## Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Brooke Bozick
Date

# Effects of Host Movement on Pathogen Population Structure and Epidemic Dynamics 

By
Brooke Bozick Doctor of Philosophy

Graduate Division of Biology and Biomedical Sciences Population Biology, Ecology and Evolution


Committee Member
 Committee Member


Michael E. Zwick, Ph.D. Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the J ames T. Laney School of Graduate Studies

# Effects of Host Movement on Pathogen Population Structure and Epidemic Dynamics 

By<br>Brooke Bozick<br>B.S., Pennsylvania State University, 2007

Advisor: Leslie A. Real, Ph.D.


#### Abstract

An abstract of A dissertation submitted to the Faculty of the J ames T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Division of Biological and Biomedical Sciences

Population Biology, Ecology and Evolution 2016


Abstract<br>Effects of Host Movement on Pathogen Population Structure and Epidemic Dynamics<br>By Brooke Bozick

This dissertation examines how host movement affects epidemic spread by characterizing spatial genetic patterns in pathogen populations. When hosts are highly mobile, measures of spatial distance should additionally incorporate the magnitude and frequency of movement between locations. Seasonal influenza A virus presents an ideal system with which to study the effects of mobility on viral dynamics due to extensive human transportation networks. To fully understand the processes of pathogen invasion and spread, a detailed understanding of the ecological and evolutionary factors that control distributional limits is necessary. I find that pathogens are not uniformly distributed across their hosts' ranges, and that pathogen evolutionary responses to conditions across the geographic range are modulated by both abiotic and biotic factors that differ across the landscape. An initial investigation of regional scale human mobility in the United States suggests that epidemics spread along predictable pathways defined by commuter volume. However, similar patterns are not detected for influenza epidemics in Europe. An analysis of the major European regional transportation networks reveals that both networks possess characteristics that facilitate long-distance transmission and international mixing of influenza. This analysis also uncovers important complexities associated with the spatial analysis of genetic sequence data, and a re-examination of US influenza epidemics leads to the conclusion that spatial structure based on mobility is not yet detectable in this system using the current genetic data. Finally, the effects of vaccination strategies targeted at different host age and social groups are evaluated using a stochastic metapopulation model simulating a city-suburb system. I find that targeting children provides the greatest benefits in terms of reducing incidence, but also show that vaccination of groups of employed adults provides similar reductions in incidence and additionally delays the speed and timing of inter-community spread when epidemics are severe and vaccine doses are limited. I conclude that the intricacies of epidemic spread make the detection of spatial genetic patterns based on movement networks difficult, but that the greater availability of highresolution spatial genetic data will lead to a more detailed understanding of pathogen ecological and evolutionary dynamics.

# Effects of Host Movement on Pathogen Population Structure and Epidemic Dynamics 

By<br>Brooke Bozick<br>B.S., Pennsylvania State University, 2007

Advisor: Leslie A. Real, Ph.D.

> A dissertation submitted to the Faculty of the
> J ames T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
> Graduate Division of Biological and Biomedical Sciences
> Population Biology, Ecology and Evolution
> 2016

## Acknowledgements

First, I want to thank my advisor, Les Real, for reminding me to always keep the big picture in mind and for teaching me that the best science always tells a story. Without his guidance, I would not be the scientist I am today.

I also want to thank my committee, not just for their helpful suggestions and feedback on this project, but for advising me on more than just my work. I thank Mike Zwick for his dedication to this program, and for helping me to make the decision to join the Real lab in the first place. Nicole Gerardo and J aap de Roode have provided invaluable advice on future career paths and I thank them for being role models in showing me what a great professor should be. I thank Lance Waller for his mentorship, and for always making time for me whenever I had questions, even though he has the busiest schedule of anyone I know.

I am eternally grateful for the friends I have made along the way. Although the program and my lab have changed so much around me since the time I started at Emory, I am thankful to have always been surrounded by an amazing group of people. In particular, my lab mates Anand Bhardwaj and Trieste Musial, who were there at the beginning and at the end, I thank you for such interesting scientific (and not so scientific) discussions, and for always being willing to take a work break. I also want to thank Alexandra Ricca for sticking by me for five years-who knew you could get so lucky finding a random roommate online? Last, but not least, I was lucky to begin thisjourney with an amazing cohort - BAGS - who, after all this time, I am still fortunate to call such close friends. Amanda Pierce, Gayatri Sekar and Sarah Guagliardo: although we may not all be in the same place, I am forever grateful for your love and support through all the ups and downs. My future holiday cards will never measure up.

And finally, none of this would have been possible without the love and encouragement of my family. I cannot thank them enough for how much they have
supported me in this journey; my life has been filled with amazing opportunities because of you.

Dad: 31 years later, you finally have a doctor in the family. This is for you.

## Table of Contents

Chapter 1: Introduction
1.1 Linking host movement to pathogen population structure ..... 1
1.2 Human movement and disease ..... 2
Figure 1.1 Temporal and Spatial Scales Over Which Human ..... 4
Movement Occurs and Implications for Pathogen Transmission
1.3 Influenza A virus as a model system ..... 5
1.4 Dissertation summary ..... 8
Chapter 2: Integrating parasites and pathogens into the study of geographic range limits
2.1 Introduction ..... 11
2.2 Defining the geographic range ..... 12
2.3 Range limits ..... 13
2.4 Hosts as habitat ..... 15
2.5 External environment ..... 23
2.6 Community interactions ..... 26
2.7 Using parasites to study range limits ..... 29
2.8 Using parasites to understand host geographic range limits ..... 30
2.9 Studying geographic ranges of parasites ..... 31
2.10 Conclusions ..... 32
2.11 Tables
Table 2.1 Factors affecting species' geographic range limits and their ..... 36 application to parasites
2.12 Figures
Figure 2.1 Geographic distribution of rabies virus in the United States ..... 37
Figure 2.2 The effect of patch connectivity on pathogen on global ..... 38 pathogen persistence within a metapopulation system

## Chapter 3: The role of human transportation networks in mediating the genetic structure of seasonal influenza in the United States

