
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Luca Bonomi Date

Big Data goes Personal: Privacy and Social Challenges

By

Luca Bonomi
Doctor of Philosophy

Computer Science and Informatics

Li Xiong, Ph.D.
Advisor

Michelangelo Grigni, Ph.D.
Committee Member

James J. Lu, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Big Data goes Personal: Privacy and Social Challenges

By

Luca Bonomi
MS, Computer Engineering, 2008

Advisor: Li Xiong, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2015

Abstract

Big Data goes Personal: Privacy and Social Challenges
By Luca Bonomi

The Big Data phenomenon is posing new challenges in our modern so-
ciety. In addition to requiring information systems to e↵ectively manage
high-dimensional and complex data, the privacy and social implications as-
sociated with the data collection, data analytics, and service requirements
create new important research problems. First, the high volume of personal
data generated by users’ devices (e.g. credit card transactions, GPS tra-
jectories from mobile devices and medical data) can be used, much like a
fingerprint, to identify the person who created it with the risk of disclosing
sensitive information such as: political inclination, financial status and med-
ical condition. Second, popular social networks (e.g. Facebook, Foursquare,
Yelp) not only enable users to share locations and preference but also cre-
ate opportunities for them to establish complex interactions (e.g. forming
communities, planning trip). This creates the needs for location based ser-
vices to provide services to groups of users rather than individuals. In this
dissertation, we present e↵ective solutions for both these privacy and social
challenges. In the privacy domain, we propose new privacy preserving tech-
niques to provide individual users with formal guarantee of privacy while
at the same time preserve meaningful information of the data released. We
demonstrate the e↵ectiveness of our solutions in di↵erent domains such as:
sequential pattern mining, record linkage, and computation of statistics over
data streams. In the social domain, we propose a new type of group query
aiming to find a route that all users can traverse while maximizing the group
preference for the locations jointly visited. The ability of solving such query
can greatly benefit many existing and emerging tools that allow users to
share route information (e.g. Uber, Waze) and plan group outings or trips
(e.g. QuickCliqs). Extensive empirical studies demonstrate the e↵ectiveness
of our solutions and provide us with important insights for future research
directions.

Big Data goes Personal: Privacy and Social Challenges

By

Luca Bonomi
MS, Computer Engineering, 2008

Advisor: Li Xiong, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2015

Acknowledgments

First, I would like to express my deepest gratitude to my advisor, Dr. Li
Xiong, for her continue support throughout my dissertation. Her guidance,
caring, and patience helped me during my research. I would like to thank
my committee members, Dr. Michelangelo Grigni and Dr. James J. Lu,
for their precious advices and insights during the course of my research.
Their time and e↵ort are highly appreciated. My gratitude goes also to Dr.
Benjamin C. M. Fung, Dr. Vaidy Sunderam, and Dr. Shun Yan Cheung
for their valuable suggestions and comments. I also would like to thank the
Math&CS sta↵ for their help during all these years.

In memory of A.A. 1948-2015.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Privacy Needs . 3
1.1.2 Social Needs . 4

1.2 Research Contributions . 5
1.2.1 Sequential pattern mining (Chapter 3) 6
1.2.2 Record Linkage (Chapter 4) 7
1.2.3 Data anlytics over streams (Chapter 5) 8
1.2.4 Group Route Query (Chapter 6) 10

1.3 Organization . 11

2 Related Works 14
2.1 Differential Privacy . 14

2.1.1 Achieving Differential Privacy 15
2.1.2 Event-level privacy . 16

2.2 Privacy Preserving Frequent Pattern Mining 17
2.3 Privacy Preserving Record Linkage 18
2.4 Stream . 21

2.4.1 Longest Increasing Subsequence 21
2.5 Spatial Queries in Location-based Services 23

3 Frequent Pattern Mining of Sequential Data 28
3.1 Problem Definition . 28

3.1.1 Problem Challenges . 29
3.2 A Baseline Solution . 30

3.2.1 Prefix Tree Algorithm 31
3.3 Two-Phase Algorithm . 36

3.3.1 Model-based Prefix Tree Miner 37
3.3.2 Error Analysis for Prefix Tree 42
3.3.3 Transformation & Refinement 44

3.4 Analysis . 49
3.4.1 Complexity Analysis . 49
3.4.2 Privacy Analysis . 50

3.5 Experiments . 52
3.5.1 Impact of the parameters on the utility 53
3.5.2 Comparison for mining frequent patterns 54

3.6 Conclusion . 59

4 Privacy Preserving Record Linkage 63
4.1 Preliminaries . 63

4.1.1 Basic Definitions . 63
4.2 Overview of Proposed Solution 64
4.3 Mining Phase . 68

4.3.1 Base Generation . 69
4.4 Embedding Phase . 70

4.4.1 Embedding . 70
4.4.2 Impact of the Grams . 71

4.5 Matching Phase . 75
4.5.1 Global Threshold . 76
4.5.2 Personalized Threshold 78

4.6 Security Analysis . 80
4.6.1 Adversary Model . 81
4.6.2 Security against one adversary 81
4.6.3 Security against collusion 82

4.7 Experiments . 84
4.7.1 Embedding Performance 84
4.7.2 Mining Performance . 88
4.7.3 Linking Performance . 89
4.7.4 Security . 93

4.8 Conclusion . 95

5 Analytics over Data Stream 99
5.1 Differentially Private Computation of the LIS - A Baseline Ap-

proach . 99
5.2 Decomposition Framework . 100

5.2.1 Binary Decomposition 102
5.3 Hierarchy Mechanism . 108
5.4 Summary of Results . 114

5.4.1 Extensions . 115
5.5 Conclusions . 116

6 Group Trip Planning Query 118
6.1 Problem Definition . 118
6.2 Algorithms . 122

6.2.1 Preprocessing Step . 123
6.2.2 Dynamic Programming 126
6.2.3 Approximation Algorithm 133
6.2.4 Greedy Algorithm . 135

6.3 Extensions of our Solutions . 137
6.4 Experiments . 139

6.4.1 Settings . 140
6.4.2 Results on Real Dataset 142
6.4.3 Result on Synthetic Dataset 151
6.4.4 Implementation of Extensions 153

6.5 Related Work . 155
6.6 Conclusion . 157

7 Conclusion and Future Work 164
7.1 Summary . 165

7.1.1 Privacy Contributions . 165
7.1.2 Social Contributions . 166

7.2 Future Work . 167

Appendix 169
8.1 Statistical Tools for Multiple Laplace Random Variables 169

Bibliography 170

5

List of Figures

2.1 Running example of the Patience Sorting algorithm over the stream � =

3, 4, 1, 2, 5, 7, 6. 21

3.1 Example of prefix tree. Each node has a noisy count, a partition of

strings sharing the same prefix, and a privacy budget. 32
3.2 Overview of two-phase algorithm. 36
3.3 Impact of the value of ✏

1

on the final utility. 54
3.4 Impact of the depth of the prefix tree on the final utility. 54
3.5 Comparison for mining short substring patterns. 56
3.6 Comparison for mining long substring patterns. 56
3.7 Frequency distribution of long substring patterns. 56
3.8 Impact of the length of the patterns k=20. 58
3.9 Impact of the value of ✏ on the final utility. 58
3.10 Comparison for mining prefix patterns, I=[2,3]. 59

4.1 Overview of the Secure Protocol. 65
4.2 Example of Mining and Embedding of the data. 66
4.3 Impact of edit operations on the embedded vector. 79
4.4 Impact of grams base on the utility. 85
4.5 Quality measure for the embedding. 86
4.6 Mining Performance. 86
4.7 Matching Performance. 87

4.8 Utility vs distance threshold. 87
4.9 Utility evaluations. 90
4.10 Performance Comparison. 91
4.11 Security Evaluation . 92

5.1 Block Decomposition example at time i: expired blocks (solid lines),

active blocks (gray) and the future blocks (dashed lines). 101
5.2 Binary Decomposition example. At time 5 (six symbols), the algorithm

updates the active blocks (in gray). It computes the answer to the LIS

query by summing the contributions of B
2

and B

4

containing the 2 and

4 most recent symbols respectively. 103
5.3 Running example of the Hierarchy mechanism on the input stream 4, 5, 1, 6, 2, 3, 7, 8,

b = 4 and m = 2. 108

6.1 Location Graph, where each node is illustrated with a different shape

representing the corresponding category. 119
6.2 Example of meeting graph and minimal paths 126
6.3 Example of paths computation . 130
6.4 Performance vs ✏ parameter . 143
6.5 Performance vs k . 143
6.6 Performance vs mobility . 144
6.7 Size of the meeting graph vs mobility 145
6.8 Performance vs m . 146
6.9 Running time vs preference scale 146
6.10 Utility vs User Weight . 147
6.11 Single user utility . 148
6.12 Performance vs Category Freq . 149
6.13 Scalability . 150
6.14 Category frequency and density . 151
6.15 Performance vs Category Distribution 152

6.16 Performance vs Category Density 153
6.17 Extension of our solutions . 154

List of Tables

3.1 Datasets characteristics . 52
3.2 Parameter Description . 53

4.1 Datasets . 84
4.2 Parameters . 85

5.1 Summary of results for LIS query over entire stream. 114

6.1 Table of frequent symbols . 123
6.2 Default Algorithmic Parameter Values 142

9

1

Chapter 1

Introduction

1.1 Motivation

The recent and rapid growth of data produced in our society is posing important
challenges in database system design. In addition to requiring efficient informa-
tion systems to manage high-dimensional and complex data generated by multiple
devices, the large amount of data is creating new privacy and social concerns.

The first part of this dissertation aims to address the privacy challenges that arise
in the data collection and data management (e.g. sharing and analytics) associated
with the big data phenomenon. In fact, as the data volume collected is tremen-
dously increasing over the past decades, the numerous user’s personal devices
(e.g. smartphone, smartwatch, wristband) are creating a large portion of data that
is user specific. According to the tech report in [69], the typical American office
worker produces 1.8 million megabytes of data each year (5,000 megabytes/day).
User’s generated data is typically collected by third party with the intention of
improving user’s experience, providing more personalized services and perform
secondary analysis. For example, in the location-based service setting, mobile
devices collect user’s GPS traces to provide location-based recommendation, or
in the health-care domain, the collection of user’s medical data aims to provide

2

better treatments for patients and early diagnoses. While these data analytics are
beneficial for both user and external parties, they pose serious privacy risks for
disclosing user sensitive information. In fact, this data can be used, much like
a fingerprint, to identify the person who created it: your choice of movies on
Netflix, the location signals emitted by your cell phone, even your buying habits
recorded by credit card transactions. In fact, according to recent studies, the loca-
tion of the 87% of the U.S. adult population is know via their mobile devices data.
As this personal data is constantly growing, more informative the data gets creat-
ing higher risks in disclosing user’s sensitive information. In the first part of this
work, we address the important problem of protecting user’s sensitive informa-
tion. Specifically, we propose a series of new techniques base on formal statistical
tools, optimization algorithms and specific domain knowledge to provide users
with formal guarantee of privacy while at the same time preserve meaningful in-
formation in the data.

The second part of this work investigates the complex user-to-user iterations
in the big data era and aims to define new type of database queries and services
for group of users. The technological revolution that is occurring in our society
and the richness of data are changing the way that users interact. Through so-
cial network, individual users find their place in communities, establish complex
social relationships and participate in social events. This situation is posing new
challenges in modern database systems that are facing the need of queries able to
satisfy users social needs. Many emerging and popular tools (e.g. Uber,Waze,
QuickClips) enable users to share information about routes and plan trips together
allowing users to express their social needs. However, existing research are mostly
limited to route queries involving single user or just beginning to look at simple
group queries minimizing the distance traveled by a group of users. In this work,
we make a step toward the design of location-based systems that support queries
for a group of users. In particular, we propose a new type of group query which
goal is to find a route that all users can traverse while maximizing the group pref-

3

erence for the locations jointly visited. We believe that our route problem could
greatly improve existing group routing or trip planning applications and our for-
mulation balances the users social needs as well as their individual preferences.

1.1.1 Privacy Needs

A first component of this work [14, 15, 10, 12, 9] is centered around the user’s pri-
vacy needs and it focuses on the design of efficient privacy preserving solutions
for data analytics. Sharing user’s data poses serious privacy concerns, as such
data contain behavioral patterns that may disclose personal sensitive information
when data are mined by third party. As in the recent Target incident, department
stores may look at individual purchase history to predict whether the customer is
changing buying behavior and it may disclose that the costumer is going through
a major life event, e.g. pregnancy. Therefore, it is crucial to design privacy pre-
serving techniques that protect user’s sensitive information while at the same
time enable applications to obtain meaningful mining results.

The current state-of-the-art paradigm for privacy-preserving data publishing is
based on the notion of differential privacy [29]. Such privacy model requires that
the aggregate statistics reported by a data publisher be perturbed by a randomized
algorithm A prior the publication, so that the output of A remains roughly the
same even if any single user’s record in the input data is arbitrarily modified.
Therefore, by observing the output of A, an adversary will not be able to infer
much about any single data record in the input, and thus privacy is protected. In
the last decade, a plethora of works have been developed for differentially private
data publishing [30, 56, 36] providing privacy solutions in a variety of settings.

In this work, we consider the privacy risks in releasing data statistics in two dif-
ferent scenarios. First, we consider an off-line setting, where the data is given in
input and the statistics are published once. Specifically, we consider the problem
of releasing the top frequent patterns from aggregated user sequential data while

4

providing user-privacy level. These patterns have the important property of pre-
serving the temporal relationship between events and for this reason are extremely
popular in several areas, such as: computational biology, location-based service
and web-browsing monitoring. The design of privacy preserving solutions for
sequential pattern mining presents two major challenges: (1) high-dimensional

output space (i.e. high number of patterns), and (2) high-sensitivity query (i.e.
privacy has a great impact on the final utility). Second, we consider an on-line
setting, where the input is a data stream and the released statistics have to be up-
dated each time a new data element arrives in the stream. In this case, we analyze
the problem of privately computing statistics over the data stream. The real-time
requirement and long temporal observations of the data pose important challenges
from the privacy and computational perspective.

1.1.2 Social Needs

A second component of this work [11] aims to address the social needs that are
emerging in our society. The richness of data and users interactions in modern
applications (e.g. social networks, location-based services) create opportunities
for users to have a new social role. The increasing popularity of social networks,
such as Facebook, Google+ and Foursquare, enriched the user to user interaction
creating new opportunities and challenges in the spatial databases field. Social
networks enable users to share their locations as well as their preferences, such as
restaurants, museums etc. Recent works [78, 72, 58, 67] incorporate user’s social
information and road-network conditions (e.g. traffic) into the route recommen-
dation process. For example, the work in [78] exploits such social information
by integrating the user’s profile similarity to provide a better route recommenda-
tion. Despite the use of the social information in determining user’s itineraries,
the query task is still targeting a single user. A new problem that arises in such a
setting, is to determine a route that a group of users can share. Hashem et al. [42]

5

address the problem of finding a preferred route for multiple users such that the
overall distance traveled by the group is minimized. Despite the effort in mod-
eling the users’ interests, this solution does not offer the flexibility needed when
users have different preferences or mobility constraints.

In this work, we propose a novel query, named Optimal Group Route (OGR)
query, which enables users to jointly plan an itinerary (i.e. a route) within their
mobility constraints such that the overall preference on the locations visited by
the group is maximized. The need for this type of queries naturally arise when
a group of users wish to plan a group trip or a group outing together, each with
certain mobility constraints and preferences on places to visit. Solving this type
of query presents new challenges compared to traditional location-based query. In
fact, this query aims to satisfy the group’s needs, hence the computed solution has
to combine user’s personal preference and mobility constraints to find the optimal
itinerary that all the users can jointly visit. Furthermore, we are able to show that
this problem is computationally hard.

1.2 Research Contributions

The main contributions of this work consist in addressing the privacy and social
aspects in designing modern database systems. First, our contributions in pri-
vacy focus on the design of algorithmic solutions to support sequential pattern
mining [9, 10, 14] and data stream statistics [12]. This line of work provides an
effective way to privately achieve data sharing and data re-use. These tasks are
extremely beneficial in many domains, for example in health-care setting, our so-
lutions will enable institutions to share data to advance medical research leading
to cost-effective treatment plans, and better diagnose. Second, with our work on
the users social aspects [11], we push the design of location-based services to a
new level, where the service required comes from a group of users rather than a
single individual. Our investigation on users social needs provides a better under-

6

standing of user-to-user interaction in modern databases systems and has potential
impact on many emerging applications that consider group of users and our soci-
ety. For example, our solutions can be applied in deciding traveling itinerary for
group of users (e.g. commuting users) which could effectively reduce pollution
and traffic in major cities.

In the rest of the section, we briefly summarize the specific contributions for
each chapter of the thesis.

1.2.1 Sequential pattern mining (Chapter 3)

In this chapter, we study the problem of privately mining frequent sequential pat-
terns from aggregated user data sequences. A first approach for differentially
private mining of sequential patterns has been proposed in [23]. This solution
partitions the input dataset by exploiting the string prefixes. Due to its nature, this
approach is quite effective for prefix patterns but the results for substring patterns
are quite poor. Recently, Chen et al. [22] proposed an alternative way for mining
sequential patterns. They first reduce the dimensionality of the pattern space by
restricting the mining on short patterns (n-grams), and second use the Markov as-
sumption to construct a sanitized dataset using the noisy patterns. This approach
works well for mining frequent patterns in the form of substrings, however its
utility for prefixes is poor. The main reason is that the n-gram model used to con-
struct the sanitized dataset does not consider the position of the patterns nor makes
distinction between substring and prefix patterns. This results in the impossibility
to recover the prefixes in the released data.

As our contributions, we propose a novel approach to effectively mine the top-
k substring patterns without losing information about the frequent prefixes. We
observe that mining the substring patterns directly from the data incurs a large
perturbation noise due to the presence of long strings. Despite this negative result,
in real datasets the majority of the strings are short and only few of them are very

7

long. Therefore, it is reasonable to think that a considerable number of occur-
rences of the frequent patterns are captured by the short strings. This observation
motivates us to propose a two-phase approach [10]. In the first phase, a Markov
Model is employed to privately learn the structure of the patterns with the goal
of reducing the impact of the privacy on the final result. In this way, the algo-
rithm obtains an approximate set of candidate frequent patterns which are used in
the second phase to construct a sketch of the original data. In this new compact
representation, the privacy impact on the utility is considerably reduced providing
accurate results for the mined patterns. In the experiments, the proposed solution
improves the state-of-the-art privacy preserving mining technique by enabling an
accurate computation of both substring and prefix patterns.

1.2.2 Record Linkage (Chapter 4)

Record linkage is the process of identifying records that refer to the same real
world entity across different sources. It is extensively used in many applica-
tions, for example, in linking medical data of the same patient across different
hospitals in the country or in collecting the credit history of users from several
sources. However, many of these data may contain sensitive personal information
that could disclose individual privacy. In this chapter, we propose a novel secure
data transformation method for linking string records in a three-parties setting.

For secure transformation techniques, the embedding of the original data into a
new space usually requires the definition of common transformation criteria be-
tween the parties involved in the linkage process. The current state-of-the-art [64]
uses a random base of strings to perform the embedding. This set is generated
from a pool of random strings, one of the party applies some heuristic techniques
to refine the strings in the base such that the error in representing the records is
minimized. Therefore, in a presence of an adversary this set may leak sensitive
information about the individual records when shared among the parties. In our

8

approach [14, 13], we employ an embedding function that is defined over a set of
substrings called base to transform the original string records of the data holders
into vectors that are matched by a third party (not necessary trusted). This set is
data dependent and it preserves the privacy of the individual records in the origi-
nal data. In this way, the data holders employ a map that captures the structure of
their data without incurring the risk of disclosing sensitive information. We show
that this transformation in a new space has several beneficial properties. First, the
map preserves the structure of the original data leading to high utility results in
the matching phase. Second, it does leak only a limited amount of information
according to our adversary model. Finally, it allows to efficiently match records
using the Euclidean distance in the embedding space which is considerably less
computationally intense than the Edit distance in the original space.

We study the security and geometrical properties of our proposed technique and
we demonstrate that our strategy produces optimal matching results without re-
quiring any a priori knowledge in the embedded space. Furthermore, we present
an extensive set of experiments showing that our approach obtains comparable
utility results with the state of the art secure transformation for record linkage
proposed in [64], while providing rigorous privacy guarantees and better scalabil-
ity. Finally, we implement our technique and propose a LinkIT framework [15]
for privacy preserving record linkage.

1.2.3 Data anlytics over streams (Chapter 5)

In this chapter, we address the problem of privately computing statistics over data
streams. As opposed to offline methods, our techniques enable a continues and
private release of the required data statistics in an online fashion.

The task that we consider consists in designing solutions for efficiently com-
puting of the length of the longest increasing subsequence (LIS) over individual
user stream data. The computation of the LIS provides useful information about

9

the sortedness of the data stream and it can be used to detect trends in time-series
data. Furthermore, this problem rises new challenges compared to the traditional
privacy setting. First of all, privacy requirements in protecting sensitive informa-
tion for this ordered statistic have a greater impact on the final utility. Count based
statistic over a stream are typically computed by decomposition which leads to a
considerable reduction of perturbation noise required by the privacy mechanism.
However, ordered statistics are generally not easy to approximate via decompo-
sition since they require a global view of the entire stream. Second, the LIS has
higher memory requirements compared to standard counting based statistics (e.g.
counts, heavy hitters). In fact, it has been shown in [38] that there exists a space
lower bound of ⌦(T) for any randomized algorithm that computes the LIS exactly
over a stream of length T . This strong separation between count based functions
and LIS impacts both efficiency and utility of the solutions for this problem.

To address these challenges, we propose a series of solutions for privately com-
puting the LIS while minimizing the error introduced by the perturbation and ap-
proximation [12]. We propose a decomposition framework for approximating the
length of the LIS using local information in the stream. First, we formally analyze
the performance of this solution and we demonstrate how this technique allows us
to reduce the error due to perturbation noise from the privacy mechanism. Second,
we propose a new streaming approach which computes the LIS using a hierarchy
structure of the stream. Our algorithm achieves a (1� T�b

T+b
)-approximation to the

length of the LIS in the worst case, where the parameter b controls both the pertur-
bation noise to achieve the desired level of privacy and the accuracy. Finally, we
discussion about possible extensions of our solutions to address time-series stream
monitoring and string matching problems. To the best of our knowledge, we are
the first to investigate the problem of privately computing the longest increasing
subsequence.

10

1.2.4 Group Route Query (Chapter 6)

In this chapter, we propose a novel query, named Optimal Group Route (OGR) [11],
which enables users to jointly plan an itinerary (i.e. a route) within their mobility
constraints such that the overall preference on the locations visited by the group
is maximized. The need for this type of queries naturally arise when a group of
users wish to plan a group trip or a group outing together, each with certain mo-
bility constraints and preferences on places to visit. Consider a group of users
who would like to visit some categories of locations (POIs) together. The exam-
ple categories are museums, coffee shops, libraries, etc. We assume that each user
can specify his/her starting and ending points and a maximum distance he/she is
willing to travel. Each user specifies a preference for each category of POI that
she/he wishes to visit. Furthermore, a weight is assigned to each user to represent
her/his influence in deciding the itinerary. Consider a representation of the spatial
database as a location graph, where each node represents a location and an edge
determines the connection between two locations. The goal of our optimal group
route query is to find a route for each user such that: 1) the length of each route
is under the individual distance threshold (mobility constraint), and 2) the overall
weighted preference on the POIs visited together by the users is maximized. We
first assume a scenario where users are interested only on the set of the specified
categories regardless the order in which they are visited. Then, we extend our
solutions to take into account user’s specified order constraints on the categories
(e.g. dinner followed by movie for a group outing).

We believe that this work advances research in traditional location-based ser-
vices by introducing the social component in route recommendations and provid-
ing a balance between the users’ social needs as well as their individual prefer-
ences. The ability of solving such group route query can greatly benefit many
existing and emerging tools that allow users to share route information (e.g. Uber,
Waze) and plan group outings or trips (e.g. QuickCliqs). For example, our ap-
proach enables users to construct a group itinerary which can be in turn used to

11

obtain driving directions. In this way, friends by sharing their preference and mo-
bility constraints can easily obtain the directions to a place to meet. In a ride
sharing setting, our solution not only enables users to find a common route but
also could be used to match users in sharing the ride by considering user’s prefer-
ences. Furthermore, by enabling users to share their routes, our group query could
beneficially affect the traffic condition and environment by reducing the traffic and
pollution in major cities.

In this chapter, we formally define the Optimal Group Route problem (OGR)
and show the hardness of OGR by exploiting the connection with the Hamiltonian
path problem. To solve this problem, we propose an exact dynamic programming
algorithm which carefully constructs the itinerary by exploring a limited number
of paths in the graph. Our algorithm runs exponentially with k, where k denotes
the number of categories specified by the users. We observe that in practice k

assumes small values with respect to the size of the graph, which allows our algo-
rithm to compute the optimal solution efficiently. Furthermore, we propose two
approximation algorithms with bounded approximation ratio. The first approach
uses a scaled dynamic programming technique and achieves a (1� ✏) approxima-
tion for the optimal itinerary. The second solution greedily constructs the itinerary
achieving a 1/k approximation. We also show how to extend our solutions to
consider POIs with different quality/popularity, order constraints on the required
categories, and different problem relaxations (e.g. multi-objective utility).

1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we report the
most related works to the problem discussed in this dissertation. In Chapter 3,
we illustrate our contributions in privacy preserving pattern mining and in Chap-
ter 4 we provide a concrete application setting where our solutions are applied
for solving the problem of privacy preserving record linkage. We conclude our

12

contribution on the privacy aspects in Chapter 5 where we present our privacy
preserving solution for statistics over data streams. In Chapter 6, we present the
social component of our research by illustrating our work on group routing query.
In Chapter 7, we finally summarize the contributions of this dissertation and state
future research directions.

13

14

Chapter 2

Related Works

In this chapter, we summarize the related works most relevant to the contributions
presented in this thesis.

2.1 Differential Privacy

Differential privacy [29] is a recent notion of privacy that aims to protect the dis-
closure of information when statistical data are released. The differential privacy
mechanism guarantees that the computation returned by a randomized algorithm
is insensitive to the change in any particular individual record in the input data.

Definition 2.1 (Differential Privacy [29]). A privacy mechanism M satisfies ✏-

differential privacy if for any two input sets (databases) DA and DB with sym-

metric difference of one (neighboring databases), and for any set of outcomes

S ✓ Range(M), the following inequality holds:

Pr[M(DA) 2 S] e✏ ⇥ Pr[M(DB) 2 S] (2.1)

The parameter ✏ is the privacy parameter (also known as privacy budget) which
defines the privacy level of the mechanism. Higher values of ✏ lead to lower

15

level of privacy, while smaller values pose a stronger privacy guarantee. From
Definition 2.1, a mechanism M that satisfies differential privacy addresses the
concerns that any user may have when the output of the mechanism is revealed.
In fact, the output distribution of M would not significantly change even if the
participant removes her/his data from the dataset in input. Definition 2.1 refers
also to user-level differential privacy, since typically a user contribute to only one
record in the database.

Such privacy notion is very strong, since it is a statistical property about the
behavior of the mechanism M and therefore is independent of the computational
power and auxiliary information available to the adversary/user. This is a crucial
turning point with respect to previous privacy model (e.g. k-anonymity), where
the adversary background knowledge may preclude the user’s privacy.

2.1.1 Achieving Differential Privacy

To achieve differential privacy one well established technique is the Laplace Mech-

anism [32]. This strategy is based on the concept of global sensitivity [32] of the
function to compute.

Definition 2.2 (Global Sensitivity [32]). For any two neighboring databases DA

and DB, the global sensitivity for any function F : D ! Rn is defined as:

GS(F) := max

D
A

,D
B

kF (DA)� F (DB)k1 (2.2)

For example, consider a function F that asks the following query: “How many

rows have property P? ”. For this function we have that GS(F) = 1, in fact by
adding or removing one record, F can change at most by 1.

The Laplace mechanism is used in our work to construct differentially private
algorithms, so we briefly discuss it below. Let F be a function, and ✏ be the privacy
parameter, then by adding noise to the result F (D) we obtain a differential privacy
mechanism. The noise is generated from a Laplace distribution with probability

16

density function pdf(x|�) = 1

2�
e�|x|/�, where the parameter � is determined by ✏

and GS(F).

Theorem 2.3 (Laplace Mechanism [32]). For any function F : D ! Rn, the

mechanism M(D) that returns:

M(D) = F (D) + Lap(GS(F)/✏) (2.3)

achieves ✏-differential privacy.

Two composition properties are extensively used when multiple differential pri-
vacy computations are combined. These two properties are known as sequential

and parallel compositions [57].

Theorem 2.4 (Sequential Composition [57]). Let Mi be a non-interactive privacy

mechanism which provides ✏i-differential privacy. Then, a sequence of Mi(D)

over the database D provides (
P

i ✏i)-differential privacy.

Theorem 2.5 (Parallel Composition [57]). Let Mi be a non-interactive privacy

mechanism which provides ✏i-differential privacy. Then, a sequence of Mi(D)

over disjoint subsets of database D provides (maxi ✏i)-differential privacy.

Additional statistical properties that we use in this dissertation are reported in
Appendix 8.1

2.1.2 Event-level privacy

In the streaming setting, due to the dynamics of the data, the classical differential
privacy notion has been redefined such that the privacy is guaranteed at event-

level [31, 34, 33, 19]. In other words, the privacy goal is to protect the presence or
absence of any single event in the stream. The formal definition of the differential
privacy notion adopted in our streaming work is reported below.

17

Definition 2.6 (Differential Privacy [19, 33]). Two streams � and �0 of the same

length are neighboring streams if they differ exactly in one element at time t. A pri-

vacy mechanism M gives ✏-differential privacy if for any two neighboring streams

�, �0, and for any set of outcomes S ✓ Range(M), the following inequality holds:

Pr[M(�) 2 S] e✏ ⇥ Pr[M(�0
) 2 S] (2.4)

Compared to Definition 2.1, the only differences here is the fact that the indis-
tinguishability is guaranteed for any element in the stream in input. In fact, in this
case the output distribution should be roughly the same whenever or not a single
event is present in the input stream. In this way the adversary cannot distinguish
if any single event is in the user’s stream. Hence, the privacy is provided at event
level.

2.2 Privacy Preserving Frequent Pattern Mining

In the data mining community, the pattern mining problem is often associated with
patterns in the form of itemsets. Despite the wide range of algorithmic solutions
to this problem, only a few approaches [6, 54, 79] study the mining of frequent
patterns with differential privacy. However, due to the nature of the patterns, these
approaches are not suitable for mining sequential patterns.

For sequential data, the problem of mining frequent patterns is commonly asso-
ciated with mining trajectory data. Recently a variety of solutions [1, 5, 8, 68, 77]
have been proposed for publishing privacy preserving trajectory data. Abul et al.
[1] proposed the notion of (k, �)-anonymity, which is based on the idea that given
a location imprecision �, the moving objects are indistinguishable if at least k of
them are coexisting in the same cylinder of radius �. In the work in [5], the au-
thors proposed a technique to achieve anonymity in spatiotemporal datasets using
spatial generalization and k-anonymity. Another extension of the k-anonymity
for moving objects have been proposed by Yarovoy et al. [77]. Terrovitis and

18

Mamoulis [68] proposed a suppression technique whenever a privacy leak occurs,
where the leakage is defined as the ability of an adversary of inferring the pres-
ence of a location using a set of spatial projections. Although all these techniques
have been shown to be effective in several scenarios, their privacy models are not
able to provide formal guarantees of privacy.

