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Abstract

Combinatorial Analysis of Go Endgame Positions
By Jacob A. McMillen

Go is a two player skill game of Chinese origin. Although Go is praised for having a simple
rule set, the game generates tremendous complexity. As such, programmers have been
unable to design Go AI programs that exceed the level of intermediate human players. By
using techniques of combinatorial theory, mathematicians have recently developed methods
of determining optimal play on certain classes of Go positions. It is our goal to present a
survey of these analytic methods. We will first provide an introduction on the rules of Go
as well as relevant concepts of combinatorial game theory. We will then proceed to solve
several categories of small Go positions and finally show how to determine perfect play on
a full size Go endgame by way of partitioning into solvable subgames.
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Chapter 1

Overview

Go is generally considered to be the world’s oldest board game. It is a skill game of

Chinese origin and is thought to have existed as early as 3000-4000 years ago. Go re-

mains an extremely popular game throughout much of East Asia and has experienced

several surges of interest in the West during the past century. A thorough account of

the lengthy history of Go can be found in [13].

Although Go is admired for having very simple and elegant rules, the game is

enormously complex. In fact, the number of legal positions has been estimated to be

2.081681994 ∗ 10170 by Tromp and Farneback [14]. Due to this enormous complexity,

the level of computer Go artificial intelligence programs has lagged far behind that of

many other skill games. In games such as Chess and Checkers, computers can match

or exceed the level of play of the best human players in the world. In contrast to this,

the strongest Go programs can be defeated by an intermediate to advanced amateur.

Due to advances made in combinatorial game theory in the 1980s, there has re-

cently been tremendous progress in the analysis of one particular area of Go strategy,

namely the endgame. In fact, using the mathematical tools that have been developed

allows both computers and mathematicians alike to solve difficult endgame problems

that have stumped the best professional Go players in the world.

It is our goal to provide a comprehensive survey of the mathematics used to analyze

this ancient game. We assume that the reader has familiarity with the fundamentals

of combinatorial game theory. Chapter 2 consists of a brief summary of the material

that is particularly relevant to the study of Go positions. Readers who need additional

background should see Winning Ways for Your Mathematical Plays [2] or Lessons

in Play [1]. In Chapter 3, we analyze many different classes of Go positions by

using combinatorial game theory and learn how this information can allow us to play

optimally, even on very difficult endgame positions. Finally, in Chapter 4, we will
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examine new results and discuss the direction that current Go research is headed. For

readers who are unfamiliar with the game of Go, Appendix A contains a complete

summary of the rules.
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Chapter 2

Combinatorial Games

2.1 What is a Combinatorial Game?

A combinatorial game typically satisfies the following:

1. Two Players - There are two players who alternate moves.

2. Perfect Information - Both players have complete knowledge of the state of the

game and of all previous moves.

3. Deterministic - There are no chance elements such as dice, cards, or spinners.

4. Finite - There are finitely many legal positions and repeated positions are not

allowed.

5. Zero-sum - Under normal play, the first player who cannot move loses.

The term ‘position’ refers to a particular state of the game at some time. For any

given state of the game, there are rules that specify which positions are legal to move

to, and often, a certain starting position is specified.

Formally, a game G, between players Left and Right, is defined inductively as a

pair of sets of games,

G =
{{

GL1, GL2 , . . . , GLm
} ∣

∣

{

GR1 , GR2, . . . , GRn
}}

or simply

G =
{

GL
∣

∣ GR
}

.

If it is Left’s turn, she may move to any game in the set GL, and Right may move to

any game in GR on his turn. The sets GL and GR are called the left and right options

of G respectively.
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In order to illustrate various definitions and concepts, we will now introduce a

simple combinatorial game called Domineering. The game is played on an m × n

chessboard. Upon a player’s turn, he or she lays a single domino on the board so

that it covers two adjacent open squares. Left must place dominoes in a vertical

orientation, and Right must place dominoes in a horizontal orientation. The normal

play convention applies, so the first player who cannot make a legal move is the loser.

The following is an example of a simple Domineering position defined in terms of

its left and right options. Left has two legal moves, whereas Right has three possible

moves.

=
{

,
∣

∣

∣
, ,

}

For notational convenience, braces will be often be omitted from the definitions

of games and |’s will be used to indicate nested games. For example,

{G1 | {G2 | G3}} =
{

G1

∣

∣

∣

∣ G2 | G3

}

.

One highly important fact is stated in the Fundamental Theorem of Combinatorial

Games:

Theorem 1 (Fundamental Theorem of Combinatorial Games) Let G be a game

between Left and Right where Left moves first. Either Left can win by moving first,

or Right can win by moving second, but not both.

Proof: Fix a game G. By reasoning inductively, any opening move on G by Left

would send the game to a position where either

(i) Right can win by playing first, or

(ii) Left can win by playing second.

If there is an opening move that sends the game to a position of type (ii), then Left

can begin with it and force a win. Otherwise all opening moves place the game in a

state where Right can force a win by playing next. This means that Right can force

a win on G by playing second. �

2.2 Algebra of Games

The sum of games G and H is given by

G + H =
{

GL + H, G + HL
∣

∣ GR + H, G + HR
}

.
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We may interpret this as the two games being played side by side. On a player’s

turn, he will choose to play on either G or H , and then make a legal move on that

component.

Using the previous definition allows us to treat a complex game as a sum of simple

games. For example, we may break down the following Domineering endgame position

as follows:

= + +

We may form the negative of a game by reversing the roles of the two players,

−G =
{

−GR
∣

∣ −GL
}

.

For example,

− = .

The difference of G and H is defined as

G − H = G + (−H).

2.3 Comparing Games and Game Equivalence

It will be necessary to define precisely when two games are equivalent, and when one

game is preferable to Left over another. We define G = H if, for any game X, G+X

has the same outcome as H + X under optimal play. To play optimally means that

whichever of the two players can force a win is employing a strategy to do so. Note

that the Fundamental Theorem of Combinatorial Games guarentees that exactly one

of the players will be able to force a win. This definition of equivalence states that G

must behave like H in any sum. In Domineering we would say = since, in

any game sum, they both provide exactly one move to Right.

