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Abstract 
 

Predicting Combined Chemotherapeutic Agents’ Efficacy Synergy  

via Multiple Regression Models and Cross Validation Technique,  

Upon Inter-Patient and Intra-Patient Levels 

By Xiaozhu Zhang 

 

 
Background: Precise medicine is crucial to cancer treatment for minimizing potentially lethal 

side-effects and maximize drug efficacy, and accurately modeling the individual drug efficacy is 

the key step. However, previous studies mostly modeled single drug efficacy while combination 

chemotherapy is more frequently applied in practice. In this study, we compared and integrated 

several models and algorithms to predict individual multiple-drug-polymer response on both 

intra-patient and inter-patient levels. Eventually, we aim to push cancer treatment one step 

down to the road of precise medicine. 

Methods: We are interested in three key variables: two drug dosages, gene expression, and 

gene mutation. By adding these variables one by one to the model and evaluating model 

performance, we can determine their relative importance in the prediction. Linear regression, 

ridge regression, lasso regression, elastic net regression and random forest algorithms are 

applied in model construction. The goodness of fit is evaluated through R-square value tested by 

10-fold cross validation and leave one out cross validation. Model was built upon single cell line 

data as well as data composed of four cell lines’ information to investigate models’ ability of 

predicting synergy at inter-cell-line level and intra-cell-line level. 

Results and Conclusion: Compared to baseline model in which dosage information are only 

explanatory variables, secondary model with added gene expression data generated significantly 

larger R-square. However, adding mutation data into final model did not improve model 

accuracy, and R-squares are nearly the same to secondary model. In addition, model built upon 

multiple cell lines were incompetent in predicting drug synergy. Among five regression methods, 

random forest algorithm consistently produces largest R-square in each model. 10-fold CV is 

proved to have better generality and LOOCV coupled with random forest algorithm built best 

model. In conclusion, this study proved feasibility of predicting multiple chemotherapeutic 

agents’ efficacy synergy utilizing their dosage information and gene expression data with-in cell 

line. The efforts of adding mutation information returned result that lower than expectation. 

More information is needed to model the drug synergy among patients. 

Keywords: Bioinformatics, Penalized regression, Machine learning, Cross Validation, Cancer, 

Two-drug efficacy synergy, Model comparison 
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Introduction 

With help of the whole genome sequencing, our understanding of various types of cancer 

improved greatly over past few decades [1]. However, despite the progress made in 

oncology, current biomarker technology is inadequate to serve the purpose of precision 

medicine to personalize cancer therapy and to extend the survival of patients [2]. Tailoring 

of medicine in oncology is of great importance, not only for its patient-oriented design to 

maximize the drug function, but also for minimizing the side effect of Chemotherapy 

ranging from slight hair loss to as severe as death [3]. For designing patient-oriented 

drugs, the ability to precisely predict chemotherapeutic response upon patients’ 

individual clinical record is required. Multiple studies have built models with different 

algorithms trying to predict the drug response, and a few studies succeed to generate 

prediction with relatively high accuracy [4][5]. However, there’re a few limitations to 

previous studies that impede their method to be applied in practical terms. First, many of 

previous studies utilized training and testing microarray data form different platforms, 

which makes the application of personalized medicine unrealistic [6]. Second and most 

importantly, current treatment for cancer frequently involves combination of several 

drugs, while most of previous studies focus on predicting efficacy of single drug.  In 

human body, multiple chemotherapeutic agents interact with each and kill cancer cells. 

Main benefits of polymer-drug formation include lower chance of causing a drug-

resistant tumor and allow to reduce dosage of single agent therefore lower the risk of 

generate side-effects, thus combination chemotherapy is considered cornerstone of 

contemporary therapeutic interventions. Nevertheless, the drug effect synergy of polymer 

could be synergic, addictive or antagonistic depending on the ratio of different drugs. 
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Wrong combination of drugs/drug ratios increase the likelihood of unwanted side effects. 

In other words, carefully exam the ratio of drugs and other factors that might affect the 

polymer synergy is key step of successful combination chemotherapy. Major obstacles 

for doing this including the following: complexity of chemotherapeutic drug response, as 

it would be affected by both congenital genetic traits as well as postnatal interaction with 

environment and personal lifestyle; scarce of clinical trial data with integrated clinical 

record leading to less power of the prediction; many patients receive more than one type 

of cancer treatment such as surgery and radiation therapy, which makes the prediction 

trickier and less accurate. 

