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Abstract

The role of dimension and shape in colloidal liquids and glasses

By Skanda Vivek

In two-dimensions, the laws of physics give rise to intriguing phenomena such as long-
range correlations that do not decay at infinity. However, reality can only be quasi-2D at
best. This thesis is an effort to bridge the gap between 2D theory and reality, by doing
experiments. Here we consider two different model systems - soap films as 2D fluids, and
2D colloidal glass formers.

We look at diffusion of tracer particles in soap films and test the validity of 2D theory.
We find that for thin films, both 2D surface viscosity and 3D viscosity are important. To
a good approximation, soap films are thin films and can be considered 2D for flow.

Next, we look at glassy dynamics in 2D and 3D colloidal glass formers. We demon-
strate that the differences between 2D and 3D are long-wavelength fluctuations, precisely
those that distinguish 2D and 3D phase transitions. Through a novel analysis method
that removes the influence of these fluctuations, we show that 2D and 3D glass transitions
are otherwise similar.

Finally, we look at the effect of shape anisotropy of dimers in 2D glasses, and find
that glass dynamics are highly dependent on shape, both in experiments and simulations.
These colloidal and simulation results are a prediction of aspect ratio dependent diffusion
in real glasses.
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Chapter 1

Introduction

1.1 Dimensionality and physics

Many times when we talk about physical phenomena, we ignore dimensionality. For ex-

ample in introductory physics when dealing with the laws of motion, we first discuss

one-dimensional motion, and generalize to two and then three-dimensions. However di-

mensionality affects physics in many problems such as electrostatics, melting of solids

and fluid flows.

The underlying reason is that in 2D, logarithmic decays appear frequently. The electric

potential from a line charge of infinite length decays as ln(r). Flow velocities in a 2D fluid

also decay logarithmically, leading to the ‘Stokes paradox,’ where the standard Navier-

Stokes equations in the laminar regime (Stokes regime) do not have non zero solutions

for unbounded systems. Even in 2D solids, perturbations decay logarithmically, leading

to ‘Mermin-Wagner fluctuations’ [1] that break true long-range order in 2D solids.

However, reality can only be quasi-2D. According to famous fluid dynamicist George

Keith Batchelor (GKB) in an exchange that took place during a seminar in Cambridge

1
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in the mid 1970s [2]:

Speaker (justifying elaborate mathematical argument): The trouble with a physical ar-

gument is that you may not get all the terms.

GKB: No, that is the trouble with a bad physical argument.

It is important to understand the validity of 2D theory and approximations in reality

where systems are bounded and interfaces matter. This has become very important lately

due to recent technical developments in synthesizing 2D materials such as graphene [3]

with unique properties.

During my PhD, I have looked at the influence of dimensionality in different materials.

Through this thesis, I will demonstrate that in certain cases, dimensionality changes

physics, but in others, dimensionality effects can be disentangled from the underlying

physics.

I look at two experimental model systems of low-dimensional liquids and amorphous

solids (glasses). I do experiments in thin soap films and test the validity of 2D theory. I

find that for thin films, both 2D surface viscosity and 3D viscosity are important. To a

good approximation, soap films are thin films and can be considered 2D for flow.

For 2D glasses, there is no complete theory for glasses in general, however I find that

dimensionality can be separated out, and that being in 2D does not affect underlying

glassy physics. This represents a fundamentally different way of disentangling the influ-

ence of dimensionality, and may pave the way for future studies in dimensionality in other

types of systems. Also I look at the effect of particle shape in 2D glasses, and find that

glass dynamics are highly dependent on shape, both in experiments and simulations.
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1.2 Liquids and dimensionality

The Navier-Stokes equation for a Newtonian viscous fluid of constant density and con-

stant viscosity is

ρ
∂u

∂t
+ ρu · ∇u− η∇2u = −∇p (1.1)

where u is the flow velocity, P is the pressure, and η is the viscosity. In the Stokes

regime, viscous forces are much more important than inertial forces. The Reynolds num-

ber Re=inertial forces/viscous forces = ρUL/η ≪ 1, where ρ is density, U is velocity

of object relative to fluid and L is the lengthscale of the object. In the Stokes regime

since inertia and hence terms containing ρ/η are unimportant, the Navier-Stokes equation

simplifies to

∇p− η∇2u = 0 (1.2)

This equation in conjunction with the continuity equation for an incompressible fluid

(∇ · u = 0) are known as the Stokes equations. This major simplification is useful when

viscosities are large, or flow length-scales are very small. The flow scales in my liquid

experiments are in the Stokes regime. In 3D, the Stokes equations can be solved in the

case of a sphere in an infinite fluid. However in 2D, there is not satisfactory steady solution

of the Stokes equations representing flow of an unbounded fluid past a circular cylinder.

This result, known as Stokes paradox [4], underlines the profound effect that dimension

can play in fluid dynamics. The reason for this is a cylindrical body in creeping through

a viscous fluid will tend to carry with it a large stagnant body of fluid, and there is no

solution of the boundary-value problem for an infinite domain in Stokes flow.

It is convenient and useful to approximate external forces from spheres in 3D as point
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forces of magnitude F,

∇p− η∇2u = Fδ(r) (1.3)

The solution to this equation in 3D is [5]:

ui =
1

8πµr

[rirj
r2

+ δij

]

Fj (1.4)

where r denotes distance from point disturbance. Thus, at large r, flow velocity decays

to zero, which is reasonable. However in quasi-2D for thin films of thickness h, the solution

is [5, 6]:

ui =
1

4πµh

[rirj
r2

+ δij (− ln r − 1)
]

Fj (1.5)

This solution is not bounded at infinity, and does not represent real fluids, where

other effects are important over large distances. In a recent approximation, Di Leonardo

et al [6] added an integration constant L, beyond which the approximation fails as:

ui =
1

4πµh

[

rirj
r2

+ δij

(

ln
L

r
− 1

)]

Fj (1.6)

This L can have various origins - finite boundaries, particle velocity relative to fluid[2,

6, 7], surrounding fluid etc. Di Leonardo et al [6] used colloidal particles as tracers in

thin liquid films, and measured hydrodynamic interactions between colloidal particles

confined in a thin sheet of fluid. In their experiments, boundary conditions determined

L. L was found to be 2 mm, while particle diameter was 2µm. Thus in 2D, correlation

length scales are huge as compared to 3D. To give an idea, previous experiments in 3D [8]

observed two-point correlations between colloidal particles decay as 1/r, as expected in



Chapter 1. Introduction 5

theory, so for a factor of 10 increase in distance, two-point correlations decay by 0.1.

Whereas in 2D, two-point correlations decay as ln(r). Thus these correlations are still

large even at large distances in 2D.

1.3 2D viscosity

Viscosity is a measure of a fluids resistance to shear. For a shear force F acting on area

A,

F = ηA
∂u

∂y
(1.7)

where ∂u/∂y denotes the shear strain and η is the viscosity. Thus shear stress τ = F/A

is proportional to shear strain rate, and the constant of proportionality is viscosity η.

The units of viscosity are Pa·s

In 2D, however, the situation is different. Because of dimensionality, it is not possible

to have shear stresses, instead you have line stresses and F/A is replaced by F/l as

proportional to shear strain rate. Thus 2D viscosity η2D is fundamentally different from

3D, and has units of Pa·s·m.

For a sphere diffusing in a fluid, the Navier-Stokes equation in the Stokes limit

(Eqn. 1.2) can be solved to get the diffusion coefficient,

D =
kBT

3πη3Dd
, (1.8)

known as the Stokes-Einstein-Sutherland equation [9, 10] where η3D is the viscosity

of surrounding fluid. However in 2D, the equation cannot be solved in the exact same

limit due to the Stokes paradox (Sec. 1.2).



Chapter 1. Introduction 6

Figure 1.1: Cylinder of diameter d diffusing in a thin film of thickness h and viscosity
ηB bounded by air. Model system for deriving 2D Saffman and Delbrück equations.

In 1975 Saffman and Delbrück treated this case, deriving an approximation for single

particle diffusion D1p, for the situation of a 2D membrane with interfacial viscosity η2D

with fluid of 3D viscosity η3D on both sides of the membrane [11]. Using the small

parameter ǫ = dη3D/η2D, Saffman and Delbrück found [11, 12]

D1p =
kBT

4πη2D

[

ln

(

2

ǫ

)

− γE
]

, (1.9)

using Euler’s constant γE = 0.577.

In particular, this derivation treated the 2D membrane as a thin 3D layer of fluid

with 3D (“bulk”) viscosity ηB, thickness h, and therefore a 2D viscosity η2D = hηB. They

considered the diffusion of disks of diameter d and height h which spanned the membrane

thickness, and which only move horizontally within the membrane (see Fig. 1.1). Equation

1.9 works well for small ǫ (large η2D). ǫ
−1 is often termed the Boussinesq number Bo, so

equivalently Eqn. 1.9 works well for large Bo. [2, 13]. Hughes et al. [14] extended Eqn. 1.9

to work for all ǫ, with a useful approximation to their result added later by others [15, 16].
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There have been many experiments to verify the Saffman-Delbruck equation and its large

ǫ extensions, such as in in lipid membranes [16] and liquid crystal films [17].

In our experiments, we use thin soap films as model 2D fluids (Chapter 2) embedded

with spherical tracers, and rather than checking the validity of these equations in the ǫ

limit, we look at the 2D-3D transition as a function of soap film thickness h and tracer

particle diameter d. All our experiments are in the low ǫ limit. Interestingly we find that

h/d is the control parameter, and for small h/d, single particle diffusion follows 2D theory

as per Eqn. 1.9. But for large h/d particles tend towards bulk diffusion as in Eqn. 1.8.

1.4 Solids and dimensionality

The influence of dimensionality in solids has been studied as early as in the 1930’s by

Peierls [18]. An elegant argument put forward for one-dimensional solids is that any

random fluctuations get amplified in 1D, thus long-range order is not possible in 1D.

Figure 1.2 shows a 1D solid with periodicity a. Due to thermal fluctuations, there

is a fluctuation σ. Assuming these fluctuations are statistically independent, the total

standard deviation Sigma adds up as
√
Nσ. Thus at long distances for large N , order is

destroyed. Hence it is not possible to have a 1D crystal.

In 2D the situation is different. There are more constraints as on a square periodic

lattice for example and atoms on the lattice have more neighbors than in 1D. Now,

fluctuations need to be correlated along along multiple paths in order to add up, hence

fluctuations grows as lnN . Thus fluctuations do not grow as much as in 1D, and it is

still possible to have quasi-long-range order in 2D. These fluctuations at very large N

are called Mermin-Wagner fluctuations [19]. Their effect in real systems was unclear. To

quote Mermin [1], these fluctuations “may well be so weak as to allow two-dimensional
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Figure 1.2: 1D solid of lattice spacing a represented by a linear chain of N + 1 atoms.
σ denotes standard deviation due to thermal fluctuations. Assuming these fluctuations
add independently, The distance X between the first and the last atom has standard
deviation Sigma(X)=σ

√
N .

systems of less than astronomic size to display crystalline order.” In 3D, fluctuations have

to be correlated along even more paths than 2D to add up, so instead fluctuations decay

with N , thus preserving true long-range order.

The impact of these fluctuations is profound in 2D [20]. Because of absence of true

long-range order, during melting one encounters a solid→ hexatic→ liquid transition, as

theorized by the KTHNY theory of 2D melting [21] developed by John Kosterlitz, David

Thouless, Burt Halperin, David Nelson, and Peter Young. This hexatic phase denotes

quasi-long-range bond-orientational order, but short-range translational order [21]. This

phase is absent in 3D. Hence dimensionality causes fundamental differences in 2D and 3D

melting. Recent experiments [22] and simulations [23] have confirmed that 2D melting

indeed involves two steps and follows the KTHNY theory.
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1.5 The glass transition and the colloidal glass tran-

sition

If a liquid can be cooled rapidly to avoid crystallization, it can form into a glass: an

amorphous solid. The transition from liquid to glass on decreasing temperature is a

dynamic transition.

The glass transition is marked by an increase in viscosity on decreasing temperature,

by more than 13 orders of magnitude. Typically the glass transition temperature Tg is

defined when viscosities reach such large values∼ 1012 times the viscosity of water [24]

when for all practical purposes, the sample is a solid and does not flow on any reasonable

experimental timescale. However from a theoretical standpoint, the underlying cause of

the glass transition is far from clear, although there are a variety of theories [25–27].

Colloidal samples at high concentration have been established as model glass form-

ers [28–31]. Colloidal experiments have the advantage that individual particles can be

visualized. The way the colloidal glass transition is approached is by increasing concen-

tration. Thus concentration in colloidal systems is equivalent to inverse temperature in

real glasses. At a low concentration, colloids diffuse in liquids according to the Stokes-

Einstein-Sutherland equation (Eqn. 1.8).

Figure 1.3a shows silica particles diffusing in water, confined to a coverslip. On increas-

ing concentration in a bidisperse sample, we get a supercooled liquid shown in Fig. 1.3b.

At even higher concentrations, we get a colloidal glass shown in Fig. 1.3c. The difference

between supercooled liquid and glass is that the glassy sample does not equilibrate on

the experimental timescale.

In 3D colloidal glasses, the situation is well established. The experimental glass tran-

sition is at volume fraction φ ∼ 0.58 [29].
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Figure 1.3: Colloidal liquid and solid of bidisperse particles, diameter 2.53 and 3.38 µm.
(A) Area fraction φ = 0.16, liquid-like. (B) Area fraction φ = 0.70, supercooled sample.
(C) Area fraction φ = 0.82, glassy sample.

Figure 1.4: Colloidal crystal at φ = 0.91 composed of monodisperse particles of diameter
3.38 µm.

A polydisperse (here bidisperse) sample is needed, which is especially important in 2D,

to frustrate formation of local crystals. If the system is monodisperse, we get a colloidal

crystal at large φ ∼ 0.9 as shown in Fig. 1.4. However in 3D, natural polydispersity from

experimental preparation of particles is sufficient to form colloidal glasses.

While the glass transition is itself far from clear, it is usually thought to be similar

in 2D and 3D [30, 32] and in simple simulation cases such as hard particles, one might

expect that dimensionality plays no role. However, recent simulations give evidence that

the glass transition might be quite different in 2D and 3D [33–35]. Comparing 2D and
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3D colloidal experiments, I find that it is possible to separate out dimensionality effects

from the underlying glassy physics, which is explained in detail in Chapter 3.

1.6 The shape dependent glass transition

The above colloidal glass transition discussed were hard sphere model systems. A lot of

molecular and polymer glasses however, do not have radially isotropic molecules. Poly-

mer glasses [24] have long entangled chains, and molecular glasses such as glycerol and

OTP [24] have anisotropic shapes.

