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Abstract

Recent years have seen considerable time and effort devoted to both Magnetic Systems and

Complex Networks. In both cases, their properties depend strongly on the way the different

elements are connected and on disorder. These similarities make their combined study an

interesting and useful exercise with insights gained in one area proving valuable in the other.

We started by studying a fully conencted SK-like spin glass model with distance depen-

dent bonds. By varying the distance dependence exponent, we easily interpolate between

a fully connected and a nearest neigbor model. The way that the varying conenctivity

affects the dynamics of the system is analysed. I then moved on to a purely 1D system of

Heisenberg spins where I studied the consequences that the Topological Non-connectivity

Threshold (TNT) has on systems with long range interactions. We find that this system can

display ferromagnetism and hysteretic behavior for experimental times. A system of Potts

spins interacting along the edges of k-regular graphs was also studied by comparing the an-

alytical expressions for the entropy and free energy obtained through the Large Deviation

Cavity Method, with the numerical results of Metropolis and Creutz simulations.

In the field of Networks, two classes of regular hierarchical graphs that have proven

amenable to several nice analytical approaches are introduced. In particular, the Renor-

malization Group analysis of the RW leads to the use of a boundary layer concept, and

results in a fractional diffusion coefficient involving the golden ratio. In the structure of

Erdos-Renyi graphs I concluded that an optimal bisection requires not only the pruning of

all the trees and dangling sub loops that surround the central core of the GCC. Still in this

area, I analyzed how weight-weight correlations in networks impacted the transportation

properties of networks. We showed that weight-weight correlations have the effect of facili-

tating transport. In an interdisciplinary project in the field of human dynamics, I analyzed

the access logs to Emory University’s website, and showed that one can use these indirect

methods to characterize a given population and how it interacts with a website.
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Chapter 1

Introduction

The most exciting phrase to hear in science, the one that heralds the most

discoveries, is not ”Eureka!” (I found it!) but ”That’s funny...”

˜Isaac Asimov

In 1736, the city of Könisberg on the banks of the river Pregel, in Prussia had 7 bridges

connecting it to two river islands. A common topic of debate to its inhabitants was whether

or not it was possible to take a walk around town, crossing each bridge exactly once and

returning to the starting point. With his seminal paper, swiss mathematician Leonhard

Euler answered this question and founded the field of graph theory.

Graph theory remained a mostly theoretical branch of mathematics until 1959 when two

Hungarian mathematicians, Paul Erdös and Alfred Renyi introduced their model of random

graphs[4, 5] that initiated a flurry of activity that would last for several decades. Their model

had the benefit of being highly tractable mathematically, but, unfortunately, it could not

explain the “small-world”phenomenon observed in 1969 by the american sociologist Stanley

Milgram[6].

The physics community didn’t become involved in a major way in this field until 1998

when Duncan Watts and Steven Strogatz, two mathematicians at Cornell, introduced their

model. Theirs was the first quantitative definition of small world, with both a logarith-

mic diameter and a large degree of clustering. This was closely followed by Albert-Lazlo

Baraási’s and Reka Albert’s[7] introduction, in 1999, of the idea of preferential attachment

1
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as the ruling mechanism behind the evolution of real world networks. The resulting “scale-

free” networks were quickly found to posess some characteristics in common with real world

network structures, such as the Internet[8], the World Wide Web[9], the human sexual

network[10], and many others.

Since the introduction of the Watts-Strogatz model, and following the mathematical

tradition, most of the theoretical and numerical efforts in this area have been invested in

studying the way Complex Networks are formed and evolve, what their topological and

geometrical properties are and how different assumptions about network evolution affect

these quantities. In more recent years, with a firmer understanding of the basic properties

of this type of system, interest has started to shift to the ways that different processes are

affected by this unusual topology and its intrinsic disorder.

Due to its well established nature, one of first models that was adapted to lie on a network

instead of the more common lattices was the Ising model. This model was introduced by

Ernst Ising in 1925 as a microscopic model of ferromagnetism for spin 1
2 particles in 1D[11].

His solution was not to be easily extended and the 2D analog was not successfully solved

until Lars Onsager published his 1944, 32 page long, tour-de-force[12]. A complete analytical

solution for the 3D case has yet to be achieved, proving that both the complexity and

richness of this deceptively simple model is strongly dependent on the embedding dimension.

As was later shown in 1975 by David Sherrington, Scott Kirkpatrick, Phillip Anderson

and S. F. Edwards [13, 14], bond disorder can also play a crucial role in determining the

macroscopic observables resulting from the microscopic details.

In this dissertation we study these two classes of problems, starting from an exploration

of the effect that different topologies have on magnetic systems and evolving to an analysis

of the structure and properties of real world networks. In Chap. 2 we study a class of Spin

Glass models that can interpolate between short range and infinite range, and in Chap. 4 we

study the effect that simply removing the geometric constraints on a system of Potts spins

has on well know thermodynamic properties. Chap. 5 looks at the non-trivial properties of a

finite 1D Heisenberg spin system. Chap. 6 clearly bridges the two parts of the dissertation.

Here, we introduce to new classes of networks and study some of their magnetic, geometric

and transport properties. In Chap. 7 and 8 we study the topology of Erdos-Renyi networks
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and the transport consequences of weight-weight correlations, respectively. Chap. 9 uses

the language of networks to study how people act, a theme that we later return to in Chap.

10 where we look in detail in to how viruses in general and sexual diseases in particular

spread over networks.



Part I

Magnetic Systems

4



Chapter 2

Spin Glasses

Two dangers constantly threaten the world: order and disorder.

- Paul Valery, french poet

2.1 Disordered Systems

The general theory describing the basic behavior of electric and magnetic systems was

completed by J. C. Maxwell in his 1873 book[15, 16], ”A Treatise On Electricity And Mag-

netism”, the culmination of the work he himself had started in 1864 with the publication

of his seminal paper, ”A Dynamical Theory Of The Electromagnetic Field”. It now seems,

however, that his famous four equations whose importance and magnitude would later be

compared by Einstein to the work developed centuries earlier by Sir. Isaac Newton, were

only the beginning of an extremely long journey.

Although Maxwell’s equations are capable, in principle, of explaining all the observable

electric and magnetic phenomena, their solution proves infeasible in many cases. One such

case is the one of disordered magnetic materials with frustration, such as magnetic alloys,

where several metals are mixed together in a non uniform way. In these systems, the

interactions between any two pairs of magnetic spins present in a material sample is different

leading to a wealth of properties that are not easily described in an analytically closed form.

In particular, since the strength of each interaction is potentially different, this will lead

to the possibility of a group of small, say, positive bonds being able to ”bunch” together

5
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to overcome the influence of a particularly strong negative bond thus reaching a lower

energy configuration. In this example, the negative bond is said to be frustrated or broken

since, locally, a different configuration would be more energetically favorable. Systems with

magnetic frustration and disorder in the spin-spin interactions are referred to as spin glasses.

In its simpler incarnation, each spin has only two possible states available to it, ”UP”, +, or

”DOWN”, −. This type of spins is usually referred to as Ising spins, after the author who

first treated them to study ferro and anti-ferromagnetic systems.

By 1975, over 100 years after the publication of Maxwell’s book, the understanding

of the effects of disorder and frustration in magnetic materials was still in its embryonic

stages when a pair of papers introduced two new models that would dominate the field of

what were by then known as spin glasses for the next decades. The first model, christened

”Edwards-Anderson”[14] in honor of S. F. Edwards and P. W. Anderson, the two researchers

that authored it, considered a system obeying an Ising Hamiltonian of the form:

H = −
∑

〈i,j〉

Jijσiσj −H
∑

i

σi (2.1)

The second of these models was introduced by D. Sherrington and S. Kirkpatrick and

obeyed a similar Hamiltonian but described a completely different system. While the EA

model presented us with a d-dimensional system with interactions only between nearest

neighbors, the Sherrington-Kirkpatrick (SK) model concerned an infinite dimensional sys-

tem with interactions between all pairs of Ising spins. The difference between the two

models is due to the different choices of the interaction matrix J :

Jij =






+= 0 ij interact

= 0 otherwise
(2.2)

the EA model chooses the Jij elements to be non zero only for each pair of nearest neighbors

in the d-dimensional hypercube and an SK system has its Jij values non zero between any

two pairs of nodes. Common choices for Jij are Gaussian distributed random variables

and + or −. As we will see, the particular form of the systems disorder is crucial in

determining its properties and even an apparently simple choice can enclose a surprising
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Figure 2.1: Spin configuration.

complexity. In fact, the SK model was originally intended to be a ”Solvable Model of a

Spin-Glass”[13] due to it’s all-to-all mean-field-like nature, with one possible solution being

proposed in the original paper. There were however, other solutions possible that were only

uncovered by the introduction of the concept of ”Replica Symmetry Breaking” some time

later. Decades would be spent studying all the complexity embedded within this apparently

simple Hamiltonian with different approaches and concepts being introduced over the years

to better describe and explain the properties observed in experimental spin glass systems

and several books[17, 18] and reviews[19, 20, 21, 22, 23] are currently available that provide

an introduction to the theoretical and experimental work that has been done in this vast

field.

2.2 Frustration

The other important ingredient of spin glasses is frustration, which can be best illustrated

with a simple example. Let us consider a system of spins that can interact with their

nearest-neighbors and with an external magnetic field. The Hamiltonian of the this class of

systems would be of the form:

H = −
N∑

i=1

N∑

j>i

Jijσiσj −
N∑

i=1

hiσi (2.3)

where Jij is the interaction energy between the two neighboring spins with labels i and j,

hiis the external magnetic field felt by spin i, σi = {+,−} represent the orientation that

a given spin can have and N is the total number of spins in the system. To simplify our

analysis, we treat all spins on an equal footing by setting Jij ≡ J and hi ≡ h. Using these

definitions, the Hamiltonian takes on the form:
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1 2 3 H
+ + + 3(−J + h)
+ + - J + h
+ - + J + h
+ - - J − h
- + + J + h
- + - J − h
- - + J − h
- - - −3(J + h)

Table 2.1: All possible system configurations.

H = −J
N∑

i=1

N∑

j=1

σiσj − h
N∑

i=1

σi (2.4)

From basic statistical physics, we know that we can, in principle use the Hamiltonian we

have just defined to calculate the partition function Z defined as:

Z =
∑

{σ1}

∑

{σ2}

· · ·
∑

{σN }

e−βH (2.5)

where each summation is taken over all individual spin configurations (±). After we suc-

cessfully calculate the partition function for any given system, we can use it to determine

all the observables we might be interested in1. Before we can proceed, we must completely

define our system. We choose a system of just three spins organized as in Fig. 2.1.

This simple system has 23 = 8 possible states. The states can be easily enumerated,

and the corresponding value of the Hamiltonian determined. We do this in Table: 2.1.

Using this information, we quickly determine the partition function to be of the form:

Z = 2e3βJ cosh(3βh) + 6e−βJ cosh(βh) (2.6)

The free energy is defined to be:

1It should be noted that in most cases of interest, the calculation of the partition function in an impossible
task due to the complexity of the system. However, in what follows, we will study a simple case where this
calculation is fairly trivial, as a way to obtain a firm physical understanding of what is meant by frustration
in spin systems.
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F = − 1

β
lnZ (2.7)

which in the h ≡ 0 limit becomes:

F0 = − 1

β
ln
(
2eβJ + 6e−3βJ

)
(2.8)

where we have added a subscript to indicate the zero field limit. The average energy of the

system is, in this case, given by:

〈E〉0 = −∂ lnZ
∂β

= −6Je−βJ + 6Je3βJ

6e−βJ + 2e3βJ
(2.9)

We can use the Free Energy expression gives us the possibility to determine the value of the

Energy in the system as a function of the parameters that define the system. In particular,

the ground state energy (T = 0) is:

E0 = lim
β→∞

F0 = lim
β→∞

1

β
ln
(
6e−βJ + 2e3βJ

)
(2.10)

where we use the same subscript notation. Before we can proceed with the calculation of

the limit, we must distinguish between two different cases, corresponding to the different

signs of J. If J > 0, the argument of the logarithm is dominated by the second exponential,

and we obtain:

E+
o = −3J (2.11)

where the superscript denotes the sign of J . This implies that in this case, the system

displays ferromagnetic behavior and that in the low temperature limit, all spins are aligned

with each other. On the other hand, if J < 0, the first exponential dominates the logarithm

and we have:

E−
0 = +J (2.12)

The Entropy is defined as:
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S = β(E − F ) (2.13)

and for h ≡ 0, we have:

S0 = β

(
3Je−βJ + 3Je3βJ

3e−βJ + e3βJ

)
+ ln
(
6e−βJ + 2e3βJ

)
(2.14)

In the high temperature limit (β → 0):

S∞
0 = ln 8 (2.15)

On the other hand, if we make the temperature go to zero (β →∞) we must consider two

different cases. If J > 0, the ferromagnet has two possible ground states, all UP or all

DOWN. The entropy is, therefore:

S+
∞ = ln 2 (2.16)

But if J < 0, the system behaves as a frustrated antiferromagnet, which, in this case, implies

that at least one of the bonds must be broken. Since we have three possible bonds and an

UP-DOWN degeneracy, there are 6 = 3× 2 possible ground states and the entropy is given

by:

S−
∞ = ln 6 (2.17)

This deceptively simple example already displays all the ingredients necessary for the com-

plex behaviors we observe in spin glasses. The complexity can only increase when there is

a mix of ferromagnetic and anti-ferromagnetic bonds of different strenghts. We explore this

more general case in the rest of this Chapter.

2.3 Sherrington-Kirkpatrick model

Now that we understand the basic ingredients that constitute a spin glass, and as a first ap-

proach, we choose to devote some of our attention to the venerable Sherrington-Kirkpatrick
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Figure 2.2: Hysteretic cycle. Hmax is the magnetic field that saturates all the spins in the
system leading to complete magnetization.

model before proceeding to higher dimensional models. This will help us hone the methods

and physical intuition that will guide us through the study of other systems.

The dynamics of a system can be studied by observing how it reacts to a variation of

the magnetic field to which it is subjected. The applied magnetic field will try to make

the magnetic spins present in the sample to align with it, a process that consumes energy

(supplied by the magnetic field) and requires a certain amount of time. This phenomenon

leads to an observable lag between a change in the magnetic field and the system’s mag-

netization, by varying the field in a sinusoidal fashion, and observing the behavior of the

magnetization as a function of the field we obtain a figure known as a the hysteretic cycle of

the system as shown in Fig. 2.2. Hysteresis is a phenomenon known for several decades and

that is commonly used as a tool to study the dynamics of magnetic systems and we shall

keep with tradition and start the study of our system by the observation of its hysteretic

properties.
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Figure 2.3: Distribution of avalanche sizes for the Sherrington-Kirkpatrick model at different
sizes. inset) Scaling collapse.

2.4 1D Ising chain

Figure 2.4: Geometry of the 1D Ising chain model, from [1].

As interesting as the SK model we studied in the previous section is, we will go one step

further and focus our attention in a modification of this model which was proposed in 2003

by H. G. Katzgraber and A. P. Young [1, 2] that considered an interpolate between the

two limits illustrated above by the SK and the EA models. Their model achieves this

interpolation by considering a closed ring of L Ising spins with the interaction constant

between any pair of them being a given by a Gaussian distributed random variable as in

the SK model, but scaled by a factor of r−σij where rij , the Cartesian distance between two

spins at positions i and j is given by:

rij =
L

π
sin

(
π |i− j|

L

)
(2.18)
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 

Figure 2.5: Systems described by the KY model as a function of σ. For σ ≡ 0 we reobtain
the SK model and as σ → ∞ all the long range links are destroyed become essentially
negligible leaving us only with NN interactions.

The geometry of our system is shown in Fig. 2.4 copied from [1]. Varying σ we can

interpolate between the two classes of systems we are interested in. For σ ≡ 0 we reobtain

the classical SK model, and as σ increases, the strength of the long range interactions

becomes increasingly smaller resulting in a gradual approximation to a Nearest Neighbor

(NN) model similar to the EA one, as shown in Fig. 2.5.

As a first step in our analysis, we measure 〈S (σ)〉, the average avalanche size as a

function of σ at different system sizes. This measurement will help us determine what

range of σ we need to study, since it should become system size independent in the NN

limit. As we show on the left side of Fig. 2.6, this happens near σ ≈ 2.0, thus restricting

our interval of interest to σ ∈ [0, 2].

We find that this quantity obeys a scaling law of the form:

〈S (N,σ)〉 ∼ NA (σ) f (N,σ) + B (σ)

log2 (N)
(2.19)

where A (σ), B (σ) are linear functions of σ, and f (N,σ) is plotted on the right side of

Fig. 2.6. The overlap of all the curves in the interval σ ∈ [0, 0.5] means that all the N

dependence has been captured by the N/ log2 (N) term. The scaling function becomes

increasingly worst with σ > 0.5, signaling an increasingly stronger deviation towards a new

N dependence.

This change in behavior at σ = 0.5 is due to a topological change in the system. For all
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σ, the mean field transition temperature, TMF
c , is of the order:

(
TMF

c

)2 ∝
∑

i'=j

[
J2

ij

]
av

=
∑

i'=j

r−2σ
ij ∼ N−σ+ 1

2 (2.20)

where [·]av denotes an average over disorder, becomes finite in the thermodynamic limit.

The system goes from having an Infinite Range behavior to a Long Range character, where

the dynamics are dominated by the long range tail of the interaction matrix, Jij . The

complete phase diagram as a function of σ is shown in Fig. 2.7.

An avalanches size is determined by the total number of spin flips that occur. If the

same spin happens to flip several times, then it will be counted multiple times as well, but

we may also be interested in identifying and counting just which spins flip, regardless of how

many times they do so. We can easily measure this during our stochastic runs by keeping

track of which spins have already been flipped once during the course of a given avalanche,

so that we can count them only one. The ratio S/U of the avalanche size over the number

of unique spins flipped gives us a measure of how important loops are in the dynamics of

the system, a large ratio will indicate that perturbations spread throughout the system and

keep returning to the same spin, while a number close to unity would mean that avalanches

propagate in just one direction and never double back.

On the left side of Fig. 2.8 we plot 〈S/U (σ)〉 for different file sizes. We find that the

ratio between the size of the avalanche and the number of unique spins flipped is always

very close to 1, and obeys a scaling law of the form:
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Figure 2.6: left)Average avalanche size as a function of σ for different system sizes. right)
Corrections to scaling.
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Figure 2.7: Phase diagram of the distance dependent SK model according to [2].

0 0.5 1 1.5 2
σ

1

1.02

1.04

1.06

1.08

1.1

<S
/U

>

N=64
N=128
N=256
N=512
N=1024

0 0.5 1 1.5 2
σ

0.001

0.002

0.003

0.004

0.005

g(
N

,σ
)

N=64
N=128
N=256
N=512
N=1024

Figure 2.8: left) Ratio between the avalanche size and the number of spins that were flipped.
right) Scaling function.

〈
S

U
(N,σ)

〉
= 1 +

√
N [g (N,σ) −A log (N)] (2.21)

where A is a constant and g (N,σ) is shown on the right side of Fig. 2.8. The scaling

collapse is very good up to near σ ≈ 1.5 where the system acquires a purely short range

behavior.

2.5 Hysteretic Optimization

In 2002, Zarand et al[24, 25, 26] proposed using a process similar to a.c. demagnetization

to search for the ground state of spin glasses. The classical example of this process is when

a CRT screen is magnetized by proximity to a magnet. In the magnetized region, the colors

are distorted. To repair it, another magnet must be put in close proximity to the affected

region and then gradually moved away in a circular pattern. In this way, the screen will be

brought to a demagnetized state.
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Algorithm 1 Hysteretic Optimization

1. Set H = H1 large enough such that Si = ξi ∀ i. Set E{min} = H (= HHO|H=0).

2. Decrease H until one spin becomes unstable and allow the system to relax. If H <
E{min}, set E{min} = H.

3. Optional: When H passes zero, randomize ξi, leaving the current configuration stable.

4. At each turning point H = Hn = −γn−1Hn−1, for 0 < γn < 1, reverse the direction
of H.

5. Terminate when amplitude |Hn| < H{min},.

6. Restart at 1 for Nrun times with a new, random set of ξi’s .

7. Return the best E{min} over all runs.

They proposed replacing the Hamiltonian:

H = −
∑

ij

Jijσiσj (2.22)

by:

H = −
∑

ij

Jijσiσj −H
∑

i

ξiσi (2.23)

where ξi = ±1 are random local fields, and H is an oscillating external field. In effect, the

process described above corresponds to a damped hysteretic cycle, where the field during

half-cycle n is given by: Hn = −γHn−1 with γ < 1. This algorithm is described in Alg.1,

and was shown to work very well for the Sherrignton-Kirkpatrick model and not at all in

the case of the Edwards-Anderson model.

The 1D Ising chain described in the previous sections, with its interpolation between

these two limits, is ideally placed to explore this dichotomy. Why doesn’t HO work for

the EAmodel? What are the ingredients that HO requires to work? We start by com-

paring the results obtained by HO with the results obtained using a long run of Extremal

Optimization[27, 28]. The results are shown in Fig.2.9, where we plot the percentage dif-

ference between the HO results and the EO results for exactly the same instances. As we

can see, HO becomes increasingly worse as σ increases, but there is a clear transition at

σ = 0.5. As we saw in Fig. 2.7, this is when our model loses it’s Infinite Range character
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Figure 2.9: Percentage difference between the ground state found by Hysteretic Optimiza-
tion and the one found by Extremal Optimization.

to become merely Long Ranged.

The explanation lies in Fig. 2.6, where we see that this is also where the characteristic

size of the avalanches changes so it no longer scales with the system size, N . This is a strong

indication that the efficacy of HO is strongly dependent on the presence of large avalanches

that can take the system from one point in configuration space to a very different one, thus

gradually exploring distant regions of this space in search for the lower energy configuration.

To understand how the dynamics changes, we study how the algorithms approaches the

final configuration, at H ≈ 0 and m = 0, by looking at the auto-correlation function given

by:

〈S0
i Sτ

i 〉 − 〈S0
i 〉〈Sτ

i 〉 (2.24)

where the indices denote summation over all i. In Eq. (2.24), we measure the overlap

between the final configuration and those obtained a number of τ complete cycles backwards

in the past at their H = 0-crossing. Intuitively, we expect that the configurations seen at

the beginning of the procedure (large values of τ) will be completely unrelated to the final

configuration (τ = 0), resulting in a value near zero for this quantity. However, as the

algorithm takes its course and approaches its conclusion, so too must the configurations

start approaching the final one, corresponding to a value close to 1. The way in which it

varies from values near 0 to values close to 1 gives us information about the way exploration

of configuration space occurs. The longer the period during which the correlations are close

to 0, the larger the volume explored, and the faster it gets close to zero, the earlier the
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Figure 2.10: Correlation with the final solution as a function of the time in the past.

system restricts itself to a given region, thus limiting the quality of the solution it is able to

find.

In Fig. 2.10 we plot this quantity for the case of N = 256, averaged over 1000 different

instances for each value of σ and with 10 different runs per instance. For small values

of σ, the plateau at low correlations is extended (lower solid black curve), followed by an

increase towards the value of 1 near the final stages τ → 0. As σ increases, the auto-

correlations increase within the plateau which itself shortens, and the tendency towards 1

becomes noticeable right from the onset (upper solid black curve for σ = 2). This is a

clear demonstration of the ideas expressed earlier, that the volume of configuration space

explored becomes smaller with the decrease in avalanche size corresponding to increasing

σ.

2.6 Magnetic recording

One exceedingly important technological application of magnetizeable materials is in the

recording of information, be it in the form of hard disk drives, magnetic tapes or even

your old vinyl music records. By defining one value of the magnetization (say m1 > 0) to

represent the bit 1, and its opposite (m1 < 0) to represent the bit 0 and dividing a long

stripe of magnetic material (or a long circular track in the case of disks) in small independent

sections of predetermined length, one can easily record and preserve the large amounts of

digital information which are essential to today’s information driven age.

Realistic recording materials must possess several important properties; they must be
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Figure 2.11: Coercivity and Remanence on the hysteresis cycle.

easily recorded (and erased) by the application of precise external fields, yet be able to

maintain their magnetization (preserve the recorded information) over as long a period of

time as possible. while resisting spurious or stray magnetic fields2. We also want to be able

to quickly record and retrieve the information contained in these devices. In summary, we

want to be able to produce, in a period of time, τW → 0, a change in magnetization that

will last for a period τS →∞, while still being able to retrieve it in τR ∼ τW .

These magnetic properties that determine whether or not a material can obey these

stringent requirements are encoded in its hysteretic cycle. The ability to preserve magne-

tization for an extended period of time, is determined by the systems coercivity, Hc, the

field required to reduce the magnetization to zero, and the point where the hysteretic line

intercepts the H axis coming from positive magnetizations. The capacity to clearly record

information is given by the remanence, mR, the magnetization that the material can retain

after the driving external field has been reduced to zero. In the hysteresis loop this occurs

when the line first crosses the m axis. These two quantities are represented in Fig. 2.11.

2.7 Publications

[29] B. Gonçalves and S. Boettcher, Hysteretic Optimization For Spin Glasses, J. Stat.

Mech, P01003, (2008)

2Such as the ones produced by CRT screens which are still widely available.
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Figure 2.12: Coercivity as a function of σ.
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Chapter 3

Monte-Carlo Methods

”If you must play, decide upon three things at the start: the rules of the

game, the stakes, and the quitting time.”

- Chinese proverb

Named after a casino in Monaco, Monte-Carlo methods work in a way that closely mimics

the gambling that occurs there. Dice are rolled, and fortune decides who is the winner

for the day. Players hope they can beat the odds and make their dreams come true., while

casino owners rest assured in the knowledge that the large fluctuations that attract gamblers

will average out and leave them with a healthy profit.

