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Abstract
Three Essays in Modeling and Forecasting Economic Dynamics

By Xiaochun Liu

An important problem of modern financial economics is to understand and quantify the interaction
between macroeconomics and financial markets under hypothetically distress scenarios. Modeling
economic dynamics given a hypothetically distress economic scenario requires knowledge and
techniques for extreme values or events. In this dissertation, on the econometrics side, I propose new
econometric approaches for modeling evolutionary processes in tails of a data distribution, and
constructing decomposition models to forecast excess stock returns by considering the role of
dynamic higher moments, such as time-varying skewness. On the financial economics side, my
research analyzes the counter-cyclical risk pattern of stock markets, asymmetric dynamics in
macroeconomic vatiables, and systemic risk measure of financial institutions subject to regime
switching in tails. The first essay proposes a new time-seties econometric model to estimate quantiles
of a data distribution subject to regime shifts, so-called Markov-Switching Quantile Autoregression
(MSQAR). The purpose of this new econometric model is to characterize nonstationary natures of
different parts of a data distribution. This is achieved via the assumption that quantile error terms
follow a three-parameter asymmetric Laplace distribution. To deal with the difficulty in model
estimation, I adopt a “block-at-a-time” Metropolis-Hastings sampling. The second essay applies the
proposed MSQAR approach to stress-testing the U.S largest commercial banks by measuring
systemic risk of individual banks subject to economic regime shifts. The new systemic risk measures
show that the benchmark model of CoVaR approach underestimates systemic risk contributions of
individual banks by around 131 basis points of asset loss on average. In addition, Banking Systemic
Risk Index is constructed by value-weighted individual contributions. The third essay proposes a new
approach to modeling time-varying skewness, the model performance of which is evaluated in out-
of-sample forecast of the U.S. excess stock returns in terms of both statistical significance and
economic values. Interestingly, a forecast combination, more robust to structural instability than the
individual forecasts, performs significantly better out-of-sample than the benchmarks. The skewness
timing of the proposed time-varying dependence models yields an average gain in the returns around
195 basis points per year over the forecast sample period.
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Review

An important problem of modern financial economics is understanding and
quantifying the interaction between macroeconomics and financial markets. Since
the recent financial crisis of 2007-2009, studies in this area have emphasized on
round effects between macroeconomics and financial sectors. Specifically, dy-
namic interactions are tested under hypothetically distress scenarios, known as
stress-testing. Modeling economic dynamics given a hypothetically distress eco-
nomic scenario requires knowledge and techniques for extreme values or events,
largely apart from traditional econometric models on conditional means. Extreme
values deviate from means and fall into lower and upper tails. And, reactions
of market participants to extreme events can be to some extent characterized by
higher moments of data distributions. In this dissertation, on the econometrics
side, I propose new econometric approaches for modeling evolutionary processes
in tails of a data distribution, and constructing decomposition models to forecast
excess stock returns by considering the role of dynamic higher moments, such as
time-varying skewness. On the financial economics side, my research analyzes the
countercyclical risk pattern of stock markets, asymmetric dynamics in macroe-
conomic variables, and systemic risk measure of financial institutions subject to
regime switching in tails. Below I briefly elaborate on the three papers that con-
stitute this dissertation.

The first essay proposes a new time-series econometric model to estimate quan-

tiles of a data distribution subject to regime shifts. The purpose of this new
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econometric model is to characterize nonstationary natures of different parts of a
data distribution. This is achieved via the assumption that quantile error terms
follow a three-parameter asymmetric Laplace distribution. Particularly, I develop
location-scale quantile autoregressive models in which the location and scale pa-
rameters are subject to regime shifts. Regime changes within a quantile is deter-
mined by a latent, discrete-state Markov process. Crucial inference for filtering
transition probabilities of switching regimes is made through asymmetric Laplace
distribution. The proposed model is referred to as Markov-Switching Quantile
Autoregression (MSQAR) which nests Quantile Autoregression (QAR) of Koenker
and Xiao (2006) as a special case.

MSQAR models are non-linear and involve indicator functions, which intro-
duce kinks and discontinuities into the sample likelihood function. In addition,
less observations fall in more extreme quantiles, which leads to the potential small
sample issue. These issues make classical methods such as MLE very difficult
for model estimation. In this essay based on the findings in Chernozhukov and
Hong (2003), T adopt a “block-at-a-time” Metropolis-Hastings sampling by group-
ing highly correlated parameters as one block to be simultaneously updated at
each Metropolis-Hasting step conditional on the remaining blocks. Despite that
this sampling approach has been applied in previous studies, i.e., Tierney (1994),
Ausin and Lopes (2010), Geweke and Tanizaki (2001), among others, to the best
of my knowledge, this paper is the first to apply this sampling approach in quan-
tile regressions to mitigate the estimation difficulty due to potential local optima
on likelihood function surface. To achieve mixing properties, I further employ the
adaptive scheme of Gerlach et al. (2011) and Chen et al. (2012), which is modified
to the “block-at-a-time” Metropolis-Hasting sampling, in order to avoid stucking
in a local mode for a long time.

The second essay applies the proposed MSQAR approach to stress-testing the
U.S largest commercial banks by measuring systemic risk of individual banks sub-
ject to economic regime shifts. Specifically, I characterize two risk states: a normal
risk level implied by good economic periods and a high risk level associated with
economic recessions, crises or extreme events. Different sets of parameters are
thus obtained from MSQAR model estimation for each risk state in stress-testing.

Apparently, Markov-Switching conditional value-at-risk (MSCoVaR) measure of
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systemic risk naturally fits to the Supervisory Stress Scenario required by Fed-
eral Reserve Bank in Comprehensive Capital Analysis and Review (CCAR). In
CCAR, a supervisory stress scenario is a hypothetical scenario to be used to as-
sess the strength and resilience of bank holding companies (BHCs) capital in a
severely adverse economic environment. It represents an outcome in which the
U.S. economy experiences a significant recession and economic activity in other
major economies also contracts significantly. It is reasonable to expect that eco-
nomic representatives react differently to different economic conditions. Hence,
the set of MSQAR parameters obtained from the high risk level associated with
economic recessions and crises can be appropriately applied to stress-testing BHCs
in Fed’s severely adverse economic scenarios.

The new systemic risk measures show in comparison that the CoVaR approach
of Adrian and Brunnermeier (2011) underestimates systemic risk contributions of
individual banks by around 131 basis points of asset loss on average. The empirical
results also present that the banking system is more sensitive to marginal changes
of an individual bank during high risk episodes than during normal risk periods.
In addition, Banking Systemic Risk Index, which is constructed in this essay by
value-weighted individual contributions, appears to have a high relevance in tracing
financial distress situations over the sample period.

The third essay studies the importance of dynamic higher moments in forecast-
ing financial market behaviors. Anatolyev and Gospodinov (2010) exploit inherent
nonlinearity in excess return dynamics by a return decomposition to the product
of absolute returns and return signs. The joint distribution of absolute values
and signs is characterized by a copula function. Their decomposition approach,
however, is restrictive as the dependence between absolute returns and signs is
constant over sample periods. The constant dependence also imposes a constant
skewness on excess returns. The literature has recognized that returns may in fact
be better characterized by a conditional distribution with time-varying asymmetry.
The importance of time-varying skewness has also been found in asset pricing and
allocation by recent studies, i.e., Harvey and Siddique (1999, 2000a&b), Leon et al.
(2005), and Jondeau and Rockinger (2003), among others. Leon et al. (2005) esti-
mate time-varying skewness and kurtosis using a Gram-Charlier series expansion

of the normal density function for the error term. It is found that specifications
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allowing for time-varying skewness and kurtosis outperform specifications with
constant third and fourth moments. Jondeau and Rockinger (2003) use the gener-
alized student-t distribution with an autoregressive specification of the parameters
to demonstrate the importance of time-varying asymmetry parameters.

In this essay, I propose a new approach to modeling time-varying skewness,
the model performance of which is evaluated in out-of-sample forecast of the U.S.
excess stock returns in terms of both statistical significance and economic val-
ues. Specifically, I extend AG’s constant decomposition model by characterizing
the joint distribution as a time-varying copula function. The nonlinear temporary
interdependence between absolute returns and signs, which governs dynamic skew-
ness processes of returns, is thus estimated by the dynamic copula function simulta-
neously with marginals. Besides modeling time-varying skewness in out-of-sample
forecast, this paper also differs from AG’s work in several important ways: (1)
The out-of-sample forecast period is extended to cover the recent financial crisis
of 2007-2009 which has attracted tremendous research interests in both economic
and finance literature. (2) The Fluctuation tests and the decomposition of forecast
performance, proposed by Giacomini and Rossi (2010) and Rossi and Sekhposyan
(2011) respectively, show strong statistical evidence of the instability of forecast
performance over the sample time paths. The forecast performance is evaluated by
loss functions of forecast errors. Interestingly, a forecast combination, more robust
to structural instability than the individual forecasts, performs significantly better
out-of-sample than the benchmarks. (3) The economic values of skewness timing
present substantial benefits from modeling time-varying skewness. The skewness
timing of the proposed time-varying dependence models yields an average gain in

the returns around 195 basis points per year over the forecast sample period.



Chapter 1

Markov-Switching Quantile Autoregression

Abstract: This chapter considers the location-scale quantile autoregression
in which the location and scale parameters are subject to regime shifts. The
regime changes are determined by the outcome of a latent, discrete-state Markov
process. The new method provides direct inference and estimate for different
parts of a nonstationary time series distribution. Bayesian inference for switching
regimes within a quantile, via a three-parameter asymmetric-Laplace distribution,
is adapted and designed for parameter estimation. The simulation study shows
reasonable accuracy and precision in model estimation. From a distribution point
of view, rather than from a mean point of view, the potential of this new approach
is illustrated in the empirical applications to reveal the countercyclical risk pattern
of stock markets and the asymmetric persistence of real GDP growth rates and

real trade-weighted exchange rates.

Keywords: Asymmetric-Laplace Distribution, Metropolis-Hastings, Block-at-a-
Time, Asymmetric Dynamics, Transition Probability
JEL: C22, C38, C51, C11, G23



Chapter 1. Markov-Switching Quantile Autoregression 6

1.1. Introduction

Koenker and Xiao (2006) study quantile autoregression models in which the
autoregressive coefficients may take distinct values over different quantiles of the
innovation process. Their models can capture systematic influences of conditioning
variables on the location, scale and shape of the conditional distribution. Let {U;}
be a sequence of i.i.d. standard uniform random variables. Consider the mth-order

autoregressive process

Y = 90 (Ut) + 61 (Ut> Yt—1 + ...+ Qm(Ut)yt,m (111)

where 1, is the time series observation at time ¢, and #’s are unknown functions
[0,1] — R to be estimated. Provided that the right side of ([l.1.1) is monotone
increasing in Uy, it follows that the 7th conditional quantile function of y, can be

obtained as
Qu. (Tlyi—1) = 00(7) + O1(T)ye—1 + o 4 O (T) Y= (1.1.2)

where y, | = (Y_1, .., Y+—m) - The transition from ([1.1.1) to (1.1.2) is an imme-

diate consequence of equivariance to monotone transformations.l] In , the
quantile autoregressive coefficients may be 7-dependent and thus can vary over the
quantiles. The conditioning variables not only shift the location of the distribu-
tion of g; , but also may alter the scale and shape of the conditional distribution.
Koenker and Xiao (2006) also show that quantile autoregressive models exhibit a

form of asymmetric persistence and temporarily explosive behavior.

! See the theorem of equivariance to monotone transformations in Koenker (2005), page 39.
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However, the linear quantile autoregressive models cannot accommodate many
stylized facts such as structural breaks and nonlinearities in macroeconomic and
financial time series. The aim of this article is to extend the quantile autoregression
of Koenker and Xiao (2006) by modeling nonstationary quantile dynamics. Partic-
ularly, I consider the location-scale quantile autoregression in which the location
and scale parameters are subject to regime shifts within a quantile. Switching
quantile regimes is determined by the outcome of an unobserved state indicator
variable that follows a Markov process with unknown transition probabilities. The
proposed Markov-Switching Quantile Autoregression (MSQAR) nests the quantile
autoregression of Koenker and Xiao (2006) as a special case when conditional
distributions are stationary.

MSQAR is a convenient approach built on the vast literature of Markov-switching
time series models.ﬂ Nonetheless, simply combining quantile autoregressive models
with Markov-switching techniques is econometrically infeasible. The challenge is
that the objective function of quantile autoregression is a non-likelihood based
function generally estimated by nonlinear least square. The non-likelihood based
function does not allow make inference on the latent state variable for switch-
ing regimes. To solve this problem, I assume that quantile error terms follow a
three-parameter asymmetric-Laplace distribution (Yu and Zhang (2005)). This
chapter shows that maximizing this distribution is mathematically equivalent to
minimizing quantile objective functions. Importantly, it also satisfies the restrictive

conditions of quantile regression. With this distribution, the inference for switch-

2 See e.g., Sims and Zha, 2006, Gray (1996), Cheung and Erlandsson (2005), Hamilton and
Susmel (1994), Kim et al. (2008), among many others. Guidolin (2012) provides a recent review
for the applications of Markov-switching models in empirical finance.
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ing quantile regimes can be made through the standard Hamilton filter approach
(Hamilton (1994)).

This chapter adopts Bayesian approach for model estimation. As discussed
in Yu and Moyeed (2001), the use of an asymmetric Laplace distribution for er-
ror terms provides a natural way to deal with some serious computational chal-
lenges through Bayesian quantile regression. Also see Chernozhukov and Hong
(2003). In the terminology of Chib and Greenberg (1995), this chapter adopts
a “block-at-a-time” Metropolis-Hastings sampling to reduce computational cost.
This algorithm groups highly correlated parameters as one block to be simulta-
neously updated at each Metropolis-Hasting step conditional on the remaining
blocks, see e.g., Tierney (1994), Ausin and Lopes (2010), Geweke and Tanizaki
(2001), among others. To further speed up convergence and to achieve desirable
mixing properties in MCMC chains, I employ the adaptive scheme of Gerlach
et al. (2011) and Chen et al. (2012), which combines a random walk and an
independent kernel Metropolis-Hastings algorithm, each based on a mixture of
multivariate normal distributions.

This chapter examines the new approach in a simulation study to show its
accuracy and precision in model estimation. The empirical application to S&P
500 returns illustrates the usefulness of this new approach in risk management,
i.e., for stress-testing financial institutions from the perspective of central banks.
In this chapter, asymmetric dynamics have also been found for quarterly real GDP
growth rates but not for quarterly real trade-weighted U.S. dollars. In addition,
the asymmetric dynamics appear to be different across economic regimes. Notably,
modeling the regime persistence in lower tails of real GDP growth rates improves

the predictabilities of switching economic states and turning points.
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The rest of this chapter is structured as follows. Section 2 introduces the con-
nection of asymmetric-Laplace distributions to the solution of quantile regressions.
Section 3 defines Markov-Switching quantile autoregression. Section 4 describes
the Bayesian methods in this chapter for model estimation. Section 5 presents
model simulations and results. Section 6 reports the results of empirical applica-
tions to stock markets, real GDP growth rates and real trade-weighted exchange

rates. Section 7 concludes this chapter.

1.2. Asymmetric Laplace Distribution Connection

The QAR(m) model of (1.1.2) can be reformulated in a more conventional

regression form as

yr = 0o(7) + Z 0(T)yr—1 + (1) (1.2.1)

where &;(7) is quantile error terms which follow an asymmetric-Laplace (AL) dis-

tribution, denoted by AL(0,s,7), with the density function as

fei(€30,6,7) = Meacp {—5 (r—Ile < O))} (1.2.2)

S S

where I(+) is an indicator function. 7 determines the skewness of the distribution,
¢ > 0 is a scale parameter. AL(0,,7) with the location parameter being zero pro-
vides that the 7th quantile of the distribution is zero as Pr (¢; < 0) = 7, which sat-
isfies the quantile regression condition ff’oo fe(s)ds = 7. The asymmetric-Laplace
distribution with the density function of ([[.2.2) has the mean and variance, E(e;) =
s(1—27)/[(1 —7)7] and Var(e;) = ¢*(1 — 27+ 27%)/[(1 — 7)*7%], respectively. See

Yu and Zhang (2005) for details. With the assumption of i.i.d. &,(7), the sample
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likelihood function is given by

LO,7) = [r(1—7)/q" (1.2.3)
B d Yr — Qy, (T|yt71> -
exp Z . 7 =T (y: < Qy (7]y,1))]

In the literature the error density is often left unspecified, see e.g., Koenker
and Bassett (1978), Koenker (2005), and Koenker and Xiao (2006), etc. Quantile

autoregression is the solution to the following minimization problem

0(7) = arg min E (p- (r — Q. (719,-150))) (1.2.4)

where 6 (1) = (6y(7), ..., 0, (7)) is the parameter space to be estimated. The quan-
tile criterion (check or loss) function p,(-) is defined as p,(¢) = e (7 — I(¢ < 0)) in

Koenker and Bassett (1978). Solving the sample analog gives the estimator of ¢

T
9(7') =arg mgn ZPT (yt - Qyt (T|yt—1§ 0)) (1-2-5)
t=1

Recently, Yu and Moyeed (2001), Yu and Zhang (2005) and Gerlach et al.
(2011), among others, have illustrated the link between the quantile estimation
problem and asymmetric-Laplace distribution. Since the quantile loss function
is contained in the exponent of the asymmetric-Laplace likelihood, maximizing
the sample likelihood of ([1.2.3) is mathematically equivalent to minimizing the
quantile loss function of ( It is important to emphasize that, in practice, the
parameter 7 is chosen by researchers as quantile levels of interest during parameter
estimation and only a single quantile of the distribution of ¥, is estimated. More

importantly, the asymmetric Laplace distribution transforms the non-likelihood
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based quantile regression of ([L.2.5) to a likelihood based approach, so that the in-
ference for the probability of switching regimes is possibly made through Hamilton

filter.

1.3. Markov-Switching Quantile Autoregression

For the 7th conditional quantile of y;, let {s;} be an ergodic homogeneous
Markov chain on a finite set S = {1,...,k}, with a transition matrix P defined by

the following transition probabilities
{pij = Pr (st = jlsi-1 =)}

and the unconditional probabilities

{mj = Pr(si=7j)}

for i,7 € S and assume s; follow a first-order Markov chain. The transition
probabilities satisfy > . gpi; =1 and 3, ¢ m; = 1. The stochastic process for s,
is strictly stationary if p;; is less than unity and does not take on the value of 0
simultaneously.