However, colloidal glasses and simulations of spheres or disks with polydispersity

have been very successful in modeling the key features universal to all glass formers. This

means that geometrical frustration and sterical confinement in model glasses are key to

the glass transition in general.

Due to recent advances in synthesis of anisotropic colloids [36–38] and simulation

of anisotropic probes [39, 40], now it is possible to ask the question how does shape

anisotropy affect the glass transition. In my experiments (Chapter 4), I study how diffu-

sion properties are affected by shape in a model 2D colloidal glass former. The two modes

of diffusion are translation, and rotation associated with rotational motion of anisotropic

particles that can be measured.

In liquids, the Stokes-Einstein-Sutherland equation [9, 10] relates microscopic trans-

lational diffusion (DT ) as inversely proportional to solvent viscosity η, shown in Eqn. 1.8,

where a is particle radius and T is temperature.

For spherical particles, rotational diffusion follows Eqn. 1.10. This is known as the
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Stokes-Einstein-Debye relation and was originally found by Debye [41].

DR =
kBT

8πηa3
, (1.10)

In simple liquids, both viscosity and diffusion are linked to a single timescale of

structural relaxation. Further, the ratio of translational to rotational diffusion constants

(DT/DR) should be independent of viscosity and temperature. However, many experi-

ments and simulations [42–45] have shown a violation of the Stokes-Einstein-Sutherland

and Stokes-Einstein-Debye relations in supercooled liquids. Pioneering experiments ob-

served a violation of these relations on approaching the glass transition in a molecular

glass former, orthoterphenyl (OTP) [42, 43]. The traditional method to determine diffu-

sion coefficients is through mean square displacements:

〈∆r2(∆t)〉 = 4DT∆t (1.11)

Rotational diffusion coefficient (DR) is measured from mean rotational MSD as:

〈∆θ2(∆t)〉 = 2DR∆t (1.12)

where ∆θ is the angular displacement in time ∆t. However in OTP, only indirect measure-

ments of diffusion was possible, from spin-spin relaxations. They found that DT,R ∼ η−ξ,

where ξ = 0.75 for translation, and 1 for rotation. Thus they observed an enhancement

of translation relative to rotation approaching the glass transition. Later experiments in

molecular glasses found different ξ, ranging from 0.73 to 0.8 [24, 46].

Interestingly in a simulation of a supercooled liquid of dumbbells, it was found

that translation-rotation decoupling occurs at the single particle level. They used es-
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sentially the same method to determine both DT and DR through mean square displace-

ments(Eqns. 1.11,1.12). They observed an enhancement of rotation relative to translation,

opposite to previous experiments in OTP.

In fact, a number of experiments and simulations yield different results on the nature

of decoupling [39, 42, 47]. One key feature to be noted is that all these simulations

have different shaped particles. Recent experiments on ellipsoidal glasses [36] found that

longer ellipsoids formed liquid crystal phases, while shorter aspect ratio ellipsoids formed

glass-like phases.

As explained in Chapter 4, in our experiments we observe naturally occurring silica

dimers embedded in a 2D bidisperse and the experiments are the same as in Chapter. 3.

We find that for dimers of smaller lengths, rotations do not slow down as much as trans-

lations, on approaching the glass transition, similar to the case of spheres as probes [48].

However we find that in our longest dimers, DT and DR remain coupled at all concen-

trations, i.e. DT/DR ∼ constant.



Chapter 2

Soap Films as model 2D fluids

2.1 Introduction

Soap films are thin liquid films. These films are stabilized by two surfactant layers on

either side. Surfactant molecules stabilize the film as they like to remain at the film-air

interface. They have two components - a hydrophilic head and hydrophobic tail.

Soap films have complex hydrodynamics [49] that have been widely investigated as

early as the late 19th century for example by Plateau [50] and Gibbs [51]. Previous

Figure 2.1: Soap film drawn between metal wires used in experiments

14
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experiments have demonstrated that thin soap films behave in many respects as two-

dimensional (2D) fluids [52–56]. Soap films have applications as a wide range of model

systems. For example, soap films share similarities to cell membranes [57]. Soap films

were used to study swimming fish and flapping flags in a two dimensional wind [55].

Quickly flowing soap films also served as model systems for 2D turbulence [56, 58, 59],

which is relevant in our atmosphere at large scales.

We are interested in understanding soap film hydrodynamics using microrheology,

by adding micron sized tracer particles and analyzing their diffusive motion [52–54].

Particle motions in a soap film are constrained in the third direction, due to small film

thickness. Hence, their diffusive motion is two-dimensional and controlled by an effective

2D viscosity of the soap film, η2D. η2D is expected to be related to the film thickness

and other details of the soap solution using the 1957 Trapeznikov approximation [60].

In 1975 Saffman and Delbrück argued that diffusive motion in a fluid membrane is also

influenced by the surrounding three-dimensional (3D) viscous fluids with viscosity η3D

on either side of the membrane [11]. In the case of interest to soap films, the surrounding

3D fluid is air with viscosity η3D = ηair. The Saffman-Delbrück approximation [7, 11]

relates the observable single particle diffusivity D to η2D, ηair, and the particle diameter

d, allowing one to determine η2D by observing tracer particle trajectories [52].

The Saffman-Delbrück theory is based on modeling a spherical tracer as a cylinder

with diameter d and height h. This seems plausible for spheres with d ≥ h, but it is

questionable how sensible this is for spheres with d < h. There has only been minimal

experimental exploration of this limit [52]. In prior work, it was demonstrated that the

Saffman-Delbrück approximation works well up to h/d = 4, and is no longer applicable

for h/d ≥ 10 [52]. Unfortunately, these experiments did not have data in the interesting

regime 4 ≤ h/d ≤ 10. For their thin films h/d < 4, they found that diffusive measure-
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ments interpreted with the Saffman-Delbrück approximation led to results in agreement

with the prediction of Trapeznikov [60] for η2D. Due to the lack of data in the crossover

region, it was unclear if the crossover from 2D to 3D behavior was a smooth function of

h/d or some other parameter.

In this work, we present new experimental data of the diffusivity of particles in

soap films, to examine more closely the breakdown of the cylindrical assumption of the

Saffman-Delbrück approximation. In this current work we use a more reliable means of

measuring film thickness h and due to experimental improvements are able to get data

from a wider range of film thicknesses and particle sizes. While the previous work probed

a single d at the crossover, in this work we use particles of two different d and verify that

h/d is the correct parameter indicating the crossover. We find that the Saffman-Delbrück

model works well up to h/d < 5.2± 0.9, and that there is a smooth crossover from thin

films to thick films as a function of h/d. We additionally examine the correlated motion

of pairs of particles as a function of their separation to independently infer η2D, and

in doing so we demonstrate that the Trapeznikov prediction is valid for all soap films,

independent of h/d. Our results clarify that this correlated particle motion is a more

effective way to measure η2D from observing diffusive motion of tracers in a soap film.

While this had been suggested by prior work [52], our results provide a wider range of

data in support of the interpretation put forth earlier.

Further background discussion of the Saffman-Delbrück and Trapeznikov approxima-

tions is presented in the following section.
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2.2 Hydrodynamic theory

Single particle diffusion in thin films

Our starting point for diffusion is to measure the mean square displacement of tracer

particles, which is related to the diffusion constant as

〈∆r2〉
4τ

= D1p (2.1)

Here τ is the lag time for the displacement, ∆r = |~r(t+ τ)− ~r(t)|, and the subscript 1p

indicates that this diffusion constant D1p is based on averages over single particle motion.

In 3D, the single particle diffusion constant relates to the 3D viscosity η3D by the

Stokes-Einstein-Sutherland equation [9, 10]

DB =
kBT

3πη3Dd
, (2.2)

with Boltzmann constant kB, absolute temperature T , and particle diameter d. The

subscript B indicates this is a bulk diffusivity. However, this equation does not apply to

soap films, for several reasons. First, as noted previously, 2D fluid flows are fundamentally

different than 3D flows, leading to more complex relationships betweenD1p and d. Second,

diffusion and flow in a soap film is influenced by the viscosity of the surrounding air. Third,

the viscosity in 2D has different units: Pa·s·m as compared to Pa·s in 3D. In 1975 Saffman

and Delbrück treated this case, deriving an approximation for D1p for the situation of a

2D membrane with interfacial viscosity η2D with fluid of 3D viscosity η3D on both sides

of the membrane [11]. Using the small parameter ǫ = dη3D/η2D, Saffman and Delbruck
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found [11, 12]

D1p =
kBT

4πη2D

[

ln

(

2

ǫ

)

− γE
]

, (2.3)

using Euler’s constant γE = 0.577. In particular, this derivation treated the 2D membrane

as a thin 3D layer of fluid with 3D (“bulk”) viscosity ηB, thickness h, and therefore a

2D viscosity η2D = hηB. They considered the diffusion of disks of diameter d and height

h which spanned the membrane thickness, and which only move horizontally (within

the membrane). Equation 2.3 works well for small ǫ (large η2D). ǫ
−1 is often termed the

Boussinesq number Bo, so equivalently Eqn. 2.3 works well for large Bo [2, 13]. Hughes

et al. [14] extended Eqn. 2.3 to work for all ǫ, with a useful approximation to their result

added later by others [15, 16]. While the large ǫ limit is of less interest to small particles

diffusing in soap films, we note that the large ǫ behavior has been experimentally verified

in lipid membranes [16] and liquid crystal films [17]. Note that Eqn. 2.3 assumes that

the interface horizontal extent R is sufficiently large (d/R < ǫ), which is the case for us

(R ≈ 1 cm) [11].

Soap films are made from a regular fluid with added surfactant molecules, and it is

straightforward that the effective viscosity η2D for a soap film should depend on its con-

stituents. This was first described in 1957 by Trapeznikov [60]. He noted that there should

be a contribution hηB from the bulk fluid used to make the soap film. Dimensionally,

this makes sense, and it is also physically reasonable that η2D should increase for larger

h or ηB. Trapeznikov also noted that the surfactants at the fluid-air interface should

themselves act like a 2D fluid and contribute their own 2D viscosity ηint, so therefore the

effective 2D viscosity of the entire soap film would be given by

η2D,T = ηBh+ 2ηint. (2.4)
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This then is a prediction that η2D measured using Eqns. 2.1 and 2.3 is equal to η2D,T .

This prediction was confirmed in prior experiments by Prasad and Weeks for thin soap

films with h/d < 7 ± 3 [52, 53], but for thicker films diffusion seemed to sense the 3D

nature of the film and follow more closely Eqn. 2.2 [53].

Two particle correlated motion in thin films

Two-particle microrheology is an alternative analysis technique that complements mea-

suring single-particle diffusion via Eqn. 2.1 [8, 61]. Conceptually, this examines correla-

tions between the motion of each pair of particles. If our soap films obey 2D hydrody-

namics, two-particle correlations should obey 2D hydrodynamic theory [6] in which the

correlations decay as ln(R), where R is the separation between two particles. This is in

contrast to the situation in 3D, in which correlations decay as 1/R [8].

Specifically, there are four eigenmodes corresponding to pairwise motion in 2D. Two

of these modes are parallel motions (+) in the longitudinal (x) direction (←◦ ←◦ ) and

transverse (y) direction ( ↑◦ ↑◦ ). The other two are anti parallel motions (-) along x

(←◦ →◦ ) and y ( ↑◦ ↓◦ ). These four correlation functions are calculated by:

Dx±(R, τ) = 〈1
2
[xi(τ)± xj(τ)]2δ(R−Rij)〉i 6=j

Dy±(R, τ) = 〈1
2
[yi(τ)± yj(τ)]2δ(R−Rij)〉i 6=j (2.5)

Where i and j denote different particles and Rij denotes particle separation. For a purely

viscous system, much as 〈∆r2〉 ∼ τ (e.g., Eqn. 2.1), these correlation functions also will

be proportional to the lag time τ .

Di Leonardo et al. proposed a theory [6] based on the two-dimensional Stokes equa-

tion. The theory makes several approximations: neglecting stresses from the bounding
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fluid (air), neglecting the finite film size (in the lateral dimension), and neglecting iner-

tia. The Oseen tensor is obtained from the two-dimensional Stokes equation from which

the four eigenvalues corresponding to the eigenmodes given above can be solved [6]. The

solutions find correlations depending on R as:

Dx±/τ = A±B ln
L

R

Dy±/τ = A±B
(

ln
L

R
− 1

)

(2.6)

with

A = 2D1p

B =
kBT

2πη2D
. (2.7)

L is a length scale beyond which the approximation fails, although it can fail for different

reasons in different situations. For example, similar to the Saffman-Delbrück approxi-

mation, L could be related to the smaller of the system size R and the Saffman length

lS = η2D/2η3D [6]. To be clear, the results of Eqns. 2.6 are based on a purely 2D model

of hydrodynamic correlations, without any 3D fluid present.

Note that in Ref. [6], they assumed η2D = hηB for a soap film [6], but it has been

demonstrated that η2D = η2D,T = ηBh+ 2ηint is more appropriate for soap films [52]. As

can be seen in Eqn. 2.4, η2D,T ≈ hηB for thick films where h is large, so the distinction

only matters for thin films.

In summary, measuring the correlations described in Eqns. 2.9, fitting to Eqns. 2.6,

and interpreting the fit parameters with Eqns. 2.7 is another route to measuring η2D. One

advantage of this method is that it should be less sensitive to the exact position of small
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tracer particles within the film: partially protruding into the air, or fully immersed in the

film. Protrusion of a tracer particle into the air certainly affects its single-particle mobility

[62], and so using single-particle analysis methods may result in errors in determining

η2D. In contrast, the two-particle correlations are measuring long-range hydrodynamic

correlations which are insensitive to the local details [8]. Even if one examines correlations

between one particle protruding through the soap film surface and a second particle fully

immersed in the film, the particular motions due to the local environment of each particle

will be uncorrelated, and the long-range correlations should feel only the hydrodynamic

effects of the soap film itself (perhaps as modified due to coupling with the air). Also,

the two-particle correlation predictions (Eqns. 2.6) do not make any assumptions about

the nature of the tracer particles, but focus only on hydrodynamics. Historically, this

insensitivity to the tracer details was a key strength and motivation for two-particle

correlation techniques in soft matter [8]. In other words, these predictions do not assume

that the tracers are embedded cylinders, unlike the Saffman-Delbrück approach. So, these

predictions should hold even in the limit of small tracer particles with diameters smaller

than the film thickness, d≪ h. Another way to see the advantage of the method is that

the correlations between two particles separated by a distance R is probing the same

hydrodynamics as a particle of size R would see, and this overcomes the concerns of

small particle size [8].
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Figure 2.2: Cartoon depicting soap film of thickness h, with a single representative
particle of diameter d < h. On both air-film interfaces, representative soap molecules are
shown. As discussed in the text, we believe it is likely that particles with d < h sit in the
interior of the film, but we cannot rule out the possibility that some particles are trapped
at the air-film interface.