In this study, we compared and integrated several models and algorithms to predict 

individual multiple-drug-polymer response quantified by synergy index. Besides the ratio 

of dosage, we are interest in gene expression and mutation information as well, as these 

are commonly believed to have impact on drug effect. By including and excluding these 

key explanatory variables to the model, we can tell which variable weights than others in 

predicting the drug synergy. We built three models in total: baseline model which 

contains only dosage information as explanatory variable and synergy index as response 

factor; secondary model adds gene expression information as additional explanatory 

variable; final model further includes mutation information. For each model, we applied 

following algorithms: linear regression, ridge regressions, elastic net regression, lasso 

regression and random forest. Ridge, elastic net and lasso regression are implemented 

through R package “glmnet”, and random forest algorithm is conducted via R package 

“caret”. We trained our data upon data collect from single patient as well as from 

multiple patients combined, for testing the model performance on both within patient 
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level and inter-patient level. We implemented 10-fold cross-validation (CV) and leave 

one out cross-validation (LOOCV) testing method on our models to test on our ability to 

capture the information of variability on drug response. This procedure is performed 

through R package “caret”. 

To address the scarce of data availability issue, our gene expression information is 

collected via in vitro cell line drug response data employed from The Genomics of Drug 

Sensitivity in Cancer Project (GDSC) [7]. A cell line is a cell culture that proliferate 

permanently, and all the cells are originated from single individual, which assures the 

consistence of their gene expression and mutation level. GDSC project is an international 

cooperation project funded by Wellcome corporation, containing nearly 700 cancer cell 

lines and more than a hundred drug responses. Data published in GDSC website is rather 

comprehensive, including many aspects of cell line data. Except basic clinical 

information of patients who provided human cells in the GDSC project, other datasets we 

used in this study consist of following: expression data of RMA; Single-nucleotide 

polymorphism (SNP) that stands for genomic variants found in cell lines; Natural log half 

maximal inhibitory concentration (IC50), which counts for the single drug response. 

Another database we adopt into our study is COSMIC, which is short for the Catalogue 

of Somatic Mutations in Cancer [8]. It is the largest and the most comprehensive resource 

for exploring the impact of somatic mutations in human cancer in the world, and it 

outlines data in terms of structure, scope and content. COSMIC contains basically two 

kinds of data, one is high precision data, manually curated by experts, another one is 

genome-wide screen data. These two kinds of data together provide comprehensive 

coverage of cancer genomic landscape from somatic perspective. New and significant 
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data are continually added in COSMIC and are available, people can search a gene, 

cancer type, and mutation through COSMIC. We recruited demographic information for 

cell lines, oncogene census and mutational information from COSMIC. Finally, synergy 

index and drug dosage ratio are obtained from Emory laboratory. In this dataset, 

combination of two drugs: Methotrexate and Vincristine are tested on thirteen cell lines 

and synergy of each combination of two drug dosage is recorded.  

In conclusion, we evaluate different algorithms upon various explanatory variables, for 

prediction of drug effect synergy on both intra-patient and inter-patient levels. 

Eventually, we aim to push cancer treatment one step down to the road of precise 

medicine. 

Methods 

1. Data description. 

In this study, we were interested in three key explanatory variables: Methotrexate and 

Vincristine, two cancer drugs’ dosage ratios; cell line gene expression information; cell 

line gene mutation information. The dataset we acquired from Emory laboratory contain 

two drugs’ dosage information in two formats: numerically in logarithm of mole that 

directly indicates dosage level of two drugs, and in a categorical indicator varies from 0 

to 9 for Methotrexate Dose and 0 to 7 for Vincristine Dose, each number indicate a 

dosage level of a single drug (80 levels in total). The synergy index of two drugs in 

thirteen cell lines served as dependent factor in the model. Its value varied from -1 to 1, 

positive and negative value represent synergic and antagonistic correspondingly, and zero 

stood for addictive, meaning no interaction effect among two drugs. Expression data was 

collected from “RMA normalized expression data for Cell lines” dataset of GDC 
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database. This dataset contained 17737 genes’ expression level in 1019 cell lines. For the 

sake of computational efficiency without losing too much information, we picked a small 

group of oncogenes instead of using the whole somatic gene base. The selection of genes 

was based on the cancer gene census project of COSMIC. The cancer gene census listed 

genes that have mutations that believed to be related to cancer. Oncogenes enlisted in 