Under differential privacy, only two techniques have been proposed [22, 23] to
tackle the problem of sequential pattern mining. The first approach proposed in
[23] uses a differentially private prefix tree to partition the string data and to re-
lease a sanitized dataset from which frequent sequential patterns can be mined.
Recently Chen et al. [22] proposed a technique based on variable length n-grams
and a Markov model to publish a sanitized dataset. This method initially truncates
the dataset by keeping only the first lmax symbols of the strings in input. Suc-
cessively this truncated dataset is used to compute the frequency of the variable
length patterns (n-grams) up to a fixed length n. Then the information about these
patterns is used in a Markov model to release a sanitized dataset.

2.3 Privacy Preserving Record Linkage

There is a broad variety of strategies proposed by the scientific community to
tackle the privacy preserving record linkage problem, which differ in privacy no-
tions, protocol models, and the type of objects to be matched. In the following,
we distinguish these techniques in three major categories: secure transformations,
Secure Multiparty Computation, and hybrid methods.

Secure transformation techniques aim to perform the linkage after some trans-
formations have been applied to the original data. The typical scenario involves
three parties, where two parties have the data, and using secure transformation
techniques they first transform the original data and the sent the transformed
records to a third party whose task is to perform the matching. In this frame-
work, to achieve privacy and security two major strategies have been proposed:

19

hashing and embedding. Approaches based on hashing functions try to match
strings by hashing the original data and computing similarity measures after the
hash functions are applied. Although these techniques are quite popular, they do
not provide a formal bound on the distance in the hashed space so their usability
is mostly restricted to exact matching. These techniques are characterized by the
collision rate which defines the number of elements that will be map in the same
value and poses a trade-off between utility and security. Furthermore, hash func-
tions are deterministic which makes these techniques subject to dictionary attacks.
In fact an adversary could mount a dictionary attack and by looking to the record
that match up with the one hashed it could infer the original records. Examples
of hashing techniques are Bloom filter [65], q-grams hashing [24], and TFIDF
Hashing [3].

Embedding techniques instead map the original record in a vector space where
the distance is generally preserved up to a distortion factor. A recent example
of the embedding strategy for record linkage is the approach proposed by Scan-
nepieco et. al. [64] that uses SparseMap [43] to embed strings into a vector space
and perform matching in this new space. The core of this approach relies on
the Lipschitz embedding [16, 46]. The mapping procedure projects each origi-
nal data point s into a new space using a base B = {A

1

, A
2

, . . . , Ak} which is
a set of subsets Ai of the universe of elements. Each point s is mapped via the
embedding function ⇢ into a vector s̄ 2 Rk, where each coordinate is computed
as s̄i = minx2A

i

{dEdit(x, s)}, for i = 1, 2, . . . , k. The distance between vectors
in the embedded space is measured by the Euclidean distance d0, while the dis-
tance metric in the original space is the Edit distance dEdit. The basic approach
guarantees privacy since only a base of random strings is shared between the par-
ties. However, to improve the performance of this approach, the authors in [64]
proposed several heuristics that aim to carefully select the strings in the base to
preserve the distance. Although these techniques improve the performance, they
may disclose sensitive information about the single records. Indeed, as the proto-

20

col is designed, the shared base is optimized according to the data of one party.
Therefore if the other party is malicious, it may break the privacy by inferring the
original data from the structure of the base.

A key feature of embedding approaches is that the distance in the original space
can be placed in relationship with the distance in the new space depending on the
distortion induced by the embedding map. Unfortunately, bounding the distortion
induced by some embedding may be technically challenging. Moreover, general
embedding functions are computationally expensive to apply and some heuristic
are needed. For these reasons, in this paper we present a complete study of the
distance distortion both analytically and experimentally.

Secure Multiparty Computation (SMC) techniques cast the record linkage
problem into a secure communication framework. In this setting, several parties
are involved in the protocol where the communication is done using cryptogra-
phy techniques. The key idea is that the computation itself should reveal no more
than whatever may be revealed by examining the input and output of each party.
An important theoretical result in the cryptographic area shows that any compu-
tational functions can be computed in this setting [76]. Motivate by this, several
works have been proposed in the literature. For example, when the exact match
is considered, the record linkage problem can be interpreted as a set intersection
problem [?]. [?] gives a review of SMC approaches for privacy preserving data
mining. While in principle the private record linkage problem can be solved using
SMC and cryptography, the computational and communication cost is not practi-
cal in real applications.

Hybrid methods combine anonymization or secure transformation techniques
with SMC techniques with the aim of reducing SMC cost. Inan et al. [44] pro-
posed a strategy based on SMC and sanitization to achieve a trade-off between
privacy and utility. This work has been further extended in [45, ?] by differen-
tially private blocking followed by SMC techniques for matching record pairs in
corresponding blocks avoiding the comparison among all the record pairs. An-

21

Figure 2.1: Running example of the Patience Sorting algorithm over the stream � =

3, 4, 1, 2, 5, 7, 6.

other work which employs a blocking approach is [74]. The solution consists in
two steps, first the records are transformed into real vectors and second the trans-
formed records are matched using a secure record linkage technique. While hy-
brid techniques provide a good trade-off between privacy and accuracy, the SMC
step still involves high computational cost and the impact of the blocking on the
linkage accuracy is not clearly understood.

2.4 Stream

2.4.1 Longest Increasing Subsequence

The problem of computing the LIS has received much attention in the streaming
setting (see [4] for a survey of results), where the sequence � is given an element
at a time. In such model, data arrive continuously and at every time i algorithmic
solutions are required to report LIS(�[0, i]) by using a small amount of memory
and performing only few passes over the stream. In the rest of the section, we
briefly summarize the non-private techniques present in literature by categorizing
them as exact and approximate solutions.

Exact Solution. The study of the longest increasing subsequence (LIS) in the
streaming setting was initiated by Liben-Nowell et al. in [55], where the authors
developed an exact one pass algorithm that requires O(k) space for deciding if the
length of longest increasing subsequence is at least k. In addition to this technique,
the classical algorithm for computing the LIS is based on the Patience Sorting pro-

22

Algorithm 1 Patience Sorting
1: procedure PATIENCE SORTING(�)

Input: event stream �

Output: LIS(�) length of the longest increasing subsequence

2: P (j) ; for j = 0, 1, . . . ,m� 1

3: for (any new element �(i)) do
4: Find the largest P (j) such that P (j) �(i)

5: P (j + 1) = �(i)

6: Output the largest j such that P (j) 6= ;
7: end for
8: end procedure

cedure [41]. This approach can be interpreted as a one pass streaming algorithm
for computing the exact LIS in O(T) space and it requires O(logLIS(�)) update
time. Since we use this approach to build our solutions, we briefly describe this
algorithm here.

In the Patience Sorting procedure, the length of the longest increasing subse-
quence is computed using a set of sorted piles P (0) < P (1) < · · · < P (m) each
storing an element of the stream �. For any new element �(i) that appears in the
stream, the algorithm places �(i) in the leftmost pile P (j) such that P (j) > �(i).
The number of non empty piles represents the length of the LIS at any time point.
An overview of the Patience Sorting algorithm is illustrated in Algorithm 1. Be-
low, we describe a running example of this algorithm.

Example 2.7. Let � = 3, 4, 1, 2, 5, 7, 6 be a stream in input. The algorithm starts

with a set of empty piles P (j) for j = 0, . . . ,m � 1. When the first element

arrives in the stream it is placed in the first pile P (0). After the arrival of the

second element, the situation in the piles is illustrated in Figure 2.1 (a). The

number of piles denotes the length of the longest increasing subsequence at each

time. Therefore, in this case the length of the LIS is two. When the third element

23

�(2) = 1 arrives in the stream, the algorithm places this element in P (0), as

shown in Figure 2.1 (b). Following the steps of the algorithm, the final set of piles

is reported in Figure 2.1 (c). At the end of the stream the length of the longest

increasing subsequence is four.

Despite the simplicity of this procedure, the Patience Sorting algorithm is opti-
mal from the space complexity perspective. In fact, Gopalan et al. [38] showed a
space lower bound of ⌦(n) for any randomized algorithm that computes the LIS
exactly.

Approximate Solution. In [38] the authors proposed a (1+ ✏)-approximation for
the LIS computation using O(

p
T/✏) space. A series of works have been devel-

oped to estimate the length of the LIS using the number of inverted elements in the
stream. In this direction, Ajtai et al. [2] proposed a (1 + ✏)-approximation which
requires O(

1

✏
log log T) space to estimate the number of inverted pairs. Later this

result has been improved by Gupta and Zane [39]. Cormode et al. [26] proposed a
series of algorithmic solutions based on distance preserving embedding. Recently
in [63], the authors investigated the problem of computing the LIS in asymmetric
edit distance setting.

2.5 Spatial Queries in Location-based Services

The search of optimal routes on graphs has its roots in the “Orienteering Problem”
(OP). As in the sport game, a user starting from a point tries to visit as many nodes
as possible within a given time constraint. Our proposed problem differs from the
OP in many aspects. While OP is limited to a single user, in our formulation we
are interested in computing a shared route for multiple users. Furthermore, in OP
the profit in visiting a node is fixed, while in our problem such value depends on
the users’ preferences and on the sequence of nodes already covered, since the
overall score of the route is computed on a set of unique categories. We refer the

24

interested readers to [71] for a survey on the OP problem.
Li et al. [52] are the first to introduce the problem of finding route on spatial

databases. In that work, the authors proposed a new problem called Trip Planning
Query (TPQ), where each object in the database is associated with a location and
a category label. Given a set of categories in input, a starting node and an ending
node, the TPQ problem aims to find the shortest route from the starting to the
ending node that passes through at least one point for each category. The authors
in [52] showed that the TPQ problem is NP -hard, and they proposed a series of
approximation solutions to tackle the problem. Compared to TPQ, our problem
considers distance constraints and our goal is to maximize the profit for a group
of users on the locations that are jointly visited.

Kanza et al. [49] proposed a new query problem, where the length of the route
is bounded by a constraint and the goal is to maximize the profit in covering the
categories of the nodes in the route between a given start and end point. The
major differences between this approach and our work can be outlined as follows.
First, in [49] an exact number of categories must be visited while in our case
any subsets could represent a possible candidate. Second, in our case the score
associated to each category depends on the user preferences while in Kanza’s work
the categories have the same score. Furthermore, we consider multiple users and
therefore the starting and ending points of the optimal shared route are not fixed
as in [49] but depend on the locations where the users could meet. In successive
works, Kanza et al. [47, 48] extended their approach by considering an interactive
setting and introducing order constraints.

Sharifzadeh et al. [66] introduced a new extension of the TPQ problem, named
Optimal Sequenced Route (OSR), where the goal is to find the shortest route from
a given node that passes through an ordered sequence of locations. The authors
proposed a series of pruning techniques to discard those locations that cannot be
part of the optimal route. Chen et al. [20] proposed an extension of TPQ and
OSR which considers the search of multi-rule partial sequenced routes (MRPSR).

25

The authors showed that the MRPSR provides a unified framework that subsumes
TPQ and OSR. In the original paper a series of heuristic algorithms have been
developed to solve MRPSR queries. Recently, another extension of TPQ has been
proposed by Li et al. [53]. In this formulation, the goal consists in computing
the shortest route that covers a user defined set of categories with partial order
constraints. The authors proposed two approaches namely backward and forward
search to efficiently compute the optimal route.

Recently, Cao et al. [18] proposed a new route problem called Keyword-aware
Optimal Route Search (KOR), which given a pair of nodes representing a start and
end location in a graph, consists in finding the route that connects those two points
such that a set of user-specified keywords is covered, a specified budget constraint
is satisfied, and an objective score of the route is optimized. The authors in [18]
proved the hardness of such formulation, and developed a series of approximation
algorithms to solve the KOR problem. Our group trip query differs from both
OSR and KOR in several aspects. We consider multiple users in the query, and
we find the route of bounded length that maximizes the profit for the categories
covered. Therefore, the solutions for OSR and KOR are not suitable in our setting.

B. Roy et al. [62] investigated the problem of computing an itinerary in an inter-
active way, where the user can provide feedback on the selected POIs to improve
the recommended itinerary.

When multiple users are involved in the route query, Hashem et al. [42] proposed
a new problem called Group Trip Planning Query (GTP). Given a set of users
with their start and end point in input, and a set of location categories, the GTP
problem consists in finding a set of nodes belonging to the specified categories
that minimizes the total traveled distance by the group. It has been shown by the
authors in [42] that the GTP problem is related to the Group Nearest Neighbor
query (GNN). Based on this observation, the authors proposed a series of heuristic
approach to solve the GTP problem. Our approach is different from GTP since we
consider a preference score associated to the categories rather than considering all

26

the categories in the same way. Furthermore, we are interested in finding the best
route in terms of preference score rather than distance.

27

28

Chapter 3

Frequent Pattern Mining of
Sequential Data

3.1 Problem Definition

In this work, we are interested in mining sequential patterns that are in the form
of a sequence. A pattern p of length n is represented as a sequence of symbols
p = a

0

a
1

· · · an�1

where each symbol ai belongs to a finite alphabet ⌃. We denote
the length of p with |p|. In the sequel, we also refer to these sequential patterns
as strings. Furthermore, we say that a pattern p occurs at position i in a string
x if there exists j 2 [0, |x| � |p|] such that xj+i = ai for i = 0, . . . , |p| � 1. In
other words, the substring x[j, j + |p| � 1] matches the pattern p. We introduce
the concept of frequency of a pattern as follows.

Definition 3.1 (Frequency). For any pattern p we denote by fx(p) the number of

occurrences of p in x. When a set of N strings D = {x0, x1, . . . , xN�1} is given

as input, we define by fp :=
PN�1

i=0

fxi

(p) the frequency of the pattern p in D.

The definition of frequency based on the number of occurrences of a pattern
allows us to capture those repetitive patterns that appear multiple times within

29

the same string. This is crucial for a variety of domains such as time-series data,
where the use of the frequency of the patterns within the same series is used to
predict the near future values. Our mining problem is formalized below.

Problem 3.2 (Top-k mining problem). Given a positive integer k, and a range of

pattern lengths I , report the list FI of the top-k most frequent patterns of variable

length on the input set D.

In this paper, we consider both substring and prefix patterns. A substring pattern
for a dataset D is represented as any sequence of symbols that are occurring in
D. On the other hand, a prefix pattern p is a substring pattern such that there
exist some strings in D starting with p. Furthermore, the cardinality of this set
represents the occurrence of p in D.

Example 3.3. Let D = {ababbaa, abab, babba} be an input datset. The pattern

p
1

= aba is a prefix pattern for D since both the first and the second string start

with p
1

. The pattern p
2

= bba is only a substring pattern for D, since no input

records start with it. Both these patterns occur twice in D.

In the rest of the paper, the term pattern will refer to substring pattern if not
specified otherwise.

3.1.1 Problem Challenges

In the differentially private mining of frequent sequential patterns there are two
major challenges. First, the mining of these patterns is computationally intense.
Indeed, the possible number of patterns grows exponentially with the length of
the patterns, which makes the mining process inefficient if done naively. Second,
the count of occurrences of patterns has high sensitivity, which means that a large
amount of perturbation noise is needed to guarantee differential privacy. A formal
analysis for the sensitivity of counting occurrences is reported below.

30

Lemma 3.4 (Sensitivity for Counting Occurrences). Let D be an input dataset

with maximum string length lmax, then for a query q = [p
1

, p
2

, . . . , pn] which for

each pattern pi computes the number of occurrences in D, the sensitivity GS(q)

of q is at most lmax.

Proof. For any string x, the maximum number of occurrences that it can con-
tribute in the query q is |x|. In fact, there are at most |x| patterns (either the same
repeated or different patterns) that can occur in x. Therefore, it follows that for
any neighbour dataset D0 obtained by removing or adding a single string from D

the answer for q can change at most by lmax.

Lemma 3.4 states that the sensitivity of counting occurrences is as high as the
length of the longest string in the dataset. Therefore, even if only one very long
string is present in the input dataset, all the frequency of the patterns have to be
perturbed by a large amount of noise which can drastically reduce the utility.

3.2 A Baseline Solution

Lemma 3.4 points out that the sensitivity for counting the occurrences of patterns
is bounded by the maximum length of the strings in the input dataset. This fact
can result in loss of accuracy for the mined patterns since even the presence of
one very long string in the input forces a large amount of noise. However, in real
world applications we can observe that the majority of the strings in the data are
short and only few of them are very long. Consider for example the Anonymous
Web Data MSNBC, where each sequence in the dataset corresponds to page views
of a user during that twenty-four hour period, the average length for the strings
is only 4.7 symbols while the maximum length is 14975. Intuitively, since most
of the strings are short it is reasonable to assume that the occurrences for the
frequent patterns are probably mostly captured by the short strings rather than
the long ones. This observation motivates us to consider an alternative way to

31

mine the patterns. In particular, we want to privilege the short strings over the
long ones by processing the strings in the datasets starting from their prefix. A
baseline approach has been firstly proposed for mining trajectory data based on
prefix tree is reported in [21, 23]. We further extended such approach and applied
in a different setting in [14]. We briefly describe this solution in the section below.

3.2.1 Prefix Tree Algorithm

Algorithm Description. The construction of the prefix tree can be summarized
as follows. Starting from the root node, the database is partitioned by extending
the prefix of the current node using the procedure in Algorithm 2. Given a cur-
rent node representing the prefix !, for every symbol a in the alphabet ⌃, a new
node associated with the prefix !a is attached to the tree only if the string !a is a
frequent prefix. To determine if a prefix is frequent, a counting query is issued on
the partition of the dataset represented by the current node and the real count is
perturbed by Laplace noise to guarantee differential privacy. In this process, only
partitions with frequent prefixes (count > ✓) are further refined. The allocation
of the budget at each level in the tree is performed at line 11 in Algorithm 2. In
our approach, we propose several strategies to allocate the privacy budget: lin-

ear allocation, exponential allocation, adaptive, and hybrid. Details about these
strategies are presented later in this section. After we partition the data, we tra-
verse the prefix tree and apply the consistency constraints for each root-to-leaf
path as in [21]. Once the consistency constraints are enforced, we identify a list
of frequent patterns by traversing the tree. As a final result, we return the top-k
patterns sorted by their noisy frequencies.

Example 3.5. Consider the prefix tree illustrated in Figure 5.2. Each node in T
identifies a partition. For example, the first internal node labeled with “a” is as-

sociated with a partition in dataset containing the records “aaba” and “abca”

of index 1 and 5 respectively. Furthermore, the frequency for the pattern aa is

32

Figure 3.1: Example of prefix tree. Each node has a noisy count, a partition of strings

sharing the same prefix, and a privacy budget.

computed by summing the counts of the two prefixes aa and caa associated to the

partitions {5} and {2, 4} respectively.. Therefore, the final noisy count for aa is

2 = 1 + 1.

Budget Allocation Strategies.. To allocate the privacy budget during the parti-
tioning process, we propose several allocation strategies.

1. Linear: Each node in the tree is assigned with the same amount of budget.
This strategy treats all the nodes in the same way which could result to be
ineffective for capturing long prefixes.

2. Exponential: At level i in the tree, each node is assigned with a privacy
budget which is double the amount of its parent. This strategy is motivated
by the fact that prefixes in the top levels of the tree have a considerable
higher counts of those down in the tree. Hence, we can afford to spend less
privacy budget in the first part of the root-to-leaf path and use more budget
later in the exploration.

3. Adaptive: This strategy is an adaptation of the exponential strategy, where
the entire remaining budget on the path is spent on the next counting query if
the current node represents a non frequent prefix. In this way, we minimize
the amount of privacy budget that is not used in the construction process.

33

Algorithm 2 Private Prefix-Tree Partitioner
1: procedure PPT PART(D, ✏)

Input: dataset D; privacy parameter ✏
Output: T private Prefix-Tree

2: T formed by the root

3: Use a queue Q

4: Q root

5: while (Q is not empty) do
6: node Q.remove

7: if (node.h < h

MAX

) then
8: for (every symbol a in the alphabet ⌃) do
9: ! (path from r to node) + a

10: P {x 2 node.set s. t. ! is a prefix of x}
11: ✏̃ ALLOCATE BUDGET(node)

12: c̃(!a) |P |+ Lap(1/✏̃)

13: if (c̃(!a) > ✓) then . Non empty node
14: cur.set P , cur.epsilon ✏̃

15: cur.label !, cur.h node.h+ 1

16: cur.budget cur.budget+ cur.epsilon

17: Attach cur as a child of node in T
18: Q cur

19: end if
20: end for
21: end if
22: end while
23: return T
24: end procedure

4. Hybrid: This strategy is a combination of the previous strategies, where
the total budget is distributed in the tree according to qmax. In order to
increases the chances of extending the tree and capture longer prefixes, we
split the total privacy budget in two parts among the levels in the tree. The
first half is reserved for the nodes on the first qmax levels of the tree, where

34

for each node the budget is allocated a linear fashion. The remaining part
of the budget is allocated for the lower levels of the tree using the adaptive
strategy.

Privacy Analysis.. In the following, we show that our prefix-tree based approach
achieves ✏-differential privacy, where ✏ denotes the level of privacy required by
the users.

Lemma 3.6. For every root-to-leaf path in the prefix tree, the total privacy budget

used is at most ✏.

Proof. Let ⇡ = ⌫
0

⌫
1

. . . ⌫h be a root-to-leaf path in the prefix tree where h
hMAX . We want to show that for every allocation strategy proposed, the total
privacy budget does not exceed ✏. Therefore, denoting ✏i the budget used for node
⌫i, we want to prove that

Ph
i=0

✏i ✏ for every budget allocation strategy.

1. Linear: for a node ⌫i in the path we have ✏i = ✏/hMAX . Since h hMAX

it follows that
Ph

i=0

✏i ✏.

2. Exponential: for a node ⌫i in the path we have ✏i = 2✏i�1

, i = 1, . . . , h

where ✏
0

=

✏
2

h

MAX

+1�1

. Therefore,

hX

i=0

✏i =
✏
Ph

i=0

2

i

2

h
MAX

+1 � 1

=

(2

h+1 � 1)✏

2

h
MAX

+1 � 1

 ✏ (3.1)

3. Adaptive: this strategy is similar to the previous one. The only difference is
that in this case we spend the remaining privacy budget on the next counting
query if the current node is not frequent. This test preserves the privacy
since it is done on noisy counts.

4. Hybrid: for a node ⌫i in the path, we have ✏i as follows:

✏i :=

(
✏(i+1)

q
max

(q
max

+1)

if 0 < i < qmax

✏2i�q

max

�1

2(2

h

MAX

�q

max�1)

otherwise

35

For the first qmax levels only half of the total privacy budget is used:
q
max

�1X

i=0

✏i =
✏
Pq

max

�1

i=0

(i+ 1)

qmax(qmax + 1)

= ✏/2 (3.2)

For the remaining nodes in the path, the allocation of the budget follows the
exponential strategy, therefore:

hX

i=q
max

✏i =
✏
Ph

i=q
max

2

i�q
max

�1

2(2

h
MAX

�q
max � 1)

=

=

✏

2

· 2

h�q
max � 1

2

h
MAX

�q
max � 1

 ✏/2 (3.3)

Summing up the results from Equation (3.2) and Equation (3.3), the hybrid
strategy on any root-to-leaf path uses at most ✏ privacy budget.

This concludes the proof of the Lemma.

Using the parallel composition property in [57] we have the following result.

Theorem 3.7 (Prefix-Tree ✏-privacy). The Prefix-Tree Miner guarantees ✏-differential

privacy.

Proof. All the partitions produced by Algorithm 2 on the same level of the tree
are disjoint since they correspond to strings with different prefixes. Therefore by
the parallel composition property in Theorem 2.5, the overall privacy is bounded
by the max of the total privacy budget used on any root-to-leaf path in the Prefix
Tree. Lemma 3.6 shows that all the allocation strategies use at most ✏ privacy
budget on any root-to-leaf path in the tree. Thus the Prefix Tree approach satisfies
✏-differential privacy.

Complexity Analysis.. Algorithm 2 has running time proportional to the number
of nodes in the prefix tree T . By using a similar analysis as in [21], it can be
shown that our mining approach requires O(N |⌃|hMAX

+1

) operations, where N is
the size of the dataset, ⌃ is the alphabet, and hMAX is the maximum depth in the
tree.

36

Figure 3.2: Overview of two-phase algorithm.

3.3 Two-Phase Algorithm

In this section, we present our two-phase algorithm to address the afore-mentioned
challenges. An overview of our approach is illustrated in Figure 3.2. In the first
phase, we use an enhanced prefix tree miner to release an ✏

1

-differentially private
prefix tree. We will use this tree to first directly mine prefix patterns, and to second
retrieve a set of top-k0 patterns to use in the second phase. In the second phase, we
use a transformation and refinement step to first construct a sketch of the dataset
and second refine the count of the candidate patterns. We use the remaining ✏

2

privacy budget to query the transformed dataset and retrieve the final counts.
Our strategy presents several advantages. First, the use of a prefix tree allows us

to achieve high utility for mining frequent prefixes. Second, the use of a candidate
set of patterns help us to limit the number of possible candidate frequent patterns
to mine in the second phase. In fact, rather than considering the entire universe of
patterns, we focus only on k0 candidates. Third, we refine the count of the mined
patterns in the top-k0 by issuing counting queries on a transformed version of the
dataset. In this way, we show that we can control the sensitivity of the counting
query leading to a smaller amount of perturbation noise in reporting the final top-k
patterns. In the rest of the section, we describe these two phases in details.

37

3.3.1 Model-based Prefix Tree Miner

Inspired by this technique, we introduce an enhanced prefix tree mining algo-
rithm which uses statistical properties of the data to maximize the quality of the
counts in the nodes of the tree. Our goal consists in using the information from
a statistical model to calibrate the noise injected with the Laplace Mechanism so
that we minimize the effect of the perturbation noise on the overall utility. First
we develop a solution based on a sample of the real data, denoted as PT-Sample.
Second, we propose an alternative solution to handle the case where this a priori
information is not available, we call this algorithm PT-Dynamic.

Markov Model

An m-order Markov model is a statistical model that can be used to predict the
frequency of strings. In particular, an m-order Markov model is based on the
Markov independence assumption which states that the presence of a particular
symbol in a sequence depends only on the previous m symbols. Formally, given
a sequence of n observed symbols X = X

1

X
2

. . . Xn, and let m < n, using the
Markov assumption we have that:

Pr[Xi = a|X] ⇡ Pr[Xi = a|X[i�m, i] = y[1,m]] (3.4)

A stationary Markov model of order m is completely defined by its transition
matrix ⇧ = (⇡(y[1,m], a)) for y[1,m] 2 ⌃

m, where each ⇡ is transition probabil-
ity defined as follows:

⇡(y[1,m], a) = Pr[Xi = a|X[i�m, i� 1] = y[1,m]],m < i < n (3.5)

Since the true model is generally unknown the transition probability can be es-
timated by using the maximum likelihood estimator as in [61].

⇡̂(y[1,m], a) ⇡ fD(y[1,m]a)

fD(y[1,m])

=

fy[1,m]a

fy[1,m]

(3.6)

38

Algorithm 3 Private Prefix-Tree Sample Miner
1: procedure PT-SAMPLE(D, ✏1, S)

Input: dataset D; privacy parameter ✏1; Sample S

Output: T private Prefix-Tree

2: Construct a Markov Model of order m from the sample S

3: T formed by the root

4: Create a queue Q

5: Q root

6: while (Q is not empty) do
7: � Q.remove

8: for (every symbol a in the alphabet ⌃) do
9: Extend the prefix ! of the node � with the symbol a

10: Create a possible child ⌫ of �
11: c̃(!a) ⇡ c̃(!)

f

S

(![1,m]a)
f

S

(![1,m]) . Model Estimate
12: ✏

⌫

 BUDGET ALLOCATION(⌫,�, ✏
acc

)

13: Calculate the noisy count for ⌫
14: Decide to extend ⌫ or mark it as a leaf node
15: Add ⌫ to Q

16: end for
17: end while
18: Enforce consistency constraint on T
19: end procedure

A Sample Based Model

In the construction of the prefix tree we employ the Laplace Mechanism com-
bined with the estimated count from a Markov model constructed on a sample in
input. In many scenarios, we can assume that together with the sensitive data we
have some publicly available information that we can use in our mining process.
Consider for example the case of medical data, many patients prefer to keep their
privacy right on their data but it often occurs that a part of them opt to share or
disclose their data with consent. Such information can be captured by a statistical

39

model and used in the construction process of the prefix tree.
One of the challenges in using the Laplace Mechanism consists on the fact that

the noise injected to achieve ✏
1

-differential privacy depends only on the value of
✏
1

and sensitivity of the query. Since the magnitude of the noise does not depend
on the real answer, the mechanism turns out to be in favour of queries with a large
count. Indeed, given a fixed amount of privacy budget ✏

1

we will incur a larger
error for those queries with smaller values of count. Therefore, if in our tree
we want to guarantee overall ✏

1

-differential privacy, the use of an equal amount
of privacy budget among the nodes will result in penalizing those with smaller
counts. To mitigate this phenomena, we first construct a Markov model from a
sample, and we use the model to obtain an estimated count for each node. Second,
we use this information to properly decide the amount of noise to inject so that
the overall prefix tree satisfies ✏

1

-differential privacy and the error introduced by
the noise is reduced. For example, in any root-to-leaf path instead of using a fixed
amount of privacy budget among the path, we can spend a smaller budget for
nodes with large count and use this saving later in the path for nodes with smaller
counts. Our procedure is illustrated in Algorithm 3.

Budget Allocation. We start assigning a privacy budget ✏̄ for nodes associated
to prefixes of length less than m (the length of the model) which assumes the
default value of ✏

1

/hmax. This initialization step is motivated by the fact that
for these nodes the model cannot provide a good estimated count, so it is better
to use the Laplace Mechanism directly with parameter ✏̄. Then in our top-down
partitioning process, for a generic node ⌫ with prefix !a we first compute an
estimated count using the model as in line 11 of Algorithm 3. Then when the
estimated count c̃(⌫) = c̃(!a) is returned, we compare it against a threshold value
� = ↵(˜|D|/|Pl|), where ↵ is a constant, ˜|D| is the noisy version of the size of the
dataset, and Pl is the set of prefixes in the tree of length l. The value of � gives
an indication about the average counts of the prefixes in the previous level in the
tree, and it is used to decide the amount of privacy budget for the node ⌫.

40

Algorithm 4 Budget Allocation
1: procedure BUDGET ALLOCATION(⌫,�, ✏

acc

)
Input: current node ⌫; threshold �; privacy budget used till the parent of ⌫ ✏

acc

Output: ✏
⌫

privacy for the node ⌫

2: c̃(⌫) ⌫.model count

3: ✏̄ (✏1 � ✏

acc

)/(h

max

� ⌫.h)

4: if (c̃(⌫) < �) then
5: return ✏̄

6: else
7: return ✏̄

�

c̃(⌫)

8: end if
9: end procedure

The privacy budget allocation strategy is illustrated in Algorithm 4. The pro-
cedure computes for a node ⌫ the amount of privacy budget to allocate. Given
the amount of privacy budget allocated so far on the path from the root to the
parent node of ⌫, the algorithm starts with a privacy budget ✏̄ as in line 3. This
value is defined as the privacy budget left on the path divided by the remaining
level in the tree. Then if the estimated count c̃(⌫) is smaller than the threshold �

this privacy parameter is directly returned, otherwise it will be scaled by a factor
�/c̃(⌫), which is in the range (0, 1). Note that if already the overall privacy budget
has been consumed (i.e. ✏acc = ✏

1

), then no further privacy parameter ✏⌫ will be
allocated.