Monte-Carlo methods[30, 31, 32, 33, 34] are, in a way, a formalization of this process in

a way that allows them to be used to model stochastic problems. Despite its variety, they

always involve generating random configurations of the system (rolling the dice), measuring

some property of this configuration (who is the winner), and, finally, averaging over many

such trials (the overall profit).

Physical processes are often stochastic and just as often we don’t posses detailed infor-

mation about the system. What will be the result of a coin toss? Where exactly are the

impurities in a semi conductor? However, we must somehow account for this while studying

these problems, and this is where Monte-Carlo methods have proven most useful.

21
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3.1 Master Equation

Stochastic models where the transitions from a given state s to another state s′ occur

spontaneously at a rate ωs→s′ ≥ 0, have a probability distribution P (s, t), of being in state

s at time t that evolves deterministically in time according to a master equation of the form:

∂

∂t
P (s, t) =

∑

s′

ωs′→sP
(
s′, t
)
−
∑

s

ωs→s′P (s, t) (3.1)

where the first summation accounts for transitions from all states s′ in to state s and the

second term accounts from transitions away from state s on to some other state s′. This

equation describes the probability flow that is responsible from creating or destroying any

given configuration. Both terms are correlated in such a way that the usual normalization

condition
∑

s P (s′, t) ≡ 1 is valid at all possible values of t. If we know the complete P (s, t)

at any point in time, we can use this equation to determine the form of P (s, t) at any other

instant. One important consequence of this fact is that processes of this type don’t posses

any type of memory about how they reached state s, thus clearly marking them as Markov

Chain[35, 36, 37, 34, 32] processes. It is also important to note that the ωs→s′ are rates and

not probabilities, being able to take on values larger than unity and defining an intrinsic

time scale which can be modified by rescaling all the ωs by a constant.

Given that Eq. 3.1 describes a time dependent process, we can follow the usual physical

definition of equilibrium, namely, that an equilibrium process is such that any explicit time

dependence is eliminated, or, mathematically, the point at which:

∂

∂t
P (s, t) ≡ 0 (3.2)

from where we can easily see that at equilibrium, the system must obey:

∑

s′

ωs′→sP
(
s′
)

=
∑

s

ωs→s′P (s) (3.3)
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As a particular case, we have:

ωs′→sP
(
s′
)

= ωs→s′P (s) (3.4)

This condition is usually referred to as the ”detailed balance condition”. One should note,

that detailed balance is a ”sufficient”condition for equilibrium, but not a required condition.

This means that some system can disobey this principle and still be at equilibrium, but it

also means that any process that obeys this prescription is necessarily in equilibrium.

3.2 Importance Sampling

Now that we have a better understanding as to when a system reaches equilibrium and

of how it evolves from equilibrium state to equilibrium state we can start answering the

important question of how we can measure average equilibrium properties of the system in

a way that ensures the correctness of the result. In conventional Statistical Physics, the

average of an observable is given by:

A ≡ 〈A (s)〉S =
1

Z

∫

S
dsA (s) e−βH(s) (3.5)

where:

Z =

∫

S
dse−βH(s) (3.6)

is the system’s partition function, β = (kBT )−1 is the inverse temperature, H (s) is the

Hamiltonian and the integration is carried out over all phase space S. However, for practical

reasons, it is usually impossible to perform these integrals and we are forced to estimate

their value using a finite number, n, of phase space points, {s1, s2, · · · , sn}.

A back of the envelope calculation allows us to discretize integrals, and obtain:

〈A (s)〉S =

∑n
i=1 A (si) e−βH(si)

∑n
i=1 e−βH(si)

(3.7)

which is exact in the n →∞ limit. Ideally, these points would be chosen and weighted using

some distribution, P (s), such that we can obtain the best possible result with the fewest
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number of points possible. With this approach, the last expression takes on the form:

〈A (s)〉S =

∑n
i=1 A (si) e−βH(si)P (si)

−1

∑n
i=1 e−βH(si)P (si)

−1 (3.8)

which clearly identifies, the choice of P (si):

P (si) = e−βH(si) (3.9)

that simplifies Eq. 3.7 in to:

〈A (s)〉S =
1

n

n∑

i=1

A (si) (3.10)

this is usually referred to in the literature as ”importance sampling”. By using this form of

P (si) in Eq. 3.4, we easily obtain:

ωs→s′

ωs′→s
= e−βδH (3.11)

where δH is the change in energy between the final state s′ and the initial state s. This prac-

tical prescription on how to implement a Markov Chain process that would allow us to easily

calculate the equilibrium value of physical observables using a computer was introduced in

1953 by Nicholas Metropolis et al [38] and is probably one of the most influential algorithms

of the last 100 years. It has since been used in a multitude of different applications, with

several good reviews and introductory texts [34, 39, 30, 35, 40] available.

3.3 Spin Dynamics

Eq. 3.11 doesn’t give us a unique definition of the transition rates ωs→s′, it only specifies

ratios, giving us some freedom to choose the set of transition probabilities that best suits

our needs. Since we are mostly concerned with Magnetic Spin Systems we will focus on the

different possibilities that are suited to this type of system. One of the better know choices
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Algorithm 2 Metropolis Algorithm

1. Start with any valid configuration.

2. Choose any other valid configuration and measure the energy difference, δH, between
the two states.

3. Generate a random number, p, uniformly distributed between 0 and 1.

4. Move the system to the new state if p ≤ P (s → s′) , where P (s→ s′) is given by Eq.
3.12.

5. Repeat steps 2–3 until the system reaches equilibrium.

6. Continue to evolve the system in the same way as long as necessary to measure the
observables you are interested in.

for the probability of accepting a transition from state s to state s′, P (s → s′), is:

P
(
s → s′
)

=






e−βδH δH > 0

1 δH < 0
(3.12)

Physically, this means that transitions to states with lower energies are always accepted,

while transitions to higher energy states are accepted with a probability that decays ex-

ponentially on the energy difference separating the two states. The energy jump that the

system is allowed to take is measured with respect to the temperature, thus correctly mim-

icking thermal fluctuations.

The basic Metropolis Algorithm, shown in Alg. 2, still poses some questions that must

be answered before it can be successfully used, in particular, what’s the best way to choose

new possible configurations in order to minimize the rejection, and when should we stop.

The answer to the second question is provided by the definition of standard error:

SE =

√∑N
i=1 (Ai − 〈A〉)2

N
(3.13)

where N is the number of independent measurements, Ai, and 〈A〉 is their average value. By

monitoring this quantity during step 6, while taking care to make sure that two consequent

measurements are uncorrelated, we can determine when the error in the measured value of

our observables is acceptably small.
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The answer to the first question is somewhat more involved. Every time we attempt

a transition, we must generate a new configuration and measure its energy, which can

require an expensive computation. It would be best to only generate configurations that

have a reasonable chance of being accepted so to minimize wasteful rejections. The best

way to do this is notoriously application dependent. We want to explore phase space as

much as possible, while minimizing the energy difference at each attempt. In spin systems,

this can be done by changing the state of just one spin at a time. For Ising spins, this

means just flipping it, while for Heisenberg spins, due to their vector nature, it implies

changing their orientation in a multidimensional space. This method is usually referred

to as Metropolis Dynamics. Another possible choice, known as Kawasaki Dynamics, is

to choose two different spins, and exchange their configurations, thus keeping the total

magnetization constant, which can be useful in some cases. On the other extreme, we can

try to ”flip” large connected clusters of spins, where the energy difference between the two

configurations scales with the length of the boundary and can allow for large jumps in phase

space which would require large amounts of time if one were to use Metropolis Dynamics.

Cluster Algorithms to determine the best way of selecting the clusters to be flipped is still

an active field of research.

3.4 Density Of States

As recently observed by Hove[41] in 2004, if during our Metropolis runs we maintain a

histogram, N (E), of the energy values, E, our system visits, at the end we would have:

N (E) ∝ g (E) e−βE (3.14)

where g (E) is the density of states of the system. In principle, we can invert this equation

to estimate g (E)for the entire energy range:

Aβg (E) = N (E) eβE (3.15)
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where Aβ is a unknown temperature dependent proportionality constant. In practice, how-

ever, due to limited runtime and statistical limitations, our histogram only includes a small

range of energies in the vicinity of 〈E (β)〉, so we must combine the result of different runs

at different temperatures in order to obtain a complete estimate of g (E):

g (E) = g0

N∑

i=1

Aβi
Ni (E) wi (E) eβiE (3.16)

with:

wi (E) =
Ni (E)
∑N

i=1 Ni (E)
(3.17)

being the weight corresponding to each of the N different histograms, and g0 being an overall

proportionality constant. On must also adjust the different proportionality constants Aβi

so that the different estimates match in the overlapping regions. Hove proposes to do this

by minimizing:

χ2 =
N−1∑

i=1

N∑

j=i+1

∑

E

Ni (E)Nj (E)× (ln Ai + βiE + lnNi (E)− ln Aj − βjE − lnNj (E))2

(3.18)

where the term in parenthesis is simply given by ln gβi
(E) − ln gβj

(E). The natural logs

are used in order to avoid numerical overflows due to the large magnitude of the quantities

involved.

3.5 Microcanonical Monte-Carlo

In 1983, Creutz[39] introduced a variation of the metropolis algorithm we described above,

that allows for the determination of constant energy properties of the system. Creutz

envisioned a demon that travels around the system, transferring energy from one part of

the system to another, while keeping the overall energy, Esystem + Edemon, constant, as

required by the microcanonical ensemble.

When the demon attempts to move the system from configuration s to a configuration

s′with lower energy, it keeps the excess energy. On the other hand, when the configuration

s′ has a higher energy, the move is only allowed for, if the demon can ”pay” for the extra
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energy from it’s own energy reserves.

Standard statistical mechanics arguments can be used to show that the demon’s energy

will be distributed as:

P (Edemon) ∝ exp (−βEdemon) (3.19)

with

β =
1

4
ln

(
1 +

4

〈Edemon〉

)
(3.20)

The attentive reader will note that, since the demon’s energy is not strictly constant, the

system’s energy must also vary. Fortunately, for large systems, the demon’s energy will be

just a small fraction of the total energy and the system’s energy will be, effectively, constant.

We should also note that if, at each step, we replace the demon’s energy with a random

variable selected with Boltzmann weight exp (−βEdemon), then this algorithm reduces to

the usual canonical Metropolis.
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Ensemble Inequivalence

”Inequality is the only bearable thing, the monotony of equality can only

lead us to boredom.”

– Francis Picabia, French painter and poet

Textbook statistical physics teaches us that there is a clear and precise equivalence between

the different statistical ensembles, microcanonical, canonical and grand canonical that allows

us to easily move from one to another without affecting the basic properties of the system.

In particular, this has lead to the possibility of affecting the knowledge about one of the

ensembles to guide us in the study of the others, with spectacular results in various systems.

The entire construction of thermodynamics and statistical physics rests on one under-

lying fundamental principle, that the systems under consideration are large enough and

that the interactions involved decrease fast enough that the total energy of the system is

extensive, or in other words, energy increases linearly with the system size1. This implies,

among other things, that all forces between particles have an effective range beyond which

the system can be divided in to independent macroscopic pieces, and boundary effects are

negligible beyond a small distance from the surface.

However, if the interactions are sufficiently strong, boundary effects will be significant

through out the ”bulk”of the material and a whole new host of physical phenomena becomes

possible, such as the possibility of a region of negative specific heat in the microcanonical

1There are several possible formulations of the thermodynamical limit which are all equivalent. We chose
this one for reasons that will become clear later.

29



CHAPTER 4. ENSEMBLE INEQUIVALENCE 30

ensemble that is determinantly forbidden in the canonical ensemble, leading to different

physics, and phase transitions, in each of the ensembles, a property known as ensemble

inequivalence. In this chapter we study this type of inequivalence in a model system both

analytically and numerically.

4.1 Model

Let us consider a system of Potts spins with three possible states each, a, b and c. In the

”ferromagnetic” case, only spins in the same state interact with each other decreasing the

total energy by J , the interaction energy. The Hamiltonian for this system can be written,

in the absence of an external field:

H = −J
∑

〈i,j〉

δqiqj (4.1)

where 〈i, j〉 denotes all the bonds in the system, q1,2 is the state of spin i and j, respectively,

and δqiqj is a kronecker delta. In this form the energy simply counts the number of satisfied

bonds between spins. The ground state energy is simply the total number of bonds in the

system (and the total number of terms in the summation), E. By adding EJ to the energy,

we obtain:

H = J
∑

〈i,j〉

(1− δq1q2) (4.2)

which in effect redefines the ground state to have energy 0 and the Monte-Carlo the system

to count the number of broken bonds. This form, while preserving the physics of the system,

simplifies our analysis since it’s easy to count broken bonds.

4.2 Large Deviation Theory

The Large Deviation Cavity Method is a modification of the usual cavity method introduced

by Mezzard and Parisi [42]. Like its predecessor, it analytically evolves the system by

considering three different situations, the addition of a site, the addition of a link and

iteration, the addition of a cavity spin in a self-consistent way. Using these three processes
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we can then calculate the microcanonical entropy L as a Legendre transform of the canonical

free energy F . We shall apply the method described in detail by Rivoire in [43], and we

divide the calculation in several parts for easier understanding. We refer to the results in

Rivoire’s paper and simply apply them to our system.

4.2.1 Iteration

From [43], Eq. 39 we know, that in general:

P (h0) =
1

Z ′

∫ r−1∏

j=1

dhjP (hj) δ
(
h0 − ĥ(r−1) ({hj}) e−y∆E

(r−1)
n ({hj})

)
(4.3)

The cavity fields h tell us what is the state of the spin. If we call the three possible spin

states a, b and c, then h ∈ {a, b, c} and we can associate the probabilities pa, pb and pc to

these three different possibilities. We must now compute ∆E(r−1)
n , the energy shift when a

new node is added and connected to k − 1 other nodes. If k = 3, the new node can be in

states a, b and c, with a priori probability of 1/3 and h0 = a, b, c accordingly. The different

possible values of the fields h1 and h2 are described in Table 4.1.

h0 (h1, h2) ∆E(r−1)
n prob

(a, a) 0 1
3p2

a

(a, b) 1 1
32papb

a (a, c) 1 1
32papc

(b, b) 2 1
3p2

b
(b, c) 2 1

32pbpc

(c, c) 2 1
3p2

c

(b, b) 0 1
3p2

b
(b, a) 1 1

32pbpa

b (b, c) 1 1
32pbpc

(a, a) 2 1
3p2

a

(a, c) 2 1
32papc

(c, c) 2 1
3p2

c

(c, c) 0 1
3p2

c

(c, a) 1 1
32pcpa

c (c, b) 1 1
32pcpb

(a, a) 2 1
3p2

a

(a, b) 2 1
32papb

(b, b) 2 1
3p2

b

Table 4.1: Energy shifts and probabilities for the k = 3 case.
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Using these values in Eq. 4.3, we obtain:






pa = 1
Z

1
3

{
p2

a + 2pa (pb + pc) e−y + (pb + pc)
2 e−2y
}

pb = 1
Z

1
3

{
p2

b + 2pb (pa + pc) e−y + (pa + pc)
2 e−2y
}

pc = 1
Z

1
3

{
p2

c + 2pc (pa + pb) e−y + (pa + pb)
2 e−2y
}

Z = 1
3

{
[pa + (pb + pc) e−y]2 + [pb + (pa + pc) e−y]2 + [pc + (pa + pb) e−y]2

}

(4.4)

from where we can easily calculate numerically pa,b,c. For larger k the generalization is

straightforward, we have:

pa =
1

3Z

[
pa + (pb + pc) e−y

]k−1
(4.5)

Before we can use Rivoire’s [43] Eq. 40:

F (y) = − ln

[∫
d∆EP (r)

n (∆E) e−y∆E

]
+

r

2
ln

[∫
d∆EPl (∆E) e−y∆E

]
(4.6)

to calculate F (y) we must first determine Pl (∆E), that describes link addition, and

P (r)
n (∆E), that describes site addition.

4.2.2 Link addition

When adding a new link between two pre-existing cavity sites, we must take in to account

six possible cases, corresponding to the different configurations of the two sites. Three of

these configurations increase the energy by one unit and the remaining three conserve the

energy. All six possibilities are described in Table: 4.2.

(h1, h2) ∆E prob Pl (∆E)
(a, a) 0 p2

a

(b, b) 0 p2
b p2

a + p2
b + p2

c

(c, c) 0 p2
c

(a, b) 1 2papb

(a, c) 1 2papc 2 (papb + papc + pbpc)
(b, c) 1 2pbpc

Table 4.2: Configurations (h1, h2), energy shifts ∆E and total probabilities Pl (∆E) for the
case of a link addition. The numeric factors stem from combinatoric arguments.
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Using these values we can calculate the first integral in the expression for F (y):

∫
d∆EPl (∆E) e−y∆E =

(
p2

a + p2
b + p2

c

)
+ 2 (papb + papc + pbpc) e−y (4.7)

4.2.3 Adding a site

When adding a new site, we have an a priori probability of 1
3 of the new site being in any

of the three allowed states, a, b and c. In the case k = 3, this new site has to be connected

to three previously existing cavity sites. The different states in which these three sites can

be create a large number of different situations that need to be accounted for. All the

possibilities are enumerated Table 4.3 and grouped by energy shift ∆E and state of the new

site h0 for brevity.

h0 (h1, h2, h3) ∆E P (r)
n (∆E)

(a, a, a) 0 1
3p3

a

a (a, a, b) , (a, a, c) 1 1
3

(
3p2

apb + 3p2
apc
)

(a, b, b) , (a, b, c) , (a, c, c) 2 1
3

(
3pap2

b + 3pap2
c + 6papbpc

)

(b, b, b) , (b, b, c) , (b, c, c) , (c, c, c) 3 1
3

(
p3

b + p3
c + 3pbp2

c + 3pcp2
b

)

(b, b, b) 0 1
3p3

b
b (b, b, a) , (b, b, c) 1 1

3

(
3p2

bpa + 3p2
bpc
)

(b, a, a) , (b, a, c) , (b, c, c) 2 1
3

(
3pbp2

a + 3pbp2
c + 6pbpapc

)

(a, a, a) , (a, a, c) , (a, c, c) , (c, c, c) 3 1
3

(
p3

a + p3
c + 3pap2

c + 3pcp2
a

)

(c, c, c) 0 1
3p3

c

c (c, c, b) , (c, c, a) 1 1
3

(
3p2

cpb + 3p2
cpa
)

(c, b, b) , (c, b, a) , (c, a, a) 2 1
3

(
3pcp2

b + 3pcp2
a + 6pcpbpa

)

(b, b, b) , (b, b, a) , (b, a, a) , (a, a, a) 3 1
3

(
p3

b + p3
a + 3pbp2

a + 3pap2
b

)

Table 4.3: Possible configurations (h1, h2, h3), energy shifts ∆E and probabilities for the
different states n which the new site, h0can be. The overall factor of 1

3 corresponds to the
a priori probability that the new site is in state a and the remaining numeric multipliers
stem from combinatorics.

Plugging all terms in to the second integral in the expression for F (y), and simplifying,

we obtain:
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∫
d∆EP (r)

n (∆E) e−y∆E = 1
3

{(
p2

a + p2
b + p2

c

)
+ 3
[
p2

a (pb + pc) + p2
b (pa + pc) + p2

c (pa + pb)
]
e−y

+ 3
[
pa (pb + pc)

2 + pb (pa + pc)
2 + pc (pa + pb)

2
]
e−2y

+
[
(pb + pc)

3 + (pa + pc)
3 + (pa + pb)

3
]
e−3y
}

= 1
3 [pa + (pb + pc) e−y]3 + 1

3 [pb + (pa + pc) e−y]3

+1
3 [pc + (pa + pb) e−y]3

(4.8)

And for general k, we have:

∫
d∆EP (r)

n (∆E) e−y∆E = 1
3 [pa + (pb + pc) e−y]k + 1

3 [pb + (pa + pc) e−y]k

+ 1
3 [pc + (pa + pb) e−y]k

(4.9)

4.2.4 Entropy

Combining all the previous results, we have that the free Monte-Carlo the system is, ac-

cording to Eq. 4.6 and for general k:

F (y) = − ln
[(

p2
a + p2

b + p2
c

)
+ 2 (papb + papc + pbpc) e−y

]

+ r
2 ln
[

1
3

{
[pa + (pb + pc) e−y]k + [pb + (pa + pc) e−y]k + [pc + (pa + pb) e−y]k

}]

(4.10)

where the three densities pa, pb and pc are given by:

pa = 1
Z

1
3

{
p2

a + 2pa (pb + pc) e−y + (pb + pc)
2 e−2y
}

pb = 1
Z

1
3

{
p2

b + 2pb (pa + pc) e−y + (pa + pc)
2 e−2y
}

pc = 1
Z

1
3

{
p2

c + 2pc (pa + pb) e−y + (pa + pb)
2 e−2y
}

Z = 1
3

{
[pa + (pb + pc) e−y]2 + [pb + (pa + pc) e−y]2 + [pc + (pa + pb) e−y]2

}

(4.11)

Finally, the systems entropy as a function of y, L (y) can be calculated using the slope

transform[44] of F :

L (y) = ey − F (y) (4.12)
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Figure 4.1: left) Three solution branches of the entropy. right) The three corresponding
branches for y (e).

where:

e ≡ ∂F
∂y

(4.13)

can easily be calculated numerically using finite differences. This is the final, implicit,

solution for the physical observable, L (e), the entropy as a function of the energy, e. It also

helps us identify

y ≡ ∂L

∂e
≡ β (e) (4.14)

the inverse temperature. A simply procedure will allow us to plot L (e). Starting with values

of y, calculate F (y). Differentiate it numerically, to obtain e (y), and use it to calculate

L (y), which can now be plotted as a function of e. In principle, one should invert y (e) and

apply it to L (y) to obtain L (e) ≡ L (y (e)), but, in this case, a multi valued function of the

energy, so we must divide the solution space, numerically, in several branches and analyze

them separately. In fig. 4.1, we plot the 3 different solution branches for the entropy L (e),

and the inverse temperature y (e).

We also note that multiple values of the energy compatible with the same microcanonical

temperature imply that the entropy curve must be non-concave in that region, resulting in

negative specific heat, the clear fingerprint of a system with ensemble inequivalence.



CHAPTER 4. ENSEMBLE INEQUIVALENCE 36

4.3 Comparison with numerical simulations

In this section we compare the analytical solution with the results obtained through numer-

ical simulations. Microcanonical simulations were performed using Creutz [39] dynamics.

During which, a fictitious “demon” is introduced, carrying an energy edemon. At each step, a

spin flip in the system is attempted, and the corresponding energy change δE is computed.

If δE < 0, the move is accepted; if δE > 0, the move is accepted only if edemon ≥ δE. In

both cases edemon is then updated so that the total energy E + edemon is kept constant;

the Monte-Carlo the system E is then constant up to a O(1/N). For long run times, the

demon’s energy reaches an exponential distribution P (edemon = e) ∝ exp(−e/Tµ), from

where one can compute the corresponding microcanonical temperature Tµ = 1/βmu of our

system:

βµ = log

[
1 +

1

〈edemon〉

]
. (4.15)

Results of the Creutz dynamics are plotted on Fig. 4.2 and compared with the analytical

solution of the previous section. The agreement between the two is very good, with the

β vs energy curve clearly showing a region of negative specific heat.

Finally, we performed canonical Metropolis[38] simulations and calculated the average

energy in the temperature range where our results predict ensemble inequivalence. As

expected, the canonical caloric curve obeys Maxwell’s construction and clearly “jumps over”

the region where the specific heat is negative.

4.4 Conclusion and perspectives

We have presented a complete canonical and microcanonical solution of the 3-states Potts

model on k-regular random graphs, and shown that this toy model displays ensemble in-

equivalence.

There is little doubt that this result should generically apply to models on different types

of random graphs, such as Erdös-Rényi ones, among others. We also expect to observe

ensemble inequivalence on small world networks, since in these systems, the presence of

random long-range links should prevent the system from separating in two different phases.



CHAPTER 4. ENSEMBLE INEQUIVALENCE 37

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.8

0.85

0.9

e

β

Figure 4.2: Comparison for the caloric curve β (e) between the analytical solution (solid
lines), the Creutz dynamics results (stars), and the Metropolis simulations (circles) for
k = 4. The Creutz simulations were performed on networks with N = 40000 sites, for 108

“Creutz steps”, and the results were averaged over 20 network realizations. The Metropolis
results were obtained using 50 different networks with N = 10000 nodes, by performing
1010 Monte-Carlo steps. In both cases, the size of the error bars is comparable to the size
of the symbols.

Beyond the inequivalence between microcanonical and canonical statistical ensemble,

non concave large deviation functions should be expected for some properties on random

graphs. Fig. 4 of [45] gives an example of this. The present work provides an example where

the Large Deviation Cavity method allows to deal with such a situation, and to compute

the non concave part of the large deviation function.

4.5 Publications

[46] J. Barré and B. Gonçalves, Ensemble inequivalence in random graphs, Physica A,

386:212, (2007)



Chapter 5

Topological Non-Connectivity

Threshold

”He who controls magnetism controls the world”

– Dick Tracy

The last few of decades have witnessed a prodigious development in our ability to easily

manufacture a wide array of structures on the level of individual atoms (as shown in Fig.

5.1), with which we can probe and reevaluate the validity of some well known classical

results obtained on the macroscopic level. These ultra thin objects, due to their small size

and consequent anisotropy, display a whole new spectrum of phenomena that can have

important consequences in the development of the emerging field of nanotechnology which

Figure 5.1: Scanning Tunneling Microscopy image of Co mono atomic chains along the
Pt (997) step edges. From [3].

38
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holds the key of future improvements in the computation, data storage and medical fields.