We will also define G ≥ H if Left prefers G to H . Formally, G ≥ H if, for any

game X, Left wins G + X whenever Left wins H + X. Essentially, we can replace

H by G in any game sum, and Left will have an outcome that is at least as good.

Similarly, we say G ≤ H if, for any game X, Right wins G + X whenever Right wins

H + X.

It is possible to compare fixed games G and H by examining the difference game

G − H . There are four possible outcomes.

1. G > H if G − H is a win for Left
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2. G = H if G − H is a win for the second player

3. G < H if G − H is a win for Right

4. G � H is G − H is a win for the first player

If G = H , then G and H are equivalent games. If G > H , then Left prefers G over

H , and if G < H , then Right prefers G to H . Finally, G � H denotes that G and H

are incomparable.

Suppose we wish to compare the two Domineering positions and . We

would examine the difference game

− = + .

Now if Left moves first, we have

+ → + → + .

If Right moves first, we get

+ → + .

In both cases, Right is unable to move, so Left wins. This shows that > ,

and hence Left prefers over .

2.4 Canonical Forms

For any game G there is a unique smallest game that is equivalent to G. This is

called the canonical form of G. The canonical form of any game can be obtained by

performing two operations on G.

1. Removing Dominated Options

Let

G = {A, B, C, . . . | X, Y, Z, . . .}.

If Left considers option B to be at least as good as A, that is, if B ≥ A, then B

is said to dominate A. In this case, A may be deleted from G without changing

the game so that

G = {B, C, . . . | X, Y, Z, . . .}.
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In a similar fashion, if Y ≤ X in G, then Y dominates X and option X may be

deleted from G. That is

G = {A, B, C, . . . | Y, Z, . . .}.

Consider the following example:

=
{

,
∣

∣

∣
, ,

}

.

Clearly Left’s option dominates her other possible move to since the

former does not leave a move for Right and the latter does. Similarly, Right’s

option is dominated by his other two as well. We would rewrite the game

as follows after removing the dominated options:

=
{

∣

∣

∣
,

}

.

2. Removing Reversible Options

Let

G = {A, B, C, . . . | X, Y, Z, . . .}.

Suppose that Left moves to A, and there is some right option of A, say AR,

that Right prefers to G, that is AR ≤ G. We can then replace option A in

game G with the left options of AR. More formally, if the left options of AR are

{L, M, N, . . .}, then

G = {L, M, N, . . . , B, C, . . . | X, Y, Z, . . .}.

While removing dominated options certainly aligns with one’s common sense, the

process of reversing through options is not quite so clear. In the situation above, Left

knows that if she moves to A, then Right will respond by moving to AR. Left does

not prefer AR to the original position, so she will make the move to A only when she

plans to immediately follow with a move to a left option of AR. Thus it makes sense

to simply replace option A in the original position by the left options of AR. Figure

2.1 and Figure 2.2 show a before and after of this process.

2.5 Values of Games

We would like to assign numerical values to games to show what they are worth to

each player. The most simple case is a game where one player cannot move while the
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G

A

AR

NML

Figure 2.1: A is reversible

G

NML

Figure 2.2: A has been reversed through

other player can move an integer number of times. If G is a game where Left can

move n times, then we say G has value n. Similarly, if G is a game where Right can

move a total of n times, then G has value −n. In Domineering, a 2n×1 region would

allow Left to place n dominoes while giving no moves to Right, so it would have value

n. In a similar fashion, a 1 × 2n region has value −n. In formal notation,

n = {n − 1 | } and

0 = { | }.

Many games are not worth an integer number of moves, so we will need to assign

numbers to non-integer-valued games as well. Consider the position . If Left

moves first, both players get one move. However, if Right moves first, then Left does

not get to move at all. So it seems that this game should have a value between 0 and

-1 since it’s not quite worth a full move to Right but it is clearly better for Right than

for Left. To determine its exact value, we play the following difference of games:

+ − = + + .
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If Left moves first, we get

+ + → + + →

+ + → + + .

Right wins in this case. Now if Right moves first we have

+ + → + + →

+ + → + + .

Left wins here, so we see that the game is always a second player win under optimal

play, and thus + = = −1. Therefore, the value of should be -1/2

since two copies of it are worth 1 move to Right.

For finite games, we need only to use the dyadic rational numbers. That is, we

use only fractions of the form m/2n where m is odd and n is a positive integer. We

define these valued games formally as follows:

For m odd and n ≥ 1,
m

2n
=

{

m − 1

2n

∣

∣

∣

∣

m + 1

2n

}

.

There is also a large class of games with infinitesimal values. These will be de-

fined formally for now and discussed in more detail later in tandem with particular

Go positions. Table 2.1 contains many of these positions.

Below is a summary of how the values of various infinitesimal games compare to one

another.

1. The value * is incomparable with 0, ↑, ↓, �r, and 	r.

2. For n ≥ 2, n · ↑ > ∗.

3. For r1 > r2 > 0 rational, ↑ > �r2
> �r1

> 0 > 	r1
> 	r2

> ↓.

These rules will be highly useful later on when we are computing the value of entire

Go endgames.

Lastly, we define

0n|G =

{

0||0n−1|G if n > 0,

G if n = 0
,

G|0n = −{0n | −G}.
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Symbol Definition Name

* = {0 | 0} star

↑ = {0 | ∗} up

↓ = −↑ down

↑∗ = ↑ + ∗ up-star

= {0, ∗ | 0}

⇑ = ↑ + ↑ double-up� = ↑ + ↑ + ↑ triple-up

n · ↑ = ↑ + ↑ + · · · + ↑ n-up

= {0 | (n − 1)· ↑ ∗}

n · ↑∗ = n · ↑ + ∗ n-up-star

= {0 | (n − 1) · ↑}�G = {0 || 0 | −G}, G > r, r > 0 a number tiny G	G = {G | 0 || 0}, G > r, r > 0 a number miny G

Table 2.1: Some common infinitesimal games

Games of the form {0n | G} will arise often when looking at Go positions. We

make the following basic observations that will be used later.

