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Abstract

Bayesian Analysis for Repeated Compositional Data and

Approaches for Correcting Measurement Errors in General

Multivariate Linear Model

By

Tielin Qin

Compositional data can be viewed as the positive vectors whose components are
the proportion or percentage of whole. In this dissertation, we are motivated by the
need to examine the different subpopulation of white blood cells in the Protective
Immunity Project (PIP) study conducted at the Emory Transplant Center. The first
research question is how to modeling the white cell compositions over time. The data
obtained from this study is the compositional data with repeated measurements. We
develop a Bayesian approach for the analysis of the repeat-measured compositional
data. Our results have been demonstrated that the Bayesian methodology can be
used to analyzed repeat-measured compositional data. We use MCMC for model
inference and show that the method is practical in high dimensional problems.

Another research question motivated from the PIP study is how to get the correct
estimates when the measurement errors exist on the total cell count data. In the
medical studies, some variables of interest are difficult to obtain, and surrogate vari-
ables are used instead. However, these surrogate variables may contain measurement
errors. We propose the likelihood-based estimators for general multivariate linear
model when the non-linear measurement errors exist in the response variables. The
observed response variables are related to the true values through a non-linear re-
gression model, and the parameters in the measurement error model are estimated
by using independent, external calibration data. The pseudo-MLE is used for model
inference to avoid computational problems. Our proposed models provide a tool to
correct for measurement errors in response variables in longitudinal data.

Finally, we propose a Bayesian approach for correcting the measurement error in
the general multivariate linear model when the non-linear measurement errors exist in
the response variables. We outline how the estimations of the parameters of interest
can be carried out in a Bayesian framework using Gibbs sampling and Metropolis
Algorithm. In the Bayesian approach, we impute the values of the unobservable
variable Y by sampling from their conditional distribution given all the observed
data and other parameters. Therefore, using Bayesian approach can avoid numerical
integrations which may be tedious and extensive.
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Chapter 1

INTRODUCTION
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1.1 Overview

Flow cytometry is a powerful technique for analyzing multiple parameters of cells

within heterogeneous populations, and can conduct multi-parametric analysis for

thousands of cells per second simultaneously. Flow cytometry can be used in the

diagnosis of diseases, especially blood cancers, and many other fields in both research

and clinical practice. This dissertation is motivated by a real study in which data

were obtained from flow cytometry.

Our motivation is the Protective Immunity Project (PIP) conducted at the Emory

Transplant Center(Larsen and Ahmed [2005]). In the PIP study, the investigators

enrolled 60 patients aged 18-59 years old who were scheduled to undergo renal trans-

plantation at Emory University transplant center. They also enrolled 20 age-, sex-

and race-matched healthy volunteers into the control group. All subjects enrolled

in this study were followed for two years, and multiple blood samples were collected

at baseline, 3 months, 6 months, 9 months, 12 months, 18 months and 24 months.

The blood samples were analyzed with flow cytometry. There are two research ques-

tions motivated by the PIP study. The first research question motivated by the PIP

study is how to model the white cell compositions over time. Since the PIP study

is a longitudinal study in which every enrolled subject was followed for two years,

the data obtained from this study is compositional in nature with repeated measure-

ments. In the PIP study, the data sometimes only come as a set of percentages that

sum to 100%. No total cell counts were obtained in this situation. Therefore, the

standard analysis, such as multinomial model, is not appropriate if the total count

is not available. For the percentage data without total counts available, we define as

the compositional data. We are motivated by this type of data in the PIP study, and

develop a Bayesian approach for repeated compositional data in chapter 3. For the
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compositional data, the summation of all components equals to 1. Because of this

constriction, standard statistical methods are not appropriate for the compositional

data analysis. Another research question motivated in part from the PIP study is how

to get the correct estimates when measurement errors exist on the white blood cell

count data. In the PIP study, the variables of interest are the absolute counts of sub-

categories of lymphocytes. However, the recorded data obtained from flow cytometer

may contain measurement errors.

1.2 An Introduction of Flow Cytometry

Figure 1.1: Flow Cytometry System

Flow cytometry is a modern technique which can be used for the analysis of mul-

tiple parameters of microscopic particles, for example, cells and chromosomes. The

applications of flow cytometry range from immunophenotyping, to ploidy analysis,
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to cell counting. Figure 1.1 shows how the flow cytometry works. First, the sample

cells are suspended in the fluid and then form a stream of fluid. The stream passes

through an electronic detection apparatus. A laser source emits laser beams directed

onto the stream of fluid. As a cell passes through the laser light, the laser will be scat-

tered. The scattered leaser lights are recorded by a number of detectors. One detector

records the scattered light which has the same direction with the light beam (Forward

Scatter or FSC) and several detectors record the scattered light perpendicular to it

(Side Scatter or SSC) and one or more detectors record fluorescent light. The light

signals recorded by the detectors are processed by a computer connected with the

flow cytometer. The data generated by flow-cytometer can be plotted. Based on the

light intensity, some distinct populations can be separated in these plots by creating a

series of subset extractions. The process to identify the distinct subcategories is called

”Gating”. Specific gating protocols had been developed for diagnostic and clinical

purposes especially in relation to hematology. Figure 1.2 shows two dot plots from

some four parameter data derived from human peripheral blood leucocytes. From the

left plot, we can see that the side scattered light vs. forward scattered light can define

three distinct populations; these are the granulocytes, monocytes and lymphocytes,

labeled G, M and L respectively. In the right plot, the cells can be defined based on

the anti-CD4-PE and anti-CD8-FITC expression(Ormerod [2000, 2008]).

1.3 The Motivation Example

Compositional data can be viewed as the positive vectors whose components are the

proportion or percentage of whole. The constraint is that their sum should be some

constant, for example, equal to 1 for proportion, 100 for percentage. A typical ex-

ample of compositional data is geochemical compositions of rocks. Commonly the
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Figure 1.2: Figure shows two dot plots from data derived from human blood leuco-
cytes. A: The light scatter (SS versus FS) defines three distinct populations; these
are the granulocytes, monocytes and lymphocytes, labelled G, M and L. B: The cells
were labelled with anti-CD4-PE and anti-CD8-FITC, both proteins are expressed on
T lymphocytes.

mineral compositions of rocks are expressed as percentage by weight. One may want

to describe the variation of compositions from specimen to specimen, and determine

if the compositions of one kind of rock differ from another kind of rock. In economics

study, an important aspect of the study of consumer demand is the analysis of house-

hold budget. In this case, the compositions of household expenditures, that is, the

proportion of total expenditures to different commodity groups are critical to house-

hold budget analysis. One may want to examine if the compositions of expenditures

depend on the total amount spent, or if there are differences between high-income

and low-income household in their expenditure compositions.

In this paper, we are motivated by the need to examine the different subpop-

ulation of white blood cells in the Protective Immunity Project (PIP) conducted

at the Emory Transplant Center (Larsen and Ahmed [2005]). The PIP study con-

tains three complementary studies. The goal of the first study is to characterize the

impact of immunosuppression regimens on protective immunity over time in renal
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transplant patients. This is an ongoing study began in 2005, and ended in 2011. The

investigators enrolled 60 patients aged 18-59 years old who had renal transplantation

at Emory University transplant center. They also enrolled 20 age-, sex- and race-

matched healthy volunteers into the control group. All subjects enrolled in this study

were followed for two years, and multiple blood samples were collected at baseline,

3 months, 6 months, 9 months, 12 months, 18 months and 24 months. The blood

samples were analyzed with flow cytometry. Whole blood was passed through the

flow cytometer to determine blood composition. Lymphocytes were isolated and the

percentage of CD3+ lymphocytes, also called T lymphocytes, was recorded. The

CD3+ cells can also be broken into four subcategories based on different cell surface

markers: CD4+CD8- (T Helper cells), CD4-CD8+ (cytotoxic T cells), CD4-CD8-,

and CD4+CD8+. The T helper cells and the cytotoxic T cells can also be further

broken down based on the chosen surface markers. The T helper cells can be further

broken into four categories: CCR7+CD45RA- (central memory), CCR7+CD45RA+

(naive), CCR7-CD45RA- (effector memory), and CCR7-CD45RA+. The percentages

were recorded by flow cytometer. The cytotoxic T cells can also be further broken into

4 categories: CCR7+CD45RA- (central memory), CCR7+CD56RA+ (naive) CCR7-

CD45RA- (effector memory), and CCR7-CD45RA+ (effector memory RA). Figure

1.3 shows the hierarchy of blood cell types in PIP study. In this study, we want

to know the impact of immunosuppression regimens on lymphocyte compositions in

renal transplant patients with respect to how cell compositions change over time.

There are two research questions motivated by the PIP study. The first research

question motivated by the PIP study is how to model the white blood cell compo-

sitions over time. Since the PIP study is a follow-up study in which every enrolled

subject was followed for two years, the data obtained from this study is the composi-
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Figure 1.3: Hierarchy of blood cell types in PIP study

tional data with repeated measurements. The data only contains the percentages of

cell subcategories. No total cell counts is obtained in this situation. Since the repeat

measurements made on the same individual are typically correlated, special attention

is needed when we analyze the repeated compositional data. The statistical model

for this kind of data will be discussed in chapter 3.

Another research question motivated in part from the PIP study is how to get

the correct estimates when measurement error exists with respect to the white blood

cell count data. In medical studies, some variables of interest may be difficult to ob-

tain, and surrogate variables are recorded and used instead. However, these surrogate
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variables may contain measurement errors. In the PIP study, the whole blood sam-

ples were passed through the flow cytometer to determine blood composition. The

counts and percentage of subcategories of lymphocytes were recorded based on the

cell surface markers. The variables of interest are the true counts of subcategories of

lymphocytes. However, the recorded data obtained from flow cytometer may contain

measurement errors. We propose a likelihood based method for correcting measure-

ment errors for a general multivariate linear model in chapter 4. We also propose a

Bayesian approach for correcting measurement errors for a general multivariate linear

model in chapter 5.

1.4 Proposed Research

In this dissertation, the goal is to solve two research questions raised from the PIP

study. The first is how to analyze the compositional data with repeated measure-

ments. The second research question is how to correct the measurement errors in the

dependent variables in the general multivariate linear model.

For the first research question, we propose a Bayesian approach for repeated com-

positional data. We use a multivariate logistic normal model, and use MCMC ap-

proach for model inference. Under the logistic normal distribution, and by relying

on the additive logratio transformation, we transform the compositional data into

multivariate normal distributed data. Because of the non-linear additive logratio

transformation, we use a Bayesian approach for model inference.

For the measurement errors in the dependent variables, we propose two approaches

for correcting measurement errors in the dependent variables in the general multivari-

ate linear model. The parameters in the measurement error model are estimated by

using independent, external calibration data. We use the likelihood-based method to
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correct measurement errors. The pseudo-maximum likelihood estimators and their

asymptotic properties are developed. A simulation study is conducted to compare

the performance of the pseudo MLE approach and the simply adjusted/imputed data

approach.

In this dissertation, we also propose a Bayesian approach to adjust the measure-

ment errors in the response variables in the general multivariate linear model. In

the Bayesian approach, the unobserved true variable Y is treated as missing data,

and can be imputed by drawing from the full conditional distribution of Y given all

other parameters and data. Markov Chain Monte Carlo (MCMC) methods are used

to compute Bayesian quantities.



Chapter 2

BACKGROUND

2.1 An Introduction of Composition Data Analy-

sis

To begin with compositional data analysis, we need to give a formal definition of

compositional data.

Definition 1 Composition (Aitchison [1986])

A composition x of K-parts is a k×1 vector with positive components x1, . . . , xk whose

sum is 1 .

2.1.1 Ternary diagrams to display compositional data

A ternary diagram is a convenient way to display 3-part compositional data.

In Figure 2.1, the equilateral triangle with vertices 1, 2, 3 has unit height. For

any point in this triangle, the perpendiculars x1, x2, x3 from the point to the sides
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Figure 2.1: Graphical display of a three-part compositions in a Ternary diagram

opposite 1, 2, 3 satisfy

xi ≥ 0(i = 1, 2, 3), x1 + x2 + x3 = 1

For any vector (x1, x2, x3) satisfy above equation, there is a unique point in triangle

123. The relationship between 3-part compositions and points in the triangle is one-

to-one. The larger a component xi is, the further the point is away from the opposite

side, and then the closer the point is to the vertex i.

2.1.2 Algebra for Compositions

The first task for modeling compositional data is to define a suitable sample space.

If our concern is specifying a density function on the sample space, then we need to

emphasize the dimensionality of the composition. This concern leads to the definition

of the simplex sample space.
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Definition 2 Simplex sample space (Aitchison [1986])

The (k-1)-dimensional simplex is the set defined by

Sk−1 = {(x1, . . . , xk) : x1 > 0, . . . , xk > 0;x1 + . . .+ xk = 1}

Compositional data are positive vectors with constant sum, and describe the rela-

tive proportion of each component in k categories. Suppose we have a K-part composi-

tion, z = (z1, z2, . . . , zk), where the zi (i = 1, . . . , K) are the components, proportions

of the available unit, and zi > 0 for all i = 1, . . . , K, and
∑k
i=1 zi = 1. The sam-

ple space associated with K-part compositions is the (k-1) dimensional unit simplex

(∇k−1). Aitchison [1982, 1986] introduced the Logistic Normal distribution into com-

positional data analysis. He used the additive logratio transformation to take the

compositional data from the (k-1)-dimensional simplex (∇k−1) to (k-1)-dimensional

Euclidean space (Rk−1).

Perturbation operator for compositional data

Aitchison [1986] defined the perturbation operator in simplex sample space. He

described a simple motivating example to introduce this operator. Suppose we

have two compositions x and X on a similar, but differential scaling relationship

X1 = p1x1, . . . , Xk = pkxk reflects the composition change from x to X. Such a

unique differential scaling can always be found by taking pi = Xi/xi (i = 1, . . . , K).

The relative amounts of the components of X can be expressed as x1
p1
c
, . . . , xk

pk
c

,

where c =
∑k
i=1 xipi. Each pi must be between zero and one. One property of this

operator is that only the relative size of the components of p affects the resulting

composition X. Therefore, we can consider x and p are both proportion vectors, and

the ”addition” of x and p is also a composition.
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Before we define perturbation operator, we need to define the closure operation

first.

Definition 3 Closure operation (C) (Aitchison [1986])

Suppose p is a k-dimensional vector in positive Euclidean space (Rk
+). The closure

operation C(p) is defined as

[C(p)]i =
pi∑k
j=1 pi

where [C(p)]i denotes the ith element of the k-vector.

Definition 4 Perturbation Operation (Aitchison [1986])

Let x be a k-part composition and u be a k-part with positive elements. Then the

operation

X = u⊕ x = C(x1u1, . . . , xkuk)

is defined as a perturbation with the original composition x being operated on the

perturbing u to form a perturbed composition X. The perturbation operator can be

considered as an ”addition” operator for compositional data.

Aitchison [1986] showed several simple properties of perturbation operation.

Property 1 The operation u⊕ is a a one-to-one transformation between (∇k−1) and

(∇k−1). The inverse transformation is the perturbation u−1⊕, where

u−1 =
(

1

u1

,
1

u2

, . . . ,
1

uk

)
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Property 2 Since u ⊕ x = C(u) ⊕ x, the effect of any perturbing vector u ∈ Rk−1
+

is the same as that of the perturbing vector C(u) ∈ ∇k−1. Therefore, we can restrict

the perturbing vectors to the simplex ∇k−1 without loss of any generality.

Property 3 The operation ⊕Ik−1 is the identity operator for any u ∈ ∇k−1, where

Ik−1 =
(

1
k
, 1
k
, . . . , 1

k

)
. We have u⊕ Ik−1 = u for any u.

Property 4 The operation ⊕ is commutative. For u and a in ∇k−1,

u⊕ a = a⊕ u

Property 5 The operation ⊕ is associative.

u2 ⊕ (u1 ⊕ x) = u1 ⊕ (u2 ⊕ x)

where u1, u2 are any perturbing vectors.

Scalar Multiplication for compositional data

Definition 5 Scalar multiplication (Aitchison [1986])

Define scalar multiplication of a composition u by a in the following way

ua = C(ua1, u
a
2, . . . , u

a
k)

where a ∈ R be any scalar, and u ∈ ∇k−1 is a k-component composition.

This defines a ”multiplication” operator in simplex sample space.
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Definition 6 Inner product for compositions (Billheimer and Guttorp [1995])

For u, z ∈ ∇k−1, let θ = φ(u), and η = φ(z). Define

〈u, z〉 = θ′N−1η

as the inner product of u and z.

We define N = [Ik−1 + jk−1j
′
k−1], where Ik−1 is a (k-1)-dimensional identity matrix,

and jk−1 is a (k-1) column vector of 1’s, and N−1 = [Ik−1 − 1
k
jk−1j

′
k−1].

Definition 7 Norm on (k − 1) dimensional Simplex sample space ∇k−1. (Aitchison

[1986])

Define ||u||, the norm of composition u, for u ∈ ∇k−1 as 〈u, u〉1/2.

Aitchison [1986] showed that the inner product and norm are invariant to permu-

tations of components of u. The definition of the matrix N−1 ensures this invariance.

Also note that the norm is a sum of squares of log-ratios. The norm defined above

measures the distance of a composition from Ik−1, the ”center” of ∇k−1.

2.1.3 Logistic Normal Distribution

The first direction to analyze compositional data is to use the Dirichlet distribu-

tion, since it is the most familiar class of distributions on the simplex sample space.

However, (Aitchison [1982]) has pointed out, it is inadequate for the description of

variability in compositional data. One major disadvantage with the Dirichlet distri-

bution is that the correlation structure of a Dirchlet composition is wholly negative,



16

but the correlation in compositional data may be positive. Another disadvantage

of Dirichlet class is the strong independence structure because of the relationship

between the Dirichlet and gamma classes. These disadvantages make the Dirichlet

distribution unsuitable for compositional data analysis.