Noisy Count Computation. After the privacy parameter ✏⌫ is determinate, the
noisy count for the node ⌫ is computed by perturbing the real count of ⌫ with
Laplace noise with parameter ✏⌫ . This perturbed count will be assigned as the
final count for the prefix represented by the node ⌫ if the count from the model is
smaller than �. Otherwise, we use as a final count the average between the noisy
count and the count from the model. Notice that, if we could have an estimate of
the error in our Markov model at this step, we could employ a weighted average

41

to determine the count. However, without this information we decide to use the
simple average which from our experiments provides fair results.

Finally to decide if a node is a leaf or an internal node in the tree we compare
its noisy count against the threshold value ✓. If the current node is a leaf, we use
up all remaining privacy budget to refine its count.

A Dynamic Model

In the previous section, we presented a construction process which uses the sta-
tistical properties from a sample of the data to calibrate the noise in the tree.
However, in certain settings a sample of the data or background knowledge are
not always available. In such cases we cannot rely on a priori information. In
this section we show how to modify our previous technique so that during the tree
construction process we can dynamically use the partial tree to construct a statical
model. We call this algorithm PT-Dynamic. The idea of using some information
about noisy data to improve the utility has been shown to be effective in reducing
the relative error for count queries in the recent work of Xiao et al. [73].

Our strategy follows similar steps as in Algorithm 3, where now every time
a new node is attached to the prefix tree the statistical information are updated.
Therefore, now the Markov model is defined on the noisy frequencies generated
during the construction of the prefix tree. In this case the estimated frequency of
a prefix !a is computed using the transition probability obtained from the noisy
frequencies released in the previous levels of the tree as follows:

c̃(!a) ⇡ c̃(!)
ˆfD(y[1,m]a)
ˆfD(y[1,m])

(3.7)

We can observe that for each new node added to the prefix tree, the only infor-
mation that has to be updated are the frequencies ˆfD(y[1,m]a) and ˆfD(y[1,m])

which can be efficiently computed.

42

3.3.2 Error Analysis for Prefix Tree

In this section, we investigate the error in the counts reported by the prefix tree
for two types of patterns: prefixes and substrings. In particular, we would like
our mining algorithms to be useful, that is, their output should well approximate
the real count of the pattern (prefix and substring) on the input data. Below, we
formally define the notion of utility for counting query.

Definition 3.8 ((⇠, �)-Useful). A mining/counting algorithm A is (⇠, �)-useful, if

for any data input D and pattern p, with probability at least 1��, the approximate

answer from A is within ⇠ from the real count of p.

Prefix Patterns. The counts for the prefixes can be directly retrieved from the
node in the prefix tree. Any prefix count query for a pattern p, can be answered
using the prefix tree by returning the noisy count of the node with prefix label p.
We quantify the error bound of the noisy frequency in the following Corollary.

Corollary 3.9 (Error Bound for prefix query). For any prefix count query for a

pattern p, the noisy count c̃(p) associated to the node in the tree having label

p and privacy parameter ✏i, with probability at least 1 � �, the quantity ⇠ =

kc(p)� c̃(p)k
1

is at most O(

1

✏
i

log 1

�
).

Proof. It follows from the tree construction, and the pdf of Laplace distribution.

Substring Patterns. In our tree representation, the mining of substring patterns
is a more challenging problem than mining prefixes. While there is a one to one
correspondence between the frequent prefix pattern and the node in the tree, for
frequent substring patterns this relationship is more complex. Indeed, the fre-
quency of a pattern p is computed as the sum of the noisy count of the prefixes
where p occurs as a suffix. Below we quantify the noise accumulated in this pro-
cess, which will help us to understand the theoretical limitations of this approach.

43

Formally, let ˜fp be the frequency released by the prefix tree for the pattern p,
and denote by fp its real frequency. Let P(p) denote the set of nodes in the tree
having p as a suffix, then we can write ˜fp as follows.

˜fp =
X

⌫2P(p)

c̃(x) =
X

⌫2P(p)

c(⌫) +
X

⌫2P(p)

Lap(1/✏⌫) (3.8)

In the construction of the tree, some prefixes are not extended due to the fact that
their noisy counts do not pass the threshold value ✓. Therefore, the sum of the
counts for the prefixes in the tree containing p as a suffix can be upper bounded
by the frequency of p in the real data fp as follows.

˜fp fp +
X

⌫2P(p)

Lap(1/✏⌫) (3.9)

We denote the sum of these Laplace noises with the random variable Y =

P
⌫2P(g) Lap(1/✏⌫) =Pn

i=0

Lap(1/✏i). Therefore, the variable Y determines the error in estimating the
absolute value of the frequency ⇠ = k ˜fp � fpk1. Below, we characterized this
quantity.

Corollary 3.10 (Error Bound for substring query). For any substring count query

for the pattern p, the noisy count ˜fp obtained by summing the noisy count of the

nodes in the set P(p) of size n, with probability at least 1 � �, the quantity ⇠ =

kfp � ˜fpk1 is at most O(

qPn�1

i=0

1

✏2
i

log 1

�
).

Proof. The proof follows from Corollary 8.2, where we choose ⌫ =

qPn�1

i=0

b2i

q
2 ln

2

�
.

This result shows a distinction between the utility for prefix and substring pat-
terns. As we expected the error for mining prefixes is small, while for substring
we accumulate noises from multiple nodes. This motivate us to use the prefix tree
to mine the prefixes directly and use a second phase to improve the final results
for the substring patterns.

44

3.3.3 Transformation & Refinement

In the previous analysis we pointed out that counting the occurrences of substring
patterns from the tree could incur a large error due to the sum of multiple pertur-
bation noises. This could results in poor performance if we just mine the top-k
in this phase. However, due to the nature of the distribution of the frequency for
the frequent patterns, we can use the prefix tree to generate a candidate set of k0

patterns with k0 > k, which likely contains the real top-k patterns. Therefore,
the goal of our second phase consists in finding the top-k patterns from the set of
candidates.

In this phase, we refine the count of the patterns issuing a counting query, how-
ever due to its high sensitivity we could incur a large perturbation noise if it is
applied on the original dataset directly, as shown in Lemma 3.4. Therefore, our
idea consists in introducing a new representation of the original dataset where we
can control the sensitivity of the count query and at the same time preserve the
frequent patterns. This transformation process is based on the concept of finger-

print which is extensively applied in string matchings [70, 59]. In our paper, we
define fingerprint as follows.

Definition 3.11 (Fingerprint). Given a set of patterns F = {p
1

, p
2

, . . . , pn}, for

a string s we call the vector fpF (s) the fingerprint of s on F . Where the i-th

component (fpF (s)[i]) represents the number of occurrence of pi in s.

Intuitively, the fingerprint of a string represents the contribution of the string on
the occurrences of the patterns in F . Furthermore, multiple strings can have the
same fingerprints. Our idea is to represent the original strings using their finger-
prints on the top-k0 patterns. In particular, given a truncated maximum length l0max,
for strings of length smaller than l0max we keep their fingerprint directly, otherwise
we construct a fingerprint that is as close as possible to the original one and it can
be represented with string of length l0max. In this way, we bound the sensitivity of
the count query for the patterns on the transformed dataset to l0max, which can be

45

considerably smaller than the maximum length in the original strings. Clearly, this
process may lead to approximation error in representing long strings as illustrated
in the Example below.

Example 3.12. Let F = {aa, ab, bb, ac} be a set of patterns, and let x = aabb and

y = bbcacdcbccddaa be two strings. Given a maximum length l0max = 4 we want

to represent these stings with the vectors x̄ and ȳ respectively. First, for the string

x we can notice that the constraint on the maximum length is satisfied therefore

we use x̄ = fpF (x) = [1, 1, 1, 0]. Second, for the string y the length constraint

is violated, so we represent y with a vector ȳ = [0, 0, 1, 1] which is a fingerprint

of a string of length l0max and has minimum distance from fpF (y) = [1, 0, 1, 1].

Overall, with this representation we lose one occurrence of the pattern aa in the

string y.

As Example 3.12 pointed out, the transformation process may introduce an ap-
proximation error in representing long strings since some of the occurrences of
the patterns are lost. Therefore, it is important to reduce this error. Here we first
introduce some definitions, and then we formalize this problem.

Definition 3.13 (Dominated String). Given a set of patterns F and two strings

x and y. We say that y is dominated by x, denoted as y x, if and only if

fpF (y)[i] fpF (x)[i] for i = 0, . . . , |F | � 1. Furthermore we denote by D(x)

the set of strings dominated by x.

Therefore, the transformation problem can be formalized as below.

Problem 3.14 (Optimal Constrained Fingerprint). Given a maximum length l0max,

a set of patterns F , and an input string x with fingerprint fpF (x), find the con-

strained fingerprint vector x̄⇤
= fpF (x⇤

), where x⇤ is defined below.

x⇤
= arg min

y2D(x)
kfpF (y)� fpF (x)k

s. t. |x⇤| = l0max

46

In the rest of section, we investigate the challenges for designing an efficient
and effective transformation algorithm to reduce the approximation error, and a
simple process for determining a suitable value for k0 and l0max.

Fingerprint Construction

In this section we propose a heuristic strategy which decomposes the input string
into blocks with an associated profit.

Definition 3.15 (Block profit). Given a block b and a set of patterns F , the profit of

b is defined as the ratio between the number of occurrences in b of the candidates

in F , over the length of b.

When a string is received in input, we will return a vector by computing the
fingerprint of the string formed by selecting the most profitable blocks till a max-
imum length is reached. Our transformation procedure is illustrated in Algorithm
5. We divide the input string x into |x| � bmin + 1 overlapping blocks of length
bmin, which is defined as the minimum length of the patterns in F . From line 8
to 10 in Algorithm 5, we scan the blocks and we merge two consecutive blocks if
they contain some occurrences of the patterns in F . Then at line 13, the algorithm
selects the most profitable blocks (i.e. those with the most contribution on the
occurrences of the patterns in F) till the accumulated length reaches l0max. Note
that if the length exceeds this threshold, we truncate part of the block. We finally
combine the contributions of the blocks selected and return the fingerprint.

Refinement

In the previous section we developed a transformation strategy which maps the
original set of strings D into a set ¯D of vectors (fingerprints). In this new represen-
tation, the count of the occurrences for a pattern pi in F is computed by summing
up the i-th component of all the vectors in the transformed data ¯D. Specifically,

47

Algorithm 5 String Transformation Procedure
1: procedure TRANSFORMATION(x, F, l0

max

)
Input: string x; set of frequent patterns F ; maximum length l

0
max

Output: x̄ vector representation

2: x̄ 0

3: if (|x| l

max

) then
4: x̄ fp

F

(x)

5: return x̄

6: end if
7: Let B be the set of blocks for x initialized with their profit
8: for (every block i in B) do
9: Merge two consecutive non-empty blocks i and i+ 1 into i

10: end for
11: Update the contribution of the merged blocks
12: Sort the blocks in decreasing order according to the profit
13: S SELECT BLOCKS(B, l0

max

)

14: for (every block i in S) do
15: Update x̄ with the contribution of i on the pattern in F

16: end for
17: return x̄

18: end procedure

given the set of candidate patterns F and the transformed dataset ¯D, we will per-
form the query q = [p

1

, p
2

, . . . , pk0] on ¯D, where pi 2 F , for i = 1, 2, . . . , k0.
Since these vectors represent fingerprints of strings whose lengths are bounded by
l0max, it follows from Lemma 3.4 that it is sufficient to perturb the answer of q by
adding Laplace noise with parameter ✏

2

/l0max to achieve ✏
2

-differential privacy for
the query q on ¯D. We use these noisy counts to identify the top-k patterns from
the set F .

In Section 3.4.2, we will explain the privacy implication of this mechanism with
respect to the original dataset D, in particular we show that our transformation
and refinement steps guarantee ✏

2

-differential privacy also for the original datset.

48

Parameter Selection

In this section, we investigate how to select the parameters used in our two-phase
algorithm. We defer the study of the impact of ✏

1

to the experiments section.

Choosing k0. In our first phase, we use our prefix mining algorithms to mine
a set of candidate patterns. It is crucial in this step to choose a suitable value
of k0 so that with high probability the real top-k patterns are contained in the
candidate set. Here, we propose a simple way to choose a suitable value to k0.
We first make some assumptions on the distribution of the patterns. In particular,
we assume that the distribution of the frequency of the patterns follows a Zipf’s
distribution f(k; s,N), where s is a parameter related to the specific dataset. This
assumption is motivated by the fact that in many real scenarios the frequency of
the pattern follows a power-law distribution (e.g. frequency of words in English).
Furthermore we assume that we can estimate a maximum relative error �F for
the real frequency of the patterns reported in the first phase. Then, we can find
a k0 such that the frequency fk0 (i.e. frequency of the k0-th pattern) is at most
fk(1 � �F). Intuitively, this means that even in the worst case, that is the real
frequencies of the top-k patterns decrease by a quantity �F , the real top-k will
be still present in the top-k0 patterns. Therefore, we can show that it is sufficient
to choose a value of k0 that satisfies the following inequality.

fk(1��F) � fk0 (3.10)

Then normalizing by the sum of all the frequency we obtain:

fkPN
i=1

fi
(1��F) � fk0PN

i=1

fi
(3.11)

Using the assumption of the Zipf’s distribution (here we assume s = 1 for sim-
plicity), we can rewrite the previous inequality as follows.

1

k
(1��f) � 1

k0 (3.12)

49

Solving the inequality above, we obtain that k0 � k
1��F

= k(1 + �), with
� =

�F
1��F

. Unfortunately, the value of �F is not easy to estimate, therefore
for simplicity in our approach we set � = 0.5.

Choosing l0max. In our two-phase algorithm both the parameters k0 and l0max play
an important role in the final utility. With larger values of k0 it is more likely
that the top-k patterns are contained in the candidate set. On the other hand, a
smaller value of l0max reduces the amount of noise injected on the final count,
but it may introduce a larger approximation error since some occurrences of the
candidate patterns may not be captured in the transformation. Although we saw
how to compute a value of k0, the choice of the optimal value for l0max is still very
challenging. Therefore, we determine the maximal length l0max in a heuristic way
by setting l0max = min{l⇤, L}. The length l⇤ is a value that can be computed from
the data, for example in our simulation we choose l⇤ such that the percentage of
the strings with length no greater than l⇤ is at least 85%. The parameter L instead
represents an upper bound on the length which determines a maximum value of
the error introduced by the noise in computing the final counts.

3.4 Analysis

3.4.1 Complexity Analysis

Prefix Tree phase. The PT-Sample and PT-Dynamic algorithm have running time
proportional to the number of nodes in the prefix tree T . First, we can notice that
on the level i, we have at most all the possible prefixes of length i defined on the
alphabet ⌃. Hence, the total number of nodes at level i is bounded by O(|⌃|i).
This bound is quite loose, in fact the number of nodes can be much smaller since
some prefixes are not extended due to the fact that their counts do not pass the
threshold value ✓. Moreover, each node performs a counting query on its partition
that requires a linear scan. Therefore each level i requires O(N |⌃|i) operations,

50

where N is the size of the database in input. Since, in the tree there are at most
hmax levels, the overall running time for our algorithms is O(N |⌃|hmax

+1

). After
the tree is constructed, the consistency constraints require O(h2

maxN) operations
as shown in [21]. Finally, the running time for traversing the prefix tree is linear
with the number of internal nodes in the tree, hence the overall complexity of our
algorithms is O(N |⌃|hmax

+1

).

Transformation and Refinement. The computational complexity for the Algo-
rithm 5 plays an important role on the overall performance since it is applied on
each string in the dataset. Therefore, we reduced its running time as follows. First,
for each position i in the input string we keep the set of patterns of F that have
an occurrence in i. This can be done in linear time with the length of the string in
input when a proper index structure (e.g. prefix tree) is employed for the patterns
in F . Second, for each block we store its fingerprint so that the final vector is com-
puted by summing all the fingerprints of the blocks selected. Let l = |x| denote
the length of the string x in input, and let |F | be the size of the set F . Since the
number of blocks in the input string is at most O(l), then lines 7 to 11 in Algorithm
5 require linear time, while sorting the blocks requires O(l ln l). The selection of
the blocks at line 13 requires O(l) time since the blocks have to be scanned, while
the final construction of the vector at line 14 requires O(l|F |). Therefore the final
complexity for the Algorithm 5 is O(l(|F |+ln l)). Given N the size of the dataset
in input, and lmax the maximum length of the strings in input, the complexity for
the overall transformation step is O(Nlmax(|F | + ln lmax)). The refinement step
requires only a linear scan on the transformed data.

3.4.2 Privacy Analysis

Given the privacy parameters ✏
1

and ✏
2

, we first show that our two phases achieve
✏
1

and ✏
2

differential privacy respectively. Second, we prove that our overall solu-
tion satisfies (✏

1

+ ✏
2

)-differential privacy.

51

Theorem 3.16 (Prefix Tree Miner ✏
1

-privacy). PT-Sample and PT-Dynamic algo-

rithm satisfy ✏
1

-differential privacy.

Proof. (Sketch) The fact that our PT-Sample and PT-Dynamic satisfy ✏
1

-differential
privacy follows by the fact that the counting queries for constructing the prefix tree
are issued on disjoint partitions. So from the Theorem 2.5, it is sufficient to guar-
antee that on any root-to-leaf path in the tree the maxim privacy budget allocated
is at most ✏

1

, this follows directly from Algorithm 4.

For the second phase we have the following result.

Theorem 3.17 (Transformation & Refinement ✏
2

-privacy). The transformation

and refinement steps satisfy ✏
2

-differential privacy.

Proof. (Sketch) We saw in Section 3.3.3 that the refinement step satisfies ✏
2

-
differential privacy with respect to the transformed dataset ¯D. Therefore, what
is left to show is that the transformation process preserves the differential privacy.
Intuitively, the set of patterns F used in this step satisfies differential privacy so it
does not disclose information about the individual record, however the procedure
accesses the original string data directly. It turns out that as long as the transfor-
mation is local, that is the output only depends on the individual input string, then
applying a ✏

2

-differential privacy mechanism on the transformed dataset ¯D it also
guarantees ✏

2

-differential privacy for the original dataset D. This result has been
shown in [79]. Hence our second phase satisfies ✏

2

-differential privacy.

Therefore, using the sequential composition property in Theorem 2.4 on this
sequence of privacy mechanisms, it follows that our overall mining approach sat-
isfies (✏

1

+ ✏
2

)-differential privacy.

Theorem 3.18 (Two-phase ✏-privacy). Let ✏
1

and ✏
2

be the privacy budgets for the

first phase and second phase respectively, with ✏
1

+ ✏
2

 ✏. Then, the two-phase

algorithm satisfies ✏-privacy.

52

Dataset size |⌃| lmax lavg

MSNBC 989,818 17 14975 4.7

house power 40,691 21 50 50

Table 3.1: Datasets characteristics

3.5 Experiments

We evaluate the performances of our mining algorithms for two types of patterns:
prefix and substring. Furthermore, we investigate the dependency of specific pa-
rameters (privacy level in the first phase ✏

1

, and depth of the prefix) on our final
results. Finally, we compare our approaches with the n-gram method proposed in
[22], which to the best of our knowledge represents the most related work and the
state-of-the-art for mining sequential patterns with differential privacy.

Data. In the experiment section we test our approaches on two real sequential
datasets. The first is the MSNBC datset, where each string represents a sequence of
web pages visited by users within 24 hours on the msn.com domain. The second
is the house power dataset which is derived from a numeric dataset represent-
ing the energy power consumptions of individual household over 47 months. The
original data appears as time-series, therefore for our sequential data we first dis-
cretized these values and we successively construct a string record from every 50
samples. A summary of the two datasets is reported in Table 3.1. Both the MSNBC
and the household energy consumption datasets are available at the UCI machine
learning repository 1.

General Settings. Our two-phase algorithms are denoted by PT-S* and PT-D*,
where as the first phase we employ the sample based (Section 3.3.1) and the dy-
namic model tree (Section 3.3.1) respectively. If not specified in the text the pa-
rameters for the algorithms assume the default values reported in Table 3.2. The
utility measure in these experiments is the F

1

score, which is a combination of
1http://archive.ics.uci.edu/ml/datasets

http://archive.ics.uci.edu/ml/datasets

53

Parameter Description value

✏ Total privacy parameter 0.1

✏

1

Privacy parameter in the first phase 0.85✏

I Range of variable lengths [2,7]

hmax Depth of the prefix tree 10

k Number of frequent patterns to mine 60

|S| Sample size for PT-S* 10% of |D|

Table 3.2: Parameter Description

precision and recall for the mined top-k patterns.

3.5.1 Impact of the parameters on the utility

First of all, we start to study the impact of our specific parameters on the final
utility of the mined results.

Allocation of the privacy budget ✏
1

. The impact of the privacy budget ✏
1

that
we use in the first phase of our algorithms on the final utility is illustrated in Fig-
ure 3.3. We can notice that in both datasets increasing ✏

1

has beneficial impact on
the utility; however, after a certain value an increment in this parameter quickly
degenerates the results. This phenomena is caused by the tradeoff between the
quality of the candidate set that we generate in the first phase and the noise in-
jected in the second phase. Figure 3.3 is an indication of the effectiveness of
our transformation, since even using a small privacy budget (15%-20% of total
✏) in the second phase it does not compromise the final results. Therefore in our
experiments, we will use ✏

1

= 0.85✏.

Depth of the tree hmax. Figure 3.4 illustrates the impact of the depth in the prefix
tree used in the first phase on the final utility. Ideally, we would like to have a
prefix tree as high as possible to capture all the patterns in the data. However,
as the height of the tree increases, less privacy budget is available for each node

54

(a) house power (b) MSNBC

Figure 3.3: Impact of the value of ✏
1

on the final utility.

(a) house power (b) MSNBC

Figure 3.4: Impact of the depth of the prefix tree on the final utility.

which leads to a larger perturbation noise in the counts. This is more evident in
the house power dataset since it is smaller than MSNBC (i.e. smaller counts).
In our experiments, we fix hmax = 10 since with this setting our algorithms well
perform on both datasets.

3.5.2 Comparison for mining frequent patterns

In this part of the experiments we evaluate our algorithms in mining patterns
against the state-of-the art approach n-grams proposed in [22] and with the prefix

55

tree base algorithm PT-B (base line) [21, 23] that we briefly described in Section
3.3.1. For the n-grams approach we use the default setting suggested by the au-
thors in [22], while for the PT-B we set a maximum depth of the tree equals to the
value of hmax in our two-phase algorithm. In our experiments, we consider the
mining task both for substring and prefix patterns.

Mining Frequent Substrings

To understand the performance of our mining algorithms for substring patterns,
we study several possible scenarios. We first consider the task of mining short
frequent patterns with small k values, that is the case where the frequencies of
the patterns is more likely to be well separated. In the second case, we study the
problem of mining longer patterns with large k values, which could be more chal-
lenging since even a small perturbation noise in the frequency could drastically
change the top-k patterns. We also investigate the impact of the privacy parameter
and the length of the patterns on the final utility.

Mining Short Patterns. We consider patterns p of variable length in the range
[2, 3] symbols. The results on the two datsets are reported in Figure 3.5. For the
house power dataset the approaches have similar performance for k < 15. For
k in the range [15, 25] all the approaches decrease their performance. The results
for PT-B quickly drop, while our solutions are quite stable. In this range of k

values, the n-gram approach performs slightly better than our solutions. For the
MSNBC the results from our algorithms are comparable with those from the n-
gram method. Furthermore, we can see that the base line suffers in both datasets.

Mining Long Patterns. Contrary to the previous setting, we now consider longer
patterns. In particular we focus on mining patterns of length in the range [2, 7] for
k values between 20 and 100. Figure 3.6(a) shows the utility on the house power

dataset. We observe that our mining techniques constantly provide higher utility
than the n-gram strategy for values of k in between 20 and 80, while for larger

56

(a) house power (b) MSNBC

Figure 3.5: Comparison for mining short substring patterns.

(a) house power (b) MSNBC

Figure 3.6: Comparison for mining long substring patterns.

(a) house power (b) MSNBC

Figure 3.7: Frequency distribution of long substring patterns.

57

values this gap becomes smaller. The baseline provides comparable results only
for small k, then its performance rapidly decreases. The results for the MSNBC
dataset are reported in Figure 3.6(b). In this case our strategies closely follow the
results from the n-gram miner, while the baseline constantly suffers providing an
utility of 10% less than our approaches.

From these mining results we can observe a considerable gap in the utility be-
tween the patterns mined from house power and MSNBC. In fact, we can see
from Figure 3.7(a) that the frequency distribution of the patterns in the first dataset
rapidly decreases while in web browsing data this behavior is not so extreme, as
shown in Figure 3.7(b). This does not provides a good separation between the
frequencies of the patterns for large values of k (e.g. k > 40) which makes the
mining of the patterns in house power more challenging.

Length of the patterns. In the mining process we consider patterns of variable
length, so it is important to understand how the length of the patterns affects the
final utility result. Intuitively, long patterns are more difficult to mine for two
reasons. First, their absolute value of frequency is lower than short patterns. Sec-
ond, in general there is not a good separation in term of frequency. Hence, the
perturbation noise is more likely to drastically change their frequency and shuf-
fle their order in the top-k. We can observe this phenomena from Figure 3.8,
where increasing the length of the patterns mined makes the utility to quickly
drop. Our approach well performs against the baseline in both datasets. Com-
pared with the n-gram our two-phase solutions provide slightly lower result in the
house power dataset while in the MSNBC our results are often better.

Total privacy budget ✏. The impact of the total privacy parameter ✏ on the final
utility is reported in Figure 3.9. As the intuition suggests, we can see that increas-
ing the privacy budget (less privacy) increases the utility. In the house power

dataset all the approaches are close, while in the MSNBC there is a distinction. In
particular, compared with the n-gram technique our solutions provide better util-

58

(a) house power (b) MSNBC

Figure 3.8: Impact of the length of the patterns k=20.

(a) house power (b) MSNBC

Figure 3.9: Impact of the value of ✏ on the final utility.

ity for small privacy budget, while for ✏ > 0.1 our result follows the one from the
n-gram model. Furthermore, in this dataset we can clearly see the advantages of
our techniques with respect to the baseline method.

Mining Frequent Prefixes

Since by their nature, the frequency of the prefixes are considerable lower than
the frequency of substring patterns, it is more reasonable to focus the mining task
on short prefixes. In this setting, we examine the performance of the approaches
for prefix mining and report the results for both datasets in Figure 3.10. For both

59

(a) house power (b) MSNBC

Figure 3.10: Comparison for mining prefix patterns, I=[2,3].

the datasets, the n-gram approach provides quite poor utility. The reason is that
for this approach the information about the prefix patterns is not preserved. In
fact, only substrings are considered in the construction of the n-gram model, and
therefore the prefixes cannot be retrieved. On the other hand, in our approaches
the use of the first phase allows us to capture these frequent prefix patterns which
leads to very accurate results. In a similar way, the baseline PT-B based on the
prefix tree structure also achieves good utility in this setting.

3.6 Conclusion

In this paper, we proposed a novel techniques for the differentially private min-
ing of frequent sequential patterns. First, we developed two prefix tree mining
techniques that make use of statistical information to carefully calibrate the per-
turbation noise. Second, we introduced a local transformation technique on the
original string records which reduces the amount of noise injected by the Laplace
Mechanism. We showed, how to combine these two key strategies into a novel
two-phase mining algorithm. A set of extensive experiments proved that our solu-
tions provide comparable results with the state-of-the-art [22] in mining frequent
substrings, while achieving significantly superior results for mining frequent pre-

60

fixes at the same time. Future research directions include the mining of noisy
frequent patterns (e.g. with error and gap), as well as the mining of patterns over
streams.

61

62

63

Chapter 4

Privacy Preserving Record Linkage

4.1 Preliminaries

In this section, we introduce some notations and definitions related to our ap-
proach. First, we briefly present notions concerning string records and the concept
of embedding. Second, we review the model of differential privacy which is used
as our privacy model.

4.1.1 Basic Definitions

Let x be a sequence of n symbols defined as follows x = x
0

x
1

· · · xn�1

where each
xi is defined over a finite alphabet ⌃. We denote the length of the string x with
|x|. Furthermore, given a string x, we represent a substring from position i to j in
x with x[i, j] = xixi+1

· · · xj , where 0 i j n� 1. For the rest of the paper,
we also refer to x[i, j] as a gram of length j� i+1. A common similarity measure
between strings is the Edit distance dEdit, known as Levenshtein distance, which
given two strings it measures the number of edit operations needed to transform
one of the string in the other.

Definition 4.1 (Edit Distance [50]). The Edit distance between two strings x and

64

y is defined as the minimum number of character edit operations necessary to

transform x into y. A single character edit operation can either replace, delete or

insert a character in x or in y. We denote the Edit distance between x and y by

dEdit(x, y).

Using this definition of the similarity metric, we denote the metric space by
(⌃

⇤
; dEdit) as the pair: space of all possible strings, and Edit distance. We infor-

mally introduce the notion of embedding used in the paper as a map ⇢ : ⌃

⇤ ! Rk,
where k is the dimensionality of the embedded space. This transformation maps
the string records into vectors in Rk. The distance in this new space is computed
by using Euclidean distance which is denoted by d0.

Given the Edit distance as similarity measure between strings, we state the prob-
lem of record linkage that we consider in this paper as follows.

Problem 4.2 (Record Linkage). Given two sets DA and DB of string records and

a maximum distance t, find M ⇢ DA⇥DB, such that M = {(x, y) s. t. dEdit(x, y)
t} (matching records) and no information about the individual records (x, y) 62
M (non-matching records) is disclosed.

In the rest of the paper, we will refer to the case where the threshold t = 0 as
exact match, while the case t > 0 as approximate match since it is sufficient for
the records to be within t edit operations to be considered as a match.

4.2 Overview of Proposed Solution

As we described in the previous section, secure transformation techniques map
original records in a new space where they can be securely matched. Typically,
this transformation process is data independent so that the data owners can share
the information required to map the records and obtain consistent matching results
in the new space. For example, in Scannapieco et al. [64], the transformation is
performed using a reference set of random strings, called base, that data holders

65

Figure 4.1: Overview of the Secure Protocol.

share during the process. Although the randomly generated base does not disclose
information about the original records, it may lead to poor utility results due to its
generality.

In our solution, we propose an embedding technique that uses a set of grams

(i.e. substrings) extracted from the original data as a base to map the original
records into vectors. In particular, our base is a set of frequent variable length
grams that are mined from the original data. A gram of length q (q-gram in short)
is a substring x

0

x
1

· · · xq�1

of the original records. We show that this definition of
base allows our map to better represent the records compared to a random base and
it leads to better utility in the matching phase. Since this base is shared among
the data holders, to avoid privacy leakage about individual record, the frequent
grams are mined with guarantee of differential privacy. In this way, we bound the
adversary inference ability of determining the presence of any individual record
in the original data by observing the base.