0n|1 =
1

2n

0n|0 =

{

(n − 1) · ↑ if n is even,

(n − 1) · ↑∗ if n is odd

02| − G = �G if G is greater than some positive number

2.6 Game Trees and Birthdays

Games may be represented in full by a tree. Figure 2.3 shows the tree for 3/4. Moves

made by Left correspond to edges moving to the left, while moves by Right are shown

by edges moving towards the right. Note that we still draw in options that result from

the same player making multiple moves in a row, even though moves would alternate

in actual play. It is a common practice to omit dominated options when drawing the

tree for a game.

The height of game tree is known as that game’s birthday. For example, 3/4 has a

birthday of 3, and we would say that 3/4 is born on day 3. Formally, the birthday of

a game G =
{

GL
∣

∣ GR
}

, with GL, GR not both empty, is 1 more than the maximum



11

3
4 =

{

1
2 |1

}

1
2 = {0|1}

0 1

0

1 = {0|}

0

Figure 2.3: Game tree of 3/4

birthday of all the games in GL ∪ GR. The birthday of the game {| } is 0.

2.7 The Simplest Number and Number Avoidance

Suppose we have a game G that is not in canonical form. It is still possible to

determine if G is a number. Given numbers xL < xR, we define the simplest number

x between xL and xR as follows:

1. If there are one or more integers between xL and xR, then x is the one with the

smallest absolute value.

2. If not, then x is the number of the form i
2j between xL and xR that minimizes

j.

Finding the simplest number between two numbers is akin to finding the longest

mark between two points on a ruler. By using this idea, we may find the number

value for a game G in non-canonical form by means of Theorem 2.

Theorem 2 Let G be a game whose options are all numbers and all GL < GR. Then

G is the simplest number x that satisfies GL < x < GR.

Proof: Let G be a game whose options are all numbers with all GL < GR, and let

x be the simplest number such that GL < x < GR. To prove G = x we show that

the game x − G is a second player win. Without loss of generality we may assume

that Left moves first. There are two possibilities. If Left moves to x − GR, then this

game is negative, and hence is a win for Right since x < GR by assumption. For the



12

other case, if Left moves to the game xL − G, then Right may respond with a move

to xL −GL. Now suppose that xL > GL. Then xL is simpler than x but also satisfies

GL < xL < GR, contradicting our choice of x as the simplest number between GL

and GR. Thus xL−GL is non-positive and is a win for Right, hence x−G is a second

player win. �

One important fact is that if x is a number and G is not, then the optimal move

in the game G+x is to play on G. This is stated formally in Theorem 3, the Number

Avoidance Theorem.

Theorem 3 (Number Avoidance Theorem) Let G be a game that is not a num-

ber, and let x be a number. Then, optimal play on the game G+x is given by moving

on G.

Proof: Assume that the game x is in canonical form. We can equivalently say that if

some G + xL ≥ 0, then some GL + x ≥ 0. Let’s suppose that G + xL ≥ 0. G is not a

number, thus it follows that G + xL > 0. In this case Left will win if she moves first

on G + xL. Then, by reasoning inductively, we have GL + xL ≥ 0. Since we must

have x > xL, it follows that GL + x ≥ 0. �

2.8 Incentives of a Game

Incentives are used to show how much a game is worth to a player. The left incentives

of a game G are the elements of

∆L{G} = GL − G

= {H − G : H ∈ GL}.

The right incentives of G are

∆R{G} = G − GR

= {G − H : H ∈ GR}.

The incentives of G, denoted ∆{G}, are the elements of the union of the left and

right incentives of G. That is,

∆{G} = ∆L{G} ∪ ∆R{G}.

Incentives are defined in such a way that both players would prefer positive num-

bers instead of Right preferring negative. It is worth noting that the incentive for
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either player to move on a number m/2n (with m odd) is −1/2n. This shows neither

player would like to move on a number.

2.9 Stops of Games

Suppose two players are playing a game, and a number is reached. At this point,

neither player wishes to move, and the outcome of the game is known. It makes sense

for the players to stop at this point. Left would like the value of the stopped game

to be as large as possible, and Right would like it to be as small as possible. If Left

moves first, the value of the stopping position that is reached under optimal play

is called the left stop of the original position, denoted LS(G). The value reached if

Right moves first is called the right stop, denoted RS(G). They are defined together

by

LS(G) =

{

G if G is a number,

max(RS(GL)) if G is not a number,

RS(G) =

{

G if G is a number,

max(LS(GR)) if G is not a number.

Although the standard play convention for combinatorial games does not involve a

score, the concept of stops gives rise to a natural scoring system where the number of

points received from a game is simply the value of its stop. This idea is of particular

importance to us since Go employs a scoring system in which both players wish to

maximize the number of points they have.

2.10 Cooling

All games can be classified as either hot, cold, or tepid. A game G is hot if LS(G) >

RS(G). A game is cold if it is a number. A game is tepid if it differs from a number

by a non-zero infinitesimal. Both players would like to move first on a hot game,

while neither player wishes to move on a cold game. A hot game can be made cold

by the process of cooling, which makes the players pay a tax for the right to move

first. For a game G =
{

GL
∣

∣ GR
}

, we define Gt, the game G cooled by t, as

Gt =
{

GL
t − t

∣

∣ GR
t + t

}
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unless there is some value τ < t, so that Gτ is infinitesimally close to a number m. If

this happens, then

Gt = m.

If the tax t on moving is made sufficiently large, then neither player wants to move,

and the game is said to be frozen. (This occurs when Gt is infinitesimally close to a

number m as above.) We say that m is the mean of G, and this can be thought of

as the fair value for the game G independent of who gets to move first. The smallest

value t such that Gt is frozen is called the temperature of G, and we say that G freezes

to Gt. Conway proved that cooling is linear and order preserving in ONAG [4]. In

particular, the following properties hold for games G, H and t ≥ 0:

1. Gt + Ht = (G + H)t

2. G ≥ H ⇒ Gt ≥ Ht

3. mean(G + H) = mean(G) + mean(H)

4. temp(G + H) ≤ max{temp(G), temp(H)}.

The process of cooling as well as reversing it are quite complex and have numerous

applications to combinatorial games. For a more general treatment of the topic refer

to [2].