Additive logratio transformation

The idea of perturbation operation leads to the Logistic Normal distribution. Aitchi-

son and Shen [1980] first introduced the Logistic Normal (LN) distribution for mod-

eling compositional data. Aitchison [1982] established many mathematical and sta-

tistical properties of LN distribution. The methods he used for modeling rely on

the the additive logratio transformation. He used the additive logratio transforma-

tion to take the compositional data from the (k-1)-dimensional simplex (∇k−1) to

(k-1)-dimensional Euclidean space (Rk−1). Aitchison models the compositional data

through the (k− 1) multivariate normal distribution by using additive logratio trans-

formation. The main benefit is the rich covariance structure from the multivariate

normal assumption, and this allows modeling the dependence between pairs of the

k elements. However, interpretation of parameter estimates on the multivariate log-

odds scale is difficult.

Definition 8 The additive logratio transformation of z from (k-1)-dimensional sim-

plex to (k-1)-dimensional Euclidean space (Rk−1)is defined as

φ(z) =
[
log

(
z1

zk

)
, log

(
z2

zk

)
, . . . , log

(
zk−1

zk

)]

where φ(.) is denoted as additive logratio transformation.
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The additive logratio transformation is one-to-one and the inverse of this trans-

formation φ−1(.) transforming y from (k-1)-dimensional Euclidean space (Rk−1) to

(k-1)-dimensional simplex is defined by

zi =
exp(yi)∑k−1

j=1 exp(yj) + 1
, (i = 1, 2, . . . , k − 1)

and zk =
1∑k−1

j=1 exp(yj) + 1

where yi = log
(
zi
zk

)
.

Density Function

A k-part composition, z, is said to have a Logistic Normal distribution Lk−1(µ,Σ)

when y = log
(
z−k
zk

)
has a k-1 dimensional Multivariate Normal distribution with

mean µ and covariance matrix Σ, where z−k = (z1, z2, . . . , zk−1).

The density function for Lk−1(µ,Σ) is

f(z|µ,Σ) =
(

1

2π

) k−1
2

|Σ|−
1
2

(
1∏k
i=1 zi

)
exp

[
−1

2
(φ(z)− µ)′Σ−1(φ(z)− µ)

]
(2.1)

where µ is the mean parameter vector in Rk−1, and Σ is a (k− 1)× (k− 1) variance-

covariance matrix. The ith element of µ, µi , can be interpreted as E
[
log( zi

zk
)
]
, and

the ijth element of Σ, σij, can be interpreted as cov
[
log( zi

zk
), log( zj

zk
)
]
. The

(
1∏k

i=1
zi

)
term is the Jacobian of the additive logratio transformation. Aitchison [1986] showed

that the logistic normal density function is invariant with respect to the permutations

of the components. Therefore, the density, and any inference based on the density, is

not affected by the ordering of components in z.
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Interpretation of parameters

The mean parameter µ in the LN distribution can be expressed as a composition

through the inverse additive logratio transformation. We define

φ−1(µ) = ξ (2.2)

where ξ ∈ ∇k−1.

ξ is a composition in simplex sample space. Therefore, interpretation of ξ in the sim-

plex is much easier than interpreting µ on the multivariate logratio scale in Euclidean

space (Rk−1). However, Billheimer and Guttorp [1995] pointed that some statistical

properties of µ are lost with the transformation to the simplex. When µ is the mean

and mode of the multivariate normal logit, the φ−1 transformation does not preserve

these properties. However, the φ−1 transformation is monotone in each of the (k-1)

components of µ. As a consequence, ordering of the values is preserved under this

transformation. Therefore, ξ = φ−1(µ) can be interpreted as the component-wise

multivariate median for the LN distribution in ∇k−1. This interpretation is useful

when we get point estimates of parameters, and can be treated as the ”center” for

the asymmetric LN distribution.

Aitchison [1986] introduced the definition of logratio linear model to incorporate

the effect of explanatory variables.

Definition 9 A set of N independent K-part compositions is said to follow a logratio

linear model if the logratio data matrix Y can be expressed in the form

Y = AΘ + E,

where the covariate matrix A, of order N×pm and full rank pm, is a matrix of known
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constants, the parameter matrix Θ is of order pm×d and the N ×d error matrix E is

assumed to consist of independent row vectors, each distributed as Nk(0,Σ) (Aitchison

[1986]; section 7.6).

The matrix Θ is the ”regression” parameter matrix of the logratio linear model,

and the ”error” logratio covariance matrix is Σ. Estimation of Θ and Σ under the

model is standard, either by maximum likelihood under the normality assumption or

by multivariate least squares.

For example, if we have a scalar covarate xj, j = 1, 2, . . . , n, then µ
j

in the density

function can be replaced by β
0

+ β
1
(xj − x̄). β

0
and β

1
are parameter vectors in

Rk−1, and x̄ is the mean of the observed covariate values. We can interpret β
0

as the

location when xj = x̄, and β
1

as the change of location for one unit change of x under

this parameterization.

By using the inverse additive logratio transformation, the linear regression ex-

pression µ
j

= β
0

+ β
1
(xj − x̄) can be expressed as the perturbation of compositions.

Taking the inverse additive logratio transformation on both sides of the equation,

φ−1(µ
j
) = φ−1(β

0
)⊕ φ−1(β

1
)(xj−x̄).

we have the perturbation of compositions

ξ
j

= ξ ⊕ γµj .

where ξj = φ−1(µ
j
), ξ = φ−1(β

0
), and γ = φ−1(β

1
). The ξ is the overall location on

the simplex. The location ξ
j

is the overall location ξ perturbed by γ, the regression

composition parameter. γ is the regression parameter on simplex, and it is the amount

a location shifted, via a perturbation, when the covariate variables changed in one
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unit. The deviations in γ from the identity composition, Ik−1, indicate the direction

and magnitude of the change. If γ equals Ik−1, then it shows that the covariate

variables have no effect on the compositions.

2.1.4 State-Space model for Discrete Compositions

Aitchison’s Logistic Normal model using observed compositions as data treats com-

positions as continuous variables. However, when the observed data involve discrete

variables, for example, the count data, Aitchison’s model might underestimate the

actual variability of the observed data. In this situation, including the discrete ob-

servations in the model might better reflect the actual variability of the observed

compositions.

Billheimer, Guttorp, and Fagan [2001] proposed a State-Space Model which com-

bined the logistic model for continuous compositions and the conditional multinomial

observations distribution. In this model, he posits a latent composition vector, z,

associated with the observed count data, y. For observation y, a k-vector of counts,

given m =
∑k
i=1[y]i, and z (the unobserved composition vector, latent variable), y

follows the multinomial distribution with probability mass function

p(y|z,m) =
m!∏k
i=1[y]i!

k∏
i=1

[z]
[y]i
i (2.3)

where [.]i denotes the ith element of the vector. z follows the logistic normal distri-

bution, Lk−1(µ,Σ).

By combining the multinomial distribution and logistic normal distribution, the joint
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density function of y, z is:

p(y, z|
k∑
i=1

yi = m,µ,Σ) =
m!∏k
i=1[y]i!

k∏
i=1

[z]
[y]i−1
i

(
1

2π

) k−1
2

|Σ|−
1
2

exp
[
−1

2
(φ(z)− µ)′Σ−1(φ(z)− µ)

]
(2.4)

Billheimer, Guttorp, and Fagan [2001] uses Markov Chain Monte Carlo (MCMC)

for model inference about the unknown logistic normal distribution parameters and

the latent composition vectors. The conditional distribution of z (given current values

of µ and Σ) is sampled by Metropolis-Hastings algorithm, and the LN distribution

parameters µ and Σ can be updated by Gibbs sampling step.

2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) method is a class of algorithms for sampling

from approximate distributions and then correcting those samples to better approxi-

mate the target posterior distribution. The samples are dawn based on constructing

a Markov chain. Markoc chain is a sequence of random variables θ1, θ2, . . ., for which,

at any time t, the distribution of θt given all previous θ’s depends only on the most

recent value, θt−1 (Gelman, Carlin, Stern, and Rubin [2004]). Grenander [1983], and

Geman and Geman [1984] first used MCMC method for Bayesian inference. After

that, many researchers expanded the use of MCMC in Bayesian inference (Gelfand

and Smith [1990], Gelfand, Hills, Racine-Poon, and Smith [1990]; Besag, Green, Hig-

don, and Mengersen [1995] for a review of the methodology; and Tierney [1994]).

Good introductions to MCMC are given by Gelman, Carlin, Stern, and Rubin [2004],

Carlin and Louis [2000], and Gilks, Richardson, and Spiegelhalter [1996].
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2.2.1 Monte Carlo Integration

The original Monte Carlo method was developed by physicists to use random number

generation to compute integrals. Suppose we have a complex integral for which the

exact integration does not exist, ∫ b

a
h(x)dx

If we can decompose h(x) into the product of a function f(x) and a probability density

function p(x) defined over the interval (a, b), then the integral becomes

∫ b

a
h(x)dx =

∫ b

a
f(x)p(x)dx = Ep(x)[f(x)].

Thus, the integral can be expressed as an expectation of f(x) over the density function

p(x). If we draw a large number of random variables (x1, . . . , xn) from the density

p(x), the we have ∫ b

a
h(x)dx = Ep(x)[f(x)] =

1

n

n∑
i=1

f(xi)

This method is called Monte Carlo integration.

2.2.2 The Gibbs Sampler

The Gibbs sampler (Geman and Geman [1984]) can be viewed as a special case of

the Metropolis-Hastings algorithm where the proposal θ∗i is from the full conditional

distribution of θi. In this algorithm, the proposal θ∗i is always accepted. Suppose we

have the parameter vector θ = (θ1, θ2, . . . , θd). At each iteration t, an ordering of the

d subvectors of θ is chosen, and each θtj is sampled from the conditional distribution

given all the other components of θ:

p(θj|θt−1
−j , y),
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where θt−1
−j is all the components of θ, except for θj, at their current values:

θt−1
−j = (θt1, . . . , θ

t
j−1, θ

t−1
j+1, . . . , θ

t−1
d ).

Therefore, each subvector θj is updated conditional on the latest values of the other

components of θ.

We can transition from θt to θt+1 by using the following steps.

Given θt, generate

1. θt+1
1 ∼ f1(θ1|θt2, . . . , θtd)

2. θt+1
2 ∼ f2(θ2|θt+1

1 , θt3, . . . , θ
t
d)

3.
...

4. θt+1
d ∼ fd(θd|θt+1

1 , θt+1
2 , . . . , θtd−1)

The densities f1, . . . , fd are full conditional densities. One of the nice features

of the Gibbs sampler is that they are the only densities used for sampling, so all

updates can be univariate if desired. One does not need to propose an entire vector

of parameters, as with the MH algorithm. Another feature is that there is no accept

or reject step in the algorithm.

2.2.3 The Metropolis-Hastings algorithm

Many methods have been developed for constructing and sampling from transition

distributions for posterior distributions. The Metropolis-Hastings algorithm is a gen-

eral term for drawing samples from Bayesian posterior distributions(Metropolis and

Ulam [1949], Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [1953], Hastings

[1970]). The Metropolis-Hastings algorithm uses a random walk, and then applies an
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acceptance/rejection rule to converge to the specified target posterior distribution.

The algorithm is as follows [Gelman, Carlin, Stern, and Rubin, 2004].

1. Choose a starting point θ0 satisying p(θ0|y) > 0, from a starting distribution

p0(θ).

2. For t = 1, 2, . . .

(a) Sample a proposal θ∗ from a jumping distribution (or proposal distribution)

at time t, Jt(θ
∗|θt−1).

(b) Calculate the ratio of the densities,

r =
p(θ∗|y)/Jt(θ

∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗)

(c) Define

θt =


θ∗ with probability min(r,1)

θt−1 otherswise.

A further simplification occurs when the proposal distribution is symmetric, so

that Jt(θ
∗|θt−1) = Jt(θ

t−1|θ∗). As a result,

r =
p(θ∗|y)

p(θt−1|y)

and the resulting algorithm is simply called the Metropolis algorithm. An example

is a random walk MH sampler, in which J(θ∗|θt−1, y) is a normal distribution with

mean θt−1 and variance σ2
y.

The algorithm accepts the proposal θ∗ with the probability min(r, 1). If θt = θt−1,

the jump is not accepted.
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2.3 The Limitations of Existing Methods

2.3.1 Compositional Data Analysis

The natural first thought for analyzing compositional data is to use the Dirichlet

distribution. However, since every Dirichlet composition can be viewed as a compo-

sition formed from a basis of independent gamma distributed components, this class

has a very strong independent structure which makes it unappropriate for data with

dependence. Aitchison [1982, 1986] did the fundamental work for compositional data

analysis. He introduced the Logistic Normal distribution into compositional data

and established many mathematical and statistical properties of LN distribution.

The strategy he used is the additive logratio transformation which can transform the

compositional data from the (k-1)-dimensional simplex (∇k−1) to (k-1)-dimensional

Euclidean space (Rk−1). Aitchison models the compositional data through the (k−1)

multivariate normal distribution by using additive logratio transformation. However,

as Aitchison [1986] and others (e.g. Pawlowski and Burger [1992]) describe, the in-

terpretation of parameter estimates on the multivariate log-odds scale is difficult.

Billheimer, Guttorp, and Fagan [2001] introduced an algebra for compositions

that includes addition, scalar multiplication, and a metric for differences in compo-

sitions. The algebra aids interpretation of treatment effects, treatment interactions,

and covariates. Also Billheimer et al. [2001] presented a hierarchical statistical model

which combines the logistic normal for continuous compositions with a conditional

multinomial distribution. This method provides a tool for analyzing compositional

count data at a single time point. However, in our motivation example, PIP study,

the measurements are compositional data observed over a period of time. Because of

the special properties of compositional data and associated simplex sample space, the
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traditional statistical methods for multivariate repeated measurements data are not

appropriate. There is no other author discussing the statistical methods for repeated

compositional data. The statistical model for repeated compositional data will be

presented in chapter 3.

2.3.2 Measurement Error in Longitudinal Data

Measurement error problems in predictor variables have recently received extensive

attention by researchers. There are many papers about how to correct measurement

errors in regressors in different applications (Carroll and Stefanski [1990]; Brown and

Fuller [1990]; Byar and Gail [1989]; Fuller [1987]). However, there is little literature

about the problem with measurement errors in the response variable. The main reason

is that the problem can be handled with standard methodology if the measurement

errors in response variable are additive errors in which the observed values = true

value + error, where the error has mean 0. When the measurement errors are additive

with constant variance, the errors can be ignored in regression analysis because they

can be thought as an extra variance component.

However, it has been recognized that for many situations, the additive error model

is often not appropriate(Buonaccorsi [1989, 1990a,b, 1991], Buonaccorsi and Toste-

son [1993], Buonaccorsi [1996], Carroll, Gail, and Lubin [1993], Pepe [1992], Rosner,

Spiegelman, and Willett [1990], Tosteson, Stefanski, and Schafer [1989]). A specific

example was described by Buonaccorsi and Tosteson [1993]. In this example, the

serum neopterin level is measured by a radioimmunoassay, and the observed value

is a standardized radioactive count. The measurement error model in this example

is a four-parameter logistic model. In a series of papers, Buonaccorsi [1991, 1996]

and Buonaccorsi and Tosteson [1993] discussed how to correct bias when the mea-
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surement errors are not additive. Buonaccorsi [1996] considered the measurement

error in the response variable in the general linear model. He described the full and

pseudo-maximum likelihood estimators under distributional assumptions.

Longitudinal data are obtained when subjects are followed over a period of time,

and for each subject, some variables are measured at multiple time points. The

primary goal of a longitudinal study is to characterize the change in response over

time and the factors that affect the change. Because of the repeated measures on

individuals, the researchers can capture within-individual change. In our motivation

example, the PIP study, the white blood cell counts from the patients’ blood samples

were measured over a period of time. We assume that the true cell count values

should follow a normal distribution since the cell counts range from several hundreds

to several thousands. Therefore, longitudinal analysis should be used because of the

correlation of repeated measurements in one individual. One of the approach for

analyzing longitudinal data is the general multivariate model.

However, Buonaccorsi [1996] only discussed the measurement error for a general

linear model. His methods didn’t cover the measurement error in the response in

longitudinal/repeated-measures problems. There is no other author discussing the

measurement error in response only in longitudinal data although the longitudinal

studies are popular in medical studies and clinical trials, etc. We propose a likelihood

based method to correct for measurement errors in general multivariate linear model

that will be presented in chapter 4. We also propose a Bayesian approach to correct

for measurement errors in general multivariate linear model that will be presented in

chapter 5.



Chapter 3

BAYESIAN ANALYSIS OF

REPEATED COMPOSITIONAL

DATA
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3.1 Introduction

Multiple measurements over time on a response variable on the same experimental

unit or the same subject lead to repeated measurements (or longitudinal) data. Such

data are very common in many field such as biomedical, pharmaceutical, industrial

engineering, business etc. If multiple measurements are made over time on more than

one response variables on the same subject or experimental unit, we call this type

of data ”multivariate repeated measures data”. We need to pay special attention for

this type of data since the measurements made over time on the same individual are

typically correlated.

In our motivating example, the Protective Immunity Project (PIP study), the

patients’ blood samples were collected at different time points. Each blood sample

was analyzed by Flow cytometer, and the subpopulation of blood cells were recorded.

Therefore, the data in this study is also the multivariate repeated measures data.