3.1 Introduction ..... 39
3.2 Materials and Methods ..... 42
3.3 Results ..... 48
3.4 Discussion ..... 50
3.5 Addendum ..... 57
3.6 Tables
Table 3.1 H3N2 Mantel Correlation Coefficients ..... 58
Table 3.2 H1N1 Mantel Correlation Coefficients ..... 59
3.7 Figures
Figure 3.1 Aviation and Commuter Network Models for the ..... 60 Continental US
Figure 3.2 US Commuting Communities ..... 61
Chapter 4: Genetic structuring of seasonal influenza in Europe based on rail networks
4.1 Introduction ..... 62
4.2 Materials and Methods ..... 64
4.3 Results ..... 69
4.4 Discussion ..... 73
4.5 Figures
Figure4.1 Geographic and Population Centroids of European ..... 78 Countries
Figure 4.2 European Aviation and Rail Networks ..... 79
Figure 4.7 Association Between Travel Volume and Geographic ..... 80 Distance for the European Aviation and Rail Networks
Figure 4.4 Unweighted and Weighted Hub Indexes ..... 81
Figure 4.5 High Volume Edges ..... 82
Figure 4.6 US Commuting Network ..... 83
Figure 4.7 Degree Distribution Comparison of Air and Ground ..... 84
Transportation Networks
Figure 4.8 Regression of Nucleotide Diversity on Edge Volume: Europe ..... 85
Figure 4.9 Genetic Diversity and Commuting Volume Within and ..... 85 Between US States for the H1N1 and H3N2 Subtypes
Figure 4.10 Regression of H1N1 Nucleotide Diversity on Edge ..... 86
Volume: US
Chapter 5: Modeling the effects of commuter-targeted vaccination strategies on influenza epidemics
5.1 Introduction ..... 87
5.2 Methods ..... 89
5.3 Results ..... 95
5.4 Discussion ..... 97
5.5 Figures
Figure 5.1 Nearest-Neighbor Commuting Network ..... 100
Figure 5.2 Epidemic Timing and Incidence in Response to Targeted ..... 101 Vaccination
Figure 5.3 Epidemic Timing Under Limited, Targeted Vaccination ..... 102
Figure 5.4 Incidence Under Limited, Targeted Vaccination ..... 103
Figure 5.5 Incidence by Age Group Under Limited, Targeted ..... 104
Vaccination
Figure 5.6 Epidemic Timing Under Excess, Targeted Vaccination ..... 105
Figure 5.7 Incidence Under Excess, Targeted Vaccination ..... 106
Figure 5.8 Incidence by Age Group Under Excess, Targeted ..... 107 Vaccination
Chapter 6: Summary and Conclusions
6.1 Effects of human mobility on pathogen evolutionary and ecological ..... 109 dynamics
6.2 Conclusions, future directions and a call for data ..... 111
Bibliography ..... 113

## Appendix I: Supplementary Material for Chapter 3

I. 1 Supplementary Tables
Table S1 Accession numbers, locations and collection dates of all ..... 147 sequences used in this study
Table S2 Number of sequences per season and number of locations ..... 201(US states) represented for influenza A/H3N2 and A/H1N1by season
Table S3 Summary of epidemiological and evolutionary dynamics of ..... 202 H3N2 epidemics based on phylogenetic analysis of each influenza season
Table S4 Summary of epidemiological and evolutionary dynamics of ..... 204 H1N1 epidemics based on phylogenetic analysis of each influenza season
I. 2 Supplementary Figures
Figure S1 2003-2004 H3N2 Phylogeny ..... 206
Figure S2 2004-2005 H3N2 Phylogeny ..... 207
Figure S3 2005-2006 H3N2 Phylogeny ..... 208
Figure S4 2006-2007 H3N2 Phylogeny ..... 209
Figure S5 2007-2008 H3N2 Phylogeny ..... 210
Figure S6 2008-2009 H3N2 Phylogeny ..... 211
Figure S7 2010-2011 H3N2 Phylogeny ..... 212
Figure S8 2011-2012 H3N2 Phylogeny ..... 213
Figure S9 2012-2013 H3N2 Phylogeny ..... 214
Figure S10 2006-2007H1N1 Phylogeny ..... 215
Figure S11 2007-2008 H1N1 Phylogeny ..... 216
Figure S12 2008-2009 H1N1 Phylogeny ..... 217
Figure S13 2010-2011 H1N1 Phylogeny ..... 218
Figure S14 2011-2012 H1N1 Phylogeny ..... 219
Figure S15 2012-2013 H1N1 Phylogeny ..... 220
Appendix II: Supplementary Material for Chapter 4
II. 1 Supplementary Tables
Table S1 List of Accession Numbers ..... 221
Table S2 European Country Codes ..... 234
Table S3. Summary of Available Sequences ..... 235
Table S4. Summary of Sequences Used ..... 236
Table S5 Phylogenetic Analysis of European Influenza Epidemics ..... 237
II. 2 Supplementary Figures
Figure S1 2007-2008 H1N1 Phylogeny ..... 239
Figure S2 2008-2009 H1N1 Phylogeny ..... 240
Figure S3 2009-2010 H1N1 Phylogeny ..... 241
Figure S4 2010-2011 H1N1 Phylogeny ..... 242

## Chapter 1

## Introduction

In this dissertation, I examine how host movement influences pathogen transmission and spatial spread. By characterizing the underlying spatial genetic patterns in pathogen populations, I connect the evolutionary dynamics of pathogens with ecological processes driven by host-pathogen interactions. Patterns of population genetic diversity have been widely used to infer underlying ecological processes (Dobzhansky, 1970; Epperson, 2003; Ford, 1975). As many pathogens are completely reliant on their hosts for successful transmission, close concordance is often observed between pathogen genetic patterns and host behavior and population dynamics (Nadler, 1995; Nieberding and Olivieri, 2007; Rannala and Michalakis, 2003). For rapidly evolving viruses, ecological and evolutionary dynamics happen on similar time scales, allowing for the direct connection of evolutionary patterns with the ecological processes that generate them (Biek and Real, 2010; Grenfell et al., 2004; Real and Biek, 2007). As pathogens evolve at a rate much faster than that of their hosts, genetic data collected from pathogens has recently been used to understand host dynamics and distributions (Biek et al., 2006; Biek et al., 2007; Falush et al., 2003; Nieberding et al., 2004; Yanagihara et al., 2002).

### 1.1 Linking host movement to pathogen population structure

One such pattern-process combination is the structuring of genetic variation in pathogen populations by host movement and landscape barriers. Historically, a model approximating that of isolation by distance has served as the null hypothesis for expectations of how genetic diversity is structured (Epperson, 2003). Under this model,
the invasion of a completely naïve host population by a novel pathogen will cause pathogen genetic sequences collected further apart geographically to also appear more distant genetically. This phenomenon results when local transmission dominates a system and is widely observed in nature (Real et al., 2005a). Conversely, divergence from this observation allows for the estimation of the importance and magnitude of longdistance dispersal on transmission (Smith et al., 2005).

These null expectations will be violated in systems where hosts are highly mobile. In systems where long-distance movement is common, the null expectation should instead be that of a geographically well-mixed pathogen population. In such cases, alternative approaches to quantifying distance are necessary. One such framework involves considering not only the Euclidean distance between locations, but also the quantity of and frequency with which individuals are exchanged. This connectivity network is, in essence, a large-scale representation of a contact rate landscape. If longdistance movement occurs along well-defined pathways, a correlation between genetic distance and the magnitude of host movement should be apparent, rather than a cline in genetic similarity as geographic distance increases. Differential movement by hosts of different sexes, ages or social groups could theoretically allow for the identification of hosts that are important for transmission across various spatial scales by linking subgroup-specific movement to pathogen population structure.