Our strategy requires the presence of a third party (not necessary trusted) de-
noted by C whose task consists in matching the records in the embedded space.

66

(a) Base Generation (b) Embedded Data

Figure 4.2: Example of Mining and Embedding of the data.

The matching is performed in the vector space using the Euclidean distance d0

as a similarity measure. We notice that this step is common to all the secure
transformations and in principle any secure protocol can be employed to provide
additional security in matching the transformed vectors.

Our overall protocol is illustrated in Figure 4.1. The generation of the frequent
grams is performed by the data holders in the mining phase. First, each data
holder privately mines a set of frequent grams and then a common base is defined.
Then each party embeds its data using the common base and the resulting vectors
are sent to the third party. We denote this step as embedding phase. Finally, the
third party matches the transformed records in the matching phase. A summary
of the steps is listed as follows.

1. Mining Phase: Parties A and B apply a differentially private algorithm
to mine their respective databases DA and DB and compute private bases
BA and BB. One of the two parties is in charge of merging the two bases
and it produces a shared base B of frequent variable length grams. Figure
4.2(a) illustrated the mining and base generation steps. Parties A and B

mine their respective dataset and they define a common base B formed by
the following grams {A,M,MA,E,O}.

67

2. Embedding Phase: Each party A and B, by using the shared base gen-
erates a set of vectors VA and VB respectively, representing the strings in
the original datasets. An example of embedded records using the base
B is illustrated in Figure 4.2(b), where each component in the vectors is
computed as the number of occurrences of each gram in the record nor-
malized by the length of the gram. For example, for the string “JOHN”,
the resulting vector is [0, 0, 0, 0, 1], where only the component associated
with the gram “O” is non-zero. These vectors are sent to the third party C

which is in charge of the matching. Given a maximum value of edit dis-
tance t in the original space, the party A generates a set of threshold values
Th = {th

1

, th
2

, . . . , thN}. These values represent a distance threshold in
the embedded space for each string si, i = 1, 2, . . . , N in DA to use in the
matching phase. In particular, each th is a personalized threshold for the
string s 2 DA and it represents the maximum distance between s̄ and z̄,
such that the string z is close to s (i.e. within t edits). This set of thresholds
is sent to C.

3. Matching Phase: The third party C, for each vector s̄ 2 VA and its thresh-
old value th 2 Th returns a set of neighbor vectors N (s̄) computed as
follows:

N (s̄) := {z̄ 2 VB s. t. d0(s̄, z̄) th} (4.1)

where the distance between vectors is computed using the Euclidean simi-
larity metric. For example, by using threshold value th = 0 (exact match),
the record “JOHN” in DA is matched with “JON” and “JOY” in DB, since
the Euclidean distance between their respective vectors is 0.

68

4.3 Mining Phase

In this section, we describe the steps required to generate the base for our em-
bedding technique. The base has important implications both for the utility and
privacy of our transformation. First, the set of grams in the base determines how
well records will be represented in the new space and therefore it impacts the final
utility. Second, since the base is shared among data holders it is necessary that no
information about individual record can be inferred from observing the base.

In our strategy, we select a base for the embedding from the original data. This
choice is motivated by several reasons. First, in record linkage scenarios, it is
reasonable to assume that records being matched/linked have similar properties
(e.g. same alphabet). Therefore, by constructing a base from the original records
we can incorporate this information in the embedding step. On the other hand,
a base randomly generated is defined in a generic way and therefore cannot well
reflect changes in different datasets. Second, our base construction solely depends
on the original data and does not require a direct user intervention. In this way,
we liberate users from the challenging task of selecting and tuning a base for the
transformation, making the entire process more easy and robust.

Our base is composed by frequent grams directly mined from the original databases.
Formally, given a positive integer k, a minimum length qmin and a maximum
length qmax, we mine the top-k frequent q-grams where q 2 [qmin, qmax] and we
use this set as a base for the embedding. In this way, we obtain a base that is a
good representative for all the strings in the databases and intuitively well pre-
serve the structure of the original data in the vector space. A similar idea has been
successfully applied in many approximate string matching problems [75, 51, 70],
where strings are matched using the partial information captured by their sub-
strings. However, a direct use of the mined grams from a party in the protocol
may disclose information about individual records. For example, a malicious user
could infer the presence of a sensitive string record by observing the grams in the

69

base. To address this problem, we propose a mining algorithm that generates a
base satisfying the rigorous notion of differential privacy. Hence, the base can
be shared without incurring the risk of disclosing information about individual
records.

For mining the frequent grams we employ our prefix tree mining approach that
we described in Chapter 3. In principle, other differentially mining techniques can
be used as a black box for computing the frequent grams such as [10, 22, 14]. For
example, we could use our recent two-phase algorithm [10] to retrieve the frequent
grams. Although this new approach represents the state-of-the-art of differentially
private sequential pattern mining and it could greatly improve the quality of the
mined grams, we may not observe drastically changes in the final matching results.
In fact, as we will point out in the experiment section, the entire process is quite
robust against changes in the base. Therefore, later we will describe only our
prefix-tree based approach for mining the set of frequent grams.

4.3.1 Base Generation

The grams computed in the mining phase satisfy differential privacy, that is, they
do not reveal information about the presence or absence of any individual user’s
record in the original dataset. In our protocol, we use this important fact to en-
able data holders to share the information about their mined grams and construct
a common base B for the embedding. One can argue that a base from public do-
main knowledge could be used as alternative to our approach. Although, sharing
such a base does not cast privacy treats on individual records, this choice could
compromise the final utility since the selected grams may not provide a good rep-
resentation of the records in the datasets.

In our approach, the construction of the base B is performed by merging the fre-
quent grams from the data holders. In principle, this step is not trivial since there
are many possible ways to define a common base. In our solution, we construct

70

the base B by selecting the top-k grams from the two sets of top-k frequent grams
mined both from datasets. We use this simple strategy because we believe that
in real settings the original datasets required to be linked have similar structures
(e.g. records with similar content) which likely will lead to close distributions of
the frequent grams. In future, we plan to use different strategies to select the com-
mon base, for example by selecting the most diversifying grams or using a weight
for the grams associated with their respective data owner.

4.4 Embedding Phase

In this section, we describe the embedding strategy for mapping string records
into vectors using the base of frequent grams. Furthermore, we analyze the impact
of the grams on the final results by studying the error introduced by mistakenly
omitting or selecting grams in the base.

4.4.1 Embedding

Given the base as a set of substrings (grams) B = {g
1

, g
2

, . . . , gk}, the embedding
function maps each string into a vector using the occurrences of grams in the base.
In particular, let Occs(g) denote the set of positions in s where a gram g occurs,

Occs(g) := {i 2 [0, |s|� |g|] : s[i, i+ |g|� 1] = g} (4.2)

and let Os(g) = |Occs(g)| be the number of occurrences of a gram g in a string s.
Given these notions, we define our embedding function as follows.

Definition 4.3 (Embedding Function). Let ⇢ be a function defined as ⇢ : ⌃

⇤ ! Rk,

that maps a string s into a real vector s̄. Given the base B = {g
1

, g
2

, . . . , gk}, each

coordinate of the vector s̄ is defined as: s̄[i] = Os(gi)/|gi|, for i = 1, . . . , k.

The definition above is very general and the set of grams B could be defined in
different ways. As we mentioned early, in our approach, we use the set of frequent

71

grams as a base for our embedding. It turns out that with this choice, the distance
between records is quite well preserved in the embedding as we will show in the
experiments in Section 4.7. The use of frequent grams for the base is motivated
by the fact that these substrings are frequent, and therefore they are shared among
many strings which allows us to represent them in the embedded space. Further-
more, the fact that these grams have variable length allows the map to capture the
strings with a different granularity which is crucial when we consider the approx-
imate match of the strings (i.e. match with some edit operations).

After the embedding step is performed, for each original string record a real
vector is generated using the common base. In this vector space, we use the
Euclidean distance d0 as similarity function between vectors. Then, for any pair
of transformed records s̄A 2 VA and s̄B 2 VB, the pair (sA, sB) is a match if
d0(s̄A, s̄B) th.

4.4.2 Impact of the Grams

The frequent grams are used in constructing the base for the embedding and deter-
mining the components in the vector representation of the original strings. How-
ever, due to the privacy requirements, our mining approach perturbs the real fre-
quency of the grams which could impact the final utility. Therefore, to help users
in deciding the privacy parameter ✏ and the size of the base k, it is important to
understand the impact of the grams on the final results. In this section, we analyze
the impact of the grams on the map by considering two possible cases: (1) fre-
quent grams are mistakenly omitted from the base, and (2) infrequent grams are
mistakenly included in the base.

Intuitively, we can observe that for case (2), the matching process is more tol-
erant to the presence of infrequent grams in the base. In fact, due to their low
frequency, these grams will produce zero components in majority of the vectors
and their presence may only affect the matching results of few records. On the

72

other hand, in case (1), the omission of some frequent grams from the base has
a greater impact on the matching results. In fact, a frequent gram is likely to be
shared among many records and therefore omitting it from the base will lead to
a loss of non-zero components for many vectors, potentially increasing the mis-
matched records. In the follows, we study the impact of both cases and we will
show that only with small probability we may eventually miss a frequent gram
from the mined base with our prefix tree mining algorithm.

Error Estimation.. In our analysis, we consider a simplified case where only one
gram g is mistakenly included or omitted from the base and we relate its error
to the number of records affected by g. Therefore this quantity, denoted with
the variable n(g), represents an upper bound on the number of matches that we
could possibly lose with the gram g. We can assume that the grams follow some
distributions (e.g. Zipf) and our goal is to compute the expected number of records
affected by g, hence E[n(g)]. Assuming that all the grams have the same length
|g|, the following lemma provides an upper bound for E[n(g)].

Lemma 4.4 (Error Upper Bound). Let l be the length of the records and n be the

total number of records, then given a gram g the quantity E[n(g)] can be upper

bounded by n · pg · l, where pg is a probability value depending on the frequency

distribution of the grams.

Proof. Let ri(g) denote an indicator random variable that represents if the i-th
record ri contains the gram g, formally:

ri(g) =

(
1 if g appears in the i-th record
0 otherwise

(4.3)

(4.4)

Then, we have that: n(g) =
Pn

i=1

ri(g). We can estimate Pr[ri(g)] as follows:

Pr[ri(g)] 1� Pr[g does not occur in ri] (4.5)

73

In modeling the probability distribution of a gram g to appear in a record ri, we
assume independency between the grams and the position in the records. In par-
ticular, we consider Pr[ri[j, j+ |g|�1] = g] = pg for every j = 1, . . . , l� |g|+1,
where pg represents the probability for the gram g to appear in any position of ri.
Hence, we have that Pr[g does not occur in ri] = (1� pg)l�|g|+1, which leads to

Pr[ri(g)] 1� (1� pg)
l�|g|+1 (4.6)

Then using the fact that (1 � x)y � 1 � x · y for y � 1 and 0 x 1, we have
that:

E[n(g)] =
nX

i=1

E[ri(g)] n · pg · (l � |g|+ 1) n · pg · l (4.7)

Assuming that the grams follow a Zipf’s distribution, we can approximate pg

as pg ⇡ f
gP

G

i=1

f
i

, where fg represents the frequency of g and G denotes the total
number of grams. Therefore, the expected number of records which contains the
gram g can be upper bounded by (n · fg · l)/(

PG
i=1

fi). As we expected, frequent
grams have a higher impact since more vectors may contain them compared to
infrequent grams.

Error Probability.. Now we quantify the probability of mistakenly omitting or
including a gram in our base. We recall that our mining algorithm computes the
frequency of the grams combining the frequency of multiple prefixes. In partic-
ular, let ˜fg be the frequency released by the prefix tree for the gram g, and let fg
denote its real frequency. Furthermore, let P(g) be the set of nodes in the tree
having g as a suffix, then we can write ˜fg as follows.

˜fg =
X

⌫2P(g)

c̃(⌫) =
X

⌫2P(g)

c(⌫) +
X

⌫2P(g)

Lap(1/✏⌫) (4.8)

In the construction of the tree, some prefixes are not extended due to the fact that
their noisy counts do not pass the threshold value ✓. Therefore, the sum of the

74

counts for the prefixes in the tree containing g as a suffix can be upper bounded by
the frequency of g in the real data fg as: ˜fg fg+

P
⌫2P(g) Lap(1/✏⌫). We denote

the sum of these Laplace noises with the random variable Y =

P
⌫2P(g) Lap(1/✏⌫) =Pn

i=1

Lap(1/✏i). Therefore, the probability of missing a frequent gram g from the
base can be represented by Pr[Y � (fg � fk)], while the probability of inserting
a infrequent gram is Pr[Y � (fk � fg)], where fk denotes the frequency of the
k-th gram in the base.

Lemma 4.5 (Error Probability). The probability of mistakenly omitting or select-

ing a gram g of frequency fg from the base, using our prefix tree algorithm is

Pr[Y � |fg � fk|] exp{� (f
g

�f
k

)

2

8�2

}, where � � max{
q

�
2·✏

min

,
pPn

i=1

1/✏2i },

and � < ✏min/2.

Proof. We start by considering the generating function of Y , then for any � we
have that:

Pr[Y � ↵] =Pr[e�·Y � e�·↵]

E[e�·Y]

e�·↵
=

Qn
i=1

E[e�·Lap(1/✏i)]

e�·↵
(4.9)

Then, for � < ✏, the generating function for the Laplace random variable Lap(1/✏i)
is E[e�·Lap(1/✏i)] = 1/(1 � �2

✏2
i

). Furthermore, using the inequality (1 � x)�1
1 + 2x e2x for 0 x < 1/2 and assuming � <

p
✏i/2, we have

E[e�·Lap(1/✏i)] = 1/(1� �2

✏2i
) e

2

�

2

✏

2

i (4.10)

Then, we impose � <
p

✏min/2, and by using the previous result in equation
(4.9), we have :

Qn
i=1

E[e�·Lap(1/✏i)]

e�·↵

Qn

i=1

e
2

�

2

✏

2

i

e�·↵

= e��·↵+2�2

P
n

i=1

1/✏2
i (4.11)

75

Then setting � =

↵
4�

, and � � max{
q

�
2·✏

min

,
pPn

i=1

1/✏2i }, where ✏min =

min{✏i}, we have

Pr[Y � ↵] e
� ↵

2

8�

2 (4.12)

Plugging in ↵ = |fg � fk|, we obtain the result desired.

The result above shows that the probability of mistakenly omitting a frequent
gram from the base decreases exponentially with the difference of frequency. On
the other hand, the probability of mistakenly inserting some infrequent grams is
quite high, since it may be fg ⇡ fg.

From this analysis, we can observe that although missing a frequent gram could
affect the matching results for many vectors, it is very unlikely that such event
occurs.

4.5 Matching Phase

The matching phase is crucial in determining the matching records in the embed-
ding space. In this step a similarity comparison between records is performed
using the Euclidean distance metric and according to the distance value between
vectors the original records are marked as match or non-match. The distance
value has a great impact on the overall linking performance; therefore, it is crucial
to compute a threshold value th in the embedded space as tight as possible to the
real value.

Below, we describe two possible criteria to compute the threshold value to match
the embedded records. The first approach aims to decide a global threshold value
that hold for all the pair of records, while the second strategy specialize the thresh-
old for each records pair.

76

4.5.1 Global Threshold

In this section, we study the problem of computing a global threshold for matching
pairs of records. In particular, given an edit distance threshold t in the original
space, we want to determine a threshold value th in the embedding space such
that no vectors representing true matches are discarded. Furthermore, we want
th to be as tight as possible in order to reduce the number of false positives. To
understand how to compute such a threshold value, we start by considering a
simple scenario where the grams have the same length q and the base contains all
the possible grams. In this setting, we can see that for any pair of strings s

1

and
s
2

such that dEdit(s1, s2) t (i.e. matching records), the number of shared grams
between these two records are at least

max{|s
1

|, |s
2

|}� q + 1� t · q, (4.13)

where the term max{|s
1

|, |s
2

|} � q + 1 denotes the number of shared grams of
length q and t · q represents an upper bound on the number of grams they could
lost with t edits.

Unfortunately, in our case we can not directly apply the bound from equation
(4.13) to compute th, for two reasons. First, the number of shared grams between
each record pair depends on the base, and second the grams in the base have vari-
able length. To obtain a value of th in our case, we directly consider the vector
representation of the strings. In this representation, the number of non-zero com-
ponents represent the grams shared between records and the base. Furthermore,
the embedding procedure incorporates the gram length information in the vector
representation by normalizing the contribution of each grams by their length. Us-
ing these two facts, the following lemma provides an upper bound for the distance
in the embedded space.

Lemma 4.6. For the proposed embedding function ⇢ that maps strings into vec-

tors, there exists a constant ↵ =

p
k such that for any pair of strings s

1

, s
2

in the

77

original space the following inequality holds:

d0(⇢(s
1

), ⇢(s
2

)) ↵ · dEdit(s1, s2) (4.14)

Proof. Consider the Euclidean distance between vectors embedded using a base
with k grams, as follow:

d0(⇢(s
1

), ⇢(s
2

)) = d0(s̄
1

, s̄
2

) =

vuut
kX

i=1

(s̄
1

[i]� s̄
2

[i])2 (4.15)

Furthermore, let dEdit(s1, s2) = t be original distance. Given the following two
observations: (1) t edits can affect at most t · q grams of length q, (2) the con-
tribution for the grams in the embedding is scaled by their length, then for each
coordinate i following relationship holds:

(s̄
1

[i]� s̄
2

[i])2 t2 (4.16)

Then we have that d0(s̄
1

, s̄
2

)
p
k · t, hence d0(⇢(s

1

), ⇢(s
2

)) ↵ · dEdit(s1, s2).

The lemma above shows two important results. First, the embedding is con-
tractive by scaling down the Euclidean distance by 1/

p
k. Second, larger base

size may not help to improve the matching results since k contributes to increase
the distortion. Despite the importance of such result, this upper bound could be
too loose leading to poor utility in practice. In principle, both parties can pursue
the task of finding a global threshold value by inspecting each pair of records, as
follows:

th = min

d
{d � d0(x̄, ȳ)|dEdit(x, y) t}, 8x, y (4.17)

However, solving Equation (4.17) require both parties to test all possible pairs
of records to find the optimal global threshold value. Clearly, both from privacy
and computational reasons, this task cannot be directly performed in the protocol.
Therefore, often it turns out that th is left as parameter to be chosen by user. In
our experiment section, we test our approach by tuning different values of th to
maximize the utility.

78

4.5.2 Personalized Threshold

As we have seen from the previous section, the use of a global threshold for match-
ing records based on the analysis could lead to a loose threshold. Furthermore,
from the experiment section, we will see that finding the optimal threshold value
is hard without a priori knowledge, and even a slight change in the threshold value
can lead to a considerable loss of accuracy on the final result. To address these
limitations, we propose to compute a personalized threshold value for each string.
The design of this strategy is motivated by the following reasons. First, each string
shares a different number of grams with the base. Hence for those strings that have
a large number of shared grams, a personalized threshold can better represent the
original distance. Second, by computing a threshold for each string, we overcome
the problem of estimating a threshold suitable for all strings which we have shown
to be difficult.

For each string s and the set N of neighboring strings within t edit distance, the
personalized threshold is the maximum distance between the embedded vector of
s and the set of embedded vectors of N . To compute the personalized threshold
we adopt the algorithm proposed in [75] which originally has been introduced to
perform approximate string matching. In our case, we modify this approach so
that we can keep track of the impact of each gram on the final distance in the
embedded space.

Given a string s, we start to initialize two data structures as follows:

D[i] =
X

g2B

✓
�s(i, g)

|g|

◆
2

, i = 0, 1, . . . , |s|� 1 (4.18)

�s(i, g) :=

(
1 if g overlaps s at position i

0 otherwise
(4.19)

P [i] = max

g2B
{j < i� |g|� 1 where j 2 Occs(g)} (4.20)

For each position i in s, the entry D[i] represents the total contribution that grams
overlapping at position i may have in the coordinates of s̄ if some edit operations

79

Figure 4.3: Impact of edit operations on the embedded vector.

occur at position i. On the other hand, P [i] denotes the nearest position j < i

where a gram of the base occurs in s with no overlap on i.

Example 4.7. Consider the original string s
1

= mississipi and a base B =

{a, i, s, si} as illustrated in Figure 4.3. Then the embedded version of s
1

is s̄
1

=

[0, 4, 4, 1], since both “i” and “s” occurs four times in s
1

and have length 1,

while “si” occurs twice and it has length 2. Furthermore, the vector D has 10

coordinates, where the largest values are at positions 3, 4 and 6, 7 representing the

overlap of “i” and “s” with “si”. Therefore, with 2 edits, the maximum distance

for a vector s̄
2

representing a matching string s
2

is ks̄
1

k
2

�
p
2 + 2 =

p
33� 2.

Using these structures and given a maximum number of allowed edit operations
t, we are interested in computing the largest allowable distance th in the embedded
space for each string s. This value is computed by filling a t⇥ |s| matrix T, where
the entry T[i, j] denotes the maximum change in the components of the vector
s̄ when i edit operations are allowed on the first j positions of s. Algorithm 6
illustrates how the matrix T is updated according to the presence of edit operations
at each position j in s. The personalized threshold value is then computed by
taking the square root of T[t, |s|� 1].

Theorem 4.8 (Personalized Th Correctness). Algorithm 6 computes the maximum

distance in the embedded space where a string within t operations from s can be

located.

Proof. We need to show that line 4 of Algorithm 6 gives the correct maximum
contribution T[i, j]. Consider the case when at position j in the string s no edit
operations occur. Then the contribution remains the same as in the previous posi-
tion T[i, j � 1]. Similarly, when multiple edit operations occur at position j, we

80

Algorithm 6 Dynamic Algorithm for computing th

1: procedure PERSONALIZED TH(s,D[·], P [·], t)
Input: String s; D[·], Pr[·], and edit distance t.
Output: Threshold value th

2: for (i = 0, 1, . . . , t) do
3: for (j = 0, 1, ..., |s|� 1) do
4: T[i, j] = max{T[i, j � 1],T[i� 1, P [j]] +D[j]}
5: end for
6: end for
7: return th =

p
T[t, |s|� 1]

8: end procedure

have to add the contribution from grams overlapping in j (D[j]) to the maximum
contribution of having i�1 edit operations in the position before j (T[i�1, P [j]]).
This concludes the proof.

Complexity Analysis. The overall computation cost can be divided into two com-
ponents: setup and threshold computation. The setup phase requires to initialize
the data structures D and P . This step does not depend on t so it can be done
once on the entire dataset (e.g. off-line preprocessing). On the other hand, the
computation of the personalized threshold depend on t and it is performed each
time the approximate match for a string is required. For this step the computation
cost is determined by Algorithm 6 which has running time O(t · |s|).

4.6 Security Analysis

In this section, we analyze the security of our record linkage protocol. In par-
ticular, we want to show that no information regarding non-matching records is
disclosed to any adversary participating in the protocol.

81

4.6.1 Adversary Model

The adversary model that we adopt in our analysis is based on the definition
of semi-honest adversary (known also as Honest-But-Curious Adversary (HBC))
[37, 17], which forces the adversary to obey to the prescribed actions in the pro-
tocol but it does not prevent the adversary to learn extra information from the
protocol transcript. This means that the adversary can perform several attacks in-
cluding dictionary and frequency based attacks to infer the non-matching records.

In our protocol, the information that is exposed to each party is different and
varies with the role of the party in the protocol. It will be useful in our analysis
to summarize this information as follows. (1) Data holder parties (Party A and

B): the only information available from the protocol is the base B and the match-
ing records returned at the end of the matching process. Furthermore, each party
knows only his/her own original and embedded data. (2) Third party (Party C):
the only information received by this party is the thresholds produced by A, and
the set of embedded records received by the data holders. Using this model, we
analyze the security of our protocol in two situations. We first consider the pres-
ence of one adversary which plays the role of one party and second we study the
security in the case of collusion.

4.6.2 Security against one adversary

We start considering the case where the adversary plays the role of one party in
the protocol. Two different scenarios are possible under this assumption: (i) one
of the data holders (A or B) is an adversary, (ii) the third party C is an adversary.
In case (i), the only information shared among the two parties A and B is the
common base B which is proven to satisfy differential privacy. Therefore, the
adversary cannot learn anything about the presence or absence of any individual
record in the dataset held by the other party. In case (ii), the adversary can see
only the embedded data from the other two parties in the protocol and the set of

82

thresholds, but it has no access to the base, nor the original data of either party.
At this point the adversary could mount some attacks to reverse the embedding,
for example a frequency attack to infer the base. However, if no priori knowledge
on the characteristic of base (e.g. length of the grams) or domain information
about the records embedded (i.e. alphabet, length of the records) is available, it
is infeasible for the adversary to learn about the original non matching records.
Although the threshold values are available to the third party, this information
reveals only the maximum distance between matching records and it does not leak
additional information about the original data. In fact, the adversary cannot fully
take advantage of the threshold values since the embedding base is not available
to the third party.

It is important to notice that the differential privacy mechanism employed in
generating the base is crucial in providing privacy and security when one of the
data holder is an adversary. In fact, since the base of grams is differentially private,
the privacy is guaranteed between the two data holders. On the other hand, our
protocol does not extend this guarantee to the third party since both embedding
and threshold are data-dependent.

4.6.3 Security against collusion

In the case that one of the party and the third party collude, analyzing the poten-
tial disclosure risk becomes extremely challenging. In fact, the adversary has a
larger amount of information that it can use to break the security. For example,
without loss of generality, we can assume that parties C and A are malicious and
they share their information in order to identify the non-matching records of B.
In this case the adversary knows: the shared base B, the embedded data VA, VB,
the original data DA, and the matching records of B in the embedded space. With
this information, the adversary can easily determine which vector in VB represents
a non-matching record, and then he can try to identify the original string records

83

that map to non-matching vectors by performing several attacks. Clearly, in this
setting it is not possible to provide formal and complete guarantees of security.
However, we simulated several dictionary attacks and it turns out that for ev-
ery non-matching vector, the adversary could obtain a large number of candidate
strings that map to it. As a consequence, the adversary is unlikely to learn about
the original non-matching records. We will show in the experiments in Section
4.7.4 that our approach is resilient with respect to different dictionary attacks.

This resistance to dictionary attacks is largely due to our data-dependent em-
bedding strategy. Dictionary attacks have been shown to break the security of the
traditional protocols based on hashing functions, since the attacker can learn the
hashing map. However, in our protocol, the embedding function is data-dependent
and therefore a brute force attack using random strings will have few overlaps with
the base, and hence a large number of strings will be mapped to the same vector.
As we will show in Section 4.7.4, this data-dependent mapping enhances the util-
ity for matching records in the original datasets (low number of collisions) and,
at the same time, prevents the disclosure of information when an adversary tries
to learn the original data by embedding other random data (high number of colli-
sions). This property gives an important value to our protocol compared to other
approaches based on traditional hashing functions.

To add an additional secure layer to our approach, we can replace the party C

with a SMC protocol, where the computation of the distance between embedded
vectors can be performed using a secure inner-product protocol as in [?]. In fact,
the distance between vectors x̄ and ȳ can be approximated as follows: d0(x̄, ȳ)2 =
kx̄�ȳk2

2

= kx̄k2
2

+kȳk2
2

�2 hx̄, ȳi, where only the inner-product hx̄, ȳi is computed
in a secure way by the SMC protocol.

84

NAMES CITIES

N 150k 5k
lmax 15 23
lmin 4 3
lavg 7 8

Table 4.1: Datasets

4.7 Experiments

In this section, we present a set of experiments aiming to evaluate and understand
the overall utility of our protocol.

In our experiments, we use two real datasets, NAMES1 and CITIES2. The NAMES
dataset, contains a list of the most frequent surnames from the Census 2000, while
CITIES lists the top 5000 most populated cities in U.S. in 2008. Some of the
statistics of the datasets are summarized in Table 4.1, where lmax, lmin and lavg

are the maximal, minimal and average lengths of the strings, respectively. The ex-
periment and algorithm parameters, if not specified in the descriptions, assume the
default values as reported in Table 6.2. The protocols were implemented in Java,
and the simulations were conducted on an Intel Core i5 2.5Ghz PC with 4GB of
RAM. For mining and linking utility, we report the standard F

1

metric based on
precision and recall.

4.7.1 Embedding Performance

We start investigating some of the properties of our proposed embedding. In par-
ticular, we show the benefits of using a base formed of frequent grams over ran-
dom grams with two type of experiments.

First, we measure the utility results in terms of F
1

score for matching the records
1http://www.census.gov/genealogy/www/data/2000surnames/
2http://www.census.gov/popest/cities/SUB-EST2008-4.html

http://www.census.gov/genealogy/www/data/2000surnames/
http://www.census.gov/popest/cities/SUB-EST2008-4.html

85

Symbol Description Value
✏ Privacy par. 0.1

k Base size 75

qmin Min gram length 1

qmax Max gram length 3

t Edit operations {0, 1, 2}
hMAX Depth of PT lavg

✓ Threshold as in [21]

Table 4.2: Parameters

(a) Frequent grams (b) Random grams

Figure 4.4: Impact of grams base on the utility.

in the embedding space, where the transformation uses a base of frequent grams
and a base formed by random substrings respectively. The results for this com-
parison on the NAMES dataset are reported in Figure 4.4(a), 4.4(b). Similar results
have been obtained for the CITIES dataset and we omit them here. From these
figures, the base formed with frequent grams leads to higher utility in matching
the transformed records than a random base. Furthermore, the use of frequent
grams allows our map to better preserve the structure of the original data, and the
embedding results are considerably more robust in the presence of edit operations.

86

(a) NAMES dataset (b) CITIES dataset

Figure 4.5: Quality measure for the embedding.

(a) Utility vs Privacy (b) Utility vs Dim.

Figure 4.6: Mining Performance.

Second, we study how the distance between records is preserved in the embed-
ding. In particular, we consider a random sample S of records from both datasets
in input and we measure the overall deviation in distance caused by the embed-
ding. As a measure we use the notion of stress [?], which is defined as follows:

stress(S) =

P
x,y2S(dEdit(x, y)� d0(x̄, ȳ))2

P
x,y2S dEdit(x, y)2

(4.21)

From Equation (4.21), small values of stress indicate the ability of the embed-
ding to preserve the relative distance between the records after being mapped. We

87

(a) Exact Match (b) Approximate Match

Figure 4.7: Matching Performance.

(a) Utility in NAMES (b) Utility in CITIES

Figure 4.8: Utility vs distance threshold.

measure the stress produced by our strategy using a frequent and a random base re-
spectively. In our simulation, we use a sample S of 1k records from entire dataset
and we report the stress by performing multiple runs, and taking the average of
the measured stress for different size of the base (k). The results are illustrated
in Figure 4.5(a), 4.5(b). As the dimensionality increases the stress for both bases
decreases. This is not surprising since larger values of k enable the embedding
to provide a finer representation of the records. Furthermore, the stress for the
base of frequent grams is considerably lower than random grams which indicates

88

a lower deviation in the distance.