However, the measurements on multiple response variables at each time point are

compositional data. The sample space associated with the K-part compositions is the

(k-1) dimensional unit simplex (∇k−1). Because of the special properties of composi-

tional data and associated simplex sample space, the traditional statistical methods

for multivariate repeated measurements data are not appropriate. The goal of PIP

study is to evaluate the change of white blood cell (Lymphocytes) compositions over

time. Billheimer, Guttorp, and Fagan [2001] proposed a hierarchical statistical model

combining Aitchison’s (1982, 1986) logistic normal (LN) distribution with a condi-

tional multinomial model. They used Markov Chain Monte Carlo (MCMC) approach

for model inference. His method provided a tool for analyzing compositional count

data at a single time point. His method did not cover the longitudinal/repeated

measures compositional data. There is no other author discussing the compositional
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data analysis in longitudinal/repeated measures situations although the longitudinal

studies represent one of the principle research strategies used in medical and social

science research (Goldstein [1979], Nesselroade and Baltes [1979]). In this chapter,

we propose a multivariate logistic normal moodel, and use the MCMC approach for

model inference. We use the algebra introduced by Billheimer et al. [2001] for param-

eter interpretation. We also use Aitchison’s Logistic normal distribution to model the

compositional data. Relying on the additive logratio transformation, this approach

transforms the compositional data into multivariate normal distribution. Because

of the non-linear ALR transformation, the likelihood methods become impractical.

Bayesian methods become more attractive under this situation. Hence we also pro-

pose Bayesian approach for our model inference, and demonstrate its characteristics.

3.2 Model Structure

Suppose we have n subjects, and they were followed for t time points, and for each

subject at time t, the composition has k components. We assume the composition

vector for subject j, at time point t, zjt is a k-part composition. Since the mea-

surements made at different time points on the same individual may be correlated,

we assume the composition vector for subject j, zj follows the logistic normal distri-

bution (LN) with t(k-1) dimensions. So the joint density function of zj1, zj2, . . . , zjt

is

p(zj1, zj2, . . . , zjt|µ1
, µ

2
, . . . , µ

t
,Ω) =(

1

2π

) t(k−1)
2

|Ω|−
1
2

1∏T
t=1

∏k
i=1 zjti

exp
[
−1

2

(
φ(zj)− µ

)T
Ω−1

(
φ(zj)− µ

)]
(3.1)
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where µ =


µ

1

...

µ
T

, is a t(k-1)-dimension mean vector, and Ω is the t(k−1)× t(k−1)

dimension variance-covariance matrix. Also please note that the 1∏T

t=1

∏k

i=1
zjti

term in

the density function is the Jacobian of the additive logratio transformation.

3.3 Model Inference

We can use Bayesian approach for making inference about model parameters.

To implement Bayesian analysis, first we need to write down the likelihood func-

tion of the model. The likelihood function is

L(z|µ,Ω) =
n∏
j=1

p(zj|µ)

=
n∏
j=1

1∏T
t=1

∏k
i=1 zjti

(
1

2π
)
(k−1)t

2 |Ω|−
1
2

×exp
[
−1

2

(
φ(zj)− µ

)T
Ω−1

(
φ(zj)− µ

)]
(3.2)

where φ(zj) =


φ(zj1)

...

φ(zjt)

, zjt ∈ ∇k−1, and Ω is the t(k − 1) × t(k − 1) dimension

variance-covariance matrix.

Next, we need to specify the prior distributions for µ and Ω. let µ have the t(k-

1) dimensional multivariate Normal distribution with mean vector η, and variance-

covariance matrix Q. Also we assume that Ω−1 ∼ Wishart (Ψ−1, ρ), where Ψ is a

t(k−1)× t(k−1) positive definite matrix, and ρ denotes the degrees of freedom. The
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value of ρ is set to t(k − 1).

We can choose the hyperparameters as

η = 0t(k−1)

Q = aN

Ψ = cN (3.3)

where N is a t(k − 1)× t(k − 1) positive definite variance-covariance matrix, and

we typically choose N = It(k−1) +jt(k−1)j
′
t(k−1). 0t(k−1) is the t(k-1)-vector of 0s, It(k−1)

is the t(k-1) identity matrix, and jt(k−1) is the t(k-1)-vector of 1s. a and c are scalars.

The dispersion matrix, N , specifies a ”null” variance-covariance matrix between log-

ratio transformed compositions. That is, a priori one may consider the compositional

elements ”independent except for the summation constriant” (Aitchison [1986], Bill-

heimer and Guttorp [1997]). The value of ρ is the smallest (least informative) that

still can maintain a proper Wishart distribution. Thus, the prior distribution for the

mean vector η is centered at It(k−1) and disperse over the simplex space. The prior

distribution for Ω is centered at the ”null” precision matrix (i.e., compositions formed

from independent bases; see Billheimer and Guttorp [1995]). a and c are scalars. The

value of a is selected to allow the 95% prior probability contour for ξ=inverse alr(µ) to

reach at least 0.05 for each component. The value of c is chosen so that the observed

variance of simulated compositions approximates that observed in the data. These

values specify proper, but diffuse prior distributions(Billheimer and Guttorp [1995]).

During the analysis, several widely varying hyperparameters will be tried to ensure

that inferences are data dependent.

Combining the likelihood and the prior distribution, we can get the posterior
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distribution as

π(µ,Ω|z) ∝
n∏
j=1

[
(

1

2π
)
(k−1)t

2 |Ω|−
1
2 exp

[
−1

2

(
φ(zj)− µ

)T
Ω−1

(
φ(zj)− µ

)]]

×|Q|−
1
2 exp

[
−1

2
(µ− η)TQ−1(µ− η)

]
×|Ψ|

ρ
2 |Ω|−

ρ−t(k−1)−1
2 exp

[
−1

2
tr(ΨΩ−1)

]
(3.4)

We can get the full conditionals for µ and Ω−1 from the posterior density function.

π(µ| . . .) ∝ exp
[
−1

2

(
µ− η

)T
Q−1

(
µ− η

)]

×exp

−1

2

n∑
j=1

(
φ(zj)− µ

)T
Ω−1

(
φ(zj)− µ

) (3.5)

π(Ω−1| . . .) ∝ |Ω|−
(ρ−t(k−1)+n−1)

2

×exp

−1

2

 n∑
j=1

(φ(zj)− µ)TΩ−1(φ(zj)− µ) + tr(ΨΩ−1)


(3.6)

With the observed compositional data zj, µ and Ω−1 specified, we can implement

MCMC method by using Gibbs sampling methods. We can update the values of µ

and Ω accordingly based on zj. Because the conditional distributions of µ and Ω

are available in closed form (multivariate normal distribution and inverse Wishart

distribution, respectively), we can use Gibbs sampling method to update µ and Ω.

By using some algebra, we find that the conditional distribution of µ is multivariate
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normal with mean

(Q−1 + nΩ−1)−1(nΩ−1 1

n

n∑
j=1

φ(zj) +Q−1η)

and variance-covariance matrix

(Q−1 + nΩ−1)−1.

The conditional distribution of the variance-covariance matrix Ω is an inverse Wishart

distribution with parameter matrix (V + Ψ), where

V =

 n∑
j=1

φ(zj)− µ

 n∑
j=1

φ(zj)− µ

T

and n+ ρ− t ∗ (k − 1) degrees of freedom.

3.3.1 Incorporate The Effect of Covariates

The mean parameter µ can depend on the explanatory variables. Therefore the effect

of covariates can be incorporated into our model. Suppose we have a scalar covariate

X, where X is a time independent covariate, and does not change over time. µ can

be replaced in the model by α + βX. In this expression, α and β are the vectors in

Rt∗(k−1).

The likelihood function becomes

L(z|α, β,Ω) =
n∏
j=1

p(zj|α, β,Ω)

=
n∏
j=1

1∏T
t=1

∏k
i=1 zjti

(
1

2π
)
(k−1)t

2 |Ω|−
1
2
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exp
[
−1

2

(
φ(zj)− (α + βX)

)T
Ω−1

(
φ(zj)− (α + βX)

)]
(3.7)

where φ(zj) =


φ(zj1)

...

φ(zjt)

, zjt ∈ ∇k−1, and Ω is the t(k − 1) × t(k − 1) dimension

variance-covariance matrix.

We can define the prior distributions as

Ω−1 ∼ Wishart(Ψ−1, ρ) (3.8)

where Ψ is a t(k− 1)× t(k− 1) positive definite matrix, and ρ denotes the degrees of

freedom. The value of ρ is set to t(k − 1).

α ∼ N(α0, σαI)

β ∼ N(β
0
, σβI) (3.9)

Then we can define the hyperparameters as

β
0

= 0t(k−1)

α0 = 0t(k−1)

σα = σβ = 10

Ψ = cN,where c = 0.1 (3.10)

During the analysis, we can try several widely varying hyperparameters to check out
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the sensitivity of the model inferences to ensure that the inference is data dependent.

Next, by combining the likelihood function and the prior distributions, we can get

the posterior distribution

π(α, β,Ω|z) ∝
n∏
j=1

[
(

1

2π
)
(k−1)t

2 |Ω|−
1
2 exp

[
−1

2

(
φ(zj)− (α + βX)

)T
Ω−1

(
φ(zj)− (α + βX)

)]]

×|σβ|−
1
2 exp

[
−1

2
(β − β

0
)T (σβI)−1(β − β

0
)
]

×|σα|−
1
2 exp

[
−1

2
(α− α0)T (σαI)−1(α− α0)

]
×|Ψ|

ρ
2 |Ω|−

ρ−t(k−1)−1
2 exp

[
−1

2
tr(ΨΩ−1)

]
(3.11)

The full conditional distributions for α, β and Ω−1 can be deduced from the

posterior density function.

(β| . . .) ∼

N

[
n∑
j=1

X2
j Ω−1 +

I

σβ
]−1(Ω−1

n∑
j=1

Xj(φ(zj)− α) +
β

0
1

σβ
), [

n∑
j=1

X2
j Ω−1 +

I

σβ
]−1


(3.12)

(α| . . .) ∼

N

[nΩ−1 +
I

σα
]−1(Ω−1[

n∑
j=1

φ(zj)− β
n∑
j=1

Xj] +
α01

σα
), [nΩ−1 +

I

σα
]−1


(3.13)

(Ω−1| . . .) ∼ Wishart(V + Ψ, df) (3.14)
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where

V =

 n∑
j=1

φ(zj)− (α + βX)

 n∑
j=1

φ(zj)− (α + βX)

T

df = n+ ρ− t ∗ (k − 1).

3.3.2 Model Diagnostics

It is crucial to check the model in Bayesian data analysis, because the Bayes prior-

to-posterior inferences condition on the whole probability model, and can be very

misleading when the model is poor. Therefore, a Bayesian analysis should include at

least some methods for model checking to find out the fit of the model to the data

and the plausibility of the model for the purpose for which the model is used. We

can conduct model checking in three ways.

1. Examining the sensitivity of inferences to reasonable changes in the prior distri-

bution and the likelihood. We can try several widely varying hyperparameters

to check out the sensitivity of the model inference to ensure that the inference

is data dependent.

2. Checking that the posterior inference is reasonable, given the substantive con-

text of the model.

3. Checking that whether the model fits the data. We will use Gelman, Meng, and

Stern [1996]’s method to address this model checking method.

Gelman et al. [1996] use simulated values of a discrepancy measure D(., .) from the

posterior predictive distribution, and compare to the same discrepancy measure D(., .)

from the observed data. Let θ denotes all the d-dimensional unknown parameters,

z denote observed data, and H for our assumed model. zrep denotes the replicated



38

data that could have been observed. zrep is a replication like z. For example, if we

have a explanatory variable X in the model, z and zrep should have identical values of

X. The reference distribution of the future observation zrep is its posterior predictive

distribution,

P (zrep|z) =
∫
P (zrep|θ)P (θ|z)dθ

For a selected discrepancy, D(z; θ), its reference distribution is derived from the

joint posterior distribution of zrep and θ,

P (zrep, θ|H, z) = P (zrep|H, θ)P (θ|H, z)

Then, the tail-area probability ofD under its posterior reference distribution is defined

as

PB = P [D(zrep; θ) ≥ D(z; θ)|H, z)]

The Bayesian tail-area probability is the probability that the replicated data could

be more extreme than the observed data as measured by the discrepancy D(.; .).

We can use simulation to compute the posterior predictive distribution. Suppose we

already have J simulations from the posterior density of θ during model inference,

J = 1, 2, . . . , J .

1. For each simulated θj, we draw one zrep,j from the predictive distribution,

P (zrep,j|H, θj).

2. Calculate D(z; θj) and D(zrep,j; θj).

The estimated p-value is just the proportion of these J simulations that the

D(zrep,j; θj) ≥ D(z; θj) J = 1, 2, . . . , J . The idea of this test is that if the model

is suitable, this probability would be about 0.5, and the model would be question-
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able if this probability is either close to 1 or 0. The comparison of D(z; θj) and

D(zrep,j; θj) can also be displayed as a scatterplot or a histogram of the difference,

D(z; θj)−D(zrep,j). If the model is appropriate, the scatterplot of the values D(z; θj)

vs. D(zrep,j; θj) should be symmetric about the 45o line, and the histogram should

include 0.

3.4 Data Analysis and Results

Recall that one of the goals of the PIP study is to characterize the impact of im-

munosuppression regimens on lymphocyte compositions in renal transplant patients,

the change of white blood cell compositions over time. Therefore, the percentage of

lymphocyte compositions were recorded over time for renal transplant patients and

control subjects. The PIP study began in 2005 and ended in 2011. The investigators

enrolled 60 patients aged 18-59 years old who had renal transplantation at Emory Uni-

versity transplant center. They also enrolled 20 age-, sex- and race-matched healthy

volunteers into control groups. All subjects enrolled in this study are followed for two

years, and multiple blood samples were collected at baseline, 3 months, 6 months, 9

months, 12 months, 18 months and 24 months. The blood samples were analyzed

with Flow cytometry. Right now we have data from 36 subjects. Among them, 28

subjects are renal transplantation recipients, and 8 subjects are health controls. The

blood samples of these subjects were collected at baseline, 3 months, 6 months, 9

months, 12 months, and 18 months respectively, and were analyzed by Flow cytome-

try. The T lymphocytes (CD3+ cells) were broken into four subcategories based on

the cell surface markers: CD4+CD8- (T Helper cells), CD4-CD8+ (cytotoxic T cells),

CD4-CD8-, and CD4+CD8+. The percentage of these subcategories were recorded

in the data set. Actually, we have 3-part compositions (k=3) for T lymphocytes
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(CD3+ cells). These three components are CD4+CD8- (T Helper cells), CD4-CD8+

(cytotoxic T cells), and CD4-CD8-. The time points are 0,3,6,9,12 and 18 months

(t=6).

If the percentages of all components dont add up exactly to 100% in the real data,

we normalize data to make sure the summation is 100%. For a k-part composition

(z1, z2, . . . , zk), the observed summation N = z1 + z2 + . . . zk, which is not 100%. We

recalculate the new percentage of each component based on the following equation.

z1new = z1/N, z2new = z2/N, . . . , zknew = zk/N.

After the recalculation, the summation of new percentages (z1new, z2new, . . . , zknew) is

exactly 100%.

The MCMC method is employed for model inference. Estimations of the parame-

ter values are made over 12,000 MCMC iterations, in which the first 2,000 iterations

were discarded as the ”burn-in” phase. The point estimates of the parameters and

their 95% credible regions are presented in Table 3.1.

The meaning of the parameter µ1 is log( z1
z3

) as we defined before. In this data

analysis, µ1 represents the logarithm of the ratio of the percentage of the first compo-

nent (CD4+CD8- cells) to the percentage of the third component (CD4-CD8- cells).

Similarly, µ2 represents the log ratio of the percentage of the second component

(CD4-CD8+ cells) to the percentage of the third component (CD4-CD8- cells). Fig-

ure 3.1 and Figure 3.2 show the point estimates and their 95% credible regions of

µ1 and µ2 over times. From these figures, we can see that the ratio of the percent-

age of CD4+CD8- cells to the percentage of CD4-CD8- cells is decreased after the

transplantation in the treatment group, while this ratio does not change much in the

control group. The ratio of the percentage of CD4-CD8+ cells to the percentage of
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CD4-CD8- cells does not change too much in both treatment group and control group.

These results indicate the changes of cell compositions after the transplantation.

Table 3.1: Bayesian Inference for Flow Cytometry data

Bayesian Approach MLE Approach
Parameter Point estimate 95% Credible Region Point estimate 95% CI

µc11 2.99 (2.66, 3.30) 3.03 (2.79, 3.26)
µc12 1.94 (1.36, 2.50) 1.95 (1.42, 2.44)
µc21 3.00 (2.65, 3.34) 3.08 (2.80, 3.36)
µc22 1.95 (1.54, 2.35) 1.95 (1.56, 2.34)
µc31 2.79 (2.32, 3.21) 2.93 (2.66, 3.20)
µc32 1.89 (1.44, 2.31) 1.91 (1.54, 2.28)
µc41 3.04 (2.63, 3.40) 3.16 (2.90, 3.42)
µc42 1.99 (1.65, 2.35) 1.94 (1.71, 2.17)
µc51 2.78 (2.08, 3.44) 3.07 (2.75, 3.39)
µc52 1.89 (1.29, 2.50) 1.81 (1.31, 2.31)
µc61 2.89 (2.21, 3.52) 3.14 (2.84, 3.44)
µc62 1.99 (1.35, 2.64) 1.91 (1.40, 2.42)
µt11 2.84 (2.66, 3.01) 2.86 (2.63, 3.10)
µt12 1.65 (1.33, 1.96) 1.68 (1.49, 1.87)
µt21 1.70 (1.51, 1.89) 1.71 (1.43, 1.99)
µt22 1.54 (1.31, 1.76) 1.54 (1.35, 1.73)
µt31 1.59 (1.35, 1.83) 1.60 (1.33, 1.87)
µt32 1.44 (1.20, 1.67) 1.43 (1.27, 1.60)
µt41 1.66 (1.45, 1.87) 1.67 (1.41, 1.93)
µt42 1.66 (1.46, 1.84) 1.66 (1.52, 1.79)
µt51 1.77 (1.38, 2.16) 1.79 (1.47, 2.11)
µt52 1.62 (1.27, 1.95) 1.62 (1.42, 1.82)
µt61 1.65 (1.27, 2.01) 1.66 (1.37, 1.95)
µt62 1.56 (1.19, 1.93) 1.56 (1.26, 1.87)

The interpretation of the parameters µ is not easy to understand since µ is in the

log-ratio scale. Referring the the earlier notation, the Monte Carlo estimates for the

expected values of composition proportions (θ) can also be obtained based on the

samples from the posterior distribution (Iyengar and Dey [1998]).
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For j = 1, . . . , k − 1,

θ̂j =
1

B

B∑
s=1

exp(µ̂j,s)

1 + exp(µ̂1,s) + . . .+ exp(µ̂k−1,s)
(3.15)

while the estimate of the kth component is

θ̂k =
1

B

B∑
s=1

1

1 + exp(µ̂1,s) + . . .+ exp(µ̂k,s)
(3.16)

In these equations, B represents the number of MCMC iterations which the esti-

mates are based on, and µ̂j,s represents the value of the unknown parameter µj at the

sth MCMC iteration. The point estimates for the expected values of the composition

proportions are showed in Table 3.2.