cancer gene census contain two tiers, standing for two level of relevance to cancer. Tier 

one gene showed strong, documented evidence that their activities were affected by 

cancer status, or mutations in these genes were related to cancer. For a gene to be listed in 

the tier two, it must show strong hint of being a role in cancer, but there was no extensive 

available evidence to support this relationship. There were in total 723 oncogenes 

selected through cancer gene census project, including 576 tier one oncogene and 147 tier 

two oncogenes. By cross-comparing two datasets, we chose 541 oncogenes to be studied 

in this project. Mutation information of selected genes were obtained from All Mutations 

in Census Genes dataset of COSMIC. We used a 0/1 dummy variable to indicate the 

mutation status among these oncogenes. Descriptive statistics showed that most of 

selected genes were mutated (98%).  

2. Baseline model establishment: 

 

First step, we built baseline model and evaluated the model performance. We had two 

purposes of doing this: First, since the baseline model was relatively small (only 

contained two explanatory variables), it was computational efficient for us to test and 

compare various algorithms and methods of model validation; Second, evaluation of 

model performance could be used as reference and to be compared to more complex 
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models to evaluate the contribution of gene expression and mutation in predicting the two 

drug synergy. In this study, we used R-square as index for model accuracy. R-squared is 

a statistical measure of how close the data is to the fitted regression line, it’s the 

percentage of the response variation that is explained by the fitted model. The higher R-

squared is, the better the model fits the data. In addition to R-square, we also calculated 

Root-mean-square deviation, RMSE, and Mean absolute error. MAE and RMSE are the 

two most common methods to evaluate the accuracy of continuous variables and can 

express the average model prediction error. MAE is mean absolute error. It’s the average 

over the sample of the absolute difference between the predicted value and the actual 

value, with every absolute difference the same weight. RMSE is the square root of the 

average of squared differences between the predicted value and the actual value. 

We began with predicting the two-drug synergy with linear regression. The exact dosage 

(in moles) and categorical variable were both tested. We tested the model accuracy by 

conducting the leave one out cross validation (LOOCV) and 10-fold cross validation. 

Cross validation (CV) is used to estimate the performance of a machine learning model in 

general when used to predict on data which is not used for building the model. It results 

in less bias than other methods such as train/test split. K-fold CV means splitting data 

into k groups, using one of the k groups as the test group and the rest k-1 groups as 

training groups. LOOCV is a special case of K-fold CV where k equals the number of 

samples in the data set. Both procedures are performed using R package “caret”. The 

results generated from two formats of dosage are compared and the one with higher R-

square is chosen for subsequent investigations.  
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To address the potential higher dimensional association between synergy and explanatory 

variables, we built models with penalized terms. In our case, the datasets had a large 

number of covariates relative to the number of samples. With such high number of 

features, it was possible that multicollinearities exist, and ordinary least square in linear 

regression cannot be defined because linear regression was usually for low dimension. 

Thus, it’s more accurate to add penalized terms. R package ‘glmnet’ can do penalization. 

There are basically three types of regressions with penalty: Ridge, Lasso and elastic net. 

Ridge regression has L2 penalty term, it has easier calculation, but it does not shrink 

parameters to zero, so we can’t use it to do variable selection. Ridge will retain all the 

features but will shrink the coefficients; therefore, the model will remain complex, which 

may lead to relatively poor model performance. Lasso regression has L1 penalty term, 

which is more difficult to calculate but it can shrink parameters to zero, which enables the 

extraction of important predictive variables and simplification of the model. Elastic net is 

a hybrid of Ridge regression and Lasso regression. We can alter a parameter to weight 

these regressions in a mixture. We employed “train” function of “caret” package to tune 

for best parameters (alpha, lambda) for elastic net regression. Similarly, a LOOCV and 

10-fold CV were conducted for each of three regression models. Lastly, we implemented 

random forest algorithm through “caret” package to fit the model. Random forest model 

is an additive model that combines decisions from multiple base models to make a more 

accurate prediction. Base models are constructed by different subgroups of the data, and 

each base model is a simple decision tree, and is independent from others. Random forest 

randomly splits the data, and it finds the most important feature of each subset. Random 

forest regression is good for handling tabular data with numerical features, which fits our 
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data sets in this study. In addition, random forest algorithm has following advantages in 

comparison with machine learning methods: fitting non-linear regression in each base 

model, finding non-linear interactions between the feature and the subject; reducing 

overfitting by paralleled base model construction. Furthermore, random forest runs 

efficiently on large data sets and provides a more accurate result. We applied LOOCV 

and 10-fold CV to test model performance. Model performances were compared based on 

R-square, RMSE and MAE. 

