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Abstract 

 

Identifying Change Points and Forecasting Influenza Trends Using Diverse 

Influenza-like Illness Surveillance Data Capture Mechanisms in the City of 

Houston, Texas (2012-2016) 

By Susannah Paul 

 

Background: Because influenza activity in a region is influenced by multiple factors, 

such as vaccine effectiveness, virus mutations, and travel, it is difficult to anticipate or 

identify significant activity increases early. Reports from traditional surveillance systems, 

which report data from emergency centers or providers, are accurate but delayed because 

of delays in patients seeing a provider or waiting for laboratory confirmation. Using 

novel surveillance methods for complementary information and combining available 

historical data can lead to earlier detection of influenza activity increases and decreases. 

Anticipating a surge would give public health professionals more time to prepare for a 

rise in cases and increase prevention efforts to reduce the risk of an epidemic.  

Methods: Our objective was to investigate influenza activity in the City of Houston, by 

analyzing influenza-like illness data from diverse data capture mechanisms, from week 

27 of 2012 through week 26 of 2016. Change point analysis was used to identify 

significant increase and decrease change points within each data source. ARIMA models 

were fitted for each source and used to estimate forecasts for influenza-like activity for 

the subsequent 10 weeks. 

Results: All sources except for Flu Near You contained at least one significant increase 

and one significant decrease within each time interval. Overall, Athena, ILINet, and ER 

Centers resulted in similar start and end dates of the influenza season. Multiple, gradual 

changes within the typical influenza season and during non-seasonal time were identified. 

Forecasted estimates had wide confidence intervals with lower bounds below zero. The 

forecasted trend direction differed by data source, resulting in lack of consensus about 

future influenza activity.   

Conclusion: The similarities in trend and timing of identified change points from 

outpatient information, ER Centers patient data, and ILINet influenza-like illness 

provider surveillance supports potential use of diverse data capture mechanisms to 

enhance influenza surveillance. Pooling the significant change points results in a 

comprehensive trend pattern identification for influenza activity. Though the forecasted 

estimates did not agree on trend direction and would be inaccurate for long-term 

predictions, pooling the predictions could be helpful in the short term if more historical 

information and influential variables are considered.  
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Introduction 

Background and the Burden of Influenza 

Syndromic surveillance is used to monitor and evaluate trends for numerous 

illnesses and disease-causing agents. Initially, syndromic surveillance systems were 

created to assess information on the size, spread, and trends of cases for early detection of 

outbreaks due to biological terrorism agents (Henning, 2004). This was not proposed to 

replace direct physician reporting of cases of public health importance but intended as a 

complementary tool. In the 2000 strategic plan, the Centers for Disease Control and 

Prevention (CDC) called for new mechanisms for detecting suspicious events (Khan & 

Levitt, 2000). The 2001 terrorist attacks and anthrax outbreak from the release of Bacillus 

anthracis spores in the United States (U.S.) spurred the public health community to 

implement syndromic surveillance systems across the U.S. (Henning, 2004). Although 

the initial purpose was detection of large-scale bioterrorism agents, syndromic 

surveillance has expanded quickly to monitor other disease-causing agents due to its 

capability and flexibility in identifying disease clusters before diagnosis and lab 

confirmations are reported. Technological advancements such as the use of electronic 

health records have prompted systems to adapt syndromic surveillance methods to detect 

influenza and influenza-like illness activity.  

The burden of influenza in the U.S. varies widely based on the circulating strains, 

vaccine efficacy, vaccine effectiveness, and other factors. Seasonal influenza infects 5-

20% of the U.S. population annually while over 200,000 people are hospitalized with 

influenza-related complications (Davidson, Haim, & Radin, 2015). Young children, 

pregnant women, and older adults are considered particularly vulnerable populations. 
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From 2003 to 2012, an average of 6,514 infants <12 months were hospitalized in the U.S. 

due to influenza or illnesses complicated by influenza, with 75% of hospitalizations 

occurring in healthy infants. The proportion of infants with high risk conditions admitted 

to the intensive care unit (ICU) or with respiratory failure was 2-3 times higher than 

compared to otherwise healthy infants. Infants less than 6 months were 40% more likely 

to be admitted to the ICU (Chaves et al., 2014). Influenza has a high impact on infants, 

and those under 6 months are not recommended for influenza vaccination. This bolsters 

the need for additional syndromic influenza surveillance. Syndromic surveillance data 

helps the public health community prepare for increases in influenza activity, especially 

among populations with low influenza vaccination rates.  

In 2009, the H1N1 strain began an influenza pandemic (Caspard et al., 2016). The 

strain that caused the 2009 pandemic is now considered a seasonally circulating strain.  

The cases initially discovered via lab confirmations in April 2009 resulted in a 

declaration of Public Health Emergency of International Concern by the World Health 

Organization (WHO).  There were 18,500 laboratory-confirmed reported deaths caused 

by this strain between April 2009 and August 2010 with the true mortality count likely 

higher (Dawood et al., 2012). As the pandemic spread, schools closed and people enacted 

social distancing measures (CDC, 2010). This pandemic physically limited many people, 

but it also had heavy socioeconomic impacts compared to other influenza seasons. For 

example, in the Republic of Korea, total socioeconomic burden was estimated to be 

$1,581.3 million (10-90%: $1,436.0 – $1,808.3) compared to $42.3 million (10-90%: 

$31.5 – $53.8) in the 2008-2009 season. Longer sick leaves and high diagnostic costs 

contributed the most to the increase (Suh et al., 2013). Public health professionals have 
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been continuously monitoring and developing influenza surveillance systems to prevent 

another pandemic of this extent.  

Although influenza peaks typically occur between December and February, 

because of the changes in strains each year, influenza peaks can occur earlier or later and 

with higher magnitudes than expected resulting in epidemic levels. For example, during 

the influenza season of 2013, there were spot vaccine shortages. In the United States, the 

deaths of 29 children and 5, 249 hospitalizations by the second week in January made 

obvious the increasing intensity of the influenza season. This increasing case count led 

people to rush to receive influenza vaccines leading to shortages and difficulties in 

obtaining flu vaccines in certain regions (Phyllis, 2013). Anticipating a surge in influenza 

using data on influenza-like illness gives health care professionals more time to prepare 

for a rise in cases and increase prevention efforts to reduce the risk of an influenza 

epidemic. 

Influenza-like Illness and Syndromic Surveillance Systems 

Influenza-like illness (ILI) is defined in the U.S. as fever with a temperature of 

100 ̊F/37.8̊ C or greater and a cough or sore throat without another known cause (Centers 

for Disease Control and Prevention, 2016). Information on ILI has been used as an 

indicator of influenza activity. This information is not only useful to monitor influenza 

activity, but also to forecast future waves of influenza as well (Ong, et al., 2010). ILI data 

are usually gathered from sentinel providers or health care facilities utilizing electronic 

health records. However, utilization of innovative data capture mechanisms and platforms 

such as social media or self-reporting smartphone applications can enrich the ILI data 

collected and make influenza surveillance and preparedness more efficient.  
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The consistent flow of clinical data from emergency departments (ED) is standard 

for an accurate estimation of influenza activity in a specific region. Two large 

surveillance networks, the North American DiSTRIBuTE network and the European 

Triple S system, collect large-scale emergency department-based influenza and ILI 

syndromic data. Clinical data is usually collected based on chief complaint or diagnosis 

(Hiller, Stoneking, Min, & Rhodes, 2013). Emergency medical service (EMS) syndromic 

influenza data can be valuable to capture more moderate to severe cases of influenza. 