Using transition probabilities above, this chapter defines Markov-Switching

quantile autoregressive models (MSQAR) as

Yy = Qyz (7'|Yt—1§ BSt) + é‘15(7—)

Os,0(T) + Z Os.1(T)Yt—1 + 4(7) (1.3.1)
=1



Chapter 1. Markov-Switching Quantile Autoregression 12

Suppose that y; can be observed directly but can only make an inference about
the value of s; based on the observations as of date ¢. This inference gives the

filtering probability as

§j,t|t = Pr (St :j|Yt;@)

= ZPT (8¢ = 7,811 = i|ys; ©)

i€S

where > .o &y = 1 and © = (P, 0,,(7)) is a vector of the parameters with s, € S.

The formulation of filtering probabilities is obtained by Bayes theorem as

Eies pijgi,tfl\tflnj,t

= 1.3.2
St f Welyi-1,7;©) ( )
where 7;, is conditional likelihood as
nig = S (yelse = J,y1-1,7;0) (1.3.3)
T(1—17 — Qy, (T|yt-1; 0,
= Ty { =B 1 < Qv 0]

and

f(yt|Yt—1a T3 @) = Z Zpijgi,tfutflnj,t

jes ieS

Thus, the relationship between the filtering and prediction probabilities is given

it = Pr(se1 = jlys; ©) = Zpijfi,ﬂt (1.3.4)

ieS
The inference, similar to Hamilton’s filter (Hamilton, 1994), is performed itera-

tively for ¢ = 1, ..., T with the initial values, {; oo for j € S. The sample likelihood
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for the 7th conditional quantile of ¥, is then given by

T

L®) = [ fwlyi-1,7:©) (1.3.5)

t=1

The connection to the solution of quantile regression can also be viewed as
follows. Based on quantile loss functions, © is solved for the following minimization

problem

min B (Z pr (Ys — Qy, (Tls: = J, ¥1-1;0)) I (s; = J')> (1.3.6)

jEeS

where y; = {vs, Yt—1,---, Y1, Yo }- Apply the law of iterated expectation to rewritten

T3 as

min > Elpr (v — Qu (Tlsir = J. ¥11:0)) Pr (sir = jlyi; ©)] (1.3.7)
jes

Provided that 7 is chosen by researchers of interest, maximizing the likelihood
of is mathematically equivalent to the minimization of ([.3.6), since the
likelihood function can be alternatively rewritten as L(©) = []_, > jes [ ylse =
7, Yi-1,T; @) Pr (s; = jlys; ©) with Pr(s; = jly,; ©) = Ziespijgi,tfﬂtfl- However,
Pr (s = jlys; ©) cannot be filtered by using the nonlinear least square estimation
of ; therefore, the likelihood function of the asymmetric Laplace distribution

is used to infer transition probabilities.
To estimate smoothing transition probabilities Pr (s, = i|yr; ), this chapter
follows the approach of Kim (1994). Apply the Bayes theorem and the Markov

property to yield



Chapter 1. Markov-Switching Quantile Autoregression 14

_ piPr(s: = jly; ©)

P =1 =7 10) = 1.3.8
r (St Z|St+1 J Y15 ) Pr (St—l—l _ Z|Yt7 @) ( )
It is therefore the case that
. . . pilr (st = jlyt; ©)

P = = ;) =P = ;O 1.3.9
(st = J, $t41 = ilyr; ©) r (st = tlyr; ©) Pr(ses = ilys; ©) ( )

The smoothed inference for date t is the sum of ([1.3.9) over i € S

5j,t|T = Pr (St :jb’T;@)

= S Pr(s = ilyr; ©) 2T (50 = j1y: ©) (1.3.10)

poye Pr(sii1 =ilys; ©)

The smoothed transition probabilities are thus obtained by iterating on ([[.3.10)
backward for t =T — 1,7 — 2, ..., 1. This iteration is started with &; 7 for j € S
which is estimated from ([.3.2) for ¢ = 7. This algorithm is valid only when s,
follows a first-order Markov chain.

From the conditional density (, it is straightforward to forecast the one-step-

ahead 7th quantile of y;1; at time ¢ conditional on knowing sy -,
m—1
Quiyr (TISt41 = J,¥105) = 0;0(7) + Z 05041 (T) Y1 (1.3.11)
1=0
Further, from (|1.3.4)), the forecast for ¢ + 1 conditional on time t obtained as

k
Qyt+1 (T|yt; 0) - Z Qyt+1 (T|St+1 - jv Yi; 9]') Pr (St+1 - jb’ta 6) (1'3'12)
j=1

which is to multiply the appropriate forecast of the quantile in the jth regime
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given by with the probability that the process will be in that regime
given by , and to sum those products for every regime together. Note that
h-step-ahead forecasts for A > 2 require different approaches since it involves
forecasts of y;, 51 in for Qy,,, (T|St4n—1,+ = J, Ye+n—1;0;), as shown in Cai
(2010).

In MSQAR model estimation, similar to other Markov-Switching time series
models, one must use some identification restrictions to avoid the label switching
issue. See Bauwens et al. (2010) and Hamilton et al. (2007) for a discussion.
In this chapter, regimes are labeled by the restrictions on quantile intercepts,
for example, 61 (7) > ... > Oxo(7). In addition, in empirical applications, the
transition probabilities are allowed but not imposed dependent on 7. The intuition
is that even though economic states are common across quantiles implying the same
unconditional probabilities, no theories show that regime persistence should be the
same across quantiles. To obtain some insights on this empirical question, regime

persistence is allowed to be driven by data across quantiles.

1.4. Bayesian Inference

MSQAR models are non-linear and involve indicator functions, which introduce
kinks and discontinuities into the sample likelihood function in ([[.3.5). In addition,
less observations fall in more extreme quantiles, which leads to the potential small
sample issue. These issues make classical methods such as MLE very difficult
for model estimation. In this chapter, I instead prefer to use Bayesian MCMC
methods to learn about the model parameters.

Given the sample realizations, y; for ¢ = 1,...,T, the posterior distribution of
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O takes the usual form: p(Oly;) x L(y;|®)7 (O), where L(y;|®) is the sample
likelihood function and 7(®) is the prior distribution. Yu and Moyeed (2001) and
Cai and Stander (2008) prove that the posterior distribution is proper under the
improper prior for general quantile regression models. In this chapter, the prior
distribution is taken as uniform over =, the admissible parameter space of O, i.e.,
satisfying the label switching restrictions. The prior for the scale parameter is
7(c) oc ¢! also used in Gerlach et al. (2011).

Just like Vrontos et al. (2002) and Ausin and Lopes (2010), I also find that
MCMC mixing can be improved and the computational cost reduced by using si-
multaneous updating of the highly correlated parameter groups at each Metropolis-
Hastings (MH) step. In the terminology of Chib and Greenberg (1995), this ap-
proach is therefore based on a “block-at-a-time” MH sampler which is carried out
by cycling repeatedly through draws of each parameter block conditional on the
remaining parameter blocks. Let @ = (P, 01(7), ..., 0;(7)) represent the blocks of
the population parameters. P = (p;;) contains all transition probability parame-
ters and 6, - includes all parameters in the jth regime for j = 1,..., k. Hence, the
parameters in © are grouped in k£ + 1 blocks and the parameters of each block are
simultaneously updated conditional on the remaining blocks.

This chapter implements the MH sampler according to the adaptive scheme
of Gerlach et al. (2011) and Chen et al. (2012) which combines the random
walk MH (RW-MH) and the independent kernel MH (IK-MH) algorithms, each
based on a mixture of multivariate normal distributions. The random walk part
of this scheme is designed to allow occasional large jumps, perhaps away from

local modes, thereby improving the chances that the Markov chain will explore
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the posterior distribution space. Hence, this adaptive scheme allows for further
speeding convergence and achieving desirable mixing properties in MCMC chains.

To illustrate this adaptive algorithm in the block-at-a-time MH sampler, I
rewrite the notation of the parameter blocks as ® = (01,05, ...,01,), Where
0., = P and 6, ; denotes the parameters in the (j—1)th regime for j = 2, ..., k+1.
And, let ®_; denote the vector ® excluding the block 6, .. Starting at g = 1 with
el — (0[1117, ...,OEJ]FLT), the G; random walk MH iterations for © proceed as
follows:

Step 1. Increment ¢ by 1 and set ® equal to @Y1,

Step 2. For i =1,....,k + 1 in turn, generate 6 as
0;, = 0% +e, &~ pN(0,diag{b}) + (1 - p) N (0,wdiag {b:})
and replace 0% in © by 6; . with the probability min (¢;, 1), where

L(y.l6;,.0") = (6:,.0")
I (yt\@[g]) - (@g})

7: =

Step 3. If g < Gy, go to Step 1. Upon completion, these first Gy iterations
yield the burn-in sample. Following Chen et al. (2012), I set p = 0.95, w = 100,
and tune the positive number b; so that the empirical acceptance rate lies in
the range (0.2,0.45) for the i¢th block. Tuning is done every 100 iterations by
increasing b; when the acceptance rate in the last 100 iterations is higher than
0.45, or decreasing b; when that rate is lower than 0.2.

At the end of the first G iterations, the burn-in sample mean p, . and covari-

ance matrix X; ; of ; ; with corresponding lower triangular Cholesky factor 21-17/72
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are computed for ¢ = 1,...,k + 1. The MCMC sampling scheme then continues for
(G, additional iterations according to the following independent kernel MH steps:
Step 4. Increment g by 1 and set ® equal to @Y1,

Step 5. Fori=1,...,k+ 1 in turn, generate 65 as
0. =+, e~pN(0,I)+(1—p)N(0,wI)

and replace 0% in ® by 6; . with the probability min ({;, 1), where

£ (o 0) = (01 0) o (01)

G =
I (yt|@[g]> T (@[gl) q (9;7)
1 ,
q(6ir) o< pexp {—5 (0ir — 1ir) 27 (0 — ui,r)}

1—p 1 "
t G, 2P {—5 (0ir — 1ti;) i} (0ir — Mm)}

Step 6. If g < G + G, go to Step 4. Observe that the use of X, ; in Step 5
accounts for the posterior correlation among the elements of 6, -, thereby improv-
ing the efficiency of the Markov chain. The parameter updates are sequentially
repeated until the convergence of the Markov chain is achieved. The burn-in draws
are discarded, and the steps are iterated a large number of times to generate draws
from which the desired features (means, variances, quantiles, etc.) of the posterior
distribution can be estimated consistently.

In this chapter, G; = 50, 000 for the random walk MH sampler and G5 = 50, 000

with a thinning of 5 for the independent kernel MH sampler, resulting in posterior
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samples comprising 10,000 draws. The convergence of the IK-MH Markov chains
is assessed using the Geweke (1992) test. For each parameter, I also assess the
accuracy of its posterior mean by computing the numerical standard error (NSE)
according to the batch-means method (Ripley, 1987). In all simulated and real
data examples of this chapter, it is observed that MCMC chains are well converged

inside 50,000 iterations.

1.5. Simulation

This section carries on a simulation study. In MSQAR nonlinear settings where
the number of parameters increases with the number of regimes, it is very con-
venient to choose parsimonious models that require a low number of parameters.
For simplicity in the exposition, data are simulated from the true model with 2

regimes and autoregressive order 1 as

2.0+ O'2yt—1 + 0‘55157 St = 1
Yt =
2.0+ O.4yt,1 + &4, St = 2

The true parameter values are referenced based on empirical data estimations
in next section. Three underlying distributions are considered for error terms,
including a standard normal distribution (N(0,1)), a standardized student-t dis-
tribution with 3 degrees of freedom (#3), and a mixed distribution between N (0, 1)

when s; = 1 and t3 when s; = 2.
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The theoretical 7th conditional quantile of y; can be expressed in a MSQAR

form as

O10(7) + 011 (7)1, se=1
Qyt (T|yt—1; 98t> =

O20(7) + 021 (T)Ye—1, 8¢ = 2

with the corresponding quantile parameters as 01o(7) = 2.0 + 0.5Q, (1), 611(7) =
0.2, O20(1) = —=2.0+Q, (1), and 02, (1) = 0.4. Q.,(7) is the theoretical Tth quantile
of a underlying distribution.

200 data replications are simulated for each underlying distribution. 50,00
observations are generated for each data replication but only the last 500 obser-
vations are kept for estimation in order to reduce initial effects. MSQAR mod-
els are examined in different sample sizes, T' = {200,500} and quantile levels,
7 = {0.05,0.25,0.5,0.75,0.95}.

Table 1.1 reports the simulation results. This table includes the true quantile
parameters (True), posterior means (PM), standard errors (Std), the root of mean
squared errors (RMSE), and the mean absolute deviation (MAD). RMSE and
MAD errors in Table 1.1 are small over different quantile levels and distributions.
The small difference between the true and estimated parameters indicates the
reasonable accuracy in model estimation. The small standard errors also show
a favorable precision in model estimation. Furthermore, the accuracy and the
precision of model estimations are improved with the increase in sample sizes
considered due to the reduction in RMSEs, MADs and standard errors. As ex-
pected, the model estimation for the less extreme quantiles present smaller RMSE

and MAD errors than extreme quantiles. The MSQAR model estimation also
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shows reasonable performance for the data generated from mixtures of normal and
student-t distributions.

Figure 1.1 plotting the posterior kernel densities of parameter estimates along
with true parameters indicated by the vertical lines. Figure 1 shows that the pos-
teriors well contain the true quantile parameters with a slightly better performance
for 7 = 0.5. In many cases, the posteriors appear skewed but still with most of
the density concentrated near the true parameter values. To save space, Figure
1 plots results for 7 = 0.05,0.5,0.95 and N = 200 from the normal distribution.
Other results are similar and available upon request.

Following Guerin and Marcellino (2013), Table 1.2 reports the quadratic prob-
ability scores (QPS), absolute probability scores (APS) and log probability scores
(LPS) for the quantile autoregressive models with Markov-switching features to
check how well these models can estimate the true regimes. QPS, APS and LPS
criteria evaluate the qualitative prediction abilities of MSQAR models, that is, to
what extent the true quantile regimes are predicted. The predictability of regime

2 is computed for QPS, APS, and LPS as follows:

9 T

QPS =~ ; (bopp — 1 (5, =2))° (1.5.1)
1 T
APS = ; o — 1 (3. = 2)| (1.5.2)
1 T
LPS = T tzl (1—1(5=2))log (1 - 52,t|t) +1 (5, =2)log (f2,t|t) (1.5.3)

where &4, is obtained from ([1.3.2) and 3, is the simulated states. A score of 0

occurs when perfect predictions are made. Note that QPS is bounded between
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0 and 2. The worst score is 2 for QPS and occurs if at each period probability
predictions of 0 or 1 are made but turn out to be wrong each time. Note that
correct predictions have individual scores between 0 and 0.5, whereas incorrect
predictions have individual scores between 0.5 and 2.0 for QPS. Nonetheless, a
few incorrect predictions can therefore dominate a majority of correct predictions
in QPS scores. For this reason, a modified version of probability scores, absolute
probability score (APS), is also considered. Like QPS, the best possible score for
APS is 0. The worst score is 1. Here correct predictions have individual scores
between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1. The
range for LPS is 0 to oo. LPS penalizes large prediction errors more than QPS
and APS. See also Christoffersen et al. (2007).

Table 1.2 shows that all QPS and APS scores are small and less than 0.5, which
indicate the dramatic model predictability for switching regimes. The probability
scores are slightly lower with the increase in sample sizes. The results also show
that regime predictions for lower tails are better than for upper tails. In addition,
the statistics of LPS are also smaller than 0.5 which imply that no prediction

outliers are penalized.

1.6. Empirical Applications

Many studies have employed quantile autoregressive models to estimate risks
of financial markets and assets. In macroeconomics literature, asymmetric dy-
namics have also been found for macroeconomic variables. This section applies
the proposed MSQAR model to S&P 500 returns for market risk assessment and

to real U.S. GDP growth rates (RGDP) and real exchange rates of U.S. dol-
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lars (trade-weighted by major currencies, RTWER) for asymmetric persistence.
Monthly and weekly S&P 500 index returns are taken from the Center for Re-
search in Security Prices (CRSP). The quarterly RGDP and RTWER data are
taken from Federal Reserve Bank of St. Louis as percent changes from year ago.
The data summary in Table 1.3 show negative skewness for S&P 500 returns and
real exchange rates. The skewness for real GDP growth is positive but small. S&P
500 returns appear to have excess kurtosis. Jarque-Bera tests reject the null of
data normality for S&P 500 returns, whereas the tests do not reject the null for
real exchange rates. The normality for real GDP is rejected at 10% level. Figure
1.2 plots the time series of the empirical data.

As discussed in section 5, for empirical illustration, this chapter estimates
MSQAR of order 1 with 2 regimes to keep a parsimonious parameter space. This
chapter defines that regime 2 represents more extreme outcomes than regime 1.
For instance, at lower tails, quantiles of regime 2 should be more negative or farther
into the left tail areas than those of regime 1, which is mostly associated with the
periods of economic recessions and crises. In contrary, at upper tails, quantiles of
regime 2 should be more positive or farther into the right tail areas than those of

regime 1.

1.6.1. Stock Market Risk

Table 1.4 reports the estimation results for monthly and weekly S&P 500 re-
turns. The entries are the posterior means of parameters with associated numerical
standard errors in parentheses. In general, the values of the Geweke (1992) test
statistic in square brackets indicate convergence of the Markov chain to stationar-

ity. Table 1.5 shows that the numerical standard errors are small and the Markov
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chain appears to be converged well as indicated by the generally insignificant values
of the Geweke (1992) test statistic. Figure 1.3 also plots the estimated parameters
over quantiles with the 5% and 95% intervals of posterior distributions. As seen,
the quantile intercepts monotonically increase with the increase of quantile levels.
The quantile autoregressive coefficients are close to zero around median, while they
deviate from zero at lower and upper tails. The zero coefficients around median
seem to suggest market efficiency for S&P 500 index. However, it appears to be less
efficient at tails. Moreover, the autoregressive coefficients of regime 2 are larger in
magnitude than those of regime 1. This result implies that markets are less efficient
when extreme events occur or during economic recessions and crises. Interestingly,
the positive autoregressive coefficients at lower tails suggest that risk expectation
is positively impacted by past risks, while the negative autoregressive coefficients
at upper tails indicate that during market good times investors is expecting higher
risk in future. These results clearly show countercyclical behaviors in financial
markets estimated by MSQAR models.

The results also show that the variation of transition probabilities across quan-
tiles is much smaller in regime 1 than in regime 2. The transition probabilities
of regime 1 are ranging from 0.85 to 0.985, compared to the range for regime 2
from 0.381 to 0.945. It seems that the more extreme the quantile level is, the
lower the persistence of regime 2 (ps) isf| Despite the large variation in regime
persistence, the unconditional probabilities are very similar across quantiles, i.e.,

7 and 7y are around 0.84 and 0.16 for each quantile level, respectivelyﬁ This result

3 The regime persistence for regime 1 and 2can be computed as 1/(1 —p11) and 1/(1 — pa2),
respectively.
4 Unconditional probabilities of m; and 7 can be obtained as (1 — p22)/(2 — p11 — p22) and

(1 = p11)/(2 — p11 — pa2), respectively.



