRNAs upregulated in cells and EVs match miRNAs heavily 
loaded on PC1+ and PC1-, respectively.  
c Top 100 coding/non-coding RNAs that load onto PC1, PC2, and PC3 were compared to the top 100 differentially expressed 
CPC RNAs (child vs. neonate, by fold-change). Results correspond to PCA plot in Figure 3-5a: RNAs upregulated in child CPCs 
match RNAs loaded on PC1-, PC2+, PC3+; RNAs upregulated in neonate CPCs match RNAs loaded on PC1+ and PC3-. 
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Supplemental Figure 3-4. Differentially expressed CPC RNAs by patient age. 
a Top six differentially expressed CPC protein coding RNAs, lncRNAs, and miRNAs by patient age in log10months.   
b Overlap of differentially expressed RNAs (p<0.05) as determined by categorical ages (neonate, infant, and child) and 
continuous age (log10months). CPC models constructed with the covariates age, sex, and batch (if applicable). 
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The work contained in this chapter will be submitted for publication summer 2022.  
 

4.1 Introduction 

Congenital heart disease (CHD) affects nearly 1% of births in the United States, with 

conditions ranging in severity. Hypoplastic left heart syndrome (HLHS) is one of the most 

complex forms of CHD and is characterized by an underdeveloped left ventricle (Bittle et al., 

2018; Feinstein et al., 2012). HLHS is palliated by a series of three surgeries which redirects 

blood blow such that the right ventricle sustains systemic circulation. Despite the short-term 

improvements offered by surgical palliation, HLHS has one of the highest mortality rates among 

all CHD conditions (Saraf et al., 2019). In particular, HLHS patients suffer from right ventricle 

failure due to ischemia and pressure/volume overload. Therefore, to address right ventricle 

dysfunction and improve HLHS patient outcomes, cell-based therapies have been explored in 

several preclinical and clinical trials (Bittle et al., 2018). Notably, our group is currently 

investigating the use of autologous c-kit+ progenitor cells (CPCs) for the treatment of HLHS in a 

Phase I/II clinical trial (CHILD: NCT03406884) (Kaushal et al., 2022).  
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 CPCs may be isolated from the heart tissue, including the otherwise discarded right atrial 

appendage, and expanded in culture for preclinical or clinical use. Multiple studies have shown 

that CPCs derived from neonatal patients outperform CPCs derived from older children and 

adults, in part due to their differences in CPC secreted factors (Agarwal et al., 2017; Agarwal et 

al., 2016; Mishra et al., 2011; Sharma et al., 2017; Simpson et al., 2012). Originally, cardiac cell 

therapy was thought to function in a direct manner: transplanted cells engraft, proliferate, and 

form new healthy tissue. However, many groups have now shown that transplanted cells function 

in a more indirect manner via paracrine signaling (Marban, 2018). More specifically, 

transplanted stem or progenitor cells release extracellular vesicles (EVs) loaded with beneficial 

nucleic acids to resident cardiac cells (Ibrahim et al., 2014).  

 Small EVs may be formed in an endocytic manner from a parent, or source, cell. In a 

series of inward budding steps²ILUVW�IURP�D�SDUHQW�FHOO¶V�SODVPD�PHPEUDQH�DQG�WKHQ�

multivesicular body²EVs may be formed as intraluminal vesicles that are ultimately released 

into the extracellular space to signal to neighboring cells. Importantly, during these biogenesis 

steps, EVs acquire specific proteins and nucleic acid cargo directly from the parent cell. We and 

others have shown that stem and progenitor cells are enriched in certain RNAs that promote 

processes such as cell proliferation, cell migration, and angiogenesis, that may drive therapeutic 

success of cell therapy preclinical models (Agarwal et al., 2017; Gray et al., 2015; Hoffman et 

al., 2022; Ibrahim et al., 2014; Sahoo et al., 2011; Yu et al., 2015). To better understand the 

mechanistic EV RNA signals driving reparative outcomes, we have previously built regression 

models to link EV RNA-sequencing data to in vitro and in vivo experimental outcomes (Agarwal 

et al., 2017; Gray et al., 2015; Saha et al., 2019; Trac et al., 2019b). However, these studies have 

been limited in sample size and have not been connected to clinical trial samples. 
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Despite growing evidence of stem/progenitor cell-derived EVs repairing the myocardium, there 

is a dearth of quantitative studies investigating the EV specific factors (mRNA, miRNA, 

proteins, etc.) contributing to repair. Indeed, cardiac cell therapy had suffered from variability in 

patient outcomes; some cell types and/or patients exhibit greater improvements than others. 

Therefore, to identify contributing factors of cell therapy variability and improve clinical 

outcomes, we need studies linking high dimensional datasets, like next generation sequencing, to 

clinical outcomes. Here, we construct an in vitro model of CPC-(9�³UHSDLU´�IRU�WKH�SUHGLFWLRQ�RI�

clinical outcomes from the CHILD trial. We collected and sequenced EVs from cultures of (1) 

CPCs previously isolated from CHD patients (n=29), and (2) CPCs from patients in the CHILD 

clinical trial (n=7). Then, we treated various cell types (cardiac endothelial cells, cardiac 

fibroblasts, and mesenchymal stromal cells) with CPC-EVs and measured their effects. We put 

together the EV sequencing data and in vitro outcomes data to form regression models, 

potentially predictive of clinical outcomes. 

4.2 Methods 

4.2.1 Isolation and Culture of c-kit+ Progenitor Cells (CPCs) 

This study was approved by the Institutional Review Board at Children's Healthcare of Atlanta 

and Emory University. Human CPCs were isolated from the right atrial appendage tissue, 

routinely removed during surgical repair of congenital heart defects, via magnetic cell sorting 

(CD-177, BioLegend, San Diego, USA). Cells were collected from 16 neonatal (<1 month), 13 

infant (<1 year), and 8 FKLOG��!��\HDU��SDWLHQWV��&HOOV�ZHUH�FXOWXUHG�DQG�H[SDQGHG�LQ�+DP¶V�)-12 

medium (Corning Cellgro®, Corning, NY, USA) with 10% fetal bovine serum, 1% penicillin-

streptomycin, 1% L-glutamine, and 0.04% human fibroblast growth factor-ȕ��7KH�DGKHUHQW�&3&V�
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were expanded to reach confluency in 700cm2. Patient characteristics for samples used in the 

study are listed in Table S1. 

4.2.2 Extracellular Vesicle (EV) Collection  

CPCs were grown to 90% confluency, washed with PBS, and quiesced with serum free medium 

for 24 hours. Conditioned media was collected and subjected to sequential centrifugation: 3000 g 

for 10 min to remove cells, 28,000 g for 30 min to remove cell debris, and 118,000 g for 1 hr 54 

min to pellet EVs (Optima XPN-100 ultracentrifuge; Beckman Coulter SW 41 Ti rotor). EV 

protein content was analyzed by Micro BCA Protein Assay Kit (Thermo Scientific Pierce 

��������DFFRUGLQJ�WR�PDQXIDFWXUHU¶V�LQVWUXFWLRQV��(9�VL]H�DQG�FRQFHQWUDWLRQ�ZDV�GHWHUPLQHG�E\�

NanoSight NS300. Samples were diluted 1:10 in PBS, and three, 60-second video images were 

captured per sample and analyzed by NanoSight NTA 3.4 software. 