Researchers in Europe compared timeliness and validity of information collected from an 

Austrian Emergency Medical Dispatch Service, Austrian and Belgian ambulance 

services, and a Belgian and Spanish emergency department during the 2009 influenza 

pandemic. Results indicated that the emergency department data displayed the most 

favorable validity and timeliness (Rosenkötter et al., 2013).  

Influenza-like illness data from outpatient data provided by health care facilities is 

also useful in estimating influenza trends. A study from October 2009 to July 2010 with 

38 outpatient practices showed that observed trends were consistent with already 

established syndromic and laboratory systems. This shows the feasibility of using 

outpatient information to estimate influenza in a community (Fowlkes et al., 2013).   

The use of big data is a relatively novel approach to influenza surveillance. Big 

data is a general term for enormous data sets with large, varied, and complex structures 

(Sagiroglu & Sinanc, 2013). Internet search queries are a potential source to show 

influenza activity trends in a region. Internet utilization is globally widespread and there 

are multiple platforms, such as cellular phones or computers, from which to access the 

internet. Search engines are a standard resource for retrieval and dissemination of 
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information. People may conduct internet searches prior to visiting a health care provider. 

Tracking these trends could capture earlier surges in activity. A study in South Korea 

compared ILI data from the Korea Centers for Disease Control and Prevention to ILI 

related queries on the local search engine, Daum. Researchers concluded that methods 

showed strong, positive correlation with national influenza surveillance data in South 

Korea (Seo et al., 2014).  

Google launched Google Flu Trends (GFT) hoping that big data would effectively 

estimate influenza spread faster than traditional surveillance systems. Evaluations of GFT 

results showed some significant errors that reduced the tracking accuracy of laboratory-

confirmed cases. GFT missed the first wave of the 2009 influenza A/H1N1 pandemic and 

overestimated the A/H3N2 epidemic in 2013.  However, combining Google’s data with 

traditional surveillance system data improves results. A test of an empirical model that 

combined Google’s estimates with CDC data showed a 2.1% reduced error in case 

prediction compared to GFT alone (Davidson et al., 2015). GFT is also useful as 

complementary information when trying to forecast cases of influenza (Dugas et al., 

2013). Passive search queries and actively collected crowd-sourced data contain a lot of 

noise that may reduce reliability, but the volume and velocity of big data collection can 

decrease the time from evaluation to action with continuous calibration (Hay, George, 

Moyes, & Brownstein, 2013). This demonstrates the potential usefulness of big data 

when combined with traditional clinical systems.  

With advancements in technology and social media, there is an effort to utilize 

new resources to track health-seeking behaviors associated with influenza. The goal is to 

decrease the time between preparation for an influenza surge and the actual wave of 
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influenza activity itself. With enough preparation, it may be possible to reduce influenza-

associated morbidity and mortality. Although traditionally ILI is defined with clinical 

symptoms, with the role of technology in monitoring health behaviors, measures such as 

influenza-related search queries can also behave similarly to ILI clinical symptoms. 

These measures in conjunction with traditional ILI data can also be used to monitor, 

analyze, and forecast influenza activity (Signorini, Segre, & Polgreen, 2011).    

Gaps in Surveillance to Reduce Influenza Risk 

 Influenza vaccines are widely used to reduce the burden of seasonal influenza. 

People six months and older are encouraged to receive the vaccine annually. However, 

because of low vaccine uptake rates, influenza surveillance and preparedness also plays a 

vital role in reducing this burden. In a study of 16,683 patients with health care providers 

participating in surveillance to monitor acute respiratory illness, researchers found that 

from August 2010 to December 2013, only 30.4% of influenza test-negative and 18.6% 

of test-positive patients reported influenza vaccination (Vaccine, 2016). Overall, vaccine 

coverage for other diseases is high in the U.S. due to school and university entry 

requirements. For example, measles, mumps, and rubella (MMR) vaccine coverage 

ranged from 87.1% to 99.4% and hepatitis B (HepB) ranged from 90.3% to 99.6% 

depending on the state (National Center for Immunization and Respiratory Diseases, 

2016). As of now, although some work environments require annual vaccination, there 

are no statutes that require people to get an influenza vaccine. Also unlike most other 

vaccinations, the contents of the influenza vaccine change every year as the circulating 

strains of the virus also adapt or change. Though the seasonal influenza vaccine exhibits 

varying efficacy and effectiveness depending on the season, it is an effective tool to 

https://www.cdc.gov/ncird/index.html
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reduce the burden of season influenza compared to not receiving the vaccines. 

Regardless, many still do not receive the vaccine. It is unlikely that the influenza vaccine 

coverage rates will reach that of the more common child vaccinations such as MMR or 

hepatitis B vaccines. Therefore, influenza surveillance is valuable for preparedness in 

event of possible epidemics.  

 Even with high influenza vaccination coverage rates, there is still an immense 

need for influenza surveillance. The development and production of influenza vaccines 

results in an intelligently designed, educated guess. Researchers present three to four 

candidate vaccine viruses that they anticipate will be most likely to spread in the 

upcoming influenza season. Due to how quickly influenza viruses can mutate or adapt, it 

is possible that protection against another unanticipated circulating strain is low. A study 

to evaluate quadrivalent live attenuated influenza vaccine (LAIV) effectiveness in 

children 2-17 years in the U.S showed that LAIV provided significant protection against 

“B/Yamagata influenza but not against A/H1N1pdm09” in 2013-2014. In contrast, the 

inactivated influenza vaccine was effective against both strains (Caspard et al., 2016). 

Based on these results, CDC rescinded their LAIV preference in 2015 (Smith et al., 

2016). Influenza vaccine development is an iterative process and yet, even after approved 

release of a vaccine, the effectiveness may be much lower than in controlled 

environments. The entire process starts months before the anticipated influenza season so 

that manufacturers have time to produce the vaccines before outbreaks occur. As seen in 

previous years, it is possible that a vaccine can offer low protection for certain strains that 

were not anticipated to be prevalent or even due to mutations in vaccine strains 

(Skowronski et al., 2014). Therefore, even if there is high influenza vaccine coverage, it 
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is still possible to have high influenza activity or outbreaks. Researchers, manufacturers, 

distributers, and health care professionals can benefit from a quicker determination of 

influenza outbreaks so that they can anticipate if extra vaccines are needed. The vaccine 

manufacturing and distribution process is not instantaneous. Complementing traditional 

influenza surveillance systems with all available data capture mechanisms leads to earlier 

detection of influenza activity increases. This gives more time to prepared and respond to 

reduce the influenza burden. Influenza surveillance is still a public health necessity 

throughout all levels of vaccine coverage. Further studies can utilize multivariate 

methods that incorporate measures of vaccine effectiveness to explore how it affects 

influenza trends.  