In particular, magnetic properties of linear chains that are just a few atoms long have

received a great deal of interest. Specially, since it has been found experimentally by

Gambardella et al [3] in 2003 that this system can exhibit Ferromagnetic behavior, even

though the standard theory states that there should be no Ferromagnetic behavior in 1D

systems with only short range interactions. It has also been found that small systems with

long-range interactions can display negative specific heat[47] and non-ergodic behavior [48].

One of the possible ways in which ergodicity can be broken is by dividing the phase

space of the system in to two or more regions and to restrict the dynamics in such a way

as to always keep the system within a given region. Borgonovi et al [48, 49, 50] recently

considered a model of Heisenberg spins with an adjustable interaction range, which presents

ergodicity breaking for any N , is described by the following Hamiltonian:

H = −J

2

N∑

i'=j

(
Sz

i Sz
j

rαij
+ ηy

Sy
i Sy

j

rαij
+ ηx

Sx
i Sx

j

rαij

)

, (5.1)

where Sx
i , Sy

i , Sz
i are the spin components, assumed to vary continuously; i, j = 1, ...N label

the spin positions on a suitable lattice of spatial dimension d, and rij is the inter-spin

spatial separation. Each spin satisfies |/S| = 1 and 0 ≤ α < ∞ parameterizes the range of

interactions: decreasing range for increasing α, so that α = 0 corresponds to an all-to-all

interacting model (close to phenomenological anisotropic models), while α = ∞ refers to

a nearest neighbor interacting spin model, similarly to the model described in Chap. 2.

|ηx,y| < 1 parameterizes the degree of anisotropy and J > 0 indicates that the ground state

is ferromagnetic, with an preferential direction of the magnetization in the ground state

along the Z axis (easy-axis). Of course, this is not the simplest Hamiltonian with an easy

axis: putting ηx = ηy = 0 will lead to the same conclusion. Nevertheless, in such a case

the model becomes integrable and some results become model-dependent. Moreover, as

shown in [48], the presence of both anisotropies (along X and Y axis) does not suppress the

TNT: for this reason, without losing generality, we may set ηy = 0. As for the anisotropic

parameter ηx, it could represent as well, a ferromagnetic ηx > 0 or an antiferromagnetic

ηx < 0 coupling. Defining, η = −ηx we arrive at the following Hamiltonian:
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H = −J

2




N∑

i'=j

Sz
i Sz

j

rαij
− η

Sx
i Sx

j

rαij



 , (5.2)

which has been already considered in previous papers [48, 50], and where the constant J > 0

has been added in order to fix the scale of time and to describe the model as ferromagnetic.

Let us also notice that, for η = −1 this Hamiltonian is invariant for rotations about the Z

axis so that there is no a preferential direction of the magnetization in ground state (absence

of easy axis).

Here we review previous results about the TNT obtained for any dimension d of the

system, even if in the following sections we will focus on the d = 1 case.

The minimum energy configuration, with energy Emin, is attained when all spins are

aligned along the Z−axis[49] which defines implicitly the easy axis of magnetization. While

it is quite simple to derive conditions for the non existence of an easy axis of magnetization

(for instance it is sufficient that the system is invariant under any rotation), it is not so

obvious to write down conditions under which the existence of an easy axis is guaranteed.

For instance the presence of a rotational symmetry axis about which the Hamiltonian is

invariant is not enough to give an easy axis, as the Hamiltonian H = −
∑

i,j Sx
i Sx

j + Sy
i Sy

j

shows.

The phase space for E = Emin contains only two spin configurations, parallel or anti-

parallel to the Z−axis. Therefore, the phase space at the minimal energy is disconnected,

due to the uniaxial anisotropy and it consists of two points only. We may ask now when and

whether at a higher energy the constant energy surface is connected. To this purpose, let us

define the TNT energy Etnt as the minimum energy compatible with the constraint of zero

magnetization along the easy axis of magnetization (hereafter we call m the magnetization

along the easy axis)

Etnt = Min

[

H

∣∣∣∣∣
m ≡
∑

i

Sz
i /N = 0

]

. (5.3)

If Etnt > Emin the phase space will be disconnected for all energies E < Etnt. We call this

situation Topological Non-connection, and, as will become clear in a moment, its physical

(dynamical as well as statistical) consequences are rather interesting. Indeed, since below

the TNT the phase space is disconnected, no energy conserving dynamics can bring the
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system from a configuration with m > 0 to a configuration with m < 0, thus indicating an

ergodicity breaking (impossibility to visit the whole energy surface).

A useful quantity measuring how large the disconnected energy region is, compared to

the total energy range, can be introduced [49]:

r =
Etnt − Emin

|Emin|
. (5.4)

In [49] it has also been shown that the disconnection ratio r, for N →∞,

r →






0 for α ≥ d

const += 0 for α < d,
(5.5)

where d is the dimension of the embedding lattice. Since this point has not been remarked in

Ref. [49], let us stress here that the existence of a phase transition for α < d can be inferred

from the finiteness of r in the thermodynamic limit. Indeed, for long range systems, in

order to define the thermodynamic limit it is convenient to make the energy extensive. This

can be achieved by multiplying the Hamiltonian by N/|Emin|. If we define the energy per

particle, e = E/N , we can write:

etnt − emin =
N

|Emin|

(
Etnt

N
− Emin

N

)
≡ r. (5.6)

Since below etnt the most probable magnetization is for sure different from zero, then the

specific energy at which the most probable magnetization is zero will be greater than the

minimum energy in the thermodynamic limit, thus implying a phase transition. On the

other hand, let us also notice that when r → 0 neither the existence nor the absence of a

phase transition can be deduced.

An estimate for the TNT was also given for α < d (long range) and large N . More
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precisely, it can be shown that [49]:

Etnt ≈






4E′
min − Emin for η ≥ ηcr

−ηEmin for η < ηcr,

(5.7)

where

ηcr 1 1− 2α/d < 0, (5.8)

and E′
min is the minimal energy for a system of N/2 spins. For η > ηcr the TNT is

given by the minimum of the second term in Eq. (5.2) under the constraint m = 0, while

for η < ηcr it is given by the minimum, under the same constraint, of the first term in

Eq. (5.2). For η < 0 and finite N , there is a competition between the two different TNTs,

therefore, in what follows, we will fix the anisotropy parameter η = 1, for which we have

ferromagnetic coupling along the Z direction and antiferromagnetic coupling along the X

direction, however, this choice does not affect the generality of our results.

5.1 Density of States

The density of states (DOS) for a Mean-Field approximated Hamiltonian can be computed

analytically, using large deviations techniques [51]. In particular we will show that ρ(E) 1

(E − Emin)N for E close to Emin. We will also give numerical evidence that this law still

constitutes an excellent approximation of the full Hamiltonian (5.2) and for generic power

law interaction α += 0.

Let us consider the following Mean-Field Hamiltonian:

Hmf = − J

N

(
∑

k

Sz
k

)2

, (5.9)

which can be considered a Mean-Field approximation of the Hamiltonian (5.2), for low

energy and α = 0. Defining

mz =
1

N

∑

k

Sz
k (5.10)
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and e = Hmf/N , Eq. (5.9) can be rewritten as

e = −Jm2
z. (5.11)

Let us also assume that Sz
k are random variables uniformly distributed in [−1, 1].

We can compute the entropy per particle as a function of mz using Cramer’s theorem

[51], so that we have:

s(mz) = −supλ [λmz − lnψ(λ)] , (5.12)

where

ψ(λ) = 〈eλSz〉 =
1

2

∫ 1

−1
eλSz

dSz =
eλ − e−λ

2λ
. (5.13)

Taking the sup in Eq. (5.12) we get:

ψ
′

(λ)

ψ(λ)
= mz, (5.14)

which defines λ as a function of mz. It is easy to see that for mz ∼ 1 then λ → ∞ (we

could as well consider mz ∼ −1 of course, and the result would be the same) so we restrict

our considerations to |mz| 1 1. Simplifying the expression of ψ we have

ψ(λ) =
eλ

2λ
, (5.15)

and inverting Eq. (5.14):

λ =
1

1−mz
≡ 1

δ
. (5.16)

From Eq. (5.12) we obtain:

s(δ) = ln δ + const. = ln

(
e− emin

−emin

)
+ const., (5.17)

since

e = −Jm2
z 1 −J(1− 2δ) = emin + 2δJ, (5.18)
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Figure 5.2: The specific entropy vs energy, obtained numerically for N = 24 and different
α values (symbols indicated in the legend) is compared with that of the Mean Field Hamil-
tonian (full curve) and with the power law (dashed line), see Eq. (5.19). In the inset the
entropy is shown vs the energy for the case N = 24, α = 0.5.

and emin = −J . From that we immediately have that at low energy,

ρ(E) 1 (E − Emin)N . (5.19)

The next leading order in δ can be calculated from

e = −Jm2
z = −J(1− δ)2, (5.20)

so that

δ = 1−
√
− e

J
, (5.21)

and

s(e) = ln

(
1−
√

e

emin

)
+ const. (5.22)

It is immediate to see that Eq. (5.22) gives Eq. (5.17) for e 1 emin. We compared this

analytical result for the Mean-Field model with the DOS computed numerically for the

full Hamiltonian (5.2) and different α values in Fig. 5.2. The DOS has been calculated

using a modified Metropolis algorithm introduced in [41]. The idea behind is performing a

random walk in phase space within an energy range defined by the system temperature. The
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probability P (E,T ) of visiting a configuration with energy E and temperature T , obtained

keeping a histogram of the energy values found during a Metropolis run, is related to the

DOS through the Boltzmann factor exp(−E/T ) (here is kB = 1). That provides us a

conceptually simple way of determining the DOS. However, due to finite run time, P (E,T )

will only contain information near 〈E〉 and we must combine the results for runs at different

temperatures to obtain the complete DOS over the entire energy range.

As one can see in Fig. 5.2 the entropy per particle, in the long range case, is almost

independent of the range of the interaction, also confirming a result obtained in [52]. More-

over, the theoretical approach gives a very good approximation of the entropy per particle

at low energy. When the energy is increased, the first term in the full Hamiltonian (5.2)

becomes important and some deviations appear (see for instance the upper right corner in

Fig. 5.2). Needless to say the excellent agreement confirms the power law behavior for the

DOS, Eq. (5.19), even for energy values sufficiently high. As an example in the inset of

Fig. 5.2, we can see that the power law expression (5.19) holds up to Etnt.

5.2 Probability of Zero Magnetization

Due to the disconnection, below Etnt the dynamical time of magnetic reversal is infinite

while above and close to the energy threshold (for chaotic systems), it was found to diverge

as a power law [50]:

τ ∼ 1

(E − Etnt)γ
∼ e∆S =

Pmax

P0
, (5.23)

where ∆S is the entropic barrier between the most likely magnetic states. Here, PE(m) is

the probability distribution of the magnetization m at fixed energy E, so that

Pmax = Maxm PE(m), (5.24)

and P0 = PE(m = 0).

The divergence found in [50] also shows that the phase space becomes connected at Etnt,

a non trivial result, which cannot be deduced from the true existence of Etnt.
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Figure 5.3: log Pmax/P0 vs log χ for different N values as indicated in the legend and (a)
α = 0.5; (b) α = 1.

Also, for all-to-all interacting spins (α = 0), the exponent γ ∝ N . This is related with

the extensivity of the entropy S(E,m) = ln PE(m) (here we set kB = 1) and explain the

huge metastability of such states even for small systems (say N ∼ 100) and not necessarily

close to the threshold Etnt.

We numerically checked that, even for other power-law decreasing potentials in the

long-range case α < d,

• a power law divergence at Etnt still occurs as given by Eq. (5.23);

• reversal time is still proportional to Pmax/P0 (same equation);

• the exponent γ = N .

In order to do that we computed PE(m = 0) and Pmax for different systems using the

Wang-Landau algorithm [53].

In Fig. 5.3 we show the power law divergence of Pmax/P0 for different α and N values.

In order to improve the presentation we choose as a variable on the X−axis

χ =
E − Etnt

Estat − Etnt
, (5.25)

where Estat has been defined as the energy at which Pmax = P0 (that is when the probability
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Figure 5.4: Dynamical reversal time τ vs the statistical one Pmax/P0 for α = 1 and different
N values as indicated in the legend. Straight lines are τ = (1/k)Pmax/P0 with k = 10 for
N = 16 and k = 2 for N = 48. They have been drawn with the only purpose to guide the
eye showing the proportionality between the two quantities over 3 orders of magnitude.

distribution of the magnetization has a single peak). That way all curves have a common

origin.

When the isolated system has a chaotic dynamics we computed the magnetic reversal

time from the direct integration of the equations of motion and we compare it with the

”statistical” time Pmax/P0 as given by Eq. (5.23). We show this comparison in Fig. 5.4

where each point on the graph has a X coordinate Pmax/P0 and a Y coordinate τ . The

straight lines indicated proportionality over 3 orders of magnitude.

The linear dependence γ = N found in [50] for the case α = 0 holds for generic α < 1

too.

In Fig. 5.5 we show the results of our numerical simulation for α = 0.5, 0.9, 1 . Each

point γ, at fixed N has been obtained computing the statistical reversal time for different

energies, as plot in Fig. 5.3, using the power law (5.23). Assuming a power law dependence

γ ∝ Nσ we have found σ ≈ 1 (within numerical errors) for all cases α 2 1 (we show for

simplicity only the case α = 0.5 in Fig. 5.5).

On the other hand, for α ∼ 1 we have numerical evidence of a slower dependence on N :

γ ∼ Nσ with σ < 1. In the same Fig. 5.5 we show for sake of comparison the critical case

α = d = 1 where σ = 0.78(2), and the close-to-critical case α = 0.9 where we have found
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Figure 5.5: log γ as a function of log N for different α values. Full circles stand for α = 0.5
and dashed line is the linear fitting with slope 1.02(1). Open circles is the critical case
α = d = 1 and full line is the linear fit with slope 0.78(2). Open squares are for α = 0.9.
Standard fit procedure gives σ = 0.87 thus signaling the presence of a smooth transition at
the point α = 1 for finite N .

σ = 0.87(2). Even if these results indicate that the simple linear relation γ ∝ N is valid

for long-range interacting systems only, care should be used to extend the results of the

case γ = d = 1 to large N since finite N effects are huge in this case. Numerical evidence

for σ < 1 has also been found in the short range case (α 3 1 ) but it will be discussed

elsewhere.

The next obvious step in the analysis of this model is to put it in contact with a heat

bath. In this case, we expect the thermal fluctuations to play a major role, since through

them the system will be able to reach states with an energy range, which might be large

enough to allow it to reverse the magnetization, thus making the TNT irrelevant.

Let us define P0 (E) to be the probability of having a state with 0 magnetization and

energy E, and, by definition, we have that P0 (E < ETNT ) ≡ 0. As we know from standard

statistical physics, if we know the microcanonical P0 (E), we can easily calculate its canon-

ical counterpart, P0 (T ), the probability of the system having zero magnetization when in

thermal equilibrium with a heat bath at temperature T , using:

P0 (T ) =

∫
ETNT

P0 (E) g (E) e−βEdE
∫
ETNT

g (E) e−βEdE
(5.26)
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Figure 5.6: Average energy as a function of temperature. The horizontal lines mark ETNT

and the ”error bars” represent the standard deviation of the energy distribution P (E).

where g (E) is the density of states. Our task is now two fold, since on one hand we

must calculate g (E), and on the other, we must also calculate P0 (E). Due to the numerical

difficulties of determining the density of states, we compared the average energy as a function

of temperate calculated using:

〈E (T )〉 =

∫
ETNT

Eg (E) e−βEdE
∫
ETNT

g (E) e−βEdE
(5.27)

and the direct result of measuring it in our Metropolis runs. As shown in Fig.5.6 the two

approaches agree very well with one another, which gives us a high degree of confidence

that our approach so far is correct. This plot also gives us the possibility of defining TTNT

as the temperature at which the average energy is equal to ETNT .

5.3 Magnetization Reversal Times

Since the TNT has been introduced for isolated systems, question arises if and how it can

be defined when the system is in contact with a thermal bath. From the theoretical point

of view we might expect that due to thermal noise the magnetization will be able, soon

or later, to change its sign at any temperature T , thus suppressing the ergodicity breaking

found in isolated systems. Therefore, strictly speaking, a critical temperature below which
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the phase space is topologically disconnected for open finite systems does not exist.

Nevertheless we are here interested in more practical questions, for instance: Will the

energy threshold Etnt still determine the magnetic reversal time in presence of temperature

as it does in isolated chaotic systems? Can we predict the dependence of reversal time from

temperature or any other system parameters, like the number of particles?

Since the system is in contact with a thermal bath we may consider it as a member of

a canonical ensemble. We may properly define the probability density to have a certain

energy value E at the temperature T : P (E,T ). Considering all members of the ensemble

as independent objects we may guess that when the average energy 〈E〉 is much less than

Etnt and the probability density P (E,T ) sufficiently peaked around its average value, the

majority of the members of the ensemble will not cross the barrier, or at least, the probability

of crossing it will be small. On the other hand for mean energy 〈E〉 on the order of Etnt

each member will be allowed to jump, with a time essentially given by the microcanonical

expression Eq. (5.23).

Let us further assume, following the standard fluctuation theory [54, 55], that the mag-

netic reversal times between states with opposite magnetization are determined by the free

energy barrier ∆A between states at the most probable magnetization and states with zero

magnetization:

τ
T
∝ exp

(
∆A

T

)
=

Maxm[PT (m)]

PT (m = 0)
, (5.28)

where

PT (m) = exp[−A(T,m)/T ], (5.29)

is the probability density to have magnetization m at the temperature T . Since Maxm[PT (m)]

is usually a slow varying function of the temperature, we can write

τ
T
∝ 1

PT (m = 0)
. (5.30)

The crucial point now, is to obtain such value using the microcanonical results obtained in

the previous Section, namely:
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Algorithm 3 Magnetization Reversal Times

1. Thermalize the system according to steps 1–5 of Alg. 2.

2. Evolve the system until the magnetization changes sign, while counting the number
of spin flips.

3. Repeat steps 1–2 a large number of times

4. Compute the average number of spin flips required to reverse the sign of the magne-
tization.

PT (m = 0) =
1

ZT

∫
PE(m = 0) e−E/T ρ(E) dE, (5.31)

where ρ(E) is the density of states and

ZT =

∫
e−E/T ρ(E) dE, (5.32)

is the partition function. Since PE(m = 0) = 0 for E < Etnt, the ergodicity breaking acts

as a cut-off energy of the integral (5.31).

In order to verify that Eq. (5.31) actually gives the magnetic reversal time, we simulated

the dynamics of a spin system in contact with a thermal bath in two different ways, the

Metropolis algorithm [38], and using the stochastic differential equations of the Langevin

type as suggested in [56].

The Metropolis approach uses a small modification of Alg. 2, where we thermalize the

system and then count the number of spin flips until the magnetization changes sign. We

repeat this procedure multiple times, with a thermalization period between each measure-

ment to ensure that consecutive measurements are decorrelated. The complete process is

described in Alg. 3.

It should be noted that while these different ways of calculating the magnetization

reversal time are correct only up to an arbitrary constant, they will necessarily give us

the correct functional dependence on the temperature. Our results are shown on Fig. 5.7.

Both approaches agree except for higher temperatures where the approximation used in the

derivation of Eq. 5.51 starts to break down.
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Figure 5.7: Average reversal time τ as a function of the rescaled inverse temperature J/T
for different interaction range. a) all-to-all α = 0, N = 24; b) long-range case α = 0.5,
N = 24; c) critical-case, α = 1, N = 20. Circles are numerical data, dashed line is the
integral calculated in Eq. (5.31).

In the Metropolis dynamics the change in the spin direction has been taken at each step

completely random on the unit sphere while in the Langevin approach a small dissipation

has been added. We checked that the results are independent of such dissipation and that

the two approaches give the same results.

Obviously, both approaches can give directly the distribution function: PT (m = 0), but

we prefer here the direct calculation of the density of states and thus the possibility to get

PT (m = 0) for any temperature[41], with less numerical effort and greater reliability.

Results are shown in Fig. 5.7 where the average reversal time (obtained with the

Metropolis dynamics) vs the rescaled inverse temperature J/T has been considered for

different α and N values as indicated in the caption. As one can see the agreement between

the integral (5.31) (dashed line in Fig. 5.7) and the numerical results (full circles) is excel-

lent over many orders of magnitude. It is worth of mention that no parameter fitting, other

than a multiplicative constant has been used.

It is also remarkable that a small variation in the temperature scale generates a huge

variation of the average time. This signals a strong dependence on the inverse temperature,
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but, generally speaking, not exponential (one should have in Fig. 5.7 straight lines).

On the other side, the exponential 1/T dependence is found in the limit of very low

temperature by studying the asymptotic behavior of the integral (5.31).

Using saddle point approximation in Eq. (5.31) we get :

PT (m = 0) 1 PE∗(m = 0) e(〈E〉−E∗)/T eS(E∗)−S(〈E〉), (5.33)

where 〈E〉 and E∗ are given by:

1

T
=

dS

dE
(〈E〉) =

ds

de
(e), (5.34)

where S = ln ρ, and

1

T
=

dS

dE
(E∗) +

N

E∗ − Etnt
(5.35)

where we used PE∗(m = 0) ∝ (E∗ − Etnt)N , as above. An approximate expression for

(5.34) and (5.35) can be obtained for small temperature. Indeed, using for the entropy the

expression Eq. (5.22) obtained in Sect. III, and inverting Eq. (5.34), one obtains:

e

emin
=

1

2

(

1 +
T

emin
+

√
1 +

2T

emin

)

, (5.36)

so that, for T 2 |emin|/2, we get:

< E >= Emin

[

1 +
NT

Emin
+ O

(
NT

Emin

)2
]

. (5.37)

In the same way Eq. (5.35) can be written as:

E∗ = Etnt + NT

[

1 +
NT

∆
+ O

(
NT

∆

)2
]

, (5.38)

where ∆ = Etnt − Emin and, for temperature sufficiently low,

T 2 Tcr =
Etnt − Emin

2N
<

emin

2
, (5.39)
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we have

E∗ = Etnt + NT. (5.40)

Eq. (5.33) can be further simplified, using the approximated expressions for 〈E〉 and E∗

obtained above and Eq. (5.19) for the DOS:

S(E∗) 1 N ln(∆ + NT ),

S(〈E〉) 1 N ln NT,

PE∗(m = 0) 1 (E∗ − Etnt)N 1 (NT )N .

(5.41)

Finally, neglecting terms of order (NT/∆):

τ
T
∼ 1

PT (m = 0)
∼ exp

(
Etnt − Emin

T

)
. (5.42)

Even if Eq. (5.42) has been obtained for low temperature (T 2 Tcr), it should be kept

in mind that this is a classical model so that for T → 0, when quantum effects become

important, it looses its validity).

The law (5.42) has been checked numerically in Fig. 5.8 where the integral (5.31) has

been calculated for very low temperature and compared with the true exponential law. As

one can see asymptotically they are very close.

This allows to compute directly the reversal time in presence of a thermal bath at low

temperature T without any complicated statistical calculations but the knowledge of the

Hamiltonian itself. Moreover, the calculation of both the ground state energy and the

Topological Non-connectivity Threshold constitutes a mechanical problem and they can be

easily estimated even for complicated models.

Furthermore, it also has some suggestive interpretation. If we consider the path followed

by the magnetization, as a random path of a Brownian particle between two potential wells

separated by a potential barrier ∆E, according to Kramer’s theory [57, 58] the average

transition time between the two wells follows the Arrhenius law, τ ∼ exp (∆E/T ) . Therefore

it is clear that the disconnected energy region ∆ = Etnt − Emin can be thought of as the
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Figure 5.8: Average reversal time τ calculated from Eq. (5.31) as a function of the rescaled
temperature Tcr/T for different interaction range α = 0 (full circles) and α = 0.5 (open
circles) and N = 24. Dashed and dotted lines represent their asymptotic value, as given by
Eq. (5.42).

real potential barrier felt by the magnetization.

In same way, the critical temperature Tcr has the physical meaning of the specific energy

barrier. It is interesting to note that the condition T 2 Tcr is not too restrictive, at least

for long-range systems. Indeed, taking into account that for large N [49]:

Tcr = r
|Emin|

2N
1 2− 2α

2(2− α)(1 − α)
N1−α, (5.43)

only at criticality (α = 1) it does not depend on N (and Tcr = ln 2), while generally it grows

with the number of particles. This is not at all surprising for a long-range systems; indeed,

if we make the energy of the system extensive, (multiplying the Hamiltonian by N/|Emin|),

we have Tcr = r/2, which is finite for any interaction range.

5.4 Power-law corrections to Arrhenius’s law

It should be clear from the previous sections that, depending on the particular shape of

the density of states and on the interaction range, power law corrections to the exponential

behavior can appear (as shown in Fig. 5.7).
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Just to give a concrete example let us consider a density of states

ρ(E) ∼






(E − Emin)N for Emin ≤ E < Etnt

ρ1(E) elsewhere,

(5.44)

where ρ1(E) is a smooth function with a negative second derivative, and

PE(m = 0) ∼ (E − Etnt)
γ . (5.45)

In the limit T 2 |Etnt|, the integrals in Eq. (5.31) can be computed, thus obtaining

τ
T
∼ T−γ e∆/T

∑N
k=0

Γ(N+γ−k+1)
k!(N−k)!

(
∆
T

)k (5.46)

where Γ(x) is the Gamma function.

If we further assume γ = N as we have found for long range interacting systems,

Eq. (5.46) becomes:

τ
T
∼ e∆/T

∑N
k=0

(2N−k+1)!
k!(N−k)!