4.7.2 Mining Performance

In this set of experiments, we examine the utility of the mined frequent grams with
respect to the privacy parameter ✏ and the value k. We evaluate the performance
of our prefix-tree algorithm (PT) with different privacy allocation strategies. We
denote by linear, hybrid, ada and expo the linear, hybrid, adaptive and exponential
allocation strategies proposed in Section 4.3. Here, we report only the perfor-
mance obtained with the NAMES dataset, since similar results have been observed
on the CITIES dataset as well.

In Figure 4.6(a), as the privacy budget increases (less privacy), the utility for all
the techniques increases. This is intuitive, since larger values of ✏ lead to less noise
in perturbing the counts, hence better grams frequency are obtained. Among the
various allocation strategies, hybrid and linear achieve the best result. For small
values of ✏, the hybrid allocation strategy and ada are more accurate than the linear
approach, since the privacy budget can be better allocated among the level of the
tree. On the other hand, for larger values the linear has better utility.

Figure 4.6(b) confirms the intuition that increasing the number of grams k de-
creases the utility for the mining results. In fact, for larger values of k, it is more
likely to report infrequent grams as frequent because the relative frequencies of
the grams are closer while the noise injected remain the same. This increases the
chances to shuffle the grams, hence report grams that are infrequent as frequent.
In this case, the use of the hybrid strategy is more robust with the dimensionality
k.

In light of these results, we will equip our PT algorithm with hybrid and lin-
ear allocation strategies, denoted as PT-hybrid and PT-linear, respectively. These
approaches will be used in the mining step for the comparison with the state-of-
the-art technique for the rest of the experiments.

89

4.7.3 Linking Performance

To evaluate the performance of our solutions, we consider three different settings:
(1) the matching criteria (i.e. impact of global threshold vs. personalized threshold
in the embedding space), (2) the edit distance (i.e impact of the threshold in the
original space), and (3) the privacy level (i.e. impact of the base in the mining
phase). The details of this evaluation are reported in the rest of the section. For
computational reasons, for the NAMES dataset, the utility is measured on sets of
sampled records, which required a considerably lower running time to perform
pair-wise comparison with respect to the entire set of records.

Impact of the matching criteria.. We examine the results between the matching
based on global and personalized threshold. To demonstrate the advantage of our
personalized threshold, we compare the utility results in the record linkage ob-
tained both in case of exact match and approximate matching (one edit operation
allowed) on the NAMES dataset. The results for the exact matching are reported
in Figure 4.7(a), while the results with one edit are illustrated in Figure 4.7(b). In
our experiments, we test different values of global threshold in order to find the
best value that achieves the highest utility. The personalized threshold approach
(P. Th) achieves a F

1

score as high as the best result produced by the global thresh-
old strategy (G. Th). This clearly shows the advantage of personalized threshold
approach, as the optimal global threshold is hard to determine without a priori
knowledge in practice. In fact, even if we use the upper bound from Section 4.5.1,
the range of possible th values is from 0 to 75 while the best value is achieved
when th is between 1 and 2. Furthermore, the global threshold approach is very
sensitive to threshold values where even small changes can lead to a considerable
loss of utility in the matching results. This phenomena is clear in Figure 4.7(b),
where the ability to provide useful matching results for the global threshold strat-
egy is limited to one value. For the rest of the experiments, we will use a matching
criterion based on the personalized threshold which has been shown to be very ef-

90

(a) Exact NAMES (b) Approx. NAMES

(c) Exact CITIES (d) Approx. CITIES

Figure 4.9: Utility evaluations.

fective and more robust than the global threshold based method.

Impact of edit operations.. In Figure 4.8(a), 4.8(b), we present the impact of
edit operations on the utility of our protocol. In our matching criteria we consider
as matching records those strings that are within t edit operations. As the edits
increase the overall utility decreases for all the strategies tested. This is not sur-
prising, since as the number of edits increase, more grams are affected leading to
fewer grams shared with the base, hence lower utility results.

The edit operations considered in these simulations vary from 0 (exact match) to
2 edits (35% of the avg length of the strings in the dataset). The F

1

score decreases
from 0.99 in the case of exact matching to 0.36 when 2 edits are allowed for the

91

(a) Time vs base size (b) Utility vs base size

(c) Time vs data size

Figure 4.10: Performance Comparison.

NAMES dataset, while for the CITIES dataset stops at 0.60. As mentioned earlier,
this phenomena is due to the fact that the presence of edits drastically decreases
the number of shared grams between the matching strings and hence increases the
Euclidean distance between their corresponding vectors. Second, in the datasets
considered, many strings are short and therefore even the presence of few edits
could drastically change them. Concerning the performances, the PT hybrid and
linear approaches closely follow the utility results provided by the non private
miner, which again emphasizes the centrality of the embedding step on the final
utility.

Impact of the privacy parameter.. The relationship between the privacy param-

92

(a) MI for NAMES (b) MI for CITIES

(c) Number of collisions

Figure 4.11: Security Evaluation

eter ✏ and the final utility of our protocol is reported in Figure 4.9(a) - 4.9(d). To
understand the impact of the differentially private mining algorithms employed
in the mining phase, we compare our complete solution with a protocol where
the mining phase is done in an exact way using a non-private miner. As we can
see, the utility of our solutions approach the results obtained with the non-private
algorithm as ✏ increases. First, these experiments show the efficacy of our proto-
col, indeed we obtain F

1

scores higher than 0.99 for the exact matching in both
datasets. When approximate matching is considered, the utility moderately drops
to 0.82 in the NAMES dataset, and to 0.9 in the CITIES dataset. Second, these
results point out that the utility gap in the mining phase has minimal effect on the

93

final utility. This fact suggests that the embedding map plays a crucial role in the
overall utility.

Performance Comparison.. We compare our approach with the state-of-the-art
technique for secure record linkage proposed in [64]. The running time with re-
spect to the size of the input data are reported in Figure 4.10(c) while the depen-
dency with respect to the dimensionality of the embedding space are shown in
Figure 4.10(a). In our approach, we measure the time needed to mine the base for
each party, to generate the shared base, and to embed the data. While for the ap-
proach proposed in [64], we measure the time required to generate the base using
the heuristic and produce the embedding map.

In Figure 4.10(c), the running time for all the approaches scales linearly with
the size of the data in input. However, for our techniques, the time needed is
considerably lower. Also in Figure 4.10(a), the performance of our techniques
are significantly superior. Finally, in Figure 4.10(b), we report the utility with
different base sizes on the CITIES dataset. In this case, the Lipschitz embed-
ding provides slightly better utility for smaller bases, while our strategies achieve
similar results when k � 15. However, the dependency of the running time with
respect to k is exponential for [64], while in our approach is considerably lower.

4.7.4 Security

In this section, we evaluate the security for our protocol. First, we assume that the
third party is an adversary that wants to infer the original data from the embed-
ded vectors without knowing the base for the embedding. Second, we consider a
collusion between the parties A and C, which allows the adversary to access the
base.

Non-collusive attack setting.. In this case, we use the mutual information en-

tropy (MI) to measure the information that the adversary can gain by seeing the
embedded records in his/her task of inferring the original strings. The mutual

94

information is a standard measure for evaluating the security in terms of the de-
pendency of the encoded text with the original text [?]. Recently, Durham et al.
[28] used this measure for evaluating the security of several record linkage tech-
niques. Let X and ¯X be two random variables representing the original records
and the embedded vectors respectively. The mutual information MI(X, ¯X) be-
tween these two variables is expressed in term of entropy H as:

MI(X, ¯X) =

X

x2X,x̄2 ¯X

Pr[x, x̄] log
2

Pr[x, x̄]

Pr[x]Pr[x̄]
(4.22)

In our case, X is defined over a set of 1k strings randomly sampled from the origi-
nal dataset, while ¯X represents the random variable associated with the embedded
vectors. We measure the mutual information between the embedded records pro-
duced by our frequent base embedding and the approach in [64] with the original
strings. We performed multiple runs and took the average of the mutual informa-
tion values. The results are reported in Figure 4.11(a), 4.11(b). For both datasets,
our approach leads to lower mutual information with respect to [64] indicating
higher independency between the embedded vectors and the original strings and
thus a greater security. For both approaches, the mutual information increases as
the dimensionality increases since more information can be captured in the em-
bedding space.

Collusive attack setting.. In this case, the adversary knows the shared base and
the non-matching records of B in the embedded space, and therefore he/she can
perform a dictionary attack to identify the strings that embed to the non-matching
vectors. In our simulations, we estimate the number of possible candidate strings
that could embed to the same vector. Clearly, if this number is large it implies that
for the adversary it is hard to deterministically identify the original records of B.

We measure the number of collisions by simulating two different attacks: (1)
brute-force and (2) dictionary attack, which are based on the level of knowl-
edge the adversary has. In (1), the adversary knows only the length l of the

95

strings, so this attack consists in embedding all the possible strings of length l

(r. attack). In (2), the adversary knows the domain of the string records. In
our scenario for matching names, the adversary mounts an attack using a set of
the most popular names (n. attack). We measure the average number of col-
lisions of these attacks, and compare them with the collisions when original data
are embedded (data). The results are reported in Figure 4.11(c). As we can see,
the number of collisions is always greater than 10

3 for r. attack and almost
10

2 for n. attack. This means that the adversary can infer the original string
records of B with very low probability (0.001 and 0.01 respectively for these at-
tacks). We point out that only a small number of collisions is incurred when the
original dataset is embedded, which allows our matching strategy to achieve good
utility.

4.8 Conclusion

In this chapter, we presented a novel privacy preserving record linkage technique
for string records. First, we developed an embedding technique that performs a se-
cure transformation using a differentially private base extracted from the original
data. Second, we presented a complete study of the embedding procedure initially
proposed in [14] and provided a formal analysis of its properties. Furthermore, we
introduced the concept of personalized threshold for matching records in the em-
bedded space. As we have shown from our experiments, this new strategy with-
out requiring any a priori knowledge, allows us to obtain utility results as high
as the best results obtained by setting an optimal value of the global threshold.
We showed that our overall strategy presents comparable performance with the
start-of-the art technique in [64] while guaranteeing formal differential privacy
and better scalability. In [15], we deployed our solution into a complete record
linkage tool named LinkIT which enable privacy preserving record linkage. As
a future research direction, we are interested in integrating secure transformation

96

techniques for different attribute types.

97

98

99

Chapter 5

Analytics over Data Stream

In this chapter, we illustrate our solutions for privately computing the length of
the longest increasing subsequence in a streaming setting.

5.1 Differentially Private Computation of the LIS -
A Baseline Approach

In the rest of the chapter, we present our solutions for computing the length of
the LIS in the stream. Our approaches require the stream to be time-bounded, we
assume in fact that the length of the stream is T and it is given a priori.

Here we consider a baseline approach that solves the problem of privately com-
puting the length LIS by perturbing directly its real value at every time point. In
particular, for every new element �(i) = ai in the stream, the algorithm first com-
putes the real LIS(�[0, i]) (e.g. using any non-private solution, Patience Sorting
in this case) and then it adds a perturbation noise ⌘i. Given the privacy parame-
ter ↵, due to the composition property of differential privacy, to obtain an overall
mechanism of ↵-differential privacy, the baseline approach applies the Laplace
mechanism at each time point with parameter ↵0

= ↵/T . For each new incoming

100

element, it samples a Laplace variable ⌘i ⇠ Lap(1/↵0
) which will be used to per-

turb the real value of LIS(�[0, i]). Therefore, at every time i, the algorithm will
answer the LIS query by returning ˜l(�[0, i]) = LIS(�[0, i]) + ⌘i. We can observe
that the sensitivity for the LIS function is 1, since replacing an element from the
stream may change the length of the longest increasing subsequence by at most 1.
Therefore, perturbing the real value of LIS(�[0, i]) with ⌘i is sufficient to achieve
privacy. The utility of this approach is reported in the following theorem.

Theorem 5.1 (Baseline utility). The baseline algorithm is (�
p
T

↵
ln

1

�
, �)-useful for

computing the longest increasing subsequence.

Proof. The released length of the LIS at each time i is obtained by perturbing the
real length of the LIS with Laplace noise. Therefore, at every time step in the
stream we have that the additive error from the noise can be bounded as follows:

Pr[|⌘i| > �] 2

Z 1

�

↵

2T
e�x↵/Tdx = e��↵/T (5.1)

Hence, with probability at most � the additive error is at least T
↵
ln

1

�
. The final

result follows by normalizing the error by the LIS(�) =
p
T/�.

Space and Time Analysis. The memory and time complexity for this approach
are the same as the non-private algorithm used to compute the real length of the
LIS. Therefore, using the Patience Sorting algorithm for example, the space and
update time required are O(LIS(�)) and O(logLIS(�)) respectively.

5.2 Decomposition Framework

The baseline approach introduces an additive error that grows linearly with the
length of the stream. Therefore, for small LIS this error could dramatically de-
generate the utility of this solution. The reason for this large perturbation noise
is due to the fact that each individual element in the stream could affect all the

101

Figure 5.1: Block Decomposition example at time i: expired blocks (solid lines), active

blocks (gray) and the future blocks (dashed lines).

possible outputs of the algorithm over the entire stream. This phenomenon could
also occur for more sophisticated streaming algorithms that compute the LIS by
using a small sketch of stream ([38, 63] for example). Although such solutions
could reduce the space requirements, the use of a sketch does not directly reduce
the error due to the perturbation noise since an element of the stream could still
affect a large number of outputs (e.g. linear with the length of stream).

To overcome this problem, we decompose the computation of the LIS over seg-
ments of the stream. This intuition follows the idea proposed by Chan et al. [19]
where a linear and binary decomposition frameworks are employed to privately
compute the number of non-zero elements in a binary stream. Despite the simi-
larity in these decompositions, the computation of the longest increasing subse-
quence is harder to achieve than the simple count function. For this reason, we
study the utility loss in approximating the LIS inflicted by using the local infor-
mation of the stream. Due to space limitation, we consider only an extension of
the binary decomposition since it provides better utility with respect to the linear
decomposition proposed in the original paper [19].

In our work, we investigate the implications of decomposing the LIS compu-
tation over blocks (i.e. stream segments) both from the utility and complexity
perspective. It is important to note that the nature of the decomposition should
be data-independent to avoid additional privacy cost. In principle, any algorithm
ALIS that computes the LIS (either exact or approximate way) can be used as a
building block to compute the LIS on each stream segment so that the perturba-

102

tion noise required by the privacy mechanism can be reduced with respect to the
direct use of ALIS . On the other hand, by limiting our computation on segments
we introduce an approximation error.

In the rest of the section, we use the Patience Sorting algorithm [41] as a simple
building block. We prove the reduction in the perturbation noise and the approx-
imation error of our solution. We focus on this particular algorithm because it
allows us to have an internal procedure that computes the exact length of the LIS
over segments of the stream. In this way, we can directly measure how our decom-
position impacts the exact solution. Since the original Patience Sorting algorithm
computes not only the length of the LIS but also the elements forming the se-
quence, we use a modified version that only keeps the top element of the piles in
the data structure as illustrated in the Algorithm1. In this way, we can compute
the length of the LIS but using only O(LIS(�)) space.

Before presenting our technique, we illustrate some concepts that will be useful
in explaining our algorithm. A block B = �[j, j + b � 1] of size b represents
a continuous segment of b symbols in the stream �. Due to the dynamics of the
data in the stream, a block assumes three different states over stream depending
on the current time. At time i, the block B can be in one of the following states:
expired hence the new arrival does not affect the block B (i.e. j + b � 1 < i),
active when the new arrival is contained in the block B (i.e. j i j + b � 1)
and future hence B contains only upcoming elements (i.e. j > i). An example
of block decomposition of the stream is illustrated in Figure 5.1. The life cycle of
a block B consists of starting as a future block, becoming active, and finally the
block expiration.

5.2.1 Binary Decomposition

We start observing that in general the decomposition of the LIS over blocks may
incur large approximation error. In fact, by simply dividing the stream into blocks

103

Figure 5.2: Binary Decomposition example. At time 5 (six symbols), the algorithm

updates the active blocks (in gray). It computes the answer to the LIS query by summing

the contributions of B
2

and B

4

containing the 2 and 4 most recent symbols respectively.

and combining the length of their LIS as a answer could lead to an approximation
error that is proportional to the number of blocks used in the decomposition. To
reduce this error, we develop a decomposition using variable length blocks, where
the number of blocks in the stream decomposition is O(log T). We organize the
blocks in a binary tree where at time i the tree has log i levels. Each level l =
0, . . . , log i in the tree partitions the stream into disjoint blocks of length i/2l.
Figure 5.2 illustrates an example of binary decomposition of the stream.

Using this representation, each node k in the tree is associated with a block Bk

and it stores the perturbed value of the LIS(Bk). At any time i the algorithm
updates the noisy LIS of the active blocks in the binary tree, and it answers the
query LIS(�[0, i]) as illustrated in Algorithm 7.

Algorithm Description. In the loop at lines 3-5, the algorithm updates the piles
for the active blocks associated with the time i. In particular, the procedure
Update Piles implements the Patience Sorting algorithm as in Algorithm 1,
where in this case the update is performed independently on each active block B

for any new coming element �(i). At lines 6-9, the noisy length of the LIS for
each block that will expire is computed. At line 10, we compute the binary rep-
resentation of i + 1 and let i

1

< i
2

< · · · < im be the positions of non-zeros in

104

Algorithm 7 Binary Decomposition
1: procedure BINARY DECOMPOSITION(T,↵,�)

Input: upper bound on the stream length T ; privacy parameter ↵; event stream �

Output: ˜l(�) released longest increasing subsequence

2: for (i = 0, 1, . . . , T � 1) do
3: for (every active B at time i) do
4: UPDATE PILES(B,�(i))
5: end for
6: for (every block B that will expire at time i+ 1) do
7: LIS(B) number of piles for the block B

8: ˜

l(B) LIS(B) + Lap(2 log T/↵)

9: end for
10: Let i1 < i2 < · · · < i

m

be the positions of non-zeros in the binary representation of
i+ 1

11: ˜

l(�) 0

12: k i

13: for (j = i1, i2, . . . , im) do
14: B �(k � 2

j

+ 1) · · ·�(k) . Retrieve the block to reconstruct the LIS
15: k k � 2

j

16: ˜

l(�) ˜

l(�) +

˜

l(B) . Sum the noisy contributions of the expired block B

17: end for
18: Output ˜l(�)
19: end for
20: end procedure

such representation. Then the answer for LIS(�[0, i]) is computed by summing
up the length of the LIS for the blocks containing the most recent 2i1 , 2i2 , . . . , 2im

elements respectively. Therefore at each time i, the output result is obtained by
adding the contributions of at most ⇥(log i) blocks in the loop at lines 13-17.

Privacy Analysis. We can observe that each element affects at most log T blocks;
therefore, perturbing the LIS of each block with a random variable from Lap(log T/↵)

is sufficient to satisfy the privacy requirement.

105

Theorem 5.2 (Binary Decomposition Privacy). The Binary Decomposition achieves

↵-differential privacy.

Proof. In this decomposition, each element �(i) participates in the LIS of at most
log T active blocks. Therefore, for any two neighboring streams the difference in
L
1

-norm of their outputs can be bounded by log T . Therefore using Theorem ??,
it is sufficient to add to each LIS of each block a random variable from a Laplace
distribution with parameter log T/↵ to satisfy the privacy requirement.

Utility Analysis. This decomposition with variable length blocks allows us to
reduce the perturbation error due to the privacy mechanism. However, in this way
we introduce an approximation error that depends on the number of blocks. We
can observe that at most O(log T) blocks of variable length are needed to answer
a LIS query. The utility results for this decomposition are reported below.

Lemma 5.3 (Binary Block Error Bound). Let � be a stream of T symbols, and

let LIS(�) =

p
T
�

, where � is positive. Without loss of generality we assume

T = 2

t�1, and we consider a partition of the stream � into B
0

, B
1

, . . . , Bt�1

non-

overlapping blocks, where each block Bk is of size 2

k. Then in reporting the sum

of the longest increasing subsequence in each block, lis(�) =

Pt�1

k=0

LIS(Bk),

we incur the following approximation error.

LIS(�) lis(�)
(

log T · LIS(�) � � 1

(1 + log �
p
T) · LIS(�) � 2 [1/

p
T , 1)

(5.2)

Proof. First, we start noticing the following lower-bound lis(�) � LIS(�). In
fact, the part of the real longest increasing subsequence which is contained in each
block is at most the length of the longest increasing subsequence in the stream
segment represented by the block. Second, we prove the two cases separately.
For short value of LIS(�) (� � 1), we consider the case where each segment
in each block is monotonic but none of them can be concatenated to form an
increasing sequence in the entire stream. Then, we have that LIS(�) � LIS(Bk),

106

for k = 0, . . . , t� 1, which leads to log T · LIS(�) �
Pt�1

k=0

LIS(Bk) = lis(�).
For the case of long value of LIS (� 2 [1/

p
T , 1)), we proceed as follows. Let j be

a positive integer such that 2j�1 <
p
T/� 2

j . Therefore, for all the blocks Bk

with k � j we have that LIS(Bk)
p
T/�, otherwise there exists a monotonic

sequence which is longer than the longest increasing subsequence, hence we have
a contradiction. Furthermore, due to the binary tree decomposition the sum of
the length of the LIS for the blocks Bk with k = 0, . . . , j � 1 can be bounded as
follows.

j�1X

k=0

LIS(Bk)
j�1X

k=0

2

k
= 2

j � 1 2

p
T/� (5.3)

Therefore, the reported lis(�) can be upper bounded with the value below.

lis(�) =
t�1X

k=0

LIS(Bk)
j�1X

k=0

LIS(Bk) +

t�1X

k=j

LIS(Bk)

 2

p
T/� + (t� j)

p
T/�

⇡
p
T/�(1 + log �

p
T) (5.4)

This concludes the proof of the Lemma.

Theorem 5.4 (Binary Decomposition Utility). The binary decomposition algo-

rithm for computing the length of the longest increasing subsequence achieves the

following utility results.
(

((log T � 1) +

� log

3/2 T

↵
p
T

ln

1

�
, �)-useful � � 1

(log �
p
T +

� log

3/2 T

↵
p
T

ln

1

�
, �)-useful � 2 [1/

p
T , 1)

Proof. This decomposition has the advantage that the number of blocks combined
in estimating the length of the LIS is only logarithmic which leads to an approx-
imation error as shown in Lemma 5.3. This decomposition introduces a pertur-
bation noise which is a sum of at most O(log T) i.i.d. Laplace random variables
with parameter O(log T/↵). Let ⇠ =

P
k ⌘k denote the error due to the sum of

107

the Laplace random variables, we can use the result in Corollary 8.2 to bound this
quantity. Choosing ⌫ =

qP
k

log T
↵

q
2 ln

2

�
with probability at least 1 � �, the

quantity ⇠ is at most O(

log

3/2 T
↵

ln

2

�
). Therefore, the final utility follows using the

results from Lemma 5.3 and by normalizing this value by the LIS(�).

Space Analysis. The space requirement for this approach is related to the number
of active blocks that need to be updated and to the space complexity of the internal
procedure. Due to the nature of the binary decomposition at any time i there are
⇥(log T) blocks that are active. Using a similar argument as in Theorem 5.4, we
can show that the space complexity is O(LIS(�) ln(�2LIS(�))).

Theorem 5.5 (Binary Decomposition Space Comp.). Let LIS(�) be the length of

the longest increasing subsequence in the stream �, then the Binary decomposition

framework has space complexity O(LIS(�) ln(�2LIS(�))).

Proof. We begin by recalling that the internal procedure for computing the length
of the LIS is the Patience Sort algorithm, where we keep only the top of the piles.
At any time i in the stream, log T blocks are active, one in each level of the tree
structure. Furthermore, let j be a positive integer such that 2j�1 < LIS(�) 2

j .
Therefore for the blocks in any level i > j in the tree, we can upper bound their
space requirements with LIS(�)(log T�j+1), since LIS(�) is the current length
of the longest increasing subsequence. On the other hand, due to the nature of the
binary tree the space required by the blocks below the level i is 2j � 1. Therefore
the space complexity for this approach is O(LIS(�)(log T � j + 1)). Using the
notion that LIS(�) =

p
T/� and j = log(LIS(�)), the previous requirements

can be rewritten as O(LIS(�) ln(�2LIS(�))).

Time Analysis. The total update time for this solution is related to the updates
of the active blocks. Since at every time i there are ⇥(log T) active blocks, the
update time is O(log T logLIS(�)) using Patience Sorting algorithm.

108

Figure 5.3: Running example of the Hierarchy mechanism on the input stream

4, 5, 1, 6, 2, 3, 7, 8, b = 4 and m = 2.

5.3 Hierarchy Mechanism

In the previous section, we showed that the binary decomposition considerably re-
duces the perturbation noise in the final output compared to the baseline approach.
However, such technique suffers from the fact that the computation of the LIS is
generally hard to be decomposed in blocks leading in some cases to a large ap-
proximation error. To overcome this problem, we propose a new algorithm which
computes the LIS over the stream by simulating the behavior of the Patience Sort-
ing algorithm. In contrast to our previous approaches, this solution computes the
length of the LIS by smoothing the impact of each element with the purpose of
reducing the perturbation noise while achieving a good approximation ratio.

The main idea is to reduce the impact of those elements that stay too long in the
LIS so that the total noise required by the privacy mechanism is decreased. Given

109

an integer b > 0, we construct a series of m = ⇥(ln

T
b
) layers l

0

, l
1

, . . . , lm�1

with b buckets each, where at layer i each bucket contains 2i elements. Given the
series of elements with index {1, 2, . . . , T} in the stream, each layer simulates the
behavior of the Patience Sorting algorithm where in this case the original piles
are replaced with buckets that can contain multiple elements. In fact, at layer i
the elements in the range [(j � 1)2

i
+ 1, j2i] can be placed into the same bucket

j. Intuitively, each layer has a different granularity, in fact l
0

keeps the exact top
elements in the most recent b piles in the Patience Sorting algorithm, while l

1

keeps an approximation of the next 2b piles and so forth for the other layers. As
the original algorithm, our procedure computes the length of the LIS by counting
the number on non-empty buckets. In our case multiple elements may fall in the
same bucket; therefore, we use a scaling factor equal to the length of the bucket to
compute the contribution of each layer. Furthermore, in addition to insertion and
replacement moves allowed in the Patience Sorting algorithm, we introduce an
expiration move that forces elements that stay in a bucket at layer li for more than
2

ib iterations to be moved up to layer li+1

. The algorithm computes the length of
the LIS in the stream by adding the contribution at each layer. The code for this
procedure is reported in Algorithm 8.

Algorithm Description. The algorithm starts initializing a set of m layers con-
taining b buckets each, at lines 2-3. Within a layer i, each bucket is denoted with
Pi(j), for j = 1, . . . , b and it has size 2

ib. In the main loop, lines 4-21, each new
element coming in the stream is inserted in the first layer using the the same rule
as the Patience Sorting algorithm, lines 5-7. In the inner loop at lines 9-13, the
algorithm checks layer by layer to find the expired elements. When an expired el-
ement p in a pile Pi(j) is found, the algorithm removes p and inserts it in the next
layer. At line 14, the number of non-empty buckets for each layer is computed by
normalizing the number of elements within each bucket with the corresponding
bucket’s size. In the loop at lines 16-19, the perturbation noise is applied to each
count and finally the length of the LIS is returned.

110

Algorithm 8 Hierarchy Mechanism
1: procedure HIERARCHY MECHANISM(T,↵,�, b)

Input: upper bound on the stream length T ; privacy parameter ↵; event stream �; accuracy
parameter b
Output: ˜l(�) released longest increasing subsequence

2: m = ⇥(ln

T

b

)

3: Initialize each layer l
i

= [P

i

(1), . . . , P

i

(b)] i = 0, . . . ,m� 1 with b empty buckets
4: for (i = 0, 1, . . . , T � 1) do
5: Insert �(i) in l1

6: Find the largest P1(j) such that P1(j) �(i)

7: P1(j + 1) = �(i)

8: for (i = 0, . . . ,m� 1) do
9: Let p be the element that expires at l

i

10: Remove p from l

i

and insert it in l

i+1

11: Find the largest element in P

i+1(j) such that P
i+1(j) p

12: P

i+1(j + 1) = p

13: end for
14: Let Ne

i

be the number of non-empty buckets at layer l
i

15: ˜

l(�) 0

16: for (i = 0, 1, . . . ,m� 1) do
17: d

Ne

i

 Ne

i

+ Lap(mb/↵)

18: ˜

l(�) ˜

l(�) +

d
Ne

i

. Sum the noisy contribution of each layer
19: end for
20: Output ˜l(�)
21: end for
22: end procedure

We illustrate our hierarchy mechanism in the example below.

Example 5.6. Consider the situation in Figure 5.3. When the first element arrives

in the stream it is placed in the first bucket at l
0

as shown in (a). The second

element that arrives is 5, since it is larger than 4 it is placed in the next bucket

(b). The third element in the stream is 1. Since the insertion of the elements in

111

the buckets follows the same rules as the Patience Sorting algorithm, we find the

bucket that contains the smallest element larger than 1 and insert this element in

that bucket. Therefore, in our case, 1 overwrites 4 in the first bucket (c). At this

point the length of the LIS is 2, as represented by the number of non empty buckets

in l
0

. The algorithm proceeds in a similar manner of the next three incoming

elements (d),(e) and (f). After these new elements, the element 1 in l
0

is moved up

to l
1

since it has been present in l
0

for more than b steps and the new incoming

element 7 is inserted in l
0

(g). In the next step, the element 2 is moved up, and it is

inserted in the same bucket with the element 1. At the same time the new element

8 is inserted in l
0

(e). The reported length of the LIS is obtained by summing the

contribution of each layer. Layer l
0

contributes with Ne
0

= 3 and l
1

contributes

with Ne
1

= 1. Hence the algorithm reports a length of the LIS of 4 while the

exact length is 5.

Privacy Analysis. In this algorithm the contribution of each element on the LIS is
progressively decreased according to the layer in which the element appears. The
privacy result for our hierarchy mechanism is reported in the following theorem.

Theorem 5.7 (Hierarchy Mechanism Privacy). The Hierarchy Mechanism achieves

↵-differential privacy.

Proof. Given any two neighboring streams, we can observe that each element can
affect at most m layers over the entire stream. In particular, at l

0

an element
contributes to the LIS with a factor 1 for b times, at l

1

contributes with factor
1/2 for 2b and at the general level li contributes with factor 1/2i for 2ib times.
Let Ne be the vector of contributions for each layer for the input stream � =

a
1

, . . . , ai . . . , aT . Then, 8i 2 [1, T] and �0
= a

1

, . . . , a0i . . . , aT we have that

kNe(�)�Ne(�0
)k mb (5.5)

Then adding a random Laplace noise with parameter mb/↵ to the contribution
of each layer i, is sufficient to satisfies ↵-differential privacy. Furthermore, us-

112

ing Corollary 8.2 we can see that the additive error introduced by noise is only
O(

b
↵
log

3/2
(

T
b
) log(

2

�
)).

Approximation Error. Our algorithm smooths the contribution of each element
in the stream according to its layer leading to an underestimated value for the
length of the LIS. The following Theorem summarizes the approximation ratio in
the worst case.

Theorem 5.8 (Hierarchy Approximation Error). Let � be a stream of length T ,

and b be the number of buckets in each layer of our algorithm. Then, the hierarchy

mechanism returns a (1� T�b
T+b

)-approximation of the length of LIS.