2.3 Materials and methods

Samples and data acquisition

We make our soap films from bulk solutions of water, glycerol, and surfactant. We use the

dishwashing detergent Dawn as our surfactant to stabilize the interfaces of the soap film.

Once the bulk solution is prepared, we add fluorescent polystyrene particles of known

diameter (we use d=0.1, 0.18, and 0.5 µm). We then draw a soap film from the bulk

solution using a rectangular metal wire frame with dimensions ≈ 1.5 cm×2.0 cm, and

thickness h. A cartoon depicting the film and a representative particle is shown in Fig. 2.2.

We have a microscope chamber made with a water filled sponge lining to increase

humidity and reduce evaporation of water from the soap film. This chamber is mounted

on our upright microscope, and the freshly drawn soap film is placed inside the chamber.
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We seal the chamber as far as possible from outside air, to reduce convection at the

soap-film interface.

We use fluorescence microscopy to record a 33 s movie of particles diffusing in the

soap film at a frame rate of 30 images/s. The film is illuminated using an arc lamp, and

a movie of particles diffusing is taken using a CCD camera. Microscope objectives 20×,

40×, and 63× are used for particles of diameter d=0.5, 0.18, and 0.1 µm respectively.

We post-process the movies using particle tracking algorithms [63] to extract particle

positions from individual frames. We note that there is position uncertainty from particle

localization accuracy. There are multiple ways of measuring this uncertainty [64–66]. We

use the CVE method [66] to estimate this uncertainty.

〈∆rn∆rn+1〉 = 4D1pR∆t− 2σ2 (2.8)

where n denotes frame number, ∆t is the time per frame, R = 1/6 is the motion blur

coefficient, D1p is the single-particle diffusion coefficient and σ denotes position uncer-

tainty.

The 3 different particle sizes of diameters d = 0.1, 0.18, and 0.5 µm have position

uncertainties of 0.10, 0.065, and 0.080 µm respectively.

Some macroscopic flow of the soap film in its frame is unavoidable, resulting in coher-

ent flow of the tracers in our movies. Between each video frame we compute the center

of mass motion by finding the average displacement of every particle. The uniform flow

is then subtracted from the particle positions to provide their relative locations in the

frame of reference co-moving with the flow. This lets us then study the diffusive motion

of the individual particles. However, drift removal may artificially reduce true long-range

hydrodynamic correlations. We have checked that our algorithm does not unduly affect
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the correlations; details of this are given in the Appendix.

We would like to know where our particles are within the soap film, but this is difficult

to determine directly given that the depth of focus of our microscope is comparable to

the soap film thickness. For particles in films thinner than the particle diameter, it is

highly likely that capillary forces ensure that the particle lies symmetrically within the

film [67]. One experiment demonstrated that pinning of the contact line at a rough

particle surface can sometimes delay reaching the equilibrium position for time scales

longer than our experiments [68], and we cannot rule out that our particle positions may

not be equilibrated. For particles in films thicker than their diameter, particles might sit

at the air-water interface to reduce the air-water surface energy. However, as mentioned

in a prior study of soap films [53] and as we observe, small particles in very thick films

diffuse as if they are in a bulk solution of the soap film liquid. This would not happen for

particles trapped at an interface [62]. The two-particle correlation functions should be less

sensitive to the exact positions of the tracer particles. Note that a recent paper showed

comparisons between microrheology and macrorheology results, and pointed out that

measurements of particles not in the interface are misleading [13]. They were studying

cases where the interface was with a bulk liquid and air, quite different from our finite-

thickness films. Our particles should still be reporting film properties no matter their

location. Our results for the two-particle correlations support this, as will be described

in our Results and Discussion section.

Measuring soap film thickness

After taking the movie, we take the film out of the microscope humidity chamber and

measure the film’s thickness using the infrared (IR) absorption of the water based soap
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Figure 2.3: Soap film thickness measuring device used in experiments. Light from an
incandescent lamp is focused on the soap film. Then the light transmitted from the soap
film is incident on the IR filter that allows only light of wavelength 3 µm to be detected
by the photodector.
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films at wavelength λ = 3.0 µm. This is based on a previously established technique [69]

which we briefly summarize here. Light is incident on the soap film from an incandescent

lamp. The light passes through an optical chopper, to chop the light at a particular

frequency. This light is then focused on the soap film by an IR lens to a spot size of

∼ 2.5 mm. An IR filter (3.00 ± 0.01 µm JML Optical Industries, LLC) in the beam

path allows only wavelength of 3.0 µm to pass through. Finally, the light is refocused on

an InAs photodiode detector (Teledyne Judson, model J12TE2-66D-R01M) by a second

IR lens. The signal from the photodetector is obtained from a lock-in amplifier (Signal

Recovery, model 7265) locking with the external reference frequency of the chopper, which

reduces noise. We separately measure the refractive index and absorption coefficient of

each bulk solution at the same wavelength. From measured transmittance through the

film and these details of the bulk solution, we calculate the film thickness using a modified

Beer-Lambert law that takes into account the multiple reflections in the soap film. This

method is slightly different from prior work [52], and is a notable improvement in that

the thickness measurement is done physically adjacent to the microscope and thus is

done within 30 s of taking the microscopy data, allowing for higher accuracy. In the

prior work of our group, the films often popped before their thickness could be measured.

Additionally, there was a lag of several minutes between the microscopy movies and the

thickness measurement, which potentially allowed for the film to drain or evaporate and

thus increased the uncertainty of those film measurements [52].

Soap films thin over time at the center due to drainage of liquid towards the sides

arising from capillary forces. Figure 2.4 shows soap film drainage for 30 percent and 60

percent glycerol weight content soap films. In general, we observe that films made of

bulk solutions with lower glycerol concentration drain faster than those made of higher

glycerol concentration.
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Figure 2.4: Soap film thickness as a function of time which decreases due to soap film
drainage, for films with weight percent glycerol as indicated.
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The timing of our experiment matters. When the soap film is initially drawn on to

our frame, in addition to the drainage, there are also transient flows primarily due to air

currents. Accordingly, after placing the film into the microscope chamber and sealing the

chamber, we wait for 10 to 20 minutes before taking the movie. This allows the initial

rapid drainage to slow, and also the transient flows. The duration of the movie (33 s) and

delay before measuring the thickness (30 s) are short on the time scale of the drainage,

as is apparent from Fig. 2.4.

In our soap film thickness measurement, there are three main sources of error. The

first source of error is due to soap film drainage in the time between our microscopy

and soap film thickness measurements. This error is higher in low viscosity soap films

due to their faster drainage as mentioned above. We quantify this error by measuring

the maximum change in thickness during 30 s from the curves shown in Fig. 2.4, which

is a maximum of 0.03 µm. The second source of error comes from the precision of the

lock-in amplifier and noise present in the measurement, including possible variations in

illumination. This is worse for thicker films (which have less transmitted light) and is

at most 0.02 µm. The third source of error is from residual soap film flows and the fact

that soap films are not uniformly thick. This error is quantified by the fluctuations in the

soap film thickness after long times, when film thickness reaches equilibrium, i.e., when

thickness is almost constant. This error is negligible for low viscosity films, but plays an

effect in films of higher viscosity, the maximum error being 0.02 µm. We assume these

errors are additive. Our maximum error is for the thickest films, which also correspond

to the highest viscosities. The maximum uncertainty is ±0.05 µm.
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Effect of drift subtraction on two particle correlation results

Some macroscopic flow of the soap film within the soap film holder is inevitable. This can

be quantified by observing that the particles have a slow net drift. That is, 〈∆~r〉 = ~v(t)τ

with a slowly varying velocity ~v, for small lag times τ , and where the angle brackets

indicate an average over the displacements ∆~r of all particles at a given time. The two-

particle correlation functions:

Dx±(R, τ) = 〈1
2
[xi(τ)± xj(τ)]2δ(R−Rij)〉i 6=j

Dy±(R, τ) = 〈1
2
[yi(τ)± yj(τ)]2δ(R−Rij)〉i 6=j (2.9)

denote the four eigenmodes corresponding to pairwise motion in 2D. Two of these modes

are parallel motions (+) in the longitudinal direction (x ) and transverse direction (y).

The other two are anti-parallel motions (-) along x and y. By examining the above,

it can be seen that such a drift will not affect the anti parallel correlations, but will

increase the measured value for the parallel correlation functions Dx+ and Dy+. If ~v

was time-independent, then such drift is straightforward to detect and remove from the

particle trajectories. However, we often find that ~v(t) has a slow but nontrivial time

dependence, and this then makes its influence on Dx+ and Dy+ depend on τ . Moreover,

due to hydrodynamic interactions, particle motions should have long-range correlations

even in the absence of flow, so there is a danger that by removing correlated motion of

all the particles, some of the signal from hydrodynamic correlations is lost. As already

mentioned, the negative correlations are not affected at all, as they measure the relative

displacement of particles, and any center of mass motion cancels out. Likewise, single

particle measurements of 〈∆r2〉 are barely affected by slow drift; to be safe, we calculate
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our single particle data using 〈(∆~r − 〈∆~r〉)2〉 = 〈∆r2〉 − 〈(∆r)2〉.

To deal with the effects of drift on Dx+ and Dy+, we compute 〈∆~r(t)〉 at every time

t using displacements with lag time 1/30 s, the time between images. We then integrate

〈∆~r(t)〉 to get a trajectory of the center of mass of all of the particles, ~r(t). Next, we

smooth this with a running average over T time steps. We then subtract the smoothed ~r(t)

from each individual particle trajectory, to bring the individual particle trajectories into

the moving reference frame. In some cases we do not do this smoothing, corresponding to

the T = 1 limit where the center of mass is forced to be motionless once the trajectories

are brought into the moving reference frame.

Figure 2.5 shows our analysis of how T affects two particle correlations, for several

choices of τ . All values of the smoothing parameter T and lag time τ are given in terms

of the frame rate of the camera, so τ = 1 corresponds to 1/30 s for example. We desire

that our results should be τ independent ideally. Indeed, as should be, the Dx−/τ data all

collapse for all smoothing parameters T and lag times τ , as mathematically our procedure

leaves the anti parallel correlations unchanged. These are the lower curves in Fig. 2.5 that

increase for R > 2 µm.

For T = 1 in Fig. 2.5(a), the positive correlations Dx+ have very slight τ dependency,

for lower τ . This is likely due to artificial subtraction of positive correlations as explained

above. For T = 8 in Fig. 2.5(b), the positive correlations at higher τ = 8, 12, 16 almost

collapse, with slight τ dependence but the positive correlations curve for τ = 4 is much

higher. This is due to lack of drift subtraction for τ < 8 when T = 8. This is evidence

that ~v(t) changes even on a fairly quick time scale of τ = 4 (corresponding to 4/30 s).

Figure 2.5(c) looks at different smoothing parameters T = 1, 2, 4, 8, for the same

lag time τ = 4. The curves do not collapse on each other for reasons explained above.

Fig. 2.5(d) looks at the same as data (c), but for τ = 12. The curves for different T collapse
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Figure 2.5: (a) shows Dx+ and Dx− for T=1. (b) shows the same data as (a) for T = 8.
(c) and (d) show Dx+ and Dx− for a particular τ = 4, 12 respectively. Note that T and
τ are in units of video frames, where 1 frame = 1/30s.



Chapter 2. Soap Films as model 2D fluids 32

nicely on top of each other for τ = 12. While the Dx+ still have very slight dependence, it

is much smaller for T < τ . Hence, at higher lag times τs, we are confident that smoothing

does not unduly affect our results, as long as the smoothing parameter T is chosen to

be shorter than τ . In order for uniform treatment of all samples, we analyze all movies

using T = 1. For each movie, we average the data over a wide range of τ ’s. The smallest

τ is always 2 video frames (66 ms). The largest τ is chosen for each individual movie

to be the largest one for which data are available, in other words, the largest duration

over which individual particles are tracked; this is at most 1 s. We compute Eqns. 2.9 for

each τ , fit to find the parameters A, B, and L, and then average those parameters over

the different τ ’s. The standard deviations of those data lead to the uncertainties shown

in the manuscript. While the evidence of Fig. 2.5 gives support for our choice T = 1,

we note that there is still some slight τ dependence, causing larger positive correlations

corresponding to larger τ . As only the positive correlations are affected, we would expect

A to be different as compared to single particle results. However, our results show that

this method works well. As noted in the manuscript, we find A/D1p = 2.02± 0.12, which

is in good agreement with the expected result A/D1p = 2.

2.4 Results and Discussion

Single particle diffusion

In the prior soap film studies by our group [52, 53], the single particle diffusion constant

was measured through the mean square displacement of tracer particles from Eqn. 2.1 –

that is, plotting 〈∆r2〉 as a function of τ and fitting a line to find D1p. A recent paper by

Vestergaard et al. shows that this is not the best method [66]. In the current study, we
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use their covariance based estimator (CVE) method. This yields the optimal D1p from

〈∆r2n〉
4∆t

+
〈∆xn∆xn+1〉

2∆t
+
〈∆yn∆yn+1〉

2∆t
= D1p (2.10)

Here ∆rn denotes displacement between frames and n denotes frame number. x and y

denote the two dimensions, and ∆t is the frame rate of recording, 33 ms. The averages

are taken over all video frames n and all particles. This method has the advantage of

removing fictitious correlations between subsequent frames which can be due to video

artifacts or other subtle experimental errors [66].