(
T
∆

)N−k
. (5.47)

Needless to say, for long-range interacting systems, the temperature region where ap-

preciable deviations to the Arrhenius law occurs for Tcr < T < |Etnt|. It is far from obvious

that short-range interaction system will present the same temperature dependence as long

range ones. Indeed, in that case, usually one has Etnt ∼ Emin, so that the evaluation of

Eq. (5.31) calls for different approximations.

Last, but not least, let us remark that the model given by Hamiltonian (5.2) at crit-

icality (α = 1) is very interesting. Indeed, for α = 1 the parameter r (the ratio between

the disconnected portion of energy space compared to the full one) goes to zero in the

thermodynamical limit. The difference with the short-range case is that r goes to zero

logarithmically, instead of a power law: r ∼ 1/ ln N . This simply means the existence of an

effective phase transition for finite systems at criticality.

In their seminal 1966 paper, Griffiths et al[55] showed that transition times between
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metastable states, as given by the minima of the free energy A (m,T ) depends on the free

energy barrier, δ, as:

τG = eβδ (5.48)

where, in our case:

δ = A (0, T )−min
m

[A (m,T )] (5.49)

On the other hand, the free energy barrier can be given by:

δ =
Pmax (T )

P0 (T )
(5.50)

where Pmax (T ) is the temperature dependent probability of the most likely value of the

magnetization. Near TNT , Pmax (T )3 P0 (T ) and can be considered as roughly constant,

which leads us to:

τ ∼ P0 (T )−1 (5.51)

that we can easily obtain from out the results in the previous section.
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Chapter 6

Hanoi Networks

”Save that from yonder ivy-mantled tower,

The moping owl does to the moon complain.”

– Thomas Gray - American Poet

Figure 6.1: Illustration of the Tower of Hanoi puzzle.

According to legend, there is temple in the city of Hanoi in Vietnam that contains a

series of k = 64 gold disks and 3 pegs. The priests of the Indian deity Brahma, were ordered

by an ancient prophecy to move all the disks from the original peg to another, always in

increasing order of size, and without ever placing a larger disk on top of a smaller one. The

third peg is provided as overflow. If you number the disks from smallest to largest, the

task proceeds as follows; First, disk 1 moves to the overflow and disk 2 to the second stack,

followed by disk 1 on top. Now, disk 3 can move to the overflow, disk 1 back onto disk 4,

disk 2 onto disk 3, and 1 onto 2. Now we have a new stack of disks 1, 2, and 3 in perfect

order, and only 61 more disks to go! According to the prophecy, the end of this Sisyphean

58
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Figure 6.2: left) Hanoi network of degree 3 (HN3) right) Hanoi network of degree 4 (HN4).

task will signal the end of the world. Luckily, if we assume that the priests perform one

move per second, 24 hours a day, they would take roughly 600 billion years to complete the

264 − 1 moves required.

This problem can, of course, be generalized to any number of disks and is normally used

as a simple example of a recursive algorithm in introductory Computer Science classes.[60,

61]. But notice the sequence of labels, i, for the disks moved:

1− 2− 1− 3− 1− 2− 1− 4− 1− 2− 1− 3− 1− 2− 1− 5− . . . (6.1)

We can use this sequence to create a class of networks as follows. First, we lay out this

sequence on a 1d-line of nearest neighbor connected sites labeled from n = 1 to n = N ≡

2k−1(the number of moves required to finish the problem). In general, any site on this line

can be described uniquely by:

n = 2i−1 (2j + 1) (6.2)

where i corresponds to the label of the disk moved at step n in the sequence above and

j = 0, 1, 2, . . .. If we now connect each site n to one (two) sites that are at distance 2i away

and share the same value of i we obtain the three (four) connected Hanoi Network1. We will

refer to these networks has HN3 and HN4 respectively, and we illustrate their structure

in Fig. 6.2.

In summary, all odd numbered nodes are connected to their second nearest neighbors

1In the case of the three connected network, we always choose the neighbor with a site of value at most
i + 1 between them.
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and the odd multiples of powers of two get exponentially long links where the length of a

nodes link is given by 2i where i is the same as in Eq. 6.2. This value is given by counting

how many times the number can be divided by 2 and adding 1.

One can think of this class of networks as models of a situation where everybody knows

their neighbors, but an exponentially decreasing number of individuals have some friends

exponentially far away. Since everybody has exactly the same number of connections, the

behavior of any node will be determined by the distance at which it is connected to other

nodes.

6.1 Geometry

We start the study of this system by looking at some of its geometrical properties, so as to

get some insight that will prove useful when analyzing a wealth of other characteristics of

this apparently simple class of graphs.

For HN3, it is simple to determine geometric properties, for instance, its diameter d,

the longest of the shortest paths between any two sites. Using a sequence of networks for

k = 2, 4, 6, . . ., the diameter-path looks like a Koch curve, see Fig. 6.4. We can define the

path Πk as a sequence of jumps reaching from one end of the N = 2k-long graph to the

other via

Π0 = 1,

Π2 = 1− 2− 1 = Π0 − 2−Π0,

Π4 = 1− 2− 1− 8− 1− 2− 1 = Π2 − 8−Π2,

. . . ,

Πk+2 = Πk − 2k+1 −Πk, (6.3)

using obvious notation. The length dk of each marked path is given by dk+2 = 2dk + 1 for

Nk+2 = 4Nk, hence

d ∼
√

N. (6.4)
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Figure 6.3: (Color Online) Sequence of shortest end-to-end paths (=diameter, thick lines)
for HN3 of size N = 2k, k = 2, 4, 8. Whenever the system size N increases by a factor of
4, the diameter d increases by a factor of ∼ 2, leading to Eq. (6.4).

Figure 6.4: Alternative view of the 3-regular graph in Fig. 6.2 as a Koch curve. In this
view, the end-to-end shortest marked in Fig. 6.3 is in fact simply the base line here.

This property is reminiscent of a square-lattice of N sites, whose diameter (=diagonal) is

also ∼
√

N . HN3 is thus far from true SW behavior where d ∼ lnα N , with α ≡ 1.

The geometry of HN4 is more subtle. We consider again the shortest path between the

origin n = 0 and the end n = N = 2k. Using the notation from Eq. (6.3), we have

Π0 = 1,

Π1 = 1− 1, (6.5)

Π2 = 1− 2− 1 = Π0 − 2−Π0,

Π3 = 1− 2− 2− 2− 1 = Π0 − 3× 2−Π0, (6.6)

Π4 = 1− 1− 4− 4− 4− 1− 1 = Π1 − 3× 4−Π1,

Π5 = 1− 2− 1− 8− 8− 8− 1− 2− 1 = Π2 − 3× 8−Π2,

Π6 = 1− 2− 1− 7× 8− 1− 2− 1 = Π2 − 7× 8−Π2, (6.7)

and so on. Due to degeneracies at each level, one has to probe many levels in the hierarchy

to discern a pattern. In fact, any pattern evolves for an increasing number of levels before

it gets taken over by a new one, with two patterns creating degeneracies at the crossover.
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Figure 6.5: Plot of the shortest path length between the origin of HN3 and the nth site on
two networks of extend L = 3 211 and L = 3 212. In both sets of data, we plot the path-
distance relative to the root of the separation between site n and the origin (n = 0) along
the linear backbone. Then, all rescaled distances fluctuate around a constant mean. Those
fluctuations are very fractal, their self-similarity becoming apparent when super-imposing
the data for both sizes L on a relative distance scale with n/L.

Finally, we get (putting the degeneracies aside)

Πk =






Πk−2 − 1× 2k−1 −Πk−2, (k = 2),

Πk−3 − 3× 2k−2 −Πk−3, (2 < k ≤ 5),

Πk−4 − 7× 2k−3 −Πk−4, (5 < k ≤ 9),

Πk−5 − 15× 2k−4 −Πk−5, (9 < k ≤ 14),

. . . ,

(6.8)

and so on. We find that the paths here do not search out the longest possible jump, as in

Fig. 6.3. Instead, the paths reach quickly to some intermediate level and follow consecutive

jumps at that level before trailing off in the end. This is a key distinguishing feature between

HN3 and HN4: Once a level is reached in HN4, the entire network can be traversed at

that level, while in HN3 one must switch to lower levels to progress (see the left side of

Fig. 6.2). Specifically, the first pattern holds for k = l1 = 1, the 2nd for k = l2 = 2, the 3rd

for l2 = 2 < k ≤ 5 = l3, and so on, with lg = lg−1 +g (initiated by l1 = 1, l2 = 2) demarking

the crossover points between patterns. Hence, lg = 1
2g (g + 1) − 1, (g ≥ 2). Within each
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Figure 6.6: left)Ring diameter as a function of G ≡ log2 N . right) Scaling behavior of d
with

√
G.

pattern g, we observe for the end-to-end diameters dk:

d(g)
k = 2d(g−1)

k−g +
(
2g−1 − 1

)
, (lg−1 < k ≤ lg) . (6.9)

defining l1 = 1, where in general

lg = lg−1 + g, l2 = 2, (6.10)

demarks the crossover point between the generations, see Fig. 6.6. Eq. (6.10) easily yields

lg =
1

2
g (g + 1)− 1 (g ≥ 2) . (6.11)

To obtain the asymptotic behavior for dk, instead of solving Eq. (6.9) for all k, we note

that exactly on the crossover points k = lg (i. e. k − g = lg−1) we have

dg
lg

= 2dg−1
lg−1

+
(
2g−1 − 1

)
. (6.12)

Defining eg = 2gdg
lg

, we get

eg = eg−1 +
1

2
− 2−g,

which is easily summed up to give
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Figure 6.7: Plot of the system-size dependence of the exponent α = α(N) defined in Eq.
(6.15). The solid curve is the exact value based on Eq. (6.13), and the dashed curve is the
asymptotic approximation also given in Eq. (6.15).

d(g)
lg

= (g − 1) 2g−1 + 1. (6.13)

With k = lg and g ∼
√

2lg ∼
√

2k ∼
√

log2 N2, it is

dk ∼ 1
2

√
log2 N2 2

√
log2 N2

(N →∞) (6.14)

for the diameter of HN4. Expecting the diameter of a small world to scale as d ∼ log N ,

we rewrite Eq. (6.14):

dk ∼ (log2 N)α with α ∼
√

log2 N2

log2 log2 N2
+

1

2
. (6.15)

Technically, α diverges with N and the diameter grows faster than any power of log2 N [but

less than any power of N , unlike Eq. (6.4)]. In reality, though, α varies only very slowly with

N , ranging merely from α ≈ 1.44 to ≈ 2.8 over fifty orders of magnitude, N = 10 − 1050,

as shown in Fig. 6.4.

Another topological property of interest is the average distance, 〈d〉, between two nodes.

This quantity gives us a sense of how many hops, on average, are required to travel between

one node and another along the shortest path connecting them, which has obvious important

consequences for the transport properties of the network, since in networks with smaller
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Figure 6.8: left) Average distance between nodes as a function of G for HN4. right) Scaling
comparison of 〈d〉 and d vs G. The functional form is similar, but the overal constant is
different.

average distance between nodes it’s easier to send messages between any two points. The

left side of Fig. 6.8 plots this quantity as a function of G. We find that it possesses a similar

dependency as the maximal quantity d, but with different values of A and B, as shown on

the right side of 6.8, where we plot both functions scaled by
√

G. As expected, the slope

of d (≈ 0.6) is larger than the slope of 〈d〉 (≈ 0.5).

6.2 Diffusion

To model diffusion on these networks, we study simple random walks with nearest-neighbor

jumps along the available links. Here, we focus merely on the asymptotic mean-square

displacement
〈
r2
〉
∼ t2/dw , (6.16)

which defines the fractal dimension of the walk in terms of the exponent dw.

First, we consider a random walk on HN4. The“master-equation” [62] for the probability

of the walker to be at site n, at time t is given by

Pn,t =
1− p

2
[Pn−1,t−1 + Pn+1,t−1]

+
p

2

[
Pn−2i,t−1 + Pn+2i,t−1

]
, (6.17)

where p is the probability to make a long-range jump. (Throughout this Chapter, we
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considered p uniform, independent of n or t). A detailed treatment of this equation is

quite involved and will be given elsewhere. Instead, we note that the long-time behavior is

dominated by the long-range jumps, as discussed below for HN3. To simplify matters, we

set p = 1/2 here, although any finite probability would lead to the same conclusions. We

make an “annealed” approximation, i. e., we assume that we happen to be at some site n in

Eq. (6.2) with probability 1/2i, corresponding to the relative frequency of such a site, yet

independent of time or history. This ignores the fact that in the network geometry a long

jump of length 2i can be followed only by another jump of that length or a jump of unit

length, and that many intervening steps are necessary to make a jump of length 2i+1, for

instance. Here, at each instant the walker jumps a distance 2i left or right irrespectively

with probability 1/2i, and we can write

Pn,t =
∑

n′

Tn,n′Pn′,t−1 (6.18)

with

Tn,n′ =
a− 1

2a

∞∑

i=0

a−i
(
δn−n′,bi + δn−n′,−bi

)
, (6.19)

where a = b = 2. Eqs. (6.18-6.19) are identical to the Weierstrass random walk discussed

in Refs. [63, 64] for arbitrary 1 < a < b2. There, it was shown that dw = ln(a)/ ln(b), which

leads to the conclusion that dw = 1 in Eq. (6.16) for HN4. Simulations for HN4, evolving

some 2 × 107 walks for 106 time steps each, yield a value of dw = 1 with high confidence,

see Fig. 6.9. Hence, a walk on HN4 proceeds effectively ballistic, but hardly with linear

motion: widely fluctuating jumps conspire just so that a single walker extends outward with

an on-average constant velocity in both directions. Clearly, it is easier to traverse HN4 than

HN3 because of the above-stated fact that on HN4 a walker can progress repeatedly within

a hierarchical level.
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For HN3, the master-equation in the bulk reads for

Pn,t =
1− p

2
[Pn−1,t−1 + Pn+1,t−1] + pPn′,t−1,

n′ =






n + 2i, j even,

n− 2i, j odd,

(6.20)

In the RG [62, 65] solution of Eq. (6.20), at each step we eliminate all odd sites, i. e.,

those sites with i = 0 in Eq. (6.2). As shown in Fig. 6.10, the elementary unit of sites

effected is centered at all sites n having i = 1 in Eq. (6.2). We know that such a site n is

surrounded by two sites of odd index, which are mutually linked. Furthermore, n is linked

by a long-distance jump to a site also of type i = 1 at n ± 4 in the neighboring elementary

unit, where the direction does not matter here. The sites n ± 2, which are shared at the

boundary between such neighboring units also have even index, but their value of i ≥ 2 is

undetermined and irrelevant for the immediate RG step, as they have a long-distance jump

to some sites m± at least eight sites away.

Using a standard generating function [62],

xn(z) =
∞∑

t=0

Pn,t zt, (6.21)
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Figure 6.9: Rescaled plot of the mean distance 〈|n|〉 in HN4 for walks up to t = 106.
We demonstrate that dw = 1 but with log-corrections by rewriting Eq. (6.16) as 〈|n|〉 /t ∼
V [ln t]β. Then we obtain ln (〈|n|〉 /t) / ln [ln t] ∼ β + ln V/ ln [ln t] and linearly extrapolate
(dashed lines) 1/ ln [ln t]→ 0, estimating β ≈ −0.18 at the intercept, independent of p. An
effective “velocity”V could be extracted from the slope. For any value besides dw = 1, these
extrapolations would not converge.
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yields for the five sites inside the elementary unit centered at n:

xn = a (xn−1 + xn+1)

+c (xn−2 + xn+2) + p2 xn±4,

xn±1 = b (xn + xn±2) + p1 xn∓1, (6.22)

xn±2 = a (xn±1 + xn±3)

+c (xn + xn±4) + p2 xm±
,

where we have absorbed the parameters p and z into general “hoping rates”, which are

initially a(0) = b(0) = z
2 (1− p), c(0) = 0, and p(0)

1 = p(0)
2 = zp.

The RG update step consist of eliminating from these five equations those two that refer

to an odd index, n ± 1. We obtain

xn = b′ (xn−2 + xn+2) + p′1 xn±4,

xn±2 = a′ (xn + xn±4)

+c′ (xn∓2 + xn±6) + p′2 xm±
, (6.23)

with

a′ =
[ab + c (1− p1)] (1 + p1)

1− p2
1 − 2ab

,

b′ =
ab + c (1− p1)

1− p1 − 2ab
,

c′ =
abp1

1− p2
1 − 2ab

, (6.24)

p′1 =
p2 (1− p1)

1− p1 − 2ab
,

p′2 =
p2
(
1− p2

1

)

1− p2
1 − 2ab

.

If we further identify for all sites l = n, n ± 2, n ± 4, . . . in Eq. (6.23)2 xl = Ax′
l/2, we note

that the primed equations coincide with the unprimed ones in Eqs. (6.22). Hence, the RG

2The constant A is determined when initial and boundary conditions are considered, essential for the case
of first passage and return times [62].
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Figure 6.10: Depiction of the (exact) RG step for random walks on HN3. Hopping rates
from one site to another along a link are labeled at the originating site. The RG step consists
of tracing out odd-labeled variables xn±1 in the top graph and expressing the renormalized
rates (a′, b′, c′, p′1, p

′
2) on the right in terms of the previous ones (a, b, c, p1, p2) on the bottom.

The node xn, bridged by a (dotted) link between xn−1 and xn+1, is special as it must have
n = 2(2j + 1) and is to be decimated at the following RG step, justifying the designation of
p′1. Note that the original graph does not have the green, links with hopping rates (c, c′),
which emerge during the RG recursion.

recursion equations in (6.24) are exact at any step k of the RG, where unprimed quantities

refer to the kth recursion and primed ones to k + 1.

Solving Eqs. (6.24) algebraically at infinite time [which corresponds to the limit z → 1,

see Eq. (6.21)] and for k +1 ∼ k →∞ (by dropping the prime on all left-hand parameters),

we – apparently – obtain only two fixed points at a = b = 1/2 and c = p1 = p2 = 0,

and a = b = c = 0 and p1 = p2 = 1. The first fixed point corresponds to an ordinary 1d

walk without long-range jumps, in the second there is no hopping along the 1d-backbone

at all and the walker stays confined, jumping back-and-forth within a single, long-range

jump. Yet, both fixed points are unstable with respect to small perturbations in the initial

parameters.

Starting with any positive probability p for long-range jumps, those dominate over the

1d walk at long times. Paradoxically, exclusive long-range jumps found at the 2nd fixed

point lead to confinement, itself undermined by any positive probability to escape along

the 1d−line, allowing to reach even longer jumps. Instead, the process gets attracted to a

third, stable fixed point hidden inside a singular boundary layer [66] in the renormalization

group equations (6.24) near the confined state.

We have to account for the asymptotic boundary layer with the Ansatz {a, b, c, 1 −
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Figure 6.11: Plot of the results from simulations of the mean-square displacement of random
walks on HN3 displayed in Fig. 6.2. More than 107 walks were evolved up to tmax = 106

steps to measure 〈r2〉t. The data is extrapolated according to Eq. (6.16), such that the
intercept on the vertical axis determines dw asymptotically. The exact result from Eq. (6.27)
is indicated by the arrow.
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Figure 6.12: Plot of the probability PF (∆t) of first returns to the origin after ∆t update
steps on a system of unlimited size. Data was collected for three different walks on HN3
with p = 0.1 (circles), p = 0.3 (squares), and p = 0.8 (diamonds). The data with the smallest
and largest p exhibit strong transient effects. The exact result in Eq. (6.28), τF = 1.234 . . .,
is indicated by the dashed line.
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p1, 1 − p2} ∝ α−k → 0, where k → ∞ refers to the kth RG step. The largest eigenvalue,

self-consistently determined from Eqs. (6.24) and the only one satisfying the requirement

α > 1 in the Ansatz, is α = 2/φ. Here, φ =
(√

5 + 1
)
/2 = 1.6180 . . . is the legendary

“golden section” [67], first defined by Euclid [68]. Hence, every renormalization of network

size, L → L′ = 2L, has to be matched by a rescaling of hopping rates with α = 2/φ to keep

motion along the 1d-backbone finite and prevent confinement (which in light of Eq. (6.26)

below corresponds to α = 0, its only other physical eigenvalue).

Extending the analysis to include finite-time corrections (i. e., 1 − z 2 1), we extend

the above Ansatz to

y(k) ∼ Ayα
−k
{

1 + (1− z) Byβ
k + O
[
(1− z)2

]}
(6.25)

for all y ∈ {a, b, c, 1 − p1, 1 − p2}. In addition to the leading-order constants Ay and α,

also the next-leading constants are determined self-consistently, and we extract uniquely

β = 2α. Accordingly, time rescales now as

T → T ′ = 2αT, (6.26)

and we obtain from Eq. (6.16) with T ∼ Ldw for the diffusion exponent for HN3

dw = 2− lnφ

ln 2
= 1.30576 . . . . (6.27)

The result for dw is in excellent agreement with our simulations, as shown in Fig. 6.11.

Using the methods from Ref. [62], we can further show that the walk is recurrent and

that the exponent τF for the probability distribution, PF (∆t) ∼ ∆t−τF , of first-return times

∆t is given by

τF = 2− 1

dw
= 1.2342 . . . . (6.28)

The relation between τF and dw is typical also for Lévy flights [69], and the result is again

borne out by our simulations, see Fig. 6.12.
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We conclude by contrasting the behavior of HN4 discovered before with the analysis of

HN3. Clearly, when long-range jumps are interconnected as in HN4, there is no confine-

ment, the boundary layer disappears [which would be similar to α = 1 in Eqs. (6.25-6.26) for

HN3], and diffusion spreads ballistically, dw = 1. Our numerical studies, and the similarity

to Weierstrass random walks [63], further supports that τF for walks on HN4 is also given

by Eq. (6.28), leading to τF = 1. Since this value of the exponent matches the embedding

dimension, d = 1, of the network, the walk is marginally recurrent, which explains the

strong logarithmic corrections observed in the simulations.

6.3 Ising Model

In this section, we study Ising spin models on the 3- and 4-regular graphs, both with Monte-

Carlo simulations and with the renormalization group.

6.3.1 Renormalization Group

First, we consider the renormalization group for the Ising model on HN3. In this case,

all steps can be done exactly but the result turns out to be trivial in the sense that there

are no finite-temperature fixed points of the RG flow. Yet, the calculation is instructive,

highlighting the large family of models access through the hierarchical nature of the process,

and is almost identical in outcome to the approximate treatment below for the non-trivial

HN4.

We ignore the distinction between semi-infinite or infinite lattice, boundary conditions,

and the special site n = 0, as we are merely interested in bulk properties. The renormal-

ization consists of recursively tracing out spins level-by-level in the hierarchy. In terms of

Eq. (6.2), we start by tracing out all sites with n odd, i. e. i = 0, then those n which are

divisible by 2 only once, i. e. i = 1, and so on. We can always relabel all sites n after any

renormalization step by n → n/2, so that we trace out odd-relabeled sites at any level. It

is apparent, for instance from Fig. 6.2, that odd-labeled sites are connected to their even-

labeled nearest neighbors on the lattice backbone, say, by a coupling K0. At any level, each

odd-labeled site xn±1 is also connected to one other such site xn∓1 across an even-labeled
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Figure 6.13: Depiction of (exact) renormalization group step for the Ising model on the
HN3. The step consists of tracing out odd-labeled variables xn±1 in the left plot and
expressing the renormalized couplings (L′,K ′

0) on the right in terms of the old couplings
(L,K0,K1). Note that the original graph in Fig. ?? does not contain couplings of type
(L,L′), but that they certainly become relevant during the process.

site xn with n = 2 (2j + 1) that is exactly once divisible by 2. Let us call that coupling K1.

The basic renormalization step is depicted in Fig. 6.13 and consists of tracing out the two

sites xn±1 neighboring the site xn for all j with n = 2 (2j + 1). While not present initially,

during the process a new coupling L between next-nearest even-labeled neighbors emerges.

We can section the Hamiltonian

−βH =
∑

{n=2(2j+1)}

(−βHn) + R (K2,K3, . . .) , (6.29)

where R contains all coupling terms of higher level in the hierarchy, and each sectional

Hamiltonian is given by

−βHn = I + K0 (xn−2xn−1 + xn−1xn + xnxn+1 + xn+1xn+2)

+K1xn−1xn+1 + L (xn−2xn + xnxn+2) , (6.30)

where (K0,K1, L) are the unrenormalized couplings defined in Fig. 6.13 and I is constant
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that fixes the overall energy scale. Tracing out the odd-labeled spins, we have to evaluate

∑

{xn−1=±1}

∑

{xn+1=±1}

e−βHn = 2eI+L(xn−2xn+xnxn+2)

×
{
eK1 cosh [K0 (xn−2 + 2xn + xn+2)]

+ e−K1 cosh [K0 (xn−2 − xn+2)]
}

(6.31)

= eI′+K ′
0(xn−2xn+xnxn+2)+L′xn−2xn+2 (6.32)

for the remaining spins xn−2, xn, xn+2 = ±1. After some algebra, we find for the renormal-

ized quantities

K ′
0 = L +

1

2
ln cosh (2K0) +

1

4
ln
[
1 + tanh (K1) tanh2 (2K0)

]
,

L′ =
1

4
ln
[
1 + tanh (K1) tanh2 (2K0)

]
,

I ′ = I + 2 ln 2 + ln cosh (K1) + ln cosh (2K0)

+
1

4
ln
[
1 + tanh (K1) tanh2 (2K0)

]
, (6.33)

and K ′
i = Ki+1 for i ≥ 1. Searching for fixed points K ′

0 = K0 = K∗
0 and L′ = L = L∗

immediately provides the trivial, high-temperature solution K∗
0 = L∗ = 0. Excluding that

and eliminating L∗, further analysis yields

1 = tanh (K1) tanh (2K∗
0 ) , (6.34)

which, unfortunately, has no non-trivial (finite-T ) fixed points aside from the Tc = 0 solu-

tion K∗
0 = ∞. Note, however, that the renormalization recursion equations (6.33) have a

remarkable property due to the hierarchical structure of the graph: The next-level coupling

K1 appears as a free parameter in the equations and acts as a kind of source term that

could be chosen to represent physically interesting situations, such as a distance-dependent

coupling and/or some form of disorder. Yet, that potential for (real) K1 does not change

much of the fact that the fixed point Eq. (6.34) has no finite-T solution for any choice.