Proof. Let k be the length of the LIS over the entire stream. We begin by showing
that this algorithm never overestimates the length of the LIS and then proceed by
showing the error in the underestimate. To understand why this algorithm always
reports a length of the LIS less or equal to the real length we consider the following
case. Let us assume that there exists an element �(j) in a bucket at level i > 0 in
our algorithm that differs from the Patience Sort. Since this element is extra in our
algorithm it means that there is an element �(j0), j0 > j that replaces �(j) in the
exact Patience Sort. Since �(j0) < �(j), we have that in our structure �(j0) has
replaced another element �(j00). Due to the nature of our algorithm this operation
could only occur in a layer i0 < i, hence in replacing �(j00) with �(j0) in our
algorithm we have a larger loss of contribution than replacing �(j). Therefore we
cannot have an overestimate length of the LIS.

Now, we examine the error in underestimating the length of the LIS. Consider a
worst case scenario where only the first k symbols in � contribute to the LIS, while
the rest of the stream does not increase the length of the LIS. In this situation,
as the stream proceeds the elements of the LIS that initially are in layer 0 are
progressively moved up introducing a small additive error. Below, we quantify
this error. Let m = log(

T
b
+ 1) � 1 be the number of layers in our structure,

113

then the maximum additive errors on the LIS is achieved when all the elements
forming the LIS are in layer m. This quantity is computed as follows.

mX

i=1

k

2

i
= k

✓
T � b

T + b

◆
(5.6)

Hence the returned value from our algorithm is lower bounded by LIS(�)(1 �
T�b
T+b

). This shows that our returned length ˜l(�) satisfies the following inequality.

LIS(�)

✓
1� T � b

T + b

◆
 ˜l(�) LIS(�) (5.7)

Therefore, our algorithm provides a (1 � T�b
T+b

)-approximation of the length of
LIS.

Space Analysis. Since this algorithm simulates the Patience Sorting algorithm
by keeping only the top of the piles forming the LIS, it follows that the space
complexity is linear with the length of the LIS in the stream O(LIS(�)).

Time Analysis. For any new incoming element in the stream, the total running
time is given by the cost required for updating each pile. There are at most
m � 1 buckets, one for each level, that need update, where each operation re-
quires O(log b) time. Since m = ⇥(log

T
b
), the update time is O(log b log T

b
).

This solution points out a strong connection between the approximation ratio
and the noise required to achieve privacy. We can see that increasing b has a
beneficial effect on the approximation ratio but on the other hand increases the
privacy cost. In fact, as an extreme case using b = T the algorithm returns the
exact length of the LIS but incurs a large perturbation noise. Compared with our
decomposition framework, this algorithm provides the user with a way to balance
the approximation ratio and the noise due to the privacy mechanism.

114

Table 5.1: Summary of results for LIS query over entire stream.
Method Error Memory Update Time
Baseline O(

�

p
T

↵

ln

1

�

) O(LIS(�)) O(log

p
T

�

)

Binary
O((log T � 1) +

� log

3/2
T

↵

p
T

ln

1

�

) where � � 1

O(log �
p
T +

� log

3/2
T

↵

p
T

ln

1

�

) where � 2 [1/
p
T , 1)

O(LIS(�) ln(�2LIS(�))) O(log T log

p
T

�

)

Hierarchy O((1� T�b

T+b

) +

b�p
T↵

log

3/2

(

T

b

) log(

2

�

)) O(LIS(�)) O(log b log T

b

)

5.4 Summary of Results

Table 5.1 summarizes the utility results of our proposed solutions. We can see
that both our strategies outperform the baseline approach in many perspectives.
We notice that the baseline approach incurs a large perturbation error which could
dramatically compromise the utility. Specifically, the additive error in the baseline
strategy grows linearly with the length of the stream. For the binary decomposi-
tion instead, we provide output-sensitive utility results showing the benefits of
this technique for different lengths of LIS. Due to the use of disjoint blocks, this
approach incurs a considerably smaller perturbation error with respect to the base-
line solution. In fact, the dependency of the error with respect to the perturbation
noise is only polylogarithmic in this case. Furthermore, we can observe that the
decomposition framework has small space requirements and update time. In prin-
ciple, the space and time complexity of this solution could be further improved by
using more sophisticated algorithms (e.g. [38, 63]) as internal procedure instead
of relying on the Patience Sorting. For count based statistic the binary decom-
position has been shown very effective; however due to the nature of the LIS,
this strategy incurs an approximation error. Our hierarchy approach specifically
addresses the LIS problem by directly simulating the Patience Sorting algorithm.
This procedure incurs a smaller computational time and it has small memory re-
quirements. Comparing the worst case performance of this technique with the
binary decomposition, we can observe that the decomposition framework is still
superior leading to a smaller additive error with the same approximation ratio.

115

This result is due to the fact that the hierarchy strategy suffers when the LIS con-
stitutes the initial part of the stream. In fact, as the execution proceeds the ele-
ments in the sketch are moved in higher level increasing the approximation error
over the stream. However, we can notice that in real scenarios such situation is
unlikely to occur because in many applications we can assume that the stream
presents trends over time.

5.4.1 Extensions

In this section, we describe how to employ our developed techniques to solve real
world problems.

Detecting trends in time-series data. Our proposed techniques can be extended
to effectively detect trends in time-series data by restricting the computation of the
LIS over windows in the stream. In fact, in monitoring applications, recent data is
more important than distant data; therefore, using a sliding window W , we limit
the computation of the LIS on the most W recent data. For example, a sudden
increase of price in financial data will lead to an increment in the length of the
LIS in the current window. Constraining the computation of the LIS on a sliding
window of length W is beneficial both from the utility and complexity perspective.
In fact, it has been shown in [7] that for the binary mechanism the use of a sliding
window reduces the impact of the privacy to a factor that is independent from the
length of the stream but it is only related to the size of the window W . A similar
result can be also derived for the hierarchy mechanism, where in this case, the
number of layers in the data structure depends only on the length of W rather than
the entire stream.

Approximate String Matching. The problem of computing the LIS is a classi-
cal string matching problem that has been extensively studied in computational
biology [40]. However, only few solutions have been proposed to privately match
biological sequences. Generally, these approaches provide privacy and security

116

in matching strings by applying cryptographic techniques [60]. However, due to
their high complexity these approaches may not be effective in real scenarios. In
this setting, we believe that our solutions can be very promising by providing for-
mal privacy guarantee and incurring a small computational overhead. Since the
problem structure of the LIS is similar to other popular problems for comput-
ing string similarity measures (e.g. edit distance), we believe that our hierarchy
approach could be a first step toward the design of efficient privacy preserving
algorithms for matching strings.

5.5 Conclusions

In this chapter, we considered the problem of privately detecting trends in stream
data. Specifically, we addressed the problem of computing the length of the LIS
while protecting the presence of single event in the stream. We developed two
different solutions that provide formal guarantee of privacy. The first approach
approximates the length of the LIS by assembling local information computed
on segments of the stream. The second approach constructs a small sketch of
the stream by exploiting the structure of the problem. Using a rigorous analysis,
we showed that these strategies provided significant benefits over the baseline
approach.

For the future, we consider to investigate two possible research directions. First,
we plan to further develop our extensions and turn our theoretical results into con-
crete algorithms to be applied to solve time-series monitoring and string match-
ing problems. Second, our proposed solutions provide important insights about
the privacy implications for computing complex ordered statistics. Therefore, we
plan to better understand what kind of privacy sketching algorithms can benefit in
this setting.

117

118

Chapter 6

Group Trip Planning Query

6.1 Problem Definition

In this section, we first formulate group route query problem and then prove the
hardness of finding an optimal solution.

Definition 6.1 (Location Graph). Let C = {c
1

, c
2

, . . . , cN} be the universe of

disjoint categories. A location graph G = (V,E) consists of a set of nodes V

and a set of edges E. Each node v 2 V represents a location, and an edge

e = (vi, vj) denotes a directed edge between vi and vj . Furthermore, each node

vi is associated with a set of categories C(vi) 2 C of the location represented

by vi, while each edge e = (vi, vj) is associated with a positive number �(e)

representing the cost of traveling from location vi to vj .

We represent G as a directed graph to better model the road-network constraints
that are present in real scenarios, where the traveling cost between two locations
may not always be symmetric. Our algorithmic solutions easily apply on undi-
rected graphs as well. Furthermore, we use a set of categories for each node
because in real settings a node might be a POI for multiple categories. For exam-
ple, a shopping mall may have many restaurants, a post office, a theater etc. Our

119

Figure 6.1: Location Graph, where each node is illustrated with a different shape repre-

senting the corresponding category.

solutions can also be adapted to consider hierarchical categories. An example of
location graph with eight categories is illustrated in Figure 6.1. Only one category
is associated with each node in this graph for visual simplicity.

Definition 6.2 (Route). A route r = hv
0

, v
1

, . . . , vni is a path that starts at v
0

and

ends at vn and sequentially visits the nodes v
1

, v
2

, . . . , vn�1

through the edges in

G.

Definition 6.3 (Route Cost). Given a route r = hv
0

, v
1

, . . . , vni, the cost of r is

defined as the sum of the cost of the edges visited in r as follows.

�(r) =
nX

i=1

�(vi�1

, vi) (6.1)

Definition 6.4 (Route Coverage). The route coverage for r = hv
0

, v
1

, . . . , vni is

defined as the set C(r) ✓ C of unique categories for the nodes visited in r, formally

C(r) =
n[

i=0

{C(vi)} (6.2)

120

In our representation, graph G is populated by locations labeled with categories
IDs. We assume that each user ui starts from his/her location si and wants to
reach a destination node ti following a route without violating a cost constraint
�i. Each user ui specifies a set of scores ↵i

j 2 [0,↵max] for each category cj

representing how much he/she wants to visit cj during the trip. We call this set of
scores the preference set of ui, which we denote with P(ui) = {↵i

1

,↵i
2

, . . . ,↵i
N}.

In addition, a weight wi is associated to each user, and it determines the impact
of user ui in the final itinerary. This weight can also be used to model user’s ex-
pertise regarding locations. For example, users living in the area are more reliable
than tourists. On the other hand, we can use uniform weights if we wish to treat
all group members equally. In the follows, we represent each user ui as a five-
tuple vector defined as ui = {P(ui),�i, si, ti, wi}. In our problem, we consider
the preference score for each user as a given parameter specified by the user. In
principle, this score could be extracted automatically based on the user’s history.

In this setting, we are interested in the problem of finding a feasible route for
a set of users, so that they can follow and jointly visit a set of locations related
to their individual preferences while maximizing the overall coverage of the pre-
ferred categories by the group. Below, we formalize these concepts by introducing
the notion of group route for a set of users.

Definition 6.5 (Group Route). Given a set of users U = {u
1

, u
2

, . . . , um}, a group

route (i.e. itinerary) I = hv
0

, v
1

, . . . , vli for the users in U is a route in G, such

that for each user ui there exists a path ri = hsi, . . . , I, . . . , tii of length at most

�i that starts from si and ends in ti. Furthermore, let C(I) be the set of distinct

categories covered by the itinerary I , we define the weighted preference score

Ps(I) of the itinerary for the users in U as the weighted sum of the single node

preference of each user, formally

Ps(I) =
X

c
j

2C(I)

mX

i=1

wi↵
i
j (6.3)

121

where ↵i
j = 0 if user ui does not specify a preference for the category cj .

The problem that we propose below is called Optimal Group Route query (OGR).
Intuitively, we want to find a route that all users can share while maximizing
their overall preferences among the specified categories. Consider for example
the location graph in Figure 6.1, where two users u

1

and u
2

specify their start-
ing points to be s

1

, s
2

and ending points t
1

and t
2

respectively. Furthermore, let
P(u

1

) = {↵1

3

,↵1

5

,↵1

8

} and P(u
2

) = {↵2

5

,↵2

6

,↵2

8

} be their preference sets, and
�

1

= 15, �
2

= 20 be their respective mobility constraint. Then the itinerary
I = hv

2

, v
4

, v
8

, v
9

, v
15

i represents a possible route that both users can traverse
during their paths from their start to their destination and covers part of the pref-
erences of the users (c

3

, c
5

, c
8

).

Problem 6.6 (Optimal Group Route Query). Given a set of users U = {u
1

, u
2

, . . . , um},

the Optimal Group Route Query Q = hU , Gi determines a group route I =

hv
1

, v
2

, . . . , vni with maximum preference score Ps(I) and such that all users

can traverse. Specifically, for each user ui, we return a path ri of cost at most

�i starting from si and ending at ti that traverses the computed itinerary I (i.e.

ri = hsi, . . . , I, . . . , tii).

In deciding the group interest in visiting a single category, we use the user’s
weight to represent the influence of each user on the final decision. In this way,
users with a larger weight have a stronger impact on the final score than users with
a smaller weight. Furthermore, the cost constraints limit how much single users
can detour from their routes to jointly visit the nodes that maximize the preference
score for the specified categories.

Our proposed problem requires the location graph to be explored in order to
search for the most profitable route that the users can traverse. Such formulation
resembles the Hamiltonian Path problem. The following theorem states the con-
nection between these two problems and show that the decision version of our
OGR problem is NP -complete.

122

Theorem 6.7 (Hardness of OGR Problem). The problem of deciding if there exists

a group route for a set of users that achieves preference score p on a location

graph G is NP -complete.

Proof. First, it is clear that OGR is in NP . Second, we show the hardness of the
optimal group route problem by reducing the hamiltonian path problem (HP) on
directed graph to it. Given an input graph G = (V,E), a starting node s and an
ending node t, the HP problem requires one to decide if there exists a hamiltonian
path from s to t in G. Given an instance for HP , we create a new instance for
OGR as follows. We consider a graph G0

= G, where each node vi 2 V is
labeled with a unique category C(vi) = {ci}, and the cost for each edge is set to
1. Then, we consider the input query Q = hU , Gi formed by only one user u with
start and end points s and t respectively, with cost threshold � = |V | � 1 and
with preference set P(u) = {↵

1

,↵
2

, . . . ,↵|V |}, where ↵i = 1 for i = 1, . . . , |V |.
Therefore, it is clear that a group route I with preference score p = |V | for user u
exists if and only if the original graph G has a hamiltonian path from s to t. Since
the reduction is polynomial with the size of the input graph G and given the fact
that HP is NP -complete, it follows that OGR is NP -complete.

We conclude this section by summarizing in Table 6.1 the frequent symbols used
in the rest of the paper.

6.2 Algorithms

In this section, we illustrate our proposed solutions. We start by introducing some
useful concepts that we heavily use in developing our solutions. Furthermore, we
also present the preprocessing step used to accelerate our algorithms.

123

Table 6.1: Table of frequent symbols
Symbol Description

�(e) Cost of the edge e

C(vi) Set of categories for a node vi

m Number of users

↵i
j Preference score of user ui for category cj

�i Mobility constraint for user ui

wi Weight for user ui

�j Global preference score for category cj

k Number of non-zero preferences in the input query

⇡(vi, vj) Shortest path from vi to vj

⇡⇤
p(vi, vj) Minimal path of profit p from vi to vj

6.2.1 Preprocessing Step

In the preprocessing step, we use the Floyd-Warshall algorithm [35] to compute
for all the pairs of nodes (vi, vj) the shortest path ⇡(vi, vj) in the original graph
from vi to vj . This information is used to construct the meeting graph (as we
will explain below) in order to speedup the search of the optimal group route.
We point out that this information is only related to the graph in input and it
does not depend on the query issued. Therefore, given the location graph we
can compute the shortest paths off-line and use this information when a query is
issued. Although the preprocessing of all shortest pairs could be computationally
intensive it is performed only once. Furthermore, such computation is standard in
many optimal route problems, see [18] for example.

Once the input query Q = hU , Gi is issued, we perform two preprocessing steps:
computing the meeting graph and evaluating the global preference score for each
category, to facilitate our algorithms.

Computing the Meeting Graph. In our problem formulation, we enforce the

124

constraint that all the users are able to visit the nodes forming the itinerary without
violating their cost limit. Therefore in our solutions, we restrict the search of the
optimal itinerary only on these special nodes. We denote these nodes as meeting

points.

Definition 6.8 (Meeting Point). A node v 2 V is a meeting point for a set of users

U = {u
1

, u
2

, . . . , um}, if for every user ui there exists a path starting from si and

ending in ti of length at most �i that passes through node v (reachable node) and

covers some of the categories required by the users.

With this definition we construct from the original graph G = (V,E) a sub-
graph GM = (VM , EM) as the induced graph from the meeting points of G

where the edges in EM are paths in the original graph that use only nodes that
are reachable by all the users. We call this graph GM = (VM , EM) meeting

graph for the users U in G. For example, in Figure 6.1, consider user u
1

start-
ing from s

1

and ending in t
1

with �

1

= 15, and u
2

starting from s
2

and end-
ing in t

2

with �

2

= 20. Then the reachable nodes for these two users are
{v

2

, v
3

, v
4

, v
6

, v
7

, v
8

, v
9

, v
10

, v
11

, v
15

}. Furthermore, let c
3

, c
5

, c
6

, and c
7

be the cat-
egories required by the users. Then the meeting graph GM = (VM , EM) is defined
as the subgraph induced by VM = {v

2

, v
3

, v
4

, v
7

, v
9

, v
10

, v
11

} where v
6

, v
8

, and v
15

are removed since they cover only the categories c
4

and c
8

that do not appear in
the input query. In addition, the edges involving v

4

, v
8

, and v
15

are replaced with
new edges representing the shortest paths between their adjacent vertices that use
only reachable nodes as shown in Figure 6.2(a). The algorithmic solutions pre-
sented later in this section have computational complexity related to the size of
the meeting graph. Although in the worst case GM = G, in real scenarios the
meeting graph is considerably smaller than the original graph G. In our experi-
ments section, we will illustrate this phenomenon and show how the size of GM

impacts the final performance. Furthermore, in computing the meeting graph we
can test the existence of a solution. In fact, if GM is empty, there is no possible

125

itineraries that the users can jointly visit. This result could be caused by mobility
constraints too strong or/and by the specified categories in the query.

The construction of the meeting graph can be performed in an efficient way
using the shortest paths information. We use a first phase, where for every node
v, we check if every user is able to pass through v and reach his/her destination
within his/her maximum cost constraint. For each user ui we test if �(⇡(si, v)) +
�(⇡(v, ti)) �i holds. If such inequality is satisfied for all the users, then node
v is a reachable node. Therefore, this step requires O(|V |m), where m is the
number of users in U and |V | is the number of nodes in G. Furthermore, let
R = RC

S
RNC denote the set of reachable nodes which is given by the union

of nodes covering some of categories in input query RC and RNC representing
those that do not cover any specified query category. In the second phase, we
remove the nodes in RNC along with their edges and we add new edges in EM if
the removed node is on the shortest path between its adjacent nodes. This phase
requires to process each node in RNC and its incident edges at most once, hence
it takes O(|RNC |2) operations in the worst case (i.e. complete graph). Therefore
the total running time in the worst case is O(|V |m + |RNC |2). We point out that
|RNC | < |R| << |V |, and the entire process is very efficient in practice since
real location graphs are quite sparse. In our experiments, we will measure the
contribution of this step on the final running time.

Computing Global Preference Scores. An additional manipulation on the loca-
tion graph is preformed using the information about the preference of each user.
From Definition 6.5, given the set of users U , for every category cj we can com-
pute a preference score �j (i.e. global profit) defined as the weighted sum of user
preference as �j =

Pm
i=1

wi↵i
j . Intuitively, this measures the contribution of each

category towards the global preference score.
Both the computation of the meeting graph and the scoring of the categories are

performed on-line, when the query is issued.

126

(a) Example of meeting graph (b) Extending minimal path ⇡

⇤
(vi, vt) to node

vj

Figure 6.2: Example of meeting graph and minimal paths

Here, we also introduce a score for the node in the meeting graph. This concept
will be used in our algorithms to evaluate the contribution in selecting a node to
extend an itinerary. For each node v in the meeting graph, we introduce a score
value �(v, I) that measures the increment of profit in an itinerary I if the node v is
visited, which is the total contribution of categories covered by v but not covered
by I already, formally:

�(v, I) =
X

c
i

2C(v)�C(I)

�i (6.4)

This computation can be performed in O(k) times, and in our solutions, we dy-
namically compute this score for only the nodes that are visited in the construction
of the itinerary.

6.2.2 Dynamic Programming

In this section, we develop a pseudo-polynomial dynamic programming algorithm
for computing the optimal itinerary. A possible way to tackle this problem con-
sists in exploring all the possible paths that the users can traverse together while
reaching their destination within their specific cost constraint and picking the one
that maximizes the global preferences. This simple brute-force strategy incurs a

127

large computational cost since the number of possible paths to explore could grow
exponentially with the number of nodes in the graph. However, we observe that it
is not necessary to explore all the paths and we focus our search only on special
shortest paths instead.

Consider the existence of an optimal itinerary I⇤ with optimal value Ps(I⇤)

that starts from node vi and ends in vj in the meeting graph GM . Then we can
compute an equivalent itinerary of profit Ps(I⇤) by computing the shortest path
between vi and vj satisfying the following properties: (1) the total profit score
of the path is exactly Ps(I⇤) and (2) all the users are able to traverse such path
starting from their source and ending in their destination. On the other hand, if
such path does not exist then there is no itinerary of profit Ps(I⇤) between vi and
vj in the meeting graph. Based on this observation, our algorithm aims to compute
the shortest path for every pair of nodes with profit score exactly p. If such path
exists and all the users are able to traverse it, then this path forms an itinerary of
profit p for the users and it can be extended. Among all the resulting paths with
different profit values p, we pick the one with maximum profit. In the rest of this
section, we present the tools and concepts used in developing our solution.

Minimal Paths. To illustrate our approach, we start by fixing a source node vi and
use such node as a starting node for the group route in the meeting graph. Then,
for every new node vj encountered in traversing the meeting graph, we compute
a set of paths called minimal paths, which are used to determine the candidate
itineraries from vi to vj . The definition of minimal paths is presented below.

Definition 6.9 (Minimal Path). Given a profit score p, a path from vi to vj is called

minimal path of profit p, denoted as ⇡⇤
p(vi, vj), if it has minimal cost among all the

paths from vi to vj with profit exactly p.

⇡⇤
p(vi, vj) = arg⇡(v

i

,v
j

)|Ps(⇡(v
i

,v
j

))=p min{�(⇡(vi, vj))} (6.5)

Given a profit value p, these paths have the property to be the shortest ones

128

achieving such profit, therefore it is sufficient to examine only these paths to de-
termine the presence of an itinerary of such profit.

Example 6.10. Consider the meeting graph illustrated in Figure 6.2(a), where

the categories required in the query are c
3

, c
5

, c
6

, and c
7

. Furthermore, let v
2

be

the candidate starting node for the itinerary and v
9

be the ending node. Given

the input query, we can observe that the maximum profit achievable for the op-

timal route is p = �
3

+ �
5

+ �
6

+ �
7

. In this situation, there are two possible

paths ⇡
1

and ⇡
2

that can achieve such profit. Where ⇡
1

= hv
2

, v
7

, v
4

, v
9

i and

⇡
2

= hv
2

, v
3

, v
10

, v
11

, v
9

i. Among them, ⇡
2

is a minimal path since �(⇡
2

) < �(⇡
1

).

Therefore, if all the users can traverse ⇡
2

without violating their distance con-

straint, we can extend ⇡
2

and obtain the answer for the group route query. In

our solution, we limit the search for the optimal route only to the minimal paths,

avoiding the explicit enumeration of all the possible paths.

In general, for a given pair of nodes (vi, vj) and a profit value p, there exists
multiple minimal paths between vi and vj achieving a profit p. We observe that
give a node vj and a profit value p, any two minimal paths ⇡

1

and ⇡
2

from vi to
vj with profit p that cover the same set of categories are equivalent for us. Hence,
we can just select one representative path among them. The following Lemma
bounds the number of minimal paths stored by our algorithm for every new node
encountered in our search.

Lemma 6.11 (Number of Minimal Paths). Given a starting node vi, and the num-

ber of non-zero categories k specified in the input query Q = hU , Gi, the total

number of minimal paths from vi to any vj is at most 2k.

Proof. Since the maximum number of categories that the users can select is k, for
any node vj the maximum number of minimal paths achieving profit p is equal
to the number of subsets S ✓ {�

1

,�
2

, . . . ,�k} that sums to p. Since there are at
most 2k possible combinations of profit achievable, we use this as a upper bound
on the number of minimal paths.

129

Paths Construction. In the rest of the section, we develop a dynamic program-
ming algorithm for computing the minimal paths. Let �i be the global profit score
of a category ci specified by the users in U . Then, we can upper bound the maxi-
mum profit of the itinerary with pmax =

Pk
i=1

�i since the global preference score
of each category can be counted at most once. We use this information to guide
our search for the optimal itinerary. In fact, for every p 2 [0, pmax], we compute all
the minimal paths for any pair of nodes (vi, vj) in the meeting graph achieving a
total preference score equal to p. In particular, for a starting node vi, our algorithm
fills a table Ci, where the entry Ci[p, j] = {P =< {⇡

1

, . . . , ⇡l} >, �} represents
the set P of the minimal paths from vi to vj with profit p covering different set
of categories, and where � represents the cost of such paths. Furthermore, since
the preference score for the itineraries is defined on a unique set of categories, we
need to keep track of the categories covered so far in our path extension. In fact,
multiple nodes of the same category contribute only once to the profit for such
category. To efficiently maintain this information, we index the paths in P using
a hashmap. The computation of the minimal paths from node vi is guided by the
following observation. Given a set of minimal paths P ending at node vt of profit
value p (see Figure 6.2(b) for example), the set of paths for the neighbouring nodes
vj reachable with an edge from vt can be computed as follows. For each minimal
path ⇡i, we evaluate the profit score �(vj, ⇡i) of each adjacent node vj , then the
path ⇡i can be extended to form a path of profit p+�(vj, ⇡i) from vi to vj . Among
all these resulting paths from vi to vj we update the entry Ci[p + �(vj, ⇡i), j] by
keeping only the shortest paths computed so far. An example is illustrated below.

Example 6.12. Consider the graph reported in Figure 6.1, and let v
2

be the start-

ing node for our procedure. Figure 6.3 illustrates two possible cases that occur

during the minimal paths extension. In Figure 6.3(a), the minimal path from v
2

to v
3

is being extended to node v
10

. Since v
10

covers the category c
6

that is not

currently covered by the minimal path to v
3

, its score values with respect to the

current minimal path is �
6

. Therefore, such node is selected to extend the current

130

(a) Minimal Path to node v

10

(b) Minimal Path to node v

11

Figure 6.3: Example of paths computation

minimal path to v
10

with a total profit of �
3

+ �
6

+ �
7

. In Figure 6.3(b) when the

node v
11

is considered, its score value is 0 since it belongs to a category already

covered by the current minimal path to v
10

. Therefore, the profit for the minimal

path reaching v
11

is not increased.

Minimal Path Algorithm with Single Source. Our procedure is outlined in Al-
gorithm 9. The idea of the algorithm is based on the Dijkstra’s algorithm for
one-source shortest path [27]. We keep a heap Q for all the possible entries in the
table Ci, where the key of any entry Ci[p, j] is the minimum cost path from vi to
vj computed so far with profit p. We start by initializing the entry table and the
first entry to insert in the heap at lines 2-7. In lines 10-30, we try to extend the
current set of paths reaching vt with profit p to the nodes vj connected with an
edge from vt. In the loop in lines 12-17, we create an index CP which stores all
the candidate path to vj by profit value p

1

. This profit is computed by evaluating
the score of the node vj with respect to the categories covered by the path ⇡. In
the next loop at lines 19-29, we try to update the minimal paths to the node vj .
In particular, we test if these paths have a lower cost than those already computed
paths for node vj (lines 22-27). Then, we can properly update the paths for the
entry Ci[p0, j] and their respective keys in heap Q at line 28.

131

Lemma 6.13 (Correctness of Algorithm 9). When Algorithm 9 terminates, the

entry Ci[p, j] contains the minimal paths of profit p from vi to vj .

Proof. In a similar way as in the shortest path algorithm, we can think the ele-
ments removed from the queue Q at line 10 forming a set S of pair (p, j) where
the minimal paths of profit p to vj are known. Therefore in the follows, we show
that this statement holds during the entire execution of the algorithm. We proceed
by proving it by induction on the size of S .

• The base case consists in |S| = 1, where S = (�(vi), i) corresponds to
Ci[�(vi), i] which is the minimal path from vi to vi with profit �(vi). There-
fore, the statement holds in this base case.

• Let (p, j) be the next entry inserted into S extended by an entry (p, t0) added
into S in the previous iteration. Furthermore, let Ci[p, j] be the entry rep-
resenting the path ⇡p(i, j) extended from Ci[p0, t]. Consider any other path
⇡p(i, j) from vi to vj with profit p, and let (p00, z) be the first entry out-
side S such that ⇡p(i, j) traverse vz with score p00. Since in Algorithm 9
we remove the entries in Q according to their distance from vi, we have
that �(⇡p(i, j)) �(⇡p00(i, z)) �(⇡p0(i, t)), therefore the path ⇡p(i, j) is a
minimal path.

Running Time for Single Source. Here, we analyze the running time for this
algorithm with respect to the number of categories specified by the users and the
size of the meeting graph GM = (VM , EM). First, we start analyzing the cost
of testing if the current set of paths can be extended, in the loop 12-17 in Algo-
rithm 9. Given each path ⇡, we compute the score of the node vj which requires
inspecting the categories for the nodes used so far; therefore, O(k) operations for
each path are needed. In the loop at lines 19-29, we update the paths and we just

132

need to keep at most one path for each set of categories. Since, the minimal paths
are indexed by their covered categories, the cost for performing such operation
is O(k). Furthermore, the set P of paths computed for each entry in the table
grows exponentially only with the number of categories k. In fact, given a node
vj and profit value p, any two minimal paths ⇡

1

and ⇡
2

that lead to vj with profit
p and cover the same set of categories are equivalent for us during the entire al-
gorithm. Hence, we can just store one representative for these paths. Therefore,
using Lemma 6.11, we have that the overall cost for testing and updating the set
of minimal paths is O(k2k). Second, the computational cost of our algorithm de-
pends on the heap operations performed during the execution. Since the size of Q
is fixed, we have at most |VM |pmax insert and delete operations. The most inner
loop looks at each path in P , which are at most 2k. Furthermore, for each node
vj associated to an entry we touch all its edges. Therefore, we have |EM |pmax

set key operations in total. Hence, using a binary heap gives an overall running
time of O(pmax(|VM | + |EM |) log(|VM |pmax) + k2k|EM |pmax). From Minimal

Paths to Itinerary. Algorithm 9 computes a candidate itinerary from a fixed
starting node vi; however, in practice we do not know which node is the start-
ing point for the itinerary in the meeting graph. Therefore, we use our procedure
for every node vi in the meeting graph. Although this strategy requires testing
each node in the meeting graph, the size of such graph is considerably smaller
than the original graph G, leading in many cases to small overall computational
cost in practice. Running Algorithm 9, we fill a table C where entry Ci[p, j] rep-
resents the minimal paths from vi to vj with profit p. Therefore, to retrieve the
optimal itinerary I⇤ we proceed to examine the table C starting from the entry
with maximum profit and for every pair of nodes (vi, vj), we pick the pair that can
be extended to the destination of each user without violating the cost constraints.
Once the itinerary I⇤ = hvi, . . . , vji is determined, we return a route ri for every
user ui, where ri = h⇡(si, vi), I⇤, ⇡(vj, ti)i obtained by concatenating the shorted
path from si to vi with the returned itinerary I⇤ and the shorted path from vj

133

to ti. The complete procedure is illustrated in Algorithm 10. Overall Running

Time. The cost for testing an itinerary has O(m) computational complexity, since
each user is involved in the test. Furthermore, in our approach there are at most
O(|VM |2pmax) itineraries on the entire meeting graph. Thus, the running time for
this step is O(m|VM |2pmax). Since the information about the pairs-shortest path
is pre-computed in the preprocessing step, the overall complexity depends on the
size of the meeting graph and the internal procedure in Algorithm 9. Iterating
such procedure for every node in the meeting graph, we have total running time
of O(pmax|VM |(|VM |+ |EM |) log(|VM |pmax) +k2k|EM ||VM |pmax). Although we
can observe that the running time is exponential with the number of categories
in the query, in practice we can think k as a small number with respect to the
graph size and therefore such dependency is dominating the overall complexity.
However, the running time is still exponential with the input size, since the de-
pendency with respect to the number of bits to represent pmax is exponential. As
a final note, our solution can be parallelized. In fact, we can distribute the compu-
tation of the itineraries in Algorithm 9 to multiple processes which could improve
the performance.