4.2.3 Tube Formation Assay 

Rat cardiac endothelial cells (CECs) were cultured in endothelial cell growth medium 

(Endothelial Cell Growth Medium-2 BulletKitTM, Lonza, Bend, OR). Before experimentation, 

CECs were washed with PBS and quiesced in endothelial bare media (FBS and growth factor 

free) with 1% penicillin-streptomycin overnight. Quiesced CECs were seeded at 10,000 

cells/well onto µ-slide Angiogenesis slides (IBIDI) pre-coated with 10 µL/well Matrigel 

�0DWULJHO��0DWUL[��&RUQLQJ��RU�*HOWUH[��*HOWUH[��/'(9-Free hESC-qualified Reduced 

Growth Factor Basement Membrane Matrix, Gibco) with three technical replicates per group. 

CECs were treated with 20 µg/mL protein of EVs in 50 µL of media per well. After 20 hours, 

live cells were stained with calcein-AM (Thermo Fisher Scientific) and imaged with fluorescent 

microscopy (Olympus IX71). The ImageJ Angiogenesis Analyzer plug-in was used to quantify 

number of tubes and total tube length (Fiji, National Institutes of Health, Bethesda, MD, USA). 
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Quiesced CECs and CECs grown in full growth medium (with FBS and growth factors) without 

EV treatment served as a negative and positive controls, respectively. Tube formation 

experiments were performed five times (n=5) for each CPC-EV. 

4.2.4 Mesenchymal Stromal Cell (MSC) Migration Assay 

Bone marrow-GHULYHG�06&V�ZHUH�SXUFKDVHG��6WHP3UR��%0�0HVHQFK\PDO�6WHP�&HOOV��*LEFR��

and grown in a 1:1 mixture of Dulbecco's Modified Eagle Medium and Ham's F-12 media 

(Corning Cellgro®, Corning, NY, USA) with 10% fetal bovine serum, 1% penicillin-

streptomycin, 1% L-glutamine, and 0.04% human fibroblast growth factor-ȕ��%HIRUH�

experimentation, cells were washed in PBS and quiesced in serum free media overnight. The 

bottom of a 24 well plate was coated in 0.1% gelatin for 1 hour. Then, excess gelatin was 

aspirated and cells were seeded onto a Transwell Insert with 8 µm pore (Corning® Transwell® 

polycarbonate membrane cell culture inserts, Corning, NY, USA) and placed in the 24 well plate 

(two technical replicates per group). The basolateral compartment was treated with 20 µg/mL 

protein of EV in 300 µL of media. After 48 hours, cells that migrated through the porous 

PHPEUDQH�ZHUH�GHWDFKHG�DQG�VWDLQHG��&HOO7UDFNHU��2Uange CMRA Dye, Invitrogen). 

Fluorescence was detected by the Synergy 2 Microplate Reader (Biotek, Winooski, VT, USA) 

and fold-change was computed over the negative control (MSCs without EV treatment). MSC 

migration experiments were performed four times (n=4) for each CPC-EV. 

4.2.5 Fibroblast TGFǦȕ�6WLPXODWLRQ�$VVD\ 

Rat cardiac fibroblast cells (CFs) were cultured in a 1:1 mixture of Dulbecco's Modified Eagle 

Medium and Ham's F-12 media (Corning Cellgro®, Corning, NY, USA) with 10% fetal bovine 

serum, 1% penicillin-streptomycin, and 1% L-glutamine. At 90% confluency, cells were washed 

with PBS and quiesced in serum free media. CFs were treated with 20 µg/mL protein of EV in 
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500 µL of media per well (two technical replicates per group). After 12 hours, CFs were 

stimulated with 10 ng/mL of TGF-ȕ��,QYLWURJHQ��7*)%��5HFRPELQDQW�+XPDQ�3URWHLQ��

Invitrogen) for 12 hours. Then, media was aspirated, and RNA lysate was collected for PCR 

analysis. CFs without EV treatment, with and without TGF-ȕ�WUHDWPHQW�VHUYHG�DV�SRVLWLYH�DQd 

negative controls, respectively. Fibrotic gene assays were performed three times (n=3) for each 

CPC-EV. 

4.2.6 Endothelial Cell TNF-Į�6WLPXODWLRQ�$VVD\ 

CECs were cultured as previously described in 24 well plates. At 90% confluency, cells were 

washed with PBS and quiesced in endothelial bare medium overnight. CECs were treated with 

20 µg/mL protein of EV in 500 µL of media per well (two technical replicates per group). After 

24 hours, CECs were stimulated with 20 ng/mL of rat TNF-ܤ��5HFRPELQDQW�5DW�71)-alpha 

Protein, R&D Systems) for 4 hours. Then, media was aspirated, and RNA lysate was collected 

for PCR analysis. CECs without EV treatment, with and without TNF-ܤ�WUHDWPHQW�VHUYHG�DV�

positive and negative controls, respectively. Inflammatory gene assays were performed three 

times (n=3) for each CPC-EV. 

4.2.7 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

RNA from CECs and CFs was collected in lysis buffer from the Pure Link RNA Mini Kit (Life 

Technologies, Carlsbad, CA) with 1% 2-mercaptoethanol (Sigma-Aldrich). Total RNA was 

isolated with the kit, accoUGLQJ�WR�PDQXIDFWXUHU¶V�LQVWUXFWLRQV��1H[W��F'1$�ZDV�SUHSDUHG��DQG�

RT-qPCR was performed on the StepOne System (Applied Biosystems, Foster City, CA) based 

on SYBR Green fluorescence detection of PCR products (Power SYBR Green PCR Master Mix, 

Applied Biosystems).  
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For CFs, RT-qPCR was used to evaluate transcript expression of connective tissue 

growth factor (Ctgf), collagen type 1 pro-Į��FKDLQ��Col1a1), collagen type 1 pro-Į��FKDLQ�

(Col1a2), collagen type 3 pro-Į��FKDLQ��Col3a1), and vimentin (Vim). For CECs, RT-qPCR was 

XVHG�WR�HYDOXDWH�WUDQVFULSW�H[SUHVVLRQ�RI�LQWHUOHXNLQ��ȕ��Il-�ȕ), interleukin 1ܤ��Il-1ъ), and 

interleukin 6 (Il-6���5HODWLYH�P51$�OHYHOV�ZHUH�FDOFXODWHG�XVLQJ�WKH��íǻǻ&W�PHWKRG��DV�

compared to Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) housekeeping gene. 

4.2.8 Next Generation Sequencing 

In this study, we combined sequencing data from our previously published CPC-EVs (training 

data) with CHILD trial patient CPC-EVs (testing data). The previously published training data 

and information regarding RNA preparation and sequencing can be found XQGHU�³(´�(9�VDPSOHV�

in GSE202345 and GSE202347. Additionally, we sequenced CPC-EVs from patients 938 and 

1097, which were not included in our previous publication. New CPC-EV sequencing data and 

information can be found in GSE203512. Briefly, we isolated RNA with the miRNeasy Mini Kit 

�4LDJHQ���DFFRUGLQJ�WR�PDQXIDFWXUHU¶V�LQVWUXFWLRQV��:H�DQDO\]HG�SXULILHG�51$��2100 

Bioanalyzer and TapeStation Controller, Agilent Genomics) for size, quality, and quantity. We 

conducted RNA library preparation and sequencing at the Emory Yerkes Nonhuman Primate 

Genomics core (Illumina NovaSeq 6000).  

Small RNA sequencing were aligned and hits were determined using the Qiagen 

GeneGlobe console with QIAseq miRNA Quantification tool. 'HIDXOW�SDUDPHWHUV�ZHUH�XVHG���¶�

adapters were trimmed using cutadapt, and reads with less than 16 base pair insert sequences or 

less than 10 base pair unique molecular index sequences were removed. Reads were aligned with 

Bowtie with GRCh38 and miRbase v21 references. Total RNA sequencing were aligned, and 

gene counts were determined with STAR in the Illumina BaseSpace app, RNA-Seq Alignment. 
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Reads were aligned with the hg19 reference genome. Biotypes were matched to alignment results 

using the Ensembl based annotation package (EnsDb.Hsapiens.v79). miRNAs were considered 

only from the small RNA sequencing results and were thus removed from the total RNA 

sequencing data set. 