Thus, while the geometry of HN3 analyzed in Sec. 6.1 indicates a fractal dimension above

d = 1, the ferromagnet on this graph, while exactly solvable, essentially acts as a 1d Ising



CHAPTER 6. HANOI NETWORKS 75

model.

Again, HN4 in contrast provides a non-trivial solution for the Ising model. But, we fail

here to obtain an exact result, although we hope that in light of the inherent symmetries such

a solution should be possible. Instead, we proceed to a Niemeijer-van Leeuwen cumulant

approximation and compare with our numerical results.

The Hamiltonian for the Ising model on HN4 indeed has a very hierarchical form:

−βH =
N∑

n=1

K0xn−1xn +

N/2∑

j=1

K1x2j−1x2j+1 +

N/4∑

j=1

K2x2(2j−1)x2(2j+1) + . . . ,

=
2k∑

n=1

K0xn−1xn +
k∑

i=1

2k−i∑

j=1

Kix2i−1(2j−1)x2i−1(2j+1), (6.35)

where we have chosen N = 2k. Note that the first sum represents the lattice backbone and

the double-sum contains all couplings in the hierarchy. In preparation for the renormaliza-

tion group, we rewrite Eq. (6.35) as

−βH = −βH0 − βV + R,

with

−βH0 =
2k−1∑

j=1

x2j−1h2j−1 +
2k−1∑

j=1

Lx2j−2x2j , h2j−1 = K0 (x2j−2 + x2j) ,

−βV =
2k−1∑

j=1

K1x2j−1x2j+1,

R =
k∑

i=2

2k−i∑

j=1

Kix2i−1(2j−1)x2i−1(2j+1), (6.36)

where we have added new couplings L that emerge during renormalization, as in Eq. (6.30).

In reference to the Niemeijer-van Leeuwen cumulant expansion, we write the partition func-
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tion

Z = N Tr e−βH,

= N Treven eR Trodd e−βVe−βH0 ,

= N Treven eR
(
Z0

〈
e−βV
〉

0

)
, (6.37)

summing over odd-labeled and even-labeled spins separately, with

〈
e−βV
〉

0
=

1

Z0
Trodd e−βVe−βH0 ,

≈ e〈−βV〉0e
β2

2 (〈V2〉
0
−〈V〉20) . . . , (6.38)

and

Z0 = Trodd e−βH0 ,

= exp




2k−1∑

j=1

Lx2j−2x2j ,




2k−1∏

j=1






∑

x2j−1

exp [x2j−1h2j−1]





,

= exp




2k−1∑

j=1

Lx2j−2x2j ,




2k−1∏

j=1

{2 cosh [h2j−1]} . (6.39)

6.3.1.1 Leading order evaluation

In light of Eq. (6.38), to leading order, we need to evaluate

〈−βV〉0 =
1

Z0
exp




2k−1∑

j=1

Lx2j−2x2j ,




2k−1∏

j=1






∑

x2j−1




2k−1∑

j=1

K1x2j−1x2j+1



 exp [x2j−1h2j−1]





,

=
1

Z0

2k−1∑

j=1

K1∂h2j−1∂h2j+1Z0,

=
2k−1∑

j=1

K1 tanh [K0 (x2j−2 + x2j)] tanh [K0 (x2j + x2j+2)] . (6.40)
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Subsequently, we can rewrite

Z0e
〈−βV〉0 = N ′ exp



A
2k−1∑

j=1

x2j−2x2j + B
2k−1∑

j=1

x2j−2x2j+2



 ,

and, correspondingly,

R + lnZ0 − 〈βV〉0 =
k∑

i=3

2k−i∑

j=1

Kix2i−1(2j−1)x2i−1(2j+1) + K2

2k−2∑

j=1

x2(2j−1)x2(2j+1)

+

[
L +

1

2
ln cosh (2K0) +

K1

2
tanh2 (2K0)

] 2k−1∑

j=1

x2j−2x2j

+
K1

4
tanh2 (2K0)

2k−1∑

j=1

x2j−2x2j+2, (6.41)

where we dropped an overall constant term. Note that Eq. (6.41) only contains even-labeled

variables, and we complete the renormalization step by replacing x2n → x′
n, k → k′ + 1, to

get the renormalized Hamiltonian

−βH′ =
k′∑

i=2

2k′−i∑

j=1

K ′
ix

′
2i−1(2j−1)x

′
2i−1(2j+1) +

2k′−1∑

j=1

K ′
1x

′
2j−1x

′
2j+1

+
2k′−1∑

j=1

K ′
0x

′
j−1x

′
j +

2k−1∑

j=1

L′x′
2j−1x

′
2j+1, (6.42)

where we identify

K ′
0 = L +

1

2
ln cosh (2K0) +

K1

2
tanh2 (2K0) ,

K ′
1 = K2 +

K1

4
tanh2 (2K0) ,

K ′
i = Ki+1 (i ≥ 2),

L′ =
K1

4
tanh2 (2K0) . (6.43)

(Note: These are exactly the same relation one would obtain for the 1d Ising model with nnn

couplings K1 = L, except there Ki = 0 for i ≥ 2. In that case, one would find – correctly
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Figure 6.14: Magnetization as a function of temperature for the ferromagnetic ring.

– that there are no non-trivial fixed points, as with K2 = 0 and assuming K ′
1 = K1 = K∗

1

finite in the 2nd relation, 4 = tanh2 2K∗
0 has no real solution.)

6.3.2 Monte-Carlo Simulations

The next step is to study the magnetic consequences that the geometry of HN3 has, by

placing Ising spins on the nodes and applying methods similar to the ones used above in

the study of magnetic systems. Spins only interact along the existing edges and there are

several possible ways of choosing the interaction energies, Jij , so we start with the simplest

choice, Jij ≡ +1, corresponding to an Ising ferromagnet.

The ferromagnetic system was placed in contact with a heat bath at different temper-

atures, and the most likely magnetization at zero field was measured as a function of T .

We find a transition from paramagnetic behavior, where m = 0 at T > Tc to ferromagnetic

behavior, where m = ±m1 += 0 at T < Tc, with m1 reaching 1 at sufficiently low tempera-

tures. We plot this behavior in Fig. 6.14, for different system sizes. Our preliminary results

indicate that 2.0 ≤ Tc ≤ 2.2, in reasonable agreement with the analytical results above.
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Chapter 7

Graph Bisection

A new algorithm to solve the graph bisection problem in G (N, p) graphs for the 0 < p < 2

region is introduced. The algorithm removes part or all of the graph’s tree mantle until the

remaining core is of size N/2. Other isolated components can be used to compensate for a

small core size, if necessary. We explore the quality of the decompositions, the structure of

the tree-mantle and the 2−core, the possibility of cutting the core to extend the quality of

the algorithm and remark briefly on its time complexity. The conclusions we reach should

be applicable to other algorithms as well.

7.1 Introduction

A new Job Batching System is being developed by a .com company. The project requires

an efficient way of dividing multiple interdependent jobs between two server machines in

such a way that the network traffic between them is minimized in order to maximize overall

performance. What is the minimum number of inter-server communications that is possible

to achieve?

A Silicon Valley company is developing a new dual-core CPU for high performing com-

puters. The complex design of the CPU requires that the two cores are capable of communi-

cating with each other but since each connection between the two components is expensive

a method is required to determine the best way of splitting the circuits in to the different

cores without modifying the structural properties of the circuit. What is the least amount

81
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of connections that have to be maintained?

A physicist is interested in studying the ground state properties of a ferromagnetic Ising

spin system constrained to have zero overall magnetization. The ferromagnetic interaction

implies that it is energetically more favorable for nearest neighboring spins to have the same

orientation, but the constraint on the magnetization forces half the spins to be oriented UP

and the other half DOWN. What is the lowest energy that is accessible by the system?

All of the optimization problems mentioned can be reduced to a unique common form,

commonly known in the literature as graph bisection. Here, we want to divide a given graph

in half by cutting as few connections between the nodes as possible. The parallels can be

quickly established if we identify the nodes in the graph with, respectively, jobs, circuit

components and Ising spins, and the edges with, respectively, inter-job communication, wires

and spin interactions. Due to all its possible applications, the problem of graph bisection

has received a lot of attention over the years [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].

Mathematically, a graph, G, is defined as a pair (V,E) of vertices V and edges E that

connect them. There are many ways in which such a pairing can be constructed, one of the

most common being the one devised by Erdos and Renyi[4] in 1959. We choose to use them

due to the ease with which they are analyzed mathematically and to the fact that there is

a huge amount of knowledge accumulated over the years on their properties[84, 85].

These graphs are constructed by connecting any pair of vertices (u, v) with a given

probability p. In general, one should consider each edge to be directed and represented

by an ordered pair, (u, v) += (v, u), but we shall restrict ourselves to the undirected case

where (u, v) = (v, u). Graphs created by this procedure, are usually denoted by G (N, p) to

represent the ensemble of graphs G with N nodes and where a given pair of nodes has a

probability p of being connected. We further restrict ourselves by imposing that u += v (no

self-edges) and that (u, v) appears only once in V (no multiple edges).

The attentive reader will have noticed that the mean degree of these graphs is given

by 〈k〉 ≡ p (N − 1), so if p is held constant has N increases, the mean degree will diverge

linearly. Since, many of the results we are interested in are mean degree dependent, we

choose to keep 〈k〉 ≡ α constant, thus defining p ≡ α/ (N − 1). It is also obvious from our

definitions that there is no reason why we should expect for there to be a, possibly long,
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path of edges connecting any two pairs of nodes in any given realization of a G (N, p) graph.

In general, this will depend on the value of p, with there possibly being many components

for smaller values of p that will eventually merge in to a single one at some threshold, pt.

In fact, there are two particular points in the interval [0,αc/N ] (with αc ≈ 2.0636) that we

will be particularly interested in.

For NpGCC ≡ 2 log 2, the size of the largest connected component in our graph will

approach N/2 with high probability as N →∞. We call this sub-graph the Giant Connected

Component (GCC) and below this threshold our “graph” is constituted by possibly many

smaller and mutually disconnected subgraphs. At this point, the GCC is constituted by two

distinct parts, denser central region composed exclusively by very interconnected nodes, to

which several trees are attached to. To the central region we will refer, for reasons that will

become apparent later, to as the “2-core”, or simple, the core and the trees attached to it

will be designated by the phrase“tree mantle”. As we move away from Np = 2 log 2 towards

higher values of Np, the GCC will continue to grow and become increasingly denser until,

at Npcore ≈ 2, the size of the 2-core becomes, with high probability, N/2. We will look in

considerably more detail at what happens over this range of Np values in general and at

these two points in particular later on.

7.2 Core Peeling Algorithm

Figure 7.1: Illustration of core peeling. All non-cyclical components connected to the core
are cut.

The algorithm we propose is very simple, but we hope it will provide us with some insight

on the characteristics that a bisection algorithm must have in order to be successful. Let us

represent the nodes on each section of the graph by two different colors, BLACK and RED.
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Algorithm 4 Core peeling.
1. Start by making all nodes BLACK.

2. Order all components in the graph by their size.

3. Designate the largest component as the “Giant Connected Component” (GCC) and
mark all its nodes as being RED

4. Distinguish 2 different possibilities:

(a) If the size S of the GCC is less than N/2 mark as RED exactly (N/2 − S) nodes
from the smallest components and return the solution found.

(b) If the size S is larger than N/2 reduce it to its 2-core (Fig. 7.1), by recoloring the
mantle nodes BLACK. If the size of the core is less than N/2, perform step 4(a)
using preferentially the trees we just removed as well as the other components.
If the size is larger than N/2 abort and return the (unbalanced) solution found.

Before we carefully analyze the results of this algorithm, a few remarks should be made.

The term Giant Connected Component is usually reserved for a component with a size that

scales with N , but, for simplicity sake, we use this term for the largest component in the

graph. This is justified by the fact that in most cases of interest to us Np ∈ [2 log 2, 2]

the largest component will indeed be the GCC. In step 4(a) we are reduced to a knapsack

problem where we try to find (N/2− S) nodes from the remaining graph components. This

might not always be possible, specially for smaller sized graphs, resulting in non-zero cut

size.

Finally, there is no guaranty that the algorithm we described above will find a balanced

solution to the bisection problem. In fact, from standard graph theory results [86] it should

stop working when the size of the 2−core is, with high probability, larger than N/2, that

is, at Np = αc ≈ 2.06. We show this in Fig. 7.2, where we plot the ratio between RED and

BLACK nodes as a function of the mean degree Np for various values of N . We can clearly

see that, specially for large N , we can always find perfect bisections up to Np = 2.

After Np = 2, we see a sharp decline in the quality of our solution. After the decline

we see an increase of the ratio between RED and BLACK. A quick look at our description

above explains this. For Np > 2, the size of the core is larger than N/2 and when we reach

step 4(a) the algorithm aborts having marked all the nodes in the core as RED and all

others as BLACK. The increase in “quality” is simply an artifact of the increase of the core
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Figure 7.2: Quality of solution found as a function of Np. The value 1 represents a balanced
bisection.

size (see Fig. 7.3).

From our previous discussion of the nature of G (N, p) graphs, we should expect that to

an increase in the mean degree there should correspond an increase in the number of edges

we must cut in order to find a way to split the graph in two equal sized communities. When

the GCC size becomes N/2, we start cutting trees, which should cause the required number

of cuts to decrease until at Np = 2, the tree-mantle is no longer sufficient to compensate

the “excessive” size of the GCC and our algorithm breaks. We illustrate this behavior on

the left side of Fig. 7.5, with the two vertical lines clearly indicating the two points of

particular interest. The monotonous decrease in the cut size we observe for higher values of

the mean degree, is due to the increasingly denser nature of the GCC and consequentially

smaller number of trees available to be cut (at this point we can only cut trees).

Since the tree mantle plays such an important role in the performance of our algorithm

and limits the quality of the solutions found, we decided to try to understand some of its

properties. We started by looking at the maximum tree size distribution as a function of

Np and for various values of N , as shown on the right side of Fig. 7.5. Two features of this

plot immediately grab our attention. First, the divergence at Np ≡ 1 signals the point in

which the two largest components in the graph start merging to create what will eventually

become the Giant Connected Component. Second, after Np = log 4, the maximum tree size
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Figure 7.3: Average core size as a function of the mean degree.

scales with the log of N and displays a monotonous decay until it practically vanishes at

Np ≡ 2.

The next step was then to measure the tree size distribution for different values of the

mean degree. For low connectivities, the distribution is unremarkable and the high variabil-

ity associated with bad statistics prevent us from drawing any conclusions about its shape.

Starting at Np ≡ 1.3, the statistics become better and we can observe a clear exponential de-

pendence becoming more and more obvious, as we show in Fig. 7.4. Analytical results seem

to indicate that this distribution isn’t truly exponential, but the accuracy of our numerical

results does not allow us to distinguish these results from other similar distributions.

7.3 Core Cutting

Figure 7.6: Two steps of the core cutting procedure. Nodes are randomly selected and
“flipped”, cutting any edges connecting nodes in different components, and reestablishing
edges between nodes that are now on the same component.
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Figure 7.4: Distribution of tree sizes, s, for different values of the mean degree.
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Figure 7.7: Spectral gap as a function of the mean degree.

Our algorithm seems to work reasonably well up until Np = 2.0, at which point it stops

working altogether, since for larger values of the mean degree the core is simply too large

for us to be able to obtain a perfect bisection without having to cut it. It seems, therefore,

productive to look in more detail to the structure of the 2−core to see if we could extend

the applicability of the algorithm by cutting the core. To see if by cutting the core we could

obtain a good candidate for an optimal solution, we calculate the quantity r, defined as:

r ≡ min
e (S1, S2)

S1
(7.1)

where e (S1, S2) is the number of edges broken by setting S1 randomly chosen nodes in the

core to be red and the remaining S2 nodes to black. We divide by the size of the smallest of

the partitions, S1 in order to define a quantity that would give us an indication of the average

number of links that we must cut per each node we remove from this tightly connected

2−core. The minimization should, in principle, be made over all possible realizations of such

partitions. In practice, however, it’s impossible to sample all (S1 + S2)
(s1+s2) combinations

so we chose to perform 10 such random choices and average over 100 different network

instances for each value of the mean degree considered, our results are displayed in Fig.

7.8, where we scaled the xx axis by the total number of nodes in the core, S1 + S2. Due to

symmetry, we only need to look at partitions with S1 ≤ Ncore/2.
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As we can see, the cost in edges cut per each node that we remove from the core

decreases linearly as the relative partition size approximates 1/2 but never dips below 1.

The maximum cost per node is always for small partition size and varies with the system

size, but both the slope of the decrease and the value for the maximum partition size seems

to be independent of the graph size. This implies that the number of edges that need to

be cut is always larger than the number of nodes we want to remove, thus indicating that

cutting the core is always a worst option than tree cutting, where by cutting only one edge

we can obtain a relatively large number of nodes of the order of 101 or even 102. Based

on these results, we believe that optimal solutions with minimum possible cost will avoid

cutting the core as much as possible, raising the possibility of replica symmetry in the graph

bisection problem solution space, at least for G (N, p) graphs.

One should note that our search procedure in phase space is far from being exhaustive,

so there might be a a region of solution space that would indeed provide for a small cost per

node removed that we never reach. We assume that this is a possibility and that a better

sampling procedure should be devised if we are to consider these results as final. We can

however, interpret these results as upper bounds on the ideal case and that there might still

be room for improvement.

In an attempt to clarify this situation we measured the spectral gap of the Lagrangian

matrix of the core. The Lagrangian is defined as:

L ≡ (lij) =






1
ki

i→ j

0 otherwise
(7.2)

where the value of element lij is 1/kiif there exists an edge between nodes i and j and 0

otherwise. Using this definition the largest eigenvalue λ1 is guaranteed to be 1 and it is well

know that if

λ1 − λ2

2
< r (7.3)

where r is the average cost per node as defined in Eq.7.1 and λ2 is the second largest

eigenvalue, the graph is an expander. In graph theory[87, 84, 88], a graph is said to be an

expander if the number of edges between any possible subsection is a non-vanishing function
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Figure 7.8: Average minimum cost per node removed from the core.
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of the total number of nodes in that partition. We plot the spectral gap as a function of

Np in Fig. 7.7 for different graph sizes. The size of the spectral gap is always significantly

smaller than 1 for all values of Np considered, much smaller than our measured value for r,

thus providing one more indication that the graph is highly connected and that an optimal

solution will try to avoid cutting it at all costs.

7.4 Discussion

Figure 7.9: Dangling unicyclical components.

Graph bisection is an important problem with a wide variety of application in diverse

technological and theoretical fields. The numerical measurements we have performed have

given us a great deal of insight in to the structure of the phase space of this problem. The

theoretical results we were able to confirm give us a good degree of confidence that our

software is accurate and that the observations that we made that are not yet supported by

analytical results are well grounded and indicate the true behavior of this type of system.

Our results indicate that our core peeling algorithm can provide a feasible solution to

this problem for average connectivities less than 2 and that it breaks down shortly there

after. This is due to the evolution of the GCC of G (N, p) graphs for increasing values of

Np. For Np ≤ log 4 the GCC is relatively small and we must use other components in order

to evenly split the graph in two, sometimes having to cut one of the smaller ones. Above

log 4and below 2 the GCC is larger than N/2 and we must cut some of the trees that it has

surrounding the 2-core. Finally, above Np ≡ 2, the 2−core becomes larger than N/2 and

we can no longer find a feasible solution that cuts only trees.

We also considered the possibility of cutting the core as a way of both improving our

solution in the interval log 4 ≤ Np ≤ 2 and possibly extending it to larger values. The

simulations indicate that the 2−core is an graph expander which precludes its use as an
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alternative to tree cutting and that seems to indicate that all optimal solutions in this range

will try not to split the core. For Np > 2 we must, in effect, cut the core in order to find

a feasible solution, but the details of this regime have not been explored and should be the

object of future work.

As a final idea, we also tried looking for unicyclical components connected to the 2−core

as shown in Fig. 7.9. Although we can remove each of these components by cutting a single

edge, the are still part of the core since all the nodes that are part of them have mean degree

greater or equal to 2. Also, since they should be relatively rare, our minimization procedure

described above might have missed them, but we were hopeful that they might still make

a relevant contribution. The truth, however, is much different. In our simulations we were

unable to find a sufficient number of them to make any type of significant difference. Since

this was our most recent attempt, we are still looking at the source code to make sure that

it is completely bug free and that this absence is not an artifact of deficient programming.

Finally, we also analyzed the time complexity of our implementation as shown in Fig.

7.10. Both the tree cutting procedure (red line) and the core cutting analysis (black line)

seem to have run times of O
(
N2
)

as expected from our description of the respective algo-

rithms. We should not be able to make significant improvements on this overall behavior

due to the nature of the heuristics used, but there might be room for improvement in the

constant multiplicative factors that might allow us to explore larger system sizes.
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Chapter 8

Weight Correlations

Complex networks have proved to be useful tools to explore natural or man-made phe-

nomena as diverse as the Internet [89], human societies [90], transport patterns between

airports [91, 92] or even metabolic reactions in the interior of cells [93]. The vertices in the

networks represent the elements of the system and the edges the interactions between them.

The study of the topology of the network provides valuable information on how the basic

components interact. While the existence or not of an edge is already informative, in many

cases, as those listed above, the interactions can appear on different levels. The bandwidth

between two servers on the Internet, for instance, is not a flat quantity equal for all pairs,

it depends on the importance of the servers as well as on the traffic expected. This fact led

to the introduction of weighted graphs as a more accurate way to describe real networks

[94, 95, 96, 97]. Weighted graphs are complex networks where the edges have a magnitude

associated, a weight. The weight accounts for the quality of the connection between two

vertices. The existence of a distribution of weights dramatically alters transport properties

of networks like the geometry of the optimal paths [98, 99, 83, 100], the spreading of diseases

[101] or the synchronizability of oscillators [102]. Most of these studies have been carried

out on networks with uncorrelated weights on neighboring edges (those arriving at the same

node) even though most real cases possess correlation. Our aim here is to check how the

presence of correlations can influence these results.

There may be several kinds of correlations in random graphs [103]. Recently, it has been

shown that the edge weights in some real-world networks are related to other properties of

94
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the graph such as the degree (the number of connections a vertex has) [91, 104]. The

weights were found to follow, on average, a power law dependence on the degree. Several

theoretical mechanisms have been proposed to generate networks of this type [105, 99, 106].

In this case, a clear correlation is introduced between the weight of neighboring edges but

one may ask if that is the only possible kind of weight correlations. If not, which type of

structures can be observed? How can the correlations be quantitatively characterized? And

most importantly, which is the influence that they have on the transport properties of the

graph?

In this chapter, we address these questions. First, we construct a model that allows us to

explore the different possibilities for the weight correlations independently of other proper-

ties of the network. Next, we study how their presence affects the transport properties. And

finally, we show that these correlations are present in two examples of real-world networks:

the IMDB actor collaboration network and the traffic network between US airports.

8.1 Weight Correlation Model

Let us start by defining a mathematical framework for the weight correlations. From the

point of view of an edge of weight w with vertices with degree k and k′ at its extremes, the

joint probability that its neighboring edges have a certain weight is given by

Pk k′(w,w1, . . . , wk−1, w
′
1, . . . , w

′
k′−1) (8.1)

These functions contain all the information about both degree and weight distributions

and correlations. Here, we will focus only on the simplest possible scenario. In the same

way the Markovian condition is a simplifying assumption for stochastic processes, we will

consider only correlations generated by two-point joint probability functions Pk k′(w,w′),

and, among those, initially only the ones that are degree independent given by functions of

the type P (w,w′). There can be, of course, other effects that are missed by this simplification

but the results within this restricted framework are already interesting. It should be noted

that other possibilities, such as wieght degree correlations, have been already studied in the
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Figure 8.1: Two possible cases in networks with correlation in the link weight: a) positively
correlated nets and b) negatively correlated networks. The width of the line of the link
represents the value of the weight

literature[91, 106, 103, 100, 107].

In order to construct weighted networks along these lines, we use the so-called Barabási-

Albert (BA) model [7], where new nodes entering the network connect to old ones with a

probability proportional to their degree 1. The networks generated by this model are scale-

free (their degree distribution goes as Pk(k) ∼ k−3), have no degree-degree correlations, and

their clustering coefficient (probability of finding triangles) tends to zero when the system

size tends to infinity. All this makes them ideal null models to test correlations between edge

weights. Once the network is grown, a joint probability distribution for the link weights

P (w,w′) is needed. With this function one can calculate the weight distribution:

P (ω) =

∫
dω′P
(
ω,ω′
)

(8.2)

and the conditional probability of having a weight w′ provided that a neighboring link has

a weight w,

P
(
ω′|ω
)

=
P (ω,ω′)

P (ω)
(8.3)

We start by choosing an edge at random and giving it a weight obtained from P (ω).

Then we move to the nodes at its extremes and assign weights to the neighboring links. To do

this, we follow a recursive method: if the edge from which the node is accessed has a weight

1We also tested other growth models but the results do not change significantly.
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Figure 8.2: Assigning correlated weights to a network.

w0, the rest, w1, . . . , wk−1, are obtained from the conditional distributions P (ωi|ωi−1). The

recursion is necessary to increase the variability in case of negative correlations (see below).