Table 3.2 shows that the percentage of CD4+CD8- cells is 73.28% at baseline in

the treatment group, and is 71.17% at baseline in the control group. However, the

percentage of CD4+CD8- cells drops to 49.21% after 3 months of transplantation in

the treatment group, whereas the percentage is 71.31% at 3 months in the control

group. From this table, we can see that the percentage of CD4+CD8- cells decreased

after the transplantation in the treatment group, and the percentages of CD4-CD8+

cell and CD4-CD8- cell both increased in the treatment group. However, the ratio of

CD4-CD8+ cells to CD4-CD8- cells is similar. This is reflected in the point estimates

of µ2 in table 2.1 which do not change much after transplantation in the treatment

group. The cell compositions do not change much over time in the control group.

Figure 3.3 and 3.4 show the point estimates of cell compositions in the ternary

diagrams for control group and treatment group respectively. A ternary diagram is

a convenient way to display 3-part compositional data. From Figure 3.4, we can

see that the cell compositions move from CD4+CD8- vertex toward the CD4-CD8+
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vertex after the transplantation. According to the definition of the ternary diagram

for compositional data, this indicates the increase of the percentage of CD4-CD8+

cells and the decrease of the percentage of CD4+CD8- cells. The figure also shows

a little increase of the percentage of CD4-CD8- cells after transplantation. Figure

3.5 and 3.6 show the point estimate of cell composition in the ternary diagrams

for the control group and the treatment group respectively. The point estimates of

the cell compositions at each time are displayed separately. Figure 3.7 to Figure

3.12 show the point estimates and their 95% credible regions from time 1 to time 6.

The red line represents the contour line of the highest 95% MCMC realizations for

the control group, and the blue line represents the contour line of the highest 95%

MCMC realizations for the treatment group. From these figures, we can see that the

95% credible regions of the control group and the treatment group overlap at baseline

(Time=1), indicating no difference of cell compositions between the control group and

the treatment group at the baseline. The 95% credible region of the treatment group

separates from the 95% credible region of the control group after transplantation

(at 3 months, 6 months and 9 months after baseline). These plots indicate the

difference of cell compositions between the control group and the treatment group

after transplantation.

3.4.1 Model Diagnostics

It is crucial to check the model in Bayesian data analysis, because the Bayes prior-

to- posterior inferences condition on the whole probability model, and can be very

misleading when the model is poor. We used the methods we discussed in section

3.3.2 to evaluate the adequacy of the fit of our model to the data and the plausibility

of the model.
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(a) Control Group (b) Treatment Group

Figure 3.1: Point estimates and their 95% credible regions of µ1

(a) Control Group (b) Treatment Group

Figure 3.2: Point estimates and their 95% credible regions of µ2

First, we conduct a sensitivity analysis of our model. During the data analysis, we

have tried several widely varying hyperparameters. For the hyperparameter a, c, the

values of 0.1, 0.5 and 1.0 are tried in the MCMC inference. The resulting parameter
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Figure 3.3: Graphical display of point estimates of cell compositions for control group
at different time points in Ternary diagram

inferences are very similar even though the values of the hyperparameters changed

widely. Table 3.3 shows the point estimates of the percentage of CD4+CD8- cells in

the treatment group based on different values of the hyperparameters a and c. From

this table, we can see that even the hyperparameters change from 0.1 to 1, the point

estimates of the percentage of CD4+CD8- cells are very close. Therefore, the model

inferences are not dependent on the values of the hyperparameters we chose. These

results showed that the results of model inferences are data dependent.

Next, we use the posterior predictive p-value to evaluate the fit of the posterior

distribution of our Bayesian model. We use the method of Gelman, Meng, and Stern

[1996] to calculate the posterior predictive p-value. The discrepancy function we used
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Figure 3.4: Graphical display of point estimates of cell compositions for treatment
group at different time points in Ternary diagram

in this analysis is

D(z, θ̂) =
n∑
i=1

[zi − E(zi|θ̂)]2

E(zi|θ̂)
(3.17)

Based on 10,000 simulation iterations, the posterior predictive p-value, pB is 0.188,

which is the probability that the replicated data (zrep) could be more extreme than

the observed data (zobs), as measured by the discrepancy function D(z, θ̂). Figure 3.13

shows the scatterplot of replicated vs. observed discrepancies (D(rep, θ) vs. D(obs,

θ)) under the joint posterior distribution; the p-value is calculated as the proportion

of points in the upper-left half of the plot. Figure 3.14 shows the histogram of 10,000

simulations from the difference of the replicated discrepancy (D(rep, θ)) and the
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Figure 3.5: Graphical display of point estimate of cell compositions for control group
in Ternary diagram

observed discrepancy (D(rep, θ) - D(obs, θ)). If the model is reasonable, the histogram

should include 0. Figure 3.15 shows the scatterplot of 10,000 simulations from the

difference of the replicated discrepancy (D(rep, θ)) and the observed discrepancy

(D(rep, θ) - D(obs, θ)). Based on the result of posterior predictive p-value, pB, and

the histogram and scatterplots shown, we can conclude that there is no systematic

differences between the replicated data generated under the model and the observed

data. Therefore, our model fits the data well.
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Figure 3.6: Graphical display of point estimate of cell compositions for treatment
group in Ternary diagram

3.5 Simulation Study

Simulation studies were conducted to evaluate the performance of the proposed

Bayesian method for repeated compositional data. Suppose we have n subjects for

treatment group and control group respectively, and these subjects were followed for

t time points. And for each sample, the composition has k components. We assume

the composition vector for subject j, at time point t, zjt is a k-part composition.

Also, we generate a scalar covariate X, then the mean parameter µ can depend on

the explanatory variables, and can be replaced in the model by α+βX. The covariate

X takes the integer values between -10 and 10. In this simulation study, we set the
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Figure 3.7: 95% credible regions for cell composition estimates, time=1

composition dimension, k=3, and the time points, t=3. We define the true values of

αc = αt = (2.00, 1.00), β
c

= (0, 0) and β
t

= (1.00, 0.50), respectively. We conduct

500 simulations on the sample size 500 in each group. For each simulated data set,

5000 Monte Carlo iterations were conducted, and the first 1000 iterations were used

for ”burn-in”, and the subsequent 4,000 MonteCarlo realizations were collected for

the posterior distribution inference. Simulation results of the sample size n=500 are

presented in Tables 3.4-3.6. The true values of parameters, the point estimates, the

standard deviations and the 95% coverage rate are displayed in the tables.

The simulation results show that the estimates based on the Bayesian approach

model perform well with reasonably small bias and standard deviation.
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Figure 3.8: 95% credible regions for cell composition estimates, time=2

3.6 Discussion

Compositional data are expressed as a non-negative vector with unit-sum constraint.

Because of the constraint, the sample space of compositional data is the Simplex

space. Aitchison [1982, 1986] gave the fundamental works for compositional data

analysis. He introduced the Logistic Normal distribution (LN) as an analysis tool

for compositional data, and established its mathematical and statistical properties.

Aitchison’s methods rely on the additive logratio transformation to take the compo-

sitional data from the (k-1)-dimensional simplex space to the (k-1)-dimensional Eu-

clidean space. Billheimer, Guttorp, and Fagan [2001] proposed a hierarchical model

for compositional discrete data. His method combined Aithison’s LN distribution and
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Figure 3.9: 95% credible regions for cell composition estimates, time=3

a conditional multinomial model. However, both Aitchison and Billheimer’s methods

deal with the compositional data at a single time point. In the medical studies or

clinical trials, multiple measurements are obtained when the enrolled patients are fol-

lowed by a period of time. Because the repeated measurements made over time on the

same subject are typically correlated, either method can not be applied directly on

the repeat-measured compositional data. Our proposed model extends Billheimer’s

hierarchical model to longitudinal/repeat-measures problems. The proposed model

provides a tool to analyze the compositional data with repeated measurements. By

using the algebra for compositions developed by Aichison and Billheimer, we can in-

terpret the model parameter estimates and credible regions in terms of compositions.
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Figure 3.10: 95% credible regions for cell composition estimates, time=4

Since the proportions are the nature scale of measurement for composition data, in-

terpretation in this way may help researchers have a better understanding from the

statistical modeling results.

In this chapter, we developed a Bayesian approach for the analysis of the repeat-

measured compositional data. Our results demonstrate that the Bayesian methodol-

ogy can be used to analyzed repeat-measured compositional data. We use a Markov

Chain Monte-Carlo method for model inference and show that the method is practical

in high dimensional problems.

We use Aitchison’s Logistic normal distribution to model the compositional data.

This distribution provides a powerful approach for compositional data. Relying on
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Figure 3.11: 95% credible regions for cell composition estimates, time=5

the additive logratio transformation, this approach transforms the compositional data

into multivariate normal data for which powerful statistical methods have been de-

veloped. Also, this approach provides ability to describe the complicated variance-

covariance structure between components of the compositional data. Although the

logistic normal model has some strong properties for compositional data, it also has

some weaknesses. A serious shortcoming is that the logistic normal distribution re-

quires that all components must be positive. A zero component will change a k

composition into a (k − 1) composition. Also, the additive logratio transformation

is not defined if one or more components are zero either. This restriction of ”no

zero” may be a severe limitation in the application if one or more components are
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Figure 3.12: 95% credible regions for cell composition estimates, time=6

known to be absent, or inference of absence is important. Aitchison [1986] proposed

a method that the zero value can be replaced by a small nonzero value to overcome

the problem. However, his method is not subcompositionally coherent. Fry, Fry, and

McLaren [2000], Martin-Fernandez, Barcelo-Vidal, and Pawlowsky-Glahn [2000] pro-

posed independently a nonparametric replacement procedure for zero value problem.

If we have really small proportions in the data, we should pay attention to the small

proportions, and should avoid picking the small proportion as the reference component

(the last component, zk) to assure the estimates are numerically stable. Aitchison’s

logistic normal distribution requires that all components are strictly positive because

we can not take logarithms of zero. To deal with zero components, Aitchison proposed
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Figure 3.13: Scatterplot of replicated vs. observed discrepancies (D(rep, θ) vs. D(obs,
θ)) under the joint posterior distribution; the p-value is estimated by the proportion
of points above the 45ø line.

that the zero components can be replaced by some really small positive values. In this

circumstance, he suggested that it will always be wise to perform a sensitivity analysis

to determine the effects of the different small positive values on the conclusions of

the analysis. For example, if we replaced zero components by 0.0005, we need also

try other replacement values 0.001, 0.0025, 0.00001 and 0.000001 to see the change

of parameters estimates, and to see if we could get the same conclusion (Aitchison

[1986]). Thus, if we have really small values in the data, we need to pay attention to

the numerical stability of our model.

There are alternative statistical models for compositional data. Some researchers

proposed the use of the Liouville distribution (Smith and Rayens [2002], Iyenger and
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Figure 3.14: Histogram of 10,000 simulations from the difference of the replicated
discrepancy (D(rep, θ)) and the observed discrepancy (D(rep, θ) - D(obs, θ)). Under
the model, the histogram should include 0.

Dey [2002]. For detailed description of the Liouville and Dirichlet distributions, see

Gupta and Richards [2001].) Barndorff-Nielsen and Jogensen [1991] proposed the S−

distribution. The S− distribution is constructed from the conditional distribution of

identical Gaussian random variables, given their sum. This distribution has attractive

mathematical properties compared to the LN distribution. However, it suffers the

same inflexibility as the Dirichlet distribution. The S- class of distributions is closed

under marginalization, unlike the LN distribution. Stephens [1982] proposed the

von Mises distribution for compositional data analysis. He used the square root to

transform composition components. This model received little attention because of

the complexity of the von Mises distribution, and also the the von Mises distribution
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Figure 3.15: Scatterplot of 10,000 simulations from the difference of the replicated
discrepancy (D(rep, θ)) and the observed discrepancy (D(rep, θ) - D(obs, θ)).

has difficulty to interpret the real world of the process.

Several researchers have extended Aitchison’s standard Logistic normal model.

Billheimer and Guttorp [1997] proposed a lattice spatial process for the error terms

which can include spatial correlation for compositions with a spatial index. Tjelme-

land and Lund [2003] proposed a multivariate geostatistical model in which they used

a logistic Gaussian field for the spatial composition process. Brunsdon and Smith

[1998] used a vector ARMA for modeling the error term in compositional time series

analysis, and their method can induce serial correlation in the series of compositions

from the repeated surveys. Abbitt and Breidt [2001] proposed a measurement error

model, for soil composition.
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Except for Brunsdon and Smith [1998], all the models presented were studied using

a Bayesian inference approach. Because of the non-linear inverse ALR transforma-

tion, Bayesian method becomes more attractive comparing to the likelihood method.

In this paper, The Bayesian approach and MLE method have the similar results.

However, Bayesain is more attractive when we deal with more complicated settings.

For example, Rayens and Srinivasan [1991a,b] extended Aitchison’s method by in-

corporating the Box-Cox transformation as a generalization of the log-ratio function.

In this situation, likelihood method becomes impractical. Also when we introduce

covariates in the model, the complexity of the model increase rapidly. Therefore,

Bayesian approach is more attractive when we deal with more complicated settings.

We also use a Bayesian approach for our model inference.

Multivariate repeated measures data, or multivariate longitudinal data, are the

data that multiple measurements are made over time on a collection of response vari-

ables on each subject or unit. In our motivation example, PIP study, the percentages

of patients’ white blood compositions were collected over time. Therefore, the data

in this study are also multivariate repeated measures data, and the measurements on

multiple response variables at each time point are compositional data. The sample

space associated with the K-part compositions is the (k − 1) dimensional unit sim-

plex (∇k−1). By using the additive logratio transformation (ALR), we transformed

the longitudinal compositional data into multivariate normal distribution data. We

used the general multivariate linear model for the transformed data. For the compo-

sition with k components, and observed for t time points, the ALR transformed data

follows a multivariate normal distribution with t ∗ (k − 1) dimension. The general

multivariate linear model accounts for all the potential sources of variability that have

an impact on the covariance among repeated measurements on the same individual.



59

That is, the model does not distinguish between-subject and within-subject sources

of variability. Therefore, we need assume only that the variance-covariance matrix Ω

is an arbitrary positive definite matrix. We use a Bayesian approach for model in-

ference, and it is straightforward to define the prior distribution of the unstructured

variance-covariance marix Ω as an inverse Wishart distribution, the most common

prior for a covariance matrix. However, this prior is restrictive and lacks flexibil-

ity. Some researchers have proposed some prior distributions for a covariance matrix

with more flexibility (Leonard and Hsu [1992], Daniels and Kass [1999], Barnard, Mc-

Culloch, and Meng [2000]). However, since these prior distributions lack conjugacy,

these priors may have computational difficulty during parameter estimations. Yang

and Berger [1994] proposed a noninformative prior, and Everson and Morris [2000]

proposed a constrined Wishart prior.

For a K-part composition with t time points, we have a t ∗ (k − 1) × t ∗ (k − 1)

variance-covariance matrix Ω. For an unstructured Ω, the number of parameters

of Ω is (t ∗ (k − 1) × (t ∗ (k − 1) + 1))/2. When the number of parameters becomes

large, estimation of the parameters in the covariance matrix becomes computationally

burdensome. To overcome this problem, some dimension-reduction technics can be

used in future research. The covariance matrix Ω can be re-parameterized as

TΩT ′ = D

where T is a unique unit lower triangular matrix having 1’s on its diagonal and D

is diagonal with positive diagonal entries. The (T,D) re-parametrization covariance

matrix provides flexibility in specifying prior beliefs and also offers conditional con-

jugacy for computations. Daniels and Pourahmadi [2002] proposed a conditionally

conjugate prior distributions for covariance matrices by using the Cholesky decom-
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position and the unconstrained re-parametrization technics. Their priors can shrink

covariance matrix toward a particular structure with considerable flexibility.

The general multivariate linear model accounts for all the potential sources of

variability that have an impact on the covariance among repeated measurements

on the same individual. That is, the model does not distinguish between-subject

and within-subject sources of variability. The general multivariate linear model is

appropriate for balanced longitudinal designs. When each subject is observed at the

same t time points and there is no theoretical or empirical assumption for a special

covariance structure, we only need to assume the covariance matrix is a positive

definite covariance matrix. This approach is attractive even when some observations

are missing or the design is moderately unbalanced across subjects. However, when

the data are highly unbalanced (e.g. subjects are observed at different sets of times),

or incomplete (e.g. missing data), the general multivariate model with unrestricted

covariance structure may not be appropriate for this kind of data set. A powerful

approach to modeling unbalanced longitudinal data is the linear mixed model (Laird

and Ware [1982]). There is no requirement for the balance in the data in the linear

mixed model, and the model can analyze the between and within individual variation.