4.2.9 RNA Sequencing Data Analysis 

Data analysis was completed in R. First, RNA counts for CPC-EVs were filtered: we removed 

51$V�ZLWK�]HUR�FRXQW�HQWULHV�LQ�WZHQW\�RU�PRUH�VDPSOHV�DQG�XVHG�HGJH5�SDFNDJH¶V�

µILOWHU%\([SU¶�IXQFWLRQ�ZLWK�WKH�GHIDXOW�SDUDPHWHU�VHWWLQJV��51$�FRXQWV�ZHUH�QRUPDOL]HG�ZLWK�

HGJH5¶V�ZHLJKWHG�WULPPHG�PHDQ�RI�0-values method (default parameters) and transformed into 

log2 counts per million (logCPM). Batch correction of logCPM values was implemented to 

DFFRXQW�IRU�VHTXHQFLQJ�SHUIRUPHG�DW�VHSDUDWH�VLWHV�DQG�WLPHV�XVLQJ�OLPPD¶V�UHPRYH%DWFK(IIHFW�

function.  

4.2.10 WGCNA gene module detection 

The WGCNA R package was used to construct co-expression networks for the filtered, 

normalized genes. The details of this algorithm are described by Langfelder and Horvath 

(Langfelder and Horvath, 2008). Briefly, the optimal soft-threshold power was graphically 

GHWHUPLQHG��ȕ� ���DQG�WKH�PLQLPXP�PRGXOH�VL]H�ZDV�VHW�WR�����&OXVWHUV��RU�PRGXOHV��RI�51$V�

were determined by first computing the adjacency matrix and then transforming it to form the 

topological overlap matrix (TOM). Then, the corresponding dissimilarity matrix, 1-TOM, and 

the cutreeDynamic function was used for hierarchical clustering and module detection. Highly 

correlated modules (r > 0.85) were merged to form the final co-expression modules. Thirty-three 

modules were determined. The dissimilarity of the module Eigengenes was computed with the 

moduleEigengenes function and the association between Eigengene values and experimental 
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RXWFRPHV�ZHUH�DVVHVVHG�E\�6SHDUPDQ¶V�FRUUHODWLRQ��0RGXOHV�WKDW�FRUUHODWHG�WR�PXOWLSOH�

outcomes (p<0.1) were examined for biological significance with Metascape pathway analysis 

(Zhou et al., 2019). 

4.2.11 Regression Models 

RNA-sequencing and experimental outcomes data were scaled and centered with the mdatools 

package in R before use in regression models. The mdatools package was also used to construct 

four partial least squares regression (PLSR) models using the SIMPLS algorithm. First, 3-

component models were constructed using all features (RNA) and leave-one-out cross validation. 

VIP scores were calculated for each model and RNAs with an average score >2 across all 

outcomes in the category were selected. VIP type was categorized by sequencing dataset: from 

total RNA-sequencing vs. small RNA-sequencing. Pathway analysis was performed using 

Metascape (Zhou et al., 2019). Then, 3-component final, reduced models were constructed (2-

component for migration). Model performance of the cross-validated training set was assessed 

with root-mean-square error (RMSE) and R2 measurements. Finally, predictions for in vitro 

outcomes were predicted from the reduced models for the CHILD CPC-EV RNA-seq data. 

Observed vs. predicted plots for each outcome of the CHILD testing set were generated with the 

following statistics: RMSE, R2, nLV (# of components).  

 Random forest regression was performed using the ranger and caret R packages. Models 

were constructed from the training data for each experimental outcomes using 5-fold cross 

validation. Hyperparameters mtry (number of features to consider at each split) and splitting rule 

(extra trees vs. variance) were tuned and the combination with the lowest RMSE were selected. 

Variable importance was determined by Gini index. Reduced models were constructed with 
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features > 10 importance score. The top 100 most important features for each outcome/model 

were considered for pathway analysis. 

4.3 Results 

4.3.1 CHILD clinical CPC samples release small EVs in cell culture 

To build a predictive CPC-EV model of cardiac outcomes with an adequate sample size, we 

cultured previously collected CPCs from patients with various congenital heart conditions 

(training dataset, n=29), as well as CPCs from HLHS patients enrolled in phase I of the CHILD 

FOLQLFDO�WULDO��WHVWLQJ�GDWDVHW��Q ����3DWLHQWV¶�DJH�DQG�KHDUW�FRQGLWLRQV�DUH�OLVWHG�LQ�Table 4-1. We 

expanded CPCs in 2D culture and isolated their EVs from the conditioned media via differential 

ultracentrifugation (Figure 4-1 a). We assessed CPC-EV concentration and size with Nanosight 

particle tracking and determined that CPC-EVs were <150nm, characteristic of small EVs or 

exosomes (Figure 4-1 b). Next, we isolated CPC-EV RNA and performed total and small RNA 

sequencing. Initial bioanalyzer plots of CPC-EV RNA revealed enrichment of small RNAs 

~22nt, the size of miRNA, and confirmed the absence of ribosomal 18S and 28S RNA peaks 

(Figure 4-1c). Sequencing results identified 1,067 miRNAs and 10,469 total RNAs after 

removing lowly expressed RNAs. CPC-EV sample logCPMs are displayed in Figure 4-1 d. 

After processing sequencing results, dimension reduction plots using principal component 

analysis (PCA) showed comparable miRNA and total RNA vesicle content across both training 

and testing datasets (Figure 4-1 e). 
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Figure 4-1. Characterization and RNA-sequencing of CPC-EVs. 
A Schematic of experimental design: CPCs were previously collected from various CHD patients (n=30), as well as the lead-in 
patients for the CHILD trial (n=7). CPC-EVs were collected from conditioned media, sequenced, and used in four in vitro 
experiments: cardiac endothelial cell tube formation on matrigel, MSC migration in a boyden chamber, cardiac endothelial cell 
inflammatory gene expression after TNF-ܤ�WUHDWPHQW��DQG�FDUGLDF�ILEUREODVW�ILEURWLF�JHQH�H[SUHVVLRQ�DIWHU�7*)-ȕ�WUHDWPHQW� 
B Nanoparticle tracking and C bioanalyzer plot of representative CPC-EVs from patient 1106 determine EV size/concentration 
and RNA composition, respectively.  
D Boxplots show normalized counts of CPC-EV samples for miRNA and total RNA-sequencing.  
E PCA plots of CPC-EV samples for miRNA and total RNA-sequencing, coded by dataset and patient age. 
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CPC: c-kit+ cardiac progenitor cell; CHD: congenital heart disease; EV: extracellular vesicle; PCA: principal component 
analysis; MSC: mesenchymal stem (or stromal) cell. 
Table 4-1. Patient characteristics. 