### 1.2 Human movement and disease

Humans are clear examples of hosts that commonly move long distances in short periods of time. For humans, transport network availability presents a stronger barrier than the physical landscape in terms of allowing individuals to move between and interact with individuals in other locations. As a direct result, space is better defined as a
connectivity network; any underlying structure in human-associated pathogen genetic diversity should directly correspond to this network (Pybus et al., 2015).

The hierarchy of human mobility spans a wide range of spatial and temporal scales (Fig 1.1) (Stoddard et al., 2009). At the global scale, the transport of infected individuals over long-range mobility networks can seed epidemics of emerging or reemerging diseases (Khan et al., 2014; McLean et al., 2005; Semenza et al., 2014). Individuals traveling at this scale likely do so more infrequently, but longer trip durations provide opportunities for local transmission that can initiate outbreaks. Travel flows along these networks have been used to track past global pathways of disease spread (Bahl et al., 2011; Brockmann and Helbing, 2014) and to predict the most likely pathways that future pandemics will take (Gomes et al., 2014; Hufnagel et al., 2004). Although the magnitude of travel is well correlated with the timing of epidemic introduction, frequent long distance travelers contribute little to epidemiological dynamics once the epidemic is underway (Hollingsworth et al., 2007). At the local scale, detailed information on daily short-range movements and social contact networks has allowed for a more mechanistic understanding of how disease spreads through a community (Salathé et al., 2010; Vazquez-Prokopec et al., 2013). At this scale, individuals with high contact rates contribute disproportionally to disease spread (Stein, 2011). Recurrent local movements lead to increased exposure hazards for regular contacts, with the movement of children to and from school providing a prime example (Cauchemez et al., 2008). Regional mobility combines aspects of movement from both global and local scales, as it involves long-range transportation networks that may be used frequently and/ or with high regularity to promote interactions among individuals from different communities. For example, the effects of regional movement on measles dynamics have been widely characterized in Africa, where seasonally-forced epidemics


Figure 1.1. Temporal and Spatial Scales Over Which Human Movement Occurs and Implications for Pathogen Transmission. Human movement occurs across multiple scales ranging from the local daily trips of short duration (e.g. movement to and from school) to global journeys that can last for extended periods of time (e.g. seasonal migrations). Reprinted from: Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ , Kitron U, et al. (2009) The Role of Human Movement in the Transmission of Vector-Borne Pathogens. PLoS Negl Trop Dis 3(7): e481
are driven by human migrations between regional centers for agriculture (Bharti et al., 2011).

The effects of human mobility are pathogen-specific. Diseases with more complex life histories and life-cycle requirements depend not only on the movement of their human hosts, but also on the presence and movement of any other vectors or reservoirs that they require and/ or the abiotic conditions necessary for transmission (Estrada-Pena et al., 2014; Halpin et al., 2007). For instance, the successful introduction of vector-
borne pathogens requires not only the presence of susceptible humans but also the availability of competent vectors.

### 1.3 Influenza A virus as a model system

Seasonal influenza A virus presents an ideal system with which to study the effects of host mobility on viral evolutionary and ecological dynamics. Influenza A is a directly-transmitted, negative sense, single-stranded RNA virus of the Orthomyxoviridae family. The $\sim 13 \mathrm{~kb}$ genome is composed of 8 segments that code for 11 different proteins and that frequently reassort. The hemagglutinin (HA) and neuraminidase (NA) proteins are the major targets of the human immune system and are therefore most important antigenically (Bush et al., 1999; Wilson and Cox, 1990b). Eighteen HA types and 11 NA types have so far been identified, the combination of which is used to classify the virus subtype (Centers for Disease Control and Prevention, 2015b). Wild birds of the order Anseriforme and Charadriforme are the natural hosts of influenza A viruses (Webster et al., 1992), although other mammalian species including pigs and horses are susceptible to influenza infection as well (Nelson and Holmes, 2007).

Currently, only the H3N2 and H1N1 subtypes circulate regularly in the human population. Although both initially emerged from an animal reservoir, neither requires any additional species for replication or transmission. The emergence of new influenza subtypes in the human population is associated with reassortment events between human viruses and novel segments from viruses circulating in other avian or mammalian species as well as adaptation of avian viruses to human hosts (Kawaoka et al., 1989; Scholtissek et al., 1978a; Taubenberger et al., 2005). This process, termed 'antigenic shift', produces pandemics following the initial cross-species transmission event (e.g. 1918 Spanish flu, 1958 Asian flu and 1968 Hong Kong flu). In contrast, reassortant
lineages that have become established in the human population evolve through a process of mutation accumulation termed 'antigenic drift' in concert with reassortment between other co-circulating strains (Rambaut et al., 2008).

Influenza epidemics are strongly seasonal, with dramatic peaks occurring in the winter months in temperate regions and more modest peaks occurring in the tropics during the rainy season or circulating at low levels year round (Russell et al., 2008; Tamerius et al., 2013; Viboud et al., 2006a). The driver(s) of these seasonal patterns are still unclear, but have been attributed to seasonal indoor crowding among humans, reduced viral stability in warm temperatures, and/ or reduced immune function due to host vitamin D deficiencies (Lofgren et al., 2007). Rapid lineage turnover evidenced by a ladder-like phylogeny is a hallmark of influenza A viruses (Fitch et al., 1997). This results from antigenic escape mutants that outcompete and replace existing lineages through a process known as genetic drift every 3-5 years (Smith et al., 2004). Due to these dynamics, epidemics must be newly seeded each season; there is no evidence for sustained local persistence between seasons in temperate regions (Nelson et al., 2007). As a consequence, annual epidemics can be considered as replicate manifestations of the same underlying invasion process, facilitating the comparison of epidemic dynamics and spatial patterns over multiple years. Although there is some evidence for cross-immunity between lineages of the same subtype, this effect is relatively small and annual updates to the vaccine are necessary to protect against that season's dominant strain (Blackburne et al., 2008; Shih et al., 2007; Wilson and Cox, 1990a). Despite the rapid evolution observed across seasons, influenza evolution during the course of a single season is generally thought to be neutral (Lavenu et al., 2006; Nelson et al., 2006).

