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Abstract 

 

Three Essays in Modeling and Forecasting Economic Dynamics 
 

By Xiaochun Liu 
 
 

 
An important problem of modern financial economics is to understand and quantify the interaction 
between macroeconomics and financial markets under hypothetically distress scenarios. Modeling 
economic dynamics given a hypothetically distress economic scenario requires knowledge and 
techniques for extreme values or events. In this dissertation, on the econometrics side, I propose new 
econometric approaches for modeling evolutionary processes in tails of a data distribution, and 
constructing decomposition models to forecast excess stock returns by considering the role of 
dynamic higher moments, such as time-varying skewness. On the financial economics side, my 
research analyzes the counter-cyclical risk pattern of stock markets, asymmetric dynamics in 
macroeconomic variables, and systemic risk measure of financial institutions subject to regime 
switching in tails. The first essay proposes a new time-series econometric model to estimate quantiles 
of a data distribution subject to regime shifts, so-called Markov-Switching Quantile Autoregression 
(MSQAR). The purpose of this new econometric model is to characterize nonstationary natures of 
different parts of a data distribution. This is achieved via the assumption that quantile error terms 
follow a three-parameter asymmetric Laplace distribution. To deal with the difficulty in model 
estimation, I adopt a “block-at-a-time” Metropolis-Hastings sampling. The second essay applies the 
proposed MSQAR approach to stress-testing the U.S largest commercial banks by measuring 
systemic risk of individual banks subject to economic regime shifts. The new systemic risk measures 
show that the benchmark model of CoVaR approach underestimates systemic risk contributions of 
individual banks by around 131 basis points of asset loss on average. In addition, Banking Systemic 
Risk Index is constructed by value-weighted individual contributions. The third essay proposes a new 
approach to modeling time-varying skewness, the model performance of which is evaluated in out-
of-sample forecast of the U.S. excess stock returns in terms of both statistical significance and 
economic values. Interestingly, a forecast combination, more robust to structural instability than the 
individual forecasts, performs significantly better out-of-sample than the benchmarks. The skewness 
timing of the proposed time-varying dependence models yields an average gain in the returns around 
195 basis points per year over the forecast sample period. 
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Review

An important problem of modern �nancial economics is understanding and

quantifying the interaction between macroeconomics and �nancial markets. Since

the recent �nancial crisis of 2007-2009, studies in this area have emphasized on

round e�ects between macroeconomics and �nancial sectors. Speci�cally, dy-

namic interactions are tested under hypothetically distress scenarios, known as

stress-testing. Modeling economic dynamics given a hypothetically distress eco-

nomic scenario requires knowledge and techniques for extreme values or events,

largely apart from traditional econometric models on conditional means. Extreme

values deviate from means and fall into lower and upper tails. And, reactions

of market participants to extreme events can be to some extent characterized by

higher moments of data distributions. In this dissertation, on the econometrics

side, I propose new econometric approaches for modeling evolutionary processes

in tails of a data distribution, and constructing decomposition models to forecast

excess stock returns by considering the role of dynamic higher moments, such as

time-varying skewness. On the �nancial economics side, my research analyzes the

countercyclical risk pattern of stock markets, asymmetric dynamics in macroe-

conomic variables, and systemic risk measure of �nancial institutions subject to

regime switching in tails. Below I brie�y elaborate on the three papers that con-

stitute this dissertation.

The �rst essay proposes a new time-series econometric model to estimate quan-

tiles of a data distribution subject to regime shifts. The purpose of this new
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econometric model is to characterize nonstationary natures of di�erent parts of a

data distribution. This is achieved via the assumption that quantile error terms

follow a three-parameter asymmetric Laplace distribution. Particularly, I develop

location-scale quantile autoregressive models in which the location and scale pa-

rameters are subject to regime shifts. Regime changes within a quantile is deter-

mined by a latent, discrete-state Markov process. Crucial inference for �ltering

transition probabilities of switching regimes is made through asymmetric Laplace

distribution. The proposed model is referred to as Markov-Switching Quantile

Autoregression (MSQAR) which nests Quantile Autoregression (QAR) of Koenker

and Xiao (2006) as a special case.

MSQAR models are non-linear and involve indicator functions, which intro-

duce kinks and discontinuities into the sample likelihood function. In addition,

less observations fall in more extreme quantiles, which leads to the potential small

sample issue. These issues make classical methods such as MLE very di�cult

for model estimation. In this essay based on the �ndings in Chernozhukov and

Hong (2003), I adopt a �block-at-a-time� Metropolis-Hastings sampling by group-

ing highly correlated parameters as one block to be simultaneously updated at

each Metropolis-Hasting step conditional on the remaining blocks. Despite that

this sampling approach has been applied in previous studies, i.e., Tierney (1994),

Ausin and Lopes (2010), Geweke and Tanizaki (2001), among others, to the best

of my knowledge, this paper is the �rst to apply this sampling approach in quan-

tile regressions to mitigate the estimation di�culty due to potential local optima

on likelihood function surface. To achieve mixing properties, I further employ the

adaptive scheme of Gerlach et al. (2011) and Chen et al. (2012), which is modi�ed

to the �block-at-a-time� Metropolis-Hasting sampling, in order to avoid stucking

in a local mode for a long time.

The second essay applies the proposed MSQAR approach to stress-testing the

U.S largest commercial banks by measuring systemic risk of individual banks sub-

ject to economic regime shifts. Speci�cally, I characterize two risk states: a normal

risk level implied by good economic periods and a high risk level associated with

economic recessions, crises or extreme events. Di�erent sets of parameters are

thus obtained from MSQAR model estimation for each risk state in stress-testing.

Apparently, Markov-Switching conditional value-at-risk (MSCoVaR) measure of
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systemic risk naturally �ts to the Supervisory Stress Scenario required by Fed-

eral Reserve Bank in Comprehensive Capital Analysis and Review (CCAR). In

CCAR, a supervisory stress scenario is a hypothetical scenario to be used to as-

sess the strength and resilience of bank holding companies (BHCs) capital in a

severely adverse economic environment. It represents an outcome in which the

U.S. economy experiences a signi�cant recession and economic activity in other

major economies also contracts signi�cantly. It is reasonable to expect that eco-

nomic representatives react di�erently to di�erent economic conditions. Hence,

the set of MSQAR parameters obtained from the high risk level associated with

economic recessions and crises can be appropriately applied to stress-testing BHCs

in Fed's severely adverse economic scenarios.

The new systemic risk measures show in comparison that the CoVaR approach

of Adrian and Brunnermeier (2011) underestimates systemic risk contributions of

individual banks by around 131 basis points of asset loss on average. The empirical

results also present that the banking system is more sensitive to marginal changes

of an individual bank during high risk episodes than during normal risk periods.

In addition, Banking Systemic Risk Index, which is constructed in this essay by

value-weighted individual contributions, appears to have a high relevance in tracing

�nancial distress situations over the sample period.

The third essay studies the importance of dynamic higher moments in forecast-

ing �nancial market behaviors. Anatolyev and Gospodinov (2010) exploit inherent

nonlinearity in excess return dynamics by a return decomposition to the product

of absolute returns and return signs. The joint distribution of absolute values

and signs is characterized by a copula function. Their decomposition approach,

however, is restrictive as the dependence between absolute returns and signs is

constant over sample periods. The constant dependence also imposes a constant

skewness on excess returns. The literature has recognized that returns may in fact

be better characterized by a conditional distribution with time-varying asymmetry.

The importance of time-varying skewness has also been found in asset pricing and

allocation by recent studies, i.e., Harvey and Siddique (1999, 2000a&b), Leon et al.

(2005), and Jondeau and Rockinger (2003), among others. Leon et al. (2005) esti-

mate time-varying skewness and kurtosis using a Gram-Charlier series expansion

of the normal density function for the error term. It is found that speci�cations
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allowing for time-varying skewness and kurtosis outperform speci�cations with

constant third and fourth moments. Jondeau and Rockinger (2003) use the gener-

alized student-t distribution with an autoregressive speci�cation of the parameters

to demonstrate the importance of time-varying asymmetry parameters.

In this essay, I propose a new approach to modeling time-varying skewness,

the model performance of which is evaluated in out-of-sample forecast of the U.S.

excess stock returns in terms of both statistical signi�cance and economic val-

ues. Speci�cally, I extend AG's constant decomposition model by characterizing

the joint distribution as a time-varying copula function. The nonlinear temporary

interdependence between absolute returns and signs, which governs dynamic skew-

ness processes of returns, is thus estimated by the dynamic copula function simulta-

neously with marginals. Besides modeling time-varying skewness in out-of-sample

forecast, this paper also di�ers from AG's work in several important ways: (1)

The out-of-sample forecast period is extended to cover the recent �nancial crisis

of 2007-2009 which has attracted tremendous research interests in both economic

and �nance literature. (2) The Fluctuation tests and the decomposition of forecast

performance, proposed by Giacomini and Rossi (2010) and Rossi and Sekhposyan

(2011) respectively, show strong statistical evidence of the instability of forecast

performance over the sample time paths. The forecast performance is evaluated by

loss functions of forecast errors. Interestingly, a forecast combination, more robust

to structural instability than the individual forecasts, performs signi�cantly better

out-of-sample than the benchmarks. (3) The economic values of skewness timing

present substantial bene�ts from modeling time-varying skewness. The skewness

timing of the proposed time-varying dependence models yields an average gain in

the returns around 195 basis points per year over the forecast sample period.



Chapter 1

Markov-Switching Quantile Autoregression

Abstract: This chapter considers the location-scale quantile autoregression

in which the location and scale parameters are subject to regime shifts. The

regime changes are determined by the outcome of a latent, discrete-state Markov

process. The new method provides direct inference and estimate for di�erent

parts of a nonstationary time series distribution. Bayesian inference for switching

regimes within a quantile, via a three-parameter asymmetric-Laplace distribution,

is adapted and designed for parameter estimation. The simulation study shows

reasonable accuracy and precision in model estimation. From a distribution point

of view, rather than from a mean point of view, the potential of this new approach

is illustrated in the empirical applications to reveal the countercyclical risk pattern

of stock markets and the asymmetric persistence of real GDP growth rates and

real trade-weighted exchange rates.
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1.1. Introduction

Koenker and Xiao (2006) study quantile autoregression models in which the

autoregressive coe�cients may take distinct values over di�erent quantiles of the

innovation process. Their models can capture systematic in�uences of conditioning

variables on the location, scale and shape of the conditional distribution. Let {Ut}

be a sequence of i.i.d. standard uniform random variables. Consider the mth-order

autoregressive process

yt = θ0 (Ut) + θ1 (Ut) yt−1 + ...+ θm(Ut)yt−m (1.1.1)

where yt is the time series observation at time t, and θ's are unknown functions

[0, 1] → R to be estimated. Provided that the right side of (1.1.1) is monotone

increasing in Ut, it follows that the τth conditional quantile function of yt can be

obtained as

Qyt

(
τ |yt−1

)
= θ0(τ) + θ1(τ)yt−1 + ...+ θm(τ)yt−m (1.1.2)

where yt−1 = (yt−1, ..., yt−m)
′
. The transition from (1.1.1) to (1.1.2) is an imme-

diate consequence of equivariance to monotone transformations.1 In (1.1.2), the

quantile autoregressive coe�cients may be τ -dependent and thus can vary over the

quantiles. The conditioning variables not only shift the location of the distribu-

tion of yt , but also may alter the scale and shape of the conditional distribution.

Koenker and Xiao (2006) also show that quantile autoregressive models exhibit a

form of asymmetric persistence and temporarily explosive behavior.

1 See the theorem of equivariance to monotone transformations in Koenker (2005), page 39.
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However, the linear quantile autoregressive models cannot accommodate many

stylized facts such as structural breaks and nonlinearities in macroeconomic and

�nancial time series. The aim of this article is to extend the quantile autoregression

of Koenker and Xiao (2006) by modeling nonstationary quantile dynamics. Partic-

ularly, I consider the location-scale quantile autoregression in which the location

and scale parameters are subject to regime shifts within a quantile. Switching

quantile regimes is determined by the outcome of an unobserved state indicator

variable that follows a Markov process with unknown transition probabilities. The

proposed Markov-Switching Quantile Autoregression (MSQAR) nests the quantile

autoregression of Koenker and Xiao (2006) as a special case when conditional

distributions are stationary.

MSQAR is a convenient approach built on the vast literature of Markov-switching

time series models.2 Nonetheless, simply combining quantile autoregressive models

with Markov-switching techniques is econometrically infeasible. The challenge is

that the objective function of quantile autoregression is a non-likelihood based

function generally estimated by nonlinear least square. The non-likelihood based

function does not allow make inference on the latent state variable for switch-

ing regimes. To solve this problem, I assume that quantile error terms follow a

three-parameter asymmetric-Laplace distribution (Yu and Zhang (2005)). This

chapter shows that maximizing this distribution is mathematically equivalent to

minimizing quantile objective functions. Importantly, it also satis�es the restrictive

conditions of quantile regression. With this distribution, the inference for switch-

2 See e.g., Sims and Zha, 2006, Gray (1996), Cheung and Erlandsson (2005), Hamilton and
Susmel (1994), Kim et al. (2008), among many others. Guidolin (2012) provides a recent review
for the applications of Markov-switching models in empirical �nance.
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ing quantile regimes can be made through the standard Hamilton �lter approach

(Hamilton (1994)).

This chapter adopts Bayesian approach for model estimation. As discussed

in Yu and Moyeed (2001), the use of an asymmetric Laplace distribution for er-

ror terms provides a natural way to deal with some serious computational chal-

lenges through Bayesian quantile regression. Also see Chernozhukov and Hong

(2003). In the terminology of Chib and Greenberg (1995), this chapter adopts

a �block-at-a-time� Metropolis-Hastings sampling to reduce computational cost.

This algorithm groups highly correlated parameters as one block to be simulta-

neously updated at each Metropolis-Hasting step conditional on the remaining

blocks, see e.g., Tierney (1994), Ausin and Lopes (2010), Geweke and Tanizaki

(2001), among others. To further speed up convergence and to achieve desirable

mixing properties in MCMC chains, I employ the adaptive scheme of Gerlach

et al. (2011) and Chen et al. (2012), which combines a random walk and an

independent kernel Metropolis-Hastings algorithm, each based on a mixture of

multivariate normal distributions.

This chapter examines the new approach in a simulation study to show its

accuracy and precision in model estimation. The empirical application to S&P

500 returns illustrates the usefulness of this new approach in risk management,

i.e., for stress-testing �nancial institutions from the perspective of central banks.

In this chapter, asymmetric dynamics have also been found for quarterly real GDP

growth rates but not for quarterly real trade-weighted U.S. dollars. In addition,

the asymmetric dynamics appear to be di�erent across economic regimes. Notably,

modeling the regime persistence in lower tails of real GDP growth rates improves

the predictabilities of switching economic states and turning points.
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The rest of this chapter is structured as follows. Section 2 introduces the con-

nection of asymmetric-Laplace distributions to the solution of quantile regressions.

Section 3 de�nes Markov-Switching quantile autoregression. Section 4 describes

the Bayesian methods in this chapter for model estimation. Section 5 presents

model simulations and results. Section 6 reports the results of empirical applica-

tions to stock markets, real GDP growth rates and real trade-weighted exchange

rates. Section 7 concludes this chapter.

1.2. Asymmetric Laplace Distribution Connection

The QAR(m) model of (1.1.2) can be reformulated in a more conventional

regression form as

yt = θ0(τ) +
m∑
l=1

θl(τ)yt−l + εt(τ) (1.2.1)

where εt(τ) is quantile error terms which follow an asymmetric-Laplace (AL) dis-

tribution, denoted by AL(0, ς, τ), with the density function as

fεt(ε; 0, ς, τ) =
τ(1− τ)

ς
exp

{
−ε (τ − I(ε ≤ 0))

ς

}
(1.2.2)

where I(·) is an indicator function. τ determines the skewness of the distribution,

ς > 0 is a scale parameter. AL(0, ς, τ) with the location parameter being zero pro-

vides that the τth quantile of the distribution is zero as Pr (εt ≤ 0) = τ , which sat-

is�es the quantile regression condition
´ 0
−∞ fε(s)ds = τ . The asymmetric-Laplace

distribution with the density function of (1.2.2) has the mean and variance, E(εt) =

ς(1− 2τ)/[(1− τ)τ ] and V ar(εt) = ς2(1− 2τ + 2τ 2)/[(1− τ)2τ 2], respectively. See

Yu and Zhang (2005) for details. With the assumption of i.i.d. εt(τ), the sample
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likelihood function is given by

L(θ, τ) = [τ(1− τ)/ς]T (1.2.3)

exp

{
−

T∑
t=1

yt −Qyt

(
τ |yt−1

)
ς

[
τ − I

(
yt ≤ Qyt

(
τ |yt−1

))]}

In the literature the error density is often left unspeci�ed, see e.g., Koenker

and Bassett (1978), Koenker (2005), and Koenker and Xiao (2006), etc. Quantile

autoregression is the solution to the following minimization problem

θ(τ) = arg min
θ

E
(
ρτ
(
yt −Qyt

(
τ |yt−1;θ

)))
(1.2.4)

where θ (τ) = (θ0(τ), ..., θm (τ)) is the parameter space to be estimated. The quan-

tile criterion (check or loss) function ρτ (·) is de�ned as ρτ (ε) = ε (τ − I(ε < 0)) in

Koenker and Bassett (1978). Solving the sample analog gives the estimator of θ

θ̂(τ) = arg min
θ

T∑
t=1

ρτ
(
yt −Qyt

(
τ |yt−1;θ

))
(1.2.5)

Recently, Yu and Moyeed (2001), Yu and Zhang (2005) and Gerlach et al.

(2011), among others, have illustrated the link between the quantile estimation

problem and asymmetric-Laplace distribution. Since the quantile loss function

is contained in the exponent of the asymmetric-Laplace likelihood, maximizing

the sample likelihood of (1.2.3) is mathematically equivalent to minimizing the

quantile loss function of (1.2.5). It is important to emphasize that, in practice, the

parameter τ is chosen by researchers as quantile levels of interest during parameter

estimation and only a single quantile of the distribution of yt is estimated. More

importantly, the asymmetric Laplace distribution transforms the non-likelihood
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based quantile regression of (1.2.5) to a likelihood based approach, so that the in-

ference for the probability of switching regimes is possibly made through Hamilton

�lter.

1.3. Markov-Switching Quantile Autoregression

For the τth conditional quantile of yt, let {st} be an ergodic homogeneous

Markov chain on a �nite set S = {1, ..., k}, with a transition matrix P de�ned by

the following transition probabilities

{pij = Pr (st = j|st−1 = i)}

and the unconditional probabilities

{πj = Pr (st = j)}

for i, j ∈ S and assume st follow a �rst-order Markov chain. The transition

probabilities satisfy
∑

j∈S pij = 1 and
∑

j∈S πj = 1. The stochastic process for st

is strictly stationary if pij is less than unity and does not take on the value of 0

simultaneously.

Using transition probabilities above, this chapter de�nes Markov-Switching

quantile autoregressive models (MSQAR) as

yt = Qyt(τ |yt−1;θst) + εt(τ)

= θst,0(τ) +
m∑
l=1

θst,l(τ)yt−l + εt(τ) (1.3.1)
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Suppose that yt can be observed directly but can only make an inference about

the value of st based on the observations as of date t. This inference gives the

�ltering probability as

ξj,t|t = Pr (st = j|yt; Θ)

=
∑
i∈S

Pr (st = j, st−1 = i|yt; Θ)

where
∑

j∈S ξj,t|t = 1 and Θ = (P,θst(τ)) is a vector of the parameters with st ∈ S.