Patient # Age Age Group Diagnosis 
894 6 mo infant 

 

896 12 mo child VSD 
902 4 year child ASD 
903 < 1 week neonate HLHS 
924 2 mo infant TAPVR 
925 < 1 week neonate TAPVR 
926 14 Mo child VSD 
930 < 1 week neonate TAPVR, UAVC 
938 5 yr child Subaortic membrane resection, mitral valve ring 
956 5 mo infant CAVC 
957 7 mo infant PAPVR 
975 6 mo infant ToF 
985 2 Weeks neonate IAA 
1004 12 mos child LSVC 
1006 6 months infant CAVC 
1007 6 months infant VSD 
1010 9 wks infant ToF  
1045 < 1 week neonate CoA, VSD 
1048 6 yrs child ASD 
1050 1 week neonate HLHS 
1063 3 yrs child VSD 
1066 6 mos infant TA, VSD, ASD 
1083 <1 wk neonate IAA/VSD 
1092 4 yrs child ASD 
1095 3 mos infant DORV 
1097 3 mos infant ToF 
1099 5 mos infant CAVC  
1100 <1 week neonate HLHS 
1101 

 
neonate HLHS 

1102 
 

neonate HLHS 
1103 

 
neonate HLHS 

1104 
 

neonate HLHS 
1105 

 
neonate HLHS 

1106 
 

neonate HLHS 
1107 

 
neonate HLHS 

2013 3 months infant VSD 
2016 1-2 week neonate CoA/ASD/VSD 

ASD: atrial septal defect; HLHS: hypoplastic left heart syndrome; CAVC: Complete Atrioventricular Canal 
defect; CoA: Coarctation of the aorta; DORV: Double outlet right ventricle; IAA: interrupted aortic arch; 
LSVC: persistent left superior vena cava; PAPVR: Partial anomalous pulmonary venous return; TA: 
Tricuspid atresia; TAPVR: total anomalous pulmonary venous return; ToF: Tetralogy of Fallot; UAVC: 
unicuspid aortic valve; VSD: ventricle septal defect; 
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4.3.2 CPC-EV treatment affects recipient cell processes 

Multiple groups have reported the pleiotropic effects of transplanted stem or progenitor cell 

derived EVs (Agarwal et al., 2017; Gray et al., 2015; Ibrahim et al., 2014; Sahoo et al., 2011). To 

construct an in vitro model, predictive of clinical outcomes, we designed experiments to 

investigate primary mechanisms of EV-mediated cell therapy: modulation of inflammation, 

fibrosis, cell migration and angiogenesis. Specifically, we treated cardiac endothelial cells 

(CEC), cardiac fibroblasts (CF), and mesenchymal stem, or stromal, cells (MSCs) with patient-

derived CPC-EVs. We measured MSC migration in a Boyden chamber system, CEC tube 

formation on Matrigel (number of tubes and total tube length), CEC inflammatory gene 

expression (Il-1ъ��,O-�ȕ��,O-6) after TNF-ܤ�WUHDWPHQW��DQG�&)�ILEURWLF�JHQH�H[SUHVVLRQ��Col1a1, 

Col1a2, Col3a1, Vim, Ctgf) after TGF-ȕ�WUHDWPHQW��2YHUDOO��&3&-EVs derived from different 

patients exerted different effects on recipient cells and in vitro outcome measurements clustered 

by assay type, as expected (Figure 4-2 a). 

 In the migration assay, CPC-EVs induced MSC migration as compared to the untreated 

control (Figure 4-2 d). Interestingly, CPC-EVs derived from neonate patients promoted MSC 

migration to a greater extent than CPC-EVs derived from older patients (Figure 4-2 b). Simple 

linear regression showed a decrease in MSC migration with age (r = 0.33, m = -0.11, p = 0.059, 

Supplemental Figure 4-1). Conversely, angiogenesis experiments showed the opposite trend: 

CPC-EVs derived from older patients induced greater CEC tube formation than CPC-EVs from 

neonate patients (Figure 4-2 b and c). Linear regression showed enhanced total tube length 

measurements in CPC-EVs from older patients (r = 0.36, m = 0.16, p = 0.035, Supplemental 

Figure 4-1). Furthermore, we did not observe age-dependent differences in the PCR-based 

fibrosis and inflammation experiments (Figure 4-2 e and f, Supplemental Figure 4-1). Overall, 
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CPC-EV treatment reduced Il-6 expression after TNF-ܤ�WUHDWPHQW�DQG�UHGXFHG�Col1a2 and Ctgf 

expression after TGF-ȕ�WUHDWPHQW��'DWD�IRU�Col1a1, Col3a1, Vim, and Il-�ȕ�H[SUHVVLRQ��DV�well as 

total number of measured tubes is provided in the supplement (Supplemental Figure 4-2). 

Notably, for all four assays, we observed differences in experimental outcomes among the CPC-

EV groups. This variance provides a solid basis when constructing a predictive model and 

linking CPC-EV RNA-seq with experimental data. 

 

Figure 4-2. CPC-EV treatment affects cell processes in vitro. 
A Heatmap of experimental outcomes (averaged) for CPC-EVs cluster by assay category. Patient IDs are listed in the rows and 
color-coded by age group and data set (training vs. testing). Outcomes are listed in the columns.  
B Quantification of tube length, normalized to control, and C representative images of CEC tube formation. 
D MSC migration in Boyden chamber system, normalized to control, after CPC-EV treatment. 
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E CEC Il-6 expression after CPC-EV pretreatment and TNF-ܤ�VWLPXODWLRQ� 
F CF Col1a2 (left) and Ctgf (right) expression after CPC-EV pretreatment and TGF-ȕ�VWLPXODWLRQ� 
CPC: c-kit+ cardiac progenitor cell; CEC: cardiac endothelial cell; CF: cardiac fibroblast; MSC: mesenchymal stem (or stromal) 
cell. 
 

4.3.3 Weighted gene co-expression network analysis (WGCNA) identifies clusters of co-

expressed CPC-EV RNAs which correlate to in vitro outcomes  

To initially link CPC-EV RNAs with functional outcomes, we used the WGCNA unsupervised 

learning method. We used WGCNA to first identify clusters, or modules, of CPC-EV RNA and 

then determine the correlation of these modules to in vitro outcomes. For each method, we 

combined total RNA and miRNA data sets and centered and scaled the RNA features and 

outcomes. 

First, we performed WGCNA and identified 33 modules of co-expressed RNAs (Figure 

4-3 a). Then, we correlated these modules to each outcome and identified 8 modules of interest: 

M1, M2, M4, M5, M9, M10, M24, and M25. Interestingly, although the RNAs data sets were 

combined, centered, and scaled, the modules were primarily comprised of either RNA or miRNA 

(Figure 4-3 b). RNA modules of interest included M1 and M2 which have a negative correlation 

to fibrotic gene expression (Vim, Ctgf or Col3a1) and a positive correlation to both tube 

formation measurements (p<0.1). RNA modules M9 and M10 also have a positive correlation to 

tube length and total tubes (p<0.05) (Figure 4-3 c). Upon investigation of the RNAs belonging 

to these modules, we determined with pathway analysis that M1, M9, and M10 are enriched in 

tube morphogenesis; M1, M2, M9 are enriched in cell morphogenesis pathways; and M1 and M2 

are enriched in RNAs involved in extracellular matrix organization, circulatory system 

processes, cell junction organization, and calcium signaling (Figure 4-3 d).  