6.2.3 Approximation Algorithm

The dynamic programming presented in the previous section takes advantage of
the profit value p to search all the possible minimal paths in the meeting graph
satisfying the mobility constraints for the users. Although in this way we avoid
exploring all the possible paths, the algorithm could still incur high computational
cost due to the large value of pmax. In fact the algorithm in Section 6.2.2 presents a
pseudo-polynomial dependency in its running time with respect to the magnitude
of the total maximum profit. In principle, users with heavy weight and large pref-
erence score could lead to large value of pmax degenerating the performance of the
algorithm. In this section, we address the pseudo-polynomial part of the computa-

134

tional complexity of our dynamic programming, where the running time linearly
increases with value of pmax rather than the number of bits used in its represen-
tation. For the approximation strategy, we use a similar technique as in FPTAS
(Fully Polynomial Time Approximation Scheme) for the Knapsack problem [25].
Given ✏ an approximation parameter, our approach scales down the global pref-
erence score �i of each category ci to ˆ�i, so that the maximum score achievable
pmax by any itinerary is a polynomial function of the number of categories k in
the query input. The approximation algorithm is outlined in Algorithm 11, while
the approximation ratio is proved in the following theorem.

Theorem 6.14 (ScaledDP approx). thmscale The ScaledDP algorithm returns a

(1� ✏) approximation of the optimal itinerary.

Proof. Let ˆI be the itinerary returned by the dynamic programming procedure on
the scaled graph and I⇤ be the optimal itinerary in the original graph. Furthermore,
let Ps(I) be the preference score of the itinerary ˆI obtained by scaling back its
score, and let p̂i denote the scaled score for the node vi. Therefore, we have

Ps(I) =

✓
�max

�

◆
Ps(ˆI) =

✓
�max

�

◆X

v
i

2ˆI

ˆ�i (6.6)

Furthermore, since we obtain an exact solution using dynamic programming on
the scaled graph we have that

P
v
i

2ˆI
ˆ�i �

P
v
i

2I⇤
ˆ�i. Using this inequality and the

fact that the floor operation decreases the scaled profit by at most one we proceed
with the following series of inequalities.

✓
�max

�

◆X

v
i

2ˆI

ˆ�i �
✓
�max

�

◆ X

v
i

2I⇤

✓
�i

�max

� � 1

◆
(6.7)

X

v
i

2I⇤
�i �

✓
�max

�

◆ X

v
i

2I⇤
1 � Ps(I⇤)� �max

k

�
(6.8)

Combining the last inequality with (6.6), we have that Ps(I) � Ps(I⇤)� �max✏,
furthermore by the optimality of I⇤ we have that Ps(I⇤) � �max. Hence we
conclude that Ps(I) � Ps(I⇤)(1� ✏).

135

Running Time. Since this algorithm uses Algorithm 10 as sub-procedure, we
have that its running time is O(

k2

✏
|VM |(|VM |+|EM |) log(|VM |k2

✏
)+k2k|EM ||VM |k2

✏
))

which is polynomial in 1/✏.

6.2.4 Greedy Algorithm

The greedy algorithm that we propose constructs an itinerary by selecting the
nodes in the meeting graph that can best increase the score of the itinerary. Intu-
itively, this approach aims to iteratively construct a feasible route by selecting the
best node to visit in each iteration. This choice is performed in a greedy manner
by computing the profit of each node with respect to the categories covered by the
partial route constructed so far. Our approach is illustrated in Algorithm 12.

The procedure receives as input the original graph G, the set of users U and
the meeting graph GM pre-computed. Starting from an empty itinerary I , the
algorithm computes all-pairs shortest paths within the meeting graph. In the loop
in lines 5-20, the algorithm scores each node v in the meeting graph according
to the categories in the node and those already covered by the current itinerary
(C(I)) as in Equation (6.4) and it selects the highest score �. If such score is 0,
all the nodes with some profit have been already visited on the itinerary I and
then we can exit the loop and return (lines 8-10). Otherwise, the set of candidate
nodes V (�) with profit � are retrieved. Among these nodes the algorithm picks
the closest node to the end of the itinerary constructed so far (line 13). Notice
that, as the first node in the itinerary, among all nodes with maximum profit, we
select the node with minimum average distance from all the starting points of the
users. For the selected node, at line 14, the algorithm tests if it can be attached
to the itinerary without violating the cost constraints of each user. At lines 15-18,
the current itinerary is extended with the selected node, the cost and the categories
covered by the itinerary are updated.

Running Time. In the greedy approach, we use a hash table to index all the nodes

136

in the meeting graph according to their score �. The algorithm requires comput-
ing the all-shortest paths within the meeting graph and using the Floyd-Warshall
algorithm it takes O(|VM |3) time. Let k be the number of unique categories spec-
ified by all users in input (i.e. non-zero preferences), then the scoring process at
line 6 takes O(k|VM |) time. Furthermore, in the loop in lines 5-18 each node is
tested at most once for each user, therefore the total complexity for this algorithm
is O(km|VM |2 + |VM |3), where |VM | denotes the number of meeting points. In
practice, since the size of the meeting graph is small compared to the original
graph, the algorithm is very efficient. Utility. In this paragraph, we analyze the

effectiveness of the greedy algorithm. Given an itinerary query Q = hU , Gi, re-
call k is the number of non-zero preferences specified by the users. The following
theorem states the approximation ratio for our greedy solution.

Theorem 6.15 (Greedy Approximation). The solution returned by the Greedy ap-

proach is a (1/k)-approximation to the optimal solution.

Proof. Let IG be the itinerary computed by the greedy algorithm and I⇤ be opti-
mal solution. It is clear that Ps(IG) Ps(I⇤), since our algorithm picks the point
in a greedy way by their score. To show the underestimate error in the greedy al-
gorithm, we proceed as follows. We consider the case where the greedy algorithm
returns an itinerary IG that contains only one node v that covers only one category
with maximum score � = maxi=1,...,k{�i}, while the optimal solution consists in
an itinerary I⇤ that covers all the categories. Therefore, we have that

Ps(I⇤) =
mX

i=1

wi

kX

j=1

↵i
j =

kX

j=1

�j k · � = k · Ps(IG) (6.9)

Therefore, we have that Ps(I⇤)
k
 Ps(IG) Ps(I⇤).

137

6.3 Extensions of our Solutions

In this section, we discuss some possible extensions which enable our solutions
to handle more realistic group route queries. In particular, we consider the use
of POI specific quality measure, order constraints of the categories, and problem

relaxation.

POI Quality Measure. In real scenarios, users may prefer to visit POIs that are
popular within the specified categories. For example, tourists in Rome will likely
prefer to visit a popular and high-rated museum like the Borghese Gallery rather
than an unpopular or isolated museum. Therefore to improve the quality of the
planned route we can consider a POI’s specific quality measure in our itinerary
construction. A possible way to capture the popularity/quality notion associated
with POIs is to use a finer granularity for the categories in our definition. For
example, POIs in the same category could be further refined into sub-categories:
popular and unpopular with respective scores. In this way, we could model the
different contributions of the selected POIs on the final score for the places visited
by the group.

Order Constraints for Categories. Our developed solutions are mainly focused
on the optimality of the route, hence the order in which the categories are visited is
computed such that the optimal preference score is achieved. Nevertheless, in real
applications, users may want to specify a preferred order in which the categories
should be visited. For example, a group of friends may prefer have dinner at some
restaurants first and successively watch a movie in some theater. We can observe
that the presence of order constraints on the categories reduces the search space
for the optimal solution. In fact, among all the possible itineraries covering the
input categories, only a small portion of them may satisfy the order constraints. In
principle, we can adapt our solutions to take into account the specified constraints
during the path construction process. The greedy approach can be easily adapted
by testing the order satisfiability for the categories covered by the current itinerary

138

each time a node is attached to the partial solution. The extension of the dynamic
programming solutions can be achieved by adapting the procedure in Algorithm 9
as follows.

We consider the path extension process for the One Source Path proce-
dure, and we illustrate how such strategy can be easily modified to handle order
constraints. For example, we can assume that users specify a total order con-
straint on the input categories c

1

< c
2

< · · · < ck, which requires that in the final
itinerary the selected node in c

1

has to be visited before the node in c
2

and so on.
Therefore, when a new node vj is reached from the current set of paths P ending at
node vt, in the for-loop at lines 12-17 in Algorithm 9, we test if the presence of the
category c(vj) on the path violates the specified order constraint. By examining
the current set of paths P to vt, we can easily select those that with the insertion of
vj satisfy the order constraint on the categories and use them to updated the entry
Ci[p + �c(v

j

)

, j]. The rest of the algorithm will remain the same. In this way, we
can enable users to specify order constraints on the categories they want to visit
and solve their query by using our dynamic programming based solutions.

Problem Relaxation. We discuss two possible relaxations of our optimal itinerary
query. We first show how to extend our proposed solutions to handle a multi-
objective formulation of the optimal itinerary problem and then describe a post-
processing phase to refine the itinerary at user level.

• In some cases, users are interested in combining both distance traveled and
profit achieved as utility function transforming the group itinerary problem
to a multi-objective optimization problem. In principle, we can adapt our
dynamic programming based solutions to take into account this new prob-
lem formulation. For example, given a parameter ✓ 2 [0, 1], we can assign
to each itinerary I computed by our solutions a score as follows:

score(✓, I) = ✓Ps(I)� (1� ✓)�(I) (6.10)

139

where Ps(I) is the profit of I and �(I) is the total distance traveled by
the users using I . In fact, our dynamic programming strategies compute
for each possible profit p an itinerary I with that profit and with minimum
length. We can use the length of the itinerary for computing the total dis-
tance traveled by the users and finally evaluate the score in equation (6.10).
In this way, by changing ✓, users can decide the best itinerary according to
its profit and length allowing them to maximize the overall preference and
minimize the total travel distance.

• Our returned itinerary is shared among all the users, therefore it could occur
that a user visits some locations that do not belong to his/her preference list.
Therefore, to further enhance the quality of the returned itinerary, for each
user we can consider a post-processing step that refines the itinerary ac-
cording to each user’s preferences. Specifically, for each user we construct
a new itinerary by selecting the nodes, in the optimal itinerary returned by
our solutions, that belong to the user’s preference list. Then, we connect
them by selecting the shortest path between them. This post-processing
phase is very efficient, since the information about the all-shortest paths is
pre-computed, the overall running time is O(m|I|), where |I| is the number
of nodes in the itinerary. In this way, we guarantee that: (1) users share the
itinerary on locations with common categories and (2) each user’s traveled
distance is minimized.

6.4 Experiments

In this section, we study the performance of our proposed algorithms. For sim-
plicity, we denote by DP, SDP, and Greedy, the dynamic programming (Sec-
tion 6.2.2), the approximation approach using scaled dynamic programming (Sec-
tion 6.2.3), and the greedy solution (Section 6.2.4), respectively. We also tested

140

the brute-force algorithm mentioned in Section 6.2.2, however due to its extremely
long running time, we do not show its results.

6.4.1 Settings

Location Graphs. In our experiments, we consider two datasets: calmap1 [52],
and rome2. The first dataset represents a real world graph, which has been ob-
tained by combining the information about the California road-network and the
collection of point of interests (POIs). The POIs are classified into 63 different
categories, such as hospitals, airports, etc. In the original work of Li et al. [52],
the location graph is undirected; however, in our experiments we manipulate the
graph by adding two directed edges for each arc in the original graph. The final
location graph has more than 100k nodes, each associated with one category, and
220k edges. The second dataset is generated from the real road-network of the city
of Rome, with 3353 vertices and 8870 edges. Vertices correspond to intersections
between roads and edges correspond to roads or road segments. For this dataset,
we synthetically generate the POIs on the nodes by considering 60 categories
according to a power-law distribution and we consider nodes covering multiple
categories. We use this dataset to understand how different POI distributions and
category density impact the performance of our algorithms. Our algorithms are
implemented in Python and the results are obtained on a Intel Xeon machine at
2.3Ghz.

Algorithms setup. For our proposed approaches we use several settings to have
a comprehensive analysis of their performance. If not specified in the text the de-
fault parameters for the algorithms assume the values reported in Table 6.2. In our
simulations, we introduce some simplifications for facilitating the experiments.
First of all, we defined a specific mobility constraint �i for each user ui. We

1http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm
2http://www.dis.uniroma1.it/challenge9/download.shtml

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.dis.uniroma1.it/challenge9/download.shtml

141

choose to define such value as a ratio of the length of the shortest path ⇡(si, ti)

between the user’s starting point si and destination ti in the location graph. In
this way, we have a threshold value that depends on the specific user’s route. Sec-
ond, in generating user queries, we pre-compute the preference score � for the
categories specified by the users. In this way, each user’s weight and preference
sre directly expressed in the preference score. In our simulations, we randomly
generate the preference score in the range [40, 400]. We select such range to en-
sure a down scaling effect for our approximation algorithm in all the settings. In
fact, according to parameters in Table 6.2, we have to guarantee �max � k/✏,
since k = 4 and ✏ can be as small as 0.1 in some experiments. Evaluations with
different user’s weights are reported in Appendix ??.

Metrics. In most cases, we report the absolute utility and running time of our
algorithms, which is in log scale. In some evaluations, we report the relative

running time and relative utility for the SDP approach with respect to the optimal
algorithm DP. These two quantities are defined as follows. The relative running
time is defined as the ratio between the running time for the approximate solution
and the optimal algorithm. In a similar way, we define the relative utility as the
ratio between the utility (i.e. preference score of the itinerary) achieved by the
approximate solutions over the optimal value returned by DP. Using these metrics,
we can clearly see the trade-off achieved by the approximation algorithm that we
proposed. In many cases, we are also interested in the size of the meeting graph
with respect to the original location graph. Therefore, we define the relative size of

the meeting graph as |VM |/|V |. Our evaluations are performed on random queries
and the final results are obtained as the average of 50 runs. To obtain consistent
results among all the settings, we discarded trivial queries, which result in meeting
graphs that are either empty or contain nodes from only one category.

Organization. In our evaluation, we consider different settings to understand the
impact of each parameter on our solutions. In particular, we distinguish three
different types of parameters: algorithm dependent (approximation parameter ✏),

142

Table 6.2: Default Algorithmic Parameter Values
Parameter Description Value

m Number of users 2
�i User mobility constraint 1.5 · �(⇡(si, ti))
k Number of categories in the query 4

[�min,�max] Global profit range [40,400]
✏ Approximation parameter 0.5

workload dependent (number of users m, mobility constraint �i, number of cat-
egories in the query k, scale of preference score �, and category frequency in the
query), and data dependent (graph size |V |, POI distribution and density). Due
to the nature of these parameters, we divide our evaluation in two parts. First,
we evaluate the impact of the algorithm and workload parameters, and scalabil-
ity of our approaches on the real dataset calmap. Second, we use the synthetic
dataset rome to evaluate our solutions with different POIs distributions and den-
sity which allows us to have full control on the distribution and density of the
categories. Finally, we briefly illustrate the results obtained with some of the ex-
tensions proposed in Section 6.3.

6.4.2 Results on Real Dataset

Impact of the ✏ parameter. We investigate the impact of the ✏ parameter on the
performance of our approximation algorithm. In Figure 6.4, we present both the
running time and the utility for the SDP algorithm as a fraction of the optimal DP
algorithm. We observe that for increasing values of ✏, the SDP provides a weaker
approximation (Figure 6.4(a)), and requires smaller running time (Figure 6.4(b)).
It is worth noting that the quality of the approximation obtained is considerably
higher than what we could expect from the theoretical analysis. In fact, we have
a considerable running time reduction and the utility results are always within the

143

(a) Relative Utility (b) Relative Running Time

Figure 6.4: Performance vs ✏ parameter

(a) Utility vs number of category (b) Time vs number of category

Figure 6.5: Performance vs k

85% of the optimal value. To obtain a good trade-off between running time and
utility, we set ✏ = 0.5 for the remaining experiments.

Impact of the parameter k. Figure 6.5 illustrates the impact of the number of
categories k in the input query on the performance of our algorithms. From Fig-
ure 6.5(a), we observe that the utility of our approaches increases as k increases
as we expected. We notice that the SDP algorithm provides high utility achieving

144

(a) Utility vs mobility (b) Time vs mobility

Figure 6.6: Performance vs mobility

profit score constantly above 90% of the optimal value. On the other hand, the
Greedy approach shows its weakness. As the number of possible categories in-
creases, the utility provided by Greedy drastically decreases reaching only less
than 60% of the optimal value. This phenomenon is due to the greedy choice made
by the algorithm. Intuitively, when the number of categories is large, the greedy
algorithm could lose a large amount of profit since the decision of reaching first
the nodes with larger profit could in some cases compromise the possibility of se-
lecting nodes of the remaining categories. Figure 6.5(b) reports the running time
for the algorithms when k is varying. As k increases the running time for DP and
SDP increases, since a larger number of minimal paths could be constructed. The
running time for Greedy slowly increases due to the low computational time
required to evaluate the nodes score. In this setting, we can combine SDP and
Greedy in a hybrid solution, where the greedy approach is employed for small
k while SDP is used for large k. In this way, we can combine both beneficial
aspects (small running time and good approximation ration) that come with these
two solutions.

Impact of the mobility constrains. Figure 6.6 shows the impact of the mobil-

145

(a) Reachable nodes vs mobility (b) Meeting graph vs mobility

Figure 6.7: Size of the meeting graph vs mobility

ity constraints on the performance of our algorithms. As we mentioned before,
we use user specific mobility constraints defined as: �i = � · �(⇡(si, ti)), where
�(⇡(si, ti)) measure the length of the shortest path between the start node si and
the destination ti. Intuitively this reflects the detour or extra distance each user is
willing to travel in order to accommodate the preference of his/her group mem-
bers. In our experiments, we vary the parameter � allowing users to have larger
mobility constraints. All the algorithms increase the profit of the itinerary com-
puted as the user mobility increases (Figure 6.6(a)). Intuitively, less restrictive
mobility constraints with large � values allow users to explore a larger portion of
the graph, hence to cover more categories. This also increases the running time of
our approaches (Figure 6.6(b)). In fact, from Figure 6.7, the number of nodes that
can be reached by the users and the size of the meeting graph grow approximately
linearly with the value of �. Despite the large number of nodes reachable by the
users (Figure 6.7(a)), only a small portion of the nodes are covering the required
categories leading to small meeting graph (Figure 6.7(b)).

Impact of the number of users m. In Figure 6.8, we report the performance
of our solutions with different number of users in input. We can observe that

146

(a) Time vs users (b) Meeting graph vs users

Figure 6.8: Performance vs m

Figure 6.9: Running time vs preference scale

the running time for DP and SDP decreases as m increases (Figure 6.8(a)). This
is due to the fact that a larger number of users in the query introduces stronger
constraints on the meeting graph since they have to meet along the itinerary. In
fact, we observe from Figure 6.8(b) that the size of the meeting graph decreases
as more users are involved in the input query. The running time for the Greedy
algorithm does not change considerably. In fact, the increment in the number of
users is balanced with the reduction of the size of the meeting graph.

Impact of the preference score scale. Figure 6.9 illustrates the running time

147

Figure 6.10: Utility vs User Weight

of DP and SDP with respect to different scale of preference score. As we men-
tioned before, the preference score � incorporates the user’s weight and prefer-
ence. Therefore, in this experiment we observe how the combination of these
two parameters affects the performance of our dynamic programming based solu-
tions. As we shown in Section 6.2.2, the running time for DP grows linearly with
the maximum preference score achievable with the given categories in the input
query. We can also notice the beneficial effect of scaling the preference score
in the SDP algorithm, where the running time for this approach does not present
relevant changes. Hence, our SDP approach is robust against user’s weight and
preferences changes.

Impact of user’s weight. In this setting, we explicitly consider the impact of the
user’s weight on the utility of our solutions. Specifically, we consider two users
with weight w

1

and w
2

respectively and we study how changing the ratio between
these weights affects the performance of our solutions. We introduce a param-
eter � = w

1

/w
2

, that varies in the set {1, 2, 4, 8}, in this way we progressively
increases the importance of user u

1

in the group decision. Figure 6.10 reports the
overall profit of the itinerary computed for the group. As we expect, increasing the
weight of u

1

increases the global utility as well. Looking at the utility for the in-
dividual users in Figure 6.11, we observe that for the first user the utility increases

148

(a) User 1 utility (b) User 2 utility

Figure 6.11: Single user utility

(Figure 6.11(a)), while for the second user the usefulness of the itinerary tends to
decrease (Figure 6.11(b)). This phenomenon is due to the fact that in choosing
the group itinerary the first user’s preferences have an high impact, hence some
categories specified by the second user may be left out to cover more profitable
POIs specified by the first user instead. In Section 6.3, we propose a possible
extension of our solutions to enhance the utility for user u

2

that can be applied in
this setting. From these results, we can notice that DP and SDP approaches have
the same behavior and for both users. Compared to the Greedy solution, these
approaches provide higher utility and are more robust since do not excessively
penalize the utility for the second user.

Impact of the category frequency. In this experiment, we investigate the impact
of the frequency of the categories on the performance of our algorithm. We con-
struct three types of query workloads that differ in the frequency of the categories
required to be visited: I infrequent, R random (mixed), and F frequent categories.
Intuitively, for categories that occur frequently in the location graph it is more
likely to find a set of candidate nodes that cover all the required categories. In
fact from Figure 6.12(a), we can observe that the utility increases as the frequency
of the categories in the query workload increases. The Greedy works well for

149

(a) Utility vs Query Freq. (b) Time vs Query Freq.

Figure 6.12: Performance vs Category Freq

infrequent categories but when the frequency increases the gap with respect to the
optimal solution increases. This is due to the increment of possible nodes to select
in constructing the itinerary. On the other hand, the SDP provides good utility re-
sults across all the possible configuration of queries. Regarding the running time,
as the frequency of the categories increases it is more likely to generate a larger
meeting graph leading to higher running time, as shown in Figure 6.12(b). For all
the proposed solutions increasing the frequency of the categories in the queries
leads to higher running time.

Impact of the number of nodes |V |. We consider variable size of the location
graphs in input. In particular, from the original graph we select connected sub-
graphs of size in the range from 1k to 10k nodes. The overall results are aligned
with the theoretical analysis provided earlier in the paper. Although these di-
mensions may not be consistent with real world settings, these results give us a
good understanding about the feasibility of applying our solutions to more prac-
tical scenarios. From Figure 6.13(a), we can observe that as the size of the graph
increases all the approaches return itineraries of increasing profit. This is be-
cause more nodes can be selected in the construction process for the itinerary. In

150

(a) Utility vs size (b) Time vs size

Figure 6.13: Scalability

Figure 6.13(b), we illustrate the scalability of our solutions together with the pre-
processing time from constructing the meeting graphs and scoring the categories
(indicated with Pre-P). We observe that all our approaches are very efficient.
The optimal algorithm is able to compute the itinerary for the largest graph in less
that 15 seconds while the SDP takes less than 1 second. We observe that Greedy
is more efficient compared to DP and SDP. However, due to the pre-processing
running time the overall running time for the Greedy results to be almost the
same as the time required by the SDP algorithm. Due to space limitation, we re-
port the impact on the reachable nodes and meeting graph in Appendix ??. We
conclude this discuss by observing that our approaches scale well with the size of
the graph in input and both DP and SDP can be parallelized. Furthermore, since
the running time mostly depends on the size of the meeting graph; our solutions
can benefit of user’s limited mobility to efficiently compute the optimal itinerary
on large graphs.

151

(a) POIs Category Frequency (b) POIs Categories per Nodes

Figure 6.14: Category frequency and density

6.4.3 Result on Synthetic Dataset

In our synthetic dataset generated from the road-network of the city of Rome, we
tested the impact of the category distribution and density on the performance of
our algorithms. We model the frequency of the POIs per categories as a power-
law distribution of parameter ↵. This choice is motivated by the fact that in real
scenarios we can observe a large difference between categories. For example, we
can find many restaurants in a city but only few universities. Furthermore, on this
location graph we allow nodes to cover multiple categories, for example a shop-
ping mall may have many restaurants, a theater, and a post office. Hence a node
can be labeled with multiple POIs category. In our experiments, we model the
distribution of the number of categories per node using a Zipf’s distribution of pa-
rameter ↵0 where each node can cover up to 5 different categories. In Figure 6.14,
we report an example of category frequency distribution and category density with
parameter ↵ = 2 and ↵0

= 1.5 respectively. Specifically, from Figure 6.14(a) and
Figure 6.14(b), we observe that there are about 700 nodes that are POIs in the first
category and more than 300 nodes that cover two categories of POIs.

Impact of the category distribution. In our experiment we vary ↵ to change

152

(a) Utility vs Category Distr. (b) Time vs Category Distr.

Figure 6.15: Performance vs Category Distribution

the distribution of the categories and the results are reported in Figure 6.15. As
↵ increases all the solutions do not present considerable changes in their utility
(Figure 6.15(a)). Furthermore, for larger values of ↵ the running time for the dy-
namic programming algorithms tends to decrease while the greedy solution does
not show relevant changes (Figure 6.15(b)). Intuitively, with larger value of ↵

the category distribution tends to become closer to uniform leading to a sparser
meeting graph allowing both algorithms to compute the itinerary faster.

Impact of the category density. In this scenario, we vary the density of the cat-
egories on the nodes of the location graph. As the parameter ↵0 increases more
nodes are market as POIs and can be labeled with multiple categories. The per-
formance of our solutions are reported in Figure 6.16. As the density increases,
we can notice that the utility of our solutions increases (Figure 6.16(a)) since
more nodes are marked as POIs hence more nodes can be selected to construct the
itinerary. We can observe that SDP follows closely the optimal utility while the
gap for the greedy approach increases. Similarly, the running time of our dynamic
programming algorithms increase with the density (Figure 6.16(b)).

153

(a) Utility vs Category Dens. (b) Time vs Category Den.

Figure 6.16: Performance vs Category Density

6.4.4 Implementation of Extensions

We implemented two of the extensions for our DP approach proposed in Sec-
tion 6.3: (1) we consider a constraint of total order for the k categories specified
in input, and (2) we consider multi-objective utility that combines the profit and
the distance traveled by the users. Below, we briefly illustrate the results obtained
with these extensions on the calmap location graph.

Order constrains. We evaluate the impact of the order constraints on the running
time and utility by comparing the results with those obtained on same queries
without order constraints. Figure 6.17(a) reports both relative time and utility
with different values of k. As we expected, the order constraints have a beneficial
impact on the running time for our solution since the number of possible paths is
limited to those that satisfy the specified order constraints. In particular, for k = 8

the running time for same query is reduced by almost 20%. On the other hand,
requiring order constraints on the itinerary reduces the maximum utility that could
be achieved since the “optimal” path may not satisfy the imposed order. In our
experiments, we observe a utility reduction up to 15% on the utility of the optimal
itinerary.

154

(a) Order Constraints (b) Multi-objective utility

Figure 6.17: Extension of our solutions

Multi-Objective utility. We consider a utility function as described in Equation
(6.10), where the parameter ✓ sets the tradeoff between the profit of the itinerary
and the average distance traveled by the users. In Figure 6.17(b), we report how
the parameter ✓ impacts on the decision of the optimal itinerary. Both profit and
distance are normalized between 0 and 1 to provide a clear representation of the
trend. Setting ✓ = 0 allows users to find an itinerary that minimize the distance
traveled. In fact, we can observe that in this case the optimal itinerary has small
profit but allows users to reach their destination within the 70% of their mobility.
As ✓ increases, more weight is assigned to the itinerary’s profit in the optimization.
For ✓ = 1, the optimal itinerary achieves the maximum profit and requires the
users to travel up to the 80% of their mobility. From Figure 6.17(b), we can
observe that for ✓ = 0.25 the returned itinerary achieves a value of profit close to
the maximum and incurs a small total distance traveled by the users making this
itinerary a good candidate for the optimal solution.

155

6.5 Related Work

The search of optimal routes on graphs has its roots in the “Orienteering Problem”
(OP). As in the sport game, a user starting from a point tries to visit as many nodes
as possible within a given time constraint. Our proposed problem differs from the
OP in many aspects. While OP is limited to a single user, in our formulation we
are interested in computing a shared route for multiple users. Furthermore, in OP
the profit in visiting a node is fixed, while in our problem such value depends on
the users’ preferences and on the sequence of nodes already covered, since the
overall score of the route is computed on a set of unique categories. We refer the
interested readers to [71] for a survey on the OP problem.

Li et al. [52] are the first to introduce the problem of finding route on spatial
databases. In that work, the authors proposed a new problem called Trip Planning
Query (TPQ), where each object in the database is associated with a location and
a category label. Given a set of categories in input, a starting node and an ending
node, the TPQ problem aims to find the shortest route from the starting to the
ending node that passes through at least one point for each category. The authors
in [52] showed that the TPQ problem is NP -hard, and they proposed a series of
approximation solutions to tackle the problem. Compared to TPQ, our problem
considers distance constraints and our goal is to maximize the profit for a group
of users on the locations that are jointly visited.

Kanza et al. [49] proposed a new query problem, where the length of the route
is bounded by a constraint and the goal is to maximize the profit in covering the
categories of the nodes in the route between a given start and end point. The
major differences between this approach and our work can be outlined as follows.
First, in [49] an exact number of categories must be visited while in our case
any subsets could represent a possible candidate. Second, in our case the score
associated to each category depends on the user preferences while in Kanza’s work
the categories have the same score. Furthermore, we consider multiple users and

156

therefore the starting and ending points of the optimal shared route are not fixed
as in [49] but depend on the locations where the users could meet. In successive
works, Kanza et al. [47, 48] extended their approach by considering an interactive
setting and introducing order constraints.

Sharifzadeh et al. [66] introduced a new extension of the TPQ problem, named
Optimal Sequenced Route (OSR), where the goal is to find the shortest route from
a given node that passes through an ordered sequence of locations. The authors
proposed a series of pruning techniques to discard those locations that cannot be
part of the optimal route. Chen et al. [20] proposed an extension of TPQ and
OSR which considers the search of multi-rule partial sequenced routes (MRPSR).
The authors showed that the MRPSR provides a unified framework that subsumes
TPQ and OSR. In the original paper a series of heuristic algorithms have been
developed to solve MRPSR queries. Recently, another extension of TPQ has been
proposed by Li et al. [53]. In this formulation, the goal consists in computing
the shortest route that covers a user defined set of categories with partial order
constraints. The authors proposed two approaches namely backward and forward
search to efficiently compute the optimal route.