 With consistent efforts towards improving influenza-related surveillance systems, 

the public health community has improved at anticipating influenza outbreaks quickly. 

However, awareness with traditional surveillance systems usually comes after enough 

people have become cases and exceeded the threshold. Time has passed between initial 

infection and lab confirmation of infection. Also, these systems only capture those who 

think they are sick enough to visit a provider and depend on enough providers 

participating and reporting in a timely manner.  Typically, automated systems for 

syndromic surveillance currently do not identify change points with confidence intervals 

nor forecast or predict future influenza trends. Real-time, local data related to influenza 

makes this kind of analysis possible. In Hong Kong, authors reported development of 

systems capable of forecasting seasonal influenza epidemics in real-time in subtropical 

and tropical regions where epidemics can occur throughout the year. They retrospectively 

forecasted on non-seasonal influenza epidemics. Average forecast accuracies were 31% 
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with leads of one to three weeks (Yang, Cowling, Lau, & Shaman, 2015). Although not 

automated, peak predictions have been estimated in the past. For the 2003-2008 influenza 

seasons in New York City, researchers retrospectively forecasted weekly local influenza 

infection rates up to seven weeks in advance of the actual peak (Shaman & Karspeck, 

2012).   

Growing international connections and increased travel between countries 

increases the local risk of influenza. However, restricting air travel is less effective 

compared to local transmission reduction interventions (Viboud, Miller, Grenfell, 

Bjrnstad, & Simonsen, 2007). It is important to think about data sources innovatively so 

that as much information as possible can be used to alert the health care community of 

potential outbreaks locally first before the geographic area of the spread reaches too far. 

This reduces the response time so that health care professionals are better and earlier 

prepared. Preparedness or response efforts such as organizing adequate staffing, 

disseminating accurate information quickly, or prepping medical supplies or medications 

can benefit from timely alerts of increased local influenza activity. The speed at which an 

influenza increase is identified affects how quickly public health professionals can 

respond appropriately. It is important to utilize complementary systems with diverse data 

structures and sources to increase the efficiency of reporting, preparedness, analysis, 

identification, and response as it all relates to influenza.  
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Methods 

Syndromic Surveillance Sources and Population 

We obtained data from five different sources with diverse data capture 

mechanisms. Information included weekly aggregate ILI counts of the residents in the 

City of Houston jurisdiction. We analyzed data from July 2012 through June 2016 or 

week 27 of 2012 through week 26 of 2016. Analyzing diverse data capture mechanisms 

can give more information on the perceived severity of influenza in the population. For 

example, while emergency department data may represent mostly cases severe enough to 

warrant a visit to the hospital ER, outpatient data may capture milder cases.  

GFT followed health behaviors online by tracking 40 different search queries 

related to influenza. This tool was used to predict prevalence from aggregated user data. 

Estimates for total number of search queries or information from the 2015-2016 season 

were not available and therefore, this source was not analyzed using change point 

analysis or forecasting.  

 Epidemiologists in partnership with Skoll Global Threats Fund, Boston Children’s 

Hospital, and the American Public Health Association created Flu Near You. The tool is 

available as both a web-based platform and a phone application. Users can self-report 

various symptoms on a weekly basis. The number of responses with symptoms related to 

influenza-like illness are aggregated weekly over the total number of responses. Flu Near 

You opened to the public in November of 2011.  

 The Houston Health Department also receives data from the Athena Network, a 

group of healthcare facilities and providers. A billing company pulls patient records from 

outpatient clinics to produce weekly aggregates for ILI. When a patient visits an 
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outpatient clinic within the network in Houston, the international classification of 

diseases (ICD) codes are categorized as ILI based on the syndrome definition. This data 

is aggregated and recorded weekly and is not considered collected in real-time. 

 The Epidemiology and Prevention Branch in the Influenza Division at the CDC 

collects and compiles data on influenza-like illness in the United States. This is a 

collaborative effort between the CDC and health care providers and facilities. Health care 

providers report weekly on the total number of patients seen and the proportion of 

patients with influenza-like illness by age group. For comparability, ILINet will be used 

as the “gold standard” to which other sources are compared since it is one of the most 

comprehensive ILI surveillance systems in the U.S.  

 The Office of Public Health Preparedness and Surveillance within the Houston 

Health Department receives real-time data transferred daily from hospital emergency 

centers. When a patient is registered in an emergency center, each record is coded into a 

syndrome based on the chief complaint. ILI is coded and analyzed by someone using 

computer software to identify activity above the threshold. The threshold is calculated as 

the average ILI occurrence in the past three years from non-influenza season months 

(June-September).  

 The influenza season start, duration, and peak is determined each year by 

surveillance depending on timing of surges in activity. Historically, an influenza season is 

October through May because these months usually contain higher influenza activity. It is 

important to understand the influenza season period because preparedness and response 

activities are all coordinated around these time intervals of expected influenza activity 

surge.  
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The specific outcome for our analysis depends on type of surveillance 

mechanism. However, it is broadly defined as the percentage of ILI observations among 

the total observations in a week. Since GFT did not have the total number of search 

queries available, this source was not analyzed using change point analysis but counts are 

available for comparison. 

The average ILI count and ILI percentage for October-May and June-September, 

peak week of highest ILI count and ILI percentage, and minimum and maximum ILI 

percentages are calculated and graphed to see if activity peaked around the same weeks 

among the diverse data capture mechanisms (Table 1, Figure 1). This initial analysis is 

conducted to visually compare trends and seasonal patterns. Analyses were completed 

using R 3.2 with R Studio, Change Point Analyzer 2.3, and Microsoft Excel.  

Imputing Missing Values 

 There were 21 (10%) missing observations from ILINet. ER Centers data also 

showed one missing observation (0.5%). ILI percentages were not available for these 

weeks. The missing data is estimated using predictive mean matching. The ‘mice’ 

package in R imputes missing values with plausible values using the predictive mean 

matching method. It uses an algorithm that pulls information from other values in the 

specified variable to predict possible values. Predictive mean matching estimates a linear 

regression for observed values. Then, it picks a value randomly from the posterior 

predictive distribution of the coefficients of the previous regression to produce a new set 

of coefficients. These coefficients predict values for all observations. For each missing 

observation, we pick a set of observations with predicted values close to predicted values 
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of the missing observations. We randomly choose one observed value to replace the 

missing observation (Allison, 2015).  

CPA Methods: Cumulative Sum and Bootstrapping 

Change point analysis is used to detect whether a change has taken place(Taylor, 

2000). It can be used to detect multiple, subtle changes which is better suited for 

assessing increases or decreases both during and after the influenza season. With the 

methods used, each change detected is likely to be a real change.  