Additionally, we discovered miRNA modules M4, M5, M24, and M25 to correlate with 

in vitro outcomes. These modules had a positive correlation to expression of various fibrotic and 
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inflammatory genes. M5 and M25 had a negative correlation to tube formation measurements 

and MSC migration, respectively. M4 had a positive correlation to MSC migration. More 

FRQFLVHO\��WKHVH�PRGXOHV�FRQWDLQHG�PL51$V�ZKLFK�DUH�SRVLWLYHO\�FRUUHODWHG�WR�µSRRU¶�RXWFRPHV�

�ILEURVLV�DQG�LQIODPPDWLRQ��DQG�QHJDWLYHO\�FRUUHODWHG�WR�µJRRG¶�in vitro outcomes (migration and 

tube formation), opposite to the trend shown in the RNA modules (Figure 4-3 c). Notably, M4 

included some of the most well-studied miRNAs: let-7a/b/d/e/f/g/i, miR-99/100, -23/24/25 

families, as well as miR-19b, -20a, -21, -30, -125, -146a, -320a. To understand the biological 

VLJQLILFDQFH�RI�WKHVH�PRGXOHV��ZH�GHWHUPLQHG�WKH�PL51$V¶�JHQH�WDUJHWV�DQG�SHUIRUPHG�SDWKZD\�

DQDO\VHV��)URP�PL51$�PRGXOHV¶�JHQH�WDUJHWV��ZH�IRXQG�HQULFKPHQW�RI�FHOO�GHDWK��DGKHVLRQ��

migration, and differentiation pathways, as well as VEGFA-VEGFR2 signaling, tube 

morphogenesis, and immune system signaling (Figure 4-3 d).  
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Figure 4-3. WGCNA identifies clusters of RNA which correlate to experimental outcomes. 
A Thirty-three RNA modules were identified with WGCNA and then correlated to in vitro outcomes. Hierarchical clustering of 
the RNA modules is displayed in the top dendrogram. The bottom heatmap displays Spearman correlation of RNA modules to 
each outcome. .p<0.1, *p<0.05, **p<0.01. 
B RNA composition of 8 modules which significantly correlate to experimental outcomes ± blue: total RNA, pink: miRNA.  
C Correlation, positive or negative, of modules to specific outcomes (p<0.1). 
D Pathway analysis of RNAs in modules 1, 2, 9, and 10 show enrichment of extracellular matrix organization and cell 
morphogenesis pathways. Highlighted pathways deemed relevant by the authors. 
E Pathway analysis of gene targets of miRNA modules 4, 5, 24, and 25 show enrichment of cytokine and VEGF signaling, as 
well as cell migration, differentiation, death pathways. Gene targets determined by miRTarBase with validation of at least three 
experiments. 
WGCNA: weighted correlation network analysis 
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4.3.4 Partial least squares regression models predict CHILD CPC-EV in vitro outcomes 

We aimed to construct an in vitro regression model that could be trained on CPC-EVs collected 

previously from various CHD patients and would be predictive of clinical samples, CPC-EVs 

from the CHILD trial. We first determined that in vitro outcomes were highly correlated within 

the outcome categories (Figure 4-4 a). Therefore, we used PLSR (an algorithm that handles 

collinear, multivariate outcomes) to construct four regression models: fibrosis, inflammation, 

angiogenesis, and migration. For each model we first constructed a full model based on all RNAs 

from the training CPC-EV set and leave-one-out cross validation. The full models did not 

capture variance (the first two components of each model explained 20-30% of RNA variance) 

and showed poor prediction performance within the cross-validated training set (Figure 4-4 b).  

However, we then used feature selection to reduce the model and greatly improve 

performance. We computed the variable importance for the projection (VIP) scores for each 

RNA and selected RNAs with an average score across outcomes in a category > 2. Feature 

selection reduced the models to <300 RNAs; VIP count and distribution of RNA type are 

displayed in Figure 4-4 c. Noticeably, there was little overlap of VIPs across model categories 

(Figure 4-4 d). The reduced models displayed higher performance metrics and represented 

greater variance (>98% of RNA variance and 74-94% of outcome variance in all models) 

(Figure 4-4 b).   Pathway analysis of the VIP RNAs showed enrichment of immune system 

processes, metabolic processes, and developmental processes (Figure 4-4 e). Finally, we 

plugged in the test data set and demonstrated that the reduced models predicted in vitro outcomes 

of the CHILD CPC-EV data set. Representative observed vs. predicted plots for total tubes 

length, Col1a1, migration, and Il-1ȕ are shown (Figure 4-4 f, Supplemental Figure 4-3).  
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Figure 4-4. Partial least squares regression models predict CHILD in vitro outcomes. 
A Experimental outcomes for combined samples cluster by category: angiogenesis, fibrosis, and inflammation. Four PLSR 
models for each outcome category were created and VIPs with average score >2 were identified. 
B Variance explained, RMSE, and R2, measurements from the four PLSR models, constructed from previously collected CPC-
EVs (training set), before and after feature selection. Reduced models are based on VIPs with average score >2.  
C composition of VIPs in each model (blue: total RNA, pink: miRNA) and D overlap of VIPs across the models.  
E GO pathway analysis of VIP RNAs in each model.  
F in vitro predictions for CHILD CPC-EVs. CHILD CPC-EV RNA-seq data were input into PLSR models trained on previously 
collected CPC-EV RNA-seq and experimental data. Prediction performance for this testing set was determined by observed vs. 
predicted plots, RMSE, and R2 metrics. 
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CPC: c-kit+ cardiac progenitor cell; EV: extracellular vesicle; PLSR: partial least squares regression; RMSE: root mean square 
error. 

4.4 Discussion 

Outcomes for infants with HLHS have improved significantly with the emergence of the 3-stage 

palliation, including the Norwood, Bi-directional Glenn, and Fontan procedures. Surgical 

palliation supports single-ventricle physiology and redirect blood flow such that the RV 

maintains systemic circulation. Unfortunately, the RV is not physiologically adapted to support 

systemic circulation and HLHS patients may develop RV dysfunction, adverse RV modeling, 

and eventual RV failure. RV dysfunction has been shown to predict mortality: 18-month survival 

for patients with and without RV dysfunction are 35% and 70%, respectively (Altmann et al., 

2000). Furthermore, mortality rates for HLHS patients remain the highest between stage I and II 

Norwood and Bi-directional Glenn surgeries. Therefore, therapeutic intervention during this 

stage, preventing RV dysfunction, is necessary to improve outcomes for HLHS patients.  

 Cell therapy has emerged as a promising avenue to promote cardiac repair and prevent 

adverse remodeling. Several cell types are under clinical investigation for use in treating HLHS, 

including CPCs (NCT03406884) cardiosphere-derived cells (NCT01273857, NCT01829750, 

NCT02781922), umbilical cord blood and bone marrow-derived mononuclear cells 

(NCT01883076, NCT02549625, NCT03779711, NCT04907526), and bone marrow-derived 

mesenchymal stem cells (NCT03525418, NCT04925024). In particular, our group is involved in 

the CHILD clinical trial investigating use of autologous CPCs during the stage II operation to 

boost the function of the RV and compensate for pressure and volume overload. Unfortunately, 

cardiac cell therapy suffers from too much variation in cell populations and patient outcomes. 

Previous work has investigated the genetics of patients receiving MSC injections for non-

ischemic dilated cardiomyopathy and determined patients without genetic variants respond better 
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to the cell therapy than patients with pathological variants (Rieger et al., 2019). However, several 

groups have shown paracrine signaling plays a critical role in cell therapy function, but there 

have been a dearth of studies investigating potential paracrine (and EV) factor determinants for 

cell therapy responsiveness. Here, we investigate the variability of CPC-EVs from >30 CHD 

patients (including the lead-in patients for CHILD, n=7), and link these transcriptomic data to 

cardiac-relevant experimental outcomes. We aim to understand which in vitro experiments 

correlate with clinical outcomes, and subsequently, which CPC-EV RNA molecules may be 

driving these functional responses. 