The formulation of �ltering probabilities is obtained by Bayes theorem as

ξj,t|t =

∑
i∈S pijξi,t−1|t−1ηj,t

f (yt|yt−1, τ ; Θ)
(1.3.2)

where ηj,t is conditional likelihood as

ηj,t = f (yt|st = j,yt−1, τ ;θ) (1.3.3)

=
τ(1− τ)

ς
exp

{
−(yt −Qyt (τ |yt−1;θj))

ς
[τ − I (yt < Qyt (τ |yt−1;θj))]

}

and

f(yt|yt−1, τ ; Θ) =
∑
j∈S

∑
i∈S

pijξi,t−1|t−1ηj,t

Thus, the relationship between the �ltering and prediction probabilities is given

by

ξj,t+1|t = Pr (st+1 = j|yt; Θ) =
∑
i∈S

pijξi,t|t (1.3.4)

The inference, similar to Hamilton's �lter (Hamilton, 1994), is performed itera-

tively for t = 1, ..., T with the initial values, ξj,0|0 for j ∈ S. The sample likelihood
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for the τth conditional quantile of yt is then given by

L(Θ) =
T∏
t=1

f(yt|yt−1, τ ; Θ) (1.3.5)

The connection to the solution of quantile regression can also be viewed as

follows. Based on quantile loss functions, Θ is solved for the following minimization

problem

min
Θ

E

(∑
j∈S

ρτ (yt −Qyt (τ |st = j, yt−1; Θ)) I (st = j)

)
(1.3.6)

where yt = {yt, yt−1, ..., y1, y0}. Apply the law of iterated expectation to rewritten

(1.3.6) as

min
Θ

∑
j∈S

E [ρτ (yt −Qyt (τ |st,τ = j, yt−1; Θ))Pr (st,τ = j|yt; Θ)] (1.3.7)

Provided that τ is chosen by researchers of interest, maximizing the likelihood

of (1.3.5) is mathematically equivalent to the minimization of (1.3.6), since the

likelihood function can be alternatively rewritten as L(Θ) =
∏T

t=1

∑
j∈S f(yt|st =

j, yt−1, τ ; Θ)Pr (st = j|yt; Θ) with Pr(st = j|yt; Θ) =
∑

i∈S pijξi,t−1|t−1. However,

Pr (st = j|yt; Θ) cannot be �ltered by using the nonlinear least square estimation

of (1.3.7); therefore, the likelihood function of the asymmetric Laplace distribution

is used to infer transition probabilities.

To estimate smoothing transition probabilities Pr (st = i|yT ; θ), this chapter

follows the approach of Kim (1994). Apply the Bayes theorem and the Markov

property to yield
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Pr (st = i|st+1 = j, yT ; Θ) =
pjiPr (st = j|yt; Θ)

Pr (st+1 = i|yt; Θ)
(1.3.8)

It is therefore the case that

Pr (st = j, st+1 = i|yT ; Θ) = Pr (st+1 = i|yT ; Θ)
pjiPr (st = j|yt; Θ)

Pr (st+1 = i|yt; Θ)
(1.3.9)

The smoothed inference for date t is the sum of (1.3.9) over i ∈ S

ξj,t|T = Pr (st = j|yT ; Θ)

=
∑
i∈S

Pr (st+1 = i|yT ; Θ)
pjiPr (st = j|yt; Θ)

Pr (st+1 = i|yt; Θ)
(1.3.10)

The smoothed transition probabilities are thus obtained by iterating on (1.3.10)

backward for t = T − 1, T − 2, ..., 1. This iteration is started with ξj,T |T for j ∈ S

which is estimated from (1.3.2) for t = T . This algorithm is valid only when st

follows a �rst-order Markov chain.

From the conditional density (1.3.4), it is straightforward to forecast the one-step-

ahead τth quantile of yt+1 at time t conditional on knowing st+1,τ ,

Qyt+1 (τ |st+1 = j,yt;θj) = θj,0(τ) +
m−1∑
l=0

θj,l+1(τ)yt−l (1.3.11)

Further, from (1.3.4), the forecast for t+ 1 conditional on time t obtained as

Qyt+1 (τ |yt;θ) =
k∑
j=1

Qyt+1 (τ |st+1 = j,yt;θj)Pr (st+1 = j|yt,Θ) (1.3.12)

which is to multiply the appropriate forecast of the quantile in the jth regime
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given by (1.3.11) with the probability that the process will be in that regime

given by (1.3.4), and to sum those products for every regime together. Note that

h-step-ahead forecasts for h > 2 require di�erent approaches since it involves

forecasts of yt+h−1 in (1.3.11) for Qyt+h (τ |st+h−1,τ = j,yt+h−1;θj), as shown in Cai

(2010).

In MSQAR model estimation, similar to other Markov-Switching time series

models, one must use some identi�cation restrictions to avoid the label switching

issue. See Bauwens et al. (2010) and Hamilton et al. (2007) for a discussion.

In this chapter, regimes are labeled by the restrictions on quantile intercepts,

for example, θ1,0(τ) > ... > θk,0(τ). In addition, in empirical applications, the

transition probabilities are allowed but not imposed dependent on τ . The intuition

is that even though economic states are common across quantiles implying the same

unconditional probabilities, no theories show that regime persistence should be the

same across quantiles. To obtain some insights on this empirical question, regime

persistence is allowed to be driven by data across quantiles.

1.4. Bayesian Inference

MSQAR models are non-linear and involve indicator functions, which introduce

kinks and discontinuities into the sample likelihood function in (1.3.5). In addition,

less observations fall in more extreme quantiles, which leads to the potential small

sample issue. These issues make classical methods such as MLE very di�cult

for model estimation. In this chapter, I instead prefer to use Bayesian MCMC

methods to learn about the model parameters.

Given the sample realizations, yt for t = 1, ..., T , the posterior distribution of
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Θ takes the usual form: p(Θ|yt) ∝ L(yt|Θ)π (Θ), where L(yt|Θ) is the sample

likelihood function and π(Θ) is the prior distribution. Yu and Moyeed (2001) and

Cai and Stander (2008) prove that the posterior distribution is proper under the

improper prior for general quantile regression models. In this chapter, the prior

distribution is taken as uniform over Ξ, the admissible parameter space of Θ, i.e.,

satisfying the label switching restrictions. The prior for the scale parameter is

π(ς) ∝ ς−1 also used in Gerlach et al. (2011).

Just like Vrontos et al. (2002) and Ausin and Lopes (2010), I also �nd that

MCMC mixing can be improved and the computational cost reduced by using si-

multaneous updating of the highly correlated parameter groups at each Metropolis-

Hastings (MH) step. In the terminology of Chib and Greenberg (1995), this ap-

proach is therefore based on a �block-at-a-time� MH sampler which is carried out

by cycling repeatedly through draws of each parameter block conditional on the

remaining parameter blocks. Let Θ = (P ,θ1(τ), ...,θk(τ)) represent the blocks of

the population parameters. P = (pij) contains all transition probability parame-

ters and θj,τ includes all parameters in the jth regime for j = 1, ..., k. Hence, the

parameters in Θ are grouped in k+ 1 blocks and the parameters of each block are

simultaneously updated conditional on the remaining blocks.

This chapter implements the MH sampler according to the adaptive scheme

of Gerlach et al. (2011) and Chen et al. (2012) which combines the random

walk MH (RW-MH) and the independent kernel MH (IK-MH) algorithms, each

based on a mixture of multivariate normal distributions. The random walk part

of this scheme is designed to allow occasional large jumps, perhaps away from

local modes, thereby improving the chances that the Markov chain will explore
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the posterior distribution space. Hence, this adaptive scheme allows for further

speeding convergence and achieving desirable mixing properties in MCMC chains.

To illustrate this adaptive algorithm in the block-at-a-time MH sampler, I

rewrite the notation of the parameter blocks as Θ = (θ1,τ ,θ2,τ , ...,θk+1,τ ), where

θ1,τ = P and θj,τ denotes the parameters in the (j−1)th regime for j = 2, ..., k+1.

And, let Θ−j denote the vector Θ excluding the block θj,τ . Starting at g = 1 with

Θ[1] =
(
θ
[1]
1,τ , ...,θ

[1]
k+1,τ

)
, the G1 random walk MH iterations for Θ proceed as

follows:

Step 1. Increment g by 1 and set Θ[g] equal to Θ[g−1].

Step 2. For i = 1, ..., k + 1 in turn, generate θci,τ as

θci,τ = θ
[g]
i,τ + ε, ε ∼ ρN (0, diag {bi}) + (1− ρ)N (0, ωdiag {bi})

and replace θ
[g]
i,τ in Θ[g] by θci,τ with the probability min (ζi, 1), where

ζi =
L
(
yt|θci,τ ,Θ

[g]
−i

)
π
(
θci,τ ,Θ

[g]
−i

)
L
(
yt|Θ[g]

)
π
(
Θ[g]

)
Step 3. If g < G1, go to Step 1. Upon completion, these �rst G1 iterations

yield the burn-in sample. Following Chen et al. (2012), I set ρ = 0.95, ω = 100,

and tune the positive number bi so that the empirical acceptance rate lies in

the range (0.2, 0.45) for the ith block. Tuning is done every 100 iterations by

increasing bi when the acceptance rate in the last 100 iterations is higher than

0.45, or decreasing bi when that rate is lower than 0.2.

At the end of the �rst G1 iterations, the burn-in sample mean µi,τ and covari-

ance matrix Σi,τ of θi,τ with corresponding lower triangular Cholesky factor Σ
1/2
i,τ
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are computed for i = 1, ..., k+ 1. The MCMC sampling scheme then continues for

G2 additional iterations according to the following independent kernel MH steps:

Step 4. Increment g by 1 and set Θ[g] equal to Θ[g−1].

Step 5. For i = 1, ..., k + 1 in turn, generate θci,τ as

θci,τ = µi,τ + Σ
1/2
i,τ ε, ε ∼ ρN (0, I) + (1− ρ)N (0, ωI)

and replace θ
[g]
i,τ in Θ[g] by θci,τ with the probability min (ζi, 1), where

ζi =
L
(
yt|θci,τ ,Θ

[g]
−i

)
π
(
θci,τ ,Θ

[g]
−i

)
q
(
θ
[g]
i,τ

)
L
(
yt|Θ[g]

)
π
(
Θ[g]

)
q
(
θci,τ
)

q (θi,τ ) ∝ ρexp

{
−1

2

(
θi,τ − µi,τ

)′
Σ−1i,τ

(
θi,τ − µi,τ

)}
+

1− ρ
ωdim(θi,τ )/2

exp

{
−1

2

(
θi,τ − µi,τ

)′
Σ−1i,τ

(
θi,τ − µi,τ

)}

Step 6. If g < G1 + G2, go to Step 4. Observe that the use of Σi,τ in Step 5

accounts for the posterior correlation among the elements of θi,τ , thereby improv-

ing the e�ciency of the Markov chain. The parameter updates are sequentially

repeated until the convergence of the Markov chain is achieved. The burn-in draws

are discarded, and the steps are iterated a large number of times to generate draws

from which the desired features (means, variances, quantiles, etc.) of the posterior

distribution can be estimated consistently.

In this chapter, G1 = 50, 000 for the random walk MH sampler and G2 = 50, 000

with a thinning of 5 for the independent kernel MH sampler, resulting in posterior
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samples comprising 10,000 draws. The convergence of the IK-MH Markov chains

is assessed using the Geweke (1992) test. For each parameter, I also assess the

accuracy of its posterior mean by computing the numerical standard error (NSE)

according to the batch-means method (Ripley, 1987). In all simulated and real

data examples of this chapter, it is observed that MCMC chains are well converged

inside 50,000 iterations.

1.5. Simulation

This section carries on a simulation study. In MSQAR nonlinear settings where

the number of parameters increases with the number of regimes, it is very con-

venient to choose parsimonious models that require a low number of parameters.

For simplicity in the exposition, data are simulated from the true model with 2

regimes and autoregressive order 1 as

yt =


2.0 + 0.2yt−1 + 0.5εt, st = 1

−2.0 + 0.4yt−1 + εt, st = 2

The true parameter values are referenced based on empirical data estimations

in next section. Three underlying distributions are considered for error terms,

including a standard normal distribution (N(0, 1)), a standardized student-t dis-

tribution with 3 degrees of freedom (t3), and a mixed distribution between N(0, 1)

when st = 1 and t3 when st = 2.
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The theoretical τth conditional quantile of yt can be expressed in a MSQAR

form as

Qyt(τ |yt−1; θst) =


θ10(τ) + θ11(τ)yt−1, st = 1

θ20(τ) + θ21(τ)yt−1, st = 2

with the corresponding quantile parameters as θ10(τ) = 2.0 + 0.5Qεt (τ), θ11(τ) =

0.2, θ20(τ) = −2.0+Qεt (τ), and θ21(τ) = 0.4. Qεt(τ) is the theoretical τth quantile

of a underlying distribution.

200 data replications are simulated for each underlying distribution. 50,00

observations are generated for each data replication but only the last 500 obser-

vations are kept for estimation in order to reduce initial e�ects. MSQAR mod-

els are examined in di�erent sample sizes, T = {200, 500} and quantile levels,

τ = {0.05, 0.25, 0.5, 0.75, 0.95}.

Table 1.1 reports the simulation results. This table includes the true quantile

parameters (True), posterior means (PM), standard errors (Std), the root of mean

squared errors (RMSE), and the mean absolute deviation (MAD). RMSE and

MAD errors in Table 1.1 are small over di�erent quantile levels and distributions.

The small di�erence between the true and estimated parameters indicates the

reasonable accuracy in model estimation. The small standard errors also show

a favorable precision in model estimation. Furthermore, the accuracy and the

precision of model estimations are improved with the increase in sample sizes

considered due to the reduction in RMSEs, MADs and standard errors. As ex-

pected, the model estimation for the less extreme quantiles present smaller RMSE

and MAD errors than extreme quantiles. The MSQAR model estimation also
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shows reasonable performance for the data generated from mixtures of normal and

student-t distributions.

Figure 1.1 plotting the posterior kernel densities of parameter estimates along

with true parameters indicated by the vertical lines. Figure 1 shows that the pos-

teriors well contain the true quantile parameters with a slightly better performance

for τ = 0.5. In many cases, the posteriors appear skewed but still with most of

the density concentrated near the true parameter values. To save space, Figure

1 plots results for τ = 0.05, 0.5, 0.95 and N = 200 from the normal distribution.

Other results are similar and available upon request.

Following Guerin and Marcellino (2013), Table 1.2 reports the quadratic prob-

ability scores (QPS), absolute probability scores (APS) and log probability scores

(LPS) for the quantile autoregressive models with Markov-switching features to

check how well these models can estimate the true regimes. QPS, APS and LPS

criteria evaluate the qualitative prediction abilities of MSQAR models, that is, to

what extent the true quantile regimes are predicted. The predictability of regime

2 is computed for QPS, APS, and LPS as follows:

QPS =
2

T

T∑
t=1

(
ξ2,t|t − I (s̃t = 2)

)2
(1.5.1)

APS =
1

T

T∑
t=1

∣∣ξ2,t|t − I (s̃t = 2)
∣∣ (1.5.2)

LPS = − 1

T

T∑
t=1

(1− I (s̃t = 2)) log
(
1− ξ2,t|t

)
+ I (s̃t = 2) log

(
ξ2,t|t

)
(1.5.3)

where ξ2,t|t is obtained from (1.3.2) and s̃t is the simulated states. A score of 0

occurs when perfect predictions are made. Note that QPS is bounded between
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0 and 2. The worst score is 2 for QPS and occurs if at each period probability

predictions of 0 or 1 are made but turn out to be wrong each time. Note that

correct predictions have individual scores between 0 and 0.5, whereas incorrect

predictions have individual scores between 0.5 and 2.0 for QPS. Nonetheless, a

few incorrect predictions can therefore dominate a majority of correct predictions

in QPS scores. For this reason, a modi�ed version of probability scores, absolute

probability score (APS), is also considered. Like QPS, the best possible score for

APS is 0. The worst score is 1. Here correct predictions have individual scores

between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1. The

range for LPS is 0 to ∞. LPS penalizes large prediction errors more than QPS

and APS. See also Christo�ersen et al. (2007).

Table 1.2 shows that all QPS and APS scores are small and less than 0.5, which

indicate the dramatic model predictability for switching regimes. The probability

scores are slightly lower with the increase in sample sizes. The results also show

that regime predictions for lower tails are better than for upper tails. In addition,

the statistics of LPS are also smaller than 0.5 which imply that no prediction

outliers are penalized.

1.6. Empirical Applications

Many studies have employed quantile autoregressive models to estimate risks

of �nancial markets and assets. In macroeconomics literature, asymmetric dy-

namics have also been found for macroeconomic variables. This section applies

the proposed MSQAR model to S&P 500 returns for market risk assessment and

to real U.S. GDP growth rates (RGDP) and real exchange rates of U.S. dol-
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lars (trade-weighted by major currencies, RTWER) for asymmetric persistence.

Monthly and weekly S&P 500 index returns are taken from the Center for Re-

search in Security Prices (CRSP). The quarterly RGDP and RTWER data are

taken from Federal Reserve Bank of St. Louis as percent changes from year ago.

The data summary in Table 1.3 show negative skewness for S&P 500 returns and

real exchange rates. The skewness for real GDP growth is positive but small. S&P

500 returns appear to have excess kurtosis. Jarque-Bera tests reject the null of

data normality for S&P 500 returns, whereas the tests do not reject the null for

real exchange rates. The normality for real GDP is rejected at 10% level. Figure

1.2 plots the time series of the empirical data.

As discussed in section 5, for empirical illustration, this chapter estimates

MSQAR of order 1 with 2 regimes to keep a parsimonious parameter space. This

chapter de�nes that regime 2 represents more extreme outcomes than regime 1.

For instance, at lower tails, quantiles of regime 2 should be more negative or farther

into the left tail areas than those of regime 1, which is mostly associated with the

periods of economic recessions and crises. In contrary, at upper tails, quantiles of

regime 2 should be more positive or farther into the right tail areas than those of

regime 1.

1.6.1. Stock Market Risk

Table 1.4 reports the estimation results for monthly and weekly S&P 500 re-

turns. The entries are the posterior means of parameters with associated numerical

standard errors in parentheses. In general, the values of the Geweke (1992) test

statistic in square brackets indicate convergence of the Markov chain to stationar-

ity. Table 1.5 shows that the numerical standard errors are small and the Markov
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chain appears to be converged well as indicated by the generally insigni�cant values

of the Geweke (1992) test statistic. Figure 1.3 also plots the estimated parameters

over quantiles with the 5% and 95% intervals of posterior distributions. As seen,

the quantile intercepts monotonically increase with the increase of quantile levels.

The quantile autoregressive coe�cients are close to zero around median, while they

deviate from zero at lower and upper tails. The zero coe�cients around median

seem to suggest market e�ciency for S&P 500 index. However, it appears to be less

e�cient at tails. Moreover, the autoregressive coe�cients of regime 2 are larger in

magnitude than those of regime 1. This result implies that markets are less e�cient

when extreme events occur or during economic recessions and crises. Interestingly,

the positive autoregressive coe�cients at lower tails suggest that risk expectation

is positively impacted by past risks, while the negative autoregressive coe�cients

at upper tails indicate that during market good times investors is expecting higher

risk in future. These results clearly show countercyclical behaviors in �nancial

markets estimated by MSQAR models.

The results also show that the variation of transition probabilities across quan-

tiles is much smaller in regime 1 than in regime 2. The transition probabilities

of regime 1 are ranging from 0.85 to 0.985, compared to the range for regime 2

from 0.381 to 0.945. It seems that the more extreme the quantile level is, the

lower the persistence of regime 2 (p22) is.
3 Despite the large variation in regime

persistence, the unconditional probabilities are very similar across quantiles, i.e.,

π1 and π2 are around 0.84 and 0.16 for each quantile level, respectively.
4 This result

3 The regime persistence for regime 1 and 2can be computed as 1/(1− p11) and 1/(1− p22),
respectively.

4 Unconditional probabilities of π1 and π2 can be obtained as (1− p22)/(2− p11 − p22) and
(1− p11)/(2− p11 − p22), respectively.
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is reasonable in that economic conditions provide the common economic states to

di�erent parts of a data distribution. However, persistence is possibly varying

across quantiles. This observation is further consolidated by Figure 1.4 plotting

the smoothed transition probability ξst=2,t|T for τ = 0.05, 0.5. The shaded areas

are NBER-dated business cycles. This �gure shows that the �uctuation within

each economic recession period is much larger in τ = 0.05 than in τ = 0.5. The

responses of the 5% lower tail to the economic recessions are much stronger than

those of median, by showing much higher probabilities of switching to regime 2.

Value-at-Risk is implicitly de�ned on quantiles as a one-to-one function of a

quantile, over a given time interval, of a conditional return distribution (see Jorion

(2000)). For assessing S&P 500 return risks, Figure 1.5 plots 5% Value-at-Risk

(VaR) estimated from the dynamic quantile of τ = 0.05 as Qyt(τ |yt−1, st; Θ̂) =∑
i∈S Qyt

(
τ |yt−1, st = i; θ̂i

)
Pr
(
st = i|yt; Θ̂

)
. The dark lines in Figure 1.5 are

the estimated 5% VaR dynamics (Qyt(τ |yt−1, st; Θ̂)) and the top and bottom light

lines are the estimated 5% VaR dynamics of regime 1 (Qyt(τ |yt−1, st = 1; θ̂1)) and

regime 2 (Qyt(τ |yt−1, st = 2; θ̂2)), respectively. As seen, the dynamics in regime 2

is larger than in regime 1 due to the larger autoregressive coe�cients. This result

indicates that market e�ciency is di�erent across regimes.