In a bulk (3D) liquid, diffusivity DB is a constant given by Eqn. 2.2 [9, 10]. How-

ever, in soap films we expect diffusivity D1p to follow Eqn. 2.3 using η2D equal to the

Trapeznikov viscosity, η2D,T given by Eqn. 2.4. Reversing this logic, we compute η2D from

measured single particle diffusivity D1p using Eqn. 2.3, the known viscosity of air (ηair =

0.017 mPa·s), and the known tracer diameter d. We then obtain ηint from this measured

η2D via Eqn. 2.4. This interfacial viscosity should be independent of film thickness as it

is a property solely of the soap-air interface, and the soap concentration is kept constant

throughout our experiments. This conjectured independence is a test of the approxima-

tions, and accordingly in Fig. 2.6 we show ηint as a function of h/d. Each data point

corresponds to a particular soap film. For h/d < 5, ηint is positive and roughly constant;

in this region, the approximations of the Saffman-Delbrück model work well. Taking the

mean value of the data for h/d < 5 gives us ηint = 1.42 ± 0.74 n·Pa·s·m. This agrees

with a previously published value of 0.97 ± 0.55 n·Pa·s·m for soap films made with the

same surfactant [53]. While we do not have a direct method to measure viscosity of the

soap-air interface, the rough agreement of the measurements for h/d < 5 seen in Fig. 2.6

demonstrate that single-particle diffusivity is one method to measure ηint for a soap film,
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Figure 2.6: Plot of interfacial viscosity from single particle diffusion measurements as a
function of h/d. Filled circles denote particles of diameter 0.1 µm, open circles denote
particles of diameter 0.18 µm and diamonds denote particles of diameter 0.5 µm. The
horizontal light shaded region represents ηint = 1.42±0.74 nPa·s·m based on the mean and
standard deviation of the data for h/d < 5. The vertical dark shaded region represents the
crossover from physical behavior at small h/d to unphysical behavior at h/d > 5.2± 0.9.
The horizontal error bars are due to uncertainties of h, and vertical error bars are due to
uncertainties of h and η2D (see Eqn. 2.4).

as has been argued previously [53].

Figure 2.6 also shows that for larger h/d, ηint is unphysically negative and also quite

variable. The crossover occurs at h/d = 5.2 ± 0.9. This value is obtained from the gap

in our data in the crossover region, i.e. 5.2 denotes the center of the gap with a width

of 0.9 on either side. Our current observation is an improvement over prior experiments

which had a larger gap and identified the crossover as h/d = 7 ± 3 [52]. Furthermore,

the reasonable agreement for this crossover location between the different particle sizes

(different symbols in Fig. 2.6) is good evidence that the crossover is indeed a function of

h/d. As noted in the Hydrodynamic theory section, a breakdown for large h/d is expected.

The Saffman-Delbrück approximation treats the tracer as a cylinder with height equal

to the film thickness, which is dubious for h/d > 1. Given that, it is remarkable that

this approximation holds up to h/d = 5.2± 0.9. Another way to state that is, given our
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experimental uncertainty, we see no deviations from 2D behavior up to h/d = 4.3.

For larger h/d, the interfacial viscosities in Fig. 2.6 are unphysically negative, showing

that particles are diffusing faster than expected – that is, faster than one expects, if η2D

were equal to η2D,T . We also observe that particles of smaller diameter are less negative

in Fig. 2.6. This is because for large h/d, particles diffuse more like in bulk [70], i.e.,

measured diffusion D1p ≈ DB, as in Eqn. 2.2. Equating this D1p to the Saffman-Delbrück

equation Eqn. 2.3 and approximating the ln term as a constant, we get for large h/d

that the measured η2D ∼ ηBd. Using Eqn. 2.4 to extract ηint from these apparent η2D

values, we see that the particular negative values for ηint will be smaller in magnitude for

smaller d, and that the specific values will also depend on ηB (which differs from film to

film in our experiments). The differing d and ηB give rise to the scatter of the data seen

in Fig. 2.6 for h/d > 5.2. Despite the scatter, it is apparent that there is a fairly smooth

crossover from the regime where the Saffman-Delbrück approximation works to where it

fails.

Two particle correlated motion

The two-particle measurements should not suffer from the difficulties the one-particle

measurements have, as the two-particle correlations reveal the long-range hydrodynamic

correlations of a soap film rather than the diffusive properties of a single particle. As

described by Eqns. 2.9, we compute the two-particle correlation functions for a particular

experiment and plot them in Fig. 2.7 averaging over a wide range of lag times τ . The

data behave as expected. For example, for nearby particles (small R), particles move

in similar directions and the parallel correlations are large (Dx+ and Dy+, indicated by

the solid symbols). The anti parallel motions are smaller for small R (Dx− and Dy−,
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Figure 2.7: Two particle correlations in a single soap film measurement as a function
of particle separation R. Particles of diameter d = 0.18 µm were used, and soap film
thickness was h = 0.46 ± 0.04 µm. The solid lines are fits from Eqn. 2.6 with A = 1.09
µm2/s, B = 0.12 µm2/s and L = 81 µm. The data are computed from all particle pairs
and averaging over a wide range of lag times τ .

indicated by the open symbols). All of the correlation functions vary logarithmically

with R, and Eqns. 2.6 fit the data well as seen by the lines. These lines have three fitting

parameters, A, B, and L, which have a simple graphical interpretation. A denotes the

point of intersection of positive and negative correlations on the vertical axis, B is the

slope of the lines, and L is the point of intersection of Dx+ and Dx− on the R-axis.

For each experimental movie, we compute Eqns. 2.9 as a function of τ , and fit data for

each τ to determine coefficients A(τ), B(τ), and L(τ). These have a slight τ dependence,

but minimal enough that we simply average over several exponentially-spaced values of

τ ; see Sec. 2.3 for further discussion. We refer to the τ -averaged values as A, B, and L

for the remainder of this paper. We plot these fit parameters in Fig. 2.8 as a function
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Figure 2.8: Fit parameters for all experiments as a function of h/d. Two particle correla-
tions in a single soap film measurement. Symbols denote particle diameters as in Fig. 2.6.
See Eqns. 2.6 and 2.7 for the meaning of the fit parameters. The vertical error bars are
from the standard deviations of each fit parameter calculated for the different τ ’s.

of h/d. The effects of collective drift subtraction on our results are discussed in detail in

Sec. 2.3. The uncertainties are reflected by the error bars shown in Fig. 2.8. The data are

scattered, which is to be expected as the parameters depend on far more than h/d. The

different data correspond to a variety of bulk viscosities and particle sizes. Accordingly,

we rescale each of these to make sense of their behavior, and show the rescaled results in

Fig. 2.9. We now discuss these rescaled results.

From Eqn. 2.7, we expect A = 2D1p where D1p is the single particle diffusivity of

that measurement. Figure 2.9(a) shows A/D1p is constant with value 2.02±0.12, in great
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Figure 2.9: Fit parameters for all experiments as a function of h/d. Symbols denote par-
ticle diameters as in Fig. 2.6. (a) A/2D1p is roughly constant, with mean value 2.02±0.12
over all data as indicated by the dashed line. (b) 1

2
[kBT
2πB
− ηBh], which should theoret-

ically be ηint. The dashed line shows the mean value ηint,2p = 1.20 ± 1.30 nPa·s·m. (c)
L/d, where the dashed line represents the mean value L/d = 360± 60 for the data with
h/d < 5.2.
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agreement with the theoretical prediction. Previous work by Prasad and Weeks found a

value of 1.9± 0.1, a moderately concerning discrepancy from the theoretical prediction.

The improvement in our current results is due to the CVE method we now use to measure

D1p [66]. If we instead use the prior method of fitting a line to 〈∆r2〉 we find the erroneous

result A/D1p = 1.83± 0.09, in agreement with the earlier concerning result.

Figure 2.9(b) shows 1
2
[kBT
2πB
−ηBh]. This quantity should be the interfacial viscosity ηint

as seen by rearranging Eqn. 2.7. Hence, this is a method to find the interfacial viscosity

from two particle correlations. Averaging all the data in Fig. 2.9(b), we find ηint,2p =

1.20 ± 1.30 nPa·s·m. This is consistent with our single particle measurement (ηint,1p =

1.42 ± 0.74 nPa·s·m). While the two-particle measurement has a larger uncertainty, we

believe the two-particle value to be more reliable as it uses data from all soap films, both

thick and thin. Moreover, this two-particle measurement is robust to concerns about the

particle position within the film, as previously discussed. Our value of A should depend

on the tracer details as it should be tied to D1p through Eqn. 2.7, but B and thus ηint

should be measuring true properties of the soap film.

Interestingly, rescaling the third fit parameter L by the particle diameter d plausibly

collapses the data, especially for small h/d, as shown in Fig. 2.9(c). For thin films (h/d <

5), L/d = 360±60, indicated by the dashed line. For thicker films L/d shows scatter and

for the most part is smaller than the thin film value.

Di Leonardo et al. [6] discuss the possible origins of the length scale L. In a purely

theoretical infinite-extent planar 2D fluid, there is no cutoff length scale L, and corre-

lations die out at infinity. In reality, the finite system size provides one potential cutoff

length scale, which was the case in their work with small films. Our film boundary is at

least 500 µm away from our field of view, so this seems unlikely to explain our values

of L of the order of 10-200 µm. Particle motion relative to the film can lead to another
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length scale [2, 6, 7], but our particles are passive tracers (in contrast to Ref. [6] for

example, which used laser tweezers to move particles). Another possibility is stresses

from the surrounding air [2, 6, 7], which cannot be neglected at distances larger than

the Saffman length ls. In our system, ls = ηBh/2ηair, which varies from 10 − 1000µm.

However, our observed L does not have such a wide range. Furthermore, our thicker films

generally have higher ηB than thinner films, and hence larger ls, yet have smaller values

of L. None of these length scales seem to match our observed L, and these possibilities

do not explain our observed dependence of L on particle size d. Another possible candi-

date is the capillary interactions between particles. Previous studies found that capillary

interactions between particles in a freely suspended liquid film can cause particle-particle

interactions even at distances greater than 100µm [67, 71, 72], and these interactions

should scale with d. These forces would depend on if particles penetrate zero, one, or

two of the film-air interfaces, but capillary forces should not otherwise depend on the

film thickness, so the variability seen in Figs. 2.8(c) and 2.9(c) as h/d changes seems

to contradict this. Additionally, as explained in the Materials and methods section, in

thick films we think our particles are likely to be in the film interior – not penetrating

either film-air interface – and thus not experiencing capillary forces. One final possibility

is that the theory [6] takes only two particles into account. We typically observe O(50)

particles in a field of view, and perhaps many body effects are present in our data. These

might affect L by screening particle-particle correlations. These effects however are more

complicated to model, and determining a length scale due to many-body effects is not

possible. Moreover, our data are from a variety of concentrations all in the fairly dilute

limit, and concentration variations seem not to explain the behavior of L.
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2.5 Conclusions

We have used two different methods for measuring the effective two-dimensional viscosity

η2D of a soap film. The 1957 paper by Trapeznikov [60] put forth Eqn. 2.4 conjecturing

that this viscosity is related to the soap film thickness, the viscosity of the fluid used to

form the film, and a contribution from the surfactant layers bounding the film; in other

words, η2D = η2D,T . As we have used the same surfactant concentration for all of our

soap films, the validation of our methods for measuring η2D is the consistency between

different measurements of ηint, the contribution to η2D from the surfactant layers. Figure

2.6 shows that for single-particle measurements, we can get plausible values of ηint for thin

films only. Figure 2.9(b) shows that using two-particle correlations, we get moderately

consistent values of ηint from all of our measurements. The scatter of the data in both

of these figures shows that neither of these methods are fool-proof, and best results are

obtained by averaging over many films. On the other hand, given the variability of our

tracer particle size (a factor of 5), bulk viscosity of the soap film solutions (a factor of

4), and film thicknesses h (a factor of 30), the agreement of the ηint data is encouraging.

Our measurement of ηint = 1.20± 1.30 nPa·s·m based on the two-particle correlations is

the value we have the most confidence in, as it uses data from every experiment we have

done and is least dependent on the details of the tracer particles.

For larger soap films, the one-particle data of Fig. 2.6 show unphysically negative

ηint values, whereas for the two-particle results the data are generally physically plau-

sible [Fig. 2.9(b)]. The one-particle data are due to the breakdown of the assumptions

behind the Saffman-Delbrück model, which models the tracers as cylinders which span

the soap film thickness. Given this, it is pleasantly surprising that the Saffman-Delbrück

approach works for films up to four times thicker than the spherical particle diameter.
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The two-particle method, in contrast, does not depend on the details of the tracers as

sensitively, but rather on the long-range hydrodynamic properties of the soap film as

a two-dimensional fluid. That these hydrodynamic properties indeed behave in a two-

dimensional manner is demonstrated in Fig. 2.7 where the two-dimensional theory fits

through the data.

These methods for measuring η2D and ηint should be useful for measuring the shear

viscosities of other surfactants. Our confirmation that the flow fields are two-dimensional

in character on length scales of 5−100 µm are a useful complement to prior macroscopic

experiments that treated soap films as two-dimensional fluids [55, 56, 58, 59]. In summary,

the diffusive motion of particles appears quasi-two-dimensional for thin films but not for

thick films, whereas the long-range flow fields appear quasi-two-dimensional for both

thick and thin films.



Chapter 3

The 2D vs 3D glass transition in

colloids

3.1 Introduction

If a liquid can be cooled rapidly to avoid crystallization, it can form into a glass: an

amorphous solid. The underlying cause of the glass transition is far from clear, although

there are a variety of theories [25–27]. One recent method of understanding the glass

transition has been to simulate the glass transition in a variety of dimensions (including

4 dimensions or higher) [33, 34, 73–75]. Indeed, the glass transition is usually thought to

be similar in 2D and 3D [30, 32] and in simple simulation cases such as hard particles, one

might expect that dimensionality plays no role. As a counterargument, two-dimensional

and three-dimensional fluid mechanics are qualitatively quite different [76]. Likewise,

melting is also known to be qualitatively different in 2D and 3D [21–23, 77].

Recent simulations give evidence that the glass transition is also quite different in

2D and 3D [33–35]. In particular, Flenner and Szamel [33] simulated several different

43
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glass-forming systems in 2D and 3D, and found that the dynamics of these systems were

fundamentally different in 2D and 3D. They examined translational particle motion (mo-

tion relative to a particle’s initial position) and bond-orientational motion (topological

changes of neighboring particles). They found that in 2D these two types of motion be-

came decoupled near the glass transition. In these cases, particles could move appreciable

distances but did so with their neighbors, so that their local structure changed slowly.

In 3D, this was not the case; translational and bond-orientational motions were coupled.

They additionally observed that the transient localization of particles well known in 3D

was absent in the 2D data. To quote Flenner and Szamel, “these results strongly suggest

that the glass transition in two dimensions is different than in three dimensions.”

In this work, we use colloidal experiments to test dimension dependent dynamics

approaching the glass transition. Colloidal samples at high concentration have been es-

tablished as model glass formers [28–31]. Colloidal experiments have the advantage that

individual particles can be visualized. We analyze three different types of colloidal sam-

ples, all using bidisperse mixtures to avoid crystallization.

We perform experiments with two 2D bidisperse systems, one with with quasi-hard

interactions, and the other with long range dipolar interactions. The first sample type is

a quasi-2D sample with hard particles (short range, purely repulsive interactions) which

we term ‘2DH.’ The 2DH sample is made by allowing silica particles to sediment to

a monolayer on a cover slip [78]. The second sample type is also quasi-2D but with

softer particles, which we term ‘2DS.’ The 2DS system is composed of bidisperse PMMA

particles dispersed in oil, at an oil-aqueous interface [79].