Cumulative sum control charts are used to monitor the mean influenza-like 

activity of a given year based on weekly activity. This method can detect small changes 

because it utilizes current and previous week observations instead of averaging each 

week independently. CUSUM charts rely on an accurate target value and standard 

deviation. The cumulative sum for each week is the sum of the differences between the 

weekly ILI percentage and the average added to the previous weekly cumulative sum (Si 

= Si – 1 + (Xi – X̅), where Xi = weekly percentage of ILI, Si-1 = previous week’s 

cumulative sum, X̅ = average). Figure 3 contains CUSUM charts by time interval for the 

data sources. If there is no departure from the mean, the slope will be relatively flat. 

When the CUSUM slopes down, it indicates a period when percentages are below the 

mean. Upward slopes indicate a period when percentages are above the mean. Sudden 

changes in slope indicates a shift in the mean. We can visually note these points of 

interest but this is a subjective assessment (Figure 3). Bootstrapping to find confidence 

levels makes pinpointing actual changes more objective. The mean square error (MSE) is 

an estimator of when the change occurred. Equation 1 contains the formula for 

calculating the MSE.  
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(Equation 1)  MSE = ∑  𝑚
𝑖=1 (𝑋𝑖 −  𝑿𝟏

̅̅̅̅ )𝟐 +  ∑ (𝑿𝒊 − �̅�𝟐)𝟐𝒏
𝒊=𝒎+𝟏 , where 

   𝑿𝟏
̅̅̅̅ =

∑ 𝑋𝑖
𝑚
𝑖=1

𝑚
  and 

   �̅�𝟐 =  
∑ 𝑋𝑖

𝑛
𝑖=𝑚+1

𝑛−𝑚
. 

After cumulative sum charting, bootstrap samples are generated to calculate a 

confidence level for each change. These samples represent random data samples that 

mimic the behavior of the cumulative sum if there has been no change. By performing 

1000 iterations, we estimate how much the magnitude of change would vary if no change 

has occurred. Bootstrap samples are randomly reordered without replacement. The 

cumulative sum (S0
n) and cumulative sum range (S0

diff) are calculated for each of the 

samples. The percentage of times the Sdiff > S0
diff is the confidence level. The 

predetermined threshold confidence level is 90%. A 95% confidence interval is used 

around the estimated change point week (Baddour, Tholmer, & Gavit, 2009). 

ARIMA Modeling and Forecasting 

 Autoregressive integrated moving average (ARIMA) models are one of the most 

commonly used approaches to describe autocorrelations in the data and forecast time 

series (Hyndman & Athanasopoulos, 2014). The model requires time series data and 

autocorrelations that remain constant over time. The forecasting equation (Equation 2) is 

a univariate linear equation where the predictors are the lags of the variable and/or lags of 

the forecast errors and/or a possible constant (Equation 2). The lagged values of the 

variable are the autoregressive component while the lags of the forecast errors represent 

the moving average terms. The model is integrated if the time series must be differenced 

to be considered stationary.  
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Stationarity  

 ARIMA modeling requires stationarity. The mean and variance of a stationary 

time series do not depend on the time the series is observed. The ILI observations are not 

stationary because they have seasonality and possible trend. The data also have a white 

noise component, which is a stationary series because it looks the same at any time. One 

way to make a non-stationary time series stationary is by differencing. Differencing 

stabilizes the mean and removes the trend and seasonality components. It is the change 

between consecutive observations and so will result in one less observation since the 

difference cannot be calculate for the first observation. The time series observations used 

here only required first-order differencing and so second-order differencing will not be 

discussed. To make the decision whether to difference or not more objective, augmented 

Dickey-Fuller (ADF) tests were used to test if each of the data source time series 

variables were stationary or required differencing. The null hypothesis for this test is non-

stationarity and any p-values above 0.05 indicate need for differencing. This test showed 

that the Athena data needed differencing. Another unit root test, the Kwiatkowski-

Phillips-Schmidt-Shin (KPPS) test provided the same conclusion on stationarity for three 

out of four of the data sources. ILINet was found to be stationary with the ADF test and 

non-stationary with the KPSS test. Each of the sources were also tested using seasonal 

root tests to determine the appropriate number of seasonal differences required. None of 

the time series required seasonal differencing (Table 2).  

Fitting an ARIMA Model 

ARIMA models consist of parameter or coefficient estimates and determination of 

model orders, ARIMA (p,d,q)(P,D,Q)m. P,D,Q corresponds to the seasonal orders while 
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p,d,q represents the orders of the non-seasonal model. The order notation p is the 

autoregressive order, d, is the order of differencing, and q is the order of moving average. 

The m is equal to the number of periods per season.  

The ‘forecast’ package in R has some useful functions for determining the 

appropriate ARIMA models for each of our time series variables. The auto.arima() 

function estimates the parameters and model orders using maximum likelihood 

estimation (MLE). This method finds parameter values that maximize the probability of 

obtaining the observed data. Good ARIMA models also minimize the Akaike’s 

information criteria (AIC) values. First, the number of differences, d, is determined with 

KPSS tests. After differencing d times, p and q are chosen by looking for the lowest AICc 

value. A constant, c, is included if d = 0 or d=1 if it improves the AIC value. The 

stepwise procedure varies the p and/or q by one and decides whether to include or 

exclude the constant. These steps are repeated until no lower AICc value is found. After 

the best model is found, ACF plots of the residuals and portmanteau Ljung-Box tests 

check the residuals. If the residuals appear to be white noise, this is the best model for 

forecasting.  

Obtaining Point Forecasts from ARIMA Models 

The general forecasting equation can be written as:  

(Equation 2) ŷt   =   μ + ϕ1 yt-1 +…+ ϕp yt-p - θ1et-1 -…- θqet-q where, 

  θ = moving average parameters of order q, 

  ϕ = autoregressive parameters of order p, 

  ŷt = prediction estimates at time t, 

  yt-p = lagged values of y, and 
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  e = error term.  

The ‘forecast’ package in R also provides a function called forecast () that can be used 

once an appropriate model has been fitted. We obtain point estimates by replacing t with t 

+ h in the equation, where h=1,2….n future forecasts. The future errors are replaced by 

zero and past errors are replaced by residuals. This function also provides forecast 

intervals at the 80% and 95% levels by default. The 95% forecast interval is calculated by 

ŷ t + h|t ± 1.96 √v t + h|t, where σ̂ is the standard deviation of the residuals and v is the 

estimated forecast variance.  
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Results 

Identifying and Comparing Significant Change Points 

Table 1. Peak Weeks per Year and ILI Percentages by Data Capture Mechanism 

Weeks Data Source Peak Week4 Peak ILI %4 Mean4 Mean (Oct-May) 

2012-2013 

 

  

Flu Near You 2012 45th 28.57 3.29 3.841 

Athena 2012 50th 0.66 0.24 0.261 

ER Centers 2012 51st 5.25 1.94 2.411 

ILINet 51st 2012 2.62 0.72 1.013 

2013-2014 

 

 

Flu Near You 2013 51st 10.29 2.22 2.481 

Athena 2013 51st 0.48 0.15 0.171 

ER Centers 2013 51st 6.59 1.87 2.351 

ILINet 2013 51st 3.73 0.67 0.961 

2014-2015 

 

 

Flu Near You 2014 37th 9.43 2.77 3.562 

Athena 2014 50th 0.21 0.09 0.112 

ER Centers 2014 51st 3.80 1.55 2.002 

ILINet 2014 46th 1.48 0.28 0.412 

2015-2016 

 

 

Flu Near You 2016 25th 6.9 1.90 2.123 

Athena 2016 12 0.37 0.13 0.143 

ER Centers 2016 9th 2.76 1.24 1.493 

ILINet 51st 2015 0.96 0.18 0.235 

1Mean is calculated using weeks 40 through 22. 
2Mean is calculated using weeks 40 through 21. 
3Mean is calculated using weeks 39 through 21. 
4The time interval is week 27 through week 26 of the following year. 
5Mean is calculated using weeks 38 through 20.  