If any of the links, j, has already a weight, it remains without change and its value affects

the subsequent edges j+1, . . . k−1. We repeat this process until all the edges of the network

have a weight 2. For P (ω,ω′), we consider three possibilities:

PC (ω,ω′) ∼ (ω + ω′)−2−α ,

PA (ω,ω′) ∼ (ω ω′ + 1)−1−α ,

PU (ω,ω′) ∼ (ω ω′)−1−α

(8.4)

These functions are normalized in the domain (1,∞) and generate a weight distribution

that asymptotically, decays as P (w) ∼ w−1−α, for α > 0. The reason to use power-law

decaying functions is that this is the type of distributions most commonly observed in

empirical networks. We named the distributions C (correlated), A (negatively correlated)

and U (uncorrelated) because the average weight, 〈w′〉(w) =
∫

dw′ w′ P (w′|w), obtained

with the conditional probabilities from a certain seed w grows as 〈w′〉C(w) ∼ w, decreases

as 〈w′〉A(w) ∼ α/(α − 1) + 1/w and remains constant, respectively. This means that in C

networks the links of each node tend to be relatively uniform in the weights (see Fig. 1a),

with separate areas of the graph concentrating the strong or the weak links, while in the A

2After the assignment process is over, we have verified that the weights are distributed as P (ω) for every
case.
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Figure 8.3: Plot of the disparity as a function of the degree, the triplets represent the
graphs generated using the correlated (blue diamonds), the uncorrelated (red squares) and
negatively correlated (black circles) distributions. Each triplet corresponds to a different
value of α, from bottom to top α = 20, 1.5, 1.2 and 0.5. The straight line has slope −1 and
is meant as a guide to the eye. The triplets have been shifted upwards to improve visibility.
The inset shows the disparity versus k for the correlated case and for the values of α from
bottom to top α = 20, 2, 1.5, 1.2, 1 and 0.5

case links with high and low weights are heavily mixed (more than randomly, see Fig. 1b).

From a numerical point of view, we have checked how the variables to measure vary

with the network size N . In the following, we show the results for graphs with N = 105,

which is big enough to avoid finite size effects. For each value of the exponent α (from Eq.

(8.4) and for each type of correlations, we have averaged over 300 realizations. Note that

we use α as a control parameter for the strength of the correlations. For high values of α,

P (w) decays very fast and the correlations become negligible, all links have essentially the

same weight. For α < 2 however, the second moment of P (w) diverges and the effect of

correlations becomes stronger, increasing in intensity when α → 0 (see inset Fig. 3).

8.2 Correlation Measurements

To gain insight on the correlations, we need to compare magnitudes measured in correlated

graphs with those obtained from uncorrelated networks. Two magnitudes are specially
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suited to study weight correlations. The first, the disparity, introduced by Barthélemy et

al. [108], which for a node i is defined as

Y2(i) =

∑
j∈ν(i) w2

ij

(
∑

j∈ν(i) wij)2
, (8.5)

where ν(i) is the set of neighbors of i. This quantity measures the diversity of the edge

weights. If all the links of a node have a similar weight, their value must be w ≈ s/k, and

therefore the disparity decays as Y2(k) ∼ 1/k. On the other hand, if the vertex strength is

essentially due to the weight of a single edge, Y2(k) must tend to a constant. In Figure 2,

Y2(k) is displayed versus k for a set of values of α and for the three cases A, U and C. For

very high α, the correlations are irrelevant, the three curves fall on top of each other. When

α decreases below 2, we observe that Y2(k) separate for C, A and U networks. Below α ≈ 1,

A and U cases are seldomly differentiable though C lies far below. The second magnitude

that can be used to estimate the type and intensity of correlations is the range defined for

a node i as

ri =
wmax(i)− wmin(i)

wmax(i) + wmin(i)
, (8.6)

where wmax(i) and wmin(i) are respectively the maximum and minimum weights of the

edges of i. One can then average ri and Y2(i) over all the nodes of the network and

obtain 〈r〉 and 〈Y2〉. The value of these two parameters must be compared with those

from uncorrelated networks to quantify the intensity of the correlations. The most accurate

procedure is to disorder the original network: randomly interchange the values of the edge

weights preserving thus the weight distribution P (w), measure then 〈r〉rand and 〈Y2〉rand

and estimate

ρ = 〈r〉orig/〈r〉rand , Υ = 〈Y2〉orig/〈Y2〉rand . (8.7)

If ρ < 1 (Υ < 1), the network displays positive weight correlations. The stronger the

correlations are, the smaller ρ becomes. Otherwise, if ρ > 1 (Υ > 1), the weights are

negatively correlated. ρ = Υ = 1 is the limit of uncorrelated networks. The values of ρ and

Υ for some examples are shown in Table 8.1. In general ρ seems more sensitive than Υ.

As previously mentioned, networks with weights generated as a function of the degree
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Figure 8.4: Relation between the intensity of the correlations, estimated as ρ =
〈r〉(C)/〈r〉(rand), and the change in the weight of the superhighways for positively cor-
related networks. In the inset, variation of the correlations with the exponent α.

may display quite different transport properties from their unweighted counterparts [101,

109, 110]. Usually, the weights of these networks are obtained by means of a relation of the

kind wij ∼ (ki kj)δ [104]. The question is thus in which way a relation between weight and

degree affects the weight-weight correlations. The answer (see Table 8.1) is that provided

that the degree is an a priori characteristic that equally influence all the edges of a vertex,

the weight of the links is positively correlated. The networks created in this way show

correlations similar to our C case (regardless of the sign of the exponent δ) .

8.3 Transport In Networks

Let us now focus on the transport properties of the networks and how they vary with

weight correlations. Several measures have been proposed to study transport [83, 111], here

we will analyze two of them. First we calculate the weight of an equivalent of the Minimum

Spanning Tree (MST) for each kind of network. If the number of vertices in the network

is N , the MST is defined as the tree composed by N − 1 edges connecting all the nodes

that has the minimum total weight. We have considered the maximum weight instead of

the minimum when choosing the edges. There are two reasons for this: (i) our weight

distributions are bounded from below, w ≥ 1, but not from above, and (ii) in many real-

world networks as the Internet where the weight represents the bandwidth, or the airport

connection networks where wij is the number of seats available or passengers traveling from
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destination i to j, the bigger the weight is, the more efficient the transport becomes. To

obtain the tree, we used an algorithm derived from Prim’s method but adapted for searching

the maximum weight. The rate ΩMaxST = WMaxST (orig)/WMaxST (rand), where WMaxST

stands for the weight of the MST, is shown in Table 8.1 for some examples. The effect of

the correlations is subtle but consistent, positively correlated networks score higher than

uncorrelated or negatively correlated ones.

A second aspect related to the transport that we have studied is the size and weight of

the ”superhighways” as recently introduced by Wu et al. [83]. If the edges of an uncorrelated

network are severed following an increasing order from small to higher weights, one eventu-

ally reaches the percolation threshold (when 〈k2〉/〈k〉 ≈ 2 [111]). The remaining connected

graph after the process is over, the incipient percolation cluster or superhighways, holds most

of the traffic of the original network. In practice, we start by disordering the weights of each

correlated network, estimating then the superhighways of the randomized graphs and mea-

suring how many edges must be cut on average to attain the percolation threshold. Next,

we cut the same number of links in the correlated network (again going from lower to higher

values of w) and compare the size and the weight of the biggest remaining connected cluster

(Wsuphgw) with those of the randomized graphs (Ωsuphgw = Wsuphgw(orig)/Wsuphgw(rand)).

The results, displayed in Table 8.1, show that, in general, positive correlations play a deci-

sive role on the value of Wsuphgw, increasing it by orders of magnitude. In Fig. 8.4, we show

how the Ωsuphgw of correlated networks enhances with the intensity of correlations measured

using ρ. When ρ departs from one, Ωsuphgw sky rockets. This fact agrees with the results

obtained with ΩMaxST and may be understood by keeping the analogy with the roads: the

transport improves if the highways are connected together forming a communication back-

bone as large as possible. This result applies to our model where the weight correlations are

independent of other structural factors. In general, there may be other aspects influencing

the transport properties. If several compete, as it happens in the case of wij = (ki kj)−1/2

regarding the degree distribution and the weight correlations, the transport capability of

the network may suffer.
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8.4 Real World Networks

Finally, we have studied a couple of real-world examples. First the IMDB movie database

with 383640 actors that are connected together whenever they have shared a common

movie. The weight of an edge represents here the number of times the partnerships has

been repeated [7]. The second network is formed by 1278 US airports. A directed edge

connects two of them whenever a flight traveled without stops between them in 2005, the

weight corresponds to the number of passengers doing that travel in 2005 [112]. Since this

Network type 〈Y2〉 〈r〉 WMaxST Wsuphgw

P (w,w′) C (orig) 0.595 0.688 5.83 1013 8.3 1011

C (rand) 0.675 0.746 5.81 1013 8.0 109

α = 0.5 A (orig) 0.665 0.727 7.37 1013 6.3 1010

A (rand) 0.662 0.723 7.37 1013 3.7 1011

C (orig) 0.507 0.554 6.6 106 1.9 106

C (rand) 0.543 0.595 6.1 106 5.8 104

α = 1 A (orig) 0.531 0.568 4.6 106 3.9 104

A (rand) 0.528 0.562 4.6 106 3.9 104

C (orig) 0.486 0.515 2.0 106 3.0 105

C (rand) 0.513 0.551 1.9 106 2.0 104

α = 1.2 A (orig) 0.501 0.522 1.44 106 1.3 104

A (rand) 0.498 0.517 1.45 106 1.5 104

C (orig) 0.463 0.466 8.37 105 2.8 104

C (rand) 0.468 0.496 8.24 105 5.7 103

α = 1.5 A (orig) 0.471 0.467 6.58 105 4.1 103

A (rand) 0.468 0.462 6.60 105 4.4 103

C (orig) 0.451 0.439 6.28 105 1.2 104

C (rand) 0.465 0.465 6.20 105 3.7 103

α = 1.7 A (orig) 0.456 0.436 5.01 105 2.9 103

A (rand) 0.454 0.431 5.02 105 2.9 103

ωij = (ki kj)1/2 orig 0.431 0.383 1.37 106 5.2 105

rand 0.459 0.461 1.34 106 6.9 103

ωij = (ki kj)−1/2 orig 0.417 0.383 2.88 104 0.83
rand 0.440 0.461 2.89 103 57

actors orig 0.060 0.102 1.33 106 2.4 105

rand 0.066 0.407 1.29 106 7.4 104

airports orig 0.623 0.956 3.20 108 3.70 108

rand 0.648 0.972 3.13 108 3.06 108

Table 8.1: Topological and transport parameters of the networks for N = 105.
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network is directed, the magnitudes shown in Tab. I refer only to the outgoing direction.

To calculate the superhighways, one has to generalize the method to directed graphs and

study the incipient strongly connected component (SCC) instead of the incipient percolation

cluster. Both networks exhibit positive correlations on the edge weights and their transport

properties are significantly affected by the correlations (see Ω values).

In summary, we have explored how correlations between edge weights can occur in

random networks. For the simplest case of correlations between pair of neighboring links,

there are two possible scenarios apart from the absence of correlation altogether. We have

shown how those correlations can be characterized by the use of the disparity and the

range. We have also studied the kind of weight correlations introduced by degree dependent

weights, positive and equivalent to our C model. In all cases, the transport properties of

the networks have been analyzed, showing that in general positive correlations improve the

transport properties. Finally, we have also presented data from two real-world networks

on professional collaborations and on airport connections, indicating that weight-weight

correlations are an important factor to take into account in the study of real networks.

8.5 Publications

[113] J. J. Ramasco and B. Gonçalves, Transport on weighted Networks: when correlations

are independent of degree, Phys. Rev. E, 76:066106 (2007)



Chapter 9

Web Surfing

9.1 The World Wide Web (WWW)

In 1969, the U.S Department of Defense (DoD) secretly conceived a feasibility plan whose

main purpose was to use dynamic rerouting of messages to enable the few computer networks

in existence at the time to survive a direct military (in particular nuclear) attack. What at

the time was called ARPAnet (Advanced Research Projects Agency network) was created

by interconnecting three networks in California and one in Utah using the Internet Protocol

(IP). Three years later, in 1972, when this project was revealed to the public, it already

included 50 different institutions among universities and research organizations involved in

defense projects.

A year later, England and Norway established the first international connections to

ARPAnet. A decade later, the National Science Foundation (NSF) created the NSFnet to

interconnect five supercomputing centers, using a new version of the IP protocol known

as TCP/IP (Transmission Control Protocol/Internet Protocol). By the end of the 1980s,

the DoD decided that the network was sufficiently developed and had achieved its initial

purposes. It decided to stop funding of its backbone infrastructure that was gradually

shut down, until the last node went offline in 1989. NFS then replaced ARPAnet as the

fundamental backbone of what was already known as the Internet.

In 1989, Tim Berners Lee at the Centre Européenne pour la Recherche Nucléaire (CERN)

started working on what was originally referred to as a ”large hypertext database” as a

104
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way of allowing high energy physicists to easily share data among themselves. A year

later, ”WorldWideWeb”, the first browser and editor and ”info.cern.ch”, the first server were

up and running within the confines of the research institution. After it became publicly

available through the Internet, in 1991, the ”World Wide Web” exploded to become a global

network with several billion web pages and hundreds of millions of users scattered all over

the world. It became a fundamental part of the way western society functions, permitting a

broader exchange of ideas than ever before. In this chapter we study the behavior of users

as they visit web pages hosted by a University web server.

9.2 Network Structure

Each time a user clicks on a link or types in the address on address bar of an Internet

browser, a request for that web page is sent to the corresponding web server which then

returns the appropriate page to the requesting browser. For optimization and accounting

reasons, most web server software keep track of which pages were requested, when, by whom

and, in some cases, the page that contained the link that the user clicked1.

Our dataset is constituted by the log files generated by the Apache web server running

in the emory.edu machine and responsible for all of Emory University’s web content. The

system administrators made available to us the complete set of page access logs for the

period between April 1st, 2005 and January 17, 2006. Due to privacy concerns, each of the

IP addresses in each of the 294 log files was replaced by a private IP of the form 10.x.x.x,

in such a way that the same original IP always maps to the same private IP and that no

two original IPs are mapped to the same private one (and vice-versa). This ensures that

we can still analyze the behavior of each individual IP without introducing any systematic

errors. The final dataset had 3, 179, 671 IPs, 2, 562, 398 unique URL’s from the emory.edu

domain, 3, 293, 916 referring URL’s from all over the WWW and 53, 582, 121 individual

page requests, each with the date and time at which it occurred.

To the best of our knowledge, this is the largest dataset of this type that has been

studied in the literature, and this is the first time this type of study has been conducted.

1This information must be supplied by the users browser and, as such, is unreliable and not always
available to the web server.
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Figure 9.1: Bipartite structure of the IP-URL interaction graph. Dashed lines represent
new nodes and edges that will be created on the next step.

The predominantly academic nature of the server that generated these logs results in a

few inevitable ideossyncracies in the data. In particular, we expect outbursts of activity

in periods corresponding to the beginning of semesters and decreases during weekends and

holidays. However, we don’t expect these peculiarities to affect the quality of the results

and conclusions that might be drawn from this analysis.

One should also note that we make no effort to completely map the network structure

generated by the links between the web pages in the server. Instead, we rely solely on the

behavior of the different individuals to ”show”us which pages exist by visiting them directly.

If for some reason an existing web page receives no visits during the sampling period, then

we do not include it in the analysis. This implies, among other things, that web pages are

added to our view of the network when they are visited for the first time and not when they

are initially created. As noted in the literature [114, 115] sampled networks can display

different properties than the complete ones, but in this as in most cases, there is no other

choice than to use the data available to us. We are also more interested in understanding

the average behavior of individual web surfers than in thoroughly studying the properties
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Figure 9.2: Number of IPs and URLs present in the graph during the observation period.
Linear fits for both curves are also displayed.

of the resulting network, which gives us an extra measure of confidence on the results we

might obtain.

Our interaction graph has two distinct types of nodes, as shown in Fig. 9.1. On one

hand, we have IP nodes representing individual users2, and on the other we have URL

nodes representing individual web pages. The first time a user visits a web page a new

link is added to the graph connecting them with unit weight and on subsequent visits, the

weight is incremented by one. New pages are added to the network when they are visited

by the first time and a new user is created when he first visits one of our pages. This

structure is represented in Fig. 9.1. From this description, it is clear that our network is

continuously growing with new IPs and URLs being added. The evolution of the number

of IPs and URLs is shown in Fig. 9.2. Clearly, the number of IPs grows faster than the

number of URLs, throughout most of the sample period, but we have two bursts of web page

creation corresponding to the beginning and end of the summer semester, respectively. This

is one of the ideossyncracies we were expecting to observe. We smooth out this behavior by

performing a linear fit to the full data set, obtaining, in effect, an average number of pages

created per day.

2Throughout this work, we make the underlying assumption that each user has a unique IP address that
does not change over the sampling period. However, some ISPs assign a different IP address each time a user
connects to the Internet for privacy reasons and the problem of uniquely identifying a user across multiple
addresses is still subject to much debate and study[116].
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Figure 9.3: left) Evolution of the number of edges connecting IPs and URLs. right) Evolu-
tion of the total weight in the system.

New connections between users and pages are also added on a daily basis as users visit

different sites on different days, and we represent the total number of edges as a function of

time on the left side of Fig. 9.3. We account for the possibility of a user visiting the same

page several times by attributing weights to the links connecting them, where the weight

on an edge connecting an IP with an URL is simply the number of times that page was

visited by that machine3. By comparing the number of links with the sum of all the weights

in the network, one can get a measure of the relative importance of these two alternative

processes, the creating of new links and the reusing of previously existing ones. If both

quantities behave similarly, than connections are usually used only once, but if the total

weight, Σω (t), grows faster than the number of links, then we can safely conclude than

connections are reused several times. We plot Σω (t) on the right side of Fig. 9.3. The slope

of this line is ≈ 2.4 times the slope of E (t) indicating that each page is viewed, on average,

2.4 times by each of its visitors, over the period of time considered. This surprisingly low

number is another signature of the specific nature of the web pages considered and we should

see much larger average weight, 〈ω〉, on other types of web servers4.

The weight frequency distribution, P (ω), displays a clear power law form with an expo-

nent, δ ≈ 2., for over two decades. This indicates that, although, the vast majority of users

3This is equivalent to allowing multiple links between pairs of nodes and measuring the importance of the
connection by simple counting how many links connect a given pair, but has the advantage of being more
memory efficient. Both alternatives are used in the literature with the choice between one and the other
being one determined by convenience of analysis in the situation of interest.

4Consider how many times you are likely to visit www.google.com or www.cnn.com over the course of
almost a year.
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Figure 9.4: Probability distribution of the weights.

visits each page less than 10 times, some call up the same URL on their web sites several

hundreds or even thousands of times. These are probably users who set their browsers

home page to the university’s or their departments web sites, with the largest weights being

attributable to more active web surfers.

Even though the weight distribution can provide us with some information about some

aspects of the behavior of some users, it is of limited use to understand the structure of

the network. We can define a few other quantities that are more informative and of more

practical use for web masters and web server administrators. Of particular practical interest

are, how many unique users visit a given web page, how many web pages does a given user

visit, how many total visits does a page receive (how many ”page views”), and how many

total pages are viewed by a user. These quantities correspond, in graph theory jargon, to

the connectivity of URLs and IPs and the strengths, or total weight, of each URL and IP,

respectively. We represent the connectivity distribution, P (k), for both IPs and URL’s on

the left side of Fig. 9.5 and the corresponding strength distributions on the right side of

Fig. 9.5. All of these distributions clearly display a scale-free behavior with exponents of

2.2 and 2.0, respectively.
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Figure 9.5: left) Distribution of the number of unique visitors per web page and number of
unique web pages visited per user. right) Distribution of the total number of hits per web
page and the total number of page requests per user.

9.3 Preferential Linking

Another aspect that is worth to explore in the dynamics of our database is whether the

new connections or new clicks follow a preferential rule or not. Preferential linking or the

“rich get richer” effect is a relatively old concept considered previously in a socio-economical

context by E.H. Simon [117] in 1955 and as part of a theory of evolution by G. U. Yule[118]

in 1924. In the area of graphs theory, it was introduced in 1999 [7] with a problem inspired

precisely in the hyperlinks of the WWW (see also [119, 120]). A few years have passed, and

although several attempts have been made to check the existence of preferential linking in

a variety of systems [121, 122], as far as we know, a systematic study of preferentiality on

the user-web relationship is still missing. To be precise, if the variable under consideration

x can change in time for each element of the system, it is said that it shows preferentiality

if the variation follows on average an expression of the type

〈∆xi〉 ≈ Ax + B, (9.1)

where xi is the value of x for the element i, the average 〈.〉 is taken over all i, and A and

B are constants. This mechanism supposes that if the update refers to quantities such

as number of connections or number of clicks of a site, the probability that a particular

site is chosen to update is proportional to the number of connections or clicks that it has

previously accumulated. The more popular sites concentrate thus higher attention leading
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Figure 9.6: Running average calculation of the variation of the weight as a function of the
weight. Each numbered box corresponds to a day of data. We use a sequence of 7 days as
our initial network and measure the variation due to adding the next day.

to an agglomeration process that, after a while, produces a very wide distribution of values

of x in the system. Provided that the relation of Eq. (9.1) is linear, the distribution Px(x)

can be approached by a decaying power-law function with an exponent depending on the

values of A and B [123]. If the relation is not linear, on the other hand, two scenarios can

be found. Either ∆tx grows with x faster than linear and the most popular element will

eventually congregate a finite fraction of all the value of x available in the system, or it

is sublinear and the distribution of values of x will not be so wide (stretched exponential

instead of a power-law) [124, 125, 123].

To verify whether or not this process occurs in our system, we measure the average

variation of degree as a function of the original degree, ∆k (k), by considering 7 consecutive

days of data to be our initial network and calculating the variation caused by adding in the

next day. This is done for all consecutive week long periods, as shown in Fig. 9.6. The

reason to use a period of a week is simple. A close look at Fig. 9.3 reveals a variation

between business days and weekends, with less traffic during the weekend than during the

week. To avoid skewing the results, we use a period of time that is maximally uniform by

always including exactly one weekend.

In the form introduced by Barabasi et al, preferential attachment consists of having the

probability of a node with degree k attracting a new link to be of the form ak, where a is

a normalization constant which results, necessarily, on a degree distribution P (k) ∼ k−3.

However, as we saw previously, our degree distribution follows a different exponent. We plot

in Fig. 9.7 our measurements for ∆k (k) using logarithmic bins. The attachment function
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obtained is of the form ak + b, thus deviating from the original Barabasi model and its

predictions, but maintaining the basic principle that ”popularity is attractive”, or, in other

words, that the more users a web site has, the more rapidly it increases that number, leading

to an explosive effect. To illustrate this, consider one simple example. Two new web sites

come online at the same time, all things, being equal, one would expect that they would

attract users at the same pace. If however, one of the web sites gets a slightly larger number

of users, that small initial difference will become increasingly larger and larger as time goes

on. For a web based company, this can mean the difference between profit and bankruptcy.

One also should notice an important detail, that for URLs, the constant b is positive, while

for IPs, the constant is negative[126]. This apparently insignificant difference between the

two types of nodes, signals an important difference in behavior. A positive constant, as in

the case of the URLs, represents an intrinsic ”attractiveness” of the node, or a certain degree

of quality that attracts new visitors. On the other hand, the negative constant exhibited

by the IP data represents a threshold that must be overcome. IPs with degree less than

|b| are unlikely to create new connections, while IPs with connectivities above this value

continuously increase it in a linear preferential fashion.

Another quantity we are interested in analyzing due to its practical relevance is the

”stickiness” of a web page, or in other words, how many times you will revisit a page, given

that you have already visited it x times. As we noted earlier, the number of times a user

visits a page is the weight of that edge, so ”stickiness” is the variation of the weight as a

function of the weight, ∆ω (ω). Following the same approach we used for ∆k (k), illustrated
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Figure 9.7: Change in connectivity as a function of connectivity. left) IPs right) URLs
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Figure 9.9: Variation of a web page’s traffic. left) As a function of the number of unique
visitors. right) As a function of the total traffic.

in Fig. 9.6, and applying a logarithmic binning, we obtain the results shown in Fig. 9.8.

where the linear behavior is clear.

This linear dependency implies a sort of habit forming in users. The higher the number

of times a user has visited a page in the recent past, the more times he will visit it in the

future, which might help explain why web sites that become dominant are rarely overcome

by others, even if the new comers are ”better” in some sense. In web surfing, as in other

things, people are creatures of habit.

9.4 Non-stationarities

The linear relations we saw in the previous section have important implications for the

structure of the navigation patterns, turning the distribution of values of kIP , PIP (kIP ),
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Figure 9.10: URL degree distribution for a period of a week and for the full period. The
red points are the same as in Fig. 9.5.

quite wide and well fitted by the power-law ∼ k−2.2. In addition, the distribution is station-

ary: Its functional form does not vary if kIP is calculated from the data in time windows

comprehending one week or if its value is collected for the full 292 days. Such time stability

is an important feature that renders easier the modeling of the system, although, as we

will see next, it only holds for kIP . It is not valid if the focus is moved onto the Web

sites. As shown in Fig. 9.7, the variation of the number of visitors a site receives follows

as well a linear behavior with the number of visitors already captured during the previous

week. The distribution PURL(kURL) is also wide, although it can be hardly considered as a

power-law but, more importantly, its functional form strongly depends on the time window

during which the number of visitors is measured. In Fig. 9.10 we compare this distribution

measured using the whole network, and using only one week periods and averaging over the

41 weeks in our dataset. This clearly shows that the distribution is not stationary.