The two currently circulating subtypes, H3N2 and H1N1, exhibit differing epidemiological dynamics. Since 1968, when it first entered the human population
during the "Hong Kong Flu" pandemic, H3N2 dominated most influenza seasons in the United States (US) (Holmes, 2009). During that period, H3N2 generally caused more severe epidemics characterized by larger peaks, greater morbidity and mortality, and faster spatial spread (Simonsen et al., 2005; Viboud et al., 2006b; Wolf et al., 2006). H1N1 circulated concurrently during this period, having most recently re-entered the human population in 1977 (Scholtissek et al., 1978b), but generally caused milder epidemics that were more genetically diverse. The mechanisms producing these differences in observed standing diversity have not yet been resolved, though hypotheses that highlight the effects of cross-immunity, epochal evolution and expansion load have been proposed (Ferguson et al., 2003; Koelle et al., 2006; Koelle and Rasmussen, 2015). In 2009, a new variant of H1N1 entered the human population after a triple reassortment event involving genes from human, swine and avian viruses (Dawood et al., 2009; Smith et al., 2009). In the northern hemisphere, the pandemic first peaked in the late spring and early summer of 2009, with a secondary peak occurring in the fall and winter of the 2009-2010 season (Centers for Disease Control and Prevention, 2016; Nelson et al., 2011). The pandemic strain did not have quite the impact that had originally been predicted (Viboud et al., 2010), but has since replaced the previously circulating H1N1 seasonal lineage (Blyth et al., 2010; Centers for Disease Control and Prevention, 2016).

Due to the regularity with which influenza epidemics occur and the large proportion of the human population that is annually infected, an abundance of publicly available genetic sequence data is available for this virus. In addition, much of these data are spatially referenced at scales that are relevant to transmission. Although multiple studies have investigated global patterns of influenza genetic diversity and spatial spread (Bahl et al., 2011; Balcan et al., 2009b; Lemey et al., 2014), and others have examined community-level drivers of transmission (Worby et al., 2015), far fewer studies have
examined epidemic dynamics at the regional scale. Those that have, have concluded that the virus is introduced into regions multiple times over the course of the season, that abundant genetic diversity is present across space and that spatial spread is so rapid that no genetic structure based on geography exists (Nelson et al., 2008; Nelson et al., 2006). This last conclusion is problematic for the design of effective control strategies, since it suggests that pathways of viral spread are unpredictable. In the following studies, I reexamine this finding and offer insights on policies that have the potential to aid in the control of influenza epidemics.

### 1.4 Dissertation Summary

In this dissertation, I explore the effects of human movement on pathogen population structure, using influenza A as a model system. I use phylogenetic techniques, spatial statistics and network analysis to detect underlying genetic patterns at the regional scale and utilize my findings to design and implement a novel vaccination strategy. To explore the processes of invasion and spatial spread, a detailed understanding of geographic range theory and the ecological and evolutionary factors that control distributional limits is necessary. In Chapter 2, I conduct a review of the literature to characterize the ecological and evolutionary factors than constrain the ranges of parasites and pathogens. These include abiotic factors (e.g. climate and host population structure) and biotic factors (e.g. interspecies interactions), as well as factors that control the organism's evolutionary response to these conditions. I conclude by outlining how an understanding of the spatial patterns observed throughout the geographic range can provide insights on the population dynamics of hosts and their pathogens.

While influenza A is considered a global pathogen, local extinctions in temperate areas during the summer months necessitate repeated invasions at the regional scale. In Chapters 3 and 4, I explore how regional human mobility structures influenza populations during these annual introductions. Although the study of transportation networks in the US performed in Chapter 3 initially suggests that influenza epidemics predictably spread along pathways defined by commuter movements, no underlying population structure is found when a similar analysis of influenza epidemics in Europe based on aviation and rail network connections is conducted in Chapter 4. A reexamination of the US influenza dataset correcting for strong differences in intra- and inter-state genetic distances and commuting patterns shows that the original observation of spatial structure was likely driven by these differences, rather than by the predictable decay of genetic similarity with decreasing travel volume. Additionally, an analysis of the European regional transportation networks and a comparison with those of the US reveals that the rail network, hypothesized to have a structuring influence on epidemics, shares several important characteristics with both the European and US aviation networks. This finding leads to the conclusion that both international transportation networks in Europe likely facilitate long-distance transmission and international mixing of influenza populations. The greater spatial organization of the US commuting network makes it a better candidate for imposing structure during epidemic spread, which may be detectable when more high-resolution spatial genetic data become available.

In Chapter 5, I evaluate whether targeted vaccination strategies can be used for the prevention and control of influenza epidemics. I construct a stochastic metapopulation model simulating a city-suburb system to test different vaccination schemes that incorporate host group and population-level characteristics. I compare the targeted vaccination of commuters, a host group thought to be important for intercommunity transmission, with the targeted vaccination of children, an age group known
to drive transmission within communities. I find that targeting children provides the greatest overall benefits in terms of reducing incidence, but also show that vaccination of commuters and other groups of employed adults provides similar reductions in incidence and additionally delays the speed and timing of epidemic spread when outbreaks are severe.

In Chapter 6, I summarize my findings and conclude how human mobility affects influenza epidemics at the regional scale. I discuss the limitations of my work as well as avenues for future research. I also highlight the need for more detailed spatial genetic data to further expand on these findings.

## Chapter 2

## Integrating parasites and pathogens into the study of geographic range limits

Reprinted material from: Bozick BA, Real LA (2015) Integrating Parasites and Pathogens into the Study of Geographic Range Limits. The Quarterly Review of Biology 90(4): 361-380. DOI: 10.1086/683698

Copyright © 2015 by The University of Chicago Press

### 2.1 Introduction

Identifying factors that contribute to limiting species' distributions remains a central goal in ecology and evolution (Brown and Lomolino, 1998), as an understanding of how species' ranges are shaped can provide insight on the limits to natural selection. Populations at range edges where conditions are unfavorable should be under strong selection to adapt to the present environment, so factors that limit ranges also represent limits to adaptation. Identifying the abiotic and biotic factors that impose limits on natural selection will provide us with a greater understanding of the process of adaptation and of evolution itself. Although a diverse list of factors, including environmental variation, resource limitation, and evolutionary constraints have been invoked as general explanations for the formation of range limits, mounting evidence suggests that these factors vary between as well as within species over space and time.

A significant portion (30-70\%) of the earth's biodiversity may be represented by parasites (de Meeûs and Renaud, 2002; Price, 1980). However, the vast majority of range limit studies have examined only free-living plants and animals. Parasites and pathogens are found on every continent, yet few are truly distributed worldwide. Even during pandemics, geographic range limits can be imposed by subspecies or by species-
specific geographic associations (Fig 2.1). Few studies have addressed the specific factors that set parasite range borders and have instead focused either on the impact of parasitism on host range (Antonovics, 2009) or on elucidating large-scale patterns in parasite distributions and diversity (Guernier et al., 2004; Louhi et al., 2010; Smith and Guegan, 2010; Thieltges et al., 2011). In this review we outline how geographic ranges are defined and then discuss major determinants of the geographic distributions of parasites. We additionally show how parasites provide novel systems with which to address ecological and evolutionary questions fundamental to understanding how range borders are formed.