 

Preliminary analysis shows the potential compatibility of the diverse data capture 

mechanisms and the times of peak influenza activity (Figure 1, Figure 4, Table 1, Table 

3). From analysis using change point analysis, at least two significant change points are 

identified per season per data capture mechanism. The exception is Flu Near You years 

2012-2013, 2013-2014, and 2015-2016.  
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Figure 1. The above figure shows ILI percentage by data capture mechanism from 

week 27 of 2012 through week 26 of 2016. Flu Near You shows the greatest variability 

and highest ILI percentages. Athena outpatient data has the lowest percentages. 

Athena, hospital ER Centers, and ILINet show four clear seasonal peaks. Peaks are 

visible for all sources at similar times in the season. Any outliers or missing 

observations were removed from the data.  

 

 
Figure 4. Each line represents an estimation of when a significant change occurred at 

the 90% confidence level. The 95% confidence intervals are not included but can be 

found in Table 4. Regions where lines are clustered together indicate a stronger 

agreement by multiple data sources that a significant change occurred in ILI percentage 

at this time.  
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For the 2012-2013 year, weeks 45, 50, and 51 of 2012 are the maximum peak 

week for Flu Near You, Athena, and ER Centers respectively (Table 1). Change point 

analysis results did not contain any change points from the Flu Near You data for this 

time interval. However, from the Athena data, change point analysis resulted in both an 

increase (2012 week 46; 95% CI: 2012 44th – 2012 49th) and decrease (2013 week 6; 95% 

CI; 2013 4th – 2013 8th) in average ILI. This indicates the duration of the influenza surge 

as approximately between 2012-11-11 and 2013-02-03. From the hospital ER centers, 

three increases and three decreases are identified. Change points from this source are 

identified earlier than from Athena and indicate a longer duration (Table 4, Figure 4).  

For the 2013-2014 time period, Flu Near You, Athena, hospital ER centers, and 

ILINet show that the 51st week of 2013 is the peak week (Table 1). Using change point 

analysis, we were again not able to find any change points for FNY data. Athena data 

displayed a change point as early as the 29th week of 2013 (95% CI: 2013 29th -2013 

29th). However, this is a decrease and therefore does not accurately estimate the start of 

an influenza surge. This change point also has the lowest confidence level (90%) of all 

recognized changes. From Athena, we do see a subsequent increasing change point at the 

37th week of 2013 (95% CI: 2013 35th – 2013 38th) and the last decrease at the first week 

of 2014. The ER centers data also shows an early increase in the 35th week (95% CI: 

2013 34th – 2013 42nd) but then a later and larger increase is identified in the 45th week of 

2013 (95% CI: 2013 45th – 2013 46th). There is a large decrease in the 2nd week of 2014 

(95% CI: 2014 1st – 2014 2nd) with a smaller, less meaningful decrease in the 20th week 

(95% CI: 2014 11th – 2014 20th). The first decrease detected is more reliable than the 

second due to the smaller confidence interval and higher confidence level. For this time 
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interval, ILINet data pinpoints increases in the 45th (95% CI: 2013 45th – 2013 45th) and 

49th week of 2013 (95% CI: 2013 49th – 2013 51st). Both are meaningful changes that 

indicate the start of an influenza surge due to the narrow confidence intervals and high 

confidence levels. Both Athena and ER Centers data capture this increase in a similar 

period with the ER centers identifying the increase in the same week as ILINet. ILINet 

also detects a significant decrease in the 2nd week of 2014 (95% CI: 2014 2nd – 2014 2nd) 

with additional decreasing change points in the 11th (95% CI: 2014 11th -2014 11th) and 

20th week (95% CI: 2014 18th- 2014 20th). Both Athena and ER Centers identify the 

initial decreasing change point close to the change point identified by ILINet. For the 

2013-2014 season, both ER centers data and Athena could identify the beginning and 

ending of the influenza surge when compared to ILINet (Table 4, Figure 4).  

The maximum ILI activity peaks for 2014-2015 are the 37th (FNY), 50th (Athena), 

51st (ER Centers), and 46th weeks of 2014 (Table 1). All data sources, including Flu Near 

You, identify significant change points in this season. Flu Near You detects a significant 

increase in the 47th week (95% CI: 2014 45th – 2014 48th) and a decrease in the 3rd week 

of 2015 (95% CI: 2015 2nd – 2015 5th). Athena also shows a decrease in the 3rd week of 

2015 (95% CI: 2014 53rd – 2015 3rd), although the confidence interval is somewhat wide. 

The increase in Athena in the same week identified by Flu Near You, the 47th week of 

2014 (95% CI: 2014 45th – 49th 2015), has a narrower interval. Athena also displays an 

additional, less significant increase (2015 10th; 95% CI: 2015 7th – 2015 20th) and 

decrease (2015 24th; 95% CI: 2015 15th – 2015 24th). The ER centers data shows three 

significant increases and six significant decreasing change points in this season. Like Flu 

Near You and Athena, the change point with the greatest increase is in the 46th week of 
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2014 (95% CI: 2014 46th – 2014 46th). A decrease with a narrow confidence interval is 

also identified in the 4th week of 2015 (95% CI: 2015 4th -2015 4th), like Athena and Flu 

Near You. Subsequent decreasing change points are also captured, describing the waning 

influenza activity. Change point analysis resulted in two increases and three decreases in 

the ILINet data for this season. Like the other sources, the 45th week of 2014 (95% CI: 

2014 45th – 2014 45th) displays the narrowest confidence interval with the greatest 

increase in average ILI percentage. Similarly, ILINet also displayed a significant 

decrease in the 3rd week of 2015 (95% CI: 2015 3rd – 2015 3rd). For this time interval, all 

sources seem to capture similar increasing and decreasing change points (Table 4, 

Figure 4). There is variability in the number of change points identified by each data 

capture mechanism.  