 

3. Secondary model construction 

 

Oncogene expression information was added to explanatory variables in the second 

model by adding. For each of thirteen cell lines, there were 541 genes selected, therefore 

541 expression values existed for each cell line. Due to the different structure between 

dosage and expression information, it was challenging to build the uniform matrix for the 

model establishment and prediction. We transformed the gene expression data from 541 

rows into 541 columns with each representing expression information for a single gene. 

Next, we duplicated the value into 80 (8 times 10, corresponding to the level of synergy.) 

identical rows and then combined them with the dosage and synergy columns.  

As described above, we built matrix for one of thirteen cell lines, MOLT-4, and conduct 

the synergy prediction. Then, we combined data from four cell lines: MOLT-4, CCRF-

CEM, KONP-8 and NALM-6, into one large matrix and built the model using 

linear/ridge/lasso/elastic net regression and random forest algorithms again, and then 



9 
 

predicted the drug synergy among different cell lines (patients). Once again, LOOCV and 

10-fold CV were executed and R-square/RMSE/MAE values were recorded. By 

comparing the R-square as well as RMSE and MAE outcome from single cell line model 

to multiple cell line model, we can determine if the model was capable of train and 

predict synergy outcome on separate patients.  

4. Final model and model comparison 

Synergy~Methotrexate dosage + Vincristine dosage + Gene1 expression  

∗ Gene1 mutation + ⋯ + Gene541 expression ∗ Gene541 mutation 

Lastly, we further refined our model by adding gene mutation information into our 

model. Mutation information was of great importance as it interact with gene expression 

and influence the drug efficacy among patients. Two challenges existed when adding 

mutation variable into our model, the binary nature of mutation for each gene and the 

same mutation across all cell lines. This made mutation information useless when 

predicting drug synergy among cell lines (patients). As result, we chose to limit 

application of mutation variable to single cell line level. In addition, most of genes we 

selected are also mutated, which is likely related to the overlapping definition of 

oncogene and mutated genes. In other words, genes in this study are selected through 

cancer gene census program, which use mutation status as one of criteria to determine 

oncogenes. We delivered two solutions to address this issue: First was to add mutation 

information to the single cell line matrix directly; second was to create an interaction 

term that calculated by mutation times expression, accounting for their linked function in 

testing drug efficacy. In other words, the second solution considered mutation as a 

criterion to further refine the gene we selected into our model, and to reduce noise. 
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Likewise, linear regression, ridge/lasso/elastic net regression and random forest algorithm 

were conducted in the new models separately, and LOOCV and 10-fold CV were 

operated to calculate R-square, RMSE, MAE. Once all models were evaluated, their 

performance were analyzed and compared to each other. We chose models with higher R-

squares over those with lower r-squares. Among models that generates similar R-squares, 

we chose the one with lower RMSE and MAE levels.  

Results 

Table 1 – Evaluation of Numerical and Categorical Format of Dosage Variable 

Format Validation R-squared RMSE MAE 

Numerical  10-fold 0.385371 0.01830717 0.01024578 

 LOOCV 0.07421187 0.01965982 0.01035824 

Categorical 10-fold 0.4127761 0.01909684 0.01081816 

 LOOCV 0.009370495 0.02012892 0.01015256 

 

We first built linear regression on baseline model, where synergy index is explained by 

dosage information of two drugs. Numerical (log mole) and categorical format of dosage 

are tested and compared for choosing the better one to be used in later steps. (Table 1.) R-

square, RMSE and MAE calculated by both 10-fold CV and LOOCV for above models is 

summarized in table. Although both numerical and categorical variable provides similarly 

good RMSE and MAE (less than 0.1), categorical dosage generates better R-Square and 

thus provide more accurate synergy prediction. We believe the reason for this is that log 

mole dosage for both drugs cluster around zero, which introduce multicollinearity and 

negatively influence the accuracy of our model. To best avoid multicollinearity, we only 
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employ dosage in its categorical form in later steps. Noticeably, R-square calculated 

through 10-fold cv are significantly larger than it from LOOCV. 