Recently, Cao et al. [18] proposed a new route problem called Keyword-aware
Optimal Route Search (KOR), which given a pair of nodes representing a start and
end location in a graph, consists in finding the route that connects those two points
such that a set of user-specified keywords is covered, a specified budget constraint
is satisfied, and an objective score of the route is optimized. The authors in [18]
proved the hardness of such formulation, and developed a series of approximation
algorithms to solve the KOR problem. Our group trip query differs from both
OSR and KOR in several aspects. We consider multiple users in the query, and
we find the route of bounded length that maximizes the profit for the categories
covered. Therefore, the solutions for OSR and KOR are not suitable in our setting.

B. Roy et al. [62] investigated the problem of computing an itinerary in an inter-
active way, where the user can provide feedback on the selected POIs to improve

157

the recommended itinerary.
When multiple users are involved in the route query, Hashem et al. [42] proposed

a new problem called Group Trip Planning Query (GTP). Given a set of users
with their start and end point in input, and a set of location categories, the GTP
problem consists in finding a set of nodes belonging to the specified categories
that minimizes the total traveled distance by the group. It has been shown by the
authors in [42] that the GTP problem is related to the Group Nearest Neighbor
query (GNN). Based on this observation, the authors proposed a series of heuristic
approach to solve the GTP problem. Our approach is different from GTP since we
consider a preference score associated to the categories rather than considering all
the categories in the same way. Furthermore, we are interested in finding the best
route in terms of preference score rather than distance.

6.6 Conclusion

In this chapter, we defined the problem of Optimal Group Route Query (OGR),
which consists in finding the sequence of locations that the users can jointly visit
and maximizes the preference of the overall group. We showed that this problem
is NP -complete. We proposed an exact algorithm that computes such optimal
route by avoiding the exploration of all the possible paths in the location graph.
Our algorithm runs exponentially with k, where k denotes the number of cate-
gories specified by the users. We observed that in practice k assumes small values
with respect to the size of the graph, which allows our algorithm to compute the
optimal solution efficiently. Furthermore, we derived two approximation algo-
rithms with bounded worst case approximation ratio that greatly reduce the com-
putational cost. We showed how to extend our solutions to take in consideration
quality measure for POIs such as popularity, order constraints for the specified
categories, and several problem relaxations. Our experimental results showed the
efficiency and effectiveness of our solutions both on real and synthetic data. Fu-

158

ture research directions consist in developing path construction algorithms to sat-
isfy more flexible order constraints, considering dynamic updates on the map such
as: adding/removing POIs, and travel distances (e.g. traffic scenario), addressing
the challenge of synchronizing users in traveling together along the itinerary (e.g.
consider waiting time), and introducing utility functions that consider the degree
of coverage for the required categories. Furthermore, we aim to develop optimized
data structures and code to handle large scale location graphs.

159

Algorithm 9 One Source Path
1: procedure ONE SOURCE PATH(G,G

M

, v

i

)
Input: graph G = (V,E), meeting graph G

M

= (V

M

, E

M

), starting node v

i

;
Output: Table of minimal paths

2: for (all v and p) do
3: C

i

[p, v] =< P = null, � =1 >

4: end for
5: �(v

i

)
P

j2C(v
i

) �j

6: C

i

[�(v

i

), i] =< v

i

, 0 >

7: Q.insert(key = 0, (v

i

, C

i

[�(v

i

), i]))

8: while (Q is not empty) do
9: (�, (v

t

, < P, d >)) = Q.remove head()

10: for (edges (v
t

, v

j

) in E

M

) do
11: CP < P = null >

12: for (⇡ 2 P) do
13: p1 p+ �(v

j

,⇡)

14: P1 CP [p1]

15: P1 P1
S

< ⇡, v

j

>

16: CP [p1] < P1 >

17: end for
18: �1 � + �(v

t

, v

j

)

19: for (p0 2 CP) do
20: < P2, �2 > C

i

[p

0
, j]

21: P1 CP [p

0
]

22: if (�1 < �2) then
23: C

i

[p

0
, j] =< P1, �1 >

24: end if
25: if (�1 == �2) then
26: C

i

[p

0
, j] =< P1

S
P2, �1 >,

27: end if
28: Q.set key(key = �1, Ci

[p

0
, j])

29: end for
30: end for
31: end while
32: return C

i

33: end procedure

160

Algorithm 10 Dynamic Programming
1: procedure DP(G,G

M

,U)
Input: graph G = (V,E), meeting graph G

M

= (V

M

, E

M

), users U ;
Output: {r1, r2, . . . , rm} user paths

2: for (all v
i

in V

M

) do
3: C

i

 ONE SOURCE PATH(G,G

M

, v

i

)

4: end for
5: p p

max

6: while (p > 0) do
7: for (all v

i

, v

j

in V

M

) do
8: I

⇤
= hv

i

, v

i+1, . . . , vji C

i

[p, j]

9: if (for all users �(⇡(s
i

, v

i

)) + �(I

⇤
) + �(⇡(v

j

, t

i

)) �

i

) then
10: for all user u

i

, r
i

= h⇡(s
i

, v

i

), I

⇤
, (⇡(v

j

, t

i

)i
11: return {r1, r2, . . . , rm}
12: end if
13: end for
14: p p� 1

15: end while
16: end procedure

Algorithm 11 Scaled Dynamic Programming
1: procedure SCALEDDP(G,G

M

, ✏)
Input: graph G = (V,E), meeting graph G

M

= (V

M

, E

M

), users U , approx. parameter ✏;
Output: Itinerary ˆ

I , score Ps(I)

2: � k

✏

3: �

max

 max

i=1,...,k �i

4: scale the profit of each node p̂

i

= b �

i

�

max

�c
5: ˆ

I DP(G,G

M

, ✏)

6: Ps(I)
⇣

�

max

�

⌘
Ps(

ˆ

I)

7: return ˆ

I and Ps(I)

8: end procedure

161

Algorithm 12 Greedy Algorithm
1: procedure GREEDY SELECTION(G,G

M

,U)
Input: graph G = (V,E), meeting graph G

M

= (V

M

, E

M

), users U ;
Output: Itinerary I

2: start with an empty itinerary I

3: C(I) null

4: ⇡M(·, ·) all-shortest paths within G

M

5: while (True) do
6: Score each node v according to C(I)
7: � max

v

{�(v, I)}
8: if (� == 0) then
9: Break

10: end if
11: let V (�) be the set of nodes in V

M

with score �

12: let v
f

and v

l

be the first and last node in I respectively
13: v closest node to v

l

in V (�)

14: if (8 users �(⇡(s
i

, v

f

)) + �(⇡M(v

l

, v)) + �(⇡(v, t

i

)) �

i

� �(I)) then
15: attach v to itinerary I

16: �(I) �(I) + �(⇡M(v

l

, v))

17: v

l

= v

18: C(I) C(I)
S
C(v)

19: end if
20: end while
21: return I

22: end procedure

162

163

164

Chapter 7

Conclusion and Future Work

In this dissertation, we addressed both privacy and social challenges that arise
in modern database systems. In our work in privacy, we developed a series of
algorithm techniques based on the formal notion of differential privacy to mine
frequent sequential patterns and compute online statisitcs. Our solutions have
beneficial impact of real world applications enabling knowledge discovery, data
sharing, and data re-use. Regarding the social aspects, we proposed a new type
of spatial query that allows users to find an optimal itinerary that can be jointly
visited by the group. Our solutions provide a balance between single user’s pref-
erence and constraints while maximizing the preference for the overall group of
users. The outcome of this line of research can be beneficial for many popular
and emerging location based services (e.g. Uber, Waze) by providing user’s rec-
ommendation and supporting group query.

165

7.1 Summary

7.1.1 Privacy Contributions

Off-line Setting. In Chapter 3, we formalized the problem of mining sequential
patterns from aggregated users data proving user-level privacy. In this setting,
we studied the tradeoff between privacy requirements and utility of the mined pat-
terns. We demonstrated that to achieve differential privacy requires to inject a per-
turbation noise proportional to the length of the sequence in input. Clearly, such
perturbation may destroy the frequency of the patterns leading to poor final util-
ity. To overcome this problem, we proposed a two-phase mining algorithm which
first uses part of the privacy budget to extract useful information regarding the
frequent patterns and successively transforms the original dataset in an compact
representation to reduce the privacy impact on the utility. Our experimental eval-
uations showed the benefits of this approach on real datasets and also pointed out
the ability of our technique in mining both frequent prefix and substring patterns.
In Chapter 4, we proposed a new secure transformation technique for privacy pre-
serving record linkage where the original string records are transformed into real
vectors. We showed how our mining procedure is employed in the embedding pro-
cess to construct a base that captures the structure of the original datasets required
to be linked. Specifically, we introduced a new embedding technique that maps
string records into real vectors and we studied how the distance between records
is preserved in the new space. We also presented a matching procedure that allows
approximate matching between records where the similarity function in the orig-
inal space is measure using edit distance. Experimental evaluations demonstrate
the benefits of our solution and the overall technique have been developed in our
LinkIT tool [15].

On-line Setting. In Chapter 5, we proposed our privacy preserving solutions for
computing ordered statistics over data stream. Specifically, we studied the prob-

166

lem of computing the length of the longest increasing subsequence while pro-
tecting the presence of single event in the stream. We showed how the privacy
requirements in this scenario poses new challenges compared to traditional pri-
vacy solutions for streaming problems. In particular, our results provide an initial
understanding about the relationship between memory and privacy requirements
in this setting. Furthermore, we also pointed out some important applications that
can greatly benefit from our solutions.

7.1.2 Social Contributions

In Chapter 6, we defined a new problem called Optimal Group Route Query
(OGR), which consists in finding the sequence of locations in a location graph that
a set of users in input can jointly visit such that the preference of the overall group
is maximized. We demonstrated the hardness of this problem by showing that it is
NP -complete. Nevertheless, we proposed an exact algorithm that computes such
optimal route by avoiding the exploration of all the possible paths in the location
graph. Our algorithm runs exponentially with k, where k denotes the number of
categories specified by the users. We observed that in practice k assumes small
values with respect to the size of the graph, which allows our algorithm to com-
pute the optimal solution efficiently. Furthermore, we derived two approximation
algorithms with bounded worst case approximation ratio that greatly reduce the
computational cost. We showed how to extend our solutions to take in considera-
tion quality measure for POIs such as popularity, order constraints for the specified
categories, and several problem relaxations. Our experimental results showed the
efficiency and effectiveness of our solutions both on real and synthetic data.

167

7.2 Future Work

In this dissertation, we addressed both privacy and social aspects in our modern
society. We derived formal techniques and demonstrated the effectiveness of our
approaches in several settings. Our results provide import insights in addressing
fundamental problems in data privacy and social query. We believe that these pos-
sible future research directions could help in advancing modern database systems.

Extending Sequential Pattern Mining Techniques. The extraction of sequential
patterns is crucial in many applications. However, in many real scenarios the
sequential data produced in input comes with some noise. Consider for example
the case of biomedical signals measured directly from the patient (e.g. hearth rate,
blood pressure, etc.) such data often contains noise due to error measurement in
reporting the signal. Another example comes from computational biology where
punctual mutations may change some of the DNA basis in the sequence. Therefore
this noise, either introduced by the measuring process or inherited by nature, may
destroy the frequent sequential patterns in the original data. In this line of work,
in [9] we initially proposed two definitions to capture the effects of the noise in
the data. We pointed out possible scenarios where the mining of these patterns is
central as well as the challenges in developing efficient mining algorithms. Future
works include the extension of our privacy preserving prefix tree to mine noisy
patterns, and developing privacy preserving techniques to handle genomic data.

Differential Privacy in the Streaming Setting. Our work on privacy preserving
statistics over data streams [12] points out some of the important challenges in
providing useful statistics while achieving privacy in a online setting. For the
future, we consider to extend this work and propose two possible lines of research.
First, we plan to further develop our solutions and turn our theoretical results
into concrete algorithms to solve burst detection and string matching problems.
These problems are extremely important in monitoring tasks(e.g. patient activity
monitoring, finance, etc.) and biomedical informatics domain (e.g. genomic),

168

where the stream/string in input contains sensitive information that have to be
protected. Second, our proposed solutions provide important insights about the
privacy implications for computing complex ordered statistics. Specifically, we
plan to better study the connection between privacy and space complexity as well
as understand what kind of privacy sketching algorithms can benefit in this setting.

Extending Social Query. Modern mobile devices enable an easier user-to-user
interaction creating opportunities for users to socialize. However, this phenomenon
requires the need for modern database system to support queries that provide a
service for a group of users. In this setting, a future research goal consists in
understanding how users collaborate together to achieve a common goal. Specif-
ically, we plan to extend our work on group query social queries for a variety
of location-based services, such as: crowd-sourcing and ride sharing where the
personal user’s interest may be conflicting with the required tasks assigned to the
group. We believe that the outcome of this research will enable a better user-to-
user collaboration and ultimately provide tools to support new type of services.

169

Appendix

8.1 Statistical Tools for Multiple Laplace Random
Variables

Lemma 8.1 (Sum Of Laplace Distributions [19]). Let Y =

Pn
i=1

li be the sum of

l
1

, . . . , ln independent Laplace random variables with zero mean and parameter

bi for i = 1, . . . , n, and bmax = max{bi}. Let ⌫ �
pPn

i=1

b2i , and 0 < � < 2⌫2

b
max

.

Then Pr[Y > �] exp{� �2

8⌫2
}

Corollary 8.2 (Measure Concentration [19]). Let Y , {bi}i, � and bmax defined as

in Lemma 8.1. Suppose 0 < � < 1 and ⌫ > max{
pP

i b
2

i , bmax

q
2 ln

2

�
}. Then

Pr[|Y | > ⌫
q
8 ln

2

�
] �

170

Bibliography

[1] Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk alone: Un-
certainty for anonymity in moving objects databases. In Proceedings of the

2008 IEEE 24th International Conference on Data Engineering, ICDE ’08,
pages 376–385, Washington, DC, USA, 2008.

[2] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Approximate
counting of inversions in a data stream. In Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing, STOC ’02, pages 370–
379, New York, NY, USA, 2002. ACM.

[3] Ali Al-Lawati, Dongwon Lee, and Patrick McDaniel. Blocking-aware pri-
vate record linkage. In Proceedings of the 2nd international workshop on

Information quality in information systems, IQIS ’05, pages 59–68, New
York, NY, USA, 2005.

[4] David Aldous and Persi Diaconis. Longest increasing subsequences: From
patience sorting to the baik-deift-johansson theorem. Bull. Amer. Math. Soc,
36:413–432, 1999.

[5] Gennady Andrienko, Natalia Andrienko, Fosca Giannotti, Anna Monreale,
and Dino Pedreschi. Movement data anonymity through generalization. In
Proceedings of the 2nd SIGSPATIAL ACM GIS 2009 International Workshop

171

on Security and Privacy in GIS and LBS, SPRINGL ’09, pages 27–31, New
York, NY, USA, 2009.

[6] Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and Abhradeep Thakurta.
Discovering frequent patterns in sensitive data. In Proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’10, pages 503–512, New York, NY, USA, 2010. ACM.

[7] Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar Nikolov, and Nina
Taft. Private decayed predicate sums on streams. In Proceedings of the 16th

International Conference on Database Theory, ICDT ’13, pages 284–295,
New York, NY, USA, 2013. ACM.

[8] Francesco Bonchi, Laks V.S. Lakshmanan, and Hui (Wendy) Wang. Trajec-
tory anonymity in SIGKDD, 13(1):30–42, August 2011.

[9] Luca Bonomi. Mining frequent patterns with differential privacy. PVLDB,
6(12):1422–1427, 2013.

[10] Luca Bonomi and Li Xiong. A two-phase algorithm for mining sequential
patterns with differential privacy. In 22nd ACM International Conference

on Information and Knowledge Management, CIKM’13, San Francisco, CA,

USA, October 27 - November 1, 2013, pages 269–278, 2013.

[11] Luca Bonomi and Li Xiong. Optimal group route query: Finding itinerary
for group of users in spatial databases. in submission, 2015.

[12] Luca Bonomi and Li Xiong. Private computation of the longest increas-
ing subsequence in data streams. In Proceedings of the Workshops of

the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium,

March 27th, 2015., pages 270–277, 2015.

[13] Luca Bonomi and Li Xiong. Secure transformation via frequent grams for
privacy preserving record linkage. in submission, 2015.

172

[14] Luca Bonomi, Li Xiong, Rui Chen, and Benjamin C. M. Fung. Frequent
grams based embedding for privacy preserving record linkage. In 21st

ACM International Conference on Information and Knowledge Manage-

ment, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pages
1597–1601, 2012.

[15] Luca Bonomi, Li Xiong, and James J. Lu. Linkit: privacy preserving record
linkage and integration via transformations. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, SIGMOD 2013,

New York, NY, USA, June 22-27, 2013, pages 1029–1032, 2013.

[16] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space.
Israel Journal of Mathematics, 52:46–52, 1985. 10.1007/BF02776078.

[17] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing, STOC ’96, pages 639–648, New York,
NY, USA, 1996. ACM.

[18] Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. Keyword-aware optimal
route search. Proc. VLDB Endow., 5(11):1136–1147, July 2012.

[19] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual re-
lease of statistics. ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24, November
2011.

[20] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. The
multi-rule partial sequenced route query. In Proceedings of the 16th ACM

SIGSPATIAL International Conference on Advances in Geographic Infor-

mation Systems, GIS ’08, pages 10:1–10:10, New York, NY, USA, 2008.
ACM.

173

[21] R. Chen, B. C. M. Fung, B. C. Desai, and N. M. Sossou. Differentially
private transit data publication: A case study on the montreal transportation
system. In Proc. of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (SIGKDD), Beijing, China, August
2012.

[22] Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially private se-
quential data publication via variable-length n-grams. In Proceedings of the

2012 ACM conference on Computer and communications security, CCS ’12,
pages 638–649, New York, NY, USA, 2012.

[23] Rui Chen, Benjamin C.M. Fung, Noman Mohammed, Bipin C. Desai, and
Ke Wang. Privacy-preserving trajectory data publishering by local suppres-
sion. Information Sciences, (0):–, 2011.

[24] Tim Churches and Peter Christen. Some methods for blindfolded record
linkage. BMC Medical Informatics and Decision Making, 4(1):9, 2004.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[26] Graham Cormode, S. Muthukrishnan, and Süleyman Cenk Sahinalp. Per-
mutation editing and matching via embeddings. In Proceedings of the

28th International Colloquium on Automata, Languages and Programming,,
ICALP ’01, pages 481–492, London, UK, UK, 2001. Springer-Verlag.

[27] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269–271, 1959.

[28] Elizabeth Durham, Yuan Xue, Murat Kantarcioglu, and Bradley Malin.
Quantifying the correctness, computational complexity, and security of
privacy-preserving string comparators for record linkage. Inf. Fusion,
13(4):245–259, October 2012.

174

[29] Cynthia Dwork. Differential privacy. In ICALP, pages 1–12. Springer, 2006.

[30] Cynthia Dwork. Differential privacy: A survey of results. In Theory and

applications of models of computation, pages 1–19. Springer, 2008.

[31] Cynthia Dwork. Differential privacy in new settings. In SODA, pages 174–
183, 2010.

[32] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Theory of Cryptogra-

phy, Third Theory of Cryptography Conference, TCC 2006, pages 265–284,
2006.

[33] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Dif-
ferential privacy under continual observation. In Proceedings of the Forty-

second ACM Symposium on Theory of Computing, STOC ’10, pages 715–
724, New York, NY, USA, 2010. ACM.

[34] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N. Rothblum, and Sergey
Yekhanin. Pan-private streaming algorithms. In ICS, pages 66–80, 2010.

[35] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–,
June 1962.

[36] Benjamin Fung, Ke Wang, Rui Chen, and Philip S Yu. Privacy-preserving
data publishing: A survey of recent developments. ACM Computing Surveys

(CSUR), 42(4):14, 2010.

[37] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Number v. 2. Cambridge University Press, 2009.

[38] Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Es-
timating the sortedness of a data stream. In Proceedings of the eighteenth

175

annual ACM-SIAM symposium on Discrete algorithms, SODA ’07, pages
318–327, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

[39] Anupam Gupta and Francis X. Zane. Counting inversions in lists. In Pro-

ceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-

rithms, SODA ’03, pages 253–254, Philadelphia, PA, USA, 2003. Society
for Industrial and Applied Mathematics.

[40] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Sci-

ence and Computational Biology. Cambridge University Press, New York,
NY, USA, 1997.

[41] J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth

Berkeley Symposium on Mathematical Statistics and Probability, pages 345–
394, Berkeley, Calif., 1972. University of California Press.

[42] Tanzima Hashem, Tahrima Hashem, MohammedEunus Ali, and Lars Kulik.
Group trip planning queries in spatial databases. In MarioA. Nascimento,
Timos Sellis, Reynold Cheng, Jrg Sander, Yu Zheng, Hans-Peter Kriegel,
Matthias Renz, and Christian Sengstock, editors, Advances in Spatial and

Temporal Databases, volume 8098 of Lecture Notes in Computer Science,
pages 259–276. Springer Berlin Heidelberg, 2013.

[43] G.R. Hjaltason and H. Samet. Properties of embedding methods for similar-
ity searching in metric spaces. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 25(5), may 2003.

[44] Ali Inan, Murat Kantarcioglu, Elisa Bertino, and Monica Scannapieco. A
hybrid approach to private record linkage. In Proceedings of the 2008 IEEE

24th International Conference on Data Engineering, ICDE ’08, pages 496–
505, Washington, DC, USA, 2008.

176

[45] Ali Inan, Murat Kantarcioglu, Gabriel Ghinita, and Elisa Bertino. Private
record matching using differential privacy. In Proceedings of the 13th Inter-

national Conference on Extending Database Technology, EDBT ’10, pages
123–134, New York, NY, USA, 2010.

[46] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mapping into
hilbert space. In Conf. in modern analysis and probability, volume 26 of
Contemporary Mathematics, pages 189–206, 1984.

[47] Yaron Kanza, Roy Levin, Eliyahu Safra, and Yehoshua Sagiv. An interactive
approach to route search. In Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems,
GIS ’09, pages 408–411, New York, NY, USA, 2009. ACM.

[48] Yaron Kanza, Roy Levin, Eliyahu Safra, and Yehoshua Sagiv. Interactive
route search in the presence of order constraints. Proc. VLDB Endow., 3(1-
2):117–128, September 2010.

[49] Yaron Kanza, Eliyahu Safra, Yehoshua Sagiv, and Yerach Doytsher. Heuris-
tic algorithms for route-search queries over geographical data. In Proceed-

ings of the 16th ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, GIS ’08, pages 11:1–11:10, New York,
NY, USA, 2008. ACM.

[50] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10:707, 1966.

[51] Chen Li, Bin Wang, and Xiaochun Yang. Vgram: improving performance
of approximate queries on string collections using variable-length grams. In
Proceedings of the 33rd international conference on Very large data bases,
VLDB ’07, pages 303–314, 2007.

177

[52] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and
Shang-Hua Teng. On trip planning queries in spatial databases. In Pro-

ceedings of the 9th International Conference on Advances in Spatial and

Temporal Databases, SSTD’05, pages 273–290, Berlin, Heidelberg, 2005.
Springer-Verlag.

[53] Jing Li, Yin Yang, and Nikos Mamoulis. Optimal route queries with arbitrary
order constraints. IEEE Trans. on Knowl. and Data Eng., 25(5):1097–1110,
May 2013.

[54] Ninghui Li, Wahbeh Qardaji, Dong Su, and Jianneng Cao. Privbasis:
frequent itemset mining with differential privacy. Proc. VLDB Endow.,
5(11):1340–1351, July 2012.

[55] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increasing and
common subsequences in streaming data. In Proceedings of the 11th annual

international conference on Computing and Combinatorics, COCOON’05,
pages 263–272, Berlin, Heidelberg, 2005. Springer-Verlag.

[56] Frank McSherry and Ilya Mironov. Differentially private recommender
systems: building privacy into the net. In Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, pages 627–636. ACM, 2009.

[57] Frank D. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In Proceedings of the 35th SIGMOD inter-

national conference on Management of data, SIGMOD ’09, pages 19–30,
New York, NY, USA, 2009.

[58] Asli Özal, Anand Ranganathan, and Nesime Tatbul. Real-time route plan-
ning with stream processing systems: A case study for the city of lucerne.

178

In Proceedings of the 2Nd ACM SIGSPATIAL International Workshop on

GeoStreaming, IWGS ’11, pages 21–28, New York, NY, USA, 2011. ACM.

[59] M.O. Rabin. Fingerprinting by Random Polynomials. Center for Research
in Computing Technology: Center for Research in Computing Technology.
1981.

[60] S. Rane and Wei Sun. Privacy preserving string comparisons based on leven-
shtein distance. In Information Forensics and Security (WIFS), 2010 IEEE

International Workshop on, pages 1–6, Dec 2010.

[61] G Reinert, S Schbath, and MS Waterman. Probabilistic and statistical prop-
erties of finite words in finite sequences. Lothaire: Applied Combinatorics

on Words, 2005.

[62] Senjuti Basu Roy, Gautam Das, Sihem Amer-Yahia, and Cong Yu. Interac-
tive itinerary planning. In ICDE, pages 15–26, 2011.

[63] Michael Saks and C. Seshadhri. Space efficient streaming algorithms for
the distance to monotonicity and asymmetric edit distance. In SODA, pages
1698–1709, 2013.

[64] Monica Scannapieco, Ilya Figotin, Elisa Bertino, and Ahmed K. Elma-
garmid. Privacy preserving schema and data matching. In Proceedings of

the 2007 ACM SIGMOD international conference on Management of data,
SIGMOD ’07, pages 653–664, New York, NY, USA, 2007.

[65] Rainer Schnell, Tobias Bachteler, and Jorg Reiher. Privacy-preserving record
linkage using bloom filters. BMC Medical Informatics and Decision Making,
9(1), 2009.

[66] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. The op-
timal sequenced route query. The VLDB Journal, 17(4):765–787, 2008.

179

[67] Han Su, Kai Zheng, Jiamin Huang, Hoyoung Jeung, Lei Chen, and Xiaofang
Zhou. Crowdplanner: A crowd-based route recommendation system. In
Data Engineering (ICDE), 2014 IEEE 30th International Conference on,
pages 1144–1155, March 2014.

[68] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the publi-
cation of trajectories. In Proceedings of the The Ninth International Con-

ference on Mobile Data Management, MDM ’08, pages 65–72, Washington,
DC, USA, 2008.

[69] Patrick Tucker. Mit tech review: Has big data made anonymity impossible?,
2010.

[70] Esko Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theor. Comput. Sci., 92(1):191–211, January 1992.

[71] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The
orienteering problem: A survey. European Journal of Operational Research,
209(1):1 – 10, 2011.

[72] Henan Wang, Guoliang Li, Huiqi Hu, Shuo Chen, Bingwen Shen, Hao Wu,
Wen-Syan Li, and Kian-Lee Tan. R3: A real-time route recommendation
system. PVLDB, 7(13):1549–1552, 2014.

[73] Xiaokui Xiao, Gabriel Bender, Michael Hay, and Johannes Gehrke. ireduct:
differential privacy with reduced relative errors. In Proceedings of the 2011

ACM SIGMOD International Conference on Management of data, SIGMOD
’11, pages 229–240, New York, NY, USA, 2011.

[74] Mohamed Yakout, Mikhail J. Atallah, and Ahmed K. Elmagarmid. Efficient
private record linkage. In ICDE, pages 1283–1286, 2009.

180

[75] Xiaochun Yang, Bin Wang, and Chen Li. Cost-based variable-length-gram
selection for string collections to support approximate queries efficiently. In
In SIGMOD Conference, 2008.

[76] Andrew C. Yao. Protocols for secure computations. In Proceedings of the

23rd Annual Symposium on Foundations of Computer Science, SFCS ’82,
pages 160–164, Washington, DC, USA, 1982.

[77] Roman Yarovoy, Francesco Bonchi, Laks V. S. Lakshmanan, and Wendy Hui
Wang. Anonymizing moving objects: how to hide a mob in a crowd? In
Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, EDBT ’09, pages 72–83,
New York, NY, USA, 2009.

[78] Hyoseok Yoon, Yu Zheng, Xing Xie, and Woontack Woo. Smart itinerary
recommendation based on user-generated gps trajectories. In Zhiwen Yu,
Ramiro Liscano, Guanling Chen, Daqing Zhang, and Xingshe Zhou, editors,
Ubiquitous Intelligence and Computing, volume 6406 of Lecture Notes in

Computer Science, pages 19–34. Springer Berlin Heidelberg, 2010.

[79] Chen Zeng, Jeffrey F. Naughton, and Jin-Yi Cai. On differentially private
frequent itemset mining. Proc. VLDB Endow., 6(1):25–36, November 2012.

	Introduction
	Motivation
	Privacy Needs
	Social Needs

	Research Contributions
	Sequential pattern mining (Chapter 3)
	Record Linkage (Chapter 4)
	Data anlytics over streams (Chapter 5)
	Group Route Query (Chapter 6)

	Organization

	Related Works
	Differential Privacy
	Achieving Differential Privacy
	Event-level privacy

	Privacy Preserving Frequent Pattern Mining
	Privacy Preserving Record Linkage
	Stream
	Longest Increasing Subsequence

	Spatial Queries in Location-based Services

	Frequent Pattern Mining of Sequential Data
	Problem Definition
	Problem Challenges

	A Baseline Solution
	Prefix Tree Algorithm

	Two-Phase Algorithm
	Model-based Prefix Tree Miner
	Error Analysis for Prefix Tree
	Transformation & Refinement

	Analysis
	Complexity Analysis
	Privacy Analysis

	Experiments
	Impact of the parameters on the utility
	Comparison for mining frequent patterns

	Conclusion

	Privacy Preserving Record Linkage
	Preliminaries
	Basic Definitions

	Overview of Proposed Solution
	Mining Phase
	Base Generation

	Embedding Phase
	Embedding
	Impact of the Grams

	Matching Phase
	Global Threshold
	Personalized Threshold

	Security Analysis
	Adversary Model
	Security against one adversary
	Security against collusion

	Experiments
	Embedding Performance
	Mining Performance
	Linking Performance
	Security

	Conclusion

	Analytics over Data Stream
	Differentially Private Computation of the LIS - A Baseline Approach
	Decomposition Framework
	Binary Decomposition

	Hierarchy Mechanism
	Summary of Results
	Extensions

	Conclusions

	Group Trip Planning Query
	Problem Definition
	Algorithms
	Preprocessing Step
	Dynamic Programming
	Approximation Algorithm
	Greedy Algorithm

	Extensions of our Solutions
	Experiments
	Settings
	Results on Real Dataset
	Result on Synthetic Dataset
	Implementation of Extensions

	Related Work
	Conclusion

	Conclusion and Future Work
	Summary
	Privacy Contributions
	Social Contributions

	Future Work
	Appendix
	Statistical Tools for Multiple Laplace Random Variables

	Bibliography