The usefulness of the proposed MSQAR model can be immediately recognized

from Figure 1.5. Value-at-Risk estimated from existing methods are undistin-

guished from di�erent distributions associated with i.e., good times or economic

recessions. Thus, the VaR values from those approaches are at best the results

of averaging on di�erent economic states. However, Figure 1.5 shows VaR values

for both regime 1 implied by good economic periods and regime 2 associated with

economic recessions. Risk states identi�ed by the MSQAR model are particularly
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bene�cial for risk management, as a risk manager would care more about the most

extreme scenarios or the worst possible outcomes. For example, to stress-testing

a hypothetically stressed �nancial institution, one should use VaR values esti-

mated from regime 2 (Qyt(τ |yt−1, st = 2; θ̂2)) as the worst scenario hypothetically

occurring. This may be an appropriate approach to measure systemic risks for con-

sidering capital bu�er requirement on �nancial institutions from the perspectives

of central banks.

1.6.2. Asymmetric Persistence in Macroeconomic Dynamics

To study asymmetric dynamics of macroeconomic variables, this chapter es-

timates MSQAR models for percentiles. Table 1.5 reports the estimation results

for real GDP growth rates and real trade-weighted exchange rates. The results of

ADF, KPSS, Phillips-Perron and Zivot-Andrews tests (not reported here) reject

the null hypothesis of unit roots for these macroeconomic variables.The entries

are the posterior means of parameters with associated numerical standard errors

in parentheses and the Geweke (1992) test statistic in square brackets. Table 1.5

shows that the numerical standard errors are small and the Markov chain appears

to be converged well as indicated by the generally insigni�cant values of the Geweke

(1992) test statistic. Figure 1.6 also plots the estimated parameters over quantile

levels with the 5% and 95% intervals of posterior distributions.

Figure 1.6 shows that the quantile autoregressive coe�cients of real GDP

growth rates vary over di�erent quantiles, displaying asymmetric dynamics. Up-

per tails appear to have higher dynamic persistence than lower tails. The quantile

autoregressive coe�cients of regime 2 has the range from 0.623 to 0.979, compared

to the range of 0.779 to 0.874 for the coe�cients of regime 1. This result indicates
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that economic regimes demonstrate di�erent asymmetric dynamics. By contrast,

the evidence of asymmetric persistence in real trade-weighted exchange rates is

weak due to much less variation across the quantile autoregressive coe�cients.

This result is consistent with Jarque-Bera test in Table 1.4 showing that the null

of data normality is not rejected for real trade-weighted exchange rates, where it

is rejected for real GDP growth rates at 10% con�dence level.

In addition, Figure 1.6 also shows that transition probabilities slightly vary

across quantiles in both regimes. It implies that regime persistence of macroe-

conomic variables is mainly driven by common economic conditions, and hence

much less dependent on τ . This result is very di�erent from the regime behaviors

of �nancial markets in section 5, but consistent with the fact that macroeconomic

variables are common economic states and factors in an economy.

Table 1.6 examines the regime predictions of real GDP growth rates. This table

reports QPS, APS and LPS values for regime 2 by using NBER-dated business

cycles as true regimes. The probability scores of QPS and APS are smaller than 0.5

across quantiles, which indicates a signi�cant predictability of economic regimes

based on real GDP growth. Interestingly, the predictability of regimes from lower

tails is much stronger than from upper tails. In addition, LPS values are larger

than one at upper tails than at lower tails. This result implies the issue of regime

predictive outliers.

The di�erent regime predictabilities across quantiles are also shown by Figure

1.7 plotting the smoothed transition probability ξst=2,t|T for τ = 0.1, 0.5, 0.9. The

shaded areas are NBER-dated business cycles. As seen, the predicated regimes

from τ = 0.05 and τ = 0.5 seem closely to trace NBER dated business cycles,

whereas the predicated regimes from τ = 0.9 appear to be lagged. In addition, the
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responses of the 10% quantile to the economic recessions are much stronger than

those of median, by showing much higher probabilities (close to 1) of switching to

regime 2. These results suggest that lower tails of real GDP growth rates reveal

more information of economic states than upper tails. This might be due to the

economic behaviors of risk aversion and also re�ect the e�ects of macroeconomic

policies.

1.6.3. Quantile Monotonicity

It is important to evaluate the model by the monotonicity requirement on the

conditional quantile functions. If the monotonicity is satis�ed, there should be no

crossings over quantiles. Severe crossing problems violate the theorem of equivari-

ance to monotone transformation from (1.1.1) to (1.1.2). Figure 1.8 plots the esti-

mated quantiles of each single regime. The straight lines are Qyt(τ |yt−1, st = 1; θ̂1)

and Qyt(τ |yt−1, st = 2; θ̂2) for regime 1 and 2. The dots are the scatter plots

with yt as y-axis and yt−1 as x-axis. Despite that the MSQAR model is nonlinear,

it takes a linear form within a single regime. Quantiles within a regime are not

parallel due to its location-scale quantile autoregressive model, unlike location-shift

quantile functions. Quantiles in regime 2 have no crossing issues, while crossing

problems occur in regime 1 between τ = 0.4, 0.5, 0.6. Nonetheless, the proportion

of violations of the monotonicity in regime 1 is below 2% between τ = 0.4, 0.5, 0.6,

except around 10% for the quantiles of regime 1 of real GDP growth rates crossing

between τ = 0.5 and τ = 0.6. Overall, Figure 1.8 does not show severe crossing

issues for the data considered in this chapter.
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1.7. Conclusion

This chapter proposes a new location-scale quantile autoregression, so-called

Markov- switching quantile autoregression, to characterize behaviors of di�erent

parts of a nonstationary time series distribution. The new method directly in-

ferences and estimates dynamic quantiles by allowing the location and scale pa-

rameters subject to regime shifts. Unobservable economic regimes are inferred by

standard Hamilton �lter approach in which quantile error terms follow a three

parameter asymmetric Laplace distribution. Bayesian estimation is adopted to

deal with some serious computational challenges in this nonlinear model which has

di�erentiable likelihood functions. The empirical application to S&P 500 returns

is able to show countercyclical risk accumulations in �nancial markets. It also il-

lustrates that the dynamic quantiles associated with economic recessions should be

an appropriate extreme scenario for stress-testing hypothetically stressed �nancial

institutions from the perspective of central banks. Furthermore, the estimation

results for macroeconomic variables show evidence of asymmetric dynamics for

quarterly real GDP growth rates but not for quarterly real trade-weighted U.S.

dollars. The transition probabilities are similar across quantiles within a single

regime for macroeconomic variables, whereas they vary in �nancial markets. In

addition, this chapter has found that the lower tails of real GDP growth provide

more valuable information than the upper tails for predicting economic regimes.
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Table 1.1: Simulation Results

(1) Normal errors

True
N = 200 N = 500

PM Std RMSE MAD PM Std RMSE MAD

τ = 0.05

p11 0.900 0.883 0.034 0.042 0.031 0.895 0.019 0.022 0.017

p22 0.900 0.890 0.034 0.039 0.030 0.901 0.022 0.025 0.019

θ10(τ) 1.178 1.262 0.113 0.120 0.099 1.249 0.081 0.092 0.075

θ11(τ) 0.200 0.181 0.038 0.210 0.168 0.184 0.032 0.178 0.145

θ20(τ) -3.645 -3.584 0.295 0.082 0.065 -3.606 0.193 0.054 0.043

θ21(τ) 0.400 0.401 0.097 0.172 0.200 0.400 0.059 0.147 0.116

τ = 0.25

p11 0.900 0.887 0.034 0.040 0.029 0.898 0.019 0.021 0.016

p22 0.900 0.889 0.032 0.038 0.029 0.899 0.021 0.024 0.018

θ10(τ) 1.663 1.671 0.088 0.053 0.041 1.665 0.060 0.036 0.029

θ11(τ) 0.200 0.194 0.030 0.151 0.122 0.195 0.024 0.120 0.099

θ20(τ) -2.674 -2.677 0.221 0.083 0.067 -2.660 0.123 0.046 0.037

θ21(τ) 0.400 0.394 0.067 0.168 0.133 0.402 0.039 0.098 0.081

τ = 0.5

p11 0.900 0.889 0.034 0.040 0.029 0.900 0.019 0.021 0.015

p22 0.900 0.888 0.032 0.038 0.029 0.897 0.021 0.023 0.018

θ10(τ) 2.000 1.997 0.085 0.043 0.035 1.988 0.055 0.028 0.022

θ11(τ) 0.200 0.196 0.028 0.142 0.112 0.198 0.021 0.106 0.085

θ20(τ) -2.000 -2.057 0.209 0.108 0.089 -2.041 0.119 0.063 0.052

θ21(τ) 0.400 0.382 0.064 0.165 0.139 0.388 0.037 0.097 0.080

τ = 0.75

p11 0.900 0.891 0.035 0.040 0.030 0.903 0.019 0.022 0.018

p22 0.900 0.884 0.032 0.040 0.031 0.894 0.021 0.024 0.019

θ10(τ) 2.337 2.323 0.087 0.038 0.031 2.311 0.057 0.027 0.021

θ11(τ) 0.200 0.203 0.029 0.144 0.116 0.206 0.021 0.107 0.054

θ20(τ) -1.326 -1.499 0.231 0.118 0.172 -1.469 0.148 0.105 0.125

θ21(τ) 0.400 0.358 0.075 0.177 0.173 0.365 0.047 0.140 0.115

τ = 0.95

p11 0.900 0.884 0.040 0.048 0.035 0.896 0.024 0.027 0.021

p22 0.900 0.863 0.036 0.057 0.046 0.874 0.025 0.040 0.033

θ10(τ) 2.822 2.779 0.123 0.046 0.037 2.772 0.080 0.034 0.027

θ11(τ) 0.200 0.217 0.042 0.225 0.188 0.215 0.033 0.181 0.148

θ20(τ) -0.355 -0.453 0.124 0.144 0.380 -0.451 0.103 0.123 0.322

θ21(τ) 0.400 0.337 0.086 0.187 0.215 0.328 0.067 0.145 0.204

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.
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(2) t3 errors

True
N = 200 N = 500

PM Std RMSE MAD PM Std RMSE MAD

τ = 0.05

p11 0.900 0.879 0.031 0.042 0.033 0.885 0.021 0.029 0.022

p22 0.900 0.880 0.041 0.050 0.037 0.892 0.024 0.028 0.022

θ10(τ) 1.321 1.428 0.101 0.111 0.094 1.441 0.077 0.108 0.094

θ11(τ) 0.200 0.191 0.035 0.180 0.148 0.193 0.028 0.142 0.117

θ20(τ) -3.359 -3.319 0.398 0.119 0.093 -3.319 0.246 0.074 0.059

θ21(τ) 0.400 0.416 0.118 0.197 0.240 0.407 0.080 0.121 0.161

τ = 0.25

p11 0.900 0.885 0.031 0.038 0.029 0.891 0.021 0.026 0.020

p22 0.900 0.879 0.035 0.045 0.033 0.889 0.021 0.027 0.021

θ10(τ) 1.779 1.770 0.062 0.035 0.028 1.777 0.043 0.024 0.018

θ11(τ) 0.200 0.202 0.024 0.118 0.095 0.202 0.016 0.078 0.060

θ20(τ) -2.442 -2.465 0.156 0.064 0.049 -2.443 0.091 0.037 0.031

θ21(τ) 0.400 0.393 0.048 0.120 0.093 0.400 0.029 0.073 0.058

τ = 0.5

p11 0.900 0.886 0.031 0.037 0.028 0.892 0.021 0.025 0.020

p22 0.900 0.876 0.034 0.046 0.034 0.886 0.021 0.028 0.022

θ10(τ) 2.000 1.994 0.058 0.029 0.022 1.993 0.034 0.017 0.014

θ11(τ) 0.200 0.199 0.023 0.115 0.091 0.201 0.013 0.067 0.051

θ20(τ) -2.000 -2.025 0.117 0.060 0.048 -2.025 0.074 0.039 0.028

θ21(τ) 0.400 0.394 0.037 0.095 0.077 0.396 0.024 0.062 0.049

τ = 0.75

p11 0.900 0.886 0.032 0.039 0.029 0.892 0.022 0.026 0.020

p22 0.900 0.870 0.034 0.050 0.039 0.881 0.022 0.033 0.026

θ10(τ) 2.221 2.218 0.075 0.034 00.025 2.212 0.043 0.020 0.016

θ11(τ) 0.200 0.199 0.027 0.133 0.101 0.202 0.016 0.080 0.063

θ20(τ) -1.558 -1.643 0.137 0.103 0.083 -1.647 0.085 0.079 0.065

θ21(τ) 0.400 0.383 0.042 0.113 0.092 0.385 0.027 0.076 0.062

τ = 0.95

p11 0.900 0.881 0.039 0.048 0.036 0.888 0.026 0.032 0.024

p22 0.900 0.853 0.037 0.067 0.055 0.861 0.025 0.051 0.044

θ10(τ) 2.679 2.690 0.186 0.069 0.053 2.675 0.128 0.048 0.038

θ11(τ) 0.200 0.197 0.066 0.153 0.265 0.202 0.047 0.137 0.186

θ20(τ) -0.641 -0.596 0.110 0.185 0.141 -0.596 0.073 0.134 0.106

θ21(τ) 0.400 0.354 0.066 0.201 0.167 0.358 0.048 0.158 0.130

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.
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(3) Mixed errors

True
N = 200 N = 500

PM Std RMSE MAD PM Std RMSE MAD

τ = 0.05

p11 0.900 0.885 0.032 0.042 0.030 0.896 0.019 0.025 0.017

p22 0.900 0.893 0.032 0.039 0.028 0.905 0.020 0.023 0.018

θ10(τ) 1.178 1.271 0.118 0.128 0.105 1.252 0.085 0.096 0.078

θ11(τ) 0.200 0.182 0.038 0.212 0.167 0.186 0.029 0.160 0.126

θ20(τ) -3.359 -3.406 0.226 0.127 0.096 -3.348 0.155 0.076 0.059

θ21(τ) 0.400 0.416 0.128 0.163 0.163 0.409 0.085 0.114 0.169

τ = 0.25

p11 0.900 0.886 0.034 0.041 0.030 0.895 0.021 0.023 0.016

p22 0.900 0.887 0.031 0.038 0.027 0.898 0.019 0.022 0.016

θ10(τ) 1.663 1.671 0.082 0.049 0.040 1.668 0.059 0.035 0.029

θ11(τ) 0.200 0.197 0.033 0.166 0.13 0.199 0.022 0.108 0.086

θ20(τ) -2.442 -2.462 0.153 0.063 0.049 -2.446 0.094 0.039 0.030

θ21(τ) 0.400 0.400 0.046 0.115 0.090 0.400 0.029 0.072 0.057

τ = 0.5

p11 0.900 0.886 0.035 0.039 0.029 0.894 0.021 0.022 0.015

p22 0.900 0.883 0.030 0.037 0.026 0.893 0.019 0.021 0.016

θ10(τ) 2.000 1.998 0.080 0.040 0.033 1.990 0.053 0.027 0.022

θ11(τ) 0.200 0.200 0.031 0.153 0.125 0.202 0.022 0.111 0.088

θ20(τ) -2.000 -2.037 0.119 0.062 0.047 -2.033 0.076 0.041 0.033

θ21(τ) 0.400 0.393 0.037 0.093 0.073 0.393 0.024 0.062 0.049

τ = 0.75

p11 0.900 0.886 0.035 0.042 0.032 0.894 0.023 0.026 0.020

p22 0.900 0.878 0.030 0.041 0.031 0.888 0.019 0.025 0.019

θ10(τ) 2.337 2.329 0.084 0.036 0.028 2.315 0.061 0.028 0.022

θ11(τ) 0.200 0.202 0.033 0.167 0.134 0.208 0.025 0.129 0.105

θ20(τ) -1.558 -1.648 0.130 0.104 0.081 -1.651 0.087 0.082 0.070

θ21(τ) 0.400 0.382 0.040 0.110 0.088 0.382 0.026 0.079 0.064

τ = 0.95

p11 0.900 0.877 0.041 0.052 0.039 0.884 0.027 0.035 0.027

p22 0.900 0.856 0.034 0.062 0.050 0.866 0.022 0.045 0.039

θ10(τ) 2.822 2.813 0.153 0.054 0.042 2.798 0.095 0.035 0.028

θ11(τ) 0.200 0.204 0.058 0.218 0.167 0.208 0.035 0.181 0.145

θ20(τ) -0.641 -0.600 0.103 0.173 0.135 -0.601 0.087 0.128 0.098

θ21(τ) 0.400 0.355 0.062 0.192 0.160 0.354 0.044 0.158 0.133

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.
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Table 1.2: Summary Statistics for the Predictability of Simulated Regimes.

Normal t3 Mixed

QPS APS LPS QPS APS LPS QPS APS LPS

N = 200

τ = 0.05 0.019 0.025 0.046 0.049 0.042 0.251 0.043 0.042 0.206

τ = 0.25 0.013 0.014 0.025 0.018 0.015 0.040 0.013 0.011 0.031

τ = 0.5 0.006 0.011 0.014 0.014 0.011 0.038 0.010 0.010 0.029

τ = 0.75 0.033 0.032 0.065 0.034 0.026 0.101 0.030 0.025 0.088

τ = 0.95 0.055 0.052 0.138 0.056 0.050 0.305 0.048 0.044 0.286

N = 500

τ = 0.05 0.019 0.025 0.046 0.045 0.038 0.196 0.038 0.038 0.136

τ = 0.25 0.012 0.013 0.024 0.016 0.012 0.038 0.012 0.011 0.030

τ = 0.5 0.006 0.011 0.013 0.014 0.011 0.040 0.010 0.010 0.025

τ = 0.75 0.031 0.031 0.063 0.033 0.025 0.102 0.030 0.024 0.086

τ = 0.95 0.052 0.050 0.140 0.054 0.048 0.297 0.046 0.042 0.274

QPS, APS and LPS represent quadratic, absolute and log probability scores, respectively.

Table 1.3: Data Summary Statistics

Monthly S&P 500 Weekly S&P 500 Real GDP Real TWER

Sample Periods 1926:01-2013:02 01/09/1950-02/25/2013 1948Q1-2013Q2 1974Q1-2013Q2

# of obs. 1047 3294 263 159

Mean 0.461 0.136 3.263 -0.132

Median 0.907 0.282 3.200 0.201

Std. dev. 5.505 2.091 2.675 7.087

Skewness -0.525 -0.567 0.004 -0.256

Kurtosis 10.75 8.744 0.692 -0.044

Jarque-Bera <0.001 <0.001 0.058 0.412

Note: the p−values are reported for Jarque-Bera statistics test of data normality.
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Table 1.6: Real GDP Growth Rates: Predictability of Regime 2

QPS APS LPS

τ = 0.1 0.135 0.111 0.281
τ = 0.2 0.131 0.117 0.235
τ = 0.3 0.134 0.119 0.223
τ = 0.4 0.132 0.132 0.219
τ = 0.5 0.151 0.179 0.259
τ = 0.6 0.403 0.227 1.039
τ = 0.7 0.439 0.249 1.075
τ = 0.8 0.481 0.277 1.134
τ = 0.9 0.516 0.298 1.370
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Figure 1.4: Smoothed Transition Probability
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Figure 1.7: Smoothed Transition Probability for Real GDP.
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Figure 1.8: Quantile Monotonicity for each regime.