Table 2. – Baseline Model – Performance Evaluation 

Synergy~Methotrexate dosage + Vincristine dosage 

Regression  Validation R-squared RMSE MAE 

Linear  10-fold 0.4127761 0.01909684 0.01081816 

 LOOCV 0.009370495 0.02012892 0.01015256 

Ridge  10-fold 0.19862460 0.01945838 0.01336863 

 LOOCV NA 0.01931 0.01094 

Lasso 10-fold 0.3701960 0.01837342 0.01186131 

 LOOCV NA 0.01114 0.01114 

Elastic Net 10-fold 0.3687883 0.01817660 0.01167680 

 LOOCV NA 0.01975 0.01115 

Random 

Forest 

10-fold 0.4229945 0.01918930 0.01082013 

 LOOCV 0.014526237 0.01960475 0.01051307 

 

(Table 2.) Performance evaluation for linear regression, ridge regression, lasso regression 

and random forest upon baseline model are summarized in table 2. First thing to notice is 

that LOOCV validation method generated NAs for Ridge, Lasso and Elastic net 

regression. In the penalized regressions, the formula of calculating R-squared is 𝑅2 =

1 −
𝐸(�̂�−𝑦)

𝑉(𝑦)
, but for LOOCV, there is only one subject in each fold. In this case, the 

variance for each fold is zero. Thus, R-squared reaches infinity and have no meaning with 
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variance equal to zero. Even for linear regression and random forest, where LOOCV did 

generate valid result, R-square calculated are smaller compared to 10-fold cross 

validation. [insert] RMSE and MAE for all algorithms are relatively small (less than 

0.03), indicating small variance among predicted and actually synergy. However, this is 

partially due to the small absolute values of our synergy indexes, which produced small 

difference in prediction. For the baseline model, best R-square is 0. 4229945, calculated 

through random forest algorithm. Linear regression also carried out good result as 

baseline model is relatively simple in formation, plus we addressed linear dependence 

issue by adopting categorical dosage variables. Penalized regressions are designed to 

overcome potential multicollinearity problem or more explanatory variables than its 

sample size, thus failed to show advantage in baseline model. Although the highest R-

square is out-standing, dose information along is inadequate for predicting the inter-drugs 

synergy. 

  

Table 3. – Secondary Model – Performance Evaluation 

Synergy~Methotrexate dosage + Vincristine dosage + Gene1 expression + ⋯

+ Gene541 expression 

Regression  Validation R-squared RMSE MAE 

Linear  10-fold 0.5109134 0.03107704 0.01950833 

 LOOCV 0.3433941 0.03530442 0.01964376 

Ridge  10-fold 0.50000159 0.03183830 0.02056731 

 LOOCV NA 0.02059 0.02059 

Lasso 10-fold 0.6779864 0.02864726 0.01753968 
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 LOOCV NA 0.01447 0.01447 

Elastic Net 10-fold 0.6774070 0.02852505 0.01735685 

 LOOCV NA 0.01453 0.01453 

Random 

Forest 

10-fold 0.6038140 0.02755692 0.01339132 

 LOOCV 0.8125041 0.04291264 0.02236781 

 

(Table. 3) Table 3 summarizes the performance evaluation for second model, where we 

added expression data as additional explanatory data. Like table.2, LOOCV generated 

NA for penalized regressions. In the secondary model, RMSE and MAE calculated from 

each algorithm are larger than those in Table 2, yet still less than 0.05. Interestingly, both 

the largest and smallest error of secondary model come from random forest algorithm, by 

means of LOOCV and 10-fold CV correspondingly. After including additional 

information, R-square of linear regression decreased while that of other four regressions 

increased. This is likely related to the introduction of multicollinearity. Compared to 

penalized regressions and random forest algorithm, linear regression does not address 

linear dependence among variables and thus its result is negatively influenced. On the 

other contrary, penalized regressions’ performance improved greatly. Penalized 

regression is best for model with large number of variables and it adjusts for 

multicollinearity by adding penalty terms. Among ridge, lasso and elastic net regression, 

lasso regression is good at picking up small signal from high noise, thus it gives largest 

R-square and smallest error. As for elastic net regression, we tuned level of alpha with a 

sequence from 0 to 1 by 0.1. Largest R-square is obtained when alpha is equal to 1, which 
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again proved that lasso regression has better goodness of fit, and this also explains R-

square and errors are roughly the same for lasso and elastic net regression. Maximum R-

square reaches 0.8125041 at random forest algorithm, tested by LOOCV. Unlike it in 

baseline model, LOOCV carries out test result with better accuracy in more complicated 

model. Another thing to be noticed here is that in random forest algorithm, RMSE/MAE 

disagree with R-square, meaning that LOOCV generates better R-square but higher error 

rates, which indicates the trade-off between goodness-of-fit and prediction accuracy 

among LOOCV and 10-fold CV. In general, we conclude that gene expression data 

improved model performance in terms of prediction accuracy. 