2.11 Warming

In general, cooling is a many-to-one function, and as such, has no inverse. However,

the process of cooling a game of Go by a value of 1 does have an inverse, which is

known as warming. Let G =
{

GL
∣

∣ GR
}

be a game. We define the operation of

warming G, denoted
∫

G, by

∫

G =











G if G is an even integer,

G∗ if G is an odd integer,
{

1 +
∫

GL
∣

∣ −1 +
∫

GR
}

otherwise.

We will demonstrate that warming is in fact the inverse of cooling by 1 point. That

is, we will show that G =
∫

G1 where G1 is the result of chilling G by 1. This result,

as well as the strategy we use for the proof, are due to Berlekamp and Wolfe in [3].

This proof will first require some additional terminology.
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We say that a Go position is even (or odd) if the sum of the number of empty

intersections and number of prisoners captured is even (or odd). These parities behave

as expected in that the sum of two even (or two odd) games is even, and the sum of

one even game and one odd game is odd. Additionally, the parity alternates during

play. We say that a Go position is elementary if, when it is completely played out,

every point on the board either contains a stone or is territory for one of the players.

To use Go terminology, a position is elementary if it contains no kos or sekis. For the

rest of the section, we let G be an even elementary Go position that is in canonical

form.

In order to aid us in our proof that warming inverts cooling by one point, we will

introduce a new function, f(G) which is said to chill the game G. It is defined by

f(G) =

{

n if G has form n or n∗,

{f(GL) − 1|f(GR) + 1} otherwise.

Note that applying f is the same as cooling by one point except that we ignore the

case when Gτ is a number for some τ < 1.

Lemma 1 Either G is of the form n or n∗ with n an integer, or LS(G) > RS(G).

Proof: Suppose that LS(G) = n = RS(G). If n is even, then consider the difference

game G − n. Neither player will play on n due to the Number Avoidance Theorem.

Since G is even by assumption, it will take an even number of moves on G − n to

reach n − n. Thus G − n is a second player win and G = n.

If n is odd, then consider G − n∗. Given the choice, Left will always play on G,

since allowing two consecutive moves by Right on G will cause the stop to be n or

less. The second player can then win by always playing on G until it becomes n. This

will take an odd number of moves, leaving Left to move on n∗, which brings the game

to n − n. Thus, G = n∗.

The same argument applies to even subpositions of G, and a similar argument

holds when considering odd subpositions of G. �

Lemma 2 G =
∫

f(G).

Proof: If G is of the form n or n∗, then the result follows directly from the definitions

of chilling and warming. If not, we wish to show that G is in canonical form, and

hence warming will invert chilling.

To show that G has no dominated option, suppose for contradiction that G has

two left options GL1 and GL2 such that f(GL1) ≥ f(GL2). Lemma 1 asserts that
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the left stops of GL1 and GL2 exceed their right stops. Since this is the case, to play

optimally on GL1 −GL2 neither player will play on a leaf position of n or n∗ until the

games are settled. We want to find a winning strategy for Left on the game GL1−GL2 .

Suppose that we are playing the game f(GL1)− f(GL2) and that it takes an even

number of moves to reach a stop. In this case, any 1-point adjustments resulting from

applying the function f cancel out. Also, since G is an even position, if G = 0, then

the corresponding stopping position in GL1 − GL2 is 0. Thus GL1 − GL2 ≥ 0 and we

get a Left win.

Assume, on the other hand, that it takes an odd number of moves to reach a stop.

Since f(GL1)− f(GL2) is a win for Left, then the stopping position has to be at least

1. If it is 1 and we look at the corresponding stopping position in GL1 − GL2 , the

value is ∗, so Left can make the final move and win. If the value of f(GL1)− f(GL2)

is greater than 1, Left can only do better.

In both cases, we have a win for Left, so GL1 − GL2 ≥ 0. Thus, we conclude that

f(G) has no dominated options. We can use a parallel argument to demonstrate that

f(G) also is free of reversible options. It follows that f(G) is in canonical form and

that warming inverts chilling.

Lemma 3 If the mean of G is i/2j where i is odd, then the temperature of G is at

least 1 − 1/2j.

Proof: First, consider the game tree of a game H and take H ′ to be any subtree of

H . The distance from the mean value of H ′ to any of its left or right stops cannot

exceed the temperature of H ′. From this, we can conclude that if H is a game whose

stopping positions are multiples of 2t, with t = 1/2i, then the temperature of H is

either zero or is at least t. We can also say that the stopping positions of Ht are

multiples of t.

To prove the lemma, we apply this idea repeatedly. We begin by cooling G by

1/2, then by 1/4, and so forth. We end this process when we cool G by 1/2i. �

Lemma 4 f(G) = G1.

Proof: Suppose that the statement does not hold for some G, and choose G to be a

counterexample with a tree of minimal depth. We will show that the game f(G)−G1

is a second player win. By our choice of G, any follower of G will satisfy f(G) = G1.

Additionally, the temperature t of G will be less than 1. Now, let G1 = i/2j with i

odd. From the previous lemma, it follows that t ≥ 1 − i/2j . There must be some
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left option in Gt that has a right stop of i/2j . Consider the corresponding stopping

positions in f(G). They are either i/2j with Right moving last or at least (i − 1)/2j

with Left moving last. Thus if Right moves on the game f(G)−G1 to f(G)−(i−1)/2j,

Left has a winning response. Since Left’s options in f(G) are no better than those in

G1, we have f(G) = G1. �

Theorem 4
∫

G1 = G.

Proof: The result is immediate from Lemmas 2 and 4. �

Corollary 1 Cooling by one point and warming are inverses up to a dame (neutral

point) in elementary Go positions. That is,

∫

G1 = G or

∫

G1 = G ∗ .

Proof: If G is an even position, then we simply apply the theorem. If G is odd, then

G + ∗ is even. Now, since {GL|GR}∗ = {GL ∗ |GR∗} in games with unequal left and

right stops, we have that
∫

G1 =

∫

(G + ∗)1 = G ∗ . �
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Chapter 3

Analyzing Go Positions

The endgame of a game of Go can be treated as a sum of numerous subgames, each

of which is hot (both players wish to move first). In Figure 3.1, we see an endgame

that we would like to evaluate.