Comparing to the general multivariate model, the major limitation of the linear mixed

model is the requirement of the special form assumed for the covariance matrix.
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Table 3.3: Sensitivity Analysis: Point estimates of the percentage of CD4+CD8- cell
in the treatment group based on different hyperparameters a and c

Months
0 3 6 9 12 18

a=0.1, c=0.1 0.7354 0.4858 0.4778 0.4569 0.4832 0.4589
a=0.5, c=0.1 0.7328 0.4921 0.4858 0.4585 0.4936 0.4732
a=1.0, c=0.1 0.7323 0.4933 0.4872 0.4586 0.4951 0.4750
a=0.1, c=0.5 0.7331 0.4838 0.4772 0.4565 0.4828 0.4581
a=0.5, c=0.5 0.7324 0.4920 0.4855 0.4587 0.4932 0.4733
a=1.0, c=0.5 0.7322 0.4934 0.4871 0.4592 0.4944 0.4742
a=0.1, c=1.0 0.7302 0.4827 0.4765 0.4561 0.4814 0.4580
a=0.5, c=1.0 0.7315 0.4917 0.4854 0.4582 0.4925 0.4726
a=1.0, c=1.0 0.7315 0.4928 0.4865 0.4584 0.4944 0.4743
a=10, c=10 0.7307 0.4934 0.4866 0.4582 0.4959 0.4747
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Chapter 4

MEASUREMENT ERROR IN

GENERAL MULTIVARIATE

LINEAR MODEL
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4.1 Background

In medical studies, some variables of interest are difficult or expensive to obtain. In-

stead, surrogate variables which can be obtained relatively easy and inexpensive are

recorded and used by researchers in real-life situation. However, these surrogate vari-

ables may contain measurement errors. Examples include blood pressure, cholesterol

serum level, hormone level, and so on. Another example is radioimmunoassay. In

radioimmunoassay, the variable of interest is the molecular level in the sample, but

the observed value is the radioactive count.

Measurement error problems in predictor variables have recently received extensive

attention by researchers. There are many papers about how to correct measurement

errors in regressors in different applications (Carroll and Stefanski [1990]; Brown and

Fuller [1990]; Byar and Gail [1989]; Fuller [1987]). However, there is little litera-

ture about the problem with measurement errors in the response variable. The main

reason is that the problem can be handled with standard methodology if the mea-

surement errors in response variable are additive errors in which the observed values

= true value + error, where the error has mean 0. When the measurement errors

are additive with constant variance, the errors can be ignored in regression analysis

because they can be thought as an extra variance component. However, for many

methods, the measurement error models are complex. The additive errors assump-

tion may not be appropriate. If the measurement error in the response variable is not

unbiased, ignoring the response measurement errors will lead to biased estimates of

the regression parameters.
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4.1.1 Measurement error in the response in the General lin-

ear model

Suppose we want to fit a linear regression model

Y = β0 + βxX + σ2
ε

The variance of Y is σ2
ε . If Y were observed, we can easily estimate β. Now suppose

the true value Y is unobserved, and the observed value we have is U = Y + V , where

V is additive with mean zero and constant variance σ2
v . Then we can simply add

variability, and then U has the same linear regression function as does Y , but the

variance of U becomes σ2
ε + σ2

v .

From the above example, we can see that the response measurement error increases

the variance of the fitted lines without causing bias in the linear regression if the

response measurement error was unbiased and homoscedastic.

Carroll et al. [2006] made a stronger conclusion about unbiased homoscedastic

response measurement error. He pointed out that, in linear or nonlinear regression

that has homoscedastic errors about the true line, the only effects of unbiased ho-

moscedastic response measurement error is increasing the variance of the model, and

decreasing the power for detecting effects.

However, if the response measurement error is not unbiased, ignoring the response

measurement error will lead to biased estimates of the regression parameters. For

example, suppose we want to fit a linear regression model

Y = β0 + βxX + σ2
ε

The mean of true value Y should be β0 +βxX and the variance of Y is σ2
ε . If the true



69

value Y is unobserved, and we only have the observed value U , where U given (Y,X)

follows a normal linear model with mean γ0 + γ1Y and constant variance σ2
v . Then

U is biased in this model, and U follows a normal linear regression model with mean

γ0 + β0γ1 + γ1βxY , and the variance of U becomes σ2
v + γ2

1σ
2
ε . Therefore, ignoring

measurement error in this case will get the estimates γ1βx instead of βx.

The straightforward solution to the biased homoscedastic response measurement

error is adjusting U to unbiased. We can use (U − γ0)/γ1. The problem here is to

obtain information about parameters of measurement error model (γ0, γ1). Buonac-

corsi [1991, 1996] and Buonaccorsi and Tosteson [1993] proposed methods to adjust

biased measurement error in general linear model. They use independent, external

calibration data to estimate the parameters in the measurement error model, and

develop the Pseudo-maximum likelihood estimators and their asymptotic properties

under normality assumptions.

4.1.2 Non-linear response measurement error in linear model

However, the additive measurement error model is not appropriate in some situa-

tions. The measurement error models are more complicated in many measuring meth-

ods(Buonaccorsi [1989, 1990a,b, 1991], Buonaccorsi and Tosteson [1993], Buonaccorsi

[1996], Carroll, Gail, and Lubin [1993], Pepe [1992], Rosner, Spiegelman, and Willett

[1990], Tosteson, Stefanski, and Schafer [1989]). For example, a nonlinear measure-

ment error model is used in radioimmunoassay. Buonaccorsi and Tosteson [1993] de-

scribed pseudo-maximum likelihood estimators and their asymptotic properties when

the nonlinear measurement error model was integrated in the general linear model.

The specific example Buonaccorsi and Tosteson [1993] described involved a com-

parison of serum neopterin levels between human immunodeficiency virus (HIV)-
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positive and HIV-negative individuals. True neopterin levels can not be observed and

are measured through a radioimmunoassay, and the observed value is a radioactive

count. In this example, the measurement error model is nonlinear, a four-parameter

logistic model

g(y, γ) = γ1 +
γ2 − γ1

1 + (exp(Y )/γ3)γ4

was used to fit the calibration curves.

Buonaccorsi and Tosteson [1993] used likelihood-based methods in this nonlinear

measurement error in response problem. To avoid the computational problems associ-

ated with full maximum likelihood estimation, pseudo-maximum likelihood was used

by Buonaccorsi and Tosteson [1993]. Let θ̂ denote the MLE of θ obtained from the

independent, external calibration data. The pseudo-MLE for ξ, denoted ξ̂, maximizes

the likelihood function L(ξ, θ̂) =
∏n
i=1 fUi(ui|xi; ξ, θ̂) in ξ. With this approach, EM

algorithm (Dempster, Laird, and Rubin [1977]) can be used to estimate the pseudo-

MLE for ξ̂. Buonaccorsi and Tosteson [1993] provided the detailed EM algorithm to

get the pseudo-MLE if the true values Y follows a normal linear model.

Under suitable conditions, both the full MLE, ξ̂F , and the pseudo-MLE, ξ̂, are

consistent and asymptotically normal. Therefore, the asymptotic covariance of the

pseudo-MLE ξ̂ can be expressed as

A(ξ̂) = IU(ξ)−1 + IU(ξ)−1IU(ξ, θ)IC(θ)−1IU(θ, ξ)IU(ξ)−1

where IU(ξ) is the information matrix for ξ from the main data, IC(θ) is the infor-

mation matrix for θ from the calibration data.



71

4.1.3 General likelihood methods for response measurement

error

Let fU |Y,X(u|y, x, γ) denote the density or mass function for U given (Y,X). U is a

surrogate response if its distribution depends only on the true response, that means

fU |Y,X(u|y, x, γ) = fU |Y (u|y, γ). All the models we considered in this dissertation are

for surrogate responses only.

The likelihood function for the observed response variable U is

fU |X(u|x, β, γ) =
∫
y
fY |X(y|x, β)fU |Y (u|y, γ)dy

The likelihood function shows that if there is no relationship between the true response

Y and the predictors X, then neither is here a relationship between the observed

response U and the predictors X.

4.1.4 General Multivariate Linear Model

Longitudinal data is obtained when subjects are followed over a period of time, and

for each subject, some variables are measured at multiple time points. The primary

goal of a longitudinal study is to characterize the change in response over time and

the factors that affect the change. Because of the repeated measures on individuals,

the researchers can capture within-individual change. In our motivation example,

the PIP study, the white blood cell counts from the patients’ blood samples were

measured over a period of time. We assume that the true cell count values should

follow a normal distribution since the cell counts range from several hundreds to

several thousands. Therefore, longitudinal analysis should be used because of the

correlation of repeated measurements in one individual. One approach for analyzing
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longitudinal data is the general multivariate model.

In the longitudinal data analysis the data are assumed to be independent over

individual units, but to be correlated over time for a given individual unit. Stan-

dard references for longitudinal linear model were introduced by Hsiao [1986], Diggie,

Liang, and Zeger [1994], Baltagi [1995] and Fitzmaurice, Laird, and Ware [2004].

In the general multivariate linear model, the mean response vector is

E(Yi) = Xiβ,

where the response vector, Y , is assumed to follow a multivariate normal distribution

with covariance matrix

Cov(Yi) = Σi = Σi(η),

where η is a q × 1 vector of covariance parameters.

The log-likelihood function is

L = −K
2
log(2π)− 1

2

N∑
i=1

log|Σi| −
1

2

[
N∑
i=1

(yi −Xiβ)′Σ−1
i (yi −Xiβ)

]
,

where K = (
∑N
i=1 ni) is the total number of observation.

The maximum likelihood (ML) estimate of β is

β̂ =

[
N∑
i=1

(X ′iΣ̂
−1
i Xi)

]−1 N∑
i=1

(X ′iΣ̂
−1
i yi),

where Σ̂i is the maximum likelihood (ML) estimate of Σi(η). The MLE of η is obtained

by maximizing the log-likelihood with respect to η. In general, the equations to

solve η are non-linear, and need an iterative technique, such as the Newton-Raphson

algorithm, to obtain the ML estimate of η.
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The general multivariate linear model accounts for all the potential sources of

variability that have an impact on the covariance among repeated measurements

on the same individual. That is, the model does not distinguish between-subject

and within-subject sources of variability. The general multivariate linear model is

appropriate for balanced longitudinal designs.

4.2 Modeling

Our aim is to extend the measurement error in response in general linear model by

Buonaccorsi to the general multivariate linear measurement error model.

Now we consider the longitudinal data yi1, . . . , yit as the true values over time

periods t. The true value variable y
i

is a t× 1 vector following a multivariate normal

distribution with t dimensions, and y
i
|xi ∼ f(y

i
|xi; ξ), i = 1, . . . , n. Our main interest

is the multivariate linear model

Y i = xiβ + εi

where the εi are the i.i.d t-dimensional normal with mean 0 and covariance Σ. Then

we have

E(Y i) = X iβ,

and

Cov(Y i) = Σi = Σi(η),

where η is a q × 1 vector of covariance parameters.
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The log-likelihood function is

L = −K
2
log(2π)− 1

2

N∑
i=1

log|Σi| −
1

2

[
N∑
i=1

(y
i
−X iβ)′Σ−1

i (y
i
−X iβ)

]
,

where K = (
∑N
i=1 ni) is the total number of observation.

In this model, our main parameters of interest are ξ = (β,Σ(η)). The goal of

model inference is estimating ξ when the true values Y ′s are not observable. The

independent variables xi are assumed fixed and observed without measurement error.

Therefore, our model has measurement error in the dependent variable Y only.

The model is completed by adding the measurement error structure. Suppose

the true value yit is unobservable, and we have observed values uit with measurement

error, where uit is the measured value of true value yit. The measurement error model

is defined as the conditional distribution of U given Y = y. We use independent,

external calibration data to estimate the parameters of measurement error model.

For the ith individual unit at time point t, given Yit = yit, the observed value Uit has

the density function fU |Y (uit|yit; θ). Here we assume the measurement error model is

a normal nonlinear regression model with constant variance which has

U |Y = y ∼ N(g(y, γ), τ 2) (4.1)

The function g(y, γ) is the calibration function with parameters θ = (γ, τ). Then

the marginal density function of observed value U is

fUi(ui|xi; ξ, θ) =
∫
y
fU |Y (ui|yi; θ)fY (y

i
|xi; ξ)dy (4.2)

If the θ is unknown, the main parameters of interest ξ are not identifiable in
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most settings. Therefore, we need either the information of θ or the calibration

data to estimate θ to make ξ identifiable. Assume we have independent, external

calibration data available. In the calibration data (U∗k , Y
∗
k , k = 1, . . . ,m), the Y ∗

are fixed constants (observable and based on standards) and the U∗ are observable

random variable with U∗k have the density function fU |Y (uk|Y ∗k ; θ). The data in the

independent, external calibration dataset are all at one time point, so we assume the

measurement error model and its parameters are the same over time. By using the

external calibration data, we make an assumption of transportability characteristic

when transporting measurement error model to the main data (Carroll, Ruppert, A.,

and M. [2006]). Let θ̂ be the estimator of θ obtained from the calibration data, and

we assume θ is identifiable from the independent, external calibration data.

4.3 Model Inference

4.3.1 Point Estimation Procedure by EM Algorithm

For each subject i, let Y i = Yi1, . . . , Yit be the true values over time periods t. The

true value variable Y i is a t × 1 vector following a multivariate normal distribution

with t dimensions. U i = Ui1, . . . , Uit are the observed variable with measurement

errors.

The full likelihood of the general multivariate linear measurement error model is

L(ξ, θ) = L1(ξ, θ) · L2(θ) (4.3)

where L1(ξ, θ) =
∏n
i=1 fU(ui|xi; ξ, θ) is the likelihood from the main data (U1, . . . , Un)

and L2(θ) =
∏J
j=1 fU |Y (u∗j |y∗j ; θ) is the likelihood from the calibration data. The full

maximum likelihood estimator (MLE) can be obtained by maximizing L(ξ, θ) simul-
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taneously in ξ and θ. However, if the measurement error model is non-linear, the full

MLE is difficult to obtain. Standard methods such as Newton-Raphson will require

the evaluation of many numerical integrations at each iteration. To avoid the compu-

tational problems, we can use the pseudo-maximum likelihood estimation instead of

the full maximum likelihood estimation. In the pseudo-maximum likelihood method,

we use the MLE of θ, θ̂, obtained from the calibration data, and plug in the likelihood

function of the main data, and obtain the pseudo-MLE of the interested parameters

ξ by maximizing L1(ξ, θ̂) =
∏n
i=1 fU(ui|xi; ξ, θ̂) in ξ.

The EM algorithm (Dempster, Laird, and Rubin [1977]) can be used to estimate

the pseudo-MLE for ξ. In the EM-algorithm, the true values Y ’s are not observable

and are treated as the missing values, and the complete data likelihood is

Lc(ξ|u, y) =
n∏
i=1

fY (y
i
|xi; ξ)fU |Y (ui|yi; θ̂) (4.4)

where y
i

=


yi1
...

yit

, is the true values of individual unit i at time 1 to t, and

fY (y
i
|xi; ξ) is the density function of multivariate normal distribution.

Let Q(ξ|ξ∗) = E(logLc(ξ|u, Y )|U = u, ξ∗), and let ξ̂
(a)

denote the estimate of ξ

after a steps. Then we need to find Q(ξ|ξ̂
(a)

) at the E-step and maximize Q(ξ|ξ̂
(a)

) at

the M-step. Given the independence assumption, Q(ξ|ξ̂
(a)

) = E(logLc(ξ|u, Y )|U =

u, ξ̂
(a)

) equals

n∑
i=1

E(logfY (Yi|xi; ξ)|Ui = ui, ξ̂(a)
) +

n∑
i=1

E(logfU |Y (ui|Yi; θ̂)|ui, ξ̂(a)
) (4.5)

Please note that the second term does not involve ξ, and it will not be involved
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in the M-step either. Thus there is no need to calculate it at the E-step. Let

f̂(a)(yi|xi, ui) = fU |Y (ui|yi; θ̂)fY (y
i
|xi; ξ̂(a)

)/fU(ui|xi; ξ̂(a)
, θ̂) (4.6)

denote the estimate of the conditional density of Y i given U i = ui at each ath step.

The estimates of ξ can be derived by the following EM algorithm.

1. Assign starting values to ξ.

2. E-step:

Conditional on U and the current values for ξ̂ calculate the expected value of Y .

We need to calculate E(Y i(a)) =
∫
y
i
f̂(a)(yi|xi, ui)dyi, which can be evaluated

numerically. Here y
i

is t-dimensional vector, and can be integrated out by

multiple integration technique. Monte Carlo algorithm can be used for high

dimensional integration.

The CUBA library has been written by Thomas Hahn (Hahn [2005])in C. In

this paper, we use the CUBA library to implement the Monte Carlo algorithm.

The CUBA library is a library for multidimensional numerical integration using

Monte Carlo methods. The R package ”R2Cuba”, which is an interface to R,

was used to call the CUBA library into R.

3. M-step:

Update ξ̂ by maximizing Q(ξ|ξ̂
(a)

) at given E(Y (a)).

For the general multivariate linear model, the maximum likelihood (ML) esti-

mate of β is

β̂ =

[
N∑
i=1

(X ′iΣ̂
−1
i Xi)

]−1 N∑
i=1

(X ′iΣ̂
−1
i ŷi(a)),

where Σ̂i is the maximum likelihood (ML) estimate of Σi(η). The ML estimate
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of η is obtained by maximizing the log-likelihood with respect to η. In general,

the equations to solve η are non-linear, and need an iterative technique, such

as the Newton-Raphson algorithm, to obtain the ML estimate of η. Standard

statistical software can be used to obtain ξ̂ at this step.