3D data are obtained from previous experiments by Narumi et al. [80] which studied

a bidisperse mixture of hard particles. Our results are in qualitative agreement with the

simulations of Flenner and Szamel.
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Figure 3.1: Images of 2DH, 2DS, and 3D samples. Scale bar denotes 10 µm.

We believe our observations are due to the Peierls instability [18, 81], also called

Mermin-Wagner fluctuations [19, 82]. As Peierls originally argued, there exist long-range

thermal fluctuations in positional ordering in one-dimensional and two-dimensional solids.

Illing recently noted that these arguments should apply to disordered systems as well [83].

One can measure particle motion relative to the neighbors of that particle to remove the

influence of these long wavelength fluctuations [84]. Using this method we observe that the

translational and structural relaxations are similar between 2D and 3D, demonstrating

that the underlying glass transitions are unaffected by the Mermin-Wagner fluctuations.

3.2 Materials and Methods

For 2D Hard (2DH) experiments, we confine bidisperse non-functionalized silica particles

(diameters σS = 2.53 and σL = 3.38 µm, Bangs Laboratories, SS05N) to a monolayer by

gravity. The number ratio is NL/NS = 1.3± 0.5, and varies from sample to sample. The

particles are confined between a coverslip and a glass slide, at the coverslip interface for

microscopy. The coverslip is made hydrophobic by treatment with Alfa Aesar Glassclad

18 to prevent particle adhesion. All particles are observed to move during the experiment;
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none adhere to the glass. We do not add salt. Prior to taking data, the sample is quenched

by shaking and letting particles sediment on the coverslip (effectively, this is a concentra-

tion quench). The sedimentation lengths (lg = kBT/Fg) for both small (lg/σS = 0.019)

and large particles (lg/σL = 0.006) are small enough to ensure fast sedimentation and

formation of a quasi-2D monolayer; that is, thermal energy is not enough to overcome

the gravitational potential energy of the particles [30]. We verify that in all experiments,

only one layer of particles is present (ensured by keeping the overall particle concentra-

tion below the level that requires a second layer to form). We use brightfield microscopy

and a CCD camera to record movies of particles diffusing. This system is analogous to

2D hard disks. The only caveat is that the centers of the large and small particles are

not at the same height, so adjacent large and small particles do not contact each other at

their midplane [85]. This allows these two particle sizes to come slightly closer together

than they would otherwise, perhaps enhancing the disorder similar to the Kob-Andersen

binary Lennard-Jones mixture [86].

For 2D Soft (2DS), the experimental system is composed of bidisperse poly(methyl

methacrylate) (PMMA) colloids of diameters 1.1 and 2.6 µm. The particles are at the

interface between oil and a glycerol/water mixture. The aqueous phase consists of 10mM

NaCl 70 wt. % glycerol solution, while the oil phase consists of a 50-30-20 v/v mixture

of cyclohexyl bromide, hexane and dodecane. Interactions between particles are dipolar

in the far-field limit. A dimensionless interaction parameter [31] is used to characterize

the system:

Γ2DS =
(πn)3/2

8πǫkBT
(ξpB + (1− ξ)pA)2 (3.1)

where ǫ = 4.2ǫ0. The electric dipole moments are pA and pB = 2300 and 590 e · µm

respectively. ξ ≈ 0.57− 0.83 is the number fraction of small particles, and n is the areal
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density, measured from a Voronoi tessellation.

The 3D sample data were obtained from a previous experiment by Narumi et al. [80].

In 3D experiments, PMMA colloids were stabilized sterically by a thin layer of poly-12-

hydroxy-stearic acid. A binary mixture with diameters σL = 3.10 µM and σS = 2.36 µm

were used. The number ratio of small particles to large particles was 1.56.

The imaging regions encompass roughly 400, 1500, and 2000 particles for 2DH, 2DS,

and 3D samples respectively at their highest concentrations. The total system sizes are

much larger, approximately 105−106 for both 2D systems and 109 for the 3D system. We

post-processed 2DH and 2DS movies using particle tracking algorithms [63] to extract

particle positions from individual frames. The 3D data were previously tracked using the

same algorithm. Our uncertainty in particle position is 0.1 µm for the 2DH experiment,

0.5 µm for the 2DS experiment, and 0.2 µm (x, y) and 0.3 µm (z) for the 3D experiment

[80].

The α relaxation timescales are computed from self-intermediate scattering functions:

FS(k,∆t) = 〈exp(i~k ·∆~r)〉t where ∆~r = ~r(t+∆t)−~r(t). The wave vector k corresponds to

the peak of the structure factor S(~k) = 〈N−1|
∑N

i=1 exp(i
~k · ~ri(t))|2〉, where ~ri(t) denotes

particle positions at time t and the average is over all times. Corresponding to 2DH, 2DS,

and 3D, k = 2.2, 1.0, and 2.6 µm−1, obtained using the average k across all samples of a

particular type.

Several other functions we compute require identifying nearest neighbors. For both 2D

and 3D, for all functions below we use the Voronoi tessellation to identify the neighbors

[29].

We define cage relative translational correlation function as: FS−CR(k,∆t) = 〈exp(i~k ·

∆~rCR)〉t where ∆~rCR = ~r(t+∆t)−~r(t)− 1
N

∑

j[~rj(t+∆t)− ~rj(t)], where j denotes nearest

neighbors of the particle at initial time t, and the sum is over all neighbors. The cage
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relative mean square displacement is defined using the same displacements ∆~rCR. To

measure bond-orientational correlations in 2D [33], we define Ψn
6 (t) =

∑

m(N
n
b )

−1
m ei6θm ,

where m are the nearest neighbors of particle n and θm is the angle made by particle m

with defined axis. From this, the bond-orientational correlation function can be found as

CΨ(∆t) = 〈
∑

n[Ψ
n
6 (t)]

∗Ψn
6 (t+∆t)〉t/〈

∑

n |Ψn
6 (t)|2〉t.

In 3D, we define Qi
lm(t) = (N i

b)
−1

∑

j qlm[θij(t), φij(t)] where qlm(θ, φ) are spheri-

cal harmonics [33, 87] and the sum is over neighbors of particle i. Next we define the

correlation function Ql(t1, t2) = 4π/(2l + 1)
∑

i

∑l
m=−lQ

i
lm(t2)[Q

i
lm(t1)]

∗. We calculate

CQ(∆t) = 〈Q6(t, t+∆t)〉t/〈Q6(t, t)〉t corresponding to l = 6, given that l = 6 is sensitive

to hexagonal order known to be present even in disordered samples.

The two-particle vector correlations are determined from a spatial-temporal correla-

tion function defined as Svec(R,∆t) = 〈 ~∆ri ~∆rj〉pair/〈( ~∆r2)〉 [32, 88]. The average is over

all particles with initial separation R ≈ d, and over the initial time t. For the initial

separation R, we use R = 3.38± 0.2, R = 6.5± 0.4, and R = 3.1± 0.2 µm for the 2DH,

2DS, and 3D data. To determine the displacements ∆~r we use the time scale ∆t such that

FS(∆t) = 0.5. This is chosen to be a shorter time scale than τα, as particle displacements

are typically maximally spatially heterogeneous at a shorter time scale [29, 89].

For simulations, we used Lennard-Jones potential in systems evolving with Newtonian

dynamics in an NVT ensemble. The simulations were performed using LAMMPS [90].

In 2D we simulated a 65:35 binary mixture of Lennard-Jones particles [91]. In 3D we

simulated a 80:20 binary mixture same as in [86]. The interaction potentials are the same

in 2D and 3D, given by

Vαβ(rij) = 4ǫαβ

[

(

σαβ
rij

)12

−
(

σαβ
rij

)6
]

(3.2)
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where rij is the distance between particle i and j, and α and β denotes the type of

particle. We denote the majority species as the A particles and the minority species as

the B particles; the potential parameters are given by ǫBB = 0.5ǫAA, ǫAB = 1.5ǫAA, σBB

= 0.88σAA, and σAB = 0.8σAA. We present results in reduced units, where the unit of

length is σAA , the unit of temperature is kB/ǫAA , and the unit of time is
√

(mσ2
AA/ǫAA).

The mass for both species are the same. We simulated N = 10000 particles in 2D and

1000 particles in 3D at T = 1.0, 0.8, 0.6, and 0.5. For 2D the number density is 1.2, same

as in [91]. In 3D we used a cubic box of length 9.4σAA and hence number density 1.2,

same as in [86].

3.3 Results

We analyze three different types of colloidal samples, all using bidisperse mixtures to

avoid crystallization. The first sample type is a quasi-2D sample with hard particles (short

range, purely repulsive interactions) which we term ‘2DH.’ The 2DH sample is made by

allowing silica particles to sediment to a monolayer on a cover slip [78]. Our 2DH system

is analogous to a 2D system of hard disks of the sort studied with simulations [92, 93]. The

control parameter is the area fraction φ, with glassy samples found for φ ≥ φg,2DH = 0.79.

The second sample type is also quasi-2D but with softer particles, which we term

‘2DS.’ The 2DS system is composed of bidisperse PMMA particles dispersed in oil, at

an oil-aqueous interface [79]. The interactions in this system are dipolar in the far-field

limit, and the control parameter is the dimensionless interaction parameter Γ2DS, related

to the area fraction. Γ2DS is defined in the Methods section, with glassy behavior found

for Γ ≥ Γg,2DS = 530. For the third sample type, ‘3D,’ we use previously published 3D

data on a bidisperse sample of hard-sphere-like colloids [80]. For these data, the control
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Figure 3.2: Alpha relaxation timescale τα v/s concentration parameters of 2DH, 2DS,
and 3D samples. Left: 2DH sample data, glassy behavior for φ ≥ φg = 0.79. Middle:
2DS sample data, glassy behavior for Γ ≥ Γg,2DS = 530. Right: 3D sample data, glassy
behavior for φ ≥ φg = 0.58.

parameter is the volume fraction φ with glasses found for φ ≥ φg = 0.58 [80]. Details

of the sample preparation and data acquisition for these three sample types are in the

Methods section. For each sample type the glass transition is defined as the parameter

(Γ or φ) above which the sample mean square displacement (MSD) does not equilibrate

in experimental time scales, ∼ 10 hours for the 2D samples and ∼ 3 hours for the 3D

samples.

Flenner and Szamel found that in 2D particles move large distances without signifi-

cantly changing local structure [33]. They noted that time scales for translational motion

and time scales for changes in local structure were coupled in 3D, but not in 2D. The

standard way to define these time scales is through autocorrelation functions. Following

Ref. [33], we compute the self-intermediate scattering function FS(k,∆t) to characterize

translational motion, and a bond-orientational correlation function C(∆t) to character-

ize changes in local structural configuration (see Methods for details). These are plotted

in Fig. 3.3A − C and 3.3D − F respectively. At short time scales, particles have barely

moved, and so both of these correlation functions are close to 1. At longer time scales

these functions decay, taking longer time scales to do so at larger concentrations. The
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Figure 3.3: Structural relaxation in two and three dimensions. (A-C) Self-
intermediate scattering functions characterizing translational motion, using the
wave vector k corresponding to the peak of the structure factor (see Meth-
ods and Materials). (D-F ) Bond-orientational correlation functions. The columns
correspond to 2DH, 2DS, and 3D experiments. The parameters for the experi-
ments are: φ2DH = 0.55, 0.65, 0.70, 0.74, 0.75, 0.76, 0.78, and 0.78; 2DS (Γ2DS =
60, 100, 100, 140, 180, 310, 300, and 460); 3D φ3D = 0.40, 0.42, 0.52, 0.52, 0.54, 0.54, and
0.57. These parameters increase from left to right in each panel; or equivalently, from
bottom to top.
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Figure 3.4: Translational, bond-orientational, and bond-break correlation functions. (A-
C) The solid curves are FS(∆t) (translational correlations) and the dashed curves are
C(∆t) (bond-orientational correlations) for the 2DH, 2DS, and 3D samples as labeled.
The colors indicate different control parameters. For 2DH the colors black, red, blue, and
green denote φ2DH = 0.55, 0.75, 0.78, and 0.78 respectively. For 2DS the colors black, red,
blue, and green denote Γ2DS = 60, 180, 310, and 460 respectively. For 3D the colors black,
red, blue and green denote φ3D = 0.42, 0.52, 0.54, and 0.58 respectively. (D-F ) The solid
curves with circles are FS−CR(∆t) (cage relative translational correlations). The dashed
curves are C(∆t) which are identical to those shown in (A-C). (G-I) The solid curves
with circles are FS−CR(∆t) (cage relative translational correlations) and the dot-dashed
curves are B(∆t) (bond-break correlations) for the 2DH, 2DS, and 3D samples.
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traditional relaxation time scale τα is defined from FS(τα) = 1/e = 0.37. For the bond-

orientational correlation functions, we quantify local arrangements of particles through

ψ6 in 2D and Q6 in 3D, both of which are sensitive to hexagonal order [87]. Decay of the

autocorrelation functions for these quantities (Fig. 3.3D−F ) reflects how particles move

relative to one another, thus changing their local structure, whereas decay of FS reflects

motion relative to each particle’s initial position.

Specifically, Flenner and Szamel found that FS(∆t) and C(∆t) had qualitatively

different decay forms in 2D, but were similar in 3D [33]. In particular, FS(∆t) decayed

significantly faster than C(∆t) for 2D simulations. This means that in 2D particles could

move significant distances (of order their interparticle spacing) but did so in parallel with

their neighbors, so that their positions were changed but not their local structure.

To compare translational and bond orientational correlation functions of our data,

we replot some of the data in Fig. 3.4A − C. The translational correlation functions

for different parameters are solid curves with different colors. The bond-orientational

correlation functions are dashed curves, with same color as corresponding translational

correlation functions.

The 2D data of Fig. 3.4A − B exhibit decoupling, whereas the 3D data of C are

coupled. For the latter case, coupling means that the two functions decrease together, and

their relative positions do not change dramatically as the glass transition is approached.

Even for the most concentrated case, for which we do not observe a final decay of either

function, it still appears that the two correlation functions are related and starting an

initial decay around the same time scale. In contrast, for both 2D cases (Fig. 3.4A,B),

FS and Cψ change in relation to one another as the glass transition is approached. For

2DH (panel A), at the most liquid-like concentration (black curves), C decays faster than

FS (dashed curve as compared to the solid curve). As the glass transition is approached,
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initially C decays faster, but then the decay of FS overtakes C. A similar trend is seen

for 2DS (panel B). For both 2DH and 2DS, the decoupling is most strongly seen for the

most concentrated samples (green curves), for which FS(∆t) decays on experimental time

scales but where Cψ(∆t) decays little on the same time scales.