Weeks with the highest ILI percentage in the 2015 – 2016 season are the 25th 

(FNY), 12th (Athena), and 9th (ER Centers) weeks of 2016 (Table 1). There are no 

significant change points identified from the Flu Near You data again. The Athena data 

shows an increase in the 10th week of 2016 (95% CI: 2016 9th – 2016 12th) and a decrease 

in the 16th week (95% CI: 2016 14th – 2016 17th). Per the ER centers data, the greatest 

increase in average ILI percentage occurs in the 7th week of 2016 (95% CI: 2016 7th – 

2016 8th). A subsequent decrease is identified in the 19th week (95% CI: 2016 18th – 2016 

19th). We do see more gradual increases earlier in the 35th (95% CI: 2015 35th -2015 35th) 

and 43rd weeks (95% CI: 2015 40th – 2016 3rd) of 2015, though the latter change point 

shows a wide confidence interval. ILINet indicates an initial gradual increase as early as 

the 33rd week of 2015 (95% CI: 2015 32nd – 2015 39th) and the first decrease in the 6th 

week of 2016 (95% CI: 2016 5th – 2016 6th) which is comparatively earlier than the 
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change points identified from the other sources. The largest increase is identified in the 

47th week of 2015 (95% CI: 2015 44th – 2015 47th). The ER centers data is the only one 

that shows a significant change as early as the 43rd week in a period comparable to 

ILINet, but as mentioned previously, the confidence interval for this change is very large. 

ILINet exhibits a decrease early in 2016 when Athena and ER Centers estimate that 

change to be an increase in ILI activity. Although the peak activity for influenza in this 

season may have been later and milder, ILINet is the only one that captures the beginning 

estimate of the typical influenza season (Table 4, Figure 4). 

Excluding Flu Near You, at least an increase and decrease are identified from all 

data capture mechanisms using change point analysis. The change point increases 

indicate that the 2015-2016 season had a later start for peak influenza activity. Overall, 

looking at changes in average ILI percentage, this season was also milder compared to 

previous seasons. The analysis also identifies other earlier and later significant change 

points that show the gradual increases and decreases of influenza activity.  

 Table 4. Weeks (95% Confidence Interval) of Significant Change Points 

in ILI Percentages by Data Capture Mechanism (2012-2016) 

Weeks1 Change 

Point 

95% 

Confidence 

Interval 

Average 

ILI % 

Prior to 

Change 

Average 

ILI % 

After 

Change 

Confidence 

Level2 

Increase 

or 

Decrease 

2012-2013 

Flu 

Near 

You 

 

No significant changes identified. 

 

Athena 2012 

46th  

2012 44th – 

2012 49th  

0.20 0.39 100%  

 2013 6th  2013 4th – 

2013 8th 

0.39 0.19 100%  

ER 

Centers 

2012 

35th  

2012 35th – 

2012 35th  

0.76 1.34 100%  

 2012 

42nd 

2012 42nd – 

2012 42nd  

1.34 2.41 91%  
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 2012 

46th 

2012 46th – 

2012 46th 

2.41 4.09 98%  

 2013 4th 2013 4th – 

2013 4th 

4.09 2.14 100%  

 2013 

11th 

2013 11th – 

2013 11th 

2.14 1.46 100%  

 2013 

19th 

2013 19th – 

2013 19th 

1.46 1.04 100%  

ILINet 36th 

2012 

36th 2012 – 

43rd 2012 

0.16 0.66 94%  

 48th 

2012 

48th 2012 – 

48th 2012 

0.66 2.20 100%  

 5th 2013 5th 2013 – 

5th 2013 

2.20 1.05 99%  

 10th 

2013 

9th 2013 – 

10th 2013 

1.05 0.41 95%  

 15th 

2013 

13th 2015 – 

15th 2013 

0.41 0.15 98%  

 22nd 

2013 

22nd 2013 – 

22nd 2013 

0.15 0.06 98%  

2013-2014 

Flu 

Near 

You 

 

No significant changes identified. 

 

Athena 2013 

29th  

2013 29th – 

2013 29th  

0.24 0.09 90%  

 2013 

37th  

2013 35th – 

2013 38th  

0.09 0.17 100%  

 2013 

47th  

2013 47th – 

2013 51st  

0.17 0.34 95%  

 2014 1st  2013 51st – 

2014 1st  

0.34 0.11 100%  

ER 

Centers 

2013 

35th  

2013 34th– 

2013 42nd  

0.74 1.49 100% 
 

 2013 

45th  

2013 45th – 

2013 46th  

1.49 4.53 100%  

 2014 2nd  2014 1st – 

2014 2nd  

4.53 1.58 100%  

 2014 

20th  

2014 11th – 

2014 20th  

1.58 1.06 97%  

ILINet 2013 

45th  

2013 45th – 

2013 45th  

0.17 1.72 100% 
 

 2013 

49th  

2013 49th – 

2013 51st  

1.72 3.05 95% 
 

 2014 2nd  2014 2nd – 

2014 2nd  

3.05 0.78 100%  
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 2014 

11th  

2014 11th – 

2014 11th  

0.78 0.23 100%  

 2014 

20th  

2014 18th – 

2014 20th  

0.23 0.05 100%  

2014-2015  

Flu 

Near 

You 

2014 

47th  

2014 45th – 

2014 48th  

1.52 7.67 100% 
 

 2015 3rd  2015 2nd – 

2015 5th  

7.67 1.98 100%  

Athena 2014 

47th  

2014 45th – 

2014 49th  

0.06 0.16 100% 
 

 2015 3rd  2014 53rd – 

2015 3rd  

0.16 0.07 98%  

 2015 

10th  

2015 7th – 

2015 20th  

0.07 0.11 92%  

 2015 

24th  

2015 15th – 

2015 24th  

0.11 0.05 93%  

ER 

Centers 

2014 

28th  

2014 28th – 

2014 30th  

0.63 0.53 91%  

 2014 

35th  

2014 35th – 

2014 36th  

0.53 1.02 96%  

 2014 

41st  

2014 41st – 

2014 41st  

1.02 1.84 98%  

 2014 

46th  

2014 46th – 

2014 46th  

1.84 3.47 96%  

 2014 

53rd  

2014 53rd – 

2014 53rd  

3.47 2.60 100%  

 2015 4th  2015 4th – 

2015 4th  

2.60 1.89 97%  

 2015 

11th  

2015 11th – 

2015 11th  

1.89 1.43 97%  

 2015 

15th  

2015 15th – 

2015 15th 

1.43 0.88 95%  

 2015 

21st  

2015 21st – 

2015 21st  

0.88 0.57 99%  

ILINet 2014 

36th  

2014 36th -

2014 44th  

0.02 0.19 99%  

 2014 

45th  

2014 45th – 

2014 45th  

0.19 1.34 100%  

 2014 

50th  

2014 50th – 

2014 50th  

1.34 0.71 99%  

 2015 3rd  2015 3rd – 

2015 3rd 

0.71 0.20 100%  

 2015 

12th  

2015 8th – 

2015 12th  

0.20 0.03 99%  
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2015-2016 

Flu 

Near 

You 

 

No significant changes identified.  