 Initially, we confirmed that CPC-EVs derived from various patients differentially affect 

cell processes (Figure 4-2). We determined that CPC-EV migration and angiogenesis responses 

correlated with patient age. Here, we recapitulate our previous results demonstrating that CPC 

derived from younger patients exhibit greater paracrine pro-migratory behavior (Agarwal et al., 

2016) (Figure 4-2 d, Supplemental Figure 4-1). Unexpectantly though, we determined that age 

positively correlated with angiogenesis. Previous results from our lab suggested that neonate-

derived CPCs and CPC-EVs promoted angiogenesis to a greater extent than their child 

counterparts (Agarwal et al., 2017; Agarwal et al., 2016). However, these experiments were 

conducted using pooled samples, including the 3rd most angiogenic patient, #903. Given that the 

results presented here show large patient-to-patient variation, perhaps with repetitive cell 

passaging, specific patient lines may dominate pooled samples. Additionally, the CPC-EVs 

derived from CHILD samples (white-striped bars, Figure 4-2 b) are the least angiogenic and 

may be skewing these results. This observation may be due to technical variability from CPCs 

isolated at different locations: CHILD cells were initially isolated at University of Miami, 

whereas the other CPCs were isolated and expanded by our group. Overall, the purpose of this 
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study was to understand CPC variability which may be driving large variation in patient 

outcomes. To improve autologous cell therapy outcomes, it will be important to understand 

functional effects at the individual patient level, rather than exploring general effects from 

pooled samples.  

 A major issue with RNA sequencing experiments is the p>>n: there are far greater 

features, or RNAs, measured than samples. This issue makes conventional linear regression ill-

suited to handle these problems. Fortunately, the multicollinearity, inherent to data sets this size, 

allows for the implementation of machine learning methods to reduce data set dimension and 

complexity and summarize the data. Here, we used WGCNA, an unsupervised learning 

approach, wherein clusters or modules of co-expressed EV-RNAs were determined, and then 

these modules were correlated to in vitro outcomes. WGCNA applied to our full data set 

(training and testing data) identified 33 modules of co-expressed RNAs (Figure 4-3 a). Eight 

modules were of particular interest, as they correlated to various outcomes.  Interestingly, 

although the miRNA and total RNA data sets were centered and scaled, the 8 modules of interest 

were primarily comprised of either long RNAs (total RNA) or miRNAs (Figure 4-3 b). 

$GGLWLRQDOO\��WKH�PL51$�PRGXOHV�SRVLWLYHO\�FRUUHODWHG�ZLWK�³SRRU´�RXWFRPHV��ILEURVLV�DQG�

inflammation) and negaWLYHO\�FRUUHODWHG�ZLWK�³JRRG´�RXWFRPHV��DQJLRJHQHVLV�DQG�06&�

migration). This allowed us to directly translate the pathway analysis of these miRNA gene 

targets. Simply put, these miRNA modules target genes involved in cell migration, 

differentiation, adhesion, as well as VEGF signaling and immune processes. On the other hand, 

the RNA modules positively correlated with angiogenesis outcomes and negatively correlated 

with fibrosis responses. These RNAs were enriched in cell morphogenesis and adhesion 

processes.  
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 Notably, module 4 included well-studied miRNAs: let-7a/b/d/e/f/g/i, miR-99/100, -

23/24/25 families, as well as miR-19b, -20a, -21, -30, -125, -146a, -320a. The let-7 family was 

the second miRNA discovered in C. elegans and it is widely studied in the context of 

cardiovascular disease. Finally, miR-19b and -20a belong to miR-17/92 cluster, known to 

regulate development and promote cell proliferation (Mogilyansky and Rigoutsos, 2013). Let-7 

members drive cardiomyocyte maturation, controlling myocyte metabolism, cell size, and force 

contractility (Kuppusamy et al., 2015), and let-7i has been shown to attenuate angiotensin-

induced cardiac inflammation and fibrosis (Wang et al., 2015). Also included in module 4, miR-

146a may be cardioprotective and plays an anti-inflammatory role, regulating toll-like receptors 

and nuclear factor-ț%�VLJQDOLQJ�(Paterson and Kriegel, 2017). The inclusion of 

immunomodulatory miRNAs module 4 may explain its strong positive correlation (p<0.01) to Il-

6 expression in our inflammation experiments.  

 To directly link our CPC-EV RNA sequencing to experimental outcomes, we constructed 

partial least squares regression (PLSR) models of angiogenesis, migration, inflammation, and 

fibrosis responses. We constructed models using the training data²previously isolated CPCs 

from CHD patients²and measured the predictability in our test set²CHILD trial samples. 

PLSR is a supervised learning method that performs both dimension reduction and regression. 

Here, the SIMPLS PLSR algorithm computed components in RNAseq space that maximized the 

variance explained in the experimental outcomes space. Given that our outcomes were collinear 

within the experimental category (Figure 4-4 a), we sought to construct four PLSR models. Our 

original models described little variance (<35%) in the X, or RNAs, and produced poor 

prediction metrics for the cross-validation of our training set (Figure 4-4 b). Therefore, we 

computed VIP scores to determine the most important RNAs in the models and reduced our 



 

 

106 

regression models, from >11,000 RNAs to <300 RNAs. In doing so, we greatly improved upon 

our training data metrics: explained variance and RMSE/R2 measurements. Interestingly, only a 

handful RNAs were deemed important across multiple models (Figure 4-4 d). This may indicate 

that different EV RNAs are driving different mechanisms. Further, pathway analysis revealed the 

enrichment of relevant GO parent pathways among the VIP RNAs. Importantly, PLSR has a 

hyperparameter to tune: the number of components in the model. Selecting the number of 

components is a matter of balancing performance with complexity: the best, most robust models 

do not over nor underfit. Here, we identified the number of components (2-3) to include by using 

cross-validation and RMSE measurements.  

 Overall, the study presented here investigates patient-to-patient variability of CPC-EVs 

and links CPC-EV RNA cargo to experimental outcomes. We identified differences in 

angiogenesis, migration, inflammation, and fibrosis responses from CPC-EV treated cells and 

determined the EV-RNAs which correlate and covary with responses using WGCNA and PLSR, 

respectively. Ultimately, we aim to connect these results to our phase I, patient-matched, results. 

We have ranked the in vitro performance of the CPC-EVs from patients included in the CHILD 

trial and when data is available, we will correlate these rankings with clinical rankings. These 

findings will help inform clinicians of patient outcomes, thereby potentially minimizing poor 

outcomes. 
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4.5 Supplemental Information 

 
Supplemental Figure 4-1. Linear regression of patient age and experimental outcome. 
Linear regression was performed for each experimental outcome. Patient age is quantified by log10(months). Correlation 
coefficients (r) and p-values are displayed. Regression models with p<0.1 are highlighted yellow. 
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Supplemental Figure 4-2. Additional experimental outcomes. 
A Quantification of total number of tubes of CECs grown on Matrigel, treated with CPC-EVs. 
B Il-�ȕ�and Il-1ъ expression in CECs pre-treated with CPC-EVs and stimulated with TNF-ܤ� 
C Col1a1, Col3a1, and Vim expression in CFs pre-treated with CPC-EVs and stimulated with TGF-ȕ. 
CEC: cardiac endothelial cell; CPC: c-kit+ cardiac progenitor cell; EV: extracellular vesicle; CF: cardiac fibroblast. 