●
●

●
●

● ●

●●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●

● ●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
● ●

●
●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●

●

●

●

●

● ●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●●

●●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
● ●

●●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●●

● ●

●

● ●●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●
● ●●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●
●

● ●
●

●

●

●

●●●

●

● ●

●

●
●

−30 −20 −10 0 10 20 30

−
3

0
−

2
0

−
1

0
0

1
0

2
0

3
0

Monotonicity in Regime 1: Monthly S&P 500

yt−1

y
t

●
●

●
●

● ●

●●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●

● ●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
● ●

●
●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●

●

●

●

●

● ●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●●

●●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
● ●

●●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●●

● ●

●

● ●●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●
● ●●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●
●

● ●
●

●

●

●

●●●

●

● ●

●

●
●

−30 −20 −10 0 10 20 30

−
3

0
−

2
0

−
1

0
0

1
0

2
0

3
0

Monotonicity in Regime 2: Monthly S&P 500
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Monotonicity in Regime 1: Weekly S&P 500

yt−1

y
t

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
● ●●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●
●●●

●●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●●

●
●

●

●

●
●

●

● ●
●●

●●

●
●

●●

●

●

●

●

●

● ●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●●●

●

● ●
●

● ●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

● ●

●

●

●
●

●

●
●

● ●
●●●

● ●●
●

●

●
●

●●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●
● ●

●●
●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●●

●

● ●

●
●

●

●

●
●

●●
●

●

●●●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

●

● ●●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●●

●

● ●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●●●●●

●●

●

●●●

●

●

●

●

●
●

●●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●●
●●●●●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●●

●

●

●●

● ●
●

●
●

●

●
●

●
●

●

●

●
●●

●

●

● ●●●●

●

●

●

●

●

●

●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●

●●●

●●

●
●●●

●●
●●

●

● ●●●
●

●
●●●

●

●●
●

● ●

●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●●
●

● ●
●

●

●●

●
● ●

●

●
●●●

●

●

●

●

● ●●

●

●

●●

●

● ●

●

●

●
●

●
● ●

●

● ●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

● ●

●

●

●

●

●

●●
●

● ●

●●
●

●

●

●●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●●●●
●

●

●
●●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●
●

●●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●●

● ●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●●
●

●

● ●
●●

●

●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

● ●

●
●

●●●

●
●

●●

● ●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

● ●●
●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●
● ●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●

● ●

●

●

●

●
●●●

●
●

●

●

●
●

●
●

●●

●

●●

●●

●

● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●

●
●

●
● ●

●

●

●
●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●●●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●●
●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●●
●●●

●

●

●

●

●

●●
●

●

●

●

●
●●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●●

●
●

●

●

●

●

● ●

● ●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

● ●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●
●

●

●

●●

●
●

●

● ●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●●

●
●

−20 −15 −10 −5 0 5 10

−
2

0
−

1
5

−
1

0
−

5
0

5
1

0

Monotonicity in Regime 2: Weekly S&P 500

yt−1

y
t



Chapter 1. Markov-Switching Quantile Autoregression 45

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●●
●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●

● ●
●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

● ●
● ●

●
●

●
●

●●

● ●●●●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

● ●
●

●
●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
● ●

0 5 10

0
5

1
0

Monotonicity in Quantile Regime 1: Real Gross Domestic Product

yt−1

y
t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●●
●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●

● ●
●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

● ●
● ●

●
●

●
●

●●

● ●●●●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

● ●
●

●
●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
● ●

0 5 10

0
5

1
0

Monotonicity in Quantile Regime 2: Real Gross Domestic Product

yt−1

y
t

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

−20 −10 0 10 20

−
2

0
−

1
0

0
1

0
2

0

Monotonicity in Quantile Regime 1: Real Trade−Weighted Exchange Rate

yt−1

y
t

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

−20 −10 0 10 20

−
2

0
−

1
0

0
1

0
2

0

Monotonicity in Quantile Regime 2: Real Trade−Weighted Exchange Rate

yt−1

y
t



Bibliography

[1] Ausin, M.C. and H.F. Lopes (2010) Time-varying joint distribution through copulas.

Computational Statistics and Data Analysis 54: 2383-2399

[2] Bauwens, L., A. Preminger and J.V.K. Rombouts (2010) Theory and inference for

a Markov-Switching GARCH model. The Econometrics Journal 13: 218-244

[3] Cai, Y. and J. Stander (2008) Quantile Self-Exciting Threshold Autoregressive Time

Series Models. Journal of Time Series Analysis 29(1): 186-202

[4] Cai, Y. (2010) Forecasting for quantile self-exciting threshold autoregressive time

series models. Biometrika 97(1): 199-208

[5] Chen, Q., R. Gerlach, and Z. Lu (2012) Bayesian Value-at-Risk and expected short-

fall forecasting via the asymmetric Laplace distribution. Computational Statistics

and Data Analysis 56(11): 3498-3516

[6] Chernozhukov, V. and H. Hong (2003) An MCMC approach to classical estimation.

Journal of Econometrics 115: 293-346

[7] Cheung, Y. and U.G. Erlandsson (2005) Exchange rates and Markov-Switching

dynamics. Journal of Business & Economic Statistics 23(3): 314-320

[8] Chib, S. and E. Greenberg (1995) Understanding the Metropolis-Hastings algorithm.

American Statistician 49: 327-335



Bibliography 47

[9] Christo�ersen, P.F., F.X. Diebold, R.S. Mariano, A.S. Tay and Y.K. Tse (2007)

Direction-of-change forecasts based on conditional variance, skewness and kurtosis

dynamics: international evidence. Journal of Financial Forecasting 1(2): 1-22

[10] Gerlach, R., C.W.S. Chen and N.Y.C. Chan (2011) Bayesian Time-Varying Quantile

Forecasting for Value-at-Risk in Financial Markets. Journal of Business & Economic

Statistics 29(4): 481-492

[11] Geweke, J. and H. Tanizaki (2001) Bayesian estimation of state-space models using

the Metropolis-Hastings algorithm within Gibbs sampling. Computational Statistics

& Data Analysis 37: 151-170

[12] Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to calcu-

lating posterior moments. In: Bernardo, J., Berger, J., David, A., Smith, A. (Eds.),

Bayesian Statistics. Vol. 4. Oxford University Press, Oxford, pp. 169{193.

[13] Gray, S.F. (1996) Modeling the conditional distribution of interest rates as a

regime-switching process. Journal of Financial Economics 42: 27-62

[14] Guerin, P. and M. Marcellino (2013) Markov-Switching MIDAS Models. Journal of

Business & Economic Statistics 31(1): 45-56

[15] Guidolin, M. (2012) Markov Switching Models in Empirical Finance. Advances in

Econometrics, ISBN: 978-1-78052-526-6

[16] Hamilton, J.D. (1994) Time Series Analysis. Princeton University Press

[17] Hamilton, J., D. Waggoner and T. Zha (2007) Normalization in econometrics.

Econometric Reviews 26: 221-252

[18] Hamilton, J.D. and R. Susmel (1994) Autoregressive conditional heteroskedasticity

and changes in regime. Journal of Econometrics 64: 307-333

[19] Jorion, P. (2000) Value-at-Risk: The New Benchmark for Managing Financial Risk.

McGraw-Hill. ISBN-13: 978-0071355025



Bibliography 48

[20] Kim, C.J. (1994) Dynamic linear models with Markov-switching. Journal of Econo-

metrics 60: 1-22

[21] Kim, C.J., J. Piger, and R. Startz (2008) Estimation of Markov regime-switching

regression models with endogenous switching. Journal of Econometrics 143: 263-273

[22] Koenker, R. (2005) Quantile Regression. Cambridge University Press.

[23] Koenker, R. and G. Bassett (1978) Regression quantile. Econometrica 46: 33-50

[24] Koenker, R. and Z. Xiao (2006) Quantile Autoregression. Journal of the American

Statistical Association 101(475): 980-990

[25] Ripley, B. (1987) Stochastic Simulation. John Wiley, New York

[26] Sims, C.A. and T. Zha (2006) Were There Regime Switching in US Monetary Policy.

American Economic Review 96(1): 54-81

[27] Tierney, L. (1994) Markov Chains for Exploring Posterior Distributions. Ann.

Statist. 22: 1701-1728

[28] Vrontos, I., P. Dellaportas, D. Politis (2002) Full Bayesian inference for GARCH

and EGARCH models. Journal of Business and Economic Statistics 18: 187-198

[29] Yu, K. and J. Zhang (2005) A Three-Parameter Asymmetric Laplace Distribu-

tion and Its Extension. Communications in Statistics- Theory and Methods 34:

1867-1879

[30] Yu, K. and R.A. Moyeed (2001) Bayesian quantile regression. Statistics & Proba-

bility Letters 54: 437-447



Chapter 2

Systemic Risk of Commercial Banks with

Regime Switching in Tails

Abstract: This chapter extends the Conditional Value-at-Risk approach of

Adrian and Brunnermeier (2011) by allowing systemic risk structures subject to

economic regime shifts, which are governed by a discrete, latent Markov process.

This proposed Markov-Switching Conditional Value-at-Risk is more suitable to

Supervisory Stress Scenario required by Federal Reserve Bank in conducting Com-

prehensive Capital Analysis and Review, since it is capable of identifying the risk

states in which the estimated risk levels are characterized. Applying MSCoVaR

to stress-testing the U.S. largest commercial banks, this chapter �nds that the

CoVaR approach underestimates systemic risk contributions of individual banks

by around 131 basis points of asset loss on average. In addition, this chapter

constructs Banking Systemic Risk Index by value-weighted individual risk contri-

butions for speci�cally monitoring the systemic risk of the banking system as a

whole.

Keywords : Markov-Switching Conditional Value-at-Risk, Conditional Expected

Shortfall, Bayesian Quantile Inference, Stress-testing, Value-at-Risk, Commercial

Banks, Banking Systemic Risk Index

JEL: C22, C58, C51, C11, G23
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2.1. Introduction

Recently, Adrian and Brunnermeier (2011) propose to measure systemic risk

via the conditional value-at-risk (CoVaR) of the �nancial system, conditional on

institutions being in a state of distress. In their work, an institution's contribu-

tion to systemic risk is de�ned as the di�erence between CoVaR conditional on

the institution being in distress and CoVaR in the median (�normal�) state of

the institution. Hence, it characterizes the marginal contribution of a particular

institution (in a non-causal sense) to the overall systemic risk.

The CoVaR approach is particularly appealing in that it outlines a method to

construct a countercyclical, forward-looking systemic risk measure by predicting

future systemic risk using current institutional characteristics. This is a time-varying

systemic risk measure which does not rely on contemporaneous price movements

and thus can be used to anticipate systemic risk. This method relates systemic

risk measure to macroeconomic variables and the balance sheet deleveraging and

characteristics of individual institutions. This is essentially a main regulatory

concern of central banks.

A number of recent studies have extended and estimated the CoVaR measure of

systemic risk for a variety of �nancial systems.1 Adams et al. (2011) estimate a sys-

tem of quantile regressions for four sets of major �nancial institutions (commercial

banks, investment banks, hedge funds and insurance companies). Wong and Fong

(2010) estimate CoVaR for the CDS of Asia-Paci�c banks. Brunnermeier et al.

(2012) use the CoVaR approach to examine the contribution of non-interest income

1 See e.g., Brunnermeier et al. (2012), Lopez-Espinosa et al. (2012), Rodriguez-Moreno and
Pena (2012), Arias et al. (2010), Girardi and Ergun (2012), Roengiptya and Rungcharoenkitkul
(2011), and Van Oordt and Zhou (2010), etc. Bisias et al. (2012) and Brunnermeier and Oehmke
(2012) provide comprehensive reviews on systemic risk analytics.
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to systemic bank risk. They �nd that banks with a higher non-interest income to

interest income ratio have a higher contribution to systemic risk and their contri-

butions appear to be countercyclical to systemic risk build-up. Lopez-Espinosa et

al. (2012) use the CoVaR approach to identify the main factors behind systemic

risk in a set of large international banks. They �nd that short-term wholesale

funding is a key determinant in triggering systemic risk episodes.

However, Bisias et al. (2012) raise the important econometric issue of nonsta-

tionarity which is particularly relevant to systemic risk measurement. Virtually the

existing methods of systemic risk estimation and inference rely on the assumption

of stationarity. In other words, the joint distribution of the relevant variables is

stable over time. Nonetheless, the literature has recognized the stylized fact of

structural breaks in macroeconomic and �nancial time series, so that the distribu-

tion structures of a time series might, driven by economic states, evolve over time.

Hence, the very nature of systemic risk implies a certain degree of nonstationarity

that may not always be consistent with the econometric framework in which risk

measures are typically estimated.

Brunnermeier and Oehmke (2012) also concern that the CoVaR approach is

vulnerable to regime changes based on historical data. The estimated CoVaR value

is undistinguished from the distributions associated with i.e., a good economic

state or an economic downturn. In this regard, without informing its associated

risk states, the CoVaR measure is at best an averaging across di�erent economic

regimes and hence less advisable to or even misleading market participants and

regulators in managing risks with ambiguous targets. Evidently, Adams et al.

(2011) have shown the sensitivity of systemic risk to tranquil, normal and volatile

economic states, while Lopez-Espinosa et al. (2012) have found that asymmetries
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based on the sign of bank returns play an important role in capturing sensitivity

of system-wide risk to individual bank returns. These concerns highlight the need

for new systemic risk methods that are able to address nonstationarity in a more

sophisticated way.

This chapter speci�cally considers the systemic risk measure subject to regime

shifts. I extend the CoVaR measure of systemic risk to a nonlinear dynamic

structure, namely Markov-switching CoVaR (MSCoVaR), in which an institution's

contribution to systemic risk is measured by allowing the joint distribution evolving

over time. Switching regimes is determined by the outcome of a latent, discrete

Markov process, so that the conditional value-at-risk can be obtained with the

�ltered probabilities of risk states.

This chapter characterizes two risk states: a normal risk level implied by good

economic periods and a high risk level associated with economic recessions, crises

or extreme events. MSCoVaR is thus obtained for each risk state in stress-testing.

Particularly, this chapter obtains MSCoVaR by estimating Markov-switching quan-

tile autoregressive models (MSQAR) recently developed by Liu (2014). MSQAR

is the location-scale quantile autoregression in which the location and scale pa-

rameters are permitted to evolve over time.

The MSCoVaR measure of systemic risk appears to have the advantage of nat-

urally �tting to the Supervisory Stress Scenario required by Federal Reserve Bank

in Comprehensive Capital Analysis and Review (CCAR).2 In CCAR, a supervisory

stress scenario is a hypothetical scenario to be used to assess the strength and re-

2 See Comprehensive Capital Analysis and Review 2012 : Methodology and Results for
Stress Scenario Projections. Board of Governors of the Federal Reserve System: March13 , 201
2; and Comprehensive Capital Analysis and Review 2013: Assessment Framework and Results.
Board of Governors of the Federal Reserve System: March 2013
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silience of BHC capital in a severely adverse economic environment. It represents

an outcome in which the U.S. economy experiences a signi�cant recession and

economic activity in other major economies also contracts signi�cantly, i.e., a deep

recession in the United States, signi�cant declines in asset prices and increases

in risk premia, and a slowdown in global economic activity, etc. Therefore, the

MSCoVaR result from a high risk episode is well-de�ned for the stress-testing in

Fed's supervisory stress scenario since it estimates a separate set of parameters for

high risk episodes.

In addition, the MSCoVaR measure of systemic risk provides various ways

to test di�erent stress scenarios. For instance, if an institution is systematically

important, its hypothetically distressed scenario should also cause a distress in

�nancial system. The systemic risk of a systemically important institution can thus

be measured by the high risk episodes of both �nancial system and the institution.

By contrast, as a non-systemically important institution, its hypothetical stress

scenario, unless leading to a herding e�ect, does not cause a distress in �nancial

system. Hence, its systemic risk can be measured by using the high risk episode

of the institution and the normal risk period of �nancial system.

Importantly, the assumption in Liu (2014) that quantile error terms follow

a three-parameter asymmetric Laplace distribution (ADL) for �ltering transition

probabilities of regimes can also be used to simulate the Markov-switching con-

ditional expected shortfall (MSCoES) from the MSQAR results. This provides a

natural solution to the theoretical issue that CoVaR is not a coherent risk mea-

sure due to its nonsubadditive nature.3 Note that MSCoES takes distributional

aspects within the tail into account. To this end, a banking systemic risk index

3 See Adrian and Brunnermeier (2011) and Artzner et al. (1999).
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by value-weighted individual contributions is constructed for monitoring systemic

risk speci�c to the banking system as a whole.

This chapter estimates MSCoVaR and MSCoES as risk contributions of the

largest U.S. commercial banks. The empirical results show strong evidence that

�nancial institutions and the banking system as a whole experience regime shifts in

their lower tails. The new systemic risk measure shows that the CoVaR approach

of Adrian and Brunnermeier (2011) underestimates systemic risk contributions of

individual banks by around 131 basis points of asset loss on average. The empirical

results also show that the banking system is more sensitive to marginal changes

of an individual bank during high risk episodes than during normal risk periods.

In addition, Banking Systemic Risk Index presents the high relevance of tracing

�nancial distress situations over the sample period.

The rest of this chapter is structured as follows. Section 2 de�nes the Markov-

switching systemic risks measured by MSCoVaR and MSCoES. Markov-Switching

Quantile Autoregression of Liu (2014) for estimating MSCoVaR and MSCoES are

described in Appendix A. Section 3 applies MSCoVaR and MSCoES methods to

stress-testing the U.S. largest commercial banks. In this section, the banking

systemic risk index is also constructed. Section 4 concludes this chapter.

2.2. Systemic Risk Measure

This section briefs the CoVaR measure of systemic risk and then extends

it to de�ne the Markov-Switching CoVaR to identify risk states for a poten-

tial nonstationary time series. It is followed by a discussion of simulating the

Markov-switching conditional expected shortfall as a coherent risk measure.
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2.2.1. CoVaR

Recall that the value-at-risk of institution n given the probability of τ is

Pr (Xn
t ≤ V aRn

t ) = τ (2.2.1)

where Xn
t denotes the asset return value of institution n at time t. The VaR of the

�nancial system return (Xw
t ) conditional on the event

{
C(Xn

t ) : Xn
t = V aRn

t,τ

}
,

i.e., institution n's asset-return attains its VaR value, is denoted by CoV aR
w|n
t,τ ,

such that

Pr (Xw
t ≤ CoV aRw

t |C (Xn
t )) = τ

Institution n's contribution to the system risk is thus de�ned as

4CoV aRw|n
t,τ = CoV aR

w|n
t,τ − CoV aR

w|n,50%
t,τ (2.2.2)

where CoV aR
w|n,50%
t,τ denotes the VaR of the �nancial system when the institution

n's returns are at their median (�normal�) state as Pr(Xw
t ≤ CoV aRw

t |Xn
t =

V aRn
t,50%) = τ . For simplicity, this chapter suppresses the superscript w. Hence,

4CoV aRn
t,τ denotes the di�erence between the VaR of the �nancial system con-

ditional on the distress of a particular �nancial institution n and the VaR of

the �nancial system conditional on the median state of the institution n. Thus,

4CoV aRn
t,τ quanti�es how much an institution n adds to overall systemic risk. It

captures the amount of additional risk that an institution in�icts upon �nancial

system when the institution attains its VaR value.

Adrian and Brunnermeier (2011) apply quantile autoregressive models (QAR)

of Koenker and Xiao (2006) to estimate CoVaR in two steps as follows
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Xn
t = αnτ + ρnτX

n
t−1 + γ

′n
τ Zt−1 + εnt,τ (2.2.3)

Xw
t = αw|nτ + ρw|nτ Xw

t−1 + βw|nτ Xn
t + γ

′w|n
τ Zt−1 + ε

w|n
t,τ (2.2.4)

where εt is quantile error terms and Zt is the predictive variables. From (2.2.2),

the risk contribution of an institution n to �nancial system is then given by

4CoV aRn
t,τ = βw|nτ

(
V aRn

t,τ − V aRn
t,50%

)
(2.2.5)

where V aRn
t,τ = αnτ + ρnτX

n
t−1 + γ

′n
τ Zt−1 is estimated from (2.2.3) and β

w|n
τ is

estimated from (2.2.4). In this framework, the existence of risk spillovers is cap-

tured through the parameter β
w|n
τ : for non-zero values of this parameter, the left

tail of the system distribution can be predicted by observing the predetermined

distribution of an institution's returns.

2.2.2. Markov-Switching CoVaR

To address the vulnerability of CoVaR to regime shifts and the requirement of

stress-testing of an institution in a hypothetically stressed scenario, i.e., a deep eco-

nomic recession or asset price downturn, this section de�nes the Markov-switching

CoVaR measure of systemic risk to identify distinct risk states as CoVaR subject

to regime changes.
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Let {st} be an ergodic homogeneous Markov chain on a �nite set K = {1, ..., k}

with a transition matrix P de�ned by the following transition probabilities

{pij = Pr (st = j|st−1 = i)}

for i, j ∈ K and assume st follow a �rst-order Markov chain. Transition proba-

bilities satisfy
∑

j∈S pij = 1. In this chapter, I de�ne two distinct risk regimes,

K = {1, 2}. Regime 1 (st = 1) represents a normal risk level which is implied

by a good economic state and regime 2 (st = 2) represents a high risk episode

most likely associated with an economic recession or �nancial crisis. The risk

structures are determined by data distributions of each regime over time. Note

that economic states, st, are unobservable so that switching in st is inferred by

transition probabilities which are estimated from data.