Figure 3.1: A typical Go endgame

We begin by setting aside all territory that is under control (completely surrounded

by one color). We then partition the game by sectioning off each unresolved subgame

and determining the value of each. This will allow us to determine who will win the

game and the order in which moves should be played. This chapter will provide these

values for a variety of common small positions. We will then use a technique called

thermography to determine precisely how to play optimally on these complex sums

of hot subgames.
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3.1 Chilling and Marking

Before we attempt to compute the values of small games we must first discuss a few

basic conventions and definitions. It is standard that Black is the Left player, and

White is the Right player. In any Go diagram, stones that are connected to a line

that runs off the diagram cannot ever be captured and are said to be immortal.

Black and white markings are drawn on the vertices of a diagram to denote that

a certain integer number of points is being given to each player. A black or white dot

indicates that a single point is being subtracted from the player of that color. The

markings are generally applied in such a way that the value of an area is kept close

to zero.

Chilling is used in conjunction with marking to simplify many results. We denote

that a Go position has been chilled by either clipping around the outside edges of the

diagram or by outlining and shading the chilled region. Recall that chilling involves

placing a single point tax on each move. If we enforce this 1-point tax we refer to this

as playing the chilled game. When playing the chilled game, we follow the rule that

every time a player moves, they must add a marking of their color or remove one of

the opponent’s color. This corresponds to paying the tax for the move. Figure 3.2

shows the endgame from Figure 3.1 after it has been chilled and marked.

A

B

C

D

E E

F

G

A

B

C

A

BB

C

D

C

D

E

D

E E

F

G

Figure 3.2: Endgame after marking and partitioning

The issue of which player gets to move next is highly important in the game of

Go. There is a distinction between moves that keep initiative and moves that do not.

Some moves make an overwhelming threat that would be disastrous if not answered

immediately. The moves that require the opponent to make an immediate reply and

thereby keep the initiative are called sente moves, while those that do not require an

immediate local response are called gote moves.
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3.2 Blocked and Unblocked Corridors

The first small positions we will analyze are called blocked corridors and unblocked

corridors. In blocked corridors, the opponent threatens to invade the territory from

just one end, and in unblocked corridors, an invasion is threatened at both ends.

Table 3.1 shows these two types of positions for length n ≤ 5.

Length n Blocked Unblocked

n = 1

n = 2

n = 3

n = 4

n = 5

Table 3.1: Blocked and unblocked corridors

We may calculate the chilled, marked value of these positions by means of the

following theorem and corollary.

Theorem 5 A chilled blocked corridor of length n ≥ 1 having n − 2 markings has a

value of 21−n.

Proof: We proceed by induction on the length n of the corridor. When n = 1 we

have

= {0|2} = 1 = 21−1

so the formula holds. Then a corridor of length n ≥ 2 is equal to {0|22−n} = 21−n.

Below, we illustrate the case when n = 5.

=

{
∣

∣

∣

∣

∣

}

=
{

0
∣

∣ 21−(n−1)
}

= 21−n

Thus the formula holds for all n. �

Corollary 2 A chilled unblocked corridor of length n ≥ 2 having n− 4 markings has

a value of 23−n.
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Proof: The two open points on either end of an unblocked corridor are equally good

moves due to symmetry. We may assume that if White invades at one end, then

Black will block the other. Thus an unblocked corridor of length n is equivalent to

a blocked corridor of length n − 2. We then apply the previous theorem to compute

the desired value. �

With these results we may now calculate the value of Figure 3.2. The value of

each region is found using our formulas and then summed along with the marked

points to get the total value of the game. We have

A = 1/4 E = 1

B = −1/2 F = 1/2

C = 1/2 G = −1/2.

D = −1/2

Both Black and White have 7 marked points, so the sum of this game is 7 − 7 + 1
4
−

1
2

+ 1
2
− 1

2
+ 1 + 1

2
− 1

2
= 3

4
. Thus, if Black moves first, the 3/4 is rounded up and she

wins by 1 point. If White moves first, the 3/4 is rounded down and the game is a tie.

Now that we know what the score should be under optimal play, our final task

is to determine in what order the various subgames should be played on. To do

this we simply compute the incentives of each subgame. The computation involves

finding how much a player stands to lose by not moving on a particular game, so we

simply subtract the value of the position where the opponent has been allowed to

make one move from the value of the original position. Once we have the incentives,

the remaining subgame with the highest incentive is always played on first. Table 3.2

shows the incentives for blocked and unblocked corridors. It is clear that if an endgame

consists only of corridors, then it is ideal to move on the longest corridor first.

3.3 Ups, Downs, and Stars

We need not look very hard to discover small positions whose values cannot be given

by numbers. They will require us to use infinitesimals such as ↑, ↓ and ∗. Consider

the position

.

When we attempt to find its value by playing the chilled game we get
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Blocked Unblocked Value Incentive

2

1 1 − 2 = −1

1
2

1
2 − 1 = −1

2

1
4

1
4 − 1

2 = −1
4

1
8

1
8 − 1

4 = −1
8

1
16

1
16 − 1

8 = − 1
16

Table 3.2: Incentives of corridors

=

{
∣

∣

∣

∣

∣

}

= {0|0}

= ∗.

Here, Black gets 2 points in the unchilled, unmarked game, but these are lost due to

the chilling yielding the 0 game. Similarly, White saves his stone from capture, but

this point is taxed away leaving 0. So, this chilled and marked position is equal to ∗.

To compute sums of games involving ∗ we use the simple observation that ∗+ ∗ = 0.

Since ∗ is incomparable with 0, we must address this when we are looking at the game

sums. Suppose we have a game of Go where the sum of all the subgames is 11
8
∗. Since

11
8
∗ > 0, this would be rounded as before with Black winning by two points if she

moves first and Black winning by one point if she moves second. But since ∗ � 0, in

the case of a game value of 1∗, we would round * to 1 if Black moves first and round

* to -1 if White moves first. Thus the game 1∗ is a win for Black by two points if she

moves first, but a tie if White moves first.

If we look at longer corridors with stranded pieces inside, we will need even more

infinitesimal values. For example,

= {0|∗} =↑ .