A B

C
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Supplemental Figure 4-3. Observed vs. predicted CHILD plots. 
In vitro predictions for CHILD CPC-EVs. Regression models built from previously collected CPC-EVs RNA-seq and 
experimental data. Model prediction performance determined by observed vs. predicted plots, RMSE, and R2 metrics. 
nLV: number of components; RMSE: root mean square error; CPC: c-kit+ cardiac progenitor cell; EV: extracellular vesicle. 
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5 Chapter 5: Discussion 

5.1 Summary of results 

 This dissertation research explores the two main sources of patient variability of CPC-

therapy: CPCs and CPC-EVs. Previous research of CPCs, and other stem/progenitor cell types, 

has shown that cells function in an age-dependent manner with cells losing therapeutic capacity 

with age (Agarwal et al., 2016; Efimenko et al., 2014; Fan et al., 2010). Chapter 2 investigated 

differences between neonate- and child-derived CPCs at the single cell level. In this work, we 

identified pro-fibrotic and pro-inflammatory cell clusters, enriched in child CPCs, which may be 

driving less reparative effects. Interestingly, in the pro-fibrotic cluster, we identified upregulated, 

well-studied lncRNAs which have recently been linked to adverse cardiac outcomes, like cardiac 

fibrosis. Additionally, in chapter 3 we investigated differential expression of competitive 

endogenous RNA networks between neonate- and child-derived CPCs from bulk RNAseq. We 

determined that child CPCs were enriched in non-coding RNAs overall, and the resulting 

differentially expressed, age-dependent RNA network was enriched in pathways related to blood 

vessel development, positive regulation of cell cycle, and regulation of Wnt signaling. 

 Next, in chapter 3, we explored bulk RNAseq differences between CPCs and patient-

matched CPC-EVs using the differential expression for repeated measures method. Most 

obvious, we determined that CPC-EVs expressed more species of miRNAs and less long RNA 

(total RNAseq). As expected, CPCs were enriched in RNAs related to extracellular matrix 

organization and immune response, whereas CPC-EVs were enriched in RNAs related to cardiac 

development and cell signaling. Several groups have reported differences between parent cell 

and EV RNA content, as well as enrichment of pro-reparative cargo from stem or progenitor 

cell-derived EVs. Therefore, we used data mining to investigate differences between miRNAs 
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enriched in CPC-EVs vs. EVs derived from other cell types. We identified two classes of EV-

enriched miRNAs: generic miRNAs that are enriched in other cell type-EVs (with some 

previously shown to regulate EV biogenesis), and potentially CPC-specific miRNAs which may 

be driving therapeutic success.  

 Finally, in chapter 4, we sought to link CPC-EV RNAseq to cardiac-relevant 

experimental outcomes, for the purposes of informing our CHILD clinical trial. In this section, 

we used regression models to identify CPC-EV RNA cargo molecules which correlate and 

covary with angiogenesis, migration, inflammatory, and fibrotic responses in recipient cells. We 

predicted in vitro responses for the CHILD clinical samples and determined patient rank for each 

outcome. We aim to correlate these ranks with clinical data, once made available, to understand 

(1) which in vitro responses best model clinical responses and (2) which EV RNA signals may 

be responsible for clinical improvements. 

5.2 Limitations and future directions 

The ultimate goals of this work are to gain mechanistic insight and build an informative clinical 

tool for CPC-therapy. Here, we investigated patient-derived CPCs and CPC-EVs from CHD 

patients, previously collected, and the first 7 lead-in patients of the CHILD trial. In this section, I 

will address the limitations of this dissertation work, as well as future directions. 

First, the CPCs were grown in 2D culture. In order to collect enough EVs for sequencing 

and experimental outcomes, we expanded eacK�SDWLHQWV¶�&3&V�WR�a���PLOOLRQ�FHOOV�LQ�PXOWLSOH�

T175 flasks. We attempted to minimize transcriptomic drift by keeping cultures less than 10 or 

15 passages. However, the 2D culture model for this work may not accurately reflect relevant in 

vivo conditions. In particular, we have shown that 3D culture of CPCs results in different EV 

cargo than 2D CPC culture (Trac et al., 2019a) (Figure 5-1). Future work should involve 
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growing CPCs in more biologically relevant models or isolating circulating CPC-EVs after cell 

transplantation. Notably, the latter was achieved by Kaushal group using an in vivo allogenic cell 

therapy model; circulating human CPC-EVs were isolated from plasma of rats via MHC 

mismatch (Saha et al., 2019). Recently, our group was granted approval to isolate EVs from the 

serum of patients in the phase II CHILD trial. Future work will involve using or modifying 

published deconvolution tools to identify sources of EV (Li et al., 2020; Murillo et al., 2019; Shi 

et al., 2020). 

 
Figure 5-1. 2D vs. 3D CPC-EVs. 
PLSR model constructed from CPC-EVs collected from CPCs cultured for 3 or 7 days, in 2D or 3D culture. MiRNAseq of CPC-
EVs was performed and related to tube formation and fibrotic gene assays. A scores and B loadings plots of first two components 
from child-derived CPC-EV samples. Plots taken from Trac et al. (2019a). PLSR: partial least squares regression; CPC: c-kit+ 
cardiac progenitor cell 

Second, the experimental section in chapter 4 was limited to inflammatory, fibrotic, 

angiogenic, and migratory outcomes. HLHS patients often suffer from adverse remodeling and 

eventual RV failure. Therefore, in vitro measurements of hypertrophy would likely improve our 

models and their correlation to clinical outcomes. Future work should consider investigating 

models of hypertrophy using induced pluripotent stem cell-derived cardiomyocytes or rat 

ventricular myocytes. An experimental approach for this may involve pre-treating 

cardiomyocytes with CPC-EVs, induce hypertrophy with angiotensin II or endothelin-1, and 
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measuring hypertrophy with wheat-germ agglutinin staining or expression of hypertrophy 

markers NPPA, NPPB, ACTA1 with PCR.  

Third, our experiments were limited to one dose of CPC-EVs (20 µg/mL protein). This 

dose has been used previously by our group and elicits responses in angiogenesis and fibrosis 

assays (Trac et al., 2019a). However, a better approach would involve directly quantifying EVs. 

We have used NanoSight particle tracking analysis to quantify EV concentration, and this 

method for measuring EV dose is considered the gold standard (Thery et al., 2018). While 

groups have shown that EV protein correlates with EV concentration, future work will need to 

consider doses normalized by particle concentration (Saha et al., 2019). Further, the work 

presented here did not include dose-response experiments given the restraints of cell culture; this 

approach would require >10 T175 flasks of CPCs and potentially introduce greater 

transcriptomic drift. Future work investigating artificial vesicles, EVs derived from bio-fluids, or 

even cancer cell-derived EVs should consider dose-response experiments.  

Fourth, it should be noted that in chapter 4, some of the in vitro outcomes for CHILD 

trial samples were predicted from our PLSR models (Figure 4-4), while others were not. 

Particularly, angiogenesis and inflammatory responses were better predicted by the PLSR 

models than the fibrotic or migration responses. This may be explained by a biological 

phenomenon, or some technical artifact causing the CHILD/testing and previously 

collected/training data sets to be incongruous.  For example, poor predictions of fibrotic and 

migratory responses may be a consequence of a limited sample size (training or testing set) or a 

batch effect²CHILD CPCs were isolated at the University of Miami Clinical Research Cell 

Manufacturing Program. PCA plots of training and testing set did not show major differences in 

the EV cargo RNAseq data (Figure 4-1). However, there appear to be differences between the 
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sample sets in migration (high in CHILD samples) and angiogenesis (low in CHILD samples) 

outcomes (Figure 4-2). Notably, the CHILD cells were further expanded in our lab for EV 

collection after initial isolation at University of Miami, unlike the training set which was isolated 

and expanded by our group. Additionally, this observation may be due to sample origin. The 

training set is comprised of CPCs derived from various ages and CHD conditions, whereas the 

CHILD set contains only neonate-derived samples from HLHS patient. Perhaps, CHD samples 

behave similarly in the context of angiogenesis and inflammatory responses. 

Next, I will discuss the importance of experimentally validating our CPC-EV models. 