Suppose that Xt can be observed directly but can only make an inference

about the value of st based on the observations as of date t. From (2.2.1),

Markov-switching VaR (MSVaR) of an institution n can be de�ned as

Pr (Xn
t ≤ V aRn

t |snt = j) = τ

and denoted by MSV aRn
st,τ which represents the value-at-risk level of an institu-

tion n in its risk regime j. Accordingly, the VaR of the �nancial systemic returns

conditional on the event
{
C(Xn

t ) : Xn
t = MSV aRn

st,τ

}
, denoted byMSCoV aRn

st,τ ,

is given by

Pr (Xw
t ≤ CoV aRw

t |C (Xn
t |snt = i) , swt = j) = τ

Note that the risk states of an institution and the �nancial system are not neces-
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sarily coincided, i.e., i 6= j. For instance, a non-systemically important institution

being distressed does not cause the same high risk episode to the whole �nan-

cial system. However, a distressed �nancial system may indeed cause a high risk

episode for a non-systemically important institution.

Apply the de�nition in (2.2.2) to obtain an institution n's contribution to

systemic risk as

4MSCoV aRn
st,τ = MSCoV aRn

st,τ −MSCoV aRn,50%
st,τ

In this chapter, MSCoVaR is estimated by Markov-Switching quantile autore-

gressive models (MSQAR), speci�ed as

Xn
t = αnst,τ + ρnst,τX

n
t−1 + γ

′n
st,τZt−1 + εnt,τ (2.2.6)

Xw
t = αw|nst,τ + ρw|nst,τX

w
t−1 + βw|nst,τX

n
t + γ

′w|n
st,τ Zt−1 + ε

w|n
t,τ (2.2.7)

such that MSV aRn
st,τ = αnst,τ + ρnst,τX

n
t−1 + γ

′n
st,τZt−1 is estimated from (2.2.6) and

then

MSCoV aRn
st,τ = βw|nst,τMSV aRn

st,τ

can also be computed based on the estimation results of (2.2.7). See Appendix A

for details of the MSQAR model estimation for (2.2.6) and (2.2.7).

In this MSCoVaR measure, β
w|n
st,τ depends on risk states. The response of �nan-

cial system to a negative shock to an institution's balance sheet during a high risk

episode (β
s|i
st=2,τ ), hence, allows to be di�erent from a normal risk period (β

s|i
st=1,τ ).

The set of coe�cients estimated from high risk episodes describes the distributional
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structures of data in economic recessions, crises or extreme events. Therefore, it is

suitable to be applied to stress-testing �nancial institutions in supervisory stress

scenario required by Federal Reserve Bank. Note that if no risk regime-switching

presents, MSCoVaR is equivalent to CoVaR. In this sense, the CoVaR approach is

a special case of the MSCoVaR measure when there is no structural breaks. In this

chapter, I assume the presence of distinct economic regimes based on the �ndings

in literature. However, an appropriate approach of testing the number of regimes

should be considered in future research.

The new framework of the MSCoVaR approach indeed provides �exibility to

test di�erent stress scenarios. For instance,

Scenario(1) An extreme scenario is that the �nancial system depends on the

regimes of systemically important banks. This scenario describes the recent

�nancial crisis as: the �nancial system is distressed once a systemically impor-

tant bank is distressed, while the �nancial system is away from distress only

if none of systemically important banks are distressed. Hence, systemic risk

contribution might be measured by

4MSCoV aRn
t,τ = β

w|n
st=2,τ

(
MSV aRn

st=2,τ −MSV aRn,50%
st=1,τ

)
(2.2.8)

The �rst product in the right side of (2.2.8) is the value-at-risk of �nancial

system conditional on hypothetically assuming both the �nancial system and

the institution n in their high risk episodes. The second product in (2.2.8)

is the value-at-risk of �nancial system conditional on normal states of that

institution.
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Scenario(2) In comparison, assuming current �nancial system in regime 1, a

distressed institution n contributes systemic risk to �nancial system given by

4MSCoV aRn
t,τ = β

w|n
st=1,τ

(
MSV aRn

st=2,τ −MSV aRn,50%
st=1,τ

)
(2.2.9)

This scenario implies that the institution n is assumed to be not systemically

important. Its high risk state does not cause a distressed �nancial system.

However, it might still accumulate and contribute systemic risk to �nancial

system, especially when herding e�ects occurring.

Scenario(3) Even during a normal time if a systemically important �nancial

institution reaches its VaR level, it also likely shocks �nancial system into

its high risk episode. Hence, the systemic risk contribution of a distressed

institution i can also be measured by

4MSCoV aRn
t,τ = β

w|n
st=2,τ

(
MSV aRn

st=1,τ −MSV aRn,50%
st=1,τ

)
(2.2.10)

For instance, an institution reaching its risk level during a normal period might

be caused by short-term maturity mismatch, while an institution reaching its

high risk episode might be caused by the large number of defaults on loans

like the recent subprime crisis. Despite that risk during a normal time is

less severe than during a high risk period, the highly interconnected banking

system, herding e�ects, and market panic might contagiously amplify these

negative impacts on �nancial system and hence lead to crises by i.e., �re-sales

and domino e�ects, etc.
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2.2.3. Markov-Switching CoES

VaR is not a coherent risk measure due to its nonsubadditivity and does not

take distributional aspects within the tail into account. This theoretical issue to

some extent makes the CoVaR and MSCoVaR measures of systemic risk invalid.

However, the asymmetric Laplace distribution assumption in the MSQAR frame-

work of Liu (2014) provides a convenient solution by obtaining expected shortfall

through Monte Carlo simulation based on model estimation results. Expected

shortfall computed as conditional tail expectation is a coherent risk measure and

considers risks beyond the point of a VaR value. See Artzner et al. (1999).

Using the simulation method in Appendix A and the estimation results from

(2.2.6), Markov-switching expected shortfall (MSES) for an institution n can be

obtained and denoted by MSESnst,τ . Then, conditional on the event {C(Xn
t ) :

Xn
t = MSESnst,τ}, an institution n's contribution to systemic risk is given by

4MSCoESnst,τ = MSCoESnst,τ −MSCoESn,50%st,τ

with MSCoESnst,τ = β
w|n
st,τMSESnst,τ . Expected shortfall can also be applied to the

three scenarios of measuring systemic risk discussed previously:

(1) 4MSCoESnt,τ = β
w|n
st=2,τ

(
MSESnst=2,τ −MSESn,50%st=1,τ

)
(2.2.11)

(2) 4MSCoESnt,τ = β
w|n
st=1,τ

(
MSESnst=2,τ −MSESn,50%st=1,τ

)
(2.2.12)

(3) 4MSCoESnt,τ = β
w|n
st=2,τ

(
MSESnst=1,τ −MSESn,50%st=1,τ

)
(2.2.13)
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2.3. Stress-testing Commercial Banks

In this section, the MSCoVaR and MSCoES measures of systemic risk are

estimated for stress-testing the largest U.S. commercial banks, using the CoVaR

measure of systemic risk as the benchmark model. In addition, given the sub-

additivity property, the Markov-switching expected shortfall is used to construct

a banking systemic risk index (BSRI) via value-weighted individual systemic risk

contributions for monitoring dynamic systemic risk of the �nancial system.

2.3.1. Data

Daily market equity data were taken from The Center for Research in Security

Prices (CRSP). The universe of bank holding companies (BHCs) are the stocks

corresponding to CRSP SIC codes 6000-6199 and 6712. Daily market data is

used to form weekly returns on market-valued total assets of individual banks.

Following Adrian and Brunnermeier (2011), a bank market-valued total asset is

transformed from book-valued total assets into market-valued total assets by ap-

plying market-to-book equity ratios. Then, the �nancial system return is computed

as a value-weighted average on the returns of the universe of banks.4

This chapter considers the largest U.S. commercial banks since they are the

targets of current regulatory e�orts and would likely be considered too-big-to-fail

by central banks. Table 2.1 provides a bank list considered for stress-testing in this

chapter. The ultimate criterion to con�gure the sample of potentially systemically

important banks is the availability of comparable data over a long enough period

of time. This sifting criterion rules out some large banks, i.e., HSBC, etc. The

4 See details in Adrian and Brunnermeier (2011) and Lopez-Espinosa et al. (2012).
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resulting sample is formed by a total of the 27 largest BHCs sampled from June

1993 to June 2012 with 1000 weekly observations. Note that this chapter estimates

the systemic risk contributions of the 27 commercial banks to the �nancial system,

while the �nancial system is constructed by the universe of �nancial institutions

with the SIC code of 6000-6199 and 6712. Hence, the �nancial system de�ned in

this chapter is equivalently referred to as the banking system hereafter.

The identi�cation of risk regimes is enhanced by using a set of macro-�nancial

predictive variables that are acknowledged to capture the expected return in �nan-

cial markets. I choose a small set of predictive variables to avoid over-�tting the

data. The predictive variables (Zt) used in this chapter include: (1) the change

in the credit spread (4cs) between the 10-year Moody's seasoned Baa corporate

bond and the 10-year U.S. Treasury bond; (2) The change in the U.S. Treasury bill

secondary market 3-month rate (43mtb); (3) the change in the slope of the yield

curve (4ys), measured by the yield spread between the U.S. Treasury benchmark

10-year bonds and the U.S. 3-month T-bill rate; (4) liquidity spread ( ls), de�ned

as the di�erence between the 3-month U.S. repo rate and the 3-month T-bill rate;

(5) the S&P500 Composite Index return (sp); (6) the volatility Index (vix) of

the Chicago Board Options Exchange (CBOE). All these variables are sampled

weekly and obtained from CBOE, the Federal Reserve Board's H.15 Release and

the Datastream database, respectively.

2.3.2. Empirical Results

Table 2.2 reports the results of the MSQAR model estimation with τ = 5%.

Panel A presents the results estimated from (2.2.6) for individual banks (Xn
t )

conditional on predictive variables (Zt−1), and Panel B estimated from (2.2.7) for
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the banking system (Xw
t ) conditional on a individual bank n (Xn

t ) and predictive

variables (Zt−1). This table displays the medians of the coe�cient estimates, the

numerical standard errors in square brackets, and the posterior credible intervals

(PCI) in parentheses, across banks.5

In Table 2.2, the quantile intercepts (αst,τ ) of both individual banks and the

banking system appear to have the non-overlapped PCIs between regimes (st = 1

and st = 2). This indicates an e�ective identi�cation of risk regimes by the label

switching restriction. The regime identi�cation is further enhanced by predic-

tive variables: S&P 500 returns, the changes in T-bill rates, market volatility for

individual banks; and contemporaneous returns of individual banks, the lagged

banking system returns, S&P 500 returns, the change in yield curve, and market

volatility for the banking system. These predictive variables have non-overlapped

PCIs between regimes.

In addition, the transition probabilities, which have the non-overlapped PCIs

between regimes, present a much higher level of the regime persistence during

regime 1 than during regime 2. The transition probability of regime 2 at 5% VaR

is around 50%, which is much lower than that at median levels around 92%. 6 The

explanation to this result is that, compared to a deviation from the median or a

normal risk period, whenever an individual bank attains its 5% VaR (tail risk) in a

high risk episode, the bank more likely takes measures to resolve the risky situation

immediately, i.e., adjusting capital structure to reduce debt levels, implementing

5 The detail estimation results of each bank are not reported here to save space, but available
upon request. Numerical standard errors are obtained using batch mean method, e.g., Ripley
(1987). The posterior credible intervals are computed using the highest posterior probability
regions with the 95% credible level.

6 The estimation results for τ = 50% are not reported in this chapter to preserve space, but
available upon request.
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more conservative loan policies, etc. Those measures a�ect the persistence of a high

risk episode. Similarly, when the banking system is stressed in a high risk episode,

regulators also likely intervene markets by monetary and/or �scal policies. The

scale parameters (ςst) imply much higher standard deviations (around 20.85 and

5.988 for individual banks and the banking system, respectively) during regime 2

than those during regime 1 (around 4.447 and 1.532 for individual banks and the

banking system, respectively).7 This result is highly consistent with the �ndings

in literature that �nancial returns are more volatile during economic recessions

and crises than economic good times.

Panel A of Table 2.2 shows that the predictive variables, including S&P 500,

changes in T-bill rates, changes in yield curves and market volatility, which have

their PCIs excluded zero values, show the predictability for the VaRs of individual

banks. By contrast in Panel B of Table 2.2, the predictors, including contem-

poraneous returns of individual banks, the lagged banking system returns, S&P

500 returns, the change in yield curve, and market volatility, which have their

PCIs excluded zero values, present the predictability for the VaRs of the banking

system. For instance, among these predictors, a widening of yield spreads and

spikes in market volatility are generally associated with a larger one-period ahead

VaR value, and hence could be used to anticipate higher levels of downside risk.

As a result, the conditioning variables considered in the analysis have shown the

predictability for �nancial systemic risk.

Interestingly, S&P 500 returns appear to countercyclically contribute to the

systemic risk of the banking system: the negative coe�cient of S&P 500 return in

regime 1 implies that a stock market boom accumulates tail risks in the banking

7 The implied variance is computed based on the formula provided in Appendix A.
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system, while its positive coe�cient in regime 2 provides that the increase in stock

market prices recovers tail risks of the banking system. Additionally, the contem-

poraneous returns of individual banks appear to have a strong positive relationship

with system risk. This contemporaneous e�ect exacerbates the downside risk level

of the banking system due to the drop of a bank return. The small numerical

standard errors in Table 2.2 indicate reasonable model estimation accuracy.

Table 2.3 reports the VaR and MSVaR values of individual banks (Xn
t ) esti-

mated from (2.2.3) and (2.2.6) conditional on predictive variables (Zt−1), respec-

tively. MSES values are simulated based on the model estimation results using

the approaches in Appendix A. Table 2.3 shows that given 5% probability, the

worst possible outcome is MS estimated from V aRt,τ (around 1,017 basis points)

and STT (around 5,695 basis points) estimated from MSV aRst=2,τ . On average,

MSV aRst=2,5% values are about 800 basis points more riskier than V aRt,5% results

and about 1,200 basis points more riskier than MSV aRst=1,5% results. From the

coherent risk measure, MSESst=2,5% andMSESst=1,5% results have about 110 and

120 basis points on average more riskier than MSV aRst=2,5% and MSV aRst=1,5%,

respectively.

Note that these estimated values are used in (2.2.5), (2.2.8)-(2.2.10), and

(2.2.11)-(2.2.13) to compute 4CoV aR, 4MSCoV aR, and 4MSCoES for mea-

suring systemic risk contributions of individual banks. Due to the clear di�erence

between V aR and MSV aR values in Table 2.3, this evidence shows that exist-

ing VaR methods, which provide the results averaging across di�erent economic

regimes, do not well re�ect extreme risk scenarios for stress-testing purposes. In

contrary, the risk levels obtained from high risk episodes (regime 2) are more
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suitable for measuring hypothetically distressed contributions under supervisory

stress scenarios.

The disparity between regimes can also be observed in Figure 2.1, which plots

the MSESnst,τ values for the six largest U.S. commercial banks. The solid dark

lines are the MSESnst,τ estimates from regime 1 and the dashed light lines from

regime 2. Generally speaking, high risk episodes show higher dynamics and larger

volatilities than normal risk periods. The di�erence between regimes exists over

time, and the gap is dramatically enlarged during recessions and �nancial crises.

For instance, the risk level during the recent �nancial crisis of 2008-2009 is well

re�ected in regime 2 by showing a deep drop into far left tails.

Table 2.4 reports the systemic risk sensitivities of the banking system as a whole

conditional on individual banks. The banks in this table are ranked based on risk

sensitivity coe�cients (β
w|n
st=2,τ ). The risk sensitivity coe�cients are the important

elements for computing systemic risk contributions in (2.2.5), (2.2.8)-(2.2.10), and

(2.2.11)-(2.2.13). For comparison, this table also includes the estimation results of

the QAR model as the benchmark for 1-regime using (2.2.4).

The systemic risk sensitivity coe�cients in Table 2.4 show that many individual

banks tend to impact the banking system heavier during high risk episodes than

during normal risk periods, whereas for some other banks the opposite is true. For

instance, the marginal impact of BK on the banking system is 0.414 during high

risk episodes much larger than 0.169 during normal risk periods. Di�erent sensi-

tivities across regimes show asymmetric e�ects of individual banks on the banking

system. Generally, it is observed that the systemic risk sensitivity coe�cients of

β
w|n
st=2,τ are also largely di�erent from the sensitivity results of 1-regime estimations

(β
w|n
t,τ ). The higher value of a sensitivity coe�cient represents the larger response of
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the banking system to individual bank's shocks. The negative coe�cients of BBT

and CMA banks imply that during high risk episodes these banks do not worsen

the systemic risk of the banking system, despite that their negative coe�cients are

small in magnitudes.

Table 2.5 reports the systemic risk contributions of individual banks to the

banking system as a whole. 4MSCoV aR1,4MSCoV aR2,4MSCoV aR3,4MS

CoES1, 4MSCoES2, and 4MSCoES3, are computed in each scenario of (2.2.8)-

(2.2.10) and (2.2.11)-(2.2.13), respectively. For comparison, the systemic risk con-

tributions without switching regimes are also computed from (2.2.5) as bench-

marks. The ingredients for computing systemic risk contributions are the sys-

temic risk coe�cients (β
w|n
st,τ ) and individual bank's MSV aRn

st,τ and MSESnst,τ

values. The banks in each scenario are ordered by their values of the systemic risk

contributions.

On average across banks, the systemic risk contribution from scenario (1) is

around 131 basis points higher than that measured by the CoVaR approach. In

addition, scenario (2) generates the systemic risk contribution to the banking sys-

tem about 72 basis points on average higher than that measured by the CoVaR

approach. These results clearly show empirical evidence of the underestimated

systemic risk contributions by the CoVaR approach.

The orders of individual bank's systemic risk contributions are very di�erent

between4MSCoV aR1 and4CoV aRmeasures as well. For instance, the systemic

risk contribution of STT is the highest in the 4MSCoV aR1 measure, while the

highest systemic risk contribution in the 4CoV aR measure is the AXP bank.

The di�erence between their contributions is as large as about 827 basis points.

A strong negative relationship between systemic risk contributions and bank sizes
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has also been found through a OLS regression (not reported here). This result

indicates that the bigger the bank asset sizes are, the larger the banks impact

on the banking system. This result provides quantitative evidence for the recent

debate of �too big to fail� of banks.

Apparently, the 4MSCoV aR1 measure of systemic risk provides the most

extreme stressed outcomes among the 3 scenarios considered. Even in the case

that a bank is not systemically important but distressed during high risk episodes

(scenario (2)), the average systemic risk contribution is around 169 basis points

which cannot be neglected. The orders of systemic risk contributions also vary

across the 3 scenarios.

In addition, Table 2.5 reports the simulated results of MSCoESst,τ . As seen,

the systemic risks are similar between 4MSCoES1 and 4MSCoV aR1, and be-

tween4MSCoES2 and4MSCoV aR2, while the results from scenario (3) are very

di�erent. However, this chapter suggests to adopt the systemic risk measurement

results of 4MSCoESst,τ since 4MSCoV aR is not a coherent risk measure.

Figure 2.2 plots the dynamics of systemic risk contributions measured by

4MSCo V aR1 and 4CoV aR approaches along with the correlation.8 The re-

sults show that the 4MSCoV aR1 measure of systemic risk contributions are

more dynamic than the 4CoV aR measure. Some banks, i.e., JPMorgan Chase,

Citi Financial Group and Morgan Stanley, etc., appear to have high correlations

(about 83%-95%) between 4MSCoV aR1 and 4CoV aR, while other banks, i.e.,

Bank of America, Well Fargo, etc., have correlations below 50%. Furthermore,

4MSCoV aR1 and4CoV aR are negatively correlated for the bank of USB. These

8 Instead of 4MSCoES1 and 4CoES, this chapter makes the comparison between
4MSCoV aR1 and 4CoV aR, because Adrian and Brunnermier (2011) approach cannot be
used to compute expected shortfall.
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results show that systemic risk contributions measured by 4MSCoV aR1 and

4CoV aR are not only di�erent in magnitudes, but also in the dynamics over

sample periods.