 

Athena 2016 

10th  

2016 9th – 

2016 12th  

0.10 0.28 100% 
 

 2016 

16th  

2016 14th – 

2016 17th  

0.28 0.13 97%  

ER 

Centers 

2015 

35th  

2015 35th – 

2015 35th  

0.40 0.97 100% 
 

 2015 

43rd  

2015 40th – 

2016 3rd  

0.97 1.18 91%  

 2016 7th  2016 7th – 

2016 8th 

1.18 2.14 100%  

 2016 

19th   

2016 18th – 

2016 19th  

2.14 0.99 100%  

ILINet3 33rd 

2015 

32nd 2015 – 

39th 2015 

0.03 0.14 93% 
 

 47th 

2015 

44th 2015 – 

47th 2015 

0.14 0.53 100% 
 

 6th 2016 5th 2016 – 

6th 2016 

0.53 0.18 100%  

 12th 

2016 

11th 2016 – 

12th 2016 

0.18 0.06 99%  

 15th 

2016 

15th 2016 – 

15th 2016 

0.06 0.01 99%  

 26th 

2016 

21st 2016 – 

26th 2016 

0.01 0.03 93% 
 

1Time period is week 27 from initial year through week 26 of follow year.  
2Must meet at least 90% confidence level for inclusion in table.  
3 ILINet data in this time interval contained one or more outliers. Custom analysis on 

the ranks of values was performed using Change-Point Analyzer.  

 

Forecasting Future Influenza Activity Trends from ARIMA 

 From the available ILI percentage data, we find the best fitting ARIMA models 

(Table 5). Using the forecast ARIMA equations, we estimate ILI percentage point 

estimates and 95% confidence interval for the next ten weeks, weeks 27 through 36 of 

2016, for each data source. The Athena model results in the same ten point estimates of 

0.12% and 95% confidence intervals are wide and cross zero, but magnitude increases 
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steadily with mean confidence range of 0.35%. Flu Near You point estimates continually 

decrease from 3.26% (95% CI: -1.00 – 7.51) to 2.06% (95% CI: -2.59 – 6.72). The 95% 

confidence intervals for Flu Near You point estimates also cross zero and are wide with a 

mean confidence range of 9.18%. The ILI percentage estimates for ER Centers 

continually increase from 0.72% (95% CI: 0.19 – 1.26) to 1.32% (95% CI: -0.35 – 3.00). 

All except the initial confidence interval cross zero and the mean range is 2.43%. Lastly, 

ILINet ILI percentage estimates start at 0.01% (95% CI: -0.23 – 0.25), decrease to -

0.09% (95% CI: -0.70 – 0.53), and increase slowly again to -0.05% (95% CI: 1.03 – 

0.92). The mean range between upper and lower 95% limits was 1.18%. Like the other 

data sources, the 95% confidence interval also crosses zero for ILINet.  

 The Athena data source has the lowest average confidence interval difference 

between the upper and lower 95% bounds (0.35%). Flu Near You has the highest 

(9.18%). All the 95% confidence intervals are relatively wide and lower bounds are 

negative percentages, which cannot be actualized because ILI percentages can only be 

positive. The data sources do not agree on an increasing or decreasing predictive trend 

(Figure 5).  
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Discussion 

Strengths 

Because there are four years of historical data available, the analysis is less 

affected by a few weeks with a small number of observations. The first five weeks of Flu 

Near You contain less than five total responses.  When comparing the distribution with 

and without these values, a meaningful or significant difference is not found. The sample 

size is large enough and that smaller changes in weekly ILI activity do not tilt the data to 

show unreliable predictions.  

The varying data sources also exhibit similar patterns when it comes to 

seasonality and peaks based on descriptive analysis. The results from change point 

analysis also show similar significant increasing and decreasing change points (Table 4).  

The overlap of the different sources demonstrates a greater cohesion and more 

informative results when considered simultaneously. Each may be limited on its own, but 

comparing all different data capture mechanisms can give an earlier, richer picture of 

influenza activity.  

The turn-over time is also faster when considering various data sources instead of 

only influenza laboratory results. When using user-reported data in conjunction with 

automated systems, we can see minute changes faster than traditional systems that may 

require multiple processes for influenza confirmation. The data sources evaluated here 

are best utilized together.  

The data capture mechanisms cover varying stages of influenza. Google Flu 

Trends captures users who searched influenza-related terms. This source had the potential 

to capture those who may not have seen a provider yet but are curious about their 
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symptoms or potential treatments. Flu Near You reporters may not have a confirmed 

diagnosis but input their responses based on changes in their symptoms weekly. Reports 

from the Athena Network capture visits from patients who perceive themselves to be sick 

enough to visit their provider but are recorded as outpatient because of lower severity. 

The hospital ER centers collect information from patients who perceive their symptoms 

to be so severe that they need immediate attention. Using various data types allows a 

more comprehensive view of influenza trends with the potential for earlier detection.  

Limitations 

ILINet is considered the gold standard for this analysis. Ideally, we would have 

liked to validate results by comparing data to influenza laboratory testing results. The 

influenza laboratory test data is too sparse to use as a gold standard to accurately compare 

to the other data sources. Because availability of specimens for influenza testing was low, 

this data source was not included in the analysis. Future analysis would benefit from 

comparison to influenza laboratory testing to gain a more accurate result of actual 

influenza activity in the population.  

Flu Near You users report on their symptoms every Monday. One week for this 

data source is considered Monday-Sunday. However, all other data sources consider a 

week to be Sunday - Saturday. Since six out of seven days do overlap, to be able to 

compare all sources with their corresponding weeks, we will assume that the one day 

difference in the Flu Near You weeks does not alter the results. We assume that this will 

not cause significant changes to the accuracy of comparisons. Published analyses 

comparing ILINet and Flu Near You also showed that this would not significantly alter 

results (Bakota, Santos, & Arafat, 2015; Smolinski et al., 2015). There were very few 
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users during the initial stages and inconsistency and variability in the number of users 

who self-reported using Flu Near You during the initial stages is high. The Flu Near You 

data does decrease in variability as the number of users reporting increase.   

GFT was a controversial program that tried to predict influenza activity using 

search queries. It was largely criticized for inaccurate magnitudes, especially during the 

2009 H1N1 event. Only weekly ILI count available for this analysis. Since this source 

deals with search queries made through Google, it would be difficult to obtain the total 

number of search queries in a week as this number would be very large. Although we can 

get population information for the City of Houston, we cannot estimate the amount of 

search queries a person makes or that this rate is uniform. This source is included when 

comparing ILI counts but excluded from further analysis where ILI percentage will be 

more informative. There is no data for the 2015-2016 influenza season for GFT. 

 Change point analysis requires an independent error assumption. However, some 

of the data capture mechanisms violated this assumption for some of the time intervals. 

Because of the nature of this type of data, one can expect positive correlation of errors or 

that during influenza surges, if one value is above average, the next several values will 

also tend to be above average until the duration of the epidemic or outbreak diminishes. 