Chapter 1. Markov-Switching Quantile Autoregression 25

is reasonable in that economic conditions provide the common economic states to
different parts of a data distribution. However, persistence is possibly varying
across quantiles. This observation is further consolidated by Figure 1.4 plotting
the smoothed transition probability &,—o 7 for 7 = 0.05,0.5. The shaded areas
are NBER-dated business cycles. This figure shows that the fluctuation within
each economic recession period is much larger in 7 = 0.05 than in 7 = 0.5. The
responses of the 5% lower tail to the economic recessions are much stronger than
those of median, by showing much higher probabilities of switching to regime 2.

Value-at-Risk is implicitly defined on quantiles as a one-to-one function of a
quantile, over a given time interval, of a conditional return distribution (see Jorion
(2000)). For assessing S&P 500 return risks, Figure 1.5 plots 5% Value-at-Risk
(VaR) estimated from the dynamic quantile of 7 = 0.05 as Q,, (7|y,_1,5;0) =
Y ics Que (T]yt,l,st = z,él> Pr (st = z]yt,é> The dark lines in Figure 1.5 are
the estimated 5% VaR dynamics (Qy,(7|y,_,,s:; ©)) and the top and bottom light
lines are the estimated 5% VaR. dynamics of regime 1 (Q,,(7|y,_,, s = 1;6;)) and
regime 2 (Qy, (7|y,_,, s = 2;6,)), respectively. As seen, the dynamics in regime 2
is larger than in regime 1 due to the larger autoregressive coefficients. This result
indicates that market efficiency is different across regimes.

The usefulness of the proposed MSQAR model can be immediately recognized
from Figure 1.5. Value-at-Risk estimated from existing methods are undistin-
guished from different distributions associated with i.e., good times or economic
recessions. Thus, the VaR values from those approaches are at best the results
of averaging on different economic states. However, Figure 1.5 shows VaR values

for both regime 1 implied by good economic periods and regime 2 associated with

economic recessions. Risk states identified by the MSQAR model are particularly
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beneficial for risk management, as a risk manager would care more about the most
extreme scenarios or the worst possible outcomes. For example, to stress-testing
a hypothetically stressed financial institution, one should use VaR values esti-
mated from regime 2 (Q,, (T|y,_,, s = 2;65)) as the worst scenario hypothetically
occurring. This may be an appropriate approach to measure systemic risks for con-
sidering capital buffer requirement on financial institutions from the perspectives

of central banks.

1.6.2. Asymmetric Persistence in Macroeconomic Dynamics

To study asymmetric dynamics of macroeconomic variables, this chapter es-
timates MSQAR models for percentiles. Table 1.5 reports the estimation results
for real GDP growth rates and real trade-weighted exchange rates. The results of
ADF, KPSS, Phillips-Perron and Zivot-Andrews tests (not reported here) reject
the null hypothesis of unit roots for these macroeconomic variables.The entries
are the posterior means of parameters with associated numerical standard errors
in parentheses and the Geweke (1992) test statistic in square brackets. Table 1.5
shows that the numerical standard errors are small and the Markov chain appears
to be converged well as indicated by the generally insignificant values of the Geweke
(1992) test statistic. Figure 1.6 also plots the estimated parameters over quantile
levels with the 5% and 95% intervals of posterior distributions.

Figure 1.6 shows that the quantile autoregressive coefficients of real GDP
growth rates vary over different quantiles, displaying asymmetric dynamics. Up-
per tails appear to have higher dynamic persistence than lower tails. The quantile
autoregressive coefficients of regime 2 has the range from 0.623 to 0.979, compared

to the range of 0.779 to 0.874 for the coefficients of regime 1. This result indicates
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that economic regimes demonstrate different asymmetric dynamics. By contrast,
the evidence of asymmetric persistence in real trade-weighted exchange rates is
weak due to much less variation across the quantile autoregressive coefficients.
This result is consistent with Jarque-Bera test in Table 1.4 showing that the null
of data normality is not rejected for real trade-weighted exchange rates, where it
is rejected for real GDP growth rates at 10% confidence level.

In addition, Figure 1.6 also shows that transition probabilities slightly vary
across quantiles in both regimes. It implies that regime persistence of macroe-
conomic variables is mainly driven by common economic conditions, and hence
much less dependent on 7. This result is very different from the regime behaviors
of financial markets in section 5, but consistent with the fact that macroeconomic
variables are common economic states and factors in an economy.

Table 1.6 examines the regime predictions of real GDP growth rates. This table
reports QPS, APS and LPS values for regime 2 by using NBER-dated business
cycles as true regimes. The probability scores of QPS and APS are smaller than 0.5
across quantiles, which indicates a significant predictability of economic regimes
based on real GDP growth. Interestingly, the predictability of regimes from lower
tails is much stronger than from upper tails. In addition, LPS values are larger
than one at upper tails than at lower tails. This result implies the issue of regime
predictive outliers.

The different regime predictabilities across quantiles are also shown by Figure
1.7 plotting the smoothed transition probability &,,—s7 for 7 = 0.1,0.5,0.9. The
shaded areas are NBER-dated business cycles. As seen, the predicated regimes
from 7 = 0.05 and 7 = 0.5 seem closely to trace NBER dated business cycles,

whereas the predicated regimes from 7 = 0.9 appear to be lagged. In addition, the
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responses of the 10% quantile to the economic recessions are much stronger than
those of median, by showing much higher probabilities (close to 1) of switching to
regime 2. These results suggest that lower tails of real GDP growth rates reveal
more information of economic states than upper tails. This might be due to the
economic behaviors of risk aversion and also reflect the effects of macroeconomic

policies.

1.6.3. Quantile Monotonicity

It is important to evaluate the model by the monotonicity requirement on the
conditional quantile functions. If the monotonicity is satisfied, there should be no

crossings over quantiles. Severe crossing problems violate the theorem of equivari-

ance to monotone transformation from (|1.1.1) to ([L.1.2). Figure 1.8 plots the esti-

mated quantiles of each single regime. The straight lines are Q,,(7|y,_,,s; = 1; él)
and Qy, (T|y,_q1, s = 2:0,) for regime 1 and 2. The dots are the scatter plots
with y, as y-axis and y;_, as x-axis. Despite that the MSQAR model is nonlinear,
it takes a linear form within a single regime. Quantiles within a regime are not
parallel due to its location-scale quantile autoregressive model, unlike location-shift
quantile functions. Quantiles in regime 2 have no crossing issues, while crossing
problems occur in regime 1 between 7 = 0.4,0.5,0.6. Nonetheless, the proportion
of violations of the monotonicity in regime 1 is below 2% between 7 = 0.4, 0.5, 0.6,
except around 10% for the quantiles of regime 1 of real GDP growth rates crossing
between 7 = 0.5 and 7 = 0.6. Overall, Figure 1.8 does not show severe crossing

issues for the data considered in this chapter.
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1.7. Conclusion

This chapter proposes a new location-scale quantile autoregression, so-called
Markov- switching quantile autoregression, to characterize behaviors of different
parts of a nonstationary time series distribution. The new method directly in-
ferences and estimates dynamic quantiles by allowing the location and scale pa-
rameters subject to regime shifts. Unobservable economic regimes are inferred by
standard Hamilton filter approach in which quantile error terms follow a three
parameter asymmetric Laplace distribution. Bayesian estimation is adopted to
deal with some serious computational challenges in this nonlinear model which has
differentiable likelihood functions. The empirical application to S&P 500 returns
is able to show countercyclical risk accumulations in financial markets. It also il-
lustrates that the dynamic quantiles associated with economic recessions should be
an appropriate extreme scenario for stress-testing hypothetically stressed financial
institutions from the perspective of central banks. Furthermore, the estimation
results for macroeconomic variables show evidence of asymmetric dynamics for
quarterly real GDP growth rates but not for quarterly real trade-weighted U.S.
dollars. The transition probabilities are similar across quantiles within a single
regime for macroeconomic variables, whereas they vary in financial markets. In
addition, this chapter has found that the lower tails of real GDP growth provide

more valuable information than the upper tails for predicting economic regimes.
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Table 1.1: Simulation Results
(1) Normal errors
N =200 N =500
True

PM Std  RMSE MAD PM Std  RMSE MAD
7 =0.05
P11 0.900 0.883  0.034 0.042  0.031 0.895 0.019  0.022 0.017
P22 0.900 0.890 0.034  0.039  0.030 0.901  0.022  0.025 0.019
610(7) 1.178 1.262  0.113  0.120  0.099 1.249  0.081  0.092 0.075
611(7) 0.200 0.181  0.038 0.210  0.168 0.184 0.032  0.178 0.145
020(7) -3.645 -3.584  0.295  0.082  0.065 -3.606  0.193  0.054 0.043
021 (7) 0.400 0.401  0.097  0.172  0.200 0.400  0.059  0.147 0.116
T =0.25
P11 0.900 0.887  0.034  0.040  0.029 0.898  0.019  0.021 0.016
P22 0.900 0.889  0.032  0.038  0.029 0.899  0.021  0.024 0.018
010(7) 1.663 1.671  0.088  0.053  0.041 1.665 0.060  0.036 0.029
011(7) 0.200 0.194 0.030 0.151  0.122 0.195 0.024  0.120 0.099
B20(7) -2.674 -2.677 0.221  0.083  0.067 22,660 0.123  0.046 0.037
621 (1) 0.400 0.394 0.067 0.168  0.133 0.402  0.039  0.098 0.081
T7=20.5
P11 0.900 0.889  0.034  0.040  0.029 0.900 0.019  0.021 0.015
P22 0.900 0.888  0.032  0.038  0.029 0.897  0.021  0.023 0.018
610(7) 2.000 1.997  0.085  0.043  0.035 1.988  0.055  0.028 0.022
6011(7) 0.200 0.196  0.028  0.142  0.112 0.198  0.021  0.106 0.085
20(7) -2.000 -2.057  0.209  0.108  0.089 -2.041  0.119  0.063 0.052
021 (7) 0.400 0.382 0.064 0.165  0.139 0.388  0.037  0.097 0.080
T =0.75
P11 0.900 0.891  0.035 0.040  0.030 0.903  0.019  0.022 0.018
P22 0.900 0.884  0.032  0.040  0.031 0.894  0.021  0.024 0.019
010(7) 2.337 2.323  0.087  0.038  0.031 2311 0.057  0.027 0.021
011(7) 0.200 0.203 0.029 0.144  0.116 0.206  0.021  0.107 0.054
620(7) -1.326 -1.499  0.231  0.118  0.172 -1.469  0.148  0.105 0.125
621 (1) 0.400 0.358  0.075 0.177  0.173 0.365  0.047  0.140 0.115
T=0.95
P11 0.900 0.884  0.040  0.048  0.035 0.896  0.024  0.027 0.021
P22 0.900 0.863  0.036  0.057  0.046 0.874  0.025  0.040 0.033
610(7) 2.822 2.779  0.123  0.046  0.037 2772 0.080  0.034 0.027
6011(7) 0.200 0217  0.042 0.225  0.188 0.215  0.033  0.181 0.148
20(7) -0.355 -0.453  0.124  0.144  0.380 -0.451 0.103  0.123 0.322
021 (7) 0.400 0.337 0.086 0.187  0.215 0.328  0.067  0.145 0.204

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.
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(2) t3 errors
N =200 N =500
True

PM  Std RMSE MAD PM  Std RMSE  MAD
T =0.05
pi1 0.900 0.879  0.031  0.042  0.033 0.885  0.021  0.029 0.022
P2 0.900 0.880  0.041  0.050  0.037 0.892  0.024  0.028 0.022
010(7) 1.321 1.428  0.101  0.111  0.094 1441  0.077  0.108 0.094
611(7) 0.200 0.191 0.035 0.180  0.148 0.193  0.028  0.142 0.117
620(7) -3.359 -3.319  0.398  0.119  0.093 -3.319  0.246  0.074 0.059
621(7) 0.400 0.416 0.118  0.197  0.240 0.407 0.080  0.121 0.161
T =0.25
P11 0.900 0.885 0.031  0.038  0.029 0.891  0.021  0.026 0.020
P22 0.900 0.879  0.035 0.045  0.033 0.889  0.021  0.027 0.021
610(7) 1779 1770 0.062  0.035  0.028 1777 0.043  0.024 0.018
011(7) 0.200 0.202  0.024 0118  0.095 0.202  0.016  0.078 0.060
020(7) -2.442 -2.465  0.156  0.064  0.049 -2.443  0.091  0.037 0.031
021(7) 0.400 0.393  0.048 0120  0.093 0.400  0.029  0.073 0.058
T=0.5
pi1 0.900 0.886  0.031  0.037  0.028 0.892  0.021  0.025 0.020
P2 0.900 0.876  0.034  0.046  0.034 0.886  0.021  0.028 0.022
010(7) 2.000 1.994  0.058  0.029  0.022 1.993  0.034  0.017 0.014
611(7) 0.200 0.199 0.023 0115  0.091 0.201  0.013  0.067 0.051
620(7) -2.000 2.025 0.117  0.060  0.048 -2.025 0.074  0.039 0.028
621(7) 0.400 0.394  0.037  0.095  0.077 0.396  0.024  0.062 0.049
T=0.75
P11 0.900 0.886 0.032  0.039  0.029 0.892 0.022  0.026 0.020
pa2 0.900 0.870  0.034  0.050  0.039 0.881  0.022  0.033 0.026
610(7) 2.221 2.218  0.075  0.034  00.025 2.212  0.043  0.020 0.016
011(7) 0.200 0.199  0.027  0.133  0.101 0.202  0.016  0.080 0.063
020(7) -1.558 -1.643  0.137  0.103  0.083 -1.647  0.085  0.079 0.065
621(7) 0.400 0.383  0.042 0113  0.092 0.385  0.027  0.076 0.062
T =0.95
pi1 0.900 0.881  0.039  0.048  0.036 0.888  0.026  0.032 0.024
P2 0.900 0.853 0.037  0.067  0.055 0.861 0.025  0.051 0.044
010(7) 2.679 2.690 0.186  0.069  0.053 2,675  0.128  0.048 0.038
611(7) 0.200 0.197  0.066 0.153  0.265 0.202  0.047  0.137 0.186
020(T) -0.641 -0.596 0.110  0.185  0.141 -0.596  0.073  0.134 0.106
021 (T) 0.400 0.354  0.066  0.201  0.167 0.358  0.048  0.158 0.130

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.
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(3) Mixed errors
N =200 N =500
True

PM  Std RMSE MAD PM  Std RMSE MAD
T =0.05
pi1 0.900 0.885 0.032  0.042  0.030 0.896 0.019  0.025 0.017
P2 0.900 0.893  0.032  0.039  0.028 0.905  0.020  0.023 0.018
010(7) 1.178 1271 0.118  0.128  0.105 1.252  0.085  0.096 0.078
611(7) 0.200 0.182 0.038 0212  0.167 0.186  0.029  0.160 0.126
620(7) -3.359 -3.406  0.226  0.127  0.096 -3.348  0.155  0.076 0.059
621(7) 0.400 0.416 0.128  0.163  0.163 0.409 0.085 0.114 0.169
T =0.25
P11 0.900 0.886 0.034  0.041  0.030 0.895 0.021  0.023 0.016
P22 0.900 0.887 0.031  0.038  0.027 0.898  0.019  0.022 0.016
610(7) 1.663 1.671  0.082  0.049  0.040 1.668  0.059  0.035 0.029
011(7) 0.200 0.197  0.033  0.166  0.13 0.199  0.022  0.108 0.086
020(7) -2.442 2462 0.153  0.063  0.049 -2.446  0.094  0.039 0.030
021(7) 0.400 0.400 0.046  0.115  0.090 0.400  0.029  0.072 0.057
T=0.5
pi1 0.900 0.886 0.035 0.039  0.029 0.894  0.021  0.022 0.015
P2 0.900 0.883  0.030  0.037  0.026 0.893  0.019  0.021 0.016
010(7) 2.000 1.998  0.080  0.040  0.033 1.990  0.053  0.027 0.022
611(7) 0.200 0.200 0.031 0153  0.125 0.202  0.022 0.111 0.088
620(7) -2.000 2.037  0.119  0.062  0.047 -2.033  0.076  0.041 0.033
621(7) 0.400 0.393 0.037  0.093  0.073 0.393  0.024  0.062 0.049
T=0.75
P11 0.900 0.886  0.035 0.042  0.032 0.894 0.023  0.026 0.020
P22 0.900 0.878  0.030  0.041  0.031 0.888  0.019  0.025 0.019
610(7) 2.337 2.329 0.084 0.036  0.028 2.315  0.061  0.028 0.022
011(7) 0.200 0.202  0.033  0.167  0.134 0.208  0.025  0.129 0.105
020(7) -1.558 -1.648  0.130  0.104  0.081 -1.651  0.087  0.082 0.070
621(7) 0.400 0.382 0.040 0.110  0.088 0.382  0.026  0.079 0.064
T =0.95
P11 0.900 0.877  0.041  0.052  0.039 0.884  0.027  0.035 0.027
P2 0.900 0.856  0.034  0.062  0.050 0.866  0.022  0.045 0.039
010(7) 2.822 2.813  0.153  0.054  0.042 2.798  0.095  0.035 0.028
611(7) 0.200 0.204 0.058 0.218  0.167 0.208  0.035  0.181 0.145
620(7) -0.641 -0.600 0.103  0.173  0.135 -0.601  0.087  0.128 0.098
621(7) 0.400 0.355 0.062 0.192  0.160 0.354  0.044  0.158 0.133

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.