Table 2.6 reports the correlation matrix for banks' systemic risk contributions

measured by 4MSCoV aR1. The correlation matrix shows that banks are highly

interconnected. For instance, Bank of America is positively correlated with other

banks ranging from 75%-95%. Bank of America has the highest correlation of

96% with JPMorgan Chase bank. Among all the banks sampled, BBT, CMA

and SCHW are the only banks negatively correlated with other banks. Table 2.6

shows that the potential contagious channels of a crisis are hidden behind the high

interconnections between banks.

2.3.3. Banking Systemic Risk Index

Figure 2.3 plots the quarterly systemic risk index of the banking sector (BSRI).

The solid line is the quarterly Financial Stress Index constructed by Federal Re-

serve Bank of St. Louis (STLFSI). The dashed line is quarterly BSRI constructed

by the value-weighted 4MSCoES1 on individual banks as

BSRIt = −
N∑
n=1

wnt4MSCoESnt,τ

where weekly 4MSCoV aRn
t,τ is aggregated to quarterly frequency and wnt is the

bank n's weight based on its market capitalization at time t. The shaded areas

are NBER-dated business cycle phases. Figure 2.3 shows that the constructed

systemic risk index for the banking sector is capable of reproducing the recent

economic recession. The quarterly BSRI reaches the highest risk during the recent
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�nancial crisis of 2007-2009. The BSRI also shows a milder risk increase than

STLFSI for the economic recession during the IT Bubble Bust period since it is

not a recession highly related to the banking sector. Figure 2.3 presents a positive

61.5% comovement between the BSRI and the STLFSI. Furthermore, a simple

linear regression shows that the BSRI is able to signi�cantly explain the dynamics

of the Financial Stress Index by 37.83% (R2). Hence, the constructed BSRI index

is supplementary to monitoring �nancial market risks by very speci�c to the risk

nature of the banking sector.

2.4. Conclusion

This chapter has de�ned a Markov-switching conditional Value-at-Risk (MSCo-

VaR) approach to measure systemic risk of commercial banks. Applying the

Markov-Switching Quantile Autoregression framework of Liu (2014), systemic risks

are estimated subject to regime shifts within tails. The new method presents the

advantage and �exibility in supervisory stress scenarios required by Federal Reserve

Bank. I estimated systemic risk contributions of the U.S. largest commercial banks

and found around 131 basis points of the underestimated asset loss by the existing

CoVaR measure of systemic risk. The banking system is more sensitive to marginal

changes of an individual bank during high risk episodes than during normal risk

periods. In addition, systemic risk contributions of individual banks are highly

interconnected. Furthermore, Banking Systemic Risk Index, constructed in this

chapter by value-weighted individual systemic risk contributions, presents not only

a high relevance to trace �nancial distress situations, but also very speci�c to the

risk nature of the banking industry.
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Table 2.1: The Sample

List of the U.S. Largest Commercial Banks as of 06/30/2012 Ranked in Total Assets

Ticker
Total Assets

Institution Name in thousand dollars as of 06/30/2012

JPMORGAN CHASE & CO. JPM $2,290,146,000

BANK OF AMERICA CORPORATION BAC $2,162,083,396

CITIGROUP INC. C $1,916,451,000

WELLS FARGO & COMPANY WFC $1,336,204,000

MORGAN STANLEY MS $748,517,000

U.S. BANCORP USB $353,136,000

BANK OF NEW YORK MELLON CORPORATION, THE BK $330,490,000

PNC FINANCIAL SERVICES GROUP, INC., THE PNC $299,712,018

STATE STREET CORPORATION STT $200,368,976

BB&T CORPORATION BBT $178,560,000

SUNTRUST BANKS, INC. STI $178,307,292

AMERICAN EXPRESS COMPANY AXP $146,890,000

REGIONS FINANCIAL CORPORATION RF $122,344,664

FIFTH THIRD BANCORP FITB $117,542,579

CHARLES SCHWAB CORPORATION SCHW $111,816,000

NORTHERN TRUST CORPORATION NTRS $94,455,895

KEYCORP KEY $86,741,424

M&T BANK CORPORATION MTB $80,807,578

BBVA USA BANCSHARES, INC. BBVA $66,013,042

COMERICA INCORPORATED CMA $62,756,597

HUNTINGTON BANCSHARES INCORPORATED HBAN $56,622,959

ZIONS BANCORPORATION ZION $53,418,819

POPULAR, INC. BPOP $36,612,000

PEOPLE'S UNITED FINANCIAL, INC. PBCT $28,134,752

SYNOVUS FINANCIAL CORP. SNV $26,294,110

BOK FINANCIAL CORPORATION BOKF $25,561,731

FIRST HORIZON NATIONAL CORPORATION FHN $25,493,925

Note: The composition of the banks is based on consolidated assets, lagged by one quarter.
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Table 2.3: VaR, MSVaR and MSES estimates of individual banks

V aRt,5%
MSV aR MSES

MSV aRst=1,5% MSV aRst=2,5% MSESst=1,5% MSESst=2,5%

JPM -6.286 -2.642 -9.204 -2.835 -9.760

BAC -7.324 -2.919 -12.21 -3.141 -13.14

C -9.446 -4.711 -35.62 -5.038 -37.56

WFC -5.813 -2.096 -9.047 -2.269 -9.699

MS -10.17 -5.384 -18.45 -5.750 -20.12

USB -6.670 -4.141 -22.91 -4.419 -25.01

BK -6.069 -2.482 -9.572 -2.687 -10.10

PNC -6.172 -3.105 -10.07 -3.325 -10.79

STT -7.273 -5.403 -56.95 -5.761 -59.75

BBT -6.207 -2.497 -10.16 -2.686 -11.00

STI -6.804 -2.530 -10.89 -2.712 -11.72

AXP -5.664 -2.892 -9.574 -3.105 -10.10

RF -9.327 -3.521 -16.27 -3.757 -17.40

FITB -7.176 -3.360 -15.21 -3.598 -16.19

SCHW -9.652 -5.767 -21.68 -6.158 -23.06

NTRS -5.382 -1.600 -7.555 -1.759 -7.979

KEY -6.730 -3.047 -12.03 -3.256 -12.83

MTB -5.212 -2.711 -11.91 -2.914 -14.17

BBVA -8.094 -3.991 -15.38 -4.277 -17.28

CMA -7.454 -2.990 -11.64 -3.220 -12.44

HBAN -7.482 -2.784 -11.81 -2.990 -12.82

ZION -7.620 -2.709 -12.49 -2.914 -13.45

BPOP -8.345 -2.543 -12.57 -2.729 -13.42

PBCT -5.087 -2.865 -9.344 -3.084 -9.881

SNV -8.161 -2.821 -12.937 -3.039 -13.80

BOKF -5.360 -2.532 -9.309 -2.731 -9.876

FHN -7.372 -2.421 -12.18 -2.623 -13.32

The entries are VaR and MSVaR values of individual banks (Xn
t ) estimated from (2.2.3) and (2.2.6) conditional on

predictive variables (Zt−1), respectively. MSES values are simulated based on the model estimation results using

the approaches in Appendix A. The values are ordered by banks' total asset values.
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Table 2.4: Systemic risk sensitivities

Banks β
w|n
5%

β
w|n
st=1,5%

β
w|n
st=2,5%

BK 0.227 0.169 0.414

NTRS 0.208 0.178 0.374

AXP 0.272 0.213 0.359

BOKF 0.111 0.087 0.279

WFC 0.222 0.207 0.256

USB 0.185 0.116 0.238

PNC 0.209 0.196 0.231

PBCT 0.178 0.080 0.231

JPM 0.195 0.221 0.228

KEY 0.193 0.146 0.224

BBVA 0.096 0.039 0.214

STI 0.158 0.222 0.194

SNV 0.107 0.163 0.184

MTB 0.170 0.119 0.179

STT 0.152 0.071 0.173

BAC 0.143 0.197 0.147

RF 0.136 0.106 0.119

MS 0.090 0.047 0.118

ZION 0.096 0.111 0.113

BPOP 0.016 0.009 0.097

HBAN 0.068 0.162 0.058

FITB 0.112 0.123 0.055

FHN 0.115 0.059 0.049

C 0.040 0.085 0.023

SCHW 0.072 0.019 0.011

BBT 0.136 0.122 -0.048

CMA 0.129 0.110 -0.075

βτ and βst,τ are estimated from QAR and MSQAR models on (2.2.4)

and (2.2.7), respectively. The banks in this table are ranked based

on the risk sensitivity coe�cients (β
w|n
st=2,5%

).
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Figure 2.3: Banking Systemic Risk Index (BSRI).
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Note: The solid line is the �nancial stress index constructed by Federal Reserve Bank of
St. Louis and the dashed line is BSRI constructed by the value-weighted 4MSCoES1 on
individual banks.
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Chapter 3

Modeling Time-Varying Skewness via

Decomposition for Out-of-Sample Forecast

Abstract: This chapter models time-varying skewness via a return decomposition frame-

work which splits a return to the product of absolute return and sign. Particularly, the

nonlinear dependence between absolute returns and signs is characterized by a dynamic

copula function which governs a dynamic skewness process of �nancial returns. The im-

portance of modeling time-varying skewness is evaluated in out-of-sample forecast for the

U.S. excess stock returns in terms of both statistical signi�cance and economic relevance.

I �nd that the skewness timing of the proposed time-varying dependence models yields an

average gain in the returns around 195 basis points per year over the forecast sample period.

Statistically, the Fluctuation test shows strong evidence that the forecasting performance of

the decomposition models is unstable over the sample time path. In this regard, a forecast

combination, more robust to structural instability than the individual forecasts, performs

signi�cantly better out-of-sample than the benchmarks.

Keywords : Nonlinear dependence, Copula constancy tests, Dynamic tail dependence

and asymmetry, Fluctuation tests, Skewness timing, Volatility timing, Forecast combination
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3.1. Introduction

Recently, Anatolyev and Gospodinov (2010) (reference as AG herein) take an alternative

approach to predicting excess stock returns: instead of trying to identify better predictors,

they look for better ways of using predictors. They accomplish this by modeling individ-

ual multiplicative components of excess stock returns and combining information in the

components to recover the conditional expectation of the original variable of interest. Let

rt denote the excess stock return at time t. Speci�cally, AG's approach utilizes a return

decomposition given by

rt = |rt|sign(rt) (3.1.1)

which is also called �an intriguing decomposition� in Christo�ersen and Diebold (2006).

The joint distribution of the multiplicative components in (3.1.1) is obtained by combining

a multiplicative error model for absolute returns, a dynamic binary choice model for signs,

and a copula function for their interaction.

AG's decomposition models are able to incorporate important nonlinearities in excess

return dynamics that cannot be captured in the standard predictive regression setup. Their

approach, however, is restrictive as the dependence between absolute returns and signs is

constant over sample periods. The constant dependence also imposes a constant skewness

on excess returns. The literature has recognized that returns may in fact be better charac-

terized by a conditional distribution with time-varying asymmetry. Some results from AG

constant decomposition models are di�cult to be interpreted given that the distribution of

excess returns might be time-varying. For instance, their constant copula structure may give

an averaging on symmetric and asymmetric distributions of excess returns over a sample

period, so that the high degree of return asymmetry in some subperiods cannot be well

distinguished from small asymmetry or symmetry in other subperiods. 1 This may result

1 If the excess return at time t is symmetrically distributed around zero, then absolute returns and signs
are independent and expected sign equals zero (Randles and Wolfe, 1979, Lemma 2.4.2). If the distribution
of the excess return at time t has a small degree of asymmetry, then absolute returns and signs might be
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in a conditionally weak dependence between multiplicative components found by AG. In

this sense, a time-invariant dependency structure may miss important distribution timing

of excess returns during i.e., economic recessions and �nancial crises, etc.

In addition, time-varying return skewness can be naturally characterized by dynamic

dependence between absolute returns and signs. If the excess return at time t is distributed

around zero, its predictability might be statistically small; nonetheless, it can be improved

if time-varying skewness is present and modeled.2 As a pre-testing for the U.S. excess stock

returns, the test statistics of Busetti and Harvey (2011) in section 3 provide signi�cant

evidence of dynamic tail dependence and asymmetry. A time-varying process of dependence

between absolute returns and signs is thus desirable for improving the predictability of

excess returns.

The importance of time-varying skewness has also been found in asset pricing and

allocation by recent studies. Harvey and Siddique (1999, 2000a&b) show that the inclusion

of autoregressive conditional skewness a�ects the persistence of variance and helps explain

the time-variation of the ex ante market risk premiums and the cross-sectional variation

of expected returns across assets. Leon et al. (2005) estimate time-varying skewness and

kurtosis using a Gram-Charlier series expansion of the normal density function for the

error term. It is found that speci�cations allowing for time-varying skewness and kurtosis

outperform speci�cations with constant third and fourth moments. Jondeau and Rockinger

(2003) use the generalized student-t distribution with an autoregressive speci�cation of the

parameters to demonstrate the importance of time-varying asymmetry parameters.

However, these studies are mainly concerned with in-sample �t of time-varying skewness.

An exception is Jondeau and Rockinger (2012) who study the importance of time-varying

higher moments in out-of-sample asset allocation. Their results show that an investor might

receive a sizable bene�t from distribution timing comparable to volatility timing.

weakly dependent. By contrast, if the excess return at time t is asymmetrically distributed, then absolute
returns and signs are dependent. In the second and third cases, expected sign is nonzero.

2 Christo�ersen et al. (2007) have documented that even if expected returns are zero and regardless
of whether volatility dynamics are present, sign predictability arises as long as conditional skewness dy-
namics are present. This property remains intact in conditionally non-Gaussian environments. See online
supplement of Christo�ersen and Diebold (2006).
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In this chapter, I propose a new approach to modeling time-varying skewness, the model

performance of which is evaluated in out-of-sample forecast of the U.S. excess stock returns

in terms of both statistical signi�cance and economic values. Speci�cally, I extend AG's

constant decomposition model by characterizing the joint distribution as a time-varying

copula function.3 The nonlinear temporary interdependence between absolute returns and

signs, which governs dynamic skewness processes of returns, is thus estimated by the dy-

namic copula function simultaneously with marginals. Importantly, this approach provides

a �exible way to estimate time-varying skewness in that the joint distribution is speci�ed

in three components, namely a copula function with two marginals, whereas conventional

approaches assume a single distribution for returns. Hence, the proposed dynamic de-

composition model is expected to capture both important hidden nonlinearities and the

time-varying distributional natures of excess returns.

Besides modeling time-varying skewness in out-of-sample forecast, this chapter also

di�ers from AG's work in several important ways: (1) The out-of-sample forecast period

is extended to cover the recent �nancial crisis of 2007-2009 which has drawn tremendous

research interests in both economic and �nance literature. (2) The Fluctuation tests and

the decomposition of forecast performance, proposed by Giacomini and Rossi (2010) and

Rossi and Sekhposyan (2011) respectively, show strong statistical evidence of the instability

of forecast performance over the sample time paths. This �nding reconciles the insigni�cant

results of average forecast performance from AG's constant decomposition models. Inter-

estingly, a forecast combination, more robust to structural instability than the individual

forecasts, performs signi�cantly better out-of-sample than the benchmarks. (3) The eco-

nomic values of skewness timing present substantial bene�ts from modeling time-varying

skewness. The skewness timing of the proposed time-varying dependence models yields an

average gain in the returns around 195 basis points per year over the forecast sample period.

By comparison, the forecast results further show that an investor is willing to pay an extra

3 See Manner and Reznikova (2012) for a recent survey of time-varying copulas.
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442 basis points of the returns per year beyond volatility timing to acquire skewness timing

information for his/her portfolio during the recent �nancial crisis of 2007-2009.

The rest of the chapter is organized as follows. Section 2 presents the proposed method-

ology of modeling time-varying skewness and is then followed by a discussion of forecasting

and simulation methods for conditional mean forecasts. Section 3 describes data construc-

tion. This section also presents the pretesting results of the U.S. excess stock returns for

some preliminary evidence of potential nonlinearity and time-varying tail dependence and

asymmetry between absolute returns and signs. Section 4 reports empirical results of both

statistical signi�cance and economic values of forecast performance. Section 5 concludes

this chapter.

3.2. The Model

The return decomposition in (3.1.1) can be rewritten as

rt = |rt| (2st − 1) (3.2.1)

where st = I(rt > 0) and I(·) is an indicator function. The decomposition in (3.2.1) implies

that the conditional expected return is given by

Et−1rt = 2Et−1|rt|st − Et−1|rt| (3.2.2)

where Et−1|rt|st is the expected cross-product of |rt| and st and the expectations are con-

ditional on It−1, the information set available at time t − 1 suppressed in subscript for

simplicity.

The key to predicting returns is to model the joint distribution for the product of abso-

lute returns and signs. Following AG's work, I obtain the joint distribution by combining
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a multiplicative error model for absolute returns, a dynamic binary choice model for signs,

and a copula function for the interaction between absolute returns and signs.

However, this chapter parameterizes copula functions with time-varying dependency

parameters for estimating time-varying return skewness. To allow the complete emphasis

in the forecasting performance of modeling time-varying skewness, I keep marginals and

information variables the same as in AG, and only introduce time-varying copula depen-

dency parameters to isolate changes irrelevant to skewness modeling which may possibly

a�ect the forecasting performance. The proposed dynamic decomposition model, by keeping

everything else the same, allows a direct examination of the role of time-varying skewness

in return predictability, compared to AG's constant decomposition model. The next sub-

sections describe the proposed dynamic decomposition structures. In addition, Appendix

A summarizes the marginals from AG's chapter for convenient reference.

3.2.1. Joint Distribution

In order to construct the bivariate distribution of Yt = (|rt|, st)
′
, I appeal to the theory

of copulas as the joint distribution of a continuous variable ( |rt|) and a discrete binary

variable (st). Speci�cally, it is well known that a conditional meta-distribution can be

created as4

FYt (u, v|It−1) = C
(
F|rt| (u|It−1) , Fst (v|It−1) |It−1

)
where F|rt| (u|It−1) and Fst (v|It−1) are the conditional distribution functions (see Appendix

A) of |rt| and st, respectively. C (·, ·|It−1) is a bivariate conditional copula distribution

function. From AG's original work, the joint conditional density/mass function of |rt| and

st is given by

fYt (u, v|It−1) = f|rt| (u|It−1) %t
(
F|rt| (u|It−1)

)v (
1− %t

(
F|rt| (u|It−1)

))1−v
(3.2.3)

4 see e.g., Trivedi and Zimmer (2005), Nelsen (2006), Cherubini et al. (2004) and Patton (2012) for
recent surveys.
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where %t(z) = 1 − ∂C(z, 1 − pt|It−1)/∂ω1 with ω1 = F|rt| (u|It−1) and pt = Et−1 (rt > 0).

f|rt| (u|It−1) is the marginal PDF function of absolute returns (see Appendix A). Observe

that (3.2.3) is a product of the marginal density of |rt| and a �deformed� Bernoulli mass of

st whose success probability is given by %t
(
F|rt| (u|It−1)

)
.

This chapter considers a Clayton copula for the empirical application given by

C(ω1, ω2|It−1) = (ω−αt1 + ω−αt2 − 1)−1/αt (3.2.4)

and

%t(z) =


1−

(
1 + (1−pt)−αt−1

z−αt

)−1/αt−1
, for αt 6= 0

pt, for αt = 0

(3.2.5)

where αt > 0 ∀t is the dependency parameter for Clayton copula and ω2 = Fst (v|It−1). By

contrast, AG's constant decomposition models restrict the copula dependency parameters

to be constant as α in (3.2.4) and (3.2.5).

Speci�cally, the copula parameter measures the dependence between |rt| and st. If |rt|

and st are independent in the case of αt → 0, it implies %t → pt. Also, a conditional

independence between |rt| and st might practically occur if rt is symmetrically distributed

with a small conditional mean at time t. Note that a Clayton copula permits only positive

dependence between the marginals. AG's results show that this is not restrictive for the

application of monthly returns in that: (i) both positive and negative skewness values can be

obtained from di�erent dependency parameter values conditional on available information

sets; (ii) the constant estimators of di�erent copula functions from AG's original chapter are

all positive; (iii) expected monthly returns are generally nonzero. Particularly, this chapter

stays with the choice of a Clayton copula as empirically supported by goodness-of-�t tests

in section 3, but leaves the �exibility of dependency directions open to future research.