Table 4 – Secondary model –Multiple Cell Lines 

Regression  Validation R-squared RMSE MAE 

Linear  10-fold 0.08942684 0.05052688 0.0264831 

 LOOCV 0.01737584 0.05440216 0.02534709 

Ridge  10-fold 0.06536312 0.04857385 0.02116718 

 LOOCV NA 0.02113 0.02113 

Lasso 10-fold 0.10299321 0.04840805 0.02049762 

 LOOCV NA 0.02042 0.02042 

Elastic Net 10-fold 0.11129450 0.04859496 0.02078302 

 LOOCV NA 0.02039 0.02039 

Random 

Forest 

10-fold 0.13825679 0.05340509 0.02204032 

 LOOCV 0.049178822 0.05254014 0.02245384 
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So far, models were built upon data collect from single cell line. Results are promising, 

which proves the feasibility of intra-cell-line prediction of drug synergy. To investigate 

models’ ability of utilizing local data record to predict new patients expected two-drug 

synergy, we built secondary model using data collected from four cell lines and evaluated 

the prediction summarized on table (Table.4). The strength of inter-cell-line synergy 

prediction is assessed by comparing result from table 3 and 4. According to table 4, result 

is apparently not as good as it in table 3. Largest R-square is 0.13825679, implying that 

only 14% variance of response variable (synergy) is explained by the model. RMSE and 

MAE are small in general, but larger than it in table 3. When model composed of data 

form four cell lines, LOOCV carries out smaller R-square than 10-fold CV since data set 

is larger, which introduces more variances. In conclusion, inter-cell-line synergy 

prediction is incompetent at this stage. 

Table 5 – Final Model – Performance Evaluation 

Synergy~Methotrexate dosage + Vincristine dosage + Gene1 expression

∗ Gene1 mutation + ⋯ + Gene541 expression ∗ Gene541 mutation 

Regression  Validation R-squared RMSE MAE 

Linear  10-fold 0.5109134 0.03107704 0.01950833 

 LOOCV 0.3433941 0.03530442 0.01964376 

Ridge  10-fold 0.50000159 0.03183830 0.02056731 

 LOOCV NA 0.02059 0.02059 

Lasso 10-fold 0.6779864 0.02864726 0.01753968 

 LOOCV NA 0.01447 0.01447 

Elastic Net 10-fold 0.6774070 0.02852505 0.01735685 
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 LOOCV NA 0.01453 0.01453 

Random 

Forest 

10-fold 0.6029322 0.02752697 0.01337908 

 LOOCV 0.8110620 0.04292179 0.02237318 

 

To add gene mutation data into model, we offered two solutions: first is to directly 

combine binary indicators for mutation status to secondary model, and resulting model 

would be as below: 

Synergy~Methotrexate dosage + Vincristine dosage + Gene1 expression + ⋯

+ Gene541 expression + Gene1 mutation + ⋯ + Gene541 mutation 

However, this model is incapable of addressing the inner link between genes’ expression 

and mutation status. In other words, individual gene’s expression and mutation are 

considered two separate explanatory variables in this model. Therefore, we preformed 

second solution, which is to create interaction terms for gene expression and mutation. 

By doing this, we further refined the genes we selected by times zero to expressions of 

genes that are not mutated. As result, our final model is illustrated below: 

Synergy~Methotrexate dosage + Vincristine dosage + Gene1 expression

∗ Gene1 mutation + ⋯ + Gene541 expression ∗ Gene541 mutation 

And its result is summarized in (Table. 5). Prediction performance for above model is 

identical to the secondary model (Table.3) expect for random forest algorithm.  

Percentage of mutation status in the genes we selected through cancer gene census 

program was unproportionally distributed (534 mutated and 7 not mutated), which 

partially explains the resemblance of table 3 and 5. More importantly, the 7 genes we 
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eliminated are originally linearly dependent upon other variables and are ignored by 

penalized regressions and cross validation featured by “caret” package. Maximum R-

square is 0.8110620, which is calculated through random forest algorithm tested by 

LOOCV. Again, this value makes little difference to table 3. Due to the limited number 

of unmutated genes, mutational information did not provide much improvement to the 

model. 