To compute game sums containing ↑ or ↓, we use the rules that ↑ is incomparable

with ∗ and ↑> 0. Since ↑= − ↓ switching the black and white stones in the above
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position will give us a game with value ↓. Recall that although ↑ is infinitesimal like

∗, we have that ↑> 0. So for a game that sums to 1 ↑, Black would win by two points

moving first and by one point moving second. But since ↑ ∗ is incomparable with 0,

Black would win the game 1 ↑ ∗ by two points moving first and tie if White moves

first. Table 3.3 summarizes the values for positions of this type.

Length Position Value Black Incentive White Incentive

n = 2 ∗ ∗ ∗

n = 3 ↑ ↓ ↑∗

n = 4 ⇑∗ ⇓∗ ↑∗

n = 5 � � ↑∗

Table 3.3: Values of stars and ups

3.4 Tinies and Minies

The next class of small positions we will examine are very similar to those giving

rise to ups, downs, and stars with the difference that there will be multiple stones in

danger of capture. Consider the position below.

=

{
∣

∣

∣

∣

∣

}

=
{

0
∣

∣

∣

∣ 0 | −2
}

This is precisely the game �2. The general rule here is that if after one move White

is threatening to make an n point gote play (one that does not need to be responded

to by Black), then the game has value �n−2. This result is summed up formally in

the following theorem whose proof we omit.

Theorem 6 A chilled corridor of length n that has x + n − 1 markings and results

in an x point gote play has a value of 0n+1|2 − x.

If we switch the black and white stones in �x, then we get the position 	x. Recall

that if x > 0, then �x is a positive infinitesimal that is less than ↑= �0. In general,

if x > y then �x is infinitesimal with respect to �y.



24

3.5 Sums of Hot Games

Sums of games involving tinies and minies with different subscripts quickly become

too cumbersome to compute. In these cases it is best not to try to find the exact value

of a game, but rather focus on how to win independent of this knowledge. If Black

has a winning strategy, then she can play well enough to force a win by following the

guidelines given below.

1. First, form pairs of any infinitesimal games that are negatives of each other.

These positions can be ignored. If White plays on one of these positions, then

Black would simply answer by playing on its negative.

2. Next, long corridors should be invaded and attacks on �’s should be defended

against. If 0 < x < y, Table 3.4 shows the order in which these positions should

be played on. Moves that are higher up on the table should be played on first.

3. Any remaining infinitesimals should either be positive or ∗’s. If there are an odd

number of ∗’s, then the best play is to move on one of them. If there are an even

number of ∗’s, then any positive infinitesimal may be played upon. Table 3.5

summarizes the positions and play order.

4. At this point there should be only number values left, thus play is easily de-

termined from their incentives. As before, the longest corridors are worth the

most. Equivalently, the remaining number with the largest denominator should

be played first. Once all numbers are resolved, any dame are played. Table 3.6

summarizes this step.

The full proof that following these steps provides a win is given by David Moews

[8]. The proof contains a classification of the different possible sums of winning

positions and then uses induction to show that the moves provided above are good

enough for Black to win. In addition, Moews extends this result to include sums of

games of the form {x|0n}m.

3.6 Rooms

Our next task is to analyze small subgames that are more complex than the simple

corridors we have seen thus far. We examine invasions of small territories that are

in the middle of the board. These positions are referred to as rooms. Due to the

large number of various rooms that may arise in endgame play, we will not show the
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	y

{y|0}

{0| − y}	x

{x|0}

{0| − x}	x|0	x|0
2	x|0
3

...
...	y|0	y|0

2	y|0
3

...
...

↓

⇓∗�
...

...

Table 3.4: Optimal play order
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or ∗ (possibly)

↑

⇑∗�
...

...

or or�x

0|�x

02|�x

...
...

Table 3.5: Optimal play order continued

...
...

1
4

−1
4

1
2

−1
2

0

Table 3.6: Optimal play order continued
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computations involved in computing the values of each. Instead, we will provide a

catalog of these small positions and their values.

It will be useful to now introduce the ko at this point since it may arise in some

of the possible rooms. Even though the rules prevent the entire Go board from ever

repeating a position, it is possible that a subgame could repeat locally. For more

information on ko rules, see Appendix A.4. We define the basic, single-point ko

positions as follows: � =�� = .

Because of the loopy nature of the ko position, the game tree, shown in Figure 3.3,

is somewhat unique.

1 + ��
1

�
0

Figure 3.3: Game tree of simple ko

In order to be able to easily look up a position, we associate a grid of numbers

with each room. For a given position, we examine the graph consisting of the empty

vertices. The number of vertices in the graph that are at distance i from the invading

stone and with degree j is put in the ith row and jth position from the right. Rooms

are then listed in our catalog lexicographically by their number grids. While it is

possible for different rooms to have the same number grid, this method sufficiently

simplifies the task of locating a given room. To better understand this method,

consider the following example:

e

e d f

b c

a

11

1100

12
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Of the vertices that are distance 1 from the invading stone, one has degree 1 (at

a) and one has degree 2 (at b). Thus the first row of our grid is 11. Of the vertices

with distance 2 from the invading stone, one has degree 3 (at c) and one has degree

4 (at d) giving us 1100 as the second row of our grid. Finally, of vertices at distance

3, two have degree 1 (at e) and one has degree 2 (at f), so the final row of the grid

is 12.

Table 3.7 shows all rooms having 3, 4, or 5 empty vertices enclosed. The value

given is the chilled, marked value of the corresponding room.

0 −1
4

1
2

1
2 |0

2 11 2 101

10 11 100 12

1

0 1
2

1
8 |0

3
8

20 12 11 11

12 20 110 101

10 1

1
2∗ ∗ 1

4

11 2 2

20 1000 100

1 2 10

1

Table 3.7: Rooms with 3, 4, and 5 vertices

3.7 Multiple Invasions

The last situation that we wish to investigate is that of an unconnected group that

is simultaneously threatening to invade enemy territory at multiple points. Consider

the situation in Figure 3.4.
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x

A

B

C CC C

B

A

Figure 3.4: Multiple invasions by white group on left

Here, the white group invading on the left is not connected as it is in the marked

position on the right diagram. This potential point of connection is refered to as a

socket. In order to compute the value of the whole position, it is necessary to compute

the value for each one of the corridors. The values of the corridors are then added

together, and we determine the total value of the game as follows:

1. If the sum is greater than or equal to 1, then this is the actual value of the

position.