In addition, the tail dependence between |rt| and st can also be captured by Clayton

copula dependency parameter as 2−1/αt , while symmetric copulas, i.e., Gaussian copula,
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Student-t copula, Frank copula, etc., nonetheless, have zero tail dependence. 5 In this sense,

the dependency structure of Clayton copula re�ects the degree of tail dependence between

random variables.

3.2.2. Dynamic Dependence

To capture the potentially time-varying conditional return skewness, I parameterize

the copula parameter in �observation-driven� dynamic processes. The suitable restrictions

for each speci�cation are explicitly imposed to ensure the admissible conditions that the

Clayton copula has the positive support and its dynamic process is stationary.

Dynamic Tail Dependence Patton (2006) proposes the observation driven copula mod-

els for which the time-varying dependence parameter of a copula is a parametric function

of the lagged data and an autoregressive term. Akin to a restricted ARMA(1,m) process,

the dependence parameter (or tail dependence) is speci�ed as

log (αt) = ω + βlog (αt−1) + φ
1

m

m∑
i=1

|w1,t−i − w2,t−i| (3.2.6)

where |β| < 1 and ω1,t and ω2,t are ω1 and ω2 at time t, respectively. Following Patton

(2006), this chapter sets m = 10. Note that the expectation of this distance measure is

inversely related to the concordance ordering of copulas. In the empirical section, (3.2.6) is

referred to as Patton.

Exponential-weighted (ExpWeight) Dynamic Dependence As pointed out in Pat-

ton (2006), the di�culty in specifying observation-driven copula parameters lies in de�ning

the forcing variables of evolution equations. (3.2.6) is a martingale process depending on

the past path of �xed length m. Particularly, the following speci�cation allows (3.2.6) to

depend on the whole past path using exponential weights as

log (αt) = ω + βlog(αt−1) + φ
1− λ

1− λt−1
t−1∑
i=1

λi−1 |w1,t−i − w2,t−i| (3.2.7)

5 See Cherubini et al. (2004), pp. 127 and Nelsen (2006), pp. 215.
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where 0 < λ < 1 and 1−λ
1−λt−1

∑t−1
i=1 λ

i−1 = 1. This weighting framework assigns more weights

to recent observations, whereas it gives less weights to past observations. The intuition of

this evolution equation comes from the general fact that the latest events exert a larger

in�uence on current and near future dependence evolution than events far past.

GARCH-type (Gtype) Dynamic Dependence In contrast to (3.2.6) and (3.2.7), I take

a �rst-order martingale process depending on only one past path, analog to a GARCH(1,1)

process, as

αt = ω + βαt−1 + φ |w1,t−1 − w2,t−1| (3.2.8)

with that the stability of the dynamics is assumed, for example, ω ≥ 0, 0 ≤ β < 1 and φ ≥ 0.

(3.2.8) is similar to the model (3) in Jondeau and Rockinger (2003), who present various

possible speci�cations for the dynamics of Skewed Student-t distribution parameters.

Integrated GARCH-type (IGtype) Dynamic Dependence The integrated-GARCH

type dynamics is a variant of (3.2.8) by restricting ω = 0 and β + φ = 1, such that

αt = βαt−1 + φ |w1,t−1 − w2,t−1| (3.2.9)

where 0 ≤ β, φ < 1 as the strict stationary restrictions.

One-sided Asymmetric (OSA) Dynamic Dependence Dynamic dependency param-

eters re�ect the nonlinear relations between |rt| and st; it can be described that αt measures

the interdependence of absolute returns and signs as the uncentered product, ϑ+
t = |rt| st

in 3.2.1. Hence, a dynamic dependence can also be speci�ed as

αt = ω + βαt−1 + φϑ+
t−1 (3.2.10)

Despite the fact that ϑ+
t reveals the useful information for modeling αt, their expectations

are not equal. For the strict stationarity, following the proof in Zakoian (1994) and Nelsen
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(1990, 1991), I have the conditions, ω ≥ 0, 0 ≤ β < 1, and φ ≥ 0. In the empirical section,

(3.2.10) is estimated via a logarithmic speci�cation for the purpose of easy convergence as

log (αt) = ω + βlog (αt−1) + φϑ+
t−1

with |β| < 1.

Two-sided Asymmetric (TSA) Dynamic Dependence An extension to (3.2.10) is a

two-sided asymmetric tail dependence as

log (αt) = ω + βlog (αt−1) + φϑ+
t−1 + λϑ−t−1 (3.2.11)

where ϑ−t = |rt| (1− st). Glosten et al. (1993), Zakoian (1994) and Jondeau and Rockinger

(2003) have also suggested the similar speci�cations for asymmetric e�ects.

TVC Dynamic Dependence The Clayton parameter is related to Kendall's τ via τt =

αt
αt+2

, which implies that 0 < τt < 1, due to αt > 0. The time variation in αt can be modeled

as αt = 2τt
1−τt with τt itself governed by the TVC-type equation of Tse and Tsui (2002) as

τt = ω + βτt−1 + φτ̃t−1 (3.2.12)

where ω ≥ 0 , 0 ≤ β, φ < 1 and β + φ < 1. τ̃t−1 is the non-negative estimators transformed

from sample Kendall's τ̂ between periods t − m and t − 1. For each of the m(m − 1)/2

possible pairs, a sample estimator of Kendall's τ̂ between times t − m and t − 1 is �rst

computed as

τ̂t−1 =
2

m(m− 1)

∑
t−m≤t1<t2≤t−1

sign [(w1,t1 − w1,t2) (w2,t1 − w2,t2)]

and then τ̂t ∈ [−1, 1] is converted to ensure τ̃t−1 ∈ [0, 1] by keeping the original movement

of sample Kendall's τ̂ intact:
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τ̃t−1 =
exp(τ̂t−1)

1 + exp(τ̂t−1)

(3.2.12) implicitly assumes a martingale process to capture the variation of sample Kendall's

τ̂t. A similar TVC approach is also speci�ed in Jondeau and Rockinger (2006) for a

time-varying Student-t copula.

This chapter applies a variance-targeting-like method as in Engle (2009) for TVC de-

pendence estimation,

τt = (1− β − φ)τ̄ + βτt−1 + φτ̃ t−1

where 0 ≤ β, φ < 1, and β + φ < 1. τ̄ =
∑t−1

i=t−R τ̃i/R where R is the rolling window of

�xed length speci�ed in the next sections.

Integrated TVC (ITVC) Dynamic Dependence The integrated-TVC is simply a

special case of TVC speci�cation by restricting ω = 0 and β + φ = 1 , such that

τt = βτt−1 + φτ̃t−1 (3.2.13)

where 0 ≤ β, φ < 1.

3.2.3. Likelihood Function

Given the joint distribution ((3.2.4) and (3.2.5)) with the dynamic dependence structures

((3.2.6)-(3.2.13)) and the marginals ((A.0.3), (A.0.4) and (A.0.5)), the sample log-likelihood

function can be computed from (3.2.3) as:

L(Φ) =
T∑
t=1

stln%t
(
F|rt| (u|It−1)

)
+ (1− st) ln

(
1− %t

(
F|rt| (u|It−1)

))
+lnf|rt|(u|It−1)
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With all the speci�ed ingredients, the set of parameters to be estimated by maximum

likelihood estimation is Φ = (ωv, βv, γv, ρv, δv, κ, ωd, φd, δd, Θ), where Θ contains the

dynamic dependence parameters, (ω, β, φ, λ) from (3.2.6)-(3.2.13). Note that in this chap-

ter, all parameters in the set Φ are simultaneously estimated by maximizing the sample

log-likelihood of the full decomposition models.

3.2.4. Forecasting Methods

From (3.2.2), the forecast of excess returns for time t+ 1 is given by

r̂t+1 = 2ξ̂t+1 − ψ̂t+1 (3.2.14)

where ψt+1 = Et|rt+1| and ξt+1 = Et|rt+1|st+1 is given by AG as

ξ̂t+1 =

ˆ ∞
0

uf|rt|

(
u|ψ̂t+1

)
%t+1

(
F|rt|

(
u|ψ̂t+1

)
|p̂t+1

)
du

which must be evaluated numerically. Upon the transformation of variable z = F|rt| (u|ψt),

this integral can be rewritten as

ξ̂t+1 =

ˆ 1

0

Qt+1(z)%t+1(z)dz

where Qt+1(z) = F−1|rt|

(
z|ψ̂t+1

)
is the quantile function of F|rt| (u|ψt). From (A.0.3) and

(A.0.4), I have that

F−1|rt|

(
z|ψ̂t+1

)
= ψ̂t+1Γ

−1(1 +
1

κ̂[t]
) [−ln (1− z)]

1
κ̂[t] (3.2.15)

where κ̂[t] is the estimator of Weibull distribution using the data sample from t−R+ 1 to

t. In this chapter a moving window of �xed length R = 360 is employed for one-step-ahead

forecast. Simulation steps are described as follows. At time t,

1. Estimate the decomposition model to obtain the estimators for Φ̂[t] using the sample

period of t−R + 1 to t.
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2. Compute ψ̂t+1 and p̂t+1 from (A.0.2) and (A.0.5) respectively by updating predictors

from It−1 to It and using Φ̂[t].

3. Randomly draw a vector z = {zi}Ni=1 from a uniform distribution U(0, 1). In this chapter

N = 20000.

4. Compute Qt+1(z) from (3.2.15) using ψ̂t+1 and κ̂[t]

5. Compute %̂t+1(z) from (3.2.5) using p̂t+1 and α̂t+1, where α̂t+1 is computed from (3.2.6)-

(3.2.13).

6. Compute ξ̂t+1 = 1
N

∑N
i=1Qt+1(zi)%t+1(zi)

7. Obtain the forecast r̂t+1 = 2ξ̂t+1 − ψ̂t+1

Repeat (1)-(7) to obtain a set of out-of-sample forecasts r̂t+1 for t = R, ..., T − 1 .

Recall from previous sections that if at time t + 1, a return is approximately symmet-

rically distributed with a small conditional mean, its absolute return and sign might be

conditionally independent. Anatolyev and Gospodinov (2010) have found some empirical

evidence of weak conditional dependence. In this case, one may ignore conditional depen-

dence to simplify the forecasting approach as

r̂t+1 = ψ̂t+1 (2p̂t+1 − 1) (3.2.16)

If the conditional dependence is weak, the feasible forecasts (3.2.16) may well dominate the

feasible optimal forecasts (3.2.15) by screening noises possibly during some periods when

�nancial data is approximately symmetrically distributed or less skewed.

In the empirical section, this chapter simultaneously estimates the parameters from

full decomposition models. However, the forecast exercises are proceeded in two scenarios:

conditional independence (ignoring dependence using (3.2.16)) and conditional dependence

(exploiting dependence using (3.2.14) through numerical simulation).
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3.3. Data

The sample period of the monthly U.S. excess returns is from 1952:01 to 2010:12, which

extends the data period in AG's work to cover the recent �nancial crisis of 2007-2009. The

data for the sample period from 1952:01 to 2002:12 is available at AG's website. For the

extended period, the value-weighted excess return is taken from the Center for Research in

Security Prices (CRSP); the earnings-price ratio (ep) and dividend-price ratio (dp) data in

logs are constructed using the dataset provided by Shiller (2005); the 3-month T-bill rate

(ir3) and Moody's Aaa and Baa corporate bond yield data are taken from Federal Reserve

Bank of St. Louis. The yield spread (irs) is computed as the di�erence between Moody's

Aaa and Baa yields. Daily data on NYSE/AMEX value-weighted index from CRSP is used

to construct realized volatility and higher moments.

The U.S. excess stock returns of the full sample period were pretested for the existence

of dependence and copula constancy between absolute returns and signs. A goodness-of-�t

is also tested for the empirical choice of copula functions. Panel A in Table 3.1 reports

the independence test (Genest and Rémillard (2004, 2006, 2007)). The test result rejects

the null hypothesis of independence to support potential nonlinear dependence between

absolute returns and signs. Panel B reports goodness-of-�t tests (Genest et al. (2009)) for

bivariate copula functions. The test results favor a Clayton copula and reject a Gumbel

copula among other elliptical copulas. The choice of a Clayton copula with lower tail

dependence provides strong evidence for asymmetric distributions of the U.S. stock returns,

consistent with the stylized fact in �nancial data.6

Panel C reports the results of the copula constancy tests (Busetti and Harvey (2011)).

This approach associated with di�erent quantile levels is �exible and useful in pointing to

changes in the di�erent parts of a copula distribution. τ represents the chosen quantile

con�dence level. The test results reject both constant lower and upper tail dependences.

6 Independence test on the di�erence between the empirical copula distribution function and the prod-
uct of the marginal empirical distributions is based on asymptotically independent Cramér-von Mises
statistics derived from a Mobius decomposition of the empirical copula process. Parametric bootstrap is
used to obtain critical values. In addition, for the properties of the copulas considered in Table 3.1, see
Nelsen (2006) and Cherubini et al. (2004).
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The evidence of time-varying lower tail dependence seems stronger than time-varying up-

per tail dependence, due to p-value rejecting the null at 10% con�dence level for upper

tail dependence with τ=75% but rejecting the null at 5% con�dence level for lower tail

dependence with τ=25%.7 Also, the test results reject constant asymmetry and overall

copula constancy across quantile levels, except the copula constancy test for τ=0.5. As a

result, the preliminary investigations in Table 3.1 demonstrate some empirical evidences

for: the existence of signi�cant nonlinear dependence which cannot be estimated by linear

regressions; and time-varying tail dependence and asymmetry between the U.S. absolute

returns and signs, which are not considered in AG's constant decomposition models.

The model naming convention in empirical section is introduced as follows. In this

chapter, CDM and DDM denote the constant and dynamic decomposition models, respec-

tively. CI and CD represent the forecast scenarios for ignoring and exploiting dependence,

respectively. For instance, the dynamic decomposition model of IGtype, if its forecasts

by exploiting dependence structure, is denoted as IGtype-CD; otherwise as IGtype-CI. A

constant decomposition model with the presumption of conditional independence is denoted

as CDM-CI.

3.4. Empirical Results

Table 3.2 summarizes the in-sample estimation results. p-values are reported in paren-

theses. The subsample estimation from 1952:01 to 2002:12 is made comparable to Anatolyev

and Gospodinov (2010). The estimation results are statistically signi�cant at conventional

con�dence levels. p-values for Wald joint signi�cance tests and the likelihood ratio tests

reject the null hypothesis of dynamic dependence parameters being jointly equal to zero

across sample periods and models. These results provide in-sample evidence for signi�cant

nonlinear and time-varying dependence between absolute returns and signs, and are also

consistent with the pretesting results. In addition, Table 3.2 shows that among the dy-

7 Busetti and Harvey (2011) (pp. 115) show that the lower quadrant test is more powerful for τ<0.5,
that is in the lower tail of the distribution, while the upper quadrant test is more powerful in the upper
tail (τ>0.5).
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namic decomposition models, OSA and TSA obtain the highest persistence levels, estimated

through the parameter β's and comparable to the persistence level of volatility processes

commonly documented in GARCH literature. Nonetheless, the integrated models (IGtype

and ITVC) have the persistence of around 0.75, which is lower than 0.94 the value calibrated

for the integrated GARCH model by J.P. Morgan RiskMetrics.

3.4.1. Density Forecasts of Copula Speci�cations

Diks et al. (2010) propose a statistical test for comparing the predictive accuracies of

competing copula speci�cations in multivariate density forecasts, using the Kullback-Leibler

information criterion (KLIC). The test method is valid under general conditions on the

competing copulas including the density forecasts from copulas with time-varying de-

pendence parameters. The test statistic of equal KLIC scores, a heteroskedasticity and

auto-covariance consistent (HAC) estimator, asymptotically follows the standard normal

distribution by applying Theorem 4 of Giacomini and White (2006).

Table 3.3 presents the test statistic of Diks et al. (2010). The entries in this table are

the mean values of KLIC score di�erence between the benchmark (constant decomposition)

model and competing (dynamic decomposition) models, scaled by 100. p-values are reported

in parentheses for the null hypothesis of equal predictive accuracy in density forecasts. In the

case of rejection, a negative mean of KLIC score di�erence provides the statistical evidence

for the density forecastability of a competing model over the benchmark model and vice

versa. As seen in Table 3.3, the null hypothesis is statistically rejected by IGtype, OSA

and TSA models. Further, in the rejections, the mean values of KLIC score di�erence are

negative, which indicate their better predictive accuracy in terms of density forecasts than

the benchmark model, as a higher average copula score is preferred. By contrast, the mean

score di�erences of ExpWeight and Gtype dynamic models are negative but statistically

insigni�cant.

To preserve space, the rest of this chapter reports the empirical results from the dynamic

copula speci�cations of IGtype and OSA, the density forecasts of which are signi�cantly
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better than the constant decomposition models.8 Besides, interest is also given to the

average forecasting performance on all proposed dynamic decomposition models.

3.4.2. Statistical Signi�cance of Out-of-Sample Forecasts

To evaluate out-of-sample forecast performance, this chapter uses the out-of-sample

coe�cient suggested by Campbell and Thompson (2008) as

OS = 1−
∑T

t=R+1 L(rt − r̂t)∑T
t=R+1 L(rt − r̄t)

where L(rt − r̂t) is a loss function based on forecast errors and R is the length of the

rolling window in forecasting. The OS statistic measures the reduction in forecast errors

of a competing model (r̂t) relative to the historical average (r̄t) model. Particularly, a

positive OS value implies that a competing model performs better out-of-sample than

the benchmark model and vice versa.9 This chapter considers both squared and absolute

forecast errors in loss functions.

Table 3.4 presents the OS statistic results scaled by 100. Bold values indicate the

highest forecast gains in terms of the OS statistic among competing models within a given

sample period. The OS results from the full forecast period of 1982:01 to 2010:12 show

that the decomposition models have positive forecast gains, despite that the positive gain is

marginally small for the CDM-CI model. Importantly, the dynamic decomposition models

of exploiting time-varying return skewness have the average relative forecast performance

of 2.62% higher than other models. Among these models considered, the IGtype-CD model

obtains the highest relative forecast gain of 3.59% followed by the OSA-CD model with the

relative gain of 3.57%.

8 OSA is chosen mainly due to its forecasting performance similar to TSA but with a relatively simpler
copula speci�cation.

9 Following �nance literature, this chapter also uses the historical average model as benchmark for OS
statistic. Given a sample period, the forecast errors of historical average model in the denominator of OS
remain the same across di�erent competing models. In this section, all forecast performance comparisons
among competing models are made relative to the historical average model, hereafter referred to as relative
forecast performance. Note that converting relative performance to direct performance comparisons among
pairwise competing models does not alter the conclusions in this section.
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However, by excluding the recent �nancial crisis to be comparable with the forecast

period in Anatolyev and Gospodinov (2010), DDM-CI models obtain the average relative

forecast gain of 3.66% higher than other models. Among these, the IGtype-CI model ap-

pears to have the highest relative forecast performance of 4.62%. Based on this interesting

observation, this chapter further excludes the forecast period of 1998:01 to 2012:12 which is

the economic recession period including the Hi-tech Bubble Bust and Asian �nancial crisis.

During this relatively more tranquil period after the exclusion of this economic recession

period, DDM-CI models continuously perform better out-of-sample with the average rela-

tive forecast gain of 4.64%, and among these IGtype-CI model obtains the highest relative

gain of 5.05%.

In comparison to the tranquil periods, this chapter also evaluates the forecast per-

formance during economic recessions. Conversely, the results show that during both the

Hi-tech Bubble Bust recession and the recent �nancial crisis, exploiting the time-varying

skewness provides the average relative forecast performance of 8.53% and 8.31%, respec-

tively, dramatically higher than other decomposition models. Also, among these, the IGtype

models of exploiting dynamic dependence obtain the highest relative forecast gains of 9.36%

and 12.31%, respectively.

Intuitively, the forecast performance of exploiting conditional dependence during a tur-

moil period re�ects that volatility (absolute returns) is higher, asymmetric e�ects (signs)

are stronger, and temporary interdependence between volatility and sign increases dur-

ing a market downturn. This intuition is further consolidated by Figure 3.1 which plots

the out-of-sample estimation of nonlinear copula dependence structures. The estimated

time-varying dependence structures are remarkably higher and more volatile during turmoil

times, while the degree of dependence from the constant decomposition model is relatively

stable over time. Speci�cally, the OSA dynamic decomposition model obtains the mean

dependence of 0.275 which is 3.4 times higher than the constant decomposition model.