Sample Periods
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Mean
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Std. dev.
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Table 1.2: Summary Statistics for the Predictability of Simulated Regimes.
Normal t3 Mixed
QPS  APS  LPS QPS APS  LPS QPS  APS  LPS
N =200
7=0.05 0.019 0.025 0.046 0.049 0.042 0.251 0.043 0.042 0.206
7=0.25 0.013 0.014 0.025 0.018 0.015 0.040 0.013 0.011 0.031
7=0.5 0.006 0.011 0.014 0.014 0.011 0.038 0.010 0.010 0.029
7=0.75 0.033 0.032 0.065 0.034 0.026 0.101 0.030 0.025 0.088
7=0.95 0.055 0.052 0.138 0.056 0.050 0.305 0.048 0.044 0.286
N =500
7=20.05 0.019 0.025 0.046 0.045 0.038 0.196 0.038 0.038 0.136
7=0.25 0.012 0.013 0.024 0.016 0.012 0.038 0.012 0.011 0.030
7=0.5 0.006 0.011 0.013 0.014 0.011 0.040 0.010 0.010 0.025
7=0.75 0.031 0.031 0.063 0.033 0.025 0.102 0.030 0.024 0.086
7=0.95 0.052 0.050 0.140 0.054 0.048 0.297 0.046 0.042 0.274
QPS, APS and LPS represent quadratic, absolute and log probability scores, respectively.
Table 1.3: Data Summary Statistics
Monthly S&P 500 Weekly S&P 500 Real GDP Real TWER

1926:01-2013:02

1047
0.461
0.907
5.505
-0.525
10.75
<0.001

01/09/1950-02/25,/2013

3294
0.136
0.282
2.091
-0.567
8.744
<0.001

1948Q1-2013Q2

263
3.263
3.200
2.675
0.004
0.692
0.058

1974Q1-2013Q2

159
-0.132
0.201
7.087
-0.256
-0.044
0.412

Note: the p—values are reported for Jarque-Bera statistics test of data normality.
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Table 1.6: Real GDP Growth Rates: Predictability of Regime 2

QPS APS LPS
7=0.1 0.135 0.111 0.281
7=0.2 0.131 0.117 0.235
7=0.3 0.134 0.119 0.223
7=04 0.132 0.132 0.219
=05 0.151 0.179 0.259
7=0.6 0.403 0.227 1.039
T=0.7 0.439 0.249 1.075
7=0.8 0.481 0.277 1.134
7=0.9 0.516 0.298 1.370
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Chapter 2

Systemic Risk of Commercial Banks with

Regime Switching in Tails

Abstract: This chapter extends the Conditional Value-at-Risk approach of
Adrian and Brunnermeier (2011) by allowing systemic risk structures subject to
economic regime shifts, which are governed by a discrete, latent Markov process.
This proposed Markov-Switching Conditional Value-at-Risk is more suitable to
Supervisory Stress Scenario required by Federal Reserve Bank in conducting Com-
prehensive Capital Analysis and Review, since it is capable of identifying the risk
states in which the estimated risk levels are characterized. Applying MSCoVaR
to stress-testing the U.S. largest commercial banks, this chapter finds that the
CoVaR approach underestimates systemic risk contributions of individual banks
by around 131 basis points of asset loss on average. In addition, this chapter
constructs Banking Systemic Risk Index by value-weighted individual risk contri-
butions for specifically monitoring the systemic risk of the banking system as a

whole.

Keywords: Markov-Switching Conditional Value-at-Risk, Conditional Expected
Shortfall, Bayesian Quantile Inference, Stress-testing, Value-at-Risk, Commercial
Banks, Banking Systemic Risk Index

JEL: C22, C58, C51, C11, G23
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2.1. Introduction

Recently, Adrian and Brunnermeier (2011) propose to measure systemic risk
via the conditional value-at-risk (CoVaR) of the financial system, conditional on
institutions being in a state of distress. In their work, an institution’s contribu-
tion to systemic risk is defined as the difference between CoVaR conditional on
the institution being in distress and CoVaR in the median (“normal”) state of
the institution. Hence, it characterizes the marginal contribution of a particular
institution (in a non-causal sense) to the overall systemic risk.

The CoVaR approach is particularly appealing in that it outlines a method to
construct a countercyclical, forward-looking systemic risk measure by predicting
future systemic risk using current institutional characteristics. This is a time-varying
systemic risk measure which does not rely on contemporaneous price movements
and thus can be used to anticipate systemic risk. This method relates systemic
risk measure to macroeconomic variables and the balance sheet deleveraging and
characteristics of individual institutions. This is essentially a main regulatory
concern of central banks.

A number of recent studies have extended and estimated the CoVaR measure of
systemic risk for a variety of financial systems.m Adams et al. (2011) estimate a sys-
tem of quantile regressions for four sets of major financial institutions (commercial
banks, investment banks, hedge funds and insurance companies). Wong and Fong
(2010) estimate CoVaR for the CDS of Asia-Pacific banks. Brunnermeier et al.

(2012) use the CoVaR approach to examine the contribution of non-interest income

1 See e.g., Brunnermeier et al. (2012), Lopez-Espinosa et al. (2012), Rodriguez-Moreno and
Pena (2012), Arias et al. (2010), Girardi and Ergun (2012), Roengiptya and Rungcharoenkitkul
(2011), and Van Oordt and Zhou (2010), etc. Bisias et al. (2012) and Brunnermeier and Oehmke
(2012) provide comprehensive reviews on systemic risk analytics.
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to systemic bank risk. They find that banks with a higher non-interest income to
interest income ratio have a higher contribution to systemic risk and their contri-
butions appear to be countercyclical to systemic risk build-up. Lopez-Espinosa et
al. (2012) use the CoVaR approach to identify the main factors behind systemic
risk in a set of large international banks. They find that short-term wholesale
funding is a key determinant in triggering systemic risk episodes.

However, Bisias et al. (2012) raise the important econometric issue of nonsta-
tionarity which is particularly relevant to systemic risk measurement. Virtually the
existing methods of systemic risk estimation and inference rely on the assumption
of stationarity. In other words, the joint distribution of the relevant variables is
stable over time. Nonetheless, the literature has recognized the stylized fact of
structural breaks in macroeconomic and financial time series, so that the distribu-
tion structures of a time series might, driven by economic states, evolve over time.
Hence, the very nature of systemic risk implies a certain degree of nonstationarity
that may not always be consistent with the econometric framework in which risk
measures are typically estimated.

Brunnermeier and Oehmke (2012) also concern that the CoVaR approach is
vulnerable to regime changes based on historical data. The estimated CoVaR value
is undistinguished from the distributions associated with i.e., a good economic
state or an economic downturn. In this regard, without informing its associated
risk states, the CoVaR measure is at best an averaging across different economic
regimes and hence less advisable to or even misleading market participants and
regulators in managing risks with ambiguous targets. Evidently, Adams et al.
(2011) have shown the sensitivity of systemic risk to tranquil, normal and volatile

economic states, while Lopez-Espinosa et al. (2012) have found that asymmetries
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based on the sign of bank returns play an important role in capturing sensitivity
of system-wide risk to individual bank returns. These concerns highlight the need
for new systemic risk methods that are able to address nonstationarity in a more
sophisticated way.

This chapter specifically considers the systemic risk measure subject to regime
shifts. I extend the CoVaR measure of systemic risk to a nonlinear dynamic
structure, namely Markov-switching CoVaR (MSCoVaR), in which an institution’s
contribution to systemic risk is measured by allowing the joint distribution evolving
over time. Switching regimes is determined by the outcome of a latent, discrete
Markov process, so that the conditional value-at-risk can be obtained with the
filtered probabilities of risk states.

This chapter characterizes two risk states: a normal risk level implied by good
economic periods and a high risk level associated with economic recessions, crises
or extreme events. MSCoVaR is thus obtained for each risk state in stress-testing.
Particularly, this chapter obtains MSCoVaR by estimating Markov-switching quan-
tile autoregressive models (MSQAR) recently developed by Liu (2014). MSQAR
is the location-scale quantile autoregression in which the location and scale pa-
rameters are permitted to evolve over time.

The MSCoVaR measure of systemic risk appears to have the advantage of nat-
urally fitting to the Supervisory Stress Scenario required by Federal Reserve Bank
in Comprehensive Capital Analysis and Review (CCAR).ﬂIn CCAR, a supervisory

stress scenario is a hypothetical scenario to be used to assess the strength and re-

2 See Comprehensive Capital Analysis and Review 2012 : Methodology and Results for
Stress Scenario Projections. Board of Governors of the Federal Reserve System: March13 , 201
2; and Comprehensive Capital Analysis and Review 2013: Assessment Framework and Results.
Board of Governors of the Federal Reserve System: March 2013
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silience of BHC capital in a severely adverse economic environment. It represents
an outcome in which the U.S. economy experiences a significant recession and
economic activity in other major economies also contracts significantly, i.e., a deep
recession in the United States, significant declines in asset prices and increases
in risk premia, and a slowdown in global economic activity, etc. Therefore, the
MSCoVaR result from a high risk episode is well-defined for the stress-testing in
Fed’s supervisory stress scenario since it estimates a separate set of parameters for
high risk episodes.

In addition, the MSCoVaR measure of systemic risk provides various ways
to test different stress scenarios. For instance, if an institution is systematically
important, its hypothetically distressed scenario should also cause a distress in
financial system. The systemic risk of a systemically important institution can thus
be measured by the high risk episodes of both financial system and the institution.
By contrast, as a non-systemically important institution, its hypothetical stress
scenario, unless leading to a herding effect, does not cause a distress in financial
system. Hence, its systemic risk can be measured by using the high risk episode
of the institution and the normal risk period of financial system.

Importantly, the assumption in Liu (2014) that quantile error terms follow
a three-parameter asymmetric Laplace distribution (ADL) for filtering transition
probabilities of regimes can also be used to simulate the Markov-switching con-
ditional expected shortfall (MSCoES) from the MSQAR results. This provides a
natural solution to the theoretical issue that CoVaR is not a coherent risk mea-
sure due to its nonsubadditive natureP] Note that MSCoES takes distributional

aspects within the tail into account. To this end, a banking systemic risk index

3 See Adrian and Brunnermeier (2011) and Artzner et al. (1999).
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by value-weighted individual contributions is constructed for monitoring systemic
risk specific to the banking system as a whole.

This chapter estimates MSCoVaR and MSCoES as risk contributions of the
largest U.S. commercial banks. The empirical results show strong evidence that
financial institutions and the banking system as a whole experience regime shifts in
their lower tails. The new systemic risk measure shows that the CoVaR approach
of Adrian and Brunnermeier (2011) underestimates systemic risk contributions of
individual banks by around 131 basis points of asset loss on average. The empirical
results also show that the banking system is more sensitive to marginal changes
of an individual bank during high risk episodes than during normal risk periods.
In addition, Banking Systemic Risk Index presents the high relevance of tracing
financial distress situations over the sample period.

The rest of this chapter is structured as follows. Section 2 defines the Markov-
switching systemic risks measured by MSCoVaR and MSCoES. Markov-Switching
Quantile Autoregression of Liu (2014) for estimating MSCoVaR and MSCoES are
described in Appendiz A. Section 3 applies MSCoVaR and MSCoES methods to
stress-testing the U.S. largest commercial banks. In this section, the banking

systemic risk index is also constructed. Section 4 concludes this chapter.

2.2. Systemic Risk Measure

This section briefs the CoVaR measure of systemic risk and then extends
it to define the Markov-Switching CoVaR to identify risk states for a poten-
tial nonstationary time series. It is followed by a discussion of simulating the

Markov-switching conditional expected shortfall as a coherent risk measure.
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2.2.1. CoVaR

Recall that the value-at-risk of institution n given the probability of 7 is
Pr(X <VaR})=T (2.2.1)

where X' denotes the asset return value of institution n at time . The VaR of the

financial system return (X;*) conditional on the event {C(X}): X" = VaRy },

w|n
t, T

i.e., institution n’s asset-return attains its VaR value, is denoted by CoVaR
such that

Pr(X{ <CoVaR?|C (X)) =T

Institution n’s contribution to the system risk is thus defined as
ACOV@RZ"T" = CoVaRZﬂn — CoVaRZ"TMO% (2.2.2)

where CoVaR;’ \Tn,5o% denotes the VaR of the financial system when the institution
n’s returns are at their median (“normal”) state as Pr(X;* < CoVaR}|X] =
VaRZm%) = 7. For simplicity, this chapter suppresses the superscript w. Hence,
ACoVaRj . denotes the difference between the VaR of the financial system con-
ditional on the distress of a particular financial institution n and the VaR of
the financial system conditional on the median state of the institution n. Thus,
ACoVaRy, quantifies how much an institution n adds to overall systemic risk. It
captures the amount of additional risk that an institution inflicts upon financial
system when the institution attains its VaR value.

Adrian and Brunnermeier (2011) apply quantile autoregressive models (QAR)

of Koenker and Xiao (2006) to estimate CoVaR in two steps as follows
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X = ol + R X[y 1 D € (2.2.3)

XY =¥t 4 peln x4 gelnxr A eing, 4 Eﬂ" (2.2.4)

where &, is quantile error terms and Z, is the predictive variables. From (2.2.2),

the risk contribution of an institution n to financial system is then given by

ACoVaRy, = B (VaRy, — VaR}sy) (2.2.5)

where VaR! = o + p' X[, + 7,"Z,_1 is estimated from (2.2.3) and grin s

T

estimated from (2.2.4). In this framework, the existence of risk spillovers is cap-
tured through the parameter 8%™: for non-zero values of this parameter, the left
tail of the system distribution can be predicted by observing the predetermined

distribution of an institution’s returns.

2.2.2. Markov-Switching CoVaR

To address the vulnerability of CoVaR to regime shifts and the requirement of
stress-testing of an institution in a hypothetically stressed scenario, i.e., a deep eco-
nomic recession or asset price downturn, this section defines the Markov-switching
CoVaR measure of systemic risk to identify distinct risk states as CoVaR subject

to regime changes.
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Let {s;} be an ergodic homogeneous Markov chain on a finite set K = {1, ..., k}

with a transition matrix P defined by the following transition probabilities

{pij = Pr (st = jlsi-1 =1)}

for 7,7 € K and assume s; follow a first-order Markov chain. Transition proba-
bilities satisfy Z]’es pi; = 1. In this chapter, I define two distinct risk regimes,
K = {1,2}. Regime 1 (s; = 1) represents a normal risk level which is implied
by a good economic state and regime 2 (s, = 2) represents a high risk episode
most likely associated with an economic recession or financial crisis. The risk
structures are determined by data distributions of each regime over time. Note
that economic states, s;, are unobservable so that switching in s; is inferred by
transition probabilities which are estimated from data.

Suppose that X; can be observed directly but can only make an inference
about the value of s, based on the observations as of date ¢. From ,

Markov-switching VaR (MSVaR) of an institution n can be defined as

Pr(X] <VaR}|s} =j)=1

and denoted by MSVaR{, . which represents the value-at-risk level of an institu-
tion n in its risk regime j. Accordingly, the VaR of the financial systemic returns
conditional on the event {C(X}") : X" = MSVaR?, _}, denoted by MSCoVaR?, _,

is given by
Pr (X <CoVaR/|C(X}|s; =i),s) =j) =7

Note that the risk states of an institution and the financial system are not neces-
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sarily coincided, i.e., i # 7. For instance, a non-systemically important institution
being distressed does not cause the same high risk episode to the whole finan-
cial system. However, a distressed financial system may indeed cause a high risk
episode for a non-systemically important institution.

Apply the definition in ( to obtain an institution n’s contribution to

systemic risk as
AMSCoVaR? . = MSCoVaR! . — MSCoVaR%:"

In this chapter, MSCoVaR is estimated by Markov-Switching quantile autore-

gressive models (MSQAR), specified as

X[ =al 4ol XD+ T e (2.2.6)
Xp = aph g pelnxw 4ogeinyn g yuleg, g (2.2.7)

such that MSVaR, - = ag,  +pg, X[y + 7;?’7Zt_1 is estimated from 1) and

St,T

then

MSCoVaRy . = B MSVaR

St,T St,T

can also be computed based on the estimation results of ( See Appendiz A
for details of the MSQAR model estimation for (2.2.6) and (2.2.7).
In this MSCoVaR measure, 65[? depends on risk states. The response of finan-

cial system to a negative shock to an institution’s balance sheet during a high risk

sl

.—2.,), hence, allows to be different from a normal risk period (ﬁs“ ).

StZI,T

episode (3

The set of coefficients estimated from high risk episodes describes the distributional
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structures of data in economic recessions, crises or extreme events. Therefore, it is

suitable to be applied to stress-testing financial institutions in supervisory stress

scenario required by Federal Reserve Bank. Note that if no risk regime-switching
presents, MSCoVaR is equivalent to CoVaR. In this sense, the CoVaR approach is

a special case of the MSCoVaR measure when there is no structural breaks. In this

chapter, I assume the presence of distinct economic regimes based on the findings

in literature. However, an appropriate approach of testing the number of regimes
should be considered in future research.

The new framework of the MSCoVaR approach indeed provides flexibility to
test different stress scenarios. For instance,

Scenario(1) An extreme scenario is that the financial system depends on the
regimes of systemically important banks. This scenario describes the recent
financial crisis as: the financial system is distressed once a systemically impor-
tant bank is distressed, while the financial system is away from distress only
if none of systemically important banks are distressed. Hence, systemic risk
contribution might be measured by

AMSCoVaRy, = 3" (MSVaR” - MSVaR”’50%> (2.2.8)

st=2,T st=2,T st=1,T

The first product in the right side of (2.2.8) is the value-at-risk of financial
system conditional on hypothetically assuming both the financial system and
the institution n in their high risk episodes. The second product in (.2.8)
is the value-at-risk of financial system conditional on normal states of that

institution.
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Scenario(2) In comparison, assuming current financial system in regime 1, a

distressed institution n contributes systemic risk to financial system given by

s¢=1,1 St=2,T s¢=1,T

AMSCoVaRy, = 3" (MSVaR” - MSVaR”’5O%) (2.2.9)

This scenario implies that the institution n is assumed to be not systemically
important. Its high risk state does not cause a distressed financial system.
However, it might still accumulate and contribute systemic risk to financial
system, especially when herding effects occurring.

Scenario(3) Even during a normal time if a systemically important financial
institution reaches its VaR level, it also likely shocks financial system into
its high risk episode. Hence, the systemic risk contribution of a distressed
institution ¢ can also be measured by

AMSCoVaRy, = gl (MSVaR" - MSVaR”’5O%> (2.2.10)

St:2,7' Stil,’r st:1,’r

For instance, an institution reaching its risk level during a normal period might
be caused by short-term maturity mismatch, while an institution reaching its
high risk episode might be caused by the large number of defaults on loans
like the recent subprime crisis. Despite that risk during a normal time is
less severe than during a high risk period, the highly interconnected banking
system, herding effects, and market panic might contagiously amplify these
negative impacts on financial system and hence lead to crises by i.e., fire-sales

and domino effects, etc.
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2.2.3. Markov-Switching CoES

VaR is not a coherent risk measure due to its nonsubadditivity and does not
take distributional aspects within the tail into account. This theoretical issue to
some extent makes the CoVaR and MSCoVaR measures of systemic risk invalid.
However, the asymmetric Laplace distribution assumption in the MSQAR frame-
work of Liu (2014) provides a convenient solution by obtaining expected shortfall
through Monte Carlo simulation based on model estimation results. Expected
shortfall computed as conditional tail expectation is a coherent risk measure and
considers risks beyond the point of a VaR value. See Artzner et al. (1999).