Such effect can be understood by taking into account that web sites typically have

an average life time. In an university, the time in which a site, or more specifically its

contents, is relevant closely tracks the evolution of the academic year. In general, a similar

rule should apply to all the Web sites. The life time can be more flexible, depending also

on the number of visitors, but a certain loss of interest as the time passes since the first

online publication can be expected [127]. A similar scenario is also observed for the average

variation of the number of clicks a user makes on the same URL (see Fig. 9.10). In this case,

the distribution Pw(w) is not stationary either, with some user-URL connections getting an
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Figure 9.11: Weight distribution for a period of a week and for the full period. The red
points are the same as in Fig. 9.5.
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Figure 9.12: Time evolution of several quantities. The black curve represents the total
number of page requests registered in a particular day. The red and green curves correspond,
respectively, to the number of new users (IPs) and new web pages (URLs) accesed that day.
Finally, the blue curve represents the number of people that access pages for the first time.

ever higher number of requests.

These are most likely automatic processes instructed to keep requesting the same URL

over time. It is also important to note that in measuring these quantities, we have not made

any special effort to separate the activity coming from humans or that from programs. The

long extension of the linear increase of 〈∆kIP 〉, 〈∆kURL〉 and 〈∆w〉 may imply that, in fact,

no difference should be expected if the discrimination is done since humans and automatic

process are majority in different parts of the domain of kIP , kURL, w (low values for humans,

high for computer programs).
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9.5 Activity Patterns of the Population

Let us also take a view of the collective behavior of the entire population during the time

period we have data for. Intuitively, we expect the activity on a domain to vary from day to

day, week to week and even month to month. In particular, it should be possible to observe

variations in the activity, seen as the number of clicks or page searches, due to weekends,

holidays and other major events that disrupt the normal life of the University. The traffic

at Emory is dominated by students and teachers in the course of their professional activities

and hence the major events in the course of the school year, such as the beginning and end

of a semester, breaks or holidays, should be noticeable in the web traffic. In order to check

this idea, the number of page requests detected per day is shown in Fig. 9.12 as a function

of the observation date. One obvious feature of the figure is a clear oscillatory behavior

with a period of a week. It also displays different trends for two special time of the year:

one at the later part of the month of August, corresponding to the beginning of the school

year, and the other at the end of December, when the semester finishes. This interpretation

is also corroborated by the corresponding spikes in the number of detected pages, shown in

Fig. 9.17, since at the end of August most faculty and students update their respective web

sites. These new pages become less attractive after some days when they have been visited

a few times.

Since accesses to this particular domain are mostly work related, we believe it justified

to use of the overall traffic as a measure of the University wide “productivity”. Busier days

would result in larger amounts of traffic, while during holidays and weekends the number of

page requests is overall smaller, thus rendering only the relative changes in traffic significant.

The averages over the page requests day by day of the week during the complete obser-

vation period are plotted together with their corresponding error bars (2σ, approximately.

95% confidence interval) on Figure 9.13. Our results support the old adage that after

Wednesday, the hardest part of the week is already behind us, with the productivity de-

creasing from then on to the weekend, with Sunday being the least active day of the week.

It is also interesting to note the sharp decrease of page requests on Friday and the not-so
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Figure 9.13: Comparison between the average week productivity and productivity during
thanks giving week. The green vertical lines represent the beginning and end of the official
thanks giving break at Emory University. The error bars for the average are calculated as
two times the standard deviation, 2σ, or the 95% confidence interval.

active behavior of Mondays. Armed with an estimate of how productivity evolves over the

week, we are now in a position to evaluate the effects of a break. In the same Figure, we also

/Users/bgoncalves/Desktop/paper Folder/eps/fig4.eps

Figure 9.14: Average hourly activity in the complete Emory domain as a function of the
hour of the day.

represent the data for the days surrounding Thanksgiving, arguably, one of the major holi-

days in the US. Traditionally, Thanksgiving recess is established to be from Thanksgiving

Thursday till Sunday, so one might expect any decreases in activity to be most noticeable

during that period. Indeed, this is what we observe, but we find other effects as well. Both

the Wednesday before and the Monday immediately after Thanksgiving seem to be less

productive than normal. This is however complemented with a slightly busier than usual

days on the day before (Tuesday) and after (Tuesday) of the break.

Intra day variations, with some times of the day being busier than others are also seen.

By averaging the activity observed at a given hour over all the days in our data set, we

obtain Fig. 9.14. Clearly, the most active period is between 7AM and 6PM. The large dip

between 11AM and 14PM is due to the lunch break. The 3 hour width of that interval

shows a relative wide distribution in the preferences on when to take that break. After
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lunch, the activity peaks reaching the higher level of the day. After 6PM activity levels off

until 10PM, possibly marking the end of the workday for most students, following which

it steadily decreases throughout the rest of the night, until the beginning of the new day.

It is important to note that similar plots as Figs 2 and 4 have been recently reported on

social network emailing (Facebook) and on cell phone usage [128]. Such ubiquity indicates

the existence of important universal features (profiles) regarding human habits.

9.6 Individual Activities

Although interesting, the analysis of averages taken over the entire population has some

limitations. The statistics of activity of single users are typically very wide, being in some

cases well-modeled by power-law distributions with exponents smaller than 2. When this

happens, it is difficult to identify a “typical” user based on such metrics5: while most users

only visit the domain sites a few times, a significant fraction of individuals (as identified

by their IP addresses) accumulate large numbers of page requests. This variability deserves

a higher attention by itself since it can carry important information on the users. Figure

9.15 shows the activity patterns of three of these users. Due to privacy concerns, we cannot

know the actual IPs but it is possible to deduce in part the intention of the visit based on

the particular URL accessed and on the profile of the activity. In Figures 9.15a and 9.15b,

the users are computer programs. One, the case shown in a), corresponds to a malicious

attack on the payroll service of Emory. It took place on April the 4th. The profile of the

number of access attempts per unit of time displays a very peculiar shape, quite regular as

occurs for most automatic navigators, with a very high number of requests concentrated in

a short period of time. Other, more friendly, cybernetic users are those corresponding to

updating programs. An example can be seen in Figure 9.15b where a software site in Emory

is regularly visited presumably in search for new updates. Unfortunately, this could not be

verified as this particular URL no longer exists. Finally, human users show a very different

activity profile from that of the machines. The activity of a human user selected at random

can be seen in Figure 9.15c. In this case the URL is an administrative site that demands

5A power-law distribution decaying with an exponent equal or smaller than 2 does not have a finite
average value [129]
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a manual introduction of data. The activity congregates in some days followed by relative

long periods of time without any request.

Given the strong variability in the activity of the human users, it is interesting to measure

some statistics of it. In Figure 9.16, we have represented the histograms of the duration of

the periods between requests for two different scenarios: in Fig. 9.16a for the time between

consecutive visits of the same user to the same URL, Pv(τv), and, in Fig 9.16b, for the time

between clicks by the same user to any of the sites in Emory’s domain (not necessarily to

the same URL), Pc(τc). Both distributions are rather wide.

/Users/bgoncalves/Desktop/paper Folder/eps/fig5a.eps/Users/bgoncalves/Desktop/paper Folder/eps/fig5b.eps/Users/bgoncalves/Desktop/paper Folder/eps/fig5c.ep

Figure 9.15: Activity history of several individuals: a) what seems to be a malicious attack
on a finance web page of the University, b) an automatic software update program, and c) a
human user filling data in an administration site. The red curves represent the cumulative
number of clicks. To facilitate the visualization, the scale of the cumulative and temporal
number of clicks are different. The axis on the right side of each plot displays the scale for
the cumulative number of clicks.

Indeed, the distribution Pc(τc) can be well fitted by a power-law decaying function

of the type Pc(τc) ∼ τ−1.25
c . The distribution of time between consecutive visits, Pv(τv),

decays still slower with an exponent of value −1. This latter value can be understood

thanks to a model on human dynamics recently proposed by A.-L. Barabási [130] (see also

[128, 131, ?, 132, 133]). In the model, an agent has to perform a set of tasks each with

a random priority assigned. A step consists in the selection of the task with the highest

priority with probability p or of a random one with probability 1− p. After the execution,

a new tasks occupies the free spot in the queue. This group of rules is extremely simple

but is able to reproduce a distribution of waiting times for the tasks in the queue that,

in the limit of small p, decays as ∼ 1/τ . It can be argued that consecutive visits to the

same site in Emory are equivalent to one of these tasks since many of the visits are related

to work or studies, and probably bear an inherent sense of priority for each user. Also

returning immediately to the same URL and reloading it is not the most common practice,
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Figure 9.16: Distribution of times between consecutive clicks: a) visits of the same user to
the same URL, and b) the same user to any page of the Emory domain. The straight lines
correspond to the power-law f(τ) ∼ τ−1 in a) and to f(τ) ∼ τ−1.25 in b). In the inset of
b), the distribution of time in the queue is plotted for a variation of Barabási’s model with
a number of executed tasks per unit of time of ν = 3, with p = 0.99999, a total of 100 tasks
and 107 time steps. The line of the inset corresponds also to a power-law with exponent
−1.25.

at least not among humans. Actually, it is important to note that if the user pushes the

”back”-bottom in the browser, we are not able to detect such a move because it does not

leave a trace in the weblogs. If each entrance is thus seen as a fresh start of a different task,

this would explain why Pv(τv) decays as ∼ 1/τ in the range of large values of τ that is likely

populated mostly by human users. The question is then whether the shape of Pc(τc) admits

also a simple explanation. In fact, the answer is yes, if one considers that a single click

on the domain does not necessarily have to be related to the realization of a single task.

Many tasks will require a (fast) succession of clicks on different sites of the domain for their

completion. If the model is modified to admit the execution of ν items per iteration, the

resulting distribution for the time of permanence in the queue decays as ∼ τ−1.25
c provided

that ν > 2 (see the inset of Fig. 9.16b for an example with ν = 3). These models are

oversimplifications but seem able to capture some of the essential features present in the

dynamics of a large community of users leading to the existence of universal exponents.

9.7 Discussion

Weblogs have proven to be an important source of information regarding human dynamics.

Here we have offered an extensive study on the medium size Web domain of Emory Uni-

versity, www.emory.edu, tracking the users in a consistent way for almost a year. A clear

signal of human biorythms has been obtained as well as activity patterns that seem to be
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Figure 9.17: The number of URLs that are first seen, last seen, and seen for the first time in
any given day. The two major “extinction” and creation events, correspond to the beginning
and end of the semester as in Fig. 9.12.

universal since they are in agreement with previous results on mobile phone records or email

posting in social sites. In addition, in this case, the online traffic can be directly related to

the productivity of the members of the University, namely, students, professors and staff.

The comparison between the activity of an ideal average week and the week containing

Thanksgiving Day is revealing in this sense, with some days concentrating a large fraction

of the total traffic, much higher than the average, and others falling clearly behind.

After the characterization of activity at the whole University scale, we have moved

our focus down on the study of statistics of single users. The difference in the navigation

patterns between humans and automatic processes, either malicious or friendly, has been

highlighted. Humans are in general more unpredictable, although a similar behavior might

be always reproduced by automatic means. In particular for human users, it is important to

analyze the statistics of the times between events (clicks) and compare them with recently

introduced models based on priority queues. We have shown that indeed such models

are able to explain the inter-clicks periods distribution if the dyad user-site is considered.

Furthermore, a simple modification, in which the number of tasks to execute in a short

interval of time is higher than one, can also account for the statistics of times between

requests of the same user on the whole Emory domain.

Finally, we have also explored another mechanism that has been proposed as an impor-

tant ingredient in the development of the WWW , namely ”preferential attachment”. Apart
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from in the way the sites attract new hyperlinks, linear preferential attractiveness is in fact

detected in all the aspects of the traffic contemplated: the rate of exploration of new sites

by the users, the capture of new visitors by the sites or the new clicks received on each

connection user-Web page. In all these cases, the linear relation holds only in short period

of time. For longer periods, the life-time of the Web pages must be also taken into account,

changing and complicating substantially the scenario. Preferential linking, priority queuing

and Web page aging seem thus to be essential factors for any model aimed to characterize

Web surfing.

9.8 Publications

[134] B. Gonçalves and J. J. Ramasco, Human dynamics revealed through Web analytics,

e-print cond-mat/0803.4018, (2008)



Chapter 10

Information propagation in

networks

”Epidemics have often been more influential than statesmen and soldiers in

shaping the course of political history, and diseases may also color the moods of

civilizations.”

– Benjamin D’Israeli - XIX century british novelist and statesman

10.1 Epidemics

Epidemics have always had an important role in shaping the course of human history. In

1347 the bubonic plague ravaged the towns and villages of Europe causing, according to

some estimates [135], the demise of one third of the continents population. Almost 200 years

later, in the 1520s when the Spanish Conquistador, Francisco Pizarro faced off against the

Incan empire in South America, his task was made much easier by the introduction among

the natives of the European diseases such as smallpox for which their immune systems where

utterly unprepared.

More recently, in the early 1980s the first cases of what was to become one of the biggest

threats of the following decades were detected in the Los Angeles male homosexual commu-

nity. The origins of the virus responsible for the Acquired Imuno-Deficiency Syndrome, or

AIDS for short, have been traced back to Guine-Bissau in Africa [136], but its prevalence is

123
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far from local. It quickly spread to all corners of the world resulting in the infection of an

estimated 50 million people of all origins, races and sexual orientations with an annual death

toll of about 3 million people every year according to the World Health Organization[137].

The understanding of how diseases spread within a structured population is a funda-

mental requirement to stop them. Epidemiologists have been struggling with this problem

for centuries, going as far back as the Greek Thucydides that described the Plague of Athens

in 430 − 428 B.C.[135]. In recent years, the floury of interest in Complex Networks in the

physics community and its many applications has led physicists and Epidemiologists alike

to become interested in the study of network based epidemiological models.

In classical epidemiological models, the total population would be divided in several

classes of individuals (such as Healthy and Sick or Susceptible and Infected, respectively,

in technical jargon) with all the individuals within a given class being indistinguishable.

Although this approach has provided a wealth of insight in to the spreading of certain

diseases in human populations, it has some limitations. In particular, it does not account

for geographic and social constraints that can limit the interactions between the individuals

within each of the classes considered, and only the mean field behavior can be observed.

In more recent models, and following the floury of interest in the study of complex

networks, each individual can be seen as constituting its own mini-class with interactions

with a given, and always individual dependent, subset of other individuals. The natural

representation for this system is then that of a graph or network with a complex structure

where context dependent weights can be assigned to each edge.

10.2 Broadcasting

With the coming of age of the Internet the problem of broadcasting information to all the

nodes in the network as quickly and efficiently as possible gained a wide appeal with both

legitimate and illegal applications. Software updates must be sent to all the computers man-

aged by a given ISP, routing information must be assembled from all the machines available

and sent to all the routers within an Autonomous Server, the start time of a distributed

Denial Of Service (DOS) attack must be sent to all the drone machines constituting the
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bot net, a list of available files must be compiled and made available to all the users of a

Peer-To-Peer (P2P) network, a new set of instructions must be sent to all the drones in a

DOD surveillance network.

Since no single computer has a physical connection to all the computers in the network,

and only has a limited amount of bandwidth available, what is the most efficient way to

transmit a given information to as large a fraction of the network as possible in the shortest

amount of time conceivable? Or, as in the case of less legitimate applications, what can be

done to impair or, if possible, completely block that transmission?

10.3 Modeling

The attentive reader will by now have noticed the similarities between the two realms of

application mentioned in this introduction. In epidemiology, the holy grail is to limit the

propagation of disease between individuals in a population, in computer science the objective

can be either to promote or impair the propagation of information among computers in a

network. Even though the two realms are very distinct, the problem can be formulated in

a similar fashion and the results applicable to both cases. In the rest of this Chapter we

will focus primarily on the, perhaps more complex, case of disease propagation in human

populations with special emphasis on HIV spread due to its relevance, but parallels will be

drawn to the field of Computer Science whenever deemed necessary.

In the graph approach each of the nodes in the network represents an individual which

can be in one of several states and each node can interact only with nodes with which it has

a common edge. This approach has the advantage of allowing a much more detailed analysis

of the spreading of the virus from person to person and to isolate individuals or groups that

play a predominant role in spreading the illness and should be targeted preferentially if we

aim at hindering its destructive progress.

The interactions between individuals within a given population is commonly represented

as in Fig. 10.1 with squares representing males, circles representing females and edges

connecting them whenever a pair of nodes interacts in a way that can result in infection. The

weight of each edge can be seen as representing the importance or frequency of that contact.
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Figure 10.1: Structured interactions between individuals. Blue squares represent males
and Pink circles correspond to females. Each individual only interacts directly through the
connections it has.

If we consider only relatively short time periods or diseases with long permanence time, such

that the likelihood of one of the nodes dying of becoming immune from the disease, we can

restrict ourselves to two possible states for each node, Susceptible (or healthy) and Infected

(or sick),1 and deal only with transitions between the Susceptible and Infected states. This

type of model is usually referred to in the literature as SI (for Susceptible-Infected) models

and is usually take as a first step towards understanding the basic mechanisms that influence

the epidemic in its earlier stages.

Following this formulation of the problem, a generic algorithm can be quickly formulated

to serve as a template for numerical studies, such an algorithm is defined in Alg. 5. Briefly,

we use the weights along each edge as a sort of contact frequency between the nodes and after

each interaction, a random number drawn from an appropriate distribution tells us when

the next exchange between these two individuals occurs. It should be clear that the model

we have just formulated is fairly generic and we expect that for a given interaction network

we should observe very different epidemic behaviors by using different sets of weights, wij ,

probability distribution functions, E (ωij, t), and infection probabilities, pij . Our goal is to

try to identify what effect does the combination of these two factors has on the way the

infection progresses and to gain insight that might be applicable to real world processes.

The different parameters for the model, such as the time distribution function, infection

probabilities and weight distributions must be chosen for each specific case. Before we can

1In the case of update broadcasting in Computer Science, the Susceptible and Infected states would
correspond, respectively, to Outdated and Updated.
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Algorithm 5 Susceptible-Infected model

Start with an initial set of infected and susceptible individuals (nodes) connected along the
edges of a weighted network.

1. Assign interaction times, tij , to each edge drawn randomly from a distribution
E (ωij, t), where ωij is the weight of the edge connecting individuals i and j, and
the distribution becomes increasingly narrower as ωij increases.

2. For the edge with the smallest value of tij:

(a) An interaction is assumed to occur.

(b) Set the system’s clock time to tij.

(c) If only one of the two individuals is infected, it infects the other individual with
probability pij.

(d) If both individuals are both infected or both susceptible, nothing hap-
pens.Increment the interaction time, tij , by ∆tij obtained from the same dis-
tribution.

3. Repeat step 3 for a specified number of times or until the systems clock reaches a
given time.

start analyzing the effect that each of these factors plays in the spreading, we analyses a

null model that will give us a baseline to which we might compare our future results. For

our null model we chose 50 instances of Erdos-Renyi with average connectivity 6.0 and 50

instances of Barabasi-Albert networks with 104 nodes each.

We started by assigning to each edge a weight obtained from a power law distribution

of degree 2 and a uniform infection probability pij ≡ p = 0.01. The wide distribution of

weights insures that most frequencies are relatively low but that there are a small number

of higher frequencies as well, and the uniform probability signifies that the disease has a

relatively low infectivity and is democratic, in the sense that it is as likely to infect any given

individual. Finally, for the time distribution function, E (ωij , t), we chose an exponential

∼ e−ωijt. thus treating the weights in the network as characteristic rates with which a given

event occurs. In the context of human interactions, ωij can be the frequency with which

you physically interact with a given person in your daily life and the Computer Science

equivalent would be the frequency with which that link is used to transmit packets between

two computers.

Given these choices, we expect the main differences between the two datasets to be due
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Figure 10.2: Number of Infected individuals as a function of time.

to the topological differences between the two types of networks. The epidemic prevalence,

or the number of infections as a function of time, i (t), for both cases is shown in Fig. 10.2.

We also present the results for the case with all the weights set equal to 1 for comparison

purposes.

The most obvious difference between the two classes of networks is the speed at which

the infection spreads. In the ER networks, after a first period of modest growth, i (t) quickly

explodes to encompass a large fraction of the network. On the other hand, the growth is

much smoother in BA networks, and even after 2 or 3 times longer the fraction of infected

individuals is still far from 1. This picture can, however, be deceiving for one would expect

that with increasingly larger number of infected individuals, the number of new infections at

each time step would also grow. To account for this effect, we follow the approach introduced

by Crepey et al [138] and define the relative variability of the number of infections as the

ratio between the standard deviation and the average number of infections:

∆ [i (t)] =

√〈
i (t)2
〉
− 〈i (t)〉2

〈i (t)〉
(10.1)

The evolution of this quantity is shown on the left side of Fig. 10.3. The figure clearly
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Figure 10.3: left-main) Relative variation of the number of Infected individuals as a function
of time. left-inset) Detail of the range time∈ [0, 100]. right) Logarithmic derivative of the
prevalence.

shows that, despite what we expected, the scaled variation in the number of infections

becomes smaller over time, but with different behaviors for each class of network and even

with differences within the same class between the set with unit weights and the one with

power-law distributed weights.

A quantity of great interest to Epidemiologists, is the average number of infections

caused by each infected individual. To study this quantity we define D [i (t)], the logarithmic

derivative of the prevalence2:

D [i (t)] =
1

i (t)

di (t)

dt
, (10.2)

and plot it on the right hand side of Fig. 10.3. This derivative has indeed an interesting

behavior for, while it decreases monotonically in all cases, it stabilizes for a short period

of time for ER networks with the longer stable period corresponding to the networks with

unit weights. This seems to indicate that the variation in the weights leads, as one would

expect, to larger variations in the number of infections that can be caused by each infected

individual and to a faster spread of the disease. In the case of BA networks, the two curves

are practically indistinguishable beyond the first few stages, both decreasing monotonically,

but, in opposition with what is observed in the ER case, with unit weighted networks having

slightly larger infection ratios than the power-law ones.

An attentive eye will have noticed that the curves for each type of network look remark-

ably similar, raising the possibility of a scaling law connecting them. The importance of

2Numerically, this quantity is calculated by taking the forward difference of i (t), i (t + 1)-i(t) and dividing
it by i (t).
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Figure 10.4: Scaled prevalence (left) and relative prevalence variance (right).

this is undeniable, as it would indicate that the exact weights are not important and that

we may focus more on just the unweighted version of the model. There is indeed a easy

scaling for the Erdos-Renyi case, as we show in Fig. 10.4, where we have simply multiplied

the time by the square root of the average weight. This scaling, however, does not work

for the Barabasi-Albert case, thus rendering such scaling useless in this type of network.

After trying multiple scalings of both the xx and the yy axis with different functions of

〈ω〉,
〈
ω2
〉

and σ, it is our belief that the BA does not obey a simple scaling law, thus mak-

ing an analysis of the effect of the weights an important step in understanding spreading

phenomena.



Chapter 11

Final Remarks

”Dissertations are not finished; they are abandoned”

– Fred Brooks

Over the previous Chapters we analyzed two different classes of problems. Magnetism, with

its long history within physics already possesses the basic tools and frameworks required

for its study. Networks, on the other hand, being a much younger field (particularly within

Physics), is still at a stage where much has already been achieved, but much more still

remains to be done. However different these two problems might seem at first, the set of

tools and concepts that they share proves that they are indeed similar. In both cases, the

way the components of the system are connected and the strength of each connection plays

a major role in the way the system behaves.

In the case of Spin Glasses, the connectivity is one of the determining factors that

control the size of avalanches with important consequences for optimization and magnetic

recording. Potts spins, lying in a non-geometric regular lattice of fixed connectivity display

unintuitive behavior such as negative specific heat. This illustrates that not only the number

of connections, but also the way those connections are distributed within the system is also

important. We demonstrate this also for the dynamics of the system with the introduction

of the Hanoi Networks with their hierarchy and analytical tractability. Even in relatively

small systems of Heisenberg spins, you can obtain interesting results by introducing a long

range interaction among all of them.
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In the better known model of graphs, the Erdos Renyi model, as you increase the average

degree of each node you cross two transitions that delimit intrinsically different regions, as

can be seen by the efficacy of the tree cutting algorithm we introduced. In more realistic

models, correlations between edge weights can significantly improve transport along those

edges as can be seen in several cases of real world networks.

The same framework can also be applied to study a much more complex system, society.

By analyzing the way that a group of people interact with a web site one can gain insight

into the generic mechanisms behind how individuals behave and how these behaviors can

have an impact in technology and everyday life. On the other hand, if we build a network

of sexual interactions between individuals we can use much of the knowledge gained in the

previous chapters to study the way in which a STD spreads within a population and what

measures can be taken to combat it. If, however, we replace our labels, turning people in

to machines and STDs in to computer viruses, the system remains unchanged and all the

results are preserved.

Much more work could be done by applying similar ideas to other problems and explor-

ing other connections along the same lines. While we were able to find solutions to several

problems, many other questions were left unanswered. However, we believe that this disser-

tation illustrates the way these two apparently disjoint areas can cooperate to great mutual

benefit, with important implications in a wide range of applications. We hope to be able to

proceed within this multi disciplinary framework in the future.



Part III

Appendices
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Appendix A

Logarithmic Binning

’An important problem when dealing with experimental data, whether this data originated

in a ”real” experiment or in a numerical one, is to reduce the amount of stochastic noise,

specially when trying to determine the distribution, P (x), of a given quantity x. A common

approach is apply some form of logarithmic binning to the data and them proceed to analyze

the cleaner ”binned” data. Contrarily to what is done for histograms, for example, the bin

size is not constant, instead it is given by:

∆ =
1

N
log

(
b

a

)
(A.1)

where N is the desired number of bins, and b and a are, respectively, the maximum and the

minimum of our distribution. Each data point xi is assigned to bin:

ni =
1

∆
log
(xi

a

)
(A.2)

to which corresponds the new xx value Xi given by:

Xi = ae∆(ni+1) (A.3)
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Figure A.1: Logarithmic Binning.

and the distribution value P (Xi) is simply the arithmetic average of all the points in the

bin:

P (Xi) =
1

Ni

∑

xi∈{ni}

xi (A.4)

where Ni is the number of data points in bin ni and the sum is taken over all xi in the

bin. This method preserves the functional behavior of the distribution which averaging out

fluctuations which are specially dominant in regions with poorer statistics. An example

is shown in Fig. A.1 where we clearly see that the statistical fluctuations in the tail are

smoothed out.