4. Repeat (2) and (3) until convergence.

4.3.2 Asymptotic Covariance

The EM algorithm is convenient for obtaining the estimates. However, unlike Newton-

Raphson algorithm, EM algorithm does not provide a means of estimating the infor-

mation matrix associated with the maximum likelihood estimates. We use the method

of Louis (Louis [1982]) to deduce the information matrix of observed data.

Gong and Samaniego [1981] introduced the theory and applications of pseudo-

MLE. In their paper, they jointly estimate both the nuisance and primary parame-

ters from the data and determine the statistical properties of the primary parame-

ters. The situation from this dissertation is different from the context of Gong and

Samaniego [1981] because the nuisance parameters are estimated from independent

calibration data. The problem can be viewed as one in which nuisance parameters (θ)

are estimated from the independent calibration data and then are treated as known

in calculating estimators for the primary interested parameters (ξ). Therefore, the

asymptotic results for pseudo-MLE, ξ̂ follow from Spall [1989].

Under suitable condition, the pseudo-MLE, ξ̂, is consistent and asymptotically

normal(Spall [1989]). For detail information, please see Appendix A.

Let ω′ = (ξ′, θ′), the information matrix associated with the observed data U =
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(U1, . . . , Un) is

IU(ω) = −E
[
∂2

∂2ω
log

n∏
i=1

fUi(Ui|xi;ω)

]

=

 IU(ξ) IU(ξ, θ)

IU(ξ, θ)′ IU(θ)

 (4.7)

The asymptotic covariance of the pseudo-MLE ξ̂ can be obtained from Theorem

2, Spall [1989], Buonaccorsi and Tosteson [1993], Buonaccorsi [1996], which is

A(ξ̂) = IU(ξ)−1 + IU(ξ)−1IU(ξ, θ)IC(θ)−1IU(θ, ξ)IU(ξ)−1 (4.8)

where IU(ξ) is the information matrix for ξ from the main data, IC(θ) is the infor-

mation matrix for θ from the calibration data. The second term of this formula is

the contribution by the uncertainty in the calibration parameters θ̂, since we use the

MLE of the calibration parameters θ instead of the true value of θ in our estimation

procedure.

When g(y, γ) is linear in y, we can attempt to find a closed form expression for

IU(ω). Otherwise, a closed form expression for IU(ω) does not exist. However it can

be estimated by the observed information matrix

ÎU(ω) = − ∂2

∂2ω
log

∏
fU(Ui|xi;ω)|ξ=ξ̂,θ=θ̂ (4.9)

ÎU(ω) has to be calculated by numerical integration. Buonaccorsi and Tosteson

[1993] used the pseudo-likelihood estimation and developed the asymptotic proper-

ties of pseudo-MLE. The asymptotic results for the pseudo-MLE follow Spall [1989]

and some algebraic simplication. The asymptotic results consider the contribution
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due to uncertainty of parameters in the independent, external calibration data. To

calculate the observed information matrix, he obtained formulas directly via differ-

entiation and simplication. He pointed out the the observed information matrix can

also be obtained by using the approach of Louis method. The effort should be the

same with either approach. In this dissertation, we used the Louis method(Louis

[1982]) to calculate the observed information matrix ÎU(ω). Louis [1982] proposed

a technique for computing the observed information within the EM framework. His

method requires computation of the complete data gradient and second derivative

matrix. Louis [1982] shows that the observed data information matrix

I(ξ̂;u) =
∫
I(ξ;u, y)f(y|u, ξ̂)dy −

∫
{S(ξ;u, y)S(ξ;u, y)T}f(y|u, ξ̂)dy

where S(ξ;u, y) = ∂l(ξ;u, y)/∂ξ, the complete-data score functions, and I(ξ;u, y) =

−∂S(ξ;u, y)/∂ξT , the complete-data information matrix. The first term of this equa-

tion is the conditional expected complete data observed information matrix, and

the 2nd term is the expected information for the conditional distribution of Y . The

equation shows that the observed information is the difference between the complete

information and the missing information to be adjusted for due to the missing data

(Woodbury [1971]).

Then, by using a simplified notation, we have

IU = IY − IY |U

IU defined as the observed information, and this is a more appropriate measure of

information than E(B(U, ξ)), where B is the negative of the 2nd derivative matrix.
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4.4 Simulation Study

A simulation study was conducted to investigate the performance of the proposed

multivariate linear measurement error model. We assume the measurement error

model is normal nonlinear regression model with constant variance which has

U |Y = y ∼ N(g(y, γ), τ 2)

The function g(y, γ) is the calibration function with parameters θ = (γ, τ). We define

function g(y, γ) is a nonlinear, four-parameter logistic model

g(y, γ) = γ1 +
γ2 − γ1

1 + (exp(Y )/γ3)γ4
(4.10)

We define the calibration parameters as γ1 = 0.05, γ2 = 0.55, γ3 = 10.0, γ4 = 4.0,

and τ 2 = 0.0002. The normal error model was used to generate the calibration

data with the sample size M = 9. We define the standard values exp(Y ∗) =

0, 1.25, 2.5, 5, 10, 20, 40, 80 and 160. The estimates of calibration parameters γ and

τ 2 can be obtained by using nonlinear regression from standard statistical software.

To generate the main data, Y1, . . . , Yn were generated as i.i.d from multivariate

normal distribution MVNt(µ,Σ), where µ is a t× 1 mean vector, and Σ is the t× t

variance-covariance matrix. The covariance matrix Σ was defined as


0.02 0.01 0.01

0.01 0.02 0.01

0.01 0.01 0.02

,

and the mean vector µ was defined as


2.303

2.485

2.708

.

We simulated data at sample sizes of 20, 100, and 250. At each sample size, 250
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replicate datasets were generated.

A simple approach to correct measurement error is using adjusted/imputed values

obtained from the fitted calibration curve. Assuming the inverse of the calibration

function is defined, then the ijth adjusted/imputed value of the true value Ŷij =

g−1(Uij, γ̂), where g is the calibration curve. The adjusted values are obtained by

inverting the observed values using the fitted calibration curve. This approach ignores

some aspects of the measurement error but may suffice if the measurement error

variance is sufficiently small.

In the simulation study, we used the same calibration function g, a nonlinear,

four-parameter logistic model. Then the adjusted value is defined as

Ŷij = g−1(Uij, γ̂) = lnγ̂3 +
1

γ̂4

ln(
γ̂2 − γ̂1

Uij − γ̂1

− 1) (4.11)

In the simulation study, the estimators of pseudo-MLEs method and adjusted

values methods were obtained. For the adjusted values methods, the estimators were

obtained by using the sample mean and sample covariance of the adjusted values.

Let ΣA denotes the sample variance-covariance of the adjusted values. E(ΣA) ≈ Σ +

h
′
τ 2Ih rather than Σ, where h = ∂g−1(U, γ)/∂U . This shows that ΣA overestimates

Σ. The analysis using adjusted values is not always based on 250 replicate datasets,

because the adjusted values were not always defined for some observations in some

cases. For the calibration curve we used, the fitted calibration curve is bounded

between the high value of γ̂3 and the low value of γ̂1. Then if the Uij falls out this

range, the adjusted value does not exist. If this situation happened for any of the

observations, the whole simulated dataset was deleted. The number of the simulated

datasets used is showed in the Tables. The point estimates of the parameters are

showed in Table 4.1 and 4.2. For the mean parameter µ, the differences between the
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two approaches are relatively small. But for the variance-covariance matrix Σ, the

adjusted value approach tends to overestimate the parameters.

A larger value of τ 2 is also used in the simulation study. Sometimes the adjusted

values do not exist in the adjustd value approach. If this situation happened for

any of the observation, the whole simulated dataset was deleted. When we used a

larger value of τ 2, too many datasets were deleted because of the non-existence of the

adjusted values, and no valid estimates can be obtained from the simulation study.

Therefore, only the results from PML approach were showed.

To construct the 95% confidence region, we uses the mean of the adjusted values

and the sample variance-covariance matrix for the adjusted value approach. Let

Ȳ A denotes the mean of the adjusted values, and S denotes the sample variance-

covariance matrix of the adjusted values respectively. Then for (n − t) is large, we

have an approximate 95% confidence region for µ is given by the set of all µ such that

n(Ȳ A − µ)′S−1(Ȳ A − µ) ≤ χ2
t,0.05

In the Adjusted values approach, we use the diagonal elements of S/n as the

squared standard errors. To construct the 95% confidence intervals, we use the mean

of the adjusted values with the standard errors of [diag(S/n)]1/2.

For the pseudo-MLEs method, the approximate 95% confidence region for µ is

given by the set of all µ such that

(µ̂− µ)′Σ̂−1(µ̂− µ) ≤ χ2
t,0.05

where µ̂ is the pseudo-MLE of µ and Σ̂ is the estimators of variance-covariance of µ̂

obtained by Louis method. The estimated coverage rates were showed in the Table
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4.3. From the simulation results, we can see that the coverage rates of adjusted value

approach are lower than the coverage rates of pseudo-MLE approach. The coverage

rates of the adjusted value approach decrease when sample size n increases. Appar-

ently, simply using the adjusted value approach to estimate the variance-covariance

matrix and constructing the confidence regions is not appropriate.
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4.5 Real-life Example

Our motivation study is the Protective Immunity Project (PIP) conducted at the

Emory Transplant Center(Larsen and Ahmed [2005]). In the PIP study, the inves-

tigators enrolled 60 patients aged 18-59 years old who had renal transplantation at

Emory University transplant center. This study began in 2005 and ended in 2011.

The investigators enrolled 60 patients aged 18-59 years old who had renal transplan-

tation at Emory University transplant center. They also enrolled 20 age-, sex- and

race-matched healthy volunteers into control groups. All subjects enrolled in this

study were followed for two years, and multiple blood samples were collected at base-

line, 3 months, 6 months, 9 months, 12 months, 18 months and 24 months. The

blood samples were analyzed with Flow cytometry. The total counts of white blood

cells and the counts of subcategories of white blood cells were recorded based on cell

surface markers. However, the cell counts obtained from the flow cytometer may

contain measurement errors. Our goal is correcting the measurement errors in count

data and obtaining the estimates of true cell counts. Right now we have data from

23 subjects. Because of the missing data issue in the later follow-up times, we only

analyze the cell counts from baseline, 3 months and 6 months at this time. To correct

the measurement errors in the cell counts obtained from the flow cytometer, we also

need calibration data to estimate the parameters of measurement error model. In the

calibration data, we have the leukocytes counts obtained from the flow cytometer.

True leukocytes counts are obtained through a clinical approach which is treated as

the gold standard approach. Figure 4.1 displays the calibration data and the fitted

calibration line. The x-axis represents the log of the leukocytes counts from the clini-

cal approach, which is treated as the gold standard method. The y-axis represents the

log of the leukocytes counts from flow cytometer, which may contain measurement
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errors. From the figure, we can see that a linear regression model can be used to fit

the calibration data. Based on the calibration data, the measurement error model we

used is

g(y, β) = β0 + β1y

where y is the log of leukocytes counts.

Figure 4.1: Calibration data and fitted calibration line

Now we consider the main data yi1, . . . , yit are the true values of the log of leuko-

cytes counts over time periods t, t=3. The true value variable y
i

is a t × 1 vector

following a multivariate normal distribution with t dimensions, and y
i
| ∼ f(y

i
; ξ), i =
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1, . . . , n. Our main interest is the multivariate linear model

Y i = µ+ εi

where the εi are the i.i.d t-dimensional normal with mean 0 and covariance Σ.

The measurement error model is defined as the conditional distribution of U given

Y = y.

U |Y = y ∼ N(g(y, β), τ 2)

The function g(y, β) is the calibration function with parameters θ = (β, τ). Table

4.4 shows the estimates of calibration parameters obtained from the calibration data.

Table 4.5 shows the analysis from the pseudo-MLE approach and from the analysis

of the adjusted values approach. The results show that the adjusted values approach

tends to produce smaller standard errors than the pseudo-MLE approach.

4.6 Discussion

In this chapter, our objective is to propose likelihood based estimators for general

multivariate linear model when non-linear measurement errors exist in the response

variables. The observed response variables are related to the true values through a

non-linear regression model, and the parameters in the measurement error model are

estimated by using independent, external calibration data. The full MLE method

maximize the full likelihood L(ξ, θ). Obtaining the full MLE may be cumbersome. If

we use the standard approaches such as Netwon-Raphson or scoring methods, we need

to evaluate numerical integrals at each iteration. However, if we use the EM algorithm,

the E-step does not have a closed form solution if the measurement error model is

nonlinear. Under this situation, using Em algorithm to obtain pseudo-MLE is relative
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easy in computation. To avoid computational issues, we used the pseudo-maximum

likelihood estimators and described their asymptotic properties under normal as-

sumptions. The expression of the asymptotic covariance matrix of the pseudo-MLE

avoids calculating ÎU(θ), which can be tedious to obtain. If the standard approach,

i.e. Newton-Raphson algorithm, was used for computing the full MLE, ÎU(θ) has

to be calculated at every iteration. If the Newton-Raphson algorithm was used for

computing the Pseudo-MLE, ÎU(ξ) has to be calculated at every iteration. For the

EM algorithm, ÎU(ξ) is only needed to calculate at the last iteration.

A simulation study was conducted to evaluate the performance of the PML es-

timators and the adjusted value method, which simply analyzes the adjusted values

obtained from the fitted calibration curve.

The naive analysis using the adjusted values is a common practice. If the ad-

justed value Ŷ = Y + ε, where the ε is i.i.d. with mean 0 and common variance,

the inferences for β are correct. In this situation, the naive analysis provides a rea-

sonable approximation. However, this situation does not hold exactly all the time.

In general, Ŷ is biased for Y . In some times, E(Ŷ ) may not exist as we saw in the

simulation study. Only if the measurement error model is a normal linear model, the

exact results are available (Buonaccorsi [1991]). In that situation, the point estimates

for β are consistent, but the confidence intervals of β are too small. However, if the

measurement error model is non-linear, estimates of β obtained from the adjusted

values are not only biased, but also are inconsistent with the asymptotic bias de-

pending on the curvature of the response curve, and the measurement error variance

(Buonaccorsi [1996]). In practice, the bias in estimated coefficients is often modest,

then using adjusted values is attractive for its simplicity.

The simulation results show that simply using the adjusted value is not appropri-
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ate when estimating the variance-covariance matrix and constructing the confidence

regions. The coverage rates of the adjusted values method decrease as the sample

size n increases.
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Table 4.2: Simulation results of point estimates of covariance matrix based on 250
replicates, k is the number of replicates used for Adjusted Value approach.

PML Adjusted Value
Parameters n True value Estimate S.D. Estimate S.D. k

σ11 20 0.02 0.021 0.007 0.021 0.007 246
σ12 0.01 0.011 0.005 0.0098 0.005
σ13 0.01 0.010 0.003 0.010 0.006
σ22 0.02 0.022 0.008 0.021 0.008
σ23 0.01 0.011 0.006 0.011 0.006
σ33 0.02 0.021 0.006 0.025 0.013
σ11 100 0.02 0.020 0.006 0.021 0.003 234
σ12 0.01 0.010 0.004 0.0098 0.002
σ13 0.01 0.0098 0.002 0.011 0.002
σ22 0.02 0.021 0.008 0.021 0.003
σ23 0.01 0.010 0.004 0.011 0.003
σ33 0.02 0.021 0.005 0.024 0.006
σ11 250 0.02 0.021 0.005 0.022 0.0019 214
σ12 0.01 0.010 0.003 0.011 0.0014
σ13 0.01 0.0099 0.002 0.011 0.0011
σ22 0.02 0.021 0.008 0.021 0.0014
σ23 0.01 0.011 0.003 0.012 0.0013
σ33 0.02 0.021 0.003 0.025 0.0025

Table 4.3: Estimated coverage rates of approximate 95 percent confidence regions for
mean vector based on 250 replicates, k is the number of replicates used for Adjusted
Value approach.

Parameters n PML Adjusted Value k

µ
20 0.9126 0.8821 246
100 0.9204 0.8785 234
250 0.9337 0.7333 214
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Table 4.4: Simulation results of point estimates of mean vector based on 250 replicates
with larger τ 2 = 0.02

PML
Parameters n True value Estimate Mean Std error 95% coverage

µ1 20 2.303 2.308 0.049 0.873
µ2 2.485 2.491 0.053 0.896
µ3 2.708 2.712 0.059 0.862
µ1 100 2.303 2.309 0.036 0.907
µ2 2.485 2.489 0.034 0.914
µ3 2.708 2.709 0.041 0.895
µ1 250 2.303 2.305 0.021 0.928
µ2 2.485 2.483 0.027 0.917
µ3 2.708 2.709 0.031 0.934

Table 4.5: Estimated calibration parameters with standard errors from the calibration
data

Parameters Estimates Standard errors

β̂0 1.498 0.694

β̂1 0.816 0.0856
τ 2 0.0781

Table 4.6: Analysis of real data using pseudo-MLE and adjusted values approaches

PML Adjusted Value
Parameters Estimate S.E. Estimate S.E.

µ1 8.678 0.0767 8.671 0.0731
µ2 8.404 0.0880 8.401 0.0845
µ3 8.441 0.0894 8.445 0.0886
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5.1 Background

5.1.1 Measurement Error in Response Variables

In medical studies, some variables of interest are difficult or expensive to obtain.

Instead, surrogate variables which can be obtained relatively easy and inexpensive

are recorded and used by researchers in real-life situation. However, these surrogate

variables may contain measurement errors. The examples include blood pressure,

cholesterol serum level, hormone level, and so on. A typical example can be found

in radioimmunoassay. In radioimmunoassay, the variable of interest is the molecular

level in the sample, but the observed value is the radioactive count. The molecular

level in the sample can not be tested directly, and the observed radioactive counts

may contain measurement errors.