Discussion 

In this study, we employed two-drug dosage information, gene expression and mutation 

information to construct models via linear regression, ridge, lasso and elastic net 

regression and random forest algorithm for predicting two-drug efficacy synergy. 

Multiple dimension of comparison and evaluation were conveyed on explanatory 

variables, algorithms and means of cross validations. Our results are primary evaluated 

by R-squares, as it measures goodness of fit of models. Error terms such as RMSE, MAE 

were calculated as well and served as references.  

By comparing the result from baseline model, secondary model and final model, we 

conclude that gene expression data improves model performance greatly, indicating 

strong relationship between gene expression and two-drug synergy. However, adding 

mutation information barely changed model performance. The possible reason for this 

includes uneven percentage of mutated and unmutated genes. More specifically, genes 

we included in this study are selected by crossing selection between GDSC whole gene 

expression dataset and cancer gene census. According to the cancer gene census program, 

most if not all somatic cells involve cancer via mutation. This is to say that interaction 

between mutation and gene expression already exist in our model, which introduces 
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potential selection bias. Another limitation of mutation information applied in this study 

is that the binary indicator does not provide information about the nature of specific 

mutation. For example, larger scale mutation such as frameshift mutation tremendously 

change gene function and expression level, while other mutation like single nucleotide 

polymorphism (SNP) may cause little to none impact. In addition, changing binary 

indicator to counts of mutation in each gene is an alternative solution. Mutation counts 

quantifies scale of mutation, and intuitively influence gene expression and drug efficacy. 

Due to limited time and resources, we did not have access to such data, but future studies 

should consider above characteristic of mutation to gain more precise understanding of 

relationship between mutation and drug efficacy to improve model accuracy.  

Within each model, we evaluate performance of regressions and machine learning 

algorithm. As illustrated in table 2, 3 and 5, random forest algorithm consistently 

produced largest R-squares. As we discussed in method part, random forest algorithm is 

good at finding non-linear relationships, and is specifically designed for large dataset 

with large number of numerical variables. Among penalized regressions, lasso regression 

utilized its L1 penalty terms to extract important variables out of huge noise, thus 

provided better result than ridge and elastic net regression. Linear regression provided the 

second largest R-square in baseline model, as we manually eliminated multicollinearity 

by choosing categorical form of dosage variables. All result was carried out by 10-fold 

cross validation and LOOCV. 10-fold CV calculated larger R-square in linear regression, 

as LOOCV does not function properly in linear regression. LOOCV is excelling in 

secondary and final model, especially for random forest algorithm. However, this is a 

trade-off between accuracy and precision (R-square and RMSE/MAE).  
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Lastly, we compared model performance on models composed of single cell line data 

versus models built upon four cell lines (Table.3 and Table.4). Largest R-square of single 

cell line model is 0.8125041, provided by random forest algorithm through LOOCV, and 

through 10-fold CV tested on random forest, largest R-square of four-cell-line model is 

0.13825679, which is significantly smaller. R-square calculated through other regressions 

provide similar results. We also observed that error terms (RMSE/MAE) for single cell 

line is relatively small compare to four cell line models. In conclusion, models we built is 

competent in predicting two-drug synergy within individual cell line, but our intension to 

predict inter-cell-line polymer drug efficacy turned out below expectation. Noticeably, 

we did not include mutation information in multiple cell line model because the binary 

indicator for mutation status is uniform among all cell lines. With access to cell line 

individualized mutational information, we expect improved results. Besides, although we 

addressed multicollinearity by performing penalized regression and non-linear regression 

such as random forest, conducting variables selection is another possibility to improve 

model performance. For the sake of computational efficiency, step-wise variable 

selection is not recommended. Instead, Principal components analysis (PCA) should be 

considered in future studies as it could reduce number of variables and possibly produce 

more accurate models. 

There are a few more limitations to this study, such as the overlapping criteria of 

mutational gene and oncogene introduces selection bias. If had enough computational 

power, adding whole genome expression and mutation ought to further improve our 

model performance. Another than three key variables we interested in this study, more 

elements such as admission time, medical record, personal lifestyle and socioeconomical 
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status could all be influential to the effect of drugs and influence model performance 

specifically for predicting inter-patient drug efficacy.  
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