2. If the sum is less than 1 and there is an unblocked corridor with value m then

the shortest unblocked corridor has value m/2, and other unblocked corridors

are unaffected. The value of any blocked corridors is altered as well and now

has value bm/2, where b was the previous value.

3. If the sum is less than 1 and there is no unblocked corridor, then the value of

the position has the form 	x|0
n where n is one less than the number of blocked

corridors being invaded. The value x hinges on the size of the invading group.

3.8 Example Endgame

Now we will apply the results given so far in this chapter to actual Go endgames.

As before, we will partition each endgame position into simple subgames, determine

the value of the subgames, and finally identify the best move based on these values.

We will assume that Black is to play next. We begin be analyzing the 13 × 13 game

shown in Figure 3.5.

Note that we have multiple invasions by the unconnected black group on the top

left and by the white group on the bottom right. We will need to apply the techniques



30

Figure 3.5: Example endgame 1

from Section 3.7 accordingly. Figure 3.6 shows the game after chilling and marking.

The Black invading group borders on the six blocked corridors A=-1/4, C=-1/8,

D=-1/4, E=-1/4, F=-1/2, and G=-1/16. The absolute value of the sum of these is

23/16, which exceeds 1. In this case, the values of these positions are unchanged.

The White invading group on the left connects to B=1/8, H=1/2, and I=1/8. Since

the sum is less than 1, the shortest unblocked corridor at H becomes 1/2
2

= 1/4, I

stays unchanged, and B becomes 1/8*1/4=1/32. We summarize the values below.

A = −1/4 D = −1/4 G = −1/16

B = 1/32 E = −1/4 H = 1/4

C = −1/8 F = −1/2 I = 1/8

By combining these values with the 12 marked black points and 12 marked white

points, we find the sum of the game to be 12− 12− 1/4 + 1/32− 1/8 − 1/4− 1/4 −

1/2− 1/16 + 1/4 + 1/8 = −1/32. Thus, if Black moves first, the -1/32 is rounded up

to 0 and the game is a tie. Since there are only number values, the best play is on the

number with the highest incentive. Hence the optimal move is to block the corridor

at I.

We now turn our attention to the full-size 19 × 19 game in Figure 3.7. After

chilling and marking, the game appears as shown in Figure 3.8.

Many of the subgames here are familiar and easily dealt with, but there are a

couple situations which require special attention. The position in area B is new to

us, so we compute its value.
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C A

D E E

B

F

G

H H

I I

A

E

B

C

D

A

E E

F

G

H H

I I

Figure 3.6: Example endgame 1 chilled

Figure 3.7: Example endgame 2
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A B

C H

D G

I E F

L M

J K

N O

P

Q

S

T

U V
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Y Y a

A B
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D

E F

G

H

I
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Figure 3.8: Example endgame 2 chilled
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Using this fact, we can also compute the value of region R. We have
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We have not previously encountered positions X or Y, so we now turn our attention

to them. We first want to verify that the two regions are independent of one another.

A check reveals that none of the stones that we treated as immortal can be captured

during the course of play and that reversible options in both the regions still apply.

For region Y, we have

≥ .
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This means that moves by both Black and White will reverse. Thus

=

{
∣

∣

∣

∣

}

= {0|0} = ∗.

Similarly, in position X we have

=

{{
∣

∣

∣

∣

}
∣

∣

∣

∣

}

= {∗|0} = ↓.

We now have values for all of the subgames, which we summarize below.

A = ↓ J = −1/4 S = ∗

B = ↓ K = ⇑∗ T = ⇓∗

C = 1/2 L = 1/2 U = ∗

D = ∗ M = −1/4 V = −1/4

E = ↓ N = ∗ W = −1/2

F = ↓ O = −1/4 X = ↓

G = ∗ P = ↑ Y = ∗

H = � Q = 1/4 Z = 1/4

I = −1/4 R = ⇑∗ a = 1/4

The sum of the subgames is ↑∗. So, Black can win by moving first. Since there are

no minies, the best move is to play on ⇓∗ in region T.
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Chapter 4

Current and Future Research

We will now examine some potential further applications of the techniques covered in

Chapter 3. For example, the methods we have discussed so far are directly applicable

only to endgame positions. It would be natural to attempt to use these techniques

in order to simplify positions that occur earlier in the game as well. There are

also situations we have not fully examined, such as ko, that can arise in endgames

and which can be analyzed by extending previous results. In addition to discussing

situations such as these, we will look at the results given in some recent papers.

4.1 Ko Positions

We have avoided a full treatment of ko positions thus far because we have wished to

treat Go as a finite game. Allowing for kos means that Go positions can potentially

repeat locally in a particular subgame we are examining. Thus the subgames we are

analyzing may become become loopy (non-finite) games. Fortunately, we can modify

our techniques to include simple repeated positions without losing too much. As in

Chapter 3, we define the basic, single-point ko positions below.� =�� =

If we assume that Left can never win the ko, then we get ∗ ≤ �. On the other

hand, if we assume that Left can always win the ko, then we have � ≤ {1∗ | 0}. By

chilling and combining these results we get the following bound on the chilled value

of a single point ko:

0 ≤�1 ≤ 1/2.
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Thus the maximum incentive to move on a single point ko is
∫

−1/2, and it follows

that the only worse move is to play on a dame. As such, kos have little value and will

not be resolved until after other positions in the endgame.

If we wish to include more complex kos in addition to the single point positions,

we require extensive alterations to our techniques. In general, complex kos are not

contained locally in a single small subgame. Thus when analyzing a complex ko, it is

not reasonable to treat a Go board as a sum of games, and this tends to undermine

the entire analytic process we have been using.

4.2 Life and Death Problems

One of the most important game play elements in Go is that groups of stones can

be made invulnerable to capture if they are given certain structural characteristics.

In general, if a single group contains two or more separate enclosed vertices, called

eyes, then the group cannot be captured. On the other hand, if a group has fewer

than two eyes, then it is still vulnerable to capture later in the game. For additional

information, consult Appendix A.5.