Using the simulation method in Appendiz A and the estimation results from
(2:2.6), Markov-switching expected shortfall (M SES) for an institution n can be
obtained and denoted by MSEST, . Then, conditional on the event {C(X}") :

X' = MSE’SQJ}, an institution n’s contribution to systemic risk is given by

AMSCoES?, = MSCoES?. . — MSCoES">"%

St,T

with MSCoES" _ = BI"MSES?

st, T~ [St,T S¢,T"

Expected shortfall can also be applied to the

three scenarios of measuring systemic risk discussed previously:

(1) AMSCoES?, = 8", . (MSES;:ZT - MSESQi%“j‘;) (2.2.11)
(2) AMSCoES?, = 8", | (MSES;‘FZT - MSESQiTj‘;) (2.2.12)

(3) AMSCoES), = g <MSE n —MSES"’5O%> (2.2.13)

st=2,T st=1,7 st=1,T
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2.3. Stress-testing Commercial Banks

In this section, the MSCoVaR and MSCoES measures of systemic risk are
estimated for stress-testing the largest U.S. commercial banks, using the CoVaR
measure of systemic risk as the benchmark model. In addition, given the sub-
additivity property, the Markov-switching expected shortfall is used to construct
a banking systemic risk index (BSRI) via value-weighted individual systemic risk

contributions for monitoring dynamic systemic risk of the financial system.

2.3.1. Data

Daily market equity data were taken from The Center for Research in Security
Prices (CRSP). The universe of bank holding companies (BHCs) are the stocks
corresponding to CRSP SIC codes 6000-6199 and 6712. Daily market data is
used to form weekly returns on market-valued total assets of individual banks.
Following Adrian and Brunnermeier (2011), a bank market-valued total asset is
transformed from book-valued total assets into market-valued total assets by ap-
plying market-to-book equity ratios. Then, the financial system return is computed
as a value-weighted average on the returns of the universe of banksﬁ

This chapter considers the largest U.S. commercial banks since they are the
targets of current regulatory efforts and would likely be considered too-big-to-fail
by central banks. Table 2.1 provides a bank list considered for stress-testing in this
chapter. The ultimate criterion to configure the sample of potentially systemically
important banks is the availability of comparable data over a long enough period

of time. This sifting criterion rules out some large banks, i.e., HSBC, etc. The

4 See details in Adrian and Brunnermeier (2011) and Lopez-Espinosa et al. (2012).
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resulting sample is formed by a total of the 27 largest BHCs sampled from June
1993 to June 2012 with 1000 weekly observations. Note that this chapter estimates
the systemic risk contributions of the 27 commercial banks to the financial system,
while the financial system is constructed by the universe of financial institutions
with the SIC code of 6000-6199 and 6712. Hence, the financial system defined in
this chapter is equivalently referred to as the banking system hereafter.

The identification of risk regimes is enhanced by using a set of macro-financial
predictive variables that are acknowledged to capture the expected return in finan-
cial markets. I choose a small set of predictive variables to avoid over-fitting the
data. The predictive variables (Z;) used in this chapter include: (1) the change
in the credit spread (Acs) between the 10-year Moody’s seasoned Baa corporate
bond and the 10-year U.S. Treasury bond; (2) The change in the U.S. Treasury bill
secondary market 3-month rate (A3mtb); (3) the change in the slope of the yield
curve (Ays), measured by the yield spread between the U.S. Treasury benchmark
10-year bonds and the U.S. 3-month T-bill rate; (4) liquidity spread (ls), defined
as the difference between the 3-month U.S. repo rate and the 3-month T-bill rate;
(5) the S&P500 Composite Index return (sp); (6) the volatility Index (viz) of
the Chicago Board Options Exchange (CBOE). All these variables are sampled
weekly and obtained from CBOE, the Federal Reserve Board’s H.15 Release and

the Datastream database, respectively.

2.3.2. Empirical Results

Table 2.2 reports the results of the MSQAR model estimation with 7 = 5%.
Panel A presents the results estimated from (B.2.6) for individual banks (X}

conditional on predictive variables (Z;_1), and Panel B estimated from (2.2.7) for
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the banking system (X/*) conditional on a individual bank n (X;*) and predictive
variables (Z;_1). This table displays the medians of the coefficient estimates, the
numerical standard errors in square brackets, and the posterior credible intervals
(PCI) in parentheses, across banks[]

In Table 2.2, the quantile intercepts (as, ) of both individual banks and the
banking system appear to have the non-overlapped PCIs between regimes (s; = 1
and s; = 2). This indicates an effective identification of risk regimes by the label
switching restriction. The regime identification is further enhanced by predic-
tive variables: S&P 500 returns, the changes in T-bill rates, market volatility for
individual banks; and contemporaneous returns of individual banks, the lagged
banking system returns, S&P 500 returns, the change in yield curve, and market
volatility for the banking system. These predictive variables have non-overlapped
PCIs between regimes.

In addition, the transition probabilities, which have the non-overlapped PCls
between regimes, present a much higher level of the regime persistence during
regime 1 than during regime 2. The transition probability of regime 2 at 5% VaR
is around 50%, which is much lower than that at median levels around 92%.[f| The
explanation to this result is that, compared to a deviation from the median or a
normal risk period, whenever an individual bank attains its 5% VaR (tail risk) in a
high risk episode, the bank more likely takes measures to resolve the risky situation

immediately, i.e., adjusting capital structure to reduce debt levels, implementing

5 The detail estimation results of each bank are not reported here to save space, but available
upon request. Numerical standard errors are obtained using batch mean method, e.g., Ripley
(1987). The posterior credible intervals are computed using the highest posterior probability
regions with the 95% credible level.

6 The estimation results for 7 = 50% are not reported in this chapter to preserve space, but
available upon request.
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more conservative loan policies, etc. Those measures affect the persistence of a high
risk episode. Similarly, when the banking system is stressed in a high risk episode,
regulators also likely intervene markets by monetary and/or fiscal policies. The
scale parameters (g,) imply much higher standard deviations (around 20.85 and
5.988 for individual banks and the banking system, respectively) during regime 2
than those during regime 1 (around 4.447 and 1.532 for individual banks and the
banking system, respectively) |Z| This result is highly consistent with the findings
in literature that financial returns are more volatile during economic recessions
and crises than economic good times.

Panel A of Table 2.2 shows that the predictive variables, including S&P 500,
changes in T-bill rates, changes in yield curves and market volatility, which have
their PClIs excluded zero values, show the predictability for the VaRs of individual
banks. By contrast in Panel B of Table 2.2, the predictors, including contem-
poraneous returns of individual banks, the lagged banking system returns, S&P
500 returns, the change in yield curve, and market volatility, which have their
PClIs excluded zero values, present the predictability for the VaRs of the banking
system. For instance, among these predictors, a widening of yield spreads and
spikes in market volatility are generally associated with a larger one-period ahead
VaR value, and hence could be used to anticipate higher levels of downside risk.
As a result, the conditioning variables considered in the analysis have shown the
predictability for financial systemic risk.

Interestingly, S&P 500 returns appear to countercyclically contribute to the
systemic risk of the banking system: the negative coefficient of S&P 500 return in

regime 1 implies that a stock market boom accumulates tail risks in the banking

7 The implied variance is computed based on the formula provided in Appendiz A.
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system, while its positive coefficient in regime 2 provides that the increase in stock
market prices recovers tail risks of the banking system. Additionally, the contem-
poraneous returns of individual banks appear to have a strong positive relationship
with system risk. This contemporaneous effect exacerbates the downside risk level
of the banking system due to the drop of a bank return. The small numerical
standard errors in Table 2.2 indicate reasonable model estimation accuracy.
Table 2.3 reports the VaR and MSVaR values of individual banks (X}') esti-
mated from (2.2.3) and (2.2.6) conditional on predictive variables (Z;_;), respec-
tively. MSES values are simulated based on the model estimation results using
the approaches in Appendiz A. Table 2.3 shows that given 5% probability, the
worst possible outcome is MS estimated from VaR;, (around 1,017 basis points)
and STT (around 5,695 basis points) estimated from MSVaR;,—s .. On average,
MSVaR,,—s 59 values are about 800 basis points more riskier than VaR, 5o results
and about 1,200 basis points more riskier than MSVaR, - 5% results. From the
coherent risk measure, M SES,,_s 54 and MSES,,—1 5% results have about 110 and
120 basis points on average more riskier than M SVaR,—3 594 and MSVaRs,—1 5%,

respectively.

Note that these estimated values are used in (2.2.5), (R.2.8)-(R.2.10), and

(2.2.11)-(2.2.13)) to compute ACoVaR, AMSCoVaR, and AMSCoES for mea-

suring systemic risk contributions of individual banks. Due to the clear difference
between VaR and MSVaR values in Table 2.3, this evidence shows that exist-
ing VaR methods, which provide the results averaging across different economic
regimes, do not well reflect extreme risk scenarios for stress-testing purposes. In

contrary, the risk levels obtained from high risk episodes (regime 2) are more
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suitable for measuring hypothetically distressed contributions under supervisory
stress scenarios.

The disparity between regimes can also be observed in Figure 2.1, which plots
the MSEST, | values for the six largest U.S. commercial banks. The solid dark
lines are the MSESY, | estimates from regime 1 and the dashed light lines from
regime 2. Generally speaking, high risk episodes show higher dynamics and larger
volatilities than normal risk periods. The difference between regimes exists over
time, and the gap is dramatically enlarged during recessions and financial crises.
For instance, the risk level during the recent financial crisis of 2008-2009 is well
reflected in regime 2 by showing a deep drop into far left tails.

Table 2.4 reports the systemic risk sensitivities of the banking system as a whole

conditional on individual banks. The banks in this table are ranked based on risk

w|n

sensitivity coefficients (5,2, ). The risk sensitivity coefficients are the important

elements for computing systemic risk contributions in (R.2.5), (R.2.8)-(R.2.10), and

(2.2.11)-(2.2.13)). For comparison, this table also includes the estimation results of

the QAR model as the benchmark for 1-regime using (

The systemic risk sensitivity coefficients in Table 2.4 show that many individual
banks tend to impact the banking system heavier during high risk episodes than
during normal risk periods, whereas for some other banks the opposite is true. For
instance, the marginal impact of BK on the banking system is 0.414 during high
risk episodes much larger than 0.169 during normal risk periods. Different sensi-
tivities across regimes show asymmetric effects of individual banks on the banking
system. Generally, it is observed that the systemic risk sensitivity coefficients of

BZ‘QZT are also largely different from the sensitivity results of 1-regime estimations

B

++ ). The higher value of a sensitivity coefficient represents the larger response of
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the banking system to individual bank’s shocks. The negative coefficients of BBT
and CMA banks imply that during high risk episodes these banks do not worsen
the systemic risk of the banking system, despite that their negative coefficients are
small in magnitudes.

Table 2.5 reports the systemic risk contributions of individual banks to the
banking system as a whole. AMSCoVaRy, AMSCoVaRy, AMSCoVaRs, AMS
CoE S, AMSCoES,, and AMSCoESs3, are computed in each scenario of (—

(2.2.10) and (2.2.11)-(R.2.13), respectively. For comparison, the systemic risk con-

tributions without switching regimes are also computed from ( as bench-
marks. The ingredients for computing systemic risk contributions are the sys-
temic risk coefficients (847) and individual bank’s MSVaR;, . and MSES?, |
values. The banks in each scenario are ordered by their values of the systemic risk
contributions.

On average across banks, the systemic risk contribution from scenario (1) is
around 131 basis points higher than that measured by the CoVaR approach. In
addition, scenario (2) generates the systemic risk contribution to the banking sys-
tem about 72 basis points on average higher than that measured by the CoVaR
approach. These results clearly show empirical evidence of the underestimated
systemic risk contributions by the CoVaR approach.

The orders of individual bank’s systemic risk contributions are very different
between AM SCoVaR; and ACoV aR measures as well. For instance, the systemic
risk contribution of STT is the highest in the AMSCoVaR, measure, while the
highest systemic risk contribution in the ACoVaR measure is the AXP bank.

The difference between their contributions is as large as about 827 basis points.

A strong negative relationship between systemic risk contributions and bank sizes
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has also been found through a OLS regression (not reported here). This result
indicates that the bigger the bank asset sizes are, the larger the banks impact
on the banking system. This result provides quantitative evidence for the recent
debate of “too big to fail” of banks.

Apparently, the AMSCoVaR; measure of systemic risk provides the most
extreme stressed outcomes among the 3 scenarios considered. Even in the case
that a bank is not systemically important but distressed during high risk episodes
(scenario (2)), the average systemic risk contribution is around 169 basis points
which cannot be neglected. The orders of systemic risk contributions also vary
across the 3 scenarios.

In addition, Table 2.5 reports the simulated results of MSCoES;, .. As seen,
the systemic risks are similar between AMSCoFES; and AMSCoVaR,, and be-
tween AMSCoESy and AMSCoV aR,, while the results from scenario (3) are very
different. However, this chapter suggests to adopt the systemic risk measurement
results of AMSCoES;, - since AMSCoVaR is not a coherent risk measure.

Figure 2.2 plots the dynamics of systemic risk contributions measured by
AMSCo VaR; and ACoVaR approaches along with the correlation.ﬂ The re-
sults show that the AMSCoVaR; measure of systemic risk contributions are
more dynamic than the ACoVaR measure. Some banks, i.e., JPMorgan Chase,
Citi Financial Group and Morgan Stanley, etc., appear to have high correlations
(about 83%-95%) between AMSCoVaR, and ACoVaR, while other banks, i.e.,
Bank of America, Well Fargo, etc., have correlations below 50%. Furthermore,

AMSCoVaR,; and ACoV aR are negatively correlated for the bank of USB. These

8 Instead of AMSCoES,; and ACoES, this chapter makes the comparison between
AMSCoVaR; and ACoVaR, because Adrian and Brunnermier (2011) approach cannot be
used to compute expected shortfall.
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results show that systemic risk contributions measured by AMSCoVaR; and
ACoVaR are not only different in magnitudes, but also in the dynamics over
sample periods.

Table 2.6 reports the correlation matrix for banks’ systemic risk contributions
measured by AMSCoVaR;. The correlation matrix shows that banks are highly
interconnected. For instance, Bank of America is positively correlated with other
banks ranging from 75%-95%. Bank of America has the highest correlation of
96% with JPMorgan Chase bank. Among all the banks sampled, BBT, CMA
and SCHW are the only banks negatively correlated with other banks. Table 2.6
shows that the potential contagious channels of a crisis are hidden behind the high

interconnections between banks.

2.3.3. Banking Systemic Risk Index

Figure 2.3 plots the quarterly systemic risk index of the banking sector (BSRI).
The solid line is the quarterly Financial Stress Index constructed by Federal Re-
serve Bank of St. Louis (STLFSI). The dashed line is quarterly BSRI constructed
by the value-weighted AMSCoES] on individual banks as

N
BSRI, = - Y w AMSCoES},
n=1

where weekly AMSCoVaRy, is aggregated to quarterly frequency and wy is the
bank n’s weight based on its market capitalization at time ¢. The shaded areas
are NBER-dated business cycle phases. Figure 2.3 shows that the constructed
systemic risk index for the banking sector is capable of reproducing the recent

economic recession. The quarterly BSRI reaches the highest risk during the recent
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financial crisis of 2007-2009. The BSRI also shows a milder risk increase than
STLFSI for the economic recession during the I'T Bubble Bust period since it is
not a recession highly related to the banking sector. Figure 2.3 presents a positive
61.5% comovement between the BSRI and the STLFSI. Furthermore, a simple
linear regression shows that the BSRI is able to significantly explain the dynamics
of the Financial Stress Index by 37.83% (R?). Hence, the constructed BSRI index
is supplementary to monitoring financial market risks by very specific to the risk

nature of the banking sector.

2.4. Conclusion

This chapter has defined a Markov-switching conditional Value-at-Risk (MSCo-
VaR) approach to measure systemic risk of commercial banks. Applying the
Markov-Switching Quantile Autoregression framework of Liu (2014), systemic risks
are estimated subject to regime shifts within tails. The new method presents the
advantage and flexibility in supervisory stress scenarios required by Federal Reserve
Bank. [ estimated systemic risk contributions of the U.S. largest commercial banks
and found around 131 basis points of the underestimated asset loss by the existing
CoVaR measure of systemic risk. The banking system is more sensitive to marginal
changes of an individual bank during high risk episodes than during normal risk
periods. In addition, systemic risk contributions of individual banks are highly
interconnected. Furthermore, Banking Systemic Risk Index, constructed in this
chapter by value-weighted individual systemic risk contributions, presents not only
a high relevance to trace financial distress situations, but also very specific to the

risk nature of the banking industry.
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Table 2.1: The Sample

List of the U.S. Largest Commercial Banks as of 06/30/2012 Ranked in Total Assets

Total Assets

Ticker

Institution Name in thousand dollars as of 06/30/2012
JPMORGAN CHASE & CO. JPM $2,290,146,000
BANK OF AMERICA CORPORATION BAC $2,162,083,396
CITIGROUP INC. C $1,916,451,000
WELLS FARGO & COMPANY WEFC $1,336,204,000
MORGAN STANLEY MS $748,517,000
U.S. BANCORP USB $353,136,000
BANK OF NEW YORK MELLON CORPORATION, THE BK $330,490,000
PNC FINANCIAL SERVICES GROUP, INC., THE PNC $299,712,018
STATE STREET CORPORATION STT $200,368,976
BB&T CORPORATION BBT $178,560,000
SUNTRUST BANKS, INC. STI $178,307,292
AMERICAN EXPRESS COMPANY AXP $146,890,000
REGIONS FINANCIAL CORPORATION RF $122,344,664
FIFTH THIRD BANCORP FITB $117,542,579
CHARLES SCHWAB CORPORATION SCHW $111,816,000
NORTHERN TRUST CORPORATION NTRS $94,455,895
KEYCORP KEY $86,741,424
M&T BANK CORPORATION MTB $80,807,578
BBVA USA BANCSHARES, INC. BBVA $66,013,042
COMERICA INCORPORATED CMA $62,756,597
HUNTINGTON BANCSHARES INCORPORATED HBAN $56,622,959
ZIONS BANCORPORATION ZION $53,418,819
POPULAR, INC. BPOP $36,612,000
PEOPLE’S UNITED FINANCIAL, INC. PBCT $28,134,752
SYNOVUS FINANCIAL CORP. SNV $26,294,110
BOK FINANCIAL CORPORATION BOKF $25,561,731
FIRST HORIZON NATIONAL CORPORATION FHN $25,493,925

Note: The composition of the banks is based on consolidated assets, lagged by one quarter.
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Table 2.3: VaR, MSVaR and MSES estimates of individual banks

MSVaR MSES
VaRt,g,%
MSVaR,,_1 5% MSVaR,,—s 5% MSES,,—1 5% MSES,,—o 5%
JPM -6.286 -2.642 -9.204 -2.835 -9.760
BAC -7.324 -2.919 -12.21 -3.141 -13.14
C -9.446 -4.711 -35.62 -5.038 -37.56
WEFC -5.813 -2.096 -9.047 -2.269 -9.699
MS -10.17 -5.384 -18.45 -5.750 -20.12
USB -6.670 -4.141 -22.91 -4.419 -25.01
BK -6.069 -2.482 -9.572 -2.687 -10.10
PNC -6.172 -3.105 -10.07 -3.325 -10.79
STT -7.273 -5.403 -56.95 -5.761 -59.75
BBT -6.207 -2.497 -10.16 -2.686 -11.00
STI -6.804 -2.530 -10.89 -2.712 -11.72
AXP -5.664 -2.892 -9.574 -3.105 -10.10
RF -9.327 -3.521 -16.27 -3.757 -17.40
FITB -7.176 -3.360 -15.21 -3.598 -16.19
SCHW -9.652 -5.767 -21.68 -6.158 -23.06
NTRS -5.382 -1.600 -7.555 -1.759 -7.979
KEY -6.730 -3.047 -12.03 -3.256 -12.83
MTB -5.212 -2.711 -11.91 -2.914 -14.17
BBVA -8.094 -3.991 -15.38 -4.277 -17.28
CMA -7.454 -2.990 -11.64 -3.220 -12.44
HBAN -7.482 -2.784 -11.81 -2.990 -12.82
ZION -7.620 -2.709 -12.49 -2.914 -13.45
BPOP -8.345 -2.543 -12.57 -2.729 -13.42
PBCT -5.087 -2.865 -9.344 -3.084 -9.881
SNV -8.161 -2.821 -12.937 -3.039 -13.80
BOKF -5.360 -2.532 -9.309 -2.731 -9.876
FHN -7.372 -2.421 -12.18 -2.623 -13.32

The entries are VaR and MSVaR values of individual banks (X}*) estimated from {i and (2.2.6) conditional on
predictive variables (Z:_1), respectively. MSES values are simulated based on the model estimation results using

the approaches in Appendix A. The values are ordered by banks’ total asset values.