### 2.2 Defining the geographic range

The spatial distribution of a species can be broadly defined as areas, accessible by dispersal, over which specific ecological conditions exist that permit population persistence (Soberón and Peterson, 2005). While abiotic conditions such as temperature, precipitation and humidity corresponding to a species' environmental tolerance range often delimit the fundamental niche at coarse spatial scales, local microclimates and biotic interactions further refine the subset of this expanse that a species can actually inhabit (Estrada-Pena et al., 2014). Given that dispersal allows access to these suitable locations, realized range limits should theoretically correspond with niche limits (Hargreaves et al., 2014). However, source-sink dynamics facilitated by dispersal allow species to inhabit areas that do not conform to their requirements (Hargreaves et al., 2014; Pulliam, 2000). Individuals emigrating from self-sufficient source populations can colonize sink habitats where survival is possible but where reproduction does not occur at a rate fast enough to exceed death and emigration. Phylogeographic analysis of the influenza A/H3N2 virus, for example, suggests that East-Southeast Asia may act as the source population from which global epidemics are
seeded and, despite annual outbreaks, temperate areas are merely sinks (Russell et al., 2008). Sinks should still be considered part of a parasite's geographic range, especially if relevant evolution that contributes to future spread or persistence occurs there, or if epidemics consistently reoccur in the sink (as opposed to isolated outbreaks that are not likely to be repeated). Additionally, species may be absent from suitable areas due to physical barriers, such as mountains or oceans, or historical and stochastic events.

A species' distribution can change due to expansions, contractions and/ or shifts of range borders. Range expansions stem from adaptations to conditions at the margin or introductions to novel habitats, such as during pathogen translocations or crossspecies transmission events. Range contraction or fragmentation results when conditions at the periphery become inhospitable, possibly through human-mediated pathogen control or due to declining host density. Range shifts occur when favorable conditions arise at one range edge and deteriorate at another, and have been observed for many species that act as vectors of disease (Mills et al., 2010). Expansions, contractions and shifts all have important consequences for population genetic diversity, generating specific patterns that can be used to infer underlying demographic processes (Templeton, 1998). A range at any point in time is therefore shaped by the interaction between the changing environment and the species' evolutionary response to these conditions.

### 2.3 Range limits

Range boundaries are created by ecological conditions that exceed the evolutionary capacity of a population (Table 1). Abiotic limiting factors consist of external processes that shape an organism's physical habitat while biotic factors refer to interactions mediated by the composition of the local community. For parasitic organisms, individual hosts act as habitat patches, so ecological factors that affect the
range of the host will in turn restrict the range of the parasite. Although the ranges of obligate parasites will be exclusively determined by host characteristics and within-host biotic interactions, parasites with free-living stages will be directly affected by external abiotic conditions. Evolutionary factors then modulate the response of the parasite to these ecological conditions. This evolutionary response is constrained by the amount of genetic variation available, as well as the organism's ability to make use of this variation under physiological constraints. The magnitude and direction of the evolutionary response is further dependent on the strength of the coevolutionary coupling between host and parasite, as well as on the extent of gene flow between connected populations that may experience differing selective pressures.

Historically, at the global scale, parasite ranges have been limited by biogeographic barriers such as oceans and landscape formations, over which their hosts could not cross. Until the discovery of the Americas by European explorers and the advent of the slave trade, many viruses including mumps, measles, smallpox, and yellow fever were confined to the Old World (Smith and Guegan, 2010). Globalization has vastly expanded the ranges of countless parasite species, as infected hosts are easily transported between continents through air and sea travel. The source of the recent and unintentional introduction of West Nile virus from the Old World to the Western Hemisphere probably occurred through air travel of an infected human or mosquito (Weiss and McMichael, 2004). Domestication of animal species for farming and their subsequent transportation has also contributed to parasite range expansion. For example, the endoparasite Nematodirus battus, an intestinal parasite of sheep, has been extensively transported around the world in the last 60 years, displacing other local species of Nematodirus (Hoberg and Brooks, 2008). However, in natural systems, the relationship between range size and host mobility is not always straightforward. Thieltges and colleagues (2011) investigated whether range size patterns in trematodes
differed between those utilizing birds or fish as definitive hosts and found no relationship, suggesting that at coarse spatial scales, biogeographic properties of the landscape may be more important in determining geographic range size than the local dispersal ability of the host.

The importance of different range limiting factors varies with scale (Estrada-Pena et al., 2014). A useful framework for defining distributions (Estrada-Pena et al., 2014) starts with dispersal; of all areas accessible to the pathogen, some will fall within the abiotic threshold of the pathogen as well as all essential host species. Within these defined areas, local environmental variation, as well as biotic interactions within the host community and across parasites species will determine the realized distributions over which parasite populations can persist. Additionally within-host dynamics constitute an even finer scale that must be considered, as the physiology, immunological defenses and genotypic profile of the host determine the outcome of host-parasite interactions upon infection. Although the presence of susceptible hosts is clearly of the utmost importance for pathogens, host and parasite ranges rarely correspond completely since parasites are often only associated with a subset of the host population. Many realized ranges are therefore only a subset of the potential range of a pathogen. Clearly, we must look beyond host characteristics; a more thorough investigation of the specific factors that impact pathogens is necessary to adequately describe parasite distributions.

### 2.4 Hosts as habitat

Trivially, by association, factors that limit the geographic range of hosts must also limit the geographic ranges of their parasites. Parasitic organisms are constrained to areas over which there are suitable ecological and demographic conditions to sustain all host species that are required for the life cycle, although environments in which primary
and spillover hosts interact must additionally be taken into account when mapping the distribution of a pathogenic disease (Halpin et al., 2007). Thus, generalist parasites, as well as those that are directly-transmitted, tend to have broader geographic ranges than those that are specialists or that require multiple hosts or external stages to complete their life-cycle (Smith and Guegan, 2010). Parasites that can utilize, but do not require, multiple host species should be least constrained in their geographic ranges. Rabies, a multi-host virus, has a nearly global distribution (Baer, 1975; Woolhouse et al., 2001). In a study comprising 341 flea species from five different global regions, Krasnov and colleagues (2005) confirmed a negative correlation between host specificity and geographic range size. As a corollary, invasions or deliberate introductions of host species into new areas can lead to a geographic range increase for their associated parasites, if these parasites can continue to complete their life cycle by utilizing other requisite hosts in the new location (Amundsen et al., 2013).