Life and death problems involve the issue of judging whether a particular group

has the potential to form two eyes or not. It is also important to determine how a

player can create said eyes or how his opponent can prevent him from doing so. Life

and death problems generally arise in the midgame and thus we are not able to apply

our endgame analysis techniques directly. However, since life and death problems

fundamentally involve counting, we are still able to apply combinatorial game theory

to them.

Howard Landman looks at the values of eyes in [6]. Landman examined this issue

by attempting to determine which game-theoretic values can possibly occur in life

and death situations. In order to simplify matters, a modified rule set is used where

the number of points a player receives is equal to the number of eyes that she forms.

Single group positions in this game are then cataloged, and their values are computed.

Landman also investigated life and death problems that involve two or more groups

and discovered that the theory quickly grows more complex.

4.3 Hardness Problems

There have recently been numerous investigations into the hardness of various classes

of Go positions. We provide a very brief list of some of the major results. Lichtenstein
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and Sipser [7] first proved that Go is PSPACE-hard, and Robson [12] later showed it

to be EXPTIME-complete under the standard Japanese rules. Most recently, Wolfe

[15] used a series of reductions to demonstrate that Go endgames are PSPACE-hard.

Here, we are defining Go endgames to be those in which any local area where play

may occur on the board has a game tree of polynomial size, and each such area is

isolated from other areas by live stones.

4.4 Computer Go

Naturally, programmers would like to incorporate the new endgame analyzation tech-

niques into Go AI programs. Muller and Gasser discuss their work in this area in [9].

They used the techniques that we described in Chapter 3, as well as extensions to

include kos, to write a computer program called Explorer which determines optimal

play on a certain class of endgames.

The program works by first partitioning a board into safe areas (those requiring

no further play), and endgame areas (those that have not been fully settled). Once

this is accomplished, the game tree of each endgame area is determined, and they are

subsequently converted to mathematical games and simplified. Finally, the game is

calculated as a sum of these various endgames, and the optimal move is determined

using our mathematical techniques.

Muller and Gasser wish to extend their program to play a larger number of

endgames and also offer several ideas as to how an endgame algorithm could do

so. Some possibilities include relaxing the requirements for a subgame to be consid-

ered ‘safe’ or trying to simply determine how to play for a win on a given endgame

rather than play optimally.
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Appendix A

Rules of Go

A.1 Overview

The game of Go is played between two players, Black and White, on a 19x19 square

grid of intersecting lines. Play begins with Black, and players alternate turns there-

after. Upon a player’s turn, he places a stone of his color on an open vertex of the

board. Once a stone is placed, it does not move unless the stone is captured, in which

case it is removed from the board and kept as a prisoner. The main goal of the game

is to control the most territory on the board as possible by surrounding it with one’s

own stones.

A.2 Capturing

Multiple stones that are connected via adjacent vertices function as a single unit

called a chain. Every open intersection that is adjacent to a chain is called a liberty

of that chain. It is possible for a player to capture an opponent’s chain by occupying

all of its liberties with his own pieces. In Figure A.1, Black can capture each of the

white pieces or chains by playing on any of the marked vertices.

White can temporarily avoid capture by playing in the same vertices, thereby

raising the number of liberties of the corresponding chains. Any pieces belonging to

a chain that is captured are removed from the board and kept as prisoners.

A.3 Suicides

It is forbidden for either player to place a stone such that the resulting chain would

have no liberties. Black cannot play in any of the marked positions in Figure A.2.
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x

x

x

Figure A.1: Black may capture white

x

x

x

Figure A.2: Moves at x are forbidden

However, if a player places a stone that would result in capturing one or more of

his opponent’s pieces, then that capture takes precedence. The captured pieces are

removed from the board first, and afterwards the piece just played must have at least

one liberty. It is legal for Black to play on the marked vertex in each of the situations

shown in Figure A.3.

x

x

x

Figure A.3: Moves at x are allowed
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A.4 The Rule of Ko

Consider the positions in Figure A.4. If Black were to capture a white stone by playing

at any of the marked locations, then White would be in a position to immediately

recapture, and an endless loop could ensue.

x

x

x

Figure A.4: Basic ko positions

The rule of ko exists in order to avoid these situations. It states that no player may

make a move that would make the board look identical to any state it has previously

been in during the game. This ensures that if a single stone is captured and the

capturing stone could be recaptured on the following move, the player whose stone

was captured must play elsewhere before recapturing the capturing stone.

A.5 Life and Death

Any group in play can be classified as either alive or dead. In order to understand

this, it is first necessary to discuss the concept of an eye. An eye is a single point

surrounded by a chain. A chain with an eye is difficult to capture since every other

liberty of the chain must be occupied before the eye can be played in. In Figure A.5,

the black group has an eye. Thus, it must be completely surrounded on the outside

by white stones as shown before White can strike the final blow by playing in the eye.

A chain that has two or more eyes such as that in Figure A.6 cannot ever be

captured. Even if all other liberties of a chain are occupied, none of the eyes can be

occupied, since playing in any of them individually would be a suicide.

A group that has two or more eyes or has the potential to form them is said to be

alive while a group that cannot form two eyes is said to be dead.
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Figure A.5: Black has one eye

Figure A.6: Black is alive

A.6 Seki

There is one case in which a group can fail to have two eyes and still be immune to

capture. This is known as seki and is seen in Figure A.7.

x

x

Figure A.7: Stones in seki

Observe that if Black plays either of the marked points, then White responds by

capturing the inner Black chain on the following move. However, if White plays either

of the marked points, then Black will capture the entire White chain on the next turn.

In the case of seki, the stones are not dead, and the territory enclosed is not given to
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either player.

A.7 The Endgame and Scoring

On each turn, a player has the option of placing a stone or passing. A player would

pass when there is nothing left to be gained by moving. The game of Go ends when

both players pass consecutively. Once the game ends, scoring is performed as follows:

1. Any neutral points on the board that are not surrounded by either player are

filled in with stones of either color. These neutral points are called dame by Go

players.

2. All dead stones are removed from the board and treated as prisoners.

3. Each empty intersection that is surrounded by a living group of one player’s

stones counts as a point for that player.

4. Each player’s total score is the sum of the number of points of territory that he

controls and the number of prisoners that he has captured.
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