The slower decay of bond-orientational correlations relative to translational correla-

tions for our 2D data is in good qualitative agreement with Flenner and Szamel’s obser-

vations [33]. The meaning is that on approaching the glass transition in 2D, particles are

constrained to move with their neighbors such that C decays less than might be expected,

on time scales where FS has decayed significantly. In 3D, however, on approaching the

glass transition apparently particles move in a less correlated fashion. To quantify the

correlated motion of neighboring particles we compute a two-particle correlation function

[32, 88]. This function correlates the vector displacements of pairs of nearest neighbor

particles (see Methods). In Fig. 3.5, we show these correlations: 1 corresponds to com-

plete correlation, and 0 is completely uncorrelated. For both 2D samples (solid symbols)

the correlations increase for larger τα, as indicated by the fit lines. This increased cor-

relation reflects particles moving in parallel directions with their nearest neighbors. For

the 3D data (open squares in Fig. 3.5) the correlations are small and do not grow as the

glass transition is approached. Particle motion uncorrelated with neighboring particles

will decorrelate both positional information and bond-orientational structure.

To qualitatively visualize the differences between dynamics in 2D and 3D, the top

row of Fig. 3.6 shows displacement vectors for particles in the three samples near their

glass transitions. For both 2DH and 2DS samples, there are clusters of particles moving in

similar directions as seen by adjacent displacement arrows pointing in a similar direction.

This clustering is less pronounced in 3D, consistent with the small correlations between

nearest neighbor motions in 3D (Fig. 3.5).
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Figure 3.5: Vector displacement correlations. The data are for 2DH (filled circles), 2DS
(filled triangles), and 3D (open squares). The displacements are calculated using a time
scale ∆t such that FS(∆t) = 0.5. These are measured for all pairs of particles separated
by the nearest neighbor spacing d. d is determined from the large-large peak position
in the pair correlation function g(r) at the highest concentrations, and has values d =
3.38, 6.5, and 3.10 µm for 2DH, 2DS, and 3D respectively. (The location of the g(r) peak
depends slightly on φ for 2DH and 3D experiments, and more strongly on Γ for the
2DS experiments; for consistency, we keep d fixed to these specific values.) The lines are
least-squares fits to the data. The data are plotted as a function of τα/τα0 where τα0 is
the relaxation time scale for the large particles in a dilute sample. 2DH (closed circles),
2DS (closed triangles), and 3D (open squares) samples have τα0 = 5.4, 20, and 3.8 s
respectively.

As suggested in the Introduction (Sec. 3.1), it is plausible that some of the significant

translational motion in the 2D samples is due to Mermin-Wagner fluctuations which act

at long wavelengths [35, 83]. To disentangle the potential influences of long wavelength

fluctuations from relative motions, we subtract collective motions by measuring “cage

relative” particle motions [84]. The key idea is to measure displacements relative to

the average displacements of each particle’s nearest neighbors, that is, relative to the

cage of neighbors surrounding each particle. Previous work has shown that using cage-

relative coordinates reveals the dynamical signatures of phase transitions for systems

of monodisperse colloids [77]. We compute these cage-relative displacements and then

calculate the self-intermediate scattering function FS−CR using these new displacements.
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Figure 3.6: Particle displacements. These images show displacement vectors of particles
using a time interval ∆t chosen such that Fs(∆t) = 0.5. For the 3D image we use an
xy cut at fixed z. All scale ticks are at 10 µm intervals and all displacement vectors
are multiplied by two for easier visualization. The circles denote particle positions and
sizes. Samples are φ2DH = 0.78, Γ2DS = 300, and φ3D = 0.54, from left to right, with
corresponding ∆t = 4290, 1720, and 3540 s. τα for these samples are 10000, 3800, and
7600 s respectively. Circles with no arrows are those with displacements less than 10 %
of symbol size.

These are plotted as solid lines with circles in Fig. 3.4D−F , with the dashed lines being

the bond-orientational data (which are unchanged as C(∆t) is always calculated relative

to neighbors). In both 2DH and 2DS, FS−CR(∆t) > FS(∆t) (the solid lines in Fig. 3.4D,E

are higher than the corresponding solid lines in Fig. 3.4A,B). This is expected given the

arguments above, that particles move with their neighbors, hence subtracting nearest

neighbor motions results in reduction of particle mobility. For the 3D data (Fig. 3.4F ),

the FS−CR(∆t) curves still show coupling to CQ(∆t) similar to the original data shown

in A.

To provide a complementary view, we consider another measure of structural changes,

the cage correlation function (or bond-breaking function) B(∆t). B(∆t) is the fraction

of particles that have the same neighbors at times t and t+∆t, averaged over all initial

times t [89, 94].
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These functions are plotted in Fig. 3.4G− I as dash-dotted lines, and are compared

to FS−CR. The black curves are the lowest concentrations, which all have B(∆t) >

FS−CR(∆t). This is because at lower concentrations, particles can translate a signif-

icant amount without losing neighbors. However at larger concentrations, B(∆t) ∼

FS−CR(k,∆t) in all 3 types of samples. For all three experiments, the two correlation

functions look fairly similar at the three highest concentrations shown in Fig. 3.4G− I.

In particular, the differences between the 2D and 3D data are much reduced as compared

with the original analysis shown in panels A− C.

In fact, our strongest qualitative evidence for coupling comes from comparison of the

green curves in Fig. 3.4, which are the samples closest to the glass transition. In each

case, the correlation functions do not fully decay within our experimental observation

time. Nonetheless, it is apparent for the 2D data that the normal self-intermediate scat-

tering function is beginning a final decay at a time scale for which the bond-orientational

function has not yet begun to decay (Fig. 3.4A,B). This is not the case for the 3D data

(panel C). In contrast, all three data sets exhibit similar behavior at the largest time

scales when comparing the cage-relative FS−CR(k,∆t) and B(∆t) (panels G− I).

We turn now to the question of transient localization, which Flenner and Szamel

found to be present in 3D but not 2D. The trajectories of 3D particles showed localized

motions separated by abrupt jumps, while trajectories of 2D particles did not have these

two distinct types of motion [33]. In their data, this caused a plateau in the 3D MSD,

which was not seen in the 2D MSD. The idea is that particles are trapped in cages formed

by their neighbors, so for a range of time scales ∆t, their MSD should be set by the cage

size – assuming particles are localized [89].

Motivated by the considerations above, we investigate the cage-relative mean square

displacements (CR-MSD) [84]. Figure 3.7 shows the original MSD data (thin lines) and
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Figure 3.7: Mean square displacements and cage-relative mean square displacements.
The data (A−C) are for the experiments as indicated. The solid curves are mean square
displacements < ∆r2 > calculated for all particles, normalized by d as described in the
caption to Fig. 3.5. The solid curves with circles are cage relative mean square displace-
ments. The colors indicate different control parameters, as given in Fig. 3.4. For the 3D
samples, the z direction is neglected due to noise and also to facilitate the comparison
with the 2D experiments.

CR-MSD (lines with circles). For all experiments, as the concentration increases, the

MSD takes a longer time ∆t to reach the same point on the vertical axis, reflecting

the slowing dynamics on approaching the glass transition. In some cases, the CR-MSD

is larger than the MSD (for example, all the curves in Fig. 3.7C). In these situations,

the motion of each particle is less correlated with the motion of its neighbors, so the

cage relative analysis effectively adds a random vector to each particle’s displacement,
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Figure 3.8: Transient localization parameter. (A) γmin,CR is the minimum logarithmic
slope of the cage-relative mean square displacements. (B) Difference γmin,CR − γmin be-
tween the original mean square displacement data and the cage-relative version. Negative
values indicate the enhancement of measured transient localization using the cage-relative
analysis.

thus increasing the MSD on average. However, for the 2D samples as they approach the

glass transition, the opposite occurs. Especially for the green curves in Fig. 3.7A,B, the

data closest to the glass transition, it is clear that the cage-relative analysis dramatically

decreases the CR-MSD data relative to the original MSD.

To quantify transient localization, we measure the instantaneous logarithmic MSD

slope γ from 〈∆r2〉 = ∆tγ(∆t). γ = 1 corresponds to normal diffusion. We quantify the

amount of localization by the minimum value of this slope, γmin; this is the logarithmic

slope at the inflection point of the MSD or CR-MSD. Figure 3.8A shows the CR data
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for the 2D samples (filled symbols) and 3D (open squares) as a function of τα. While the

3D data reach lower values, the overall trend is similar between 2D and 3D: the closer to

the glass transition, the more pronounced transient localization is. Note that in the work

of Flenner and Szamel, they tested both Newtonian dynamics and Brownian dynamics;

the latter is more appropriate for colloids. With Brownian dynamics in 2D, they found

slightly more pronounced MSD plateaus. It is possible that the presence of Brownian

dynamics in our experiments also contributes to our observed similarities in transient

localization between 2D and 3D.

Figure 3.8B shows the slight enhancement of transient localization caused by the cage

relative analysis. We plot the change in γmin upon using the cage relative analysis, and it

is generally negative. The largest changes are seen in the 2DS data (solid triangles), which

is sensible as these are the data with the strongest correlations with their neighbors.

3.4 Simulations

Flenner and Szamel [33] observed fundamental differences in 2D and 3D simulations

approaching the glass transition, that we have explained through our experiments. In this

section we show that the analysis used on our experiments reveals the same qualitative

results in simulations.

Flenner and Szamel’s simulations were done in bidisperse systems with Lennard-

Jones(LJ) potential. Here we do simulations in similar systems. For 3D, we use a 80:20

binary Lennard-Jones system, introduced by Kob-Anderson [86]. For 2D we use a 65:35

variant to avoid crystallization [33, 91]. See Sec. 3.2 for more details. Flenner and Szamel

saw that in 2D simulation size affected dynamics, not in 3D. They also saw that larger

the system size, more the difference in 2D and 3D.



Chapter 3. The 2D vs 3D glass transition in colloids 61

Figure 3.9: 2D and 3D representative Lennard-Jones simulations. Simulations were per-
formed using the LAMMPS package.

Here, we simulate 10000 particles in 2D to see the effects seen by Flenner and Szamel,

while 1000 particles in 3D - exactly the same as the canonical system introduced by

Kob and Anderson [86]. For 10000 particles, we begin to see the effects seen by Flenner

and Szamel, though not as obvious, as they used 4 million particles. However, in simula-

tions temperature T is the control parameter. Decrease in T is analogous to increasing

concentration φ of the experiments.

In Fig. 3.10a,b we see translational and bond-orientational functions for both 2D and

3D samples at different temperatures. This is analogous to the experimental Fig. 3.4. In

Fig. 3.10a, we see that bond-orientational and translation functions show similar behavior

for the black curves. But as T decreases, we see the bond-orientations have a slower

decay than the translations, thus decoupling occurs in 2D simulations. However for 3D in

Fig. 3.10a, we see that both translations and bond-orientations have similar decay, and

the former is always larger, even at the lowest temperatures.
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Next we measure cage relative translations(FS−CR) shown by the solid line with cir-

cles in Fig. 3.10c,d. We use the same measure as in the experiments (see Sec. 3.2) -

basically translations after subtracting out any long wavelength fluctuations. Interest-

ingly, we see that for 2D, cage relative translations become much higher than regular

translations whereas for the 3D the situation is not changed. This large increase in cage

relative translations was also seen in 2DS experiments (Fig. 3.4e). Hence, long wavelength

fluctuations are affecting 2D and not 3D simulations.

Next we use the bond-break instead of bond-orientational function, which is a better

choice than the latter, same as in experiments(see Sec. 3.2, see Sec. 3.3). In Fig. 3.10e,f we

see that 2D and 3D panels now look similar to one another. Thus, differences between 2D

and 3D simulations disappear on removing 2D long wavelength fluctuations. We expect

our results to hold at even larger 2D system sizes as the only difference would be larger

long wavelength fluctuations that will be removed by the analysis.

3.5 Discussion

Our experiments show apparent differences in dynamics approaching the 2D and 3D

colloidal glass transition, in agreement with the simulation results of Flenner and Szamel

[33].

In 2D, we observe that particles move in parallel with their neighbors, such that their

local structure changes less than if the motions were uncorrelated. While it is clear from

prior work that in 3D particle motions have some correlation with their neighbors [88], in

our data the correlations are more significant for the 2D samples. These are likely related

to Mermin-Wagner fluctuations / the Peierls instability in 2D [18, 19, 81–83, 95].

Our 2D samples are, of course, quasi-2D. Both are influenced by nearby large 3D
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regions of fluid. The 2DH sample also has hydrodynamic interactions between particles

and the nearby bottom of the sample chamber. We find that 2DS samples are more af-

fected by long-wavelength fluctuations than 2DH, which could be due to the difference in

interactions [82, 96]. It is certainly plausible that softer interactions allow for more fluctu-

ations in the nearest-neighbor distance, whereas for dense samples with hard interactions,

fluctuations are by necessity smaller (as particles cannot move too close together before

they repel) [83]. Recent simulation work has shown differences in correlation lengths for

disks with soft and hard interaction potentials during 2D melting [97]. Nonetheless, the

agreement between the two 2D data sets is striking, especially given the different particle

interaction potentials. Namely as distinct from the 3D samples, both 2D samples show

large Mermin-Wagner fluctuations.

Another important experimental factor is the system size: approximately 105 − 106

particles for both 2D systems and 109 for the 3D system. It is likely that for even larger

2D systems, the Mermin-Wagner fluctuations would be more pronounced [33, 35, 98].

Klix, Maret, and Keim [95] recently argued that Mermin-Wagner fluctuations should

be present in glassy systems. Probably the most interesting aspect of our study is the sug-

gestion that indeed 2D Mermin-Wagner fluctuations are present in our amorphous sam-

ples. Mermin-Wagner fluctuations conventionally result from elasticity associated with

the development of an order parameter. The origin of elasticity in glassy systems is less

well understood.

Even though our experiments are quasi-2D, we should still observe Mermin-Wagner

fluctuations. Slight out of plane fluctuations do not affect how particles are oriented with

their neighbors, that cause long-wavelength fluctuations. Also the 2DS system lies on a

fluid-fluid interface, and the surface may have slight undulations.

However, the idea is that the topology in 2D causes thermal fluctuations to add up as
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long-wavelength fluctuations. This should not be affected by slight out of plane motions

or slightly undulating surfaces.

While we have not proven that our observed long-wavelength fluctuations are indeed

Mermin-Wagner fluctuations, one could vary the system size in future investigations to

examine how the difference between conventional and cage-relative measurements de-

pends on system size. In conclusion, with our efforts and other recent work, there is a

compelling collection of evidence that 2D and 3D glass transitions are fundamentally

the same: there is strong qualitative agreement between our observations studying three

colloidal systems, our simulations, the colloidal experiments and simulations of Illing et

al. [83], and the soft particle simulations of Shiba et al. [35].