Measurement error problems in predictor variables have recently received extensive

attention by researchers. There are many papers about how to correct measurement

errors in regressors in different applications (Carroll and Stefanski [1990]; Brown and

Fuller [1990]; Byar and Gail [1989]; Fuller [1987]). However, there is little litera-

ture about the problem with measurement errors in the response variable. The main

reason is that the problem can be handled with standard methodology if the mea-

surement errors in response variable are additive errors in which the observed values

= true value + error, where the error has mean 0. When the measurement errors

are additive with constant variance, the errors can be ignored in regression analysis

because they can be thought as an extra variance component. However, for many

measuring methods, the measurement error models are complex. The additive er-

rors assumption may not appropriate. If the measurement error in response variable

is biased, ignoring the response measurement errors will lead to biased estimates of
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the regression parameters. Buonaccorsi [1991, 1996] and Buonaccorsi and Tosteson

[1993] proposed methods to adjust the nonlinear biased measurement errors in re-

sponse variables in the general linear model. Buonaccorsi and Tosteson [1993] used

the likelihood based method to adjust the nonlinear biased measurement error in the

response variable. We propose a likelihood-based method to correct the measurement

errors in response variables in the general multivariate linear model setting in Chap-

ter 4. In this chapter, we propose a Bayesian method to adjust the nonlinear biased

measurement errors in the response variables in the general multivariate linear model

setting.

5.1.2 Bayesian methods for measurement errors

Bayesian methods have become a highly popular and powerful tool in statistical

analysis over the past twenty years. We will give a brief introduction of Bayesian

methods in the measurement error problems, and how to formulate measurement

error models by using Bayesian methods.

There are five steps for measurement error problems in the Bayesian approach.

• Step 1: Select the likelihood model. We must specify a parametric model for

every component of the data, and we assume the true unobservable values Y

were observable in the model.

• Step 2: Select the measurement error model. We need to decide which measure-

ment error model should be used. The error model could be a classical error

model, or a Berkson model. We need to specify the distribution for the true

unobservable values Y , if we choose a classical error model.

• Step 3: Form the likelihood function. At this step, we form the likelihood
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function of all the data, including the observed data U with measurement error,

and the true unobservable data Y . We form the complete likelihood function

as if Y were available.

• Step 4: Select the priors. In the Bayesian analysis, we treat the parameters as

random variables. Therefore, we need to establish prior distributions for these

parameters. The true unobservable variables Y are treated as missing data, and

can be imputed by drawing from the full conditional distribution of Y given all

the other variables.

• Step 5: Compute full conditionals. The full conditionals are the distributions

of the parameters, and the Y values, given everything else in the model. Given

the prior distributions and all the observed data, we can get the posterior dis-

tribution of parameters. Markov Chain Monte Carlo (MCMC) methods can

be used to compute Bayesian quantities. Gibbs sampler can be used to draw

samples from the full conditionals. If we do not have conditional conjugancy,

we can use Metropolis-Hasting algorithm.

5.2 Modeling

Our purpose in this chapter is proposing a Bayesian method to adjust the measure-

ment errors in response variables in the general multivariate linear model.

Now we consider the longitudinal data yi1, . . . , yit as the true values over time

periods t. The true value variable y
i

is a t× 1 vector following a multivariate normal

distribution with t dimensions, and y
i
| ∼ f(y

i
; ξ), i = 1, . . . , n. Our main interest is

the multivariate linear model

Y i = µ+ εi
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where the εi are i.i.d t-dimensional normal random variables with mean 0 and covari-

ance Σ. Then the joint density function of yi1, yi2, . . . , yit is

p(y|µ,Σ) =
(

1

2π

) t
2

|Σ|−
1
2 exp

[
−1

2

(
y − µ

)T
Σ−1

(
y − µ

)]
(5.1)

In this model, our main parameters of interest are ξ = (µ,Σ(η)). The goal of the

model inference is estimating ξ while the true values Y ′s are not observable. The

independent variables xi are assumed fixed and observed without measurement error.

Therefore, our model has measurement error in the dependent variable Y only.

Suppose the true value yit is unobservable, and we have observed values uit with

measurement error, where uit is the measured value of true value yit. The mea-

surement error model is defined as the conditional distribution of U given Y = y.

Independent calibration data is needed to estimate the parameters of measurement

error model. For the ith individual unit at time point t, Given Yit = yit, the observed

value Uit has the density function fU |Y (uit|yit; θ). Here we assume the measurement

error model is a normal nonlinear regression model with constant variance which has

U |Y = y ∼ N(g(y, γ), τ 2)

The function g(y, γ) is the calibration function with parameters θ = (γ, τ). We define

function g(y, γ) is a nonlinear, four-parameter logistic model

g(y, γ) = γ1 +
γ2 − γ1

1 + (exp(Y )/γ3)γ4
(5.2)

The complete density function of Y and U is

f(Y , U |µ,Σ, γ, τ 2) =
(

1

2π

) t
2

|Σ|−
1
2 |τ 2I|−

1
2
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×exp
[
−1

2

(
y − µ

)T
Σ−1

(
y − µ

)]
×exp

[
−1

2

(
u− g(y, γ)

)T
(τ 2I)−1

(
u− g(y, γ)

)]
(5.3)

Assume we have independent, external calibration data available. In the calibra-

tion data (U∗j , Y
∗
j , j = 1, . . . ,m), the Y ∗ are fixed constants (observable and based

on gold standards) and the U∗ are observable random variables with U∗j having the

density function fU |Y (U∗j |Y ∗j ; θ). The data in the independent, external calibration

dataset are all at one time point, so we assume the measurement error model and its

parameters are the same over time. By using the independent, external calibration

data, we make an assumption of transportability characteristic when transporting

measurement error model to the main data (Carroll, Ruppert, A., and M. [2006]).

Let θ̂ be the estimator of θ obtained from the calibration data, and we assume θ is

identifiable from the independent, external calibration data. The density function of

U∗ is

f(U∗|Y ∗, γ, τ 2) =
(

1

2πτ 2

) 1
2

exp
[
− 1

2τ 2

(
U∗ − g(Y ∗, γ)

)2
]

(5.4)

Combining the main data and the independent calibration data, the complete

likelihood is

f(Y , U, U∗, Y ∗|µ,Σ, γ, τ 2) =
(

1

2π

)nt
2

|Σ|−
n
2 |τ 2I|−

n
2

×exp
[
−1

2

n∑
i=1

(
yi − µ

)T
Σ−1

(
yi − µ

)]

×exp
[
−1

2

n∑
i=1

(
ui − g(y

i
, γ)

)T
(τ 2I)−1

(
ui − g(y

i
, γ)

)]

×
(

1

2πτ 2

)m
2

exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , γ)

)2


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(5.5)

5.3 Model Inference

We can use Bayesian method for making inference about unknown parameters and

also unobservable true variables Y .

To implement Bayesian approach, we need to specify the prior distributions for

all the unknown parameters in the model. The unknowns in this model are (µ,Σ),

(y
1
, y

2
, . . . , y

t
), and (γ, τ). In the Bayesian approach, we treat the true unobserv-

able variable Y as missing data, and impute Y multiple times by drawing from the

conditional distribution of Y given all other variables. The priors we will use are

µ ∼ Normalt(0, σ
2
µIt)

Σ−1 ∼ Wishart(Ψ−1, ρ)

τ 2 ∼ IG(α, β)

γ1, γ2, γ3, γ4 ∼ Normal(0, σ2
γ)

(5.6)

Here, IG is the inverse gamma density function, Ψ is a t × t positive definite

matrix, and ρ denotes the degrees of freedom of the Wishart distribution. It is the

t × t identity matrix. The hyperparameters σ2
µ, σ2

γ can be chosen to be large, and

the hyperparameters α, β can be chosen to be small, so that the priors are relatively

noninformative.

The joint density function of all observed data and all unknown quantities (pa-

rameters and the true unobservable variable Y ) is the product of the joint likelihood
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and the joint priors.

To find the full conditional for µ, we isolate the terms depending on µ in this joint

density. Then we can write the full conditional of µ given all the other parameters.

f(µ| . . .) ∝ exp

[
−1

2

n∑
i=1

(
y
i
− µ

)T
Σ−1

(
y
i
− µ

)
− 1

2

(
µT (σ2

µI)−1µ
)]

(5.7)

where the first term in the exponent comes from the likelihood and the second term

comes from the prior. After some rearrangements, we find that the full conditional

distribution of µ is a multivariate normal distribution with mean

[
(σ2

µIt)
−1 + nΣ−1

]−1
[
nΣ−1 1

n

n∑
i=1

(y
i
)

]

and variance-covariance matrix

[
(σ2

µIt)
−1 + nΣ−1

]−1
.

Similarly, we can find the full conditional of Σ−1 given all the other parameters.

f(Σ−1| . . .) ∝ |Σ|−
ρ
2 exp

{
−1

2

[
n∑
i=1

(y
i
− µ)TΣ−1(y

i
− µ) + tr(ΨΣ−1)

]}
(5.8)

After some rearrangements, we find that the full conditional distribution of the

variance-covariance matrix Σ is an inverse Wishart distribution with parameter ma-

trix (V + Ψ), where

V =

[
n∑
i=1

y
i
− µ

] [
n∑
i=1

y
i
− µ

]T

and degrees of freedom is n+ ρ.
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The full conditional of τ 2 is

f(τ 2| . . .) ∝ |τ 2It|−
n
2 exp

[
−1

2

n∑
i=1

(ui − g(y, γ))T (τ 2It)
−1(ui − g(y, γ))

]

×
(
τ 2
)−m

2 exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , γ)

)2

 (τ 2)−(α+1)exp(
β

τ 2
)

(5.9)

which implies that the full conditional distribution of τ 2 is an inverse gamma dis-

tribution with the shape parameter is α + n∗t+m
2

, and the scale parameter is β +

1
2

∑n
i=1

∑T
t=1[ui,t − g(yi,t, γ)]2 + 1

2

∑m
j=1[U∗j − g(Y ∗j , γ)]2.

The full conditional for the true unobservable variable yi is

f(y
i
| . . .) ∝ exp

[
−1

2

(
y
i
− µ

)T
Σ−1

(
y
i
− µ

)]
×exp

[
−1

2

(
ui − g(y

i
, γ)

)T
(τ 2I)−1

(
ui − g(y

i
, γ)

)]
(5.10)

Since g(y
i
, γ) is a nonlinear function in y, the full conditional of Y can not be

expressed as a known family of distributions. Therefore, we can use Metropolis-

Hasting (MH) algorithm to update Y . To update y
i
, we use a random walk MH step

using Normal(y
i
, BΣ) as the proposal density, where B is the dispersion factor. B

should be chosen to make sure a reasonable acceptance rate.

The full conditional for the γ1 is

f(γ1| . . .) ∝ exp

[
−1

2

n∑
i=1

T∑
t=1

(
uit − g(yit, γ)

)T
(τ 2)−1

(
uit − g(yit, γ)

)]

×exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , γ)

)2

 exp [− γ2
1

2σ2
γ

]
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(5.11)

Similarly, the full conditional for the γ2, γ3 and γ4 are

f(γ2| . . .) ∝ exp

[
−1

2

n∑
i=1

T∑
t=1

(
uit − g(yit, γ)

)T
(τ 2)−1

(
uit − g(yit, γ)

)]

×exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , γ)

)2

 exp [− γ2
2

2σ2
γ

]
(5.12)

f(γ3| . . .) ∝ exp

[
−1

2

n∑
i=1

T∑
t=1

(
uit − g(yit, γ)

)T
(τ 2)−1

(
uit − g(yit, γ)

)]

×exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , γ)

)2

 exp [− γ2
3

2σ2
γ

]
(5.13)

f(γ4| . . .) ∝ exp

[
−1

2

n∑
i=1

T∑
t=1

(
uit − g(yit, γ)

)T
(τ 2)−1

(
uit − g(yit, γ)

)]

×exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , γ)

)2

 exp [− γ2
4

2σ2
γ

]
(5.14)

The full conditionals of γ1, γ2, γ3 and γ4 can not be expressed as a known family

of distributions. Therefore, we can use Metropolis-Hasting algorithm to update γ’s.

To update γ’s, we use a random walk MH step using Normal(γi, Bσ
2
γ), i = 1, 2, 3, 4 as

the proposal density, where B is the dispersion factor. B should be chosen to ensure
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a reasonable acceptance rate.

We now summarize the Gibbs sampler and Metropolis algorithm for this model.

Given the current state (Y (k), µ(k)
,Σ(k), τ

2
(k), γ1−4,(k)) of the Markov chain, we execute

the following:

• 1. Sample the unobserved true Y k+1 from above mentioned posterior distribu-

tion;

• 2. Sample µ
(k+1)

from the posterior distribution;

• 3. Sample Σ(k+1) from the posterior distribution;

• 4. Sample τ 2
(k+1) from the posterior distribution;

• 5. Sample γ1−4,(k+1) from their respective posterior distribution.

• 6. Take (Y (k+1), µ(k+1)
,Σ(k+1), τ

2
(k+1), γ1−4,(k+1)) as the current state and return

to step 1.

The sampling procedure requires the starting values for the unknown parameters

and unobservable true values Y ’s. For γ1−4, τ 2, we can use estimates from the regres-

sion of U∗ on Y ∗ based on the calibration data. For the starting values of Y , we can

use the adjusted/imputed value of Y . The adjusted values are obtained by inverting

the observed values using the fitted calibration curve. Assuming the inverse of the

calibration function is defined, then the ijth adjusted/imputed value of the true value

Ŷij = g−1(Uij, γ̂), where g is the calibration curve. Although this approach ignores

some aspects of the measurement error, it may suffice since Ŷ ’s are being used only

as starting values. µ and Σ can be started at the sample mean and sample covariance

of the starting values of the Y ’s.
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5.4 Simulation Study

A simulation study was conducted to investigate the performance of the proposed

Bayesian approach multivariate linear measurement error model. We assume the

measurement error model is a normal nonlinear regression model with constant vari-

ance which has

U |Y = y ∼ N(g(y, γ), τ 2)

The function g(y, γ) is the calibration function with parameters θ = (γ, τ). We define

function g(y, γ) is a nonlinear, four-parameter logistic model

g(y, γ) = γ1 +
γ2 − γ1

1 + (exp(Y )/γ3)γ4
(5.15)

We define the calibration parameters as γ1 = 0.05, γ2 = 0.55, γ3 = 10.0, γ4 = 4.0,

and τ 2 = 0.0002. The normal error model was used to generate the calibration

data with the sample size M = 9. We define the standard values exp(Y ∗) =

0, 1.25, 2.5, 5, 10, 20, 40, 80 and 160. The estimates of calibration parameters γ and

τ 2 can be obtained by using nonlinear regression from standard statistical software.

To generate the main data, Y1, . . . , Yn were generated as i.i.d from multivariate

normal distribution MVNt(µ,Σ), where µ is a t× 1 mean vector, and Σ is the t× t

variance-covariance matrix. The covariance matrix Σ was defined as


0.02 0.01 0.01

0.01 0.02 0.01

0.01 0.01 0.02

,

and the mean vector µ was defined as


2.303

2.485

2.708

.

We simulated data at sample sizes of 20, 100, and 250. At each sample size, 250



105

replicate datasets were generated.

A simple approach to correct measurement error is using adjusted/imputed values

obtained from the fitted calibration curve. Assuming the inverse of the calibration

function is defined, then the ijth adjusted/imputed value of the true value Ŷij =

g−1(Uij, γ̂), where g is the calibration curve. The adjusted values are obtained by

inverting the observed values using the fitted calibration curve. This approach ignores

some aspects of the measurement error but may suffice if the measurement error

variance is sufficiently small.

In the simulation study, we used the same calibration function g, a nonlinear,

four-parameter logistic model. Then the adjusted value is defined as

Ŷij = g−1(Uij, γ̂) = lnγ̂3 +
1

γ̂4

ln(
γ̂2 − γ̂1

Uij − γ̂1

− 1) (5.16)

The point estimates of the parameters are showed in Table 5.1 and 5.2. For the

mean parameter µ, the differences between the two approaches are relatively small.

But for the variance-covariance matrix Σ, the estimates from the adjusted value

approach tend to overestimate the parameters.
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The estimated coverage rates were showed in the Table 5.3. From the simulation

results, we can see that the coverage rates of adjusted value approach are lower

than the coverage rates of Bayesian approach. The coverage rates of the adjusted

value approach decrease when sample size n increases. Apparently, simply using the

adjusted value approach to estimate the variance-covariance matrix and constructing

the confidence regions is not appropriate.

5.5 Real-Life Example

Our motivation study is the Protective Immunity Project (PIP) conducted at the

Emory Transplant Center(Larsen and Ahmed [2005]). In the PIP study, the inves-

tigators enrolled 60 patients aged 18-59 years old who had renal transplantation at

Emory University transplant center. This study began in 2005 and ended in 2011.

The investigators enrolled 60 patients aged 18-59 years old who had renal transplan-

tation at Emory University transplant center. They also enrolled 20 age-, sex- and

race-matched healthy volunteers into control groups. All subjects enrolled in this

study are followed for two years, and multiple blood samples were collected at base-

line, 3 months, 6 months, 9 months, 12 months, 18 months and 24 months. The

blood samples were analyzed with Flow cytometry. The total counts of white blood

cells and the counts of subcategories of white blood cells were recorded based on the

cell surface markers. However, the cell counts obtained from the flow cytometer may

contain measurement errors. Our goal is correcting the measurement errors in count

data and obtaining the estimates of true cell counts. Right now we have data from

23 subjects. Because of the missing data issue in the later follow-up times, we only

analyze the cell counts from baseline, 3 months and 6 months at this time. To correct

the measurement errors in the cell counts obtained from the flow cytometer, we also
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need the calibration data to estimate the parameters of measurement error model. In

the calibration data, we have the leukocytes counts obtained from the flow cytometer.