Table 2.4: Systemic risk sensitivities

w|n

w|n

Banks Bao" Bult s Bul, s
BK 0.227 0.169 0.414
NTRS 0.208 0.178 0.374
AXP 0.272 0.213 0.359
BOKF 0.111 0.087 0.279
WFC 0.222 0.207 0.256
USB 0.185 0.116 0.238
PNC 0.209 0.196 0.231
PBCT 0.178 0.080 0.231
JPM 0.195 0.221 0.228
KEY 0.193 0.146 0.224
BBVA 0.096 0.039 0.214
STI 0.158 0.222 0.194
SNV 0.107 0.163 0.184
MTB 0.170 0.119 0.179
STT 0.152 0.071 0.173
BAC 0.143 0.197 0.147
RF 0.136 0.106 0.119
MS 0.090 0.047 0.118
ZION 0.096 0.111 0.113
BPOP 0.016 0.009 0.097
HBAN 0.068 0.162 0.058
FITB 0.112 0.123 0.055
FHN 0.115 0.059 0.049
C 0.040 0.085 0.023
SCHW 0.072 0.019 0.011
BBT 0.136 0.122 -0.048
CMA 0.129 0.110 -0.075

Br and fs, - are estimated from QAR and MSQAR models on (
and 1) respectively. The banks in this table are ranked based

on the risk sensitivity coefficients (6:1
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Figure 2.3: Banking Systemic Risk Index (BSRI).

44444 - BSRI
—— STLFSI

< Correlation= 0.615

1995 2000 2005 2010

Note: The solid line is the financial stress index constructed by Federal Reserve Bank of
St. Louis and the dashed line is BSRI constructed by the value-weighted AMSCoES; on
individual banks.



Bibliography

[11]

[12]

Adams, Z., R. Fuss and R. Gropp (2011) Spillover effects among financial institutions: a
state-dependent sensitivity Value-at-Risk (SDSVaR) Approach. Working Paper

Adrian, T. and M.K. Brunnermeier (2011) CoVaR. NBER Working Paper No. 17454

Arias, M., J.C. Mendoza and D. Perez-Reyna (2010) Applying CoVaR to measure systemic
market risk: the Colombian case. Working paper

Artzner, P., F. Delbaen, J. Eber and D. Heath (1999) Coherent Measures of Risk. Mathe-
matical Finance 9(3): 203-228

Bisias, D., M. Flood, A. W. Lo and S. Valavanis (2012) A survey of systemic risk analytics.
The Annual Review of Financial Economics 4: 255-96

Brunnermeier, M. and M. Oehmke (2012) Bubbles, Financial Crises and Systemic Risk. NBER
Working Paper No. 18398

Brunnermeier, M.K., G. Dong and D. Palia (2012) Banks’ Non-Interest Income and Systemic
risk. Working Paper

Girardi, G. and A.T. Ergun (2012) Systemic risk measurement: Multivariate GARCH esti-
mation of CoVaR. Working paper

Hamilton, J.D. (1994) Time Series Analysis. Princeton University Press

Koenker, R. and Z. Xiao (2006) Quantile Autoregression. Journal of the American Statistical
Association 101(475): 980-990

Liu, X. (2014) Markov-Switching Quantile Autoregression. Working Paper

Lopez-Espinosa, G.; A. Moreno, A. Rubia, and L. Valderrama (2012) Short-term wholesale



Bibliography 82

[13]
[14]

[15]

[16]

[17]

[18]

funding and systemic risk: A global CoVaR approach. Journal of Banking & Finance 36:
3150-3162

Ripley, B. (1987) Stochastic Simulation. John Wiley, New York

Rodriguez-Moreno, M. and J. I. Pena (2012) Systemic risk measures: The simpler the better?
Journal of Banking & Finance, forthcoming

Roengiptya, R. and P. Rungcharoenkitkul (2011) Measuring Systemic Risk and Financial
Linkages in the Thai Banking System. Discussion paper 02/2010. Bank of Thailand.

Van Oordt, M. and C. Zhou (2010) Systematic Risk under Adverse Market Conditions. Work-
ing paper. De Nederlandsche Bank.

Wong, A. and T. Fong (2010) Analysing Interconnectivity among Economies. Hong Kong
Monetary Authority Working Paper 03/2010

Yu, K. and J. Zhang (2005) A Three-Parameter Asymmetric Laplace Distribution and Its

Extension. Communications in Statistics- Theory and Methods 34: 1867-1879



Chapter 3

Modeling Time-Varying Skewness via

Decomposition for Out-of-Sample Forecast

Abstract: This chapter models time-varying skewness via a return decomposition frame-
work which splits a return to the product of absolute return and sign. Particularly, the
nonlinear dependence between absolute returns and signs is characterized by a dynamic
copula function which governs a dynamic skewness process of financial returns. The im-
portance of modeling time-varying skewness is evaluated in out-of-sample forecast for the
U.S. excess stock returns in terms of both statistical significance and economic relevance.
I find that the skewness timing of the proposed time-varying dependence models yields an
average gain in the returns around 195 basis points per year over the forecast sample period.
Statistically, the Fluctuation test shows strong evidence that the forecasting performance of
the decomposition models is unstable over the sample time path. In this regard, a forecast
combination, more robust to structural instability than the individual forecasts, performs

significantly better out-of-sample than the benchmarks.

Keywords: Nonlinear dependence, Copula constancy tests, Dynamic tail dependence

and asymmetry, Fluctuation tests, Skewness timing, Volatility timing, Forecast combination
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3.1. Introduction

Recently, Anatolyev and Gospodinov (2010) (reference as AG herein) take an alternative
approach to predicting excess stock returns: instead of trying to identify better predictors,
they look for better ways of using predictors. They accomplish this by modeling individ-
ual multiplicative components of excess stock returns and combining information in the
components to recover the conditional expectation of the original variable of interest. Let
ry denote the excess stock return at time ¢. Specifically, AG’s approach utilizes a return

decomposition given by

re = |re|sign(re) (3.1.1)

which is also called “an intriguing decomposition” in Christoffersen and Diebold (2006).
The joint distribution of the multiplicative components in (B.1.1) is obtained by combining
a multiplicative error model for absolute returns, a dynamic binary choice model for signs,
and a copula function for their interaction.

AG’s decomposition models are able to incorporate important nonlinearities in excess
return dynamics that cannot be captured in the standard predictive regression setup. Their
approach, however, is restrictive as the dependence between absolute returns and signs is
constant over sample periods. The constant dependence also imposes a constant skewness
on excess returns. The literature has recognized that returns may in fact be better charac-
terized by a conditional distribution with time-varying asymmetry. Some results from AG
constant decomposition models are difficult to be interpreted given that the distribution of
excess returns might be time-varying. For instance, their constant copula structure may give
an averaging on symmetric and asymmetric distributions of excess returns over a sample
period, so that the high degree of return asymmetry in some subperiods cannot be well

distinguished from small asymmetry or symmetry in other subperiodsﬂ This may result

1 If the excess return at time ¢ is symmetrically distributed around zero, then absolute returns and signs
are independent and expected sign equals zero (Randles and Wolfe, 1979, Lemma 2.4.2). If the distribution
of the excess return at time ¢ has a small degree of asymmetry, then absolute returns and signs might be
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in a conditionally weak dependence between multiplicative components found by AG. In
this sense, a time-invariant dependency structure may miss important distribution timing
of excess returns during i.e., economic recessions and financial crises, etc.

In addition, time-varying return skewness can be naturally characterized by dynamic
dependence between absolute returns and signs. If the excess return at time ¢ is distributed
around zero, its predictability might be statistically small; nonetheless, it can be improved
if time-varying skewness is present and modeled.ﬂ As a pre-testing for the U.S. excess stock
returns, the test statistics of Busetti and Harvey (2011) in section 3 provide significant
evidence of dynamic tail dependence and asymmetry. A time-varying process of dependence
between absolute returns and signs is thus desirable for improving the predictability of
excess returns.

The importance of time-varying skewness has also been found in asset pricing and
allocation by recent studies. Harvey and Siddique (1999, 2000a&b) show that the inclusion
of autoregressive conditional skewness affects the persistence of variance and helps explain
the time-variation of the ex ante market risk premiums and the cross-sectional variation
of expected returns across assets. Leon et al. (2005) estimate time-varying skewness and
kurtosis using a Gram-Charlier series expansion of the normal density function for the
error term. It is found that specifications allowing for time-varying skewness and kurtosis
outperform specifications with constant third and fourth moments. Jondeau and Rockinger
(2003) use the generalized student-t distribution with an autoregressive specification of the
parameters to demonstrate the importance of time-varying asymmetry parameters.

However, these studies are mainly concerned with in-sample fit of time-varying skewness.
An exception is Jondeau and Rockinger (2012) who study the importance of time-varying
higher moments in out-of-sample asset allocation. Their results show that an investor might

receive a sizable benefit from distribution timing comparable to volatility timing.

weakly dependent. By contrast, if the excess return at time ¢ is asymmetrically distributed, then absolute
returns and signs are dependent. In the second and third cases, expected sign is nonzero.

2 Christoffersen et al. (2007) have documented that even if expected returns are zero and regardless
of whether volatility dynamics are present, sign predictability arises as long as conditional skewness dy-
namics are present. This property remains intact in conditionally non-Gaussian environments. See online
supplement of Christoffersen and Diebold (2006).
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In this chapter, I propose a new approach to modeling time-varying skewness, the model
performance of which is evaluated in out-of-sample forecast of the U.S. excess stock returns
in terms of both statistical significance and economic values. Specifically, 1 extend AG’s
constant decomposition model by characterizing the joint distribution as a time-varying
copula function.ﬂ The nonlinear temporary interdependence between absolute returns and
signs, which governs dynamic skewness processes of returns, is thus estimated by the dy-
namic copula function simultaneously with marginals. Importantly, this approach provides
a flexible way to estimate time-varying skewness in that the joint distribution is specified
in three components, namely a copula function with two marginals, whereas conventional
approaches assume a single distribution for returns. Hence, the proposed dynamic de-
composition model is expected to capture both important hidden nonlinearities and the
time-varying distributional natures of excess returns.

Besides modeling time-varying skewness in out-of-sample forecast, this chapter also
differs from AG’s work in several important ways: (1) The out-of-sample forecast period
is extended to cover the recent financial crisis of 2007-2009 which has drawn tremendous
research interests in both economic and finance literature. (2) The Fluctuation tests and
the decomposition of forecast performance, proposed by Giacomini and Rossi (2010) and
Rossi and Sekhposyan (2011) respectively, show strong statistical evidence of the instability
of forecast performance over the sample time paths. This finding reconciles the insignificant
results of average forecast performance from AG’s constant decomposition models. Inter-
estingly, a forecast combination, more robust to structural instability than the individual
forecasts, performs significantly better out-of-sample than the benchmarks. (3) The eco-
nomic values of skewness timing present substantial benefits from modeling time-varying
skewness. The skewness timing of the proposed time-varying dependence models yields an
average gain in the returns around 195 basis points per year over the forecast sample period.

By comparison, the forecast results further show that an investor is willing to pay an extra

3 See Manner and Reznikova (2012) for a recent survey of time-varying copulas.
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442 basis points of the returns per year beyond volatility timing to acquire skewness timing
information for his/her portfolio during the recent financial crisis of 2007-2009.

The rest of the chapter is organized as follows. Section 2 presents the proposed method-
ology of modeling time-varying skewness and is then followed by a discussion of forecasting
and simulation methods for conditional mean forecasts. Section 3 describes data construc-
tion. This section also presents the pretesting results of the U.S. excess stock returns for
some preliminary evidence of potential nonlinearity and time-varying tail dependence and
asymmetry between absolute returns and signs. Section 4 reports empirical results of both
statistical significance and economic values of forecast performance. Section 5 concludes

this chapter.

3.2. The Model

The return decomposition in (8.1.1) can be rewritten as

re = |ry| (25, — 1) (3.2.1)

where s; = I(r; > 0) and I(-) is an indicator function. The decomposition in (B.2.1) implies

that the conditional expected return is given by

Et—lrt = 2Et—1|7nt|5t - Et_1|Tt| (322)

where FE; 1|r|s; is the expected cross-product of |r;| and s, and the expectations are con-
ditional on [;_;, the information set available at time ¢t — 1 suppressed in subscript for
simplicity.

The key to predicting returns is to model the joint distribution for the product of abso-

lute returns and signs. Following AG’s work, I obtain the joint distribution by combining
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a multiplicative error model for absolute returns, a dynamic binary choice model for signs,
and a copula function for the interaction between absolute returns and signs.

However, this chapter parameterizes copula functions with time-varying dependency
parameters for estimating time-varying return skewness. To allow the complete emphasis
in the forecasting performance of modeling time-varying skewness, I keep marginals and
information variables the same as in AG, and only introduce time-varying copula depen-
dency parameters to isolate changes irrelevant to skewness modeling which may possibly
affect the forecasting performance. The proposed dynamic decomposition model, by keeping
everything else the same, allows a direct examination of the role of time-varying skewness
in return predictability, compared to AG’s constant decomposition model. The next sub-
sections describe the proposed dynamic decomposition structures. In addition, Appendix

A summarizes the marginals from AG’s chapter for convenient reference.

3.2.1. Joint Distribution

In order to construct the bivariate distribution of Y; = (|r|, s;), I appeal to the theory
of copulas as the joint distribution of a continuous variable (|r;|) and a discrete binary
variable (s;). Specifically, it is well known that a conditional meta-distribution can be
created ad]

FYt (U, U|[t—1) =C (ﬂn\ (Uljt—l) ) Fst (Uljt—l) |It—1)

where F|,,| (u|l;—1) and Fj, (v|];—1) are the conditional distribution functions (see Appendix
A) of |ry| and s;, respectively. C(-,-|I;—1) is a bivariate conditional copula distribution
function. From AG’s original work, the joint conditional density /mass function of |r;| and

s¢ is given by

v

fvi (0| ie1) = fireg (ulTi=1) 00 (Firyy (ulLi21))" (1= 00 (Finy (U\Itfl)))l_ (3.2.3)

1 see e.g., Trivedi and Zimmer (2005), Nelsen (2006), Cherubini et al. (2004) and Patton (2012) for
recent surveys.
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where 0,(2) = 1 — 0C(2,1 — py|L—1)/Owr with wy = F,, (u|l;—1) and py = Ey_y (ry > 0).
fire| (u|Iy—1) is the marginal PDF function of absolute returns (see Appendix A). Observe
that is a product of the marginal density of |r;| and a “deformed” Bernoulli mass of
s; whose success probability is given by o, (F|7~t| (u|]t_1)).

This chapter considers a Clayton copula for the empirical application given by

Clwy,wal 1) = (W™ + wy @ — 1)~ e (3.2.4)

and

—ayp —1/at—1
1—(1—1-(17’?2—%1) , fora; #0
oi(2) = (3.2.5)

P, fOTOétZO

where a; > 0 Vt is the dependency parameter for Clayton copula and wy = Fj, (v|[;—1). By
contrast, AG’s constant decomposition models restrict the copula dependency parameters
to be constant as « in and (B.2.5).

Specifically, the copula parameter measures the dependence between |ry| and s;. If |r
and s; are independent in the case of a; — 0, it implies o, — p;. Also, a conditional
independence between |r;| and s, might practically occur if 7, is symmetrically distributed
with a small conditional mean at time t. Note that a Clayton copula permits only positive
dependence between the marginals. AG’s results show that this is not restrictive for the
application of monthly returns in that: (i) both positive and negative skewness values can be
obtained from different dependency parameter values conditional on available information
sets; (ii) the constant estimators of different copula functions from AG’s original chapter are
all positive; (iii) expected monthly returns are generally nonzero. Particularly, this chapter
stays with the choice of a Clayton copula as empirically supported by goodness-of-fit tests
in section 3, but leaves the flexibility of dependency directions open to future research.

In addition, the tail dependence between |r;| and s; can also be captured by Clayton

copula dependency parameter as 2-Y/°_ while symmetric copulas, i.e., Gaussian copula,



Chapter 3. Modeling Time-Varying Skewness via Decomposition for Out-of-Sample Forecast 90

Student-t copula, Frank copula, etc., nonetheless, have zero tail dependenceﬂ In this sense,
the dependency structure of Clayton copula reflects the degree of tail dependence between

random variables.

3.2.2. Dynamic Dependence

To capture the potentially time-varying conditional return skewness, I parameterize
the copula parameter in “observation-driven” dynamic processes. The suitable restrictions
for each specification are explicitly imposed to ensure the admissible conditions that the

Clayton copula has the positive support and its dynamic process is stationary.