The extent to which parasites can evolve to utilize new host species is strongly dependent on parasite taxonomic group; even then, genomic conservation in viruses, some of the most rapidly evolving organisms known, could inhibit the ability of the organism to readily jump host species. Phylogenetic conservation of mechanisms involved in infection and replication is evidenced in the genus Flavivirus, where a strong phylogenetic signal in the ordering of tick-borne and mosquito-borne species suggests that the ability to replicate in a novel vector species evolved only once and has since remained highly conserved (Holmes, 2003). Cross-species transmission events appear to be much more likely among phylogenetically similar hosts (Streicker et al., 2010), perhaps because genes that control cell receptor recognition functions are highly conserved (Holmes, 2004). Additionally, correlations among fitness traits impose limits to adaptation by restricting the extent to which a trait can evolve without negatively affecting other traits. Fitness trade-offs may be especially limiting in vector-borne
viruses, which often must replicate in both vertebrates and invertebrates. In support, far lower rates of non-synonymous substitution have been detected in vector-borne viruses than in directly transmitted RNA viruses (J enkins et al., 2002).

J ust as habitats vary in their suitability, not all host individuals are susceptible to invasion by pathogens. Vaccination has virtually eliminated many once common viruses from developed countries by drastically decreasing the availability of susceptible hosts (Smith and Guegan, 2010). To date, humans have succeeded in eradicating the smallpox and rinderpest viruses (Smith and Guegan, 2010), and the ranges of many other pathogens have been successfully restricted through the development of vaccines and the implementation of control programs. Host diversity in innate immunity can prevent efficient transmission or replication in certain individuals. High diversity across genes of the major histocompatibility complex (MHC), which are involved in immune function in vertebrates, potentially stems from an evolutionary arms race with pathogens. Viral fitness decreases in hosts with unfamiliar MHC genotypes (Kubinak et al., 2012) and diversity in MHC genes has been linked to resistance of rabies virus in raccoons (Srithayakumar et al., 2011) and cytomegalovirus in mice (Adam et al., 2006). The abiotic environment can also play a role in mediating genotype-by-genotype interactions. With the exception of those macroparasites with free-living stages, parasites generally need only adapt to overcome host defenses while hosts must contend with both parasites and the surrounding environment. Resource availability and quality can affect the basic ability of a host to mount an immune response due to trade-offs in energy allocation. Therefore, spatial variation of resources can modulate host resistance, in turn affecting the local distribution of parasites (Boots, 2011).

For a pathogen to successfully invade, host populations must meet a critical community size (CCS), defined as the number of susceptible hosts necessary for pathogen persistence (Bartlett, 1957). Acute, highly transmissible viruses that rely on
density-dependent transmission require large host population sizes to establish endemically, so that the supply of susceptibles is constantly replenished. Measles represents a classic example, as the CCS has been estimated to be from 250,000300,000 (Bartlett, 1960). A study of diseases carried by human tribes in the Amazon basin showed that persistent, low-morbidity viruses like herpes and Epstein-Barr were often endemic whereas acute, severe viruses like measles and mumps were rarely detected, potentially owing to human population sizes that seldom exceeded several hundred individuals (Black, 1975). In fact, in a study of 335 emerging infectious diseases of humans, human population size was found to be the single best predictor of disease emergence (J ones et al., 2008).

Further, high genetic diversity should render host populations more resistant to invasion (O'Brien and Evermann, 1988). Close associations between particular host and pathogen populations may prevent the pathogen from invading geographically distinct populations of the same host, especially if hosts are differentiated into unidentified cryptic species. J apanese Encephalitis Virus is found throughout Southeast Asia and the Pacific Islands yet has not been able to establish on the Australian mainland located merely 70 miles away, despite the presence of competent hosts, vectors, and amplifying hosts. Hemmerter and colleagues (Hemmerter et al., 2007) detected strong spatial genetic subdivision between populations of Culex mosquitoes in Northern Australia and identified several cryptic species, suggesting that the genetic diversity of vectors on the Australian mainland may prohibit the virus from establishing sustained transmission. The importance of genetic diversity in preventing infectious disease establishment has long been recognized in agriculture and guides some aspects of policy on patterns of intercropping in otherwise monocultures of economically important crops (Leonard, 1969).

Once a pathogen has successfully invaded, variations in the local abundance of individual hosts can restrict further spread. Commonly used models often assume an abundant center distribution, in which the population density of free-living species is highest at the core where conditions are presumed most favorable and decreases toward the margin as conditions decline (Brown, 1984). For parasites that rely on densitydependent transmission, variation in host density is analogous to variation in habitat connectivity; density declines decrease the probability of contact between infected and susceptible hosts. For example, urban to rural gradients in population density can limit the spread of human pathogens. Many directly transmitted, highly infectious viruses, such as measles and influenza, are primarily associated with urban centers (Fang et al., 2012; Grenfell et al., 2001; Viboud et al., 2006b), which act as foci for geographically widespread pathogens. Waves of infection traveling outward from urban areas to sparsely populated surrounding towns have been extensively documented for measles in the pre-vaccination era (Grenfell et al., 2001).

The traditional model of density-dependent pathogen spread predicts that parasites will still not occupy the full geographic range of their hosts, attaining maximum prevalence at the range core. In support, Antonovics et al. (2011), found that parasitefree zones existed at bumblebee range edges. Other studies, however, have provided conflicting results. Briers (2003) instead found a higher prevalence of trematodes in snail intermediate hosts at the margin. While inbreeding depression and low genetic diversity in isolated, low-density fringe populations can reduce immune activity in host individuals and make it easier for parasites to invade (De Castro and Bolker, 2005; O'Brien and Evermann, 1988), theoretical results show that sterilizing pathogens relying on frequency-dependent transmission are expected to be distributed throughout the entirety of their hosts' range and can even cause areas of low host density to emerge at the range core (Antonovics, 2009). Since host density and prevalence are uncoupled for
parasites that are transmitted in a frequency-dependent fashion, concordance between host and parasite range in these systems should be complete. Therefore, host abundance distributions alone are not adequate to map parasite ranges. Instead, range-wide data on population demography and genetic structure as well as biological interactions, parasite life history strategies and the physical landscape are necessary to draw accurate conclusions.

At larger spatial scales, range-wide structure and connectivity across multiple host populations can be nearly as important as host availability in establishing the range boundaries of parasites. Metapopulation models have shown that limited connectivity among host populations decreases the probability that marginal patches will receive infected hosts, thereby increasing global extinction probability (Fig 2.2) (Keeling et al., 2004). Isolated populations are unlikely to benefit from the 'rescue effect,' a process in which patches are continually colonized by infected hosts after stochastic populationwide extinctions occur. However, if population connectivity is too high, epidemic dynamics across multiple patches will become synchronized so that a single event can lead to the extinction of the pathogen across the entire metapopulation system. Intermediate levels of connectivity are, therefore, thought to be most favorable for long term pathogen persistence (Keeling et al., 2004). However, recent observations from a plant-pathogen system have challenged these long-standing predictions. J ousimo and colleagues (2014) found that well-connected host populations were less likely to be infected, positing that these populations instead benefited from the continual introduction of resistance alleles from surrounding populations.