Appendix B

Generating Function Formalism

In this appendix we provide a brief review of the generating function formalism [139],

extensively used in the literature to study stochastic processes [140, 141, 142, 143, 144].

The generating function of a stochastic system with probability Pn (t) of being in state n,

at time t, is defined as:

G (x, t) =
∞∑

n=0

Pn (t)xn (B.1)

the derivatives with respect to t and x are, respectively:

∂G (x, t)

∂t
=

∞∑

n=0

∂Pn (x)

∂t
xn (B.2)

∂G (x, t)

∂x
=

∞∑

n=0

nPn (t)xn−1 (B.3)

which we can use to simplify and solve differential equations involving Pn (t). We can then

solve to obtain a closed form for G (x, t) and recover the original probabilities by expanding

G (x, t) as a Taylor series in x around x ≡ 0.

Pn (t) =
1

n!

∂nG (x, t)

∂tn

∣∣∣∣
x=0

(B.4)

We can also easily see that,

G (1, t) =
∞∑

n=0

Pn (t) ≡ 1 (B.5)

136



APPENDIX B. GENERATING FUNCTION FORMALISM 137

if the probabilities Pn (t) are properly normalized and that:

〈n〉 =
∞∑

n=0

nPn (t) =
∂G (x, t)

∂x

∣∣∣∣
x=1

(B.6)

and

σ2 = 〈n2〉 − 〈n〉2 =
∂2G (x, t)

∂x2

∣∣∣∣
x=1

+
∂G (x, t)

∂x

∣∣∣∣
x=1

−
(

∂G (x, t)

∂x

)2
∣∣∣∣∣
x=1

(B.7)

The fact that Generating Functions are, in fact, Formal Power Series has some useful con-

sequences as well. In particular:

G(k) (x, t) = (G (x, t))k (B.8)

where G(k) (x, t) is the generating function for k independent samplings of the Pn(t) distri-

bution and

G (x, t)H (y, t) =
∑

n

Pn (t)xn
∑

m

Qm (t) ym =
∑

n

Rn (t) zn (B.9)

with

Rn (t) =
∑

k

Pk (t)Qn−k (t) (B.10)

We also enumerate some useful generating functions and refer to the literature[145, 146,

147, 148] for more examples.



Appendix C

Renormalization Group For

Random Walks

As a pedagogical example, we present here the theory as it will be applied in Chap. 6. We

consider a biased random walk on a finite one-dimensional line. In particular, we consider

the questions of the average transit and first return times for starting at the left-most site

“0” and either being absorbed at the right-most site or returning to “0”, respectively. The

master equations for such a random walk on a lattice of length N = 2K+1 with reflecting

boundaries are given by

P0,t+1 = p P1,t,

P1,t+1 = P0,t + p P2,t,

Pn,t+1 = (1− p)Pn−1,t + p Pn+1,t (2 ≤ n ≤ N − 2), (C.1)

PN−1,t+1 = (1− p)PN−2,t + PN,t,

PN,t+1 = (1− p)PN−1,t,

where Pn,t denotes the probability of a walker to be at site n at time t, p is the probability

expressing the biasing for left or right hops. Since we want to start the walks at time t = 0
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at the origin n = 0, these equations have the initial condition

Pn,0 = δn,0. (C.2)

To facilitate renormalization, we introduce a generating function

P̃n(z) =
∞∑

t=0

Pn,tz
t (0 ≤ n ≤ N).

Incorporating the initial condition in Eq. (C.2), Eqs. (C.1) transform into

P̃0 = a P̃1 + 1,

P̃1 = c P̃0 + a P̃2,

P̃n = b P̃n−1 + a P̃n+1 (2 ≤ n ≤ N − 2), (C.3)

P̃N−1 = b P̃N−2 + d P̃N ,

P̃N = b P̃N−1,

where we have inserted generalized hopping rates in preparation for the RG. Initially, at

the k = 0th RG step, it is

a(0) = p z,

b(0) = (1− p) z, (C.4)

c(0) = z,

d(0) = z,

which provides a sufficient number of renormalizable parameters that are potentially re-

quired to consider special sites at both boundaries.

A single step of applying the RG consists of solving Eqs. (C.3) for P̃n with odd values of

n (which is trivial here, as they are already expressed explicitly in terms of even ones) and

eliminating them from the equations for the even n. After that elimination, we can rewrite
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the equations for even n as

P̃0 =
a2

1− ac
P̃2 +

1

1− ac
,

P̃2 =
bc

1− 2ab
P̃0 +

a2

1− 2ab
P̃4,

P̃2n =
b2

1− 2ab
P̃2n−2 +

a2

1− 2ab
P̃2n+2

(
2 ≤ n ≤ N

2
− 2

)
, (C.5)

P̃N−2 =
b2

1− 2ab
P̃N−4 +

ad

1− 2ab
P̃N ,

P̃N =
b2

1− bd
P̃N−2.

Comparing these equations with Eqs. (C.3) allows to extract the RG recursion equations.

[Note that superscripts referring the kth RG step have been suppressed thus far in Eqs.

(C.3) and (C.5).]

Before we analyseui the first return time at the boundary specifically, we can use the

equation for bulk sites n in (C.5) to extract already the diffusion exponent dw. A comparison

of the respective coefficients in Eqs. (C.3) and (C.5) yields

a(k+1) =

(
a(k)
)2

1− 2a(k)b(k)
, b(k+1) =

(
b(k)
)2

1− 2a(k)b(k)
. (C.6)

These recursions converge for k → ∞ towards fixed points (a∗, b∗) that characterize the

dynamics in the infinite time limit (which corresponds to the limit of z → 1−). The trivial

fixed point a∗ = b∗ = 0 is unphysical, as it can not be reached from the initial conditions in

(C.4) for any choice of p (at z = 1). The physical fixed points are (a∗, b∗) = (1, 0), which is

reached for any bias p > 1
2 , or (a∗, b∗) = (0, 1), reached for p < 1

2 ; finally, (a∗, b∗) =
(

1
2 , 1

2

)

can only be reached by entirely unbiased walks for p = 1
2 . To explore the behavior for large

but finite times, we expand the RG recursions in (C.6) to first order in ε = 1− z by writing

for y ∈ {a, b}:

y(k) ∼ y∗ + y(k)
1 ε + . . . . (C.7)

Inserting the Ansatz in Eq. (C.7) into the recursions in Eqs. (C.6), we obtain near the fixed
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point with a∗ = b∗ = 1
2 :

a(k+1)
1 = 3a(k)

1 + b(k)
1 ,

b(k+1)
1 = a(k)

1 + 3b(k)
1 , (C.8)

with the result that

a(k)
1 = b(k)

1 ∝ 4k.

This implies that as space rescales by a factor of 2 (i. e. eliminating all odd-index sites),

time rescales by a factor of 4 for an unbiased random walk, leading to dw = 2. The same

analysis for either of the biased fixed points yields that , say, a(k) ≡ 0 beyond any power

of ε and, with the Ansatz b(k) ∼ 1 + b(k)
1 ε (and a ≡ 0) in Eqs. (C.6), b(k)

1 ∝ 2k. Following

this interpretation, this would imply dw = 1 and we find the familiar result that with the

slightest bias, p < 1
2 or p > 1

2 , the motion at large length and time scales is dominated by

the constant-velocity drift upon reaching the bulk.

In this scenario, average first-return times are clearly system-size independent constants:

A walker with a bias towards the origin (p > 1
2) will drift back recurrently after only small

excursions; a walker with a bias away from the origin (p < 1
2 ) returns at most a few times

in short order until the drift eventually carries it away without further recurrence. In the

following, we therefore focus exclusively on the unbiased case p = 1
2 . Then, we can equate

a = b at every step, to get

a(k+1) =

(
a(k)
)2

1− 2
(
a(k)
)2 . (C.9)

To derive the return-time behavior, we have to examine Eqs. (C.5) more closely. Com-

paring coefficients also in the boundary terms leads to

c(k+1) =
a(k)c(k)

1− 2
(
a(k)
)2 , d(k+1) =

a(k)d(k)

1− 2
(
a(k)
)2 . (C.10)

For large k, both c(k) and d(k) are entrained with a(k), and we obtain a consistent and closed
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set of relations for all coefficients in Eqs. (C.3) and (C.5) by identifying c = d = 2a. Further

renormalizing

P̃ (k+1)
n =

[
1− 2
(
a(k)
)2]

P̃ (k)
2n (C.11)

ensures invariance of the constant term at the lower boundary that originated from the unit

initial condition in Eq. (C.2).

After k = K RG steps, the system has reduced to

P̃ (K)
0 = a(K)P̃ (K)

1 + 1,

P̃ (K)
1 = 2a(K)P̃ (K)

0 + 2a(K)P̃ (K)
2 ,

P̃ (K)
2 = a(K)P̃ (K)

1 ,

which yields

P̃ (K)
0 =

1− 2
(
a(K)
)2

1− 4
(
a(K)
)2 . (C.12)

Using Eq. (C.11) in turn obtains

P̃ (0)
0 = =

P̃ (K)
0

∏K−1
k=0

[
1− 2
(
a(k)
)2] =

1− 2
(
a(K)
)2

1− 4
(
a(K)
)2

K−1∏

k=0

1[
1− 2
(
a(k)
)2] . (C.13)

It is a well-known fact that the generating functions for being at the origin, P̃ (0)
0 , and for

the first-return probability to the same site, Q̃0, satisfy the following simple relation[62]:

Q̃0 = 1− 1

P̃ (0)
0

. (C.14)

Note that a recurrent walk (with Q̃0 = 1) requires that P̃ (0)
0 diverges at long times (i. e.

z → 1−). In our one-dimensional walk here, it is a(K) → a∗ = 1
2 , on behalf of which the

denominator of P̃ (0)
0 in Eq. (C.13) has a zero, making the walk recurrent. In more detail,
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it is

Q̃0 = 1−
1− 4
(
a(K)
)2

1− 2
(
a(K)
)2

K−1∏

k=0

[
1− 2
(
a(k)
)2]

. (C.15)

To extract the exponent µ for the first-return probability distribution,

Q0(t) ∼ t−µ (t →∞),

requires an expansion of Q̃0(z) to 2nd order in ε = 1− z.

Luckily, due to the leading zero in 1 − 4
(
a(K)
)2

, any other factor in Eq. (C.15) only

needs to be expanded to first order in ε. Extending the Ansatz in Eq. (C.7) for a to 2nd

order, we obtain here:

a(K) ∼ 1

2
− 1

2
× 4ε + 5× 16Kε2 + . . . ,

1− 4
(
a(K)
)2

∼ 8× 4Kε + 116 × 16Kε2 + . . . ,

1− 2
(
a(K)
)2

∼ 1

2
+ 4× 4Kε + . . . ,

K−1∏

k=0

[
1− 2
(
a(k)
)2]

∼
K−1∏

k=0

[
1

2
+ 4× 4kε + . . .

]
,

∼ 2−K

[

1 + 8ε
K−1∑

k=0

4k + . . .

]

,

∼ 2−K +
8

3
2Kε + . . . .

Inserting these expressions into Eq. (C.15), we get

Q̃0 ∼ 1− 16× 2Kε +
952

3
× 8Kε2 + . . . . (C.16)

Then, we can extract for the moments

〈t〉K ∼ 2K ,

〈
t2
〉
K

∼ 8K ,



APPENDIX C. RENORMALIZATION GROUP FOR RANDOM WALKS 144

which leads to the familiar[62] first-return exponent of a one-dimensional walk,

µ = limK→∞ 2 +
1

1− 〈t2〉K
〈t〉K

=
3

2
. (C.17)



Appendix D

Condor and DRBL

Imagine, you have been given a modest budget for your scientific computation needs, and

you want to get the most bang for the buck. Or you have accumulated a diverse bunch of

work-stations, and it is turning into a pain to keep programs running on each one while

keeping track of their output, not to mention the administrative overhead. Throw in the

fact that your department may have a student lab with brand-new desktops, sitting idle part

of the year. Pulling together a few freely available software packages, such a heterogeneous

environment can be bundled into a scalable computer cluster that is easy to administer

and provides basically the unlimited uptime needed for most scientific computations. This

article explains how we proceeded.

To build our cluster we are going to need three pieces of software:

• Fedora Core 3[149]

• DRBL (Diskless Remote Boot on Linux)[150]

• Condor[151]

Fedora Core 3 (or its successor) will be our base distribution, since it’s freely available and

is well supported by both DRBL and Condor. For the purposes of this tutorial we will

assume that you already have FC3 installed on the machine that is to become your server.

The server machine will be responsible for storing and serving all the files necessary for the

client machines to be able to function properly. It will also act as a firewall between the
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cluster and the outside world and should possess more than one Ethernet card. While not

essential, it would be worthwhile to budget for some extra hardware in the server for speed

and security such as Giga-LAN, RAID, DVD-Burner, etc.

DRBL on its own allows a set of “thin” clients to be booted off a server, say, in a

classroom setting. Thus these clients do not require any disks or peripheral hardware. For

instance, in our cluster each thin client box has only a motherboard, an Ethernet card

(typically integrated in the motherboard), a CPU, and some memory, but no video, disk,

etc. At the time of writing, such a node could cost below $250 with a 64-bit CPU and 1Gb

of memory.

By adding the Condor clustering software, we turn this set of machines into a computing

cluster that can perform high-throughput scientific computation on a large scale. You can

submit serial or parallel computing jobs on the server, and Condor takes care of distributing

the jobs to idle cluster machines, if any, or puts them in a queue until the required resources

are available. Condor can also perform periodic checkpoints on the jobs and restart them if

something causes the machine on which they are running to reboot. Even if the server itself

has to reboot (say, when a disk in your RAID-5 array failed), the client jobs wait patiently

for its return.

The end product is very stable. You can add and remove compute nodes from the system

without having to reconfigure anything. Designating a machine as a member of the cluster

requires just a small penalty of hard drive space on the server to store some configuration

files; in our cluster, config-files for 72 machines use less than 3GB of space on the server.

Several similar clustering solutions are currently available, most of them being di-

rectly related to Cluster Knoppix [152], such as Parallel Knoppix [153], Quantian [154],

BCCD [155], etc. But these are mostly geared for educational or demonstration purposes

and run off a live-CD/DVD, which is not well suited for long term usage that is essential

for most scientific computing. These solutions provide convenient ways to run short term

jobs but are unsuitable for longer term projects. In fact, in our initial attempt to cluster

our hardware, we have tested the hard-drive installation [156] provided with Cluster Knop-

pix (then version 3.4) [152]. The resulting cluster configuration had significant bugs; an

indication that it is far less supported than the live-CD version. Once it was fixed, the
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installation provided a diskless boot function similar to DRBL and clustering provided by

OpenMosix [157]. Unlike Condor, OpenMosix does not require special instructions to batch

jobs. Instead, it makes it appear as if the user is sitting in front of a single computer that

happens to have multiple CPU. Yet, OpenMosix is directly compiled into the Linux kernel,

which made system administration a task beyond our expertise. Any upgrade to the cluster

software essentially meant re-installation. Also, while the OS performed just as reliable as

expected from any Linux system, in case of power-failure or server reboot, say, all jobs are

lost.

The implementation we propose here requires a dedicated machine as server but it allows

for months (years?) of continuous usage and for easy administration, upgrades and large

volume backups. Adding new machines is trivial since it does not require a reboot or even

a reconfiguration of the cluster and the jobs continue to run happily even if the master is

brought down temporarily.

D.1 DRBL installation

In this example we will assume that our server has three network interfaces: eth0, to connect

to the outside world, and eth1 and eth2 to connect to the client machines. We’re using two

different subnets for the client machines in order to spread the network traffic over two

different routers. Before we start installing DRBL on the server, we configure eth1 and eth2

with private IP addresses (of the form 192.168.x.x).

Most of our client machines are thin. We set these clients’ BIOSes to boot via the

network, which obliged us to temporarily install a graphics card and access the BIOS menu.

Since we only need to use the graphics card for a few seconds on each machine, we have just

one card that was installed on each of the machines in turn. The clients in our student lab

are fully configured, running a non-Unix OS. Using a single PXE boot floppy [158] allowed

us to commandeer these clients without affecting their BIOS or disks.

DRBL is available as a small RPM package. To set it up we are going to be using

two installation scripts: “drblsrv”, to configure the server, and “drblpush”, to configure the

clients. Start with ” drblsrv” by running:
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# /opt/drbl/setup/drblsrv -i

This Perl script installs the packages that DRBL requires, such as DHCP and TFTP, if

they’re not already installed, and asks if we want to update the system. If we choose

to perform the update, it will run “yum” to update all the packages for which there is a

newer version (similar to what would happen if you were to run“up2date”1 manually). The

default options work well for most cases. We just have to remember that if we downloaded

the DRBL RPM from the testing or unstable directories to select “Yes” when it asks if we

want to use the testing or unstable packages.

After ” drblsrv” finishes (which can take a fair amount of time, especially if we have a

slow Internet connection and asked to update the system) it’s time to run ” drblpush” :

# /opt/drbl/setup/drblpush -i

This second Perl script is the workhorse of the system. It configures and starts all the

services required to make the cluster work. It automatically detects the network interfaces

that have private IP addresses assigned to them and asks us how many clients we want

to set up in each of them. Here we want to allow for more clients than the number of

machines currently have available. This allows us to add more machines later without

having to reconfigure the server at only a small penalty in hard drive space. For added

security and manageability, we can bind the booting process (via DHCP) to the MAC

addresses of our clients. This feature is useful if we are setting up our system in the open

(in a classroom, for instance) where anyone can plug in a new machine without us knowing

about it and for organization purposes, since this way we know to what machine each

hostname corresponds to. We’ll assume our system is behind closed doors and accessible to

users only by SSHing[159] to the server, so we’ll choose “No” for this option and simply tell

DRBL how many clients we want on each network interface. They will all get IP addresses

on a first-come, first-served basis at boot time.

At this stage of the configuration process DRBL will present us with a little graphical

view of our setup:

1On Red Hat based systems, other distributions might use “apt-get” or “synaptic”.
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NIC NIC IP Clients

+-----------------------------+

| DRBL SERVER |

| |

| +-- [eth0] xxx.xxx.xxx.xxx +- to WAN

| |

| +-- [eth1] 192.168.110.254 +-

to clients group 1 [ 24 clients, their IP

| | from 192.168.110.1 -

192.168.110.24]

| +-- [eth2] 192.168.120.254 +-

to clients group 2 [ 24 clients, their IP

| | from 192.168.120.1 -

192.168.120.24]

+-----------------------------+

In this example we made room for 24 machines on each subnet. If our configuration doesn’t

look the way we intend it, we can press Ctrl-C and restart from scratch; nothing has been

changed in our system yet. After this point, the only option we might want to change from

the default is the one referring to the boot mode. Since these machines will be used only for

number-crunching and have no terminals, we can set the boot mode to ” 2” for text mode

so we don’t waste resources starting an X server that will never be used. We can safely

leave all the other options at default values, or modify them to serve our specific goals. If

at a later date we change something on the server and we want those changes to propagate

to the clients we simply need to re-run ” drblpush” .

In this case we can choose to keep the old client settings and just export the changes

or to redo everything from scratch. After DRBL finishes successfully, we can boot our

client machines and if everything went according to plan we should now have a basic cluster

system up and running. If we run in to any problems, we can use the project’s support

forum [160]. The experience has been that we typically get an answer back from one of the
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developers within about a day.

D.2 Condor installation

To make the most of our new Linux cluster we will install Condor, a batch system developed

by the University of Wisconsin[151]. Download the latest tarball, uncompress it, and run

# ./condor_install

The installation script provides plenty of details on what each option means, so one shouldn’t

have many problems setting it up. We must, however, keep in mind that everything is

shared between the server and the clients and answer accordingly when it asks us about

the file systems, accounts, and password files. Also, if we want to be able to make use of

Java support, we need to have Sun’s Java[161] virtual machine installed prior to installing

Condor. (If installed afterward one must sort through Condor’s configuration files or redo

the Condor installation.) Message Passing Interface (MPI)[162] Protocol support requires

some tinkering with the configuration files after the installation. Both “mpich”[163] and

“lam-mpi”[164] are supported. For further details on Condor installation and its many

features, refer to the Condor manual[165] on-line and to the very active mailing list that

one is invited to subscribe to on downloading the software.

After the installation, we start Condor on the local machine by running:

# /usr/local/condor/bin/condor_master

This command should spawn all other processes that Condor requires. On the server we

should be able to see five condor processes running:

# ps -ef | grep condor

condor 16418 1 0 14:18 ? 00:00:00 condor_master -f

condor 16477 16418 0 14:20 ? 00:00:00 condor_collector -f

condor 16478 16418 0 14:20 ? 00:00:00 condor_negotiator -f

condor 16479 16418 0 14:20 ? 00:00:00 condor_schedd -f

condor 16480 16418 0 14:20 ? 00:00:00 condor_startd -f
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root 16503 16382 0 14:20 pts/4 00:00:00 grep condor

When starting Condor on the clients, we should see all of the above except condor collector

and condor negotiator. Sometimes the installation program gets a bit confused with the

fact that the server has several hostnames (the usual hostname for eth0, nfsserver eth1,

and nfsserver eth2 respectively); in those cases, running condor master on the server will

start only the services that are used by a client machine. We can easily fix the problem

by using condor configure to force the current machine (with all its hostnames) to be the

server. This will change the relevant configuration files, after which we must tell Condor to

reread them:

# ./condor_configure --type=submit,execute,manager

# /usr/local/condor/sbin/condor reconfig

Sent " Reconfig" command to local master

After that we should be able to see the server machine as part of our Condor cluster when

you run condor status.

# condor_status

Name OpSys Arch State Activity Loa-

dAv Mem ActvtyTime

underdark LINUX INTEL Un-

claimed Idle 0.240 1518 0+00:20:04

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 1 0 0 1 0 0

Total 1 0 0 1 0 0

If we now run condor master on all the nodes we should see the clients being added to this

list within a few minutes (usually around five to 10 minutes, but the more machines there

are the longer it takes for all of them to finish handshaking with the server). DRBL provides

a simple mechanism to run a command on all the nodes. To start condor master manually

on all the clients we simply have to:
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# /opt/drbl/bin/drbl-doit /usr/local/condor/sbin/condor_master

“drbl-doit”will run the command under the same user that calls it, so we should run this as

root on the server machine. We can also have condor starting automatically when we boot

the machines by adding condor master to the rc.local file of the nodes. This can be done

manually, or by editing the relevant section on the ” drblpush” Perl script and rerunning it;

only then will we be able to add machines to our cluster without having to change anything.

D.3 Using the cluster

There are a number of tutorials[166] available on-line (not to mention the official manual[165])

that teaches the basics of using Condor, but the mechanics of it are fairly simple, especially

if one has used other batching systems before.

To submit a job to the cluster we are going to need to create a submit script. This is

basically a text file that in general would look something like this:

Executable = hello

Universe = Vanilla

Output = hello.out.$(PROCESS)

Input = hello.in.$(PROCESS)

Error = hello.err.$(PROCESS)

Log = hello.log

Queue 3

In this example our executable file is called hello (the traditional ” Hello World program”

). We’re using the Vanilla universe (just your normal run of the mill executable, check

the manual to find out about all the other universes). The Input, Output, Error and Log

directives just tell condor which files to use for stdin, stdout, stderr and to log the jobs

execution. Finally, the “Queue” directive specifies how many copies of the program to run.

In this particular case we are starting 3 different jobs. The $(PROCESS) macro allows each

job to use a different set of files, so job 0 would use hello.*.0, job 1 uses hello.*.1, etc.

After we have the submit file ready we can submit it to condor by running
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# condor_submit hello.sub

We can also check on the status of our job using

# condor_q

which will tell us how many jobs are in the queue, their Id’s and whether they’re Running

or Idle along with some statistics. Condor itself has many other features and provides for

many possibilities, shown here are just the very basics of how to get it up and running.

When reading the manual, one should pay particular attention to the Standard universe

that allows to checkpoint jobs (at the cost of specially linking it) and the Java Universe

that allows to run Java jobs seamlessly. We can also add condor to the boot sequence

of our server and clients (just add it to the server as explained in the manual and rerun

“drblpush”). By doing this and setting the DHCP server to allow more machines than what

we currently have and just attribute IPs on a first come first serve basis (as suggested above)

we can easily add machines to the cluster by simply connecting them to one of the subnets

and booting them (if we configured the nodes to start condor at boot time). They will start

condor on their own, connect to the central manager and become available to run jobs in

just a few minutes. We can also shutdown machines and their jobs will continue (on the

Standard Universe) or restart (on the Vanilla Universe) in a different machine. This allows

for a lot of flexibility in managing the system. Also, by starting and stopping the DHCP

server at a give time we can change the booting process for the clients. This is useful for

the student lab full of machines that need to run Windows during the day but that are free

to be added to the cluster at night. In that case, we just modify the boot device sequence

of the clients BIOS to first boot from the network and only then boot from the hard-drive.

If the DHCP server is on, they will boot from it and join the cluster, if not (in the morning

for instance) the attempt to boot from the network will fail and they will simply boot from

the hard-drive. This will allow us to put all those windows machines to good use without

having to change their settings (other than the BIOS and possibly a Scheduler job to have

them boot out of Windows at night).
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