The averages of dependence on all proposed dynamic decomposition speci�cations are also

consistently above the constant decomposition model over the sample period.
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As a result, the empirical evidence above show the presence of possible instabilities of

forecast performance which depend on economic conditions. The instability of forecast

performance implies that a competing model may not dominate a benchmark model over

the whole forecast period: better in some subperiods and no di�erence in other subperiods.

This forecast instability feature might suggest that a risk-averse investor should consider the

dynamic decomposition models with the presumption of conditional independence during

tranquil periods, whereas during turmoil periods he/she should exploit temporary interde-

pendence between absolute returns and signs. The similar conclusion can be also drawn

from the results of absolute forecast errors with the highest relative forecast gains from

OSA-CD models during turmoil periods. The next subsections formally test the statistical

signi�cance of predictive accuracy and the instability of the forecast performance, and also

provide more detailed insights on the sources of forecast performance.

Statistical Signi�cance Test

Table 3.5 reports the test results of statistical signi�cance. Entries in this table are

p-values of Giacomini and White (2006) test statistic for the null hypothesis of equal condi-

tional predictive ability.10 Values in square brackets are relative performance that indicates

the proportion of times over the sample period that a competing model in the row heading

dominates a benchmark model in the column heading. Despite that the relative performance

suggests that the dynamic decomposition models dominate both the historical average and

the constant decomposition models, p-values show no clear evidence that the predictive ac-

curacies of the dynamic decomposition models are statistically signi�cantly di�erent from

the benchmarks. A few exceptions are that the IGtype-CD and OSA-CD models reject

the null hypothesis to show better predictive abilities than the benchmarks. However, the

10 Let 4Lt+1 denote the di�erence of the loss functions (squared or absolute losses) of two models at
time t+1. Then, the null of equal predictive ability of two models can be expressed as H0 : E(ht4Lt+1) = 0
where ht is a q×1 vector that belongs to the information set at time t. Following Anatolyev and Gospodinov
(2010) and Giacomini and White (2006), this chapter sets the conditional variable ht = (1, 4Lt)

′
. The

test statistic of equal predictive ability is χ2
q-distributed under the null. For details, see Giacomini and

White (2006).
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average predictive abilities on the DDM-CD models are insigni�cantly di�erent from the

benchmarks.

The insigni�cant test results in Table 3.5, also found in AG's work, might be due

to the presence of forecast instabilities as pointed out in subsection 4.2. Giacomini and

Rossi (2010) show that in unstable environments the forecasting performance of models

may itself change over time. See also Stock and Watson (2003). Hence, tests of overall

predictive ability selecting the model that forecasts best on average, e.g., Diebold and

Mariano (1995), Clark and West (2006), and Giacomini and White (2006), etc., may result

in a loss of information and possibly lead to incorrect selection decisions. To address this

issue, the next subsection investigates the stability of forecasting performance over time by

means of statistical tests.

Fluctuation Test

Figure 3.2 plots the �uctuation test statistics (Giacomini and Rossi (2010)). 11 Dashed

lines indicate critical values at 5% con�dence level. A positive test statistic implies the

smaller forecast loss of a competing model. A one-sided test statistic (solid line) above the

critical value represents that the competing model statistically signi�cantly performs better

than the benchmark at the time point when the test statistic is evaluated. The naming

convention in Figure 3.2 is as a benchmark model vs. a competing model. For instance,

the notation of CDM-CI vs. OSA-CI means that CDM-CI is used as the benchmark model

and OSA-CI as the competing model for computing test statistics of Giacomini and Rossi

(2010).

11 Giacomini and Rossi (2010) propose the Fluctuation test for comparing the out-of-sample forecasting
performance of two competing models in the presence of possible instabilities. The main idea is to develop
a measure of the relative local forecasting performance on the entire time path, which may contain useful
information that is lost when looking for the model that forecasts best on average. Particularly, this chapter
sets µ = 0.2 for the centered rolling windows of size m as in Giacomini and Rossi (2010). The corresponding
critical values are provided by Table 1 of Giacomini and Rossi (2010). I would like to thank an anonymous
referee who suggests this Fluctuation test.

Note that the forecast instability addressed by the Fluctuation test is not the instability in the Giacomini
and White (2006) conditional predictive ability test in that the Fluctuation test traces the Giacomini and
White (2006) unconditional predictive ability test over time. For instance, the results of the Giacomini
and White (2006) conditional predictive ability test cannot be obtained by averaging the resuls of the
Fluctuation tests over time. For details see their original works and also Giacomini (2011).
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The �uctuation test results show that forecast performance statistically varies over time.

For instance, the OSA-CI forecasts have better predictive ability than the historical average

during 1986-1989, while their di�erence is insigni�cant during 2002-2009. By contrast, the

OSA-CD forecasts perform signi�cantly better during 2007-2010, but are insigni�cantly

di�erent from the historical average during 1986-1989. In addition, both forecasts appear

statistically insigni�cantly di�erent from the historical average during the housing market

boom period of 2004-2006.

Turning to the comparisons between constant and dynamic decomposition models, both

the forecasts of the OSA-CI and OSA-CD models are signi�cantly better than the CDM-CI

and CDM-CD models, respectively, except during 1986-1989 for the OSA-CI forecasts and

during 2003-2006 for the OSA-CD forecasts. Further looking at conditional independence

vs. conditional dependence, both the forecasts of the CDM-CD and OSA-CD models per-

form signi�cantly better than the CDM-CI and OSA-CI models, respectively, except for the

period of 1986-1989. It is also clearly observed that the CDM-CD and OSA-CD forecastabil-

ities exceed the CDM-CI and OSA-CI models respectively during the turmoil periods (after

1997), whereas they do not appear to be signi�cantly better during the relative tranquil

periods (prior to 1997).

Table 3.6 presents more detailed test results from the decomposition of forecasting per-

formance (Rossi and Sekhposyan (2011)).12 Entries in this table are p-values. The models in

the �rst column and the �rst row are benchmarks and competing models respectively. The

tests for the �rst component exclusively reject the null hypothesis of no time variation in

the expected relative forecasting performance, in line with the �uctuation test results. The

tests for the second component show that, compared to historical average, in-sample losses

of the decomposition models provide better explanation for out-of-sample losses, while the

12 Rossi and Sekhposyan (2011) decompose the forecasting performance into 3 components, namely
time variation in the forecasting performance, predictive content and over-�tting. The �rst component
measures the presence of time variation in the models' performance relative to their average performance.
Predictive content measures the models' out-of-sample relative forecasting ability re�ected in the in-sample
relative performance, for instance, whether in-sample losses have predictive content for out-of-sample losses.
Over-�tting measures models' in-sample �ts not re�ected in the out-of-sample forecast. Particularly, this
chapter sets µ = 0.2 for the centered rolling windows of size m in Rossi and Sekhposyan (2011). The
corresponding critical values are provided by Table 1 of their original work.



Chapter 3. Modeling Time-Varying Skewness via Decomposition for Out-of-Sample Forecast 104

predictive contents are similar between constant and dynamic decomposition models. The

tests for the third component do not show evidence for di�erence in the signi�cance of the

over-�tting component across the models. This implies that the proportion of out-of-sample

losses which cannot be explained by in-sample losses is statistically similar between bench-

marks and competing models.

The statistical test results above have revealed that one model performs better in certain

periods and the competing model is more accurate in other periods. A natural question

to ask, however, is what a forecaster should do if the tests �nd instability in the relative

performance of competing models. In this case, a forecast combination may be more robust

to structural instability than either of the individual forecasts. Table 3.7 reports the results

from simple forecast combination experiments. Following Rapach et al. (2010), the combi-

nation weights are determined by using the discount mean square prediction error (DMSPE)

with a discount factor of 0.9.13 The �rst row represents the combined models. Compared

to Table 3.4, combining forecasts obtains higher positive forecast gains. More importantly,

in contrast to the insigni�cant test results from Table 3.5, p-values in Table 3.7 show that

the forecast combinations perform signi�cantly better forecastabilities than the historical

average. However, the �uctuation tests (not reported here) also show that instabilities of

forecast performance do not completely disappear from forecast combinations. In-depth

analysis of forecast combinations in this context is open to future research.

3.4.3. Economic Values of Out-of-Sample Forecasts

Next, this chapter assesses the economic values of out-of-sample forecasts in terms of

portfolio pro�ts from market timing, volatility timing and skewness timing. A relatively

naive market timing strategy is employed to actively allocate portfolio between stocks and

13 Di�erent discount factor values are also considered (not reported here but available upon request to
the author) and do not alter the conclusion. In addition, the purpose of using the weighting scheme from
Rapach et al. (2010) is to show empirical evidence for forecast combination robust to instability. Hence,
the choice of it is not based on whether it is better than other candidate weighting schemes such as simple
averaging, Bayesian model averaging, information criterion weighting, etc. For example, I also conduct a
simple averaging which does not alter the conclusion of forecast combination (not reported here). However,
given the evidence of the robustness of forecasting combination found in this chapter, the comparisons and
choices between various weighting schemes might be interesting to pursue in future research.
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bonds as in Guo (2006) and Anatolyev and Gospodinov (2010), among others: investing in

stocks if the predicted excess return is positive or in bonds if the predicted excess return is

negative. The pro�ts of market timing are computed from actual stock returns and risk-free

rates and compared to the benchmark buy&hold strategy. Economic values of volatility

timing and skewness timing are then evaluated through utility functions.

Economic Values of Market Timing

Table 3.8 reports the market timing results for buy&hold and decomposition-based trad-

ing rules. Bold values indicate the best annualized performance. Average portfolio returns

in this table show strong evidence for the economic relevance of the proposed dynamic

decomposition approach. During the full sample period of 1982:01-2010:12, the DDM-CD

portfolios produce the average return of 11.96% slightly higher than the buy&hold and the

constant decomposition portfolios. Among these, the OSA-CD portfolio has the highest

return of 12.48%. Compared to buy&hold portfolio, all decomposition-based portfolios are

accomplished with a large reduction in standard deviation, for instance, 15.09% of the

buy&hold vs. 13.75% of the DDM-CD portfolios on average. As a result, among portfolios

the OSA-CD model has the highest Sharpe ratio of 0.559 (versus 0.473 from buy&hold

portfolio).

In sharp contrast, considering only the 1998-2002 and 2007-2010 periods leads to a signif-

icant deterioration of the statistics for buy&hold portfolios, while the decomposition-based

strategies of exploiting time-varying skewness are still practically very pro�table during

these two economic recessions. Speci�cally, the DDM-CD portfolios have presented very

impressive performance even during the recent �nancial crisis period. For instance, the

OSA-CD portfolio achieves around 710 and 523 basis points of the returns per year higher

than buy&hold and CDM-CI portfolios, respectively, during the crisis. In addition, the

IGtype-CI portfolio has the highest average returns and Sharpe ratios during relative tran-

quil periods, whereas the OSA-CD portfolio obtains the best pro�ts during turmoil times.

This result also suggests the robust trading strategies that a risk-averse investor should con-

sider the dynamic decomposition models by ignoring dependence during tranquil periods
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but exploiting dependence during turmoil times. Alternatively, portfolios based on forecast

combinations can be considered as well.

Economic Values of Volatility and Skewness Timings

To evaluate economic values of volatility and skewness timings, I employ the performance

fee measure as in Fleming et al. (2001), Guo (2006), and Jondeau and Rockinger (2012),

among others. A positive management fee represents that an investor is willing to pay to

switch from a benchmark strategy to a competing strategy.

Consider a power utility function U (Wt+1) = W 1−γ
t+1 /(1 − γ), where γ > 0 (γ 6= 1)

measures the investor's constant relative risk aversion. The performance fees for volatility

timing and skewness timing (denoted by 4 and 4′ , respectively) are estimated by equat-

ing the average utilities of the second- and third-order Taylor series expansions between

competing and benchmark strategies, respectively,

T−1∑
t=R

[
(rp,t+1 −4)−

γ

2
(rp,t+1 −4)2

]
=

T−1∑
t=R

(
rb,t+1 −

γ

2
r2b,t+1

)
(3.4.1)

T−1∑
t=R

[(
rp,t+1 −4

′)
−
γ

2

(
rp,t+1 −4

′)2
+
γ(γ + 1)

3!

(
rp,t+1 −4

′)3]
=

T−1∑
t=R

(
rb,t+1 −

γ

2
r2b,t+1 +

γ(γ + 1)

3!
r3b,t+1

)
(3.4.2)

where rb,t+1 and rp,t+1 represent the buy&hold and the decomposition-based portfolio re-

turns, respectively. (3.4.1) and (3.4.2) are solved numerically for 4 and 4′ .14 In this

set-up, the performance fee means how much an investor is willing to pay for acquiring the

information from a decomposition-based portfolio versus the buy&hold portfolio.

Table 3.9 reports the economic values of volatility and skewness timings. 15 The results

clearly show that the OSA portfolios provide the highest performance fees for an investor

acquiring skewness information, while the IGtype portfolios obtain the highest performance

fees for volatility timing. This result demonstrates the economic importance of modeling

14 I assume that γ = 5. The results are not sensitive to reasonable variations in γ. See also Rapach et
al. (2010), Guo (2006) and Jondeau and Rockinger (2012), among others.

15 Particularly, volatility timing is evaluated by (3.4.1) using the decomposition portfolios with the
presumption of conditional independence (ignoring dependence), while skewness timing is evaluated by
(3.4.2) using the decomposition portfolios of exploiting dependence.
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time-varying skewness, which generates the performance fees of 55-174 basis points of the

returns per year more than the constant decomposition portfolios across di�erent sample

periods.

The comparisons between volatility timing and skewness timing also show large varia-

tions over time depending on economic conditions.16 In the full forecast sample period of

1982-2010, an investor is willing to pay 68 basis points of the returns per year on average

more than volatility timing to acquire skewness timing for his/her portfolio. Speci�cally,

skewness timing from the OSA trading strategy receives a management fee of around 131

basis points of the returns per year more than volatility timing from an investor.

The economic values of skewness timing are much higher during the turmoil times of

1998-2002 and 2007-2010 than the relatively tranquil periods of 1982-2002 and 1982-1997.

Particularly, the incorporation of skewness timing into an investor's portfolio during the

recent �nancial crisis receives 442 basis points of the returns per year on average more

than volatility timing. By contrast, during the relatively tranquil periods, performance fees

of volatility timing are 35-249 basis points of the returns per year higher than those of

skewness timing.

An explanation of this performance di�erence might be explicated as follows. During

tranquil periods, return distributions might be more symmetric such that the relationship

between absolute returns and signs is either conditional independence or weakly condition-

ally dependent. Nonetheless, during market downturns returns are more likely asymmet-

rically distributed such that a strong temporary interdependence exists between absolute

returns and signs. Apparently, the increase in return asymmetry during market downturns

raises the importance of modeling time-varying skewness.

16 The di�erence between 4′
and 4 represents the extra performance fee for which an investor is

willing to pay beyond volatility timing to obtaining bene�ts from skewness timing.
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3.5. Conclusion

This chapter estimates time-varying return skewness by specifying dynamic dependence

in a return decomposition framework which splits a return to the product of absolute return

and sign. The importance of time-varying skewness is evaluated in out-of-sample forecasts

of excess stock returns in terms of both statistical signi�cance and economic relevance.

The empirical results show strong statistical evidence for the instabilities of forecast

performance: one model performs better in certain periods and the competing model is

more accurate in other periods. Particularly, the results of this chapter suggest that an

investor might consider the proposed dynamic decomposition model with the presumption of

conditional independence during relatively tranquil periods, while by exploiting conditional

dependence between absolute return and sign during turmoil times. Alternatively, a forecast

combination, more robust to structural instability than either of the individual forecasts,

performs statistically signi�cantly better out-of-sample than the benchmarks.

The economic values of the proposed dynamic decomposition models also show clear

economic relevance. This chapter �nds that the skewness timing of dynamic decomposition

models yields an average gain in the returns around 195 basis points per year over the

forecast sample period. Speci�cally, modeling time-varying skewness during the recent

�nancial crisis generates a substantial average gain of 818 basis points in the returns per

year. It has also been found that an investor is willing to pay an extra 68-442 basis points

of the returns per year beyond volatility timing to acquire skewness timing information for

his/her portfolio.

Additionally, the following interests might be considered for future research: (1) an

in-depth analysis of forecast combinations robust to structural instability of forecasting

performance; (2) the comparisons of the proposed dynamic decomposition models to the

approaches of Harvey and Siddique (1999) and Leon et al. (2005); (3) the applications

of other copula functions which allow negative dependence structures between absolute

returns and signs.
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Table 3.9: Economic Values of Volatility and Skewness Timings

Constant Dynamic Decomposition Models

Decomposition Models IGtype OSA Average

1982:01-2010:12

Volatility timing (4) 1.05% 1.74% 1.00% 1.27%

Skewness timing (4′) 1.76% 1.99% 2.31% 1.95%

4′ −4 0.71% 0.25% 1.31% 0.68%

1982:01-2002:12

Volatility timing (4) 3.12% 3.63% 2.67% 2.99%

Skewness timing (4′) 2.15% 2.54% 3.02% 2.64%

4′ −4 -0.97% -1.09% 0.35% -0.35%

1982:01-1997:12

Volatility timing (4) 2.09% 2.85% 1.92% 2.18%

Skewness timing (4′) 0.31% 0.36% 0.96% 0.62%

4′ −4 -1.78% -2.49% -0.96% -1.56%

1998:01-2002:12

Volatility timing (4) 5.60% 6.22% 4.94% 5.48%

Skewness timing (4′) 7.77% 9.21% 9.31% 8.82%

4′ −4 2.17% 2.99% 4.37% 3.34%

2007:07-2010:12

Volatility timing (4) 2.49% 5.25% 2.49% 3.76%

Skewness timing (4′) 7.21% 8.91% 8.95% 8.18%

4′ −4 4.72% 3.66% 6.46% 4.42%

Volatility timing is evaluated by the trading strategy of ignoring dependence
and skewness timing by the trading strategy of exploiting dependence. Bold
values indicate the highest performance fees among trading strategies.
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Appendix A

Marginals

Following AG's work, the dynamics for the positively valued variable |rt| are speci�ed

in a multiplicative error model as

|rt| = ψtηt (A.0.1)

where ψt = Et−1 |rt| and ηt is a positive multiplicative error with E(ηt) = 1. A logarithmic

conditional autoregressive model is used for ψt as

logψt = ωv + βvlogψt−1 + γvlog |rt−1|+ ρvI(rt−1 > 0) + x
′

t−1δv (A.0.2)

where xt are economic predictors. The persistence of the process is governed by the param-

eter |βv + γv| < 1.

Assume that ηt follows a Weibull distribution with the cumulative distribution function

Fηt(x; κ, ς) = 1− e−(xς )
κ

and the probability density function

fηt(x; κ, ς) =


κ
ς

(
x
ς

)κ−1
e−(xς )

κ

x ≥ 0

0 x < 0

where κ, ς > 0 are shape and scale parameters, respectively. Weibull distributions have the

mean of E(ηt) = ςΓ (1 + 1/κ), such that the restriction E(ηt) = 1 implies ς = 1/Γ (1 + 1/κ).

Γ(·) is a gamma function. Hence, in this case the Weibull distribution can be reparameter-

ized in terms of κ. Based on the Jacobian transformation matrix |J | = ψ−1t from (A.0.1),
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|rt| has the CDF and PDF functions respectively as

F|rt|(u|It−1) = Fηt(u/ψt|It−1) (A.0.3)

and

f|rt|(u|It−1) = ψ−1t fηt(u/ψt|It−1) (A.0.4)

Marginal distribution for the sign dynamics (st = I(rt > 0)) is a Bernoulli distribution

with the marginal CDF and PDF functions respectively as

Fst(v|It−1) = 1− pt(1− v)

and

fst(v|It−1) = pvt (1− pt)1−v

with pt = Et−1st modeled by a dynamic logit-linked model

pt =
exp(θt)

1 + exp(θt)
(A.0.5)

and

θt = ωd + φdI(rt−1 > 0) + y
′

t−1δd (A.0.6)

where yt includes the set of predictors such as macroeconomic variables.

Note that the predictive variables of xt and yt are not necessarily identical so as to

allow the dynamics of absolute returns and signs driven by di�erent information sets. As

discussed in section 2, this chapter uses the same marginals and information variables as

de�ned in AG's work and only introduces time-varying copula dependency parameters.

Hence, the comparison to AG's constant decomposition models can be easily made. To

preserve space, I would refer readers to AG's original work for detail data description and

construction on xt and yt.