Dynamic Tail Dependence Patton (2006) proposes the observation driven copula mod-
els for which the time-varying dependence parameter of a copula is a parametric function
of the lagged data and an autoregressive term. Akin to a restricted ARMA(1,m) process,

the dependence parameter (or tail dependence) is specified as

1 m
log (o) = w + Blog (ay—1) + ¢E Zl | w1 4—; — wa g (3.2.6)

where |8] < 1 and wy; and wq; are wy and wy at time ¢, respectively. Following Patton
(2006), this chapter sets m = 10. Note that the expectation of this distance measure is
inversely related to the concordance ordering of copulas. In the empirical section, (B.2.6) is

referred to as Patton.

Exponential-weighted (ExpWeight) Dynamic Dependence As pointed out in Pat-
ton (2006), the difficulty in specifying observation-driven copula parameters lies in defining
the forcing variables of evolution equations. (.2.6) is a martingale process depending on
the past path of fixed length m. Particularly, the following specification allows ( to

depend on the whole past path using exponential weights as

t—1

1—-A ;
lOg (Oét) =w+ 6[09(&15_1) + gbm Z /\z—l |w1,t—i — Wot—; (327)

=1

% See Cherubini et al. (2004), pp. 127 and Nelsen (2006), pp. 215.
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where 0 < A < 1 and 525 '_1 X7! = 1. This weighting framework assigns more weights
to recent observations, whereas it gives less weights to past observations. The intuition of
this evolution equation comes from the general fact that the latest events exert a larger

influence on current and near future dependence evolution than events far past.

GARCH-type (Gtype) Dynamic Dependence In contrast to (3.2.6) and (3.2.7), I take
a first-order martingale process depending on only one past path, analog to a GARCH(1,1)
process, as

ap = W + Bat_l + Qb |’LU1¢_1 — w27t_1| (328)

with that the stability of the dynamics is assumed, for example, w > 0,0 < § < 1and ¢ > 0.
(3.2.8) is similar to the model (3) in Jondeau and Rockinger (2003), who present various

possible specifications for the dynamics of Skewed Student-t distribution parameters.

Integrated GARCH-type (IGtype) Dynamic Dependence The integrated-GARCH
type dynamics is a variant of (3.2.8) by restricting w = 0 and 3 + ¢ = 1, such that

ap = Poy_1 + ¢ lwy 1 — way_1] (3.2.9)

where 0 < 3, ¢ < 1 as the strict stationary restrictions.

One-sided Asymmetric (OSA) Dynamic Dependence Dynamic dependency param-
eters reflect the nonlinear relations between |r;| and s;; it can be described that o, measures
the interdependence of absolute returns and signs as the uncentered product, 9 = |ry| s;

in |3.2.1] Hence, a dynamic dependence can also be specified as
= w + Bay_1 + ¢, (3.2.10)

Despite the fact that ;" reveals the useful information for modeling o, their expectations

are not equal. For the strict stationarity, following the proof in Zakoian (1994) and Nelsen
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(1990, 1991), I have the conditions, w >0, 0 < 5 < 1, and ¢ > 0. In the empirical section,

(3.2.10)) is estimated via a logarithmic specification for the purpose of easy convergence as

log (ay) = w + Blog (cu—1) + ¢97 4

with || < 1.

Two-sided Asymmetric (TSA) Dynamic Dependence An extension to (3.2.10) is a

two-sided asymmetric tail dependence as

log (o) = w + Blog (cs—1) + ¢V | + \I;, (3.2.11)

where J; = |r| (1 — s;). Glosten et al. (1993), Zakoian (1994) and Jondeau and Rockinger

(2003) have also suggested the similar specifications for asymmetric effects.

TVC Dynamic Dependence The Clayton parameter is related to Kendall’s 7 via 7, =

(033
ar+27?

which implies that 0 < 7, < 1, due to oy > 0. The time variation in a; can be modeled

as oy = 2% with 7, itself governed by the TVC-type equation of Tse and Tsui (2002) as

1—Tt
T =w+ BT1 + OTi (3.2.12)

where w > 0,0<f3,¢ <1and S+ ¢ < 1. T;_; is the non-negative estimators transformed
from sample Kendall’'s 7 between periods ¢ — m and ¢ — 1. For each of the m(m — 1)/2
possible pairs, a sample estimator of Kendall’s 7 between times ¢ — m and ¢t — 1 is first

computed as

2
fa=———= > sign[(wiy, —wi) (Way, — wap,)]
m(m —1) t—m<ty <ta<t—1

and then 7; € [—1, 1] is converted to ensure 7;_; € [0, 1] by keeping the original movement

of sample Kendall’s 7 intact:
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(13.2.12) implicitly assumes a martingale process to capture the variation of sample Kendall’s
7;. A similar TVC approach is also specified in Jondeau and Rockinger (2006) for a
time-varying Student-t copula.

This chapter applies a variance-targeting-like method as in Engle (2009) for TVC de-

pendence estimation,

n=1—-0—-¢)T+B1—1+ Tt

t—1

where 0 < B,¢ < 1,and B+ ¢ < 1. 7 =) ., p7;/R where R is the rolling window of

fixed length specified in the next sections.

Integrated TVC (ITVC) Dynamic Dependence The integrated-TVC is simply a

special case of TVC specification by restricting w =0 and S+ ¢ = 1, such that

T = BT + dTia (3.2.13)

where 0 < 3,0 < 1.

3.2.3. Likelihood Function

Given the joint distribution (([3.2.4) and (B.2.5)) with the dynamic dependence structures

((3-2.6)-(8.2.13)) and the marginals (([A.0.3), ([A.0.4) and (]A.0.5)), the sample log-likelihood
function can be computed from (B.2.3) as:

L®) = > sing (F (ulli—1))
+(1=s)in (1= o (Firy (ulli-1)))

+lnf‘rt|(u|ft,1)



Chapter 3. Modeling Time-Varying Skewness via Decomposition for Out-of-Sample Forecast 94

With all the specified ingredients, the set of parameters to be estimated by maximum

likelihood estimation is ® = (wy, Bys Yo, Pus Oy Ky Wi, Pa, 04, ©), Where O contains the

dynamic dependence parameters, (w, 3, ¢, A) from (3.2.6)-(3.2.13). Note that in this chap-

ter, all parameters in the set ® are simultaneously estimated by maximizing the sample

log-likelihood of the full decomposition models.

3.2.4. Forecasting Methods

From (B.2.2)), the forecast of excess returns for time ¢ + 1 is given by
Per = 2601 — Vet (3.2.14)
where ¥y 1 = Ey|riq] and &1 = Ei|re41]se4q is given by AG as
i1 = /OOO U fir| <U‘1ﬂt+1> Ot+1 <F\n| <U|1[}t+1> ‘ﬁtJrl) du

which must be evaluated numerically. Upon the transformation of variable z = Fi,| (u[ty),

this integral can be rewritten as

X 1
vl :/0 Qi1(2)0i41(2)dz

where Q;11(2) = F|;t1| <Z|?&t+1> is the quantile function of Fj,, (ultyy). From (A.0.3) and
(A.0.4), I have that

L) [—tn (1 - )7 (3:2.15)

F <Z|¢t+1> = e D1+ -
" Ay

where A, is the estimator of Weibull distribution using the data sample from ¢ — R+ 1 to

t. In this chapter a moving window of fixed length R = 360 is employed for one-step-ahead

forecast. Simulation steps are described as follows. At time ¢,

1. Estimate the decomposition model to obtain the estimators for i)[t] using the sample

period of t — R+ 1 to t.
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2. Compute @Etﬂ and p;yq from and ( respectively by updating predictors

from I;_, to I; and using (iD[ﬂ.

3. Randomly draw a vector z = {z;}Y, from a uniform distribution U(0,1). In this chapter

N = 20000.

4. Compute Q;41(z) from using 2[1t+1 and Ay

5. Compute gy41(2) from using p;q and &yyq, where dyyq is computed from —
B213).

6. Compute &1 = % Zfil Qi11(2i)0111(2:)

7. Obtain the forecast 711 = 2€t+1 — Q/AJH_l

Repeat (1)-(7) to obtain a set of out-of-sample forecasts 7,4 for t = R, ..., T — 1.

Recall from previous sections that if at time ¢ + 1, a return is approximately symmet-
rically distributed with a small conditional mean, its absolute return and sign might be
conditionally independent. Anatolyev and Gospodinov (2010) have found some empirical
evidence of weak conditional dependence. In this case, one may ignore conditional depen-

dence to simplify the forecasting approach as

Per = Ve (201 — 1) (3.2.16)

If the conditional dependence is weak, the feasible forecasts ( may well dominate the
feasible optimal forecasts ( by screening noises possibly during some periods when
financial data is approximately symmetrically distributed or less skewed.

In the empirical section, this chapter simultaneously estimates the parameters from
full decomposition models. However, the forecast exercises are proceeded in two scenarios:
conditional independence (ignoring dependence using (B.2.16)) and conditional dependence
(exploiting dependence using (B.2.14) through numerical simulation).
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3.3. Data

The sample period of the monthly U.S. excess returns is from 1952:01 to 2010:12, which
extends the data period in AG’s work to cover the recent financial crisis of 2007-2009. The
data for the sample period from 1952:01 to 2002:12 is available at AG’s website. For the
extended period, the value-weighted excess return is taken from the Center for Research in
Security Prices (CRSP); the earnings-price ratio (ep) and dividend-price ratio (dp) data in
logs are constructed using the dataset provided by Shiller (2005); the 3-month T-bill rate
(1r3) and Moody’s Aaa and Baa corporate bond yield data are taken from Federal Reserve
Bank of St. Louis. The yield spread (irs) is computed as the difference between Moody’s
Aaa and Baa yields. Daily data on NYSE/AMEX value-weighted index from CRSP is used
to construct realized volatility and higher moments.

The U.S. excess stock returns of the full sample period were pretested for the existence
of dependence and copula constancy between absolute returns and signs. A goodness-of-fit
is also tested for the empirical choice of copula functions. Panel A in Table 3.1 reports
the independence test (Genest and Rémillard (2004, 2006, 2007)). The test result rejects
the null hypothesis of independence to support potential nonlinear dependence between
absolute returns and signs. Panel B reports goodness-of-fit tests (Genest et al. (2009)) for
bivariate copula functions. The test results favor a Clayton copula and reject a Gumbel
copula among other elliptical copulas. The choice of a Clayton copula with lower tail
dependence provides strong evidence for asymmetric distributions of the U.S. stock returns,
consistent with the stylized fact in financial data.ﬂ

Panel C reports the results of the copula constancy tests (Busetti and Harvey (2011)).
This approach associated with different quantile levels is flexible and useful in pointing to
changes in the different parts of a copula distribution. <t represents the chosen quantile
confidence level. The test results reject both constant lower and upper tail dependences.
67Ir1dependence test on the difference between the empirical copula distribution function and the prod-
uct of the marginal empirical distributions is based on asymptotically independent Cramér-von Mises
statistics derived from a Mobius decomposition of the empirical copula process. Parametric bootstrap is

used to obtain critical values. In addition, for the properties of the copulas considered in Table 3.1, see
Nelsen (2006) and Cherubini et al. (2004).
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The evidence of time-varying lower tail dependence seems stronger than time-varying up-
per tail dependence, due to p-value rejecting the null at 10% confidence level for upper
tail dependence with t=75% but rejecting the null at 5% confidence level for lower tail
dependence with 1:25%[] Also, the test results reject constant asymmetry and overall
copula constancy across quantile levels, except the copula constancy test for t=0.5. As a
result, the preliminary investigations in Table 3.1 demonstrate some empirical evidences
for: the existence of significant nonlinear dependence which cannot be estimated by linear
regressions; and time-varying tail dependence and asymmetry between the U.S. absolute
returns and signs, which are not considered in AG’s constant decomposition models.

The model naming convention in empirical section is introduced as follows. In this
chapter, CDM and DDM denote the constant and dynamic decomposition models, respec-
tively. CI and CD represent the forecast scenarios for ignoring and exploiting dependence,
respectively. For instance, the dynamic decomposition model of IGtype, if its forecasts
by exploiting dependence structure, is denoted as I1Gtype-CD; otherwise as 1Gtype-CI. A
constant decomposition model with the presumption of conditional independence is denoted

as CDM-CI.

3.4. Empirical Results

Table 3.2 summarizes the in-sample estimation results. p-values are reported in paren-
theses. The subsample estimation from 1952:01 to 2002:12 is made comparable to Anatolyev
and Gospodinov (2010). The estimation results are statistically significant at conventional
confidence levels. p-values for Wald joint significance tests and the likelihood ratio tests
reject the null hypothesis of dynamic dependence parameters being jointly equal to zero
across sample periods and models. These results provide in-sample evidence for significant
nonlinear and time-varying dependence between absolute returns and signs, and are also

consistent with the pretesting results. In addition, Table 3.2 shows that among the dy-

T Busetti and Harvey (2011) (pp. 115) show that the lower quadrant test is more powerful for t<0.5,
that is in the lower tail of the distribution, while the upper quadrant test is more powerful in the upper
tail (t>0.5).
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namic decomposition models, OSA and TSA obtain the highest persistence levels, estimated
through the parameter $’s and comparable to the persistence level of volatility processes
commonly documented in GARCH literature. Nonetheless, the integrated models (IGtype
and ITVC) have the persistence of around 0.75, which is lower than 0.94 the value calibrated

for the integrated GARCH model by J.P. Morgan RiskMetrics.

3.4.1. Density Forecasts of Copula Specifications

Diks et al. (2010) propose a statistical test for comparing the predictive accuracies of
competing copula specifications in multivariate density forecasts, using the Kullback-Leibler
information criterion (KLIC). The test method is valid under general conditions on the
competing copulas including the density forecasts from copulas with time-varying de-
pendence parameters. The test statistic of equal KLIC scores, a heteroskedasticity and
auto-covariance consistent (HAC) estimator, asymptotically follows the standard normal
distribution by applying Theorem 4 of Giacomini and White (2006).

Table 3.3 presents the test statistic of Diks et al. (2010). The entries in this table are
the mean values of KLIC score difference between the benchmark (constant decomposition)
model and competing (dynamic decomposition) models, scaled by 100. p-values are reported
in parentheses for the null hypothesis of equal predictive accuracy in density forecasts. In the
case of rejection, a negative mean of KLIC score difference provides the statistical evidence
for the density forecastability of a competing model over the benchmark model and vice
versa. As seen in Table 3.3, the null hypothesis is statistically rejected by IGtype, OSA
and TSA models. Further, in the rejections, the mean values of KLIC score difference are
negative, which indicate their better predictive accuracy in terms of density forecasts than
the benchmark model, as a higher average copula score is preferred. By contrast, the mean
score differences of ExpWeight and Gtype dynamic models are negative but statistically
insignificant.

To preserve space, the rest of this chapter reports the empirical results from the dynamic

copula specifications of IGtype and OSA, the density forecasts of which are significantly
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better than the constant decomposition modelsﬁ Besides, interest is also given to the

average forecasting performance on all proposed dynamic decomposition models.

3.4.2. Statistical Significance of Out-of-Sample Forecasts

To evaluate out-of-sample forecast performance, this chapter uses the out-of-sample

coefficient suggested by Campbell and Thompson (2008) as

0S=1-

ZtT:RH L(ry — 7)
r L(Tt — ft)

t=R+1
where L(r; — 7;) is a loss function based on forecast errors and R is the length of the
rolling window in forecasting. The OS statistic measures the reduction in forecast errors
of a competing model (7;) relative to the historical average (7;) model. Particularly, a
positive OS value implies that a competing model performs better out-of-sample than
the benchmark model and vice versa.ﬂ This chapter considers both squared and absolute
forecast errors in loss functions.

Table 3.4 presents the OS statistic results scaled by 100. Bold values indicate the
highest forecast gains in terms of the OS statistic among competing models within a given
sample period. The OS results from the full forecast period of 1982:01 to 2010:12 show
that the decomposition models have positive forecast gains, despite that the positive gain is
marginally small for the CDM-CI model. Importantly, the dynamic decomposition models
of exploiting time-varying return skewness have the average relative forecast performance
of 2.62% higher than other models. Among these models considered, the IGtype-CD model
obtains the highest relative forecast gain of 3.59% followed by the OSA-CD model with the

relative gain of 3.57%.

8 (OSA is chosen mainly due to its forecasting performance similar to TSA but with a relatively simpler
copula specification.

9 Following finance literature, this chapter also uses the historical average model as benchmark for OS
statistic. Given a sample period, the forecast errors of historical average model in the denominator of OS
remain the same across different competing models. In this section, all forecast performance comparisons
among competing models are made relative to the historical average model, hereafter referred to as relative
forecast performance. Note that converting relative performance to direct performance comparisons among
pairwise competing models does not alter the conclusions in this section.
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However, by excluding the recent financial crisis to be comparable with the forecast
period in Anatolyev and Gospodinov (2010), DDM-CI models obtain the average relative
forecast gain of 3.66% higher than other models. Among these, the IGtype-CI model ap-
pears to have the highest relative forecast performance of 4.62%. Based on this interesting
observation, this chapter further excludes the forecast period of 1998:01 to 2012:12 which is
the economic recession period including the Hi-tech Bubble Bust and Asian financial crisis.
During this relatively more tranquil period after the exclusion of this economic recession
period, DDM-CI models continuously perform better out-of-sample with the average rela-
tive forecast gain of 4.64%, and among these IGtype-CI model obtains the highest relative
gain of 5.05%.

In comparison to the tranquil periods, this chapter also evaluates the forecast per-
formance during economic recessions. Conversely, the results show that during both the
Hi-tech Bubble Bust recession and the recent financial crisis, exploiting the time-varying
skewness provides the average relative forecast performance of 8.53% and 8.31%, respec-
tively, dramatically higher than other decomposition models. Also, among these, the IGtype
models of exploiting dynamic dependence obtain the highest relative forecast gains of 9.36%
and 12.31%, respectively.

Intuitively, the forecast performance of exploiting conditional dependence during a tur-
moil period reflects that volatility (absolute returns) is higher, asymmetric effects (signs)
are stronger, and temporary interdependence between volatility and sign increases dur-
ing a market downturn. This intuition is further consolidated by Figure 3.1 which plots
the out-of-sample estimation of nonlinear copula dependence structures. The estimated
time-varying dependence structures are remarkably higher and more volatile during turmoil
times, while the degree of dependence from the constant decomposition model is relatively
stable over time. Specifically, the OSA dynamic decomposition model obtains the mean
dependence of 0.275 which is 3.4 times higher than the constant decomposition model.
The averages of dependence on all proposed dynamic decomposition specifications are also

consistently above the constant decomposition model over the sample period.
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As a result, the empirical evidence above show the presence of possible instabilities of
forecast performance which depend on economic conditions. The instability of forecast
performance implies that a competing model may not dominate a benchmark model over
the whole forecast period: better in some subperiods and no difference in other subperiods.
This forecast instability feature might suggest that a risk-averse investor should consider the
dynamic decomposition models with the presumption of conditional independence during
tranquil periods, whereas during turmoil periods he/she should exploit temporary interde-
pendence between absolute returns and signs. The similar conclusion can be also drawn
from the results of absolute forecast errors with the highest relative forecast gains from
OSA-CD models during turmoil periods. The next subsections formally test the statistical
significance of predictive accuracy and the instability of the forecast performance, and also

provide more detailed insights on the sources of forecast performance.