The similarities between the conclusions, despite the differences in methods and dy-

namics, suggest the results are independent of the details. All of these observations show

that the 2D glass transition is similar to the 3D glass transition, but with the added

influence of Mermin-Wagner fluctuations in 2D.
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Figure 3.10: Translational, bond-orientational, and bond-break correlation functions.
(A-B) The solid curves are FS(∆t) (translational correlations) and the dashed curves
are C(∆t) (bond-orientational correlations) for the 2D and 3D simulations. The col-
ors indicate different control parameters. The colors black, red, blue, and green denote
T = 1.0, 0.8, 0.6, and 0.5 respectively. (C-D) The solid curves with circles are FS−CR(∆t)
(cage relative translational correlations). The dashed curves are C(∆t) which are iden-
tical to those shown in (A-B). (E-F ) The solid curves with circles are FS−CR(∆t) (cage
relative translational correlations) and the dot-dashed curves are B(∆t) (bond-break
correlations).



Chapter 4

Shape dependence approaching the

2D colloidal glass transition

4.1 Introduction

A comprehensive explanation for the dramatic increase in viscosity on approaching the

glass transition is still lacking, although there are a variety of theories [25–27]. What

makes the matter more complicated is the inadequacy of the traditional concept of vis-

cosity and its relation with microscopic diffusion in supercooled liquids. In liquids, the

Stokes-Einstein-Sutherland equation [9, 10] relates microscopic translational diffusion

(DT ) as inversely proportional to solvent viscosity η, shown in Eqn. 4.1, where a is par-

ticle radius and T is temperature.

DT =
kBT

6πηa
, (4.1)

For spherical particles, rotational diffusion follows Eqn. 4.2. This is known as the

66
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Stokes-Einstein-Debye relation and was originally found by Debye [41].

DR =
kBT

8πηa3
, (4.2)

In simple liquids, both viscosity and diffusion are linked to a single timescale of structural

relaxation. Further, the ratio of translational to rotational diffusion constants (DT/DR)

should be independent of viscosity and temperature. However, many experiments and

simulations [42–45] have shown a violation of the Stokes-Einstein and Stokes-Einstein-

Debye relations in supercooled liquids. Pioneering experiments observed a violation of

these relations on approaching the glass transition in a molecular glass former, orthoter-

phenyl (OTP) [42, 43]. The traditional method to determine diffusion coefficients is

through mean square displacements:

〈∆r2(∆t)〉 = 4DT∆t (4.3)

Rotational diffusion coefficient (DR) is measured from mean rotational MSD as:

〈∆θ2(∆t)〉 = 2DR∆t (4.4)

where ∆θ is the angular displacement in time ∆t.

However, the OTP experiments indirectly measured translational and rotational diffu-

sion constants through spin-relaxations, as it was not possible to directly image molecule

motions. They used protonated OTP (OTP-h) for measuring DT and perdeuterated OTP

(OTP-d) to measure DR. They found that DT,R ∼ η−ξ, where ξ = 0.75 for translation,

and 1 for rotation. Thus they observed an enhancement of translation relative to rotation

approaching the glass transition. Later experiments in molecular glasses found different
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ξ, ranging from 0.73 to 0.8 [24, 46].

At the time, this strange difference was attributed to spatial distribution of rotational

timescales ρ(τ), and measured rotation and translation measurements being sensitive to

different moments of this distribution [24]. To give a better idea, measurements of DT

corresponded roughly to Eqn. 4.3. Corresponding to rotations, the experimental mea-

surements corresponded to the Debye formalism [41, 43, 99]:

τc =

∫ ∞

0

〈P2(0)P2(t)〉dt (4.5)

Dr = 1/6 < τc > (4.6)

where P2(t) =
3
2
cos2(φ(t)) − 1

2
denotes the second order Legendre polynomial, and φ(t)

is the angle made by the C-H bond vector of the OTP-d molecule with the external

magnetic field. DR ∼< τc >
−1, whereas DT ∼< τ−1

c >. In the picture that both rotation

and translation are connected to the same timescales τ ∼ τc, it was thus concluded that

decoupling occurs due to measurements being sensitive to different moments of τ [24].

Advancements in simulation and colloidal techniques has made it possible to directly

measure rotational and translational diffusivities at the single particle level [37, 39, 100,

101]. Interestingly in a simulation of a supercooled liquid of dumbbells, it was found

that translation-rotation decoupling occurs at the single particle level. They used essen-

tially the same method to determine both DT and DR through mean square displace-

ments(Eqns. 4.3,4.4). They observed an enhancement of rotation relative to translation,

opposite to previous experiments in OTP. However, when they measured < τc >
−1 from

the Debye method similar to OTP experiments, translation was slightly enhanced relative

to rotation.
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Hence while they did observe that different measurements of DR gave differing results,

they also observed that even on using the same method for rotation and translation, there

was still decoupling. Thus the previous hypothesis that decoupling occurs purely due to

difference in measurement methods was ruled out.

The current hypothesis is that decoupling occurs due to translation and rotation

degrees encountering different dynamic length scales [102]. Thus, the “single time picture”

fails in supercooled liquids [102]. This failure of the “single time picture” can now be

understood as a consequence of spatial heterogeneity of dynamics [44, 102–104]. For

translation, the picture is better understood. Simulations [44, 104] observed that on

measuring structural relaxation time τα at wavelengths longer than a characteristic length

scale, DT and τα remain coupled. Thus the product DT τα was completely determined by

the length scale of spatially heterogeneous dynamics.

However the difference between rotation and translation and hence the relation of

DT/DR to spatial heterogeneity of dynamics is unclear. In fact, a number of experiments

and simulations yield different results on the nature of decoupling [39, 42, 47]. One key

feature to be noted is that all these simulations have different shaped particles. Recent

experiments on ellipsoidal glasses [36] found that longer ellipsoids formed liquid crystal

phases, while shorter aspect ratio ellipsoids formed glass-like phases.

Recent experimental advances in the field of single-molecule spectroscopy have now

made it possible to image actual rotation of fluorescent probes [105–107]. A concern is

over what features an ‘ideal probe’ should posses. Recent simulations found that probe

size and roughness greatly influences its dynamics [108, 109]. In fact unlike in simple

liquids, probes can largely influence results. In one study [110], rhodamine 6G embedded

in o-terphenyl showed indications that the probes experienced different dynamics in the

probe. One recent study used the probe BODIPY268, similar in size and mobility to
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the host o-terphenyl [107]. They suggested the seemingly obvious, that the ideal probe

resembles the host as far as possible. In fact this ‘ideal probe’ was the key feature that

distinguished their work from previous experiments. However, these experiments and

most other experiments measure rotation and connect rotation to spatial heterogeneity.

Translation is harder to measure, as monitoring translations of typical single molecule

probes is likely to require sub-diffraction localization [107].

Colloidal samples at high concentration have been established as model glass formers

[28–31], and have the advantage that individual particles can be visualized. One experi-

ment showed an enhancement of rotation relative to translation in spherical colloids [48]

approaching the glass transition. In this ‘hydrodynamic regime’, particle rotation is not

hindered as much as translation, in a concentrated suspension. This is because as concen-

tration increases, particles find it harder and harder to translate large distances. In order

to do so, they need to break out of a cage of surrounding neighbors (Fig. 4.1). However,

rotation is less affected as spheres do not need to interact with their neighbors to rotate

in position (Fig. 4.1).

In another colloidal experiment of tetrahedral tracers in a spherical bath, the opposite

was seen. In this regime translation was enhanced relative to rotation on approaching

the glass transition [37]. This is the ‘steric regime,’ where rotation is more sterically

constrained than translation. Interestingly they observed DT ∼ ξ−0.73, and DR ∼ ξ−1.

The exponents are very close to those measured in OTP.

Thus, probe properties play a significant role in translation-rotation decoupling. An

unaddressed question is the influence of probe shape on translation-rotation decoupling.

Here using colloidal suspensions, we show that probe shape plays a big role in decoupling.

In this study, we observe naturally occurring silica dimers embedded in a 2D bidisperse

glass of silica colloids. These dimers are at a very low concentration, less than 10 percent
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Figure 4.1: Cartoon of rotation v/s translation for a spherical colloidal glass. Red particle
finds it harder to break out of cage of neighboring blue particles at large concentration,
hence translation is harder. Whereas rotation becomes decoupled, as particle can rotate
without cage breaking and hence rotation is easier.

and the experiments are the same as in Chapter. 3. We find that for dimers of smaller

lengths, rotations do not slow down as much as translations, on approaching the glass

transition, similar to the case of spheres as probes [48]. However we find that in our longest

dimers, DT and DR remain coupled at all concentrations, i.e. DT/DR ∼ constant. Hence

in our samples, long dimers are ‘ideal probes’ in terms of rotation reflecting translation.

We must be careful in interpreting our results in the context of real glass formers. Our

experiments are in the ‘hydrodynamic regime,’ which is only present in colloidal systems.

Also, our particles have hard interactions, different from real glass formers. To see if

this regime is present in other glass formers, we do Lennard-Jones simulations, similar

to Sec. 3.4, but add a tracer dimer of chosen length, as observed in our experiments.

Interestingly, we observe similarities between experiments and simulations in decoupling

between DT and DR, based on dimer length. However in the simulation liquid regime,
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short dimers have DR greater than large dimers by more than an order of magnitude.

Whereas in the colloidal experiments at lowest concentration, the difference between DR

of long and short dimers is less than a factor of 2.

4.2 Imaging and tracking dimers

Thus far, the code in the Weeks lab has been mainly for tracking circular/spherical

objects [63]. For analyzing dimers, I built additional algorithms to recognize the shape

of dimers. The first step was to track the two particles of a dimer, as shown in Fig. 4.2b.

Then I selected the region of the image (ROI) that included dimers. Based on brightness,

I thresholded this ROI to get a bi-level image, with the features of interest in white,

and the background as black (Fig. 4.2c). On this bi-level image, I used the LABEL REGION

function from IDL to identify blobs, and selected the largest blob as the dimer of interest.

To find the perimeter, I used the FIND BOUNDARY function, shown in Fig. 4.2d.

Further, to quantify the shape, I measured the longest axis ll, and short axis ls per-

pendicular to ll. The aspect ratio then is ll/ls.

4.3 Hydrodynamic theory

The dimers we analyze have an aspect ratio ρ = ll/ls < 2, whereas for perfect dumbbells,

ρ = 2. But to a good approximation, we can model our dimers as dumbbells of an

effective radius. For dumbbells in a liquid the ratio of translational to rotational diffusion

coefficients [111] is given as

DT

DR

=
σ2

4
(4.7)
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Figure 4.2: (A) Image of a dimer surrounded by spherical particles. (B) Tracking dimers.
(C) Thresholding image. (D) Outlining dimers. The aspect ratio of the dimer is 1.65.
The size of the image is ∼ 10µm.

Figure 4.3: Longest axis ll and perpendicular short axis ls. The dimer is the same as in
Fig. 4.2.
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where σ is the diameter of particles in the dumbbell. In our experimental samples at low

concentrations (more liquid-like), we can then fit σ to DT/DR to calculate an effective

diameter σeff of the two particles in an ideal dumbbell of aspect ratio 2.

4.4 Results

We track the translational and rotational diffusion of dimers [63] in 2D. The sample is the

same as 2DH, described in Sec. 3.2. However this sample has some naturally occurring

dimers, at less than 5% concentration, which we now analyze. Translational diffusion

coefficient(DT ) is measured from mean square displacement(MSD) as in Eqn. 4.3. Rota-

tional diffusion coefficient (DR) is measured from mean rotational MSD as in Eqn. 4.4.

DR is easier to measure in 2D compared with previous tracking of colloids in 3D [37,

48], as in 2D there is only one rotational degree of freedom. As the system is bidisperse,

there are two kinds of dimers - large-large and small-small. The dimers never dissociate,

and the individual particles stay stuck. This implies that the dimers are probably formed

in the stock jars before our experiments are begun.

The translational mean square displacement of a dimer is shown in Fig. 4.4, for a

slightly supercooled sample. The line drawn is of slope 1 on the log-log axes, indicating

diffusive behavior.

At early times, particles show diffusive behavior, when they have not yet bumped

into their neighbors. At intermediate times, the sample shows a subdiffusive behavior of

log-log slope less than 1, as particles bump into their neighbors and are not free to diffuse

about.

At longer times particles have broken out of their ‘cages’ on average, and hence show

diffusive behavior. Correspondingly, the fit line at long times is a fit to diffusive behavior,
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Figure 4.4: Log-log translational MSD of a small-small dimer in a slightly supercooled
sample at φ = 0.55. The aspect ratio of the dimer is 1.66. Line is a fit to slope 1.
DT = 0.019 µm2/s.

corresponding to Eqn. 4.3. The slope yields DT . On the log-log plot, the slope is 1, and

the intercept is DT .

Similarly, the rotational mean square displacement is shown in Fig. 4.5, for the same

sample. Interestingly, the rotational MSD fits well to slope=1, even at short times. This

means that rotation is less affected by supercooling.

To understand how diffusion constants change as a function of supercooling, we plot

diffusion constant v/s sample relaxation time τα. The measurement of τα is described in

detail in Sec. 3.3, but the basic idea is to define a correlation function FS corresponding

to translation, and measure the time when FS = 1/e.

Figure 4.6a plots DT v/s τα for all samples. Here we see that all dimers follow the

black line of the bulk DT of the entire sample. The black curve follows DT ∼ τ−0.73
α , in

the range of exponents observed in other experiments [37, 43]. Although, viscosity was
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Figure 4.5: Log-log rotational MSD of a small-small dimer in a slightly supercooled
sample at φ = 0.55. Line is a fit to slope 1. The aspect ratio of the dimer is 1.66.
DR = 0.01 rad2/s.

measured from the bulk sample and is strictly not the same as τα.

DR however seems to depend a lot more on dimer length ll, as shown in Fig. 4.6b.

Here as τα increases, longer dimers show a decrease in DR as expected (blue diamonds).

However the short dimers (red circles and green squares) show a lack of decrease in DR

indicating a lack of slowdown of rotation. We postulate a similar mechanism to the lack

of slowdown of rotation seen in spherical colloids ( [48] see Fig. 4.1) i.e. smaller dimers are

more free to rotate in place as compared to translate out of the cage made of neighboring

particles. The difference between DR of the long and short dimers is more than an order

of magnitude at the largest τα.