True leukocytes counts are obtained clinically, and are treated as the gold standard.

Based on the calibration data, the measurement error model we used is

g(y, β) = β0 + β1y

where y is the log of leukocytes counts.

Now we consider the main data yi1, . . . , yit as the true values of the log of leukocytes

counts over time periods t, t=3. The true value variable y
i

is a t× 1 vector following

a multivariate normal distribution with t dimensions, and y
i
| ∼ f(y

i
; ξ), i = 1, . . . , n.

Our main interest is the multivariate linear model

Y i = µ+ εi

where the εi are the i.i.d t-dimensional normal with mean 0 and covariance Σ.

The measurement error model is defined as the conditional distribution of U given

Y = y.

U |Y = y ∼ N(g(y, β), τ 2)

The function g(y, β) is the calibration function with parameters θ = (β, τ).

Combining the main data and the calibration data, the complete likelihood is

f(Y , U, U∗, Y ∗|µ,Σ, γ, τ 2) =
(

1

2π

)nt
2

|Σ|−
n
2 |τ 2I|−

n
2

×exp
[
−1

2

n∑
i=1

(
yi − µ

)T
Σ−1

(
yi − µ

)]

×exp
[
−1

2

n∑
i=1

(
ui − g(y

i
, β)

)T
(τ 2I)−1

(
ui − g(y

i
, β)

)]
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×
(

1

2πτ 2

)m
2

exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , β)

)2


(5.17)

where U , Y are from the main data, and U∗, Y ∗ are from the calibration data.

To implement the proposed Bayesian approach, we need to specify the prior dis-

tribution for all the unknown parameters. The priors we will use are

µ ∼ Normalt(0, σ
2
µIt)

Σ−1 ∼ Wishart(Ψ−1, ρ)

τ 2 ∼ IG(α, β)

β0, β1 ∼ Normal(0, σ2
β)

(5.18)

Here, IG is the inverse gamma density function, Ψ is a t × t positive definite

matrix, and ρ denotes the degrees of freedom of the Wishart distribution. It is the

t × t identity matrix. The hyperparameters σ2
µ, σ2

β can be chosen to be large, and

the hyperparameters α, β can be chosen to be small, so that the priors are relatively

noninformative.

The full conditional of µ given all the other parameters is

f(µ| . . .) ∝ exp

[
−1

2

n∑
i=1

(
y
i
− µ

)T
Σ−1

(
y
i
− µ

)
− 1

2

(
µT (σ2

µI)−1µ
)]

(5.19)

where the first term in the exponent comes from the likelihood and the second term

comes from the prior. After some rearrangement, we find that the full conditional
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distribution of µ is a multivariate normal distribution with mean

[
(σ2

µIt)
−1 + nΣ−1

]−1
[
nΣ−1 1

n

n∑
i=1

(y
i
)

]

and variance-covariance matrix

[
(σ2

µIt)
−1 + nΣ−1

]−1
.

Similarly, we can find the full conditional of Σ−1 given all the other parameters.

f(Σ−1| . . .) ∝ |Σ|−
ρ
2 exp

{
−1

2

[
n∑
i=1

(y
i
− µ)TΣ−1(y

i
− µ) + tr(ΨΣ−1)

]}
(5.20)

After some rearrangement, we find that the full conditional distribution of the variance-

covariance matrix Σ is an inverse Wishart distribution with parameter matrix (V +Ψ),

where

V =

[
n∑
i=1

y
i
− µ

] [
n∑
i=1

y
i
− µ

]T

and degrees of freedom is n+ ρ.

The full conditional of τ 2 is

f(τ 2| . . .) ∝ |τ 2It|−
n
2 exp

[
−1

2

n∑
i=1

(ui − g(y, β))T (τ 2It)
−1(ui − g(y, β))

]

×
(
τ 2
)−m

2 exp

− 1

2τ 2

m∑
j=1

(
U∗j − g(Y ∗j , β)

)2

 (τ 2)−(α+1)exp(
β

τ 2
)

(5.21)

which implies that the full conditional distribution of τ 2 is an inverse gamma dis-

tribution with the shape parameter is α + n∗t+m
2

, and the scale parameter is β +

1
2

∑n
i=1

∑T
t=1[ui,t − g(yi,t, β)]2 + 1

2

∑m
j=1[U∗j − g(Y ∗j , β)]2.
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The full conditional for the true unobservable variable y
i

is

f(y
i
| . . .) ∝ exp

[
−1

2

(
y
i
− µ

)T
Σ−1

(
y
i
− µ

)]
×exp

[
−1

2

(
ui − g(y

i
, β)

)T
(τ 2I)−1

(
ui − g(y

i
, β)

)]
(5.22)

The full conditional for the β0 is

f(β0| . . .) ∝ exp

[
−1

2

n∑
i=1

T∑
t=1

(uit − β0 − β1yit))
T (τ 2)−1 (uit − β0 − β1yit))

]

×exp

− 1

2τ 2

m∑
j=1

(
U∗j − β0 − β1Y

∗
j )
)2

 exp [− β2
0

2σ2
β

]
(5.23)

Similarly, the full conditional for the β1 is

f(β1| . . .) ∝ exp

[
−1

2

n∑
i=1

T∑
t=1

(uit − β0 − β1yit))
T (τ 2)−1 (uit − β0 − β1yit))

]

×exp

− 1

2τ 2

m∑
j=1

(
U∗j − β0 − β1Y

∗
j )
)2

 exp [− β2
1

2σ2
β

]
(5.24)

After some rearrangement, we find that the full conditional distributions of y
i
,

β0 and β1 follow multivariate normal distributions, and can be updated by Gibbs

sampling method.

The MCMC method is employed for model inference. Estimations of the parame-

ter values are made over 12,000 MCMC iterations, in which the first 2,000 iterations

were ”burn-in” phase, and were disregarded. The point estimates of the parameters

and their 95% credible regions are presented in the table 5.4.
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We use the posterior predictive p-value to evaluate the fit of the posterior dis-

tribution of our Bayesian model. We use the method of Gelman, Meng, and Stern

[1996] to calculate the posterior predictive p-value. The discrepancy function we used

in this analysis is

D(u, θ̂) =
n∑
i=1

[ui − E(ui|θ̂)]2

E(ui|θ̂)
(5.25)

Based on 10,000 simulation iterations, the posterior predictive p-value, pB is 0.84,

which is the probability that the replicated data (urep) could be more extreme than

the observed data (uobs), as measured by the discrepancy function D(u, θ̂). Figure 5.1

shows the scatterplot of replicated vs. observed discrepancies (D(rep, θ) vs. D(obs,

θ)) under the joint posterior distribution; the p-value is calculated as the proportion

of points in the upper-left half of the plot. Figure 5.2 shows the histogram of 10,000

simulations from the difference of the replicated discrepancy (D(rep, θ)) and the

observed discrepancy (D(rep, θ) - D(obs, θ)). If the model is reasonable, the histogram

should include 0. Figure 5.3 shows the scatterplot of 10,000 simulations from the

difference of the replicated discrepancy (D(rep, θ)) and the observed discrepancy

(D(rep, θ) - D(obs, θ)). Based on the result of posterior predictive p-value, pB, and

the histogram and scatterplots showed, we conclude that there are no systematic

differences between the replicated data generated under the model and the observed

data. Therefore, our model fits data well.

5.6 Discussion

In this chapter, we proposed a Bayesian approach for correcting the measurement er-

ror in the general multivariate linear model when the non-linear measurement errors

exist in the response variables. The observed response variables are related to the true
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Figure 5.1: Scatterplot of replicated vs. observed discrepancies (D(rep, θ) vs. D(obs,
θ)) under the joint posterior distribution; the p-value is estimated by the proportion
of points above the 45ø line.

values through a non-linear regression model, and the parameters in the measurement

error model are estimated by using the independent, external calibration data. We

have outlined how the estimations of the parameters of interest can be carried out in

a Bayesian framework using Gibbs sampling and the Metropolis Algorithm. In the

Bayesian approach, we impute the values of the unobservable variable Y by sampling

from their conditional distribution given all the observed data and the other param-

eters. Therefore, the Bayesian approach can avoid numerical integrations which may

be tedious and extensive.
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Figure 5.2: Histogram of 10,000 simulations from the difference of the replicated
discrepancy (D(rep, θ)) and the observed discrepancy (D(rep, θ) - D(obs, θ)). Under
the model, the histogram should include 0.
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Table 5.2: Simulation results of point estimates of covariance matrix based on 250
replicates, k is the number of replicates used for Adjusted Value approach.

Bayesian Approach Adjusted Value
Parameters n True value Estimate S.D. Estimate S.D. k

σ11 20 0.02 0.022 0.006 0.021 0.007 246
σ12 0.01 0.011 0.004 0.0098 0.005
σ13 0.01 0.011 0.005 0.010 0.006
σ22 0.02 0.020 0.008 0.021 0.008
σ23 0.01 0.012 0.007 0.011 0.006
σ33 0.02 0.021 0.009 0.025 0.013
σ11 100 0.02 0.021 0.006 0.021 0.003 234
σ12 0.01 0.0099 0.005 0.0098 0.002
σ13 0.01 0.001 0.004 0.011 0.002
σ22 0.02 0.021 0.009 0.021 0.003
σ23 0.01 0.011 0.005 0.011 0.003
σ33 0.02 0.020 0.009 0.024 0.006
σ11 250 0.02 0.020 0.006 0.022 0.0019 214
σ12 0.01 0.011 0.004 0.011 0.0014
σ13 0.01 0.001 0.003 0.011 0.0011
σ22 0.02 0.022 0.008 0.021 0.0014
σ23 0.01 0.010 0.004 0.012 0.0013
σ33 0.02 0.021 0.006 0.025 0.0025

Table 5.3: Estimated coverage rates of approximate 95 percent confidence regions for
mean vector based on 250 replicates, k is the number of replicates used for Adjusted
Value approach.

Parameters n Bayesian Approach Adjusted Value k

µ
20 0.9031 0.8821 246
100 0.9102 0.8785 234
250 0.9238 0.7333 214
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Table 5.4: Simulation results of point estimates of mean vector based on 250 replicates
with larger τ 2 = 0.02

Bayesian Approach
Parameters n True value Estimate Mean Std error 95% coverage

µ1 20 2.303 2.301 0.053 0.874
µ2 2.485 2.492 0.058 0.868
µ3 2.708 2.702 0.051 0.882
µ1 100 2.303 2.306 0.032 0.891
µ2 2.485 2.491 0.037 0.907
µ3 2.708 2.710 0.041 0.885
µ1 250 2.303 2.304 0.024 0.901
µ2 2.485 2.488 0.021 0.924
µ3 2.708 2.709 0.029 0.921

Table 5.5: Analysis of real data using Bayesian approach and adjusted values approach

Bayesian Approach Adjusted Value
Parameters Point estimate 95% Credible Region Point estimate 95% CI

µ1 8.65 (8.50, 8.85) 8.67 (8.53, 8.82)
µ2 8.40 (8.23, 8.58) 8.40 (8.24, 8.57)
µ3 8.44 (8.23, 8.65) 8.45 (8.27, 8.62)
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Figure 5.3: Scatterplot of 10,000 simulations from the difference of the replicated
discrepancy (D(rep, θ)) and the observed discrepancy (D(rep, θ) - D(obs, θ)).



Chapter 6

SUMMARY AND FUTURE

WORK
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6.1 Summary

This dissertation focused on two research questions motivated by the Protective Im-

munity Project (PIP) conducted at the Emory Transplant Center (Larsen and Ahmed

[2005]). The first research question is how to model the white cell compositions over

time. The data obtained from the PIP study is compositional data with repeated

measurements. Since the repeat measurements made on the same individual typ-

ically may be correlated, special attention is needed when we model the repeated

compositional data. In this dissertation, we proposed a statistical model to analyze

the compositional data with repeated measures. Our model extends Billheimer, Gut-

torp, and Fagan [2001]’s model to the longitudinal setting. The MCMC approach

will be used for model inference. By using the algebra for compositions developed by

Aichison and Billheimer, we can interpret the model parameter estimates and credible

regions in terms of compositions. Since the proportions are the natural scale of mea-

surement for composition data, interpretation in this way may help researchers have

a better understanding of the statistical modeling results. For Aitchison’s logistic-

normal model in which interpretation of parameter estimates on the multivariate

log-odds scale is difficult, our approach can overcome this problem. We develop a

Bayesian approach for the analysis of the repeat-measured compositional data. Our

results have been demonstrated that the Bayesian methodology can be used to an-

alyzed repeat-measured compositional data. We use a Markov Chain Monte-Carlo

method for model inference and show that the method is practical in high dimensional

problems.

Another research question motivated in part from the PIP study is how to get

the correct estimates when the measurement errors exist on the count data. In the

medical studies, some variables of interest are difficult to obtain, and surrogate vari-
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ables are recorded and used instead. However, these surrogate variables may contain

measurement errors. In the PIP study, whole blood was passed through the flow

cytometer to determine blood composition. The counts and percentage of subcate-

gories of lymphocytes were recorded based on the cell surface markers. The variables

of interest are the true counts of subcategories of lymphocytes. However, the recorded

data obtained from flow cytometer may contain measurement errors. In a series of pa-

pers, Buonaccorsi [1991, 1996] and Buonaccorsi and Tosteson [1993] discussed how to

correct measurement errors in response variables in the general linear model. In this

dissertation, we extended Buonaccorsi’s methods to the longitudinal/repeat-measures

settings. We proposed the likelihood-based estimators for general multivariate linear

model when the non-linear measurement errors exist in the response variables. The

observed response variables are related to the true values through non-linear regres-

sion model, and the parameters in the measurement error model are estimated by

using the independent, external calibration data. The pseudo-maximum likelihood

estimation is used for model inference to avoid computational problems. Our pro-

posed models provide a tool to correct for measurement errors in response variables

in longitudinal data.

Finally, we proposed a Bayesian approach for correcting the measurement error

in the general multivariate linear model when non-linear measurement errors exist

in the response variables. The observed response variables are related to the true

values through a non-linear regression model, and the parameters in the measure-

ment error model are estimated by using independent, external calibration data. We

have outlined how the estimation of the parameters of interest can be carried out in

a Bayesian framework using Gibbs sampling and the Metropolis Algorithm. In this

Bayesian approach, we impute the values of the unobservable variable Y by sampling
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from their conditional distribution given all the observed data and the other param-

eters. Therefore, using a Bayesian approach can avoid numerical integrations which

may be tedious and extensive.

6.2 Future Research

In chapter 3, we proposed a Bayesian model for repeated compositional data. By

using the additive logratio transformation (ALR), we transformed the repeated com-

positional data into multivariate normal distribution data. The general multivariate

linear model accounts for all the potential sources of variability that have an impact

on the covariance among repeated measurements on the same individual. That is,

the model does not distinguish between-subject and within-subject sources of vari-

ability. Therefore, we need assume only that the variance-covariance matrix Ω is

an arbitrary positive definite matrix. We use a Bayesian approach for model infer-

ence, and it is straightforward to define the prior distribution of the unstructured

variance-covariance marix Ω followed an inverse Wishart distribution, the most com-

mon prior for a covariance matrix. However, this prior is restrictive and lacks flexi-

bility. For a k-part composition with t time points, we have a t ∗ (k− 1)× t ∗ (k− 1)

variance-covariance matrix Ω. For an unstructured Ω, the number of parameters of

Ω is (t ∗ (k − 1) × (t ∗ (k − 1) + 1))/2. When the number of parameters becomes

large, estimation of the parameters in the covariance matrix becomes computation-

ally burdensome. To overcome this problem, some dimension-reduction technics can

be investigated in future research.

In chapter 4 and 5, we proposed the likelihood based method and bayesian ap-

proach for general multivariate linear model when a non-linear measurement errors

exist in the response variables. The observed response variables are related to the
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true variables through non-linear regression model, and the parameters in the mea-

surement error model are estimated by using the independent, external calibration

data. Both approaches assume that the measurement errors have constant variance.

However, there are many situations that the variances of measurement errors is some

function of the true values. The measurement errors with variances depending on

true values should be considered in the future research. In this dissertation, we used

independent, external calibration data to estimate the parameters of measurement

error model. We can also consider the internal validation data in future research,

where the true Y can be measured on some subjects of the main study data.



Appendix A

ASYMPTOTIC RESULTS

Gong and Samaniego [1981] introduced the theory and applications of pseudo-MLE.

In their paper, they jointly estimate both the nuisance and primary parameters from

the data and determine the statistical properties of the primary parameters. The sit-

uation from this proposal is different from the context of Gong and Samaniego [1981]

because the nuisance parameters are estimated from independent calibration data.

The problem can be viewed as one in which nuisance parameters (θ) are estimated

from the independent calibration data and then are treated as known in calculat-

ing estimators for the primary interested parameters (ξ). Asymptotic results for the

pseudo-MLE follow from Spall [1989].

Spall [1989] proves the consistency and asymptotic normality of the pseudo-MLE.

Spall [1989] also provides the asymptotic variance of the pseudo-MLE. (Spall [1989],

Theorem 2, page 225 in the paper). The main conditions needed are:

1. n → ∞,M → ∞, n/M → ρ, 0 < ρ < ∞. where M is the number of entries

from the calibration data.

2. The sequence Y ∗1 , . . . , Y
∗
M from calibration data is such that θ̂ is asymptotically
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normal (θ, V (θ̂)); see (Seber and Wild [1989], Chapter 12).

3. Let ξ̂(θ) denote the estimator at the true θ, and let ξ̂ denote the estimator at

θ = θ̂. At fixed θ, ξ̂ is asymptotically normal. This can be treated, for example,

via Bradley and Gart [1962].

Additional regularity conditions are easily met in the normal/normal and other

continuous settings.
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