Local coevolution between hosts and parasites is continually modulated by gene flow from surrounding populations. Host gene flow from parasite-free areas can swamp co-adaptation at high levels or provide genetic variation for resistance at low levels (Brockhurst et al., 2007). For example, gene flow from low-salinity refuges inhibits
adaptation of Delaware Bay oyster populations to the MSX parasite (Hofmann et al., 2009). In years when MSX is prevalent, the geographic range of the oyster population contracts, leaving surviving oysters in low-salinity refuges that are poor habitat for MSX; as these populations account for the majority of larvae spawned in subsequent years, there is no selection for resistance alleles. Models describing coevolution of parasites associated with spatially-structured hosts show that, if stabilizing selection favors geographic variation in optimal host phenotype, some sites can act as parasite sources while others can act as parasite sinks; high rates of host gene flow then disrupt local adaptation of parasite to host, resulting in declines in parasite abundance (Nuismer and Kirkpatrick, 2003). High rates of viral gene flow between populations can be beneficial if recombination or reassortment is common. For example, although low pathogenic avian influenza viruses sampled from North America and Eurasia are genetically distinct and reassortment events are rare, a greater proportion of reassortment viruses have been detected in areas where migratory flyways overlap (Ramey et al., 2010).

The geographic mosaic theory of coevolution (Thompson, 2005) predicts that coevolutionary hot and cold spots arise based on the spatial distribution of hosts, their parasites, and the direction and magnitude of gene flow. In a simulation study, Nuismer (2003) showed that it was critical to note whether parasitized areas occurred at the periphery or the core of the host range because this had significant effects on the extent to which host populations already under selection due to environmental pressures could effectively adapt to parasitism. A greater degree of overlap between host and parasite range resulted in greater maladaptation of parasite to host, providing an alternative explanation as to why parasite ranges may be limited to a subset of their hosts' range.

The composition and spatial arrangement of host populations often changes seasonally, causing range boundaries to fluctuate in their associated parasites. For example, human crowding in indoor spaces in the winter may facilitate the spread of
directly transmitted pathogens; this proposal has been put forward to explain the local extinction of influenza each summer in temperate regions (Nguyen-Van-Tam, 1998). This mechanism may also explain seasonal expansion of diseases in wildlife populations. Winter peaks in Mycoplasma gallisepticum prevalence among house finches have been attributed to aggregation of birds at man-made feeders in winter, which aids in the rapid spread of the pathogen throughout finch populations (Hosseini et al., 2004; Robb et al., 2008). Additionally, host dispersal often varies seasonally, increasing the chance for transmission into naïve populations during times when hosts are moving frequently and over long distances. In Ontario, biannual peaks in skunk rabies prevalence are associated with seasonal changes in contact rates which increase when mature animals breed in the spring and when juveniles disperse in the fall (Webster et al., 1974). The seasonal movement of mule deer influences transmission of chronic wasting disease. In the winter, movement between tightly knit population units is rare and transmission primarily occurs within groups; transmission between groups occurs mainly in the summer, leading to seasonal oscillations between patchy and widespread infection (Conner and Miller, 2004). Seasonal birth pulses can create a similar effect, as the introduction of new susceptibles through birth allows pathogens to invade naïve populations even though parasite prevalence may drop to lowlevels or go locally extinct between breeding seasons (Altizer et al., 2006). Additionally, gradients in the length and timing of the reproductive period in wildlife populations can create patchy distributions of disease in regions where infection is strongly seasonally forced, with spatial synchronization of epidemics occurring in populations with longer birthing periods (Duke-Sylvester et al., 2011).

### 2.5 External Environment

The dynamic nature of the external environment can lead to shifts, contractions, or expansions of the geographic range of competent hosts and vectors. Numerous studies have investigated the role of climate as a determinant of geographic range, since many species have specific temperature and humidity requirements that make colonization outside a specific climatic region impossible. Until recently, bluetongue virus occurred
 and 350 South (Purse et al., 2005) which corresponds to the thermal tolerance of the local vector, the Culicoides imicola midge. Temporal variability in climatic conditions, such as temperature and rainfall, can also significantly affect host distributions (Stevens, 1989). Tropical organisms experience a much more restricted range of temperatures annually than do temperate or arctic species, potentially limiting their intrinsic ability to survive in regions where conditions change drastically from season to season. This is thought to be the underlying driver for the observation by Rapoport (Rapoport, 1975, 1982) that the latitudinal range of free-living species tends to decrease as latitude decreases. This in turn would constrict the geographic ranges of obligate parasites, unless the host range is sufficiently general as to include multiple climate-zone adapted species.

Climate can further influence ecological conditions that are necessary for reproduction and sustainable transmission of parasites themselves. Tick-borne encephalitis virus, primarily transmitted through co-feeding between nymphal and larval stage Ixodid ticks, occurs in focal patches scattered throughout Europe and Asia despite the broad distribution of its host, Ixodid ricinus, over much of the two continents (Hillyard, 1996). Co-feeding, the process by which saliva is shared between ticks attached in close proximity on the same host, only occurs where climatic conditions facilitate rapid declines in ground surface temperature between seasons, allowing for temporal
stage overlap between nymphs and larvae (Randolph et al., 2000). A large-scale study of the spatial distributions and diversity of 332 parasitic and infectious diseases found that temperature and annual variation in precipitation best explained the distributions of parasites with external stages, i.e. vector-borne and helminth diseases (Guernier et al., 2004).

Recent attention has focused on how global climate change will affect biodiversity by modifying current species' distributions (Anderson et al., 2009; Hickling et al., 2005; Parmesan et al., 1999; Rosenzweig et al., 2008; Warren et al., 2001). Importantly for pathogens, the ranges of many vector species appear to be expanding pole-ward (Hongoh et al., 2012; Van Den Hurk et al., 2010). Recent expansion of C. imicola from Africa into Northern Europe has been attributed to an increase in winter and nighttime mean temperatures and has resulted in bluetongue epidemics occurring further north than previously recorded (Calvete et al., 2006; Purse et al., 2005). Of direct benefit to parasites with free-living stages, climate change may accelerate parasite life cycles and increase transmission and virulence. Helminths that undergo development as free-living larvae are directly affected by soil temperature and humidity, and could therefore experience increased rates of development. Kutz and colleagues (Kutz et al., 2005) found that Umingmakstrongylus pallikuukensis, a nematode infecting muskoxen, can now complete its life cycle in one year rather than two due to warming in Arctic ecosystems. This has led to intensified infection pressure in muskoxen, and increases the potential for invasion of naïve populations previously residing outside the nematode's habitable zone. However, not all parasites are predicted to benefit from climate change. Future hot and dry conditions could hamper spore growth, reducing the risk of fungal infections (Harvell et al., 2002).