Statistical Significance Test

Table 3.5 reports the test results of statistical significance. Entries in this table are
p-values of Giacomini and White (2006) test statistic for the null hypothesis of equal condi-
tional predictive ability.m Values in square brackets are relative performance that indicates
the proportion of times over the sample period that a competing model in the row heading
dominates a benchmark model in the column heading. Despite that the relative performance
suggests that the dynamic decomposition models dominate both the historical average and
the constant decomposition models, p-values show no clear evidence that the predictive ac-
curacies of the dynamic decomposition models are statistically significantly different from
the benchmarks. A few exceptions are that the IGtype-CD and OSA-CD models reject

the null hypothesis to show better predictive abilities than the benchmarks. However, the

10 Tet ALy denote the difference of the loss functions (squared or absolute losses) of two models at
time t+1. Then, the null of equal predictive ability of two models can be expressed as Hy : E(ht/ALiy1) =0
where h; is a ¢ X 1 vector that belongs to the information set at time ¢. Following Anatolyev and Gospodinov
(2010) and Giacomini and White (2006), this chapter sets the conditional variable h; = (1, AL;) . The
test statistic of equal predictive ability is X?]—distributed under the null. For details, see Giacomini and
White (2006).
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average predictive abilities on the DDM-CD models are insignificantly different from the
benchmarks.

The insignificant test results in Table 3.5, also found in AG’s work, might be due
to the presence of forecast instabilities as pointed out in subsection 4.2. Giacomini and
Rossi (2010) show that in unstable environments the forecasting performance of models
may itself change over time. See also Stock and Watson (2003). Hence, tests of overall
predictive ability selecting the model that forecasts best on average, e.g., Diebold and
Mariano (1995), Clark and West (2006), and Giacomini and White (2006), etc., may result
in a loss of information and possibly lead to incorrect selection decisions. To address this
issue, the next subsection investigates the stability of forecasting performance over time by

means of statistical tests.

Fluctuation Test

Figure 3.2 plots the fluctuation test statistics (Giacomini and Rossi (2010)).[F]] Dashed
lines indicate critical values at 5% confidence level. A positive test statistic implies the
smaller forecast loss of a competing model. A one-sided test statistic (solid line) above the
critical value represents that the competing model statistically significantly performs better
than the benchmark at the time point when the test statistic is evaluated. The naming
convention in Figure 3.2 is as a benchmark model vs. a competing model. For instance,
the notation of CDM-CI vs. OSA-CI means that CDM-CI is used as the benchmark model
and OSA-CI as the competing model for computing test statistics of Giacomini and Rossi

(2010).

1 Giacomini and Rossi (2010) propose the Fluctuation test for comparing the out-of-sample forecasting
performance of two competing models in the presence of possible instabilities. The main idea is to develop
a measure of the relative local forecasting performance on the entire time path, which may contain useful
information that is lost when looking for the model that forecasts best on average. Particularly, this chapter
sets u = 0.2 for the centered rolling windows of size m as in Giacomini and Rossi (2010). The corresponding
critical values are provided by Table 1 of Giacomini and Rossi (2010). I would like to thank an anonymous
referee who suggests this Fluctuation test.

Note that the forecast instability addressed by the Fluctuation test is not the instability in the Giacomini
and White (2006) conditional predictive ability test in that the Fluctuation test traces the Giacomini and
White (2006) unconditional predictive ability test over time. For instance, the results of the Giacomini
and White (2006) conditional predictive ability test cannot be obtained by averaging the resuls of the
Fluctuation tests over time. For details see their original works and also Giacomini (2011).
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The fluctuation test results show that forecast performance statistically varies over time.
For instance, the OSA-CI forecasts have better predictive ability than the historical average
during 1986-1989, while their difference is insignificant during 2002-2009. By contrast, the
OSA-CD forecasts perform significantly better during 2007-2010, but are insignificantly
different from the historical average during 1986-1989. In addition, both forecasts appear
statistically insignificantly different from the historical average during the housing market
boom period of 2004-2006.

Turning to the comparisons between constant and dynamic decomposition models, both
the forecasts of the OSA-CI and OSA-CD models are significantly better than the CDM-CI
and CDM-CD models, respectively, except during 1986-1989 for the OSA-CI forecasts and
during 2003-2006 for the OSA-CD forecasts. Further looking at conditional independence
vs. conditional dependence, both the forecasts of the CDM-CD and OSA-CD models per-
form significantly better than the CDM-CI and OSA-CI models, respectively, except for the
period of 1986-1989. It is also clearly observed that the CDM-CD and OSA-CD forecastabil-
ities exceed the CDM-CT and OSA-CI models respectively during the turmoil periods (after
1997), whereas they do not appear to be significantly better during the relative tranquil
periods (prior to 1997).

Table 3.6 presents more detailed test results from the decomposition of forecasting per-
formance (Rossi and Sekhposyan (2011)).[] Entries in this table are p-values. The models in
the first column and the first row are benchmarks and competing models respectively. The
tests for the first component exclusively reject the null hypothesis of no time variation in
the expected relative forecasting performance, in line with the fluctuation test results. The
tests for the second component show that, compared to historical average, in-sample losses

of the decomposition models provide better explanation for out-of-sample losses, while the

12 Rossi and Sekhposyan (2011) decompose the forecasting performance into 3 components, namely
time variation in the forecasting performance, predictive content and over-fitting. The first component
measures the presence of time variation in the models’ performance relative to their average performance.
Predictive content measures the models’ out-of-sample relative forecasting ability reflected in the in-sample
relative performance, for instance, whether in-sample losses have predictive content for out-of-sample losses.
Over-fitting measures models’ in-sample fits not reflected in the out-of-sample forecast. Particularly, this
chapter sets p = 0.2 for the centered rolling windows of size m in Rossi and Sekhposyan (2011). The
corresponding critical values are provided by Table 1 of their original work.
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predictive contents are similar between constant and dynamic decomposition models. The
tests for the third component do not show evidence for difference in the significance of the
over-fitting component across the models. This implies that the proportion of out-of-sample
losses which cannot be explained by in-sample losses is statistically similar between bench-
marks and competing models.

The statistical test results above have revealed that one model performs better in certain
periods and the competing model is more accurate in other periods. A natural question
to ask, however, is what a forecaster should do if the tests find instability in the relative
performance of competing models. In this case, a forecast combination may be more robust
to structural instability than either of the individual forecasts. Table 3.7 reports the results
from simple forecast combination experiments. Following Rapach et al. (2010), the combi-
nation weights are determined by using the discount mean square prediction error (DMSPE)
with a discount factor of 0.9.@ The first row represents the combined models. Compared
to Table 3.4, combining forecasts obtains higher positive forecast gains. More importantly,
in contrast to the insignificant test results from Table 3.5, p-values in Table 3.7 show that
the forecast combinations perform significantly better forecastabilities than the historical
average. However, the fluctuation tests (not reported here) also show that instabilities of
forecast performance do not completely disappear from forecast combinations. In-depth

analysis of forecast combinations in this context is open to future research.

3.4.3. Economic Values of Out-of-Sample Forecasts

Next, this chapter assesses the economic values of out-of-sample forecasts in terms of
portfolio profits from market timing, volatility timing and skewness timing. A relatively
naive market timing strategy is employed to actively allocate portfolio between stocks and

13 Different discount factor values are also considered (not reported here but available upon request to
the author) and do not alter the conclusion. In addition, the purpose of using the weighting scheme from
Rapach et al. (2010) is to show empirical evidence for forecast combination robust to instability. Hence,
the choice of it is not based on whether it is better than other candidate weighting schemes such as simple
averaging, Bayesian model averaging, information criterion weighting, etc. For example, I also conduct a
simple averaging which does not alter the conclusion of forecast combination (not reported here). However,
given the evidence of the robustness of forecasting combination found in this chapter, the comparisons and
choices between various weighting schemes might be interesting to pursue in future research.
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bonds as in Guo (2006) and Anatolyev and Gospodinov (2010), among others: investing in
stocks if the predicted excess return is positive or in bonds if the predicted excess return is
negative. The profits of market timing are computed from actual stock returns and risk-free
rates and compared to the benchmark buy&hold strategy. Economic values of volatility

timing and skewness timing are then evaluated through utility functions.

Economic Values of Market Timing

Table 3.8 reports the market timing results for buy&hold and decomposition-based trad-
ing rules. Bold values indicate the best annualized performance. Average portfolio returns
in this table show strong evidence for the economic relevance of the proposed dynamic
decomposition approach. During the full sample period of 1982:01-2010:12, the DDM-CD
portfolios produce the average return of 11.96% slightly higher than the buy&hold and the
constant decomposition portfolios. Among these, the OSA-CD portfolio has the highest
return of 12.48%. Compared to buy&hold portfolio, all decomposition-based portfolios are
accomplished with a large reduction in standard deviation, for instance, 15.09% of the
buy&hold vs. 13.75% of the DDM-CD portfolios on average. As a result, among portfolios
the OSA-CD model has the highest Sharpe ratio of 0.559 (versus 0.473 from buy&hold
portfolio).

In sharp contrast, considering only the 1998-2002 and 2007-2010 periods leads to a signif-
icant deterioration of the statistics for buy&hold portfolios, while the decomposition-based
strategies of exploiting time-varying skewness are still practically very profitable during
these two economic recessions. Specifically, the DDM-CD portfolios have presented very
impressive performance even during the recent financial crisis period. For instance, the
OSA-CD portfolio achieves around 710 and 523 basis points of the returns per year higher
than buy&hold and CDM-CI portfolios, respectively, during the crisis. In addition, the
[Gtype-CI portfolio has the highest average returns and Sharpe ratios during relative tran-
quil periods, whereas the OSA-CD portfolio obtains the best profits during turmoil times.
This result also suggests the robust trading strategies that a risk-averse investor should con-

sider the dynamic decomposition models by ignoring dependence during tranquil periods
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but exploiting dependence during turmoil times. Alternatively, portfolios based on forecast

combinations can be considered as well.

Economic Values of Volatility and Skewness Timings

To evaluate economic values of volatility and skewness timings, I employ the performance
fee measure as in Fleming et al. (2001), Guo (2006), and Jondeau and Rockinger (2012),
among others. A positive management fee represents that an investor is willing to pay to
switch from a benchmark strategy to a competing strategy.

Consider a power utility function U (Wyy,) = WL 7/(1 —7), where v > 0 (y # 1)
measures the investor’s constant relative risk aversion. The performance fees for volatility
timing and skewness timing (denoted by A and A, respectively) are estimated by equat-
ing the average utilities of the second- and third-order Taylor series expansions between

competing and benchmark strategies, respectively,
T-1 T—1

Z [(Tp,t+1 AY % (rp,t+1 — ] (Tb t+1 — T‘b t+1> (3.4.1)
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where 73,441 and 7,41 represent the buy&hold and the decomposition-based portfolio re-
turns, respectively. ( and ( are solved numerically for A and A'. In this
set-up, the performance fee means how much an investor is willing to pay for acquiring the
information from a decomposition-based portfolio versus the buy&hold portfolio.

Table 3.9 reports the economic values of volatility and skewness timings.ﬁ The results
clearly show that the OSA portfolios provide the highest performance fees for an investor
acquiring skewness information, while the IGtype portfolios obtain the highest performance

fees for volatility timing. This result demonstrates the economic importance of modeling

14 T assume that v = 5. The results are not sensitive to reasonable variations in 7. See also Rapach et
al. (2010), Guo (2006) and Jondeau and Rockinger (2012), among others.

15 Particularly, volatility timing is evaluated by ( using the decomposition portfolios with the
presumption of conditional independence (ignoring dependence), while skewness timing is evaluated by
using the decomposition portfolios of exploiting dependence.
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time-varying skewness, which generates the performance fees of 55-174 basis points of the
returns per year more than the constant decomposition portfolios across different sample
periods.

The comparisons between volatility timing and skewness timing also show large varia-
tions over time depending on economic conditions.m In the full forecast sample period of
1982-2010, an investor is willing to pay 68 basis points of the returns per year on average
more than volatility timing to acquire skewness timing for his/her portfolio. Specifically,
skewness timing from the OSA trading strategy receives a management fee of around 131
basis points of the returns per year more than volatility timing from an investor.

The economic values of skewness timing are much higher during the turmoil times of
1998-2002 and 2007-2010 than the relatively tranquil periods of 1982-2002 and 1982-1997.
Particularly, the incorporation of skewness timing into an investor’s portfolio during the
recent financial crisis receives 442 basis points of the returns per year on average more
than volatility timing. By contrast, during the relatively tranquil periods, performance fees
of volatility timing are 35-249 basis points of the returns per year higher than those of
skewness timing.

An explanation of this performance difference might be explicated as follows. During
tranquil periods, return distributions might be more symmetric such that the relationship
between absolute returns and signs is either conditional independence or weakly condition-
ally dependent. Nonetheless, during market downturns returns are more likely asymmet-
rically distributed such that a strong temporary interdependence exists between absolute
returns and signs. Apparently, the increase in return asymmetry during market downturns

raises the importance of modeling time-varying skewness.

16 The difference between A  and A represents the extra performance fee for which an investor is
willing to pay beyond volatility timing to obtaining benefits from skewness timing.
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3.5. Conclusion

This chapter estimates time-varying return skewness by specifying dynamic dependence
in a return decomposition framework which splits a return to the product of absolute return
and sign. The importance of time-varying skewness is evaluated in out-of-sample forecasts
of excess stock returns in terms of both statistical significance and economic relevance.

The empirical results show strong statistical evidence for the instabilities of forecast
performance: one model performs better in certain periods and the competing model is
more accurate in other periods. Particularly, the results of this chapter suggest that an
investor might consider the proposed dynamic decomposition model with the presumption of
conditional independence during relatively tranquil periods, while by exploiting conditional
dependence between absolute return and sign during turmoil times. Alternatively, a forecast
combination, more robust to structural instability than either of the individual forecasts,
performs statistically significantly better out-of-sample than the benchmarks.

The economic values of the proposed dynamic decomposition models also show clear
economic relevance. This chapter finds that the skewness timing of dynamic decomposition
models yields an average gain in the returns around 195 basis points per year over the
forecast sample period. Specifically, modeling time-varying skewness during the recent
financial crisis generates a substantial average gain of 818 basis points in the returns per
year. It has also been found that an investor is willing to pay an extra 68-442 basis points
of the returns per year beyond volatility timing to acquire skewness timing information for
his/her portfolio.

Additionally, the following interests might be considered for future research: (1) an
in-depth analysis of forecast combinations robust to structural instability of forecasting
performance; (2) the comparisons of the proposed dynamic decomposition models to the
approaches of Harvey and Siddique (1999) and Leon et al. (2005); (3) the applications
of other copula functions which allow negative dependence structures between absolute

returns and signs.
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Table 3.9: Economic Values of Volatility and Skewness Timings

Constant Dynamic Decomposition Models

Decomposition Models IGtype  OSA Average
1982:01-2010:12
Volatility timing (A) 1.05% 1.74%  1.00% 1.27%
Skewness timing (A) 1.76% 1.99%  2.31% 1.95%
A —A 0.71% 025% 1.31% 0.68%
1982:01-2002:12
Volatility timing (A) 3.12% 3.63% 2.67% 2.99%
Skewness timing (A) 2.15% 2.54%  3.02% 2.64%
A —A -0.97% -1.09%  0.35% -0.35%
1982:01-1997:12
Volatility timing (A) 2.09% 2.85% 1.92% 2.18%
Skewness timing (A) 0.31% 0.36% 0.96% 0.62%
A —A -1.78% -2.49% -0.96% -1.56%
1998:01-2002:12
Volatility timing (A) 5.60% 6.22%  4.94% 5.48%
Skewness timing (A) 7.77% 921% 9.31% 8.82%
A —A 2.17% 2.99%  4.37% 3.34%
2007:07-2010:12
Volatility timing (A) 2.49% 5.25%  2.49% 3.76%
Skewness timing (A) 7.21% 8.91% 8.95% 8.18%
A —A 4.72% 3.66% 6.46% 4.42%

Volatility timing is evaluated by the trading strategy of ignoring dependence
and skewness timing by the trading strategy of exploiting dependence. Bold
values indicate the highest performance fees among trading strategies.
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Appendix A

Marginals

Following AG’s work, the dynamics for the positively valued variable |r;| are specified

in a multiplicative error model as

e = Yume (A.0.1)

where ¢, = E; 1 |r;| and 7, is a positive multiplicative error with E(n;) = 1. A logarithmic

conditional autoregressive model is used for 1, as
logwt =Wy + 5vlogwt—1 + f}/vlog ‘rt71| + ,Ov]I<7,t71 > 0) + x;flév (AOQ)

where x; are economic predictors. The persistence of the process is governed by the param-
eter |8, + 7| < 1.

Assume that 7; follows a Weibull distribution with the cumulative distribution function

F,,(z; k,¢)=1— e (8)

Ui

and the probability density function

fnt(x; K’? §) =

where k,¢ > 0 are shape and scale parameters, respectively. Weibull distributions have the
mean of F(n;) = ¢I' (1 + 1/k), such that the restriction F(n;) = 1 implies ¢ = 1/T" (1 + 1/k).
I'(-) is a gamma function. Hence, in this case the Weibull distribution can be reparameter-

ized in terms of k. Based on the Jacobian transformation matrix |.J| = ¢; * from (A.0.1),
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|r¢| has the CDF and PDF functions respectively as

Fir(ulli—1) = Fy (u/ | 1i-1) (A.0.3)

and

fire (ul 1) = 7 fo (w/ e Li—1) (A.0.4)

Marginal distribution for the sign dynamics (s; = I(r; > 0)) is a Bernoulli distribution

with the marginal CDF and PDF functions respectively as

(1) = 1= p(1 =)

and

folvlis) = p (1=p)' ™"

with p; = F;_1s; modeled by a dynamic logit-linked model

exp(6r)
= A.0.5
"1+ eap(6)) ( )
and
Ht = Wy + Qﬁdﬂ(ﬁ,l > 0) + y;715d (AOG)

where ¥, includes the set of predictors such as macroeconomic variables.

Note that the predictive variables of z; and y; are not necessarily identical so as to
allow the dynamics of absolute returns and signs driven by different information sets. As
discussed in section 2, this chapter uses the same marginals and information variables as
defined in AG’s work and only introduces time-varying copula dependency parameters.
Hence, the comparison to AG’s constant decomposition models can be easily made. To
preserve space, | would refer readers to AG’s original work for detail data description and

construction on z; and ;.