The opposite can also be true resulting in negative correlation of errors. Autocorrelation 

does not significantly impact change point analysis performance and this has also been 

evidenced in a previous article using ILI emergency department visits. According to this 

article, the CUSUM CPA method is still robust enough to detect change points with 

autocorrelation in time series data (Kass-Hout et al., 2012).  
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 Forecasting time series data is difficult due to inherent uncertainties of trend and 

retention of historical properties. Our predictions are based on historical data and would 

not be ideal to predict unusual events that have not occurred previously. Forecasting also 

must consider the noise component which is difficult to estimate or predict. It is unclear 

to what degree noise affects the future model. However, taking into the degree of 

uncertainty, short-term estimates can be useful for preparation or increased level of 

awareness.  

Further Considerations 

Analyses is conducted on each data source separately to compare results to each other to 

see if there is agreement of influenza peaks, trends, and magnitude. Piecing together 

combines the results together the complementary corresponding information. To validate 

the forecasted values using ARIMA, we will compare results to actual values observed 

during these ten weeks. This was not completed during this analysis because this data 

was not available at this time. Further analyses are needed to assess if these sources can 

be combined to reliably identify significant points of interest in the influenza season early 

and to accurately forecast estimates of future influenza activity. A single result from such 

analysis would be more objective when using all the available information.  
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Conclusion 

 Overall, the outpatient data from the Athena Network, emergency center data 

from the Houston ER Centers, and ILINet data show similar trends. The identified 

change points exhibit similar increase and decrease in ILI activity when it comes to 

identifying the start and end of the influenza season (Table 4). The peaks of ILI 

percentages from these sources and Flu Near You are relatively close to each other 

(Table 1). The ARIMA forecast estimates produce different trends regarding predicting 

the next ten weeks of event activity. Combining the information from the diverse data 

sources can identify with more certainty the start and end of influenza activity and return 

improved forecast estimates.  

For agencies that are not able to access multiple sources of ILI surveillance 

information, when considering consistency in the number of observations, ER Centers 

data and ILINet are likely most useful in influenza surveillance. Athena can also be a 

useful source, but Flu Near You usefulness in a specific community will depend on the 

consistency with which users in that community report their symptoms. Flu Near You 

will also need a large enough sample size to offer reliable estimates from its data. If it 

meets these two requirements, this is a tool that can quickly estimate influenza or 

influenza-like activity. If only investing in one of these influenza-like illness surveillance 

sources, ILINet or ER Centers data would likely give the most information.  

The identification of similar significant points of increase and decrease in the 

influenza season assist public health professionals in preparing for potential surges of 

influenza activity. Because there are similarities between the different weeks identified as 

points of interest, we can conclude that the sources are precise. If surveillance 
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professionals look at all available types of data that can capture information related to 

influenza, the health care community can ensure it is ready for any potential increases in 

vaccination demand, information demand, medication, hospitalizations, or other 

outcomes. Once more consistent and sufficient information is collected and analyzed, 

forecast estimates of influenza can enhance preparation and prevention efforts.  
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Tables and Figures 

Table 3. Peak Weeks per Year and ILI Counts by Data Capture Mechanism 

  Data Source Peak Week 
a 

Peak ILI 

Count 

Mean Standard 

Deviation 

2012-2013 
c 
 

Flu Near You b 1st 2013 29.00 2.00 5.07 

Google Flu 

Trends 

3rd 2013 12,069.00 4,118.71 2,782.40 

HHD ER Center 51st 2012 2329.00 7,201.35 484.78 

Athena Network 50th 2012 25.00 8.10 4.59 

ILINet 1st 2013 358.00 107.85 103.85 

2013-2014 
c 
 

Flu Near You b 51st 2013, 

2nd 2014 

7.00 1.38 1.65 

Google Flu 

Trends 

52nd 2013 9,617.00 2710.23 1,788.92 

HHD ER Center 52nd 2013 2,455.00 603.38 589.39 

Athena Network 51st 2013 26.00 6.83 4.63 

ILINet 50th 2013 469.00 78.94 107.05 

2014-2015 
c 
 

Flu Near You b 47th 2014, 

52nd 2014 

11.00 2.30 2.97 

Google Flu 

Trends 

52nd 2014 7,676.00 7,676.00 1,630.13 

HHD ER Center 51st 2014, 

52nd 2014 

1,546.00 586.02 397.45 

Athena Network 50th 2014, 

16th 2015 

15.00 6.13 3.58 

ILINet 47th 2014 200.00 37.09 54.07 

2015-2016 
c 
 

Flu Near You b 9th 2016 10.00 1.92 1.85 

Google Flu 

Trends 

  

 Data unavailable.  

  

  

HHD ER Center 10th 2016 463.00 203.00 98.56 

Athena Network 15th 2016 22.00 8.81 4.74 

ILINet 51st 2015 242.00 45.26 57.44 
a Peak week is the week with the highest ILI count. 
b Flu Near You data ranges from August 2012-current June 2016 
c All year intervals begin MMWR week 27 of 2012 through MMWR week 26 of the 

following year.  
d  Google Flu Trends data included ranges from August 2011-July 2015. 
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Table 5. ARIMA Model Orders and Parameters 

Data Source Orders Ljung-Box Test p-value2 

Athena (0,1,1) 0.23 

Flu Near You (2,0,0) 0.59 

ER Centers (2,0,1)(1,0,0)[52] <0.011 

ILINet (2,1,1)(0,0,1)[52] 0.15 

1 These residuals are not random but because there is sufficient number of 

observations, this is the best model possible. 
2 P-values above 0.05 are desirable and indicate higher possibility of zero 

autocorrelation of residuals.  

 

  

Table 2. Stationarity and Seasonal Differencing Test Results 

Data Source KPSS p-value3 ADF p-value2 

Stationary 

Differencing 

Required 

Seasonal 

Differencing 

Required 

Athena1 <0.01 0.08 Yes No 

Flu Near You 0.1 <0.01 No No 

ER Centers 0.09 <0.01 No No 

ILINet <0.01 <0.01 Yes No 
1 First-order differencing will be required.  
2 P-values less than 0.05 indicate stationarity.  
3 P-values greater than 0.05 indicate stationarity.  
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Figure 3. The above figure shows ILI counts by data capture mechanism from MMWR 

week 27 of 2012 through MMWR week 26 of 2016. Google Flu Trends shows the 

highest number of counts (search queries). Athena outpatient data and Flu Near You 

have the lowest ILI counts. Google Flu Trends, hospital ER centers, and ILINet show 

clear seasonal peaks at similar times. Any outliers or missing data was removed from 

the data.  
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Figure 2. CUSUM Charts of ILI Percentages (Week 27 2012 – Week 26 2016) 
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Figure 5. Point Estimates and 80% and 95% Confidence Intervals of ILI 

Percentages 
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Figure 5. Each of these plots show the original data with the point estimates as a blue 

line and the confidence intervals extending out ten weeks. The darker bands represent 
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the 80% confidence intervals and the lighter bands represent the 95% confidence 

intervals. All intervals cross over the zero line and are wide.  
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