Not shown in the previous chapters, our group has used confocal microscopy and flow cytometry 

to confirm the uptake of CPC-EVs in recipient fibroblasts, endothelial cells previously (Figure 

5-2). Additionally, our group has used IVIS imaging to show CPC-EV retention after 

intramyocardial injection (Figure 5-3). Analyzing EV RNA cargo is only half the story; to move 

forward with EV-based therapeutic strategies, we will need to validate EV retention and uptake 

by cardiac recipient cells. Not shown in this dissertation, Sruti Bheri and I are investigating CPC-

EV and MSC-EV mechanisms of uptake in cardiac fibroblast and endolthelial cells. We (1) 

analyzed the EV membrane contents with lipidomics and proteomics, (2) quantified mechanisms 

of uptake (e.g. clathrin, lipid raft, macropinocytosis) in recipient cells with small molecule 

inhibitors and flow cytometry, and (3) aim to construct a regression model to determine which 

membrane molecules covary with mechanisms of uptake. This work will aid in efforts to 

understand vesicle uptake and engineer membranes for artificial vesicles. 
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Figure 5-2. Uptake of CPC-EVs by cardiac fibroblasts endothelial cells. 
CPC-EVs collected from 2D, 3D, and 3D + Notch1-shRNA (Ni) CPCs. CPC-EVs were stained with Calcein and dialyzed 
overnight to remove free dye. Cardiac fibroblasts (RCF) and endothelial cells (CECs) were treated with stained EVs (20 µg/mL 
protein) for 12 hours. Before imaging, cells were washed and stained with Hoescht and CMPTX. Dialyzed free calcein was used 
as a (-) control. A Confocal images from a central focal plane with orthogonal images on the bottom and right. B Quantification 
of EV uptake from individual cells. Dotted line represents (-) control. Adapted from Trac et al. (2019a). 

 
Figure 5-3. Retention of intramyocardial injection of CPC-EVs. 
EVs derived from CPCs after miR-192 and miR-432 knockdown. A In vivo live imaging of CPC-EVs after Echo-guided 
intramyocardial injection into ischemic heart (ischemia-reperfusion injury). Fluorescent images of rats shown 7 days after 
injection of 5 µg EV per kg rat. B Quantification of average radiant efficiency. Figure adapted from manuscript currently under 
review: Park HJ, Hoffman JR, Brown ME, Bheri S, Davis ME. 

 

The work presented in this dissertation identifies several EV RNAs of interest. However, 

it does not examine or validate these candidate RNAs. Our lab is currently working to validate 

the EV RNAs that our machine learning models deem important. In particular, work from Dr. 

Hyun-Ji Park is currently under review investigating the inhibition of miRNAs in EVs that two 

previous papers identified as deleterious. Agarwal et al. and Trac et al. demonstrated that CPC-
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EV miR-192 and miR-432 covaried with reduced angiogenesis and enhanced fibrosis in vitro, as 

well as reduced ejection fraction in a rat RV failure model. To directly test the effects of these 

miRNAs, Park et al. delivered antagomiRs to parent cell CPCs and demonstrated knocked down 

expression of miR-192 and miR-432 in subsequent EVs. These modified CPC-EVs modulated 

immune response in an in vivo ischemia-reperfusion rat model (Figure 5-4). Further testing of 

candidate RNAs identified from the models presented in this dissertation need to be completed, 

either via parent cell or direct EV modification.  

 

Figure 5-4. CPC-EV miR-192 and -432 knockdown. 
Parent CPCs treated with miR-192 and -432 antagomiRs. A confirmation of miRNA knockdown in released CPC-EVs. B 
ejection fraction and C fractional shortening measurements 28 days after injury in a rat ischemia-reperfusion model. D fibrotic 
area of the left ventricle after CPC-EV treatment. Quantification of immunohistochemical staining of ischemic hearts show E 
total number of CD63+ macrophages and F ratio of iNOS-CD63+ cells (M2-type) to iNOS+CD63+ (M1-type). G Circulating 
CD45-CD90+ (MSC) populations in total PBMNCs from ischemia-reperfusion rats, quantified by flow cytometry. Adapted from 
manuscript currently under review: Park HJ, Hoffman JR, Brown ME, Bheri S, Davis ME. 
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Our group is also involved in the ELPIS trial, testing allogenic MSCs for treatment of 

HLHS. It will be interesting to compare important MSC-EV RNAs to CPC-EV RNAs. Perhaps 

there are consensus molecules driving cardiac cell therapy overall. There are studied miRNA 

families known to drive similar responses in recipient cells. For example, the miR-17/92 family 

are involved in development and upregulation of cell proliferation. A member of this family, 

miR-92a, is upregulated in high-SRWHQF\�&'&V�DQG�KDV�EHHQ�VKRZQ�WR�SRWHQWLDWH�WKH�:QW�ȕ-

catenin pathway (Ibrahim et al., 2019). If similar miRNAs are responsible for cardiac repair in 

various cell therapy models, these molecules may be leveraged for a cell-free therapeutic.  

Current research is focused on EVs as a therapeutic candidate. They are non-

immunogenic and have greater stability than the parent cells (Akers et al., 2016; Chen et al., 

2016; Vandergriff et al., 2015). However, there are several drawbacks associated with EVs and 

future research could focus on scaling and creating a translatable artificial vesicle. The 

dependence of EV production on parent cells significantly limits the yield, as well as control 

over the cargo. As stated before, EV content is highly variable and depends on parent cell 

environment. Further, even though multiple groups have demonstrated that stem and progenitor 

cells yield reparative EVs, the cargo is limited and copy numbers for specific RNA molecules 

can be very low (Chevillet et al., 2014). Our group has demonstrated that the cargo of EVs may 

be optimized by using a modified thin-film hydration method to remove original cargo molecules 

DQG�UHSDFNDJH�YHVLFOHV�ZLWK�WKH�51$�RI�RQH¶V�FKRLFH��Figure 5-5). Finally, EVs have 

demonstrated higher tropism and reduced clearance, as compared to artificial vesicles (Sancho-

Albero et al., 2019). Therefore, future research into artificial vesicles should focus on (1) 

improving vesicle yield, (2) enhancing the tropism/reduce clearance by tuning the lipid 

membrane, and (3) identifying and packaging pro-reparative nucleic acids.  
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Figure 5-5. CPC-EV cargo optimization. 
A CPC-EVs were engineered to (1) remove the cargo molecules, (2) form a lipid film, and (3) repackage miR-126 into new EV-
like vesicles (ELVs). B ELVs were loaded with endothelial-specific miR-126. C Schematic of miR-126 mechanism of action for 
angiogenesis. D cardiac endothelial cells were treated with original EVs (sEV) or ELVs. ELVs induced angiogenesis. Adapted 
from Bheri et al. (2021). 

Currently, EV studies are limited to bulk analyses. Higher resolution EV techniques are 

under development and may help understand heterogeneity at the single vesicle level. For 

example, there are size restrictions to conventional flow cytometers. However, groups are now 

investigating nanoparticle and extracellular vesicle flow cytometry and sorting (Pieragostino et 

al., 2019; Simonsen et al., 2019). I expect that groups are currently investigating single EV 

sequencing methods as well.  

5.3 Conclusions 

Overall, this work serves to better understand the variability underlying CPC-cell therapy. We 

investigated age-dependent differences in CPCs at the bulk and single-cell transcriptomic level, 

A B

C
D
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we identified EV-specific miRNAs potentially responsible for reparative outcomes, and we 

linked EV RNA cargo to in vitro experimental outcomes to predict responses for clinical 

samples. I hope this dissertation work opens the door to future basic and clinical research to 

reduce patient outcome variability and improve reproducibility of cardiac cell therapy. By 

understanding the biological signals involved in repair we can improve patient outcomes at 

various levels: screening cells and EVs for potency, predicting patient improvements, or 

engineering better cells/vesicles. 
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