Warming temperatures may also modify host susceptibility to infection. Behavioral fevers, i.e. self-induced increases in mean body temperature, have been
shown to enable hosts to better fight infections. Ectotherms may therefore be at an advantage as ambient temperatures rise. For instance, summer decreases in the prevalence of Entomophthora muscae fungal infections in house flies were attributed to exposure to high temperatures in the early stages of infection (Watson et al., 1993). However, this is not a general rule. Drastic increases in pathogen loads of gorgonians leading to mass die-offs were correlated with increases in sea temperatures that severely stressed the organisms and hampered their ability to fight infection (Cerrano et al., 2000). Similarly, studies have shown that the amphibian immune response is negatively affected by increasing temperature variability (Raffel et al., 2006), linking climate change with chytrid-associated amphibian population declines (Rohr and Raffel, 2010). Clearly, the effects of climate change on geographic range will not be uniform across all parasite taxa and merit further study.

Modifications to the external environment can also be caused by anthropogenic activities. For example, local microclimates can be modified by deforestation. This could extend malaria risk to previously unsuitable areas, as increased temperature and relative humidity at deforested sites correlates with increased vectorial capacity of the major mosquito vector of Plasmodium falciparum malaria (Afrane et al., 2008). However, deforestation has also been correlated with a decrease in disease risk for humans (Valle and Clark, 2013), since the loss of biodiversity at disturbed sites can remove hosts necessary for the completion of parasite life cycles. These effects likely arise from scaledependent consequences of host removal; zoonotic diseases tend not to circulate in urban areas, where the probability of humans and reservoir hosts coming into contact is low (Wood and Lafferty, 2013; Wood et al., 2014).

Dengue virus (DENV) provides a prime example of the effects of human intervention and behavior. Widespread use of the insecticide DDT in the 1940's nearly eradicated the invasive Aedes aegypti mosquito vector in the Americas (Spiegel et al.,
2005), considerably reducing the range of DENV (Gubler, 2004) and eliminating New World dengue fever epidemics between 1946 and 1963 (Wilson and Chen, 2002). Aedes aegypti re-expanded its range throughout the Americas when vector control programs were ceased, however a re-emergence of DENV was only recorded south of the United States. The discrepancy in geographic range between host and virus is explained in part by present socioeconomic and behavioral differences that affect transmission likelihood, which might weaken direct effects of climate on host and vector distributions (Reiter et al., 2003). Air conditioning, more widely available in the United States, allows people to keep windows and doors closed during the summer season of heightened mosquito activity. In contrast, lack of affordable air conditioning in Mexico means that windows and doors are often left open, allowing infectious mosquitoes to invade dwellings. Dengue prevalence has also been correlated with the practice of storing water in open containers outside of the household, which function as mosquito breeding sites. This practice is widespread in areas where the supply of clean water is unreliable, again linking viral presence to human behavior and socioeconomic status (Barrera et al., 2011; Barrera et al., 1993; Barrera et al., 1995).

### 2.6 Community interactions

Community composition and biological interactions such as competition, mutualisms, and apparent competition can create biotically enforced range limits. Community biodiversity can expand ranges if amplifying hosts are introduced that promote pathogen transmission. For example, following the introduction of a new subspecies of muskoxen to the Arctic coastal plain, a new geographic record was set for the eastern distributional range of the lungworm Protostrongylus stilesi in a geographically isolated population of its native sheep host; spillover of the lungworm from sheep to muskoxen was likely followed by spillback from muskoxen to sheep in
areas of range overlap, as the muskoxen occupy a continuous geographic area between the disparate sheep populations (Hoberg et al., 2002). Further, introductions of nonnative species have upset food webs, introduced novel parasites and led to the reemergence of pathogens that were once controlled. For example, a trophic cascade resulting from the introduction of Nile perch to Lake Victoria for farming led to a drastic increase in schistosomiasis when populations of the natural cichlid fish predators of the intermediate snail-host were suppressed (Constantin De Magny et al., 2008). .

Parasites engage in competition for hosts, an interaction often mediated by the host immune system. While theory predicts that competition can cause the exclusion of a pathogen, empirical studies are difficult to perform. Using anecdotal and historical evidence, Lietman and colleagues (1997) modeled how the spread of tuberculosis bacteria could have eliminated leprosy in Western Europe. They found that tuberculosis would have been able to completely exclude leprosy if its basic reproductive rate was greater and if complete cross-protection existed. It is seldom the case that competition between related viruses can be observed directly; instead, a virus may not be able to invade a region due to cross-immunity resulting from a currently circulating virus. Yellow fever virus has never succeeded in establishing itself as an endemic parasite in Asia even though the required hosts are present and short transmission chains have been recorded. One hypothesis is that an immunological barrier exists due to a closely related, currently circulating virus (Holmes, 2009). In addition, abiotic conditions can mediate competitive interactions. The geographic distributions of two species of feather lice were shown to differ along a gradient in relative humidity across the US, with the geographic range of the inferior competitor set by competition and the range of superior competitor set by decreases in relative humidity in the zone of overlap (Malenke et al., 2011).

Mutualisms can render hosts resistant to infection. In Drosophila species, Wolbachia bacteria has been shown in the lab to confer resistance to several viruses
including Drosophila C virus, cricket paralysis virus, Nora virus and flock house virus by boosting basal level immunity (Hedges et al., 2008; Teixeira et al., 2008). It has also recently been demonstrated that Wolbachia promotes resistance to dengue virus, chikungunya virus and Plasmodium species in Aedes aegypti mosquitoes (Bian et al., 2010; Moreira et al., 2009). Although these species do not interact in nature, this mutualism could be used in the future to limit the range of these important human pathogens.

Alternatively, symbionts can facilitate host utilization and transmission. For example, the bacterium that causes cholera, Vibrio cholera, requires infection by a bacteriophage to infect and sustain transmission in humans (Constantin De Magny et al., 2008). Similarly, the distribution of some pathogens can be positively influenced by others. The rise of the HIV/ AIDS virus has allowed for the recent reemergence and range expansion of several pathogens including herpes simplex virus, hepatitis Cvirus, human papilloma virus, Mycobacterium tuberculosis, Plasmodium species and Schistosoma haematobium through the subsequent global increase in immune-compromised individuals that are highly susceptible to these opportunistic diseases (Gibson et al., 2010).

Apparent competition through mutual predation can lead to local spatial differentiation in the ranges of prey species, with the width of the intersection zone controlled by the effectiveness of the predator (Holt and Barfield, 2009). Parasite ranges could be constrained if increased virulence in novel hosts delayed or prevented the establishment of persistent infection within the spillover host population (Reullier et al., 2006). The northward expansion of deer carrying the meningeal worm Paralaphostrongylus tenuis is thought to restrict the southern ranges of moose and caribou, two spillover hosts