This difference in slowdown of DR and not DT based on dimer length is observed on

plotting DT/DR shown in Fig. 4.6c. The long dimers (blue diamonds) show a constant
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Figure 4.6: Diffusion coefficients vs τα for different dimer lengths. (A) DT v/s τα. The
line denotes bulk sample DT . (B) DR v/s τα. (C) DT/DR v/s τα. Different colors denote
different ll. Red circles, green squares and blue diamonds go from smallest to largest ll
as indicated in the legend.



Chapter 4. Shape dependence approaching the 2D colloidal glass transition 78

DT/DR independent of τα. But the short dimers(red circles) show a decrease in DT/DR

with τα. The colored lines show best fit lines for the three different dimer length regimes.

At the largest τα, the difference between DT/DR of the long and short dimers is more

than an order of magnitude.

To understand the dependence of translation and rotation on dimer length, we plot

diffusion v/s long axis of dimers in Fig. 4.7. In Fig. 4.7a we see that DT does not depend

on dimer length. But at the lowest τα (red circles), DT is the largest. At higher τα, DT

is lower as expected.

However, DR depends much more on dimer length as can be seen in Fig. 4.7b. Short

dimers have similar DR at all τα. And at low τα, DR is almost constant, independent of

dimer length. However, at large τα, DR of long dimers differ from short dimers by more

than 2 orders of magnitude.

Figure 4.7c shows DT/DR vs dimer length. Interestingly, at low τα, DT/DR seems to

be independent of dimer length. In order to see if this makes sense, we compare the semi

dilute case at low τα with theoretical results for dumbbells [111] diffusing in liquids. For

dimers, DT/DR = σ2
d/4 (see Sec. 4.3). Since our dimers have an aspect ratio < 2, they

are not perfect dumbbells in the sense of the theory, which assumes aspect ratio = 2.

But we can find an effective diameter by fitting DT/DR to σ2
eff/4, at low concentration

(τα = 9.5s) as

σeff = 2

√

DT

DR

(4.8)

From Eqn. 4.8 we find σeff = 2.7 ± 0.4µm. This seems like a good estimate for σeff , as

our two particle diameters. are 2.53 and 3.38 µm. Also the dimers are all aspect ratio

< 2, hence we expect σeff to be less than actual particle diameter. It may seem strange
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Figure 4.7: Diffusion coefficients vs dimer long-axis length ll for different τα. (A) DT v/s
ll. (B) DR v/s ll. (C) DT/DR v/s ll. Different colors denote different τα. Red circles, green
squares and blue diamonds go from smallest to largest τα as indicated in the legend.
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that σeff is seemingly independent of ll as there are small-small and large-large dimers.

However, on considering the two particle diameters, 2.54, 3.38µm, the ratio between these

two σ is 1.33, and hence the ratio of σ2 is 1.77, which is smaller than the experimental

variability of DT/DR (∼ 2) at low τα .

Also our particles may deviate from the dumbbell model, more so at small aspect

ratios. At large τα, DT/DR of long dimers differ from short dimers by around 2 orders of

magnitude, reflecting the dependence of DR on dimer length.

Instead of dimer length, another related variable is aspect ratio. Figure 4.8 shows

DT/DR v/s τα, equivalent to Fig. 4.6c, but different colors denote aspect ratio instead

of dimer length. There is no clear trend, and Fig. 4.6c looks better. Hence the longest

axis seems to be the relevant parameter, rather than aspect ratio, or eccentricity. This

makes sense in the limit that particles are much smaller than surrounding medium, since

then even at a large aspect ratio if particle size ≪ surrounding medium, particles do not

encounter the cage of surrounding particles. It makes sense then, that the longest axis as

compared to cage size controls whether or not particle rotation is sterically hindered by

their neighbors on approaching the glass transition.

While we have looked at tracer dimers embedded in a glass of bidisperse spheres,

other studies have looked at glass transitions in colloidal glasses composed of anisotropic

particles [36, 48]. Figure 4.9 is reinterpreted from previous data, along with the results of

our dimers (red) plotted as a function of aspect ratio. All the points shown are equilibrated

data at high measured concentration,closest to the glass transition.

A value of 1 indicates that DT/DR did not change on approaching the glass transition.

Less than 1 indicates that translation slowed down more than rotation, as can be seen

for aspect ratio less than ≈ 2. For the large aspect ratio 6, however, the y-axis is larger

than 1, indicating that rotation slows down more than translation.
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Figure 4.8: DT/DR v/s τα for different aspect ratio ll/ls. Different colors denote different
aspect ratio regimes. Red circles, green squares and blue diamonds go from smallest to
largest aspect ratios.

Figure 4.9: DT/DR close to the glass transition normalized by dilute value v/s aspect
ratio master curve along with previous data. Spheres at low aspect ratio are reinterpreted
from [48] (3D experiments). Dimers in red are from the current experiment and span
aspect ratio 1.3 to 1.9. Ellipsoids in green and purple denote aspect ratios 2.3 and 6,
reinterpreted from [36] (2D experiments).
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Although in our experiments, dimer length is more relevant than aspect ratio, our

results seem to follow the trend qualitatively. However, this graph should not be inter-

preted quantitatively due to different experimental procedures. The sphere data come

from 3D experiments [48], whereas ellipsoids [36] and dimers are from 2D. Also dimers

v/s ellipsoids might decouple differently. Further, rotation and translation is measured

differently in different experiments, and we know that different measurement methods

might cause slightly different results [24]. Nevertheless, it is very encouraging that all the

data fall on the same qualitative master curve.

4.5 Simulations

We did 2D simulations in Lennard-Jones systems, similar to Sec. 3.4 the difference being

that we used smaller number of particles (500) and embedded a dimer. The reason we

used smaller number of particles was to remove Mermin Wagner fluctuations that become

important as system size increases [35].

We used Lennard-Jones potential in systems evolving with Newtonian dynamics in

an NVT ensemble. The simulations were performed using LAMMPS [90].

We simulated a 65:35 binary mixture of Lennard-Jones particles [91].

Vαβ(rij) = 4ǫαβ

[

(

σαβ
rij

)12

−
(

σαβ
rij

)6
]

(4.9)

where rij is the distance between particle i and j, and α and β denotes the type of

particle. We denote the majority species as the A particles and the minority species as

the B particles; the potential parameters are given by ǫBB = 0.5ǫAA, ǫAB = 1.5ǫAA, σBB

= 0.88σAA, and σAB = 0.8σAA. We present results in reduced units, where the unit of
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Figure 4.10: Dimer embedded in glass simulation images. Left: Image of a short (green)
dimer (ll = 1.33σ) surrounded by bath of particles. Right:Image of a long (green) dimer
(ll = 2.0σ) surrounded by bath of particles. Simulations are Lennard-Jones, done using
the LAMMPS simulation package.

length is σAA , the unit of temperature is kB/ǫAA , and the unit of time is
√

(mσ2
AA/ǫAA).

The mass for both species are the same. We simulated N = 500 particles at T = 5.0, 1.0,

0.9, 0.8, 0.7, 0.6, and 0.5. The number density is 1.2, same as in [91].

Dimers are modeled as two particles attached through a harmonic bond of large

stiffness so that the particles remain stuck [40]. The two particles in the dimer interact

with the surrounding medium as type A particles. Interparticle interactions between

discs in a single tracer are described by both harmonic bonding (U b) and bending (Ua )

potentials. Bending potentials of large stiffness are invoked so that the two particles in a

dimer do not bend relative to one another. All pairs of neighbor discs are bonded tightly

by invoking U b = 1000kBT (r/σ − l) , where r is the distance between a pair of neighbor

discs. l is the desired separation between the two particles of the dimer.

By this method, we can control the length of the dimer, and hence nature of translation

and rotation seen. We choose two values, l = 0.33, 1.0σ and hence long axis of dimer

ll = 1.33, 2σ respectively, which matches up with the shortest and longest dimers seen

experimentally.

Figure 4.11 is the simulation version of Fig. 4.6. In Fig. 4.11a, we see that DT of long

and short dimers are almost the same. This is similar to experiments, where DT does not
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Figure 4.11: Simulation diffusion coefficients vs τα for different dimer lengths. (A) DT

v/s τα. (B) DR v/s τα. (C) DT/DR v/s τα. Different colors denote different ll. Red circles
and blue diamonds are ll = 1.33, 2.0σ respectively.
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depend on dimer length (Fig. 4.6a). DR depends on ll, however, and the short dimers

shown in the red circles in Fig. 4.11b show a weaker dependence on τα, again similar

to Fig. 4.6b. However, interestingly the gap between the red and blue symbols is much

larger in simulations, especially obvious at low τα. Whereas at small τα in experiments,

DR seems independent of τα in Fig. 4.6b.

This difference in DR is reflected in DT/DR shown in Fig. 4.11c, whereas in Fig. 4.6c,

at low τα the red, green, and blue lines seem to have similar intercepts. One reason for

this difference between experiments and simulations could be different interaction poten-

tials. Another important difference which may be more relevant, is hydrodynamics, only

present in colloidal experiments. At low concentration, colloidal particles translate due to

interactions with solvent molecules. Whereas in the simulations, there is no background

solvent.

4.6 Conclusions

Remarkably, we see that small changes in dimer length cause huge changes in rotational

diffusion. Smaller dimers show a weaker slowdown in rotation on approaching the glass

transition. Translation on the contrary is not affected as much. This is in marked contrast

to previous experiments in polymer glasses, where translation diffusion was found to be

affected by shape, and not rotational diffusion [112]. However, our experiments are in

the hydrodynamic regime, where rotation is not as strongly affected by slowing down of

dynamics approaching the glass transition, as translation.

In the Lennard-Jones simulations we observed similar results - translational diffusion

does not depend on dimer length, but rotational diffusion does, and smaller dimers show a

weaker slowdown in rotation on approaching the glass transition. However an important
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difference is that at low τα in the liquid like regime, simulations show a much larger

difference in DR based on dimer length, than experiments. This is puzzling as the liquid

regime is where we would expect simulations and experiments to match. However an

important difference is hydrodynamics, only important in colloidal experiments.

Given the large differences in interaction potentials and hydrodynamics, it is remark-

able that experiments and simulations yield similar results in the regime where particle

rotations show a weaker slowdown approaching the glass transition than translations.

It’s possible that for larger aspect ratios (trimers, tetramers) we will encounter the steric

regime, where rotation slows down more than translation approaching the glass tran-

sition. This regime would be more in the realm of polymer experiments that observed

translation diffusion was affected by shape rather than rotational diffusion.



Chapter 5

Summary and outlook

During my PhD, I have looked at the influence of dimensionality in materials. This

consisted of experiments in two different systems - soap films as model 2D fluids, and 2D

colloidal glass formers.

My experimental results reveal that in both of these systems, long-range dynamic

correlations arise by virtue of being in 2D. However the importance of other effects such

as the influence of the interface varies. Hopefully my results shed light on what aspects of

dimensionality are more universal than others. This may pave the way for future studies

of dimensionality effects in other types of systems.

5.1 2D liquids and modeling them through soap films

Using tracer particles as probes in soap films, we have probed viscous properties in quasi-

2D films. For bulk liquid properties, interfaces are neglected. However in our soap films

we find that both interfacial viscosity at the soap-air interface and 3D viscosity of the

bulk fluid in the film are important.

87
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We find that while diffusion in thick films acts 3D, flow fields at larger length scales is

like a 2D fluid. We develop a new method based on two-particle correlations to measure

2D soap film viscosities.

Further validation and improvement will lie in accurate localization of particles in

2D films, improving errors, and comparing interfacial viscosities in different types of

films. Thus for thin films in general, both 2D surface viscosity and 3D bulk viscosity are

important.

5.2 2D glass transition

Our results suggest a partial resolution of the question - does dimensionality affect the

glass transition? In recent simulations, Flenner and Szamel [33] observed large differ-

ences in 2D and 3D glassy dynamics and concluded that the glass transition in 2D is

fundamentally different from 3D, contrary to the previous view [30].

Through colloidal glass formers, we demonstrate that the differences between 2D and

3D are precisely those that distinguish 2D and 3D phase transitions. In 2D it has well been

known that there are long-wavelength fluctuations (Mermin-Wagner fluctuations [19]).

We find that these fluctuations were the reason that 2D and 3D looked different in

Flenner and Szamel’s simulations. Through a different analysis method that removes the

influence of these fluctuations, we show that 2D and 3D glass transitions are otherwise

similar.

Understanding properties of low dimensional systems and thin films is important, as

well as knowing whether or not dimension plays a role. However, many of these systems

are composed of a few layers of atoms, thus different in topology from a single layer. We

have argued that the presence of long-wavelength fluctuations are due to 2D topology
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and how particles are oriented with respect to their nearest neighbors. Hence, it will be

interesting to see if such fluctuations are observed in colloidal systems with a few layers,

and if so, to what extent.

5.3 Shape dependent glass transition

It is well known that approaching the glass transition is characterized by a tremendous in-

crease in viscosity [24, 30]. However, due to heterogeneous dynamics, the relation between

diffusion and viscosity breaks down, known as the breakdown of the Stokes-Einstein rela-

tions [24, 42, 43]. Another related breakdown is the decoupling between translation and

rotational diffusion [24, 37, 39, 42, 43], known as the Stokes-Einstein-Debye breakdown.

The origin of of the Stokes-Einstein-Debye breakdown is far from clear. Different

measurement methods of diffusivity, different types of glass formers, simulations v/s

experiments yield different results [24, 37, 39, 42, 43, 113].

In our experiments, we find that tracer shape largely influences translation-rotation

decoupling. In particular, we find that tracer shape largely influences particle rotations.

Smaller dimers can rotate much more easily than translate, whereas in our largest dimers,

translation and rotation show similar behavior. This is in contrast to previous experi-

ments in molecular glass formers, where shape was found to affect translation rather than

rotation [42, 43, 112]. One thing to note is our experimental dimers have smaller aspect

ratios than the molecular glass formers. Thus our results are a prediction of diffusive

properties in low aspect ratio glasses.

In liquids, the Stokes-Einstein-Debye relations connect microscopic diffusion with

macroscopic viscous properties. However in glasses, this relation breaks down. Char-

acterizing this breakdown is an important step in understanding the connection between
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the microscopic and macroscopic in glasses. In this regard, colloids are a great system to

test the breakdown as a function of particle shape, size, dimension, etc.

More specifically, a valuable extension of the present work would be using colloids

to map out the translation-rotation breakdown. Hopefully by using longer particles such

as linear trimers, one would see the regime where translation is enhanced relative to

rotation, opposite to the current work. This would be a step in understanding the shape

dependence of rotational v/s translational heterogeneity and its connection to viscosity

and thus getting closer to fully understanding the connection between microscopic and

macroscopic properties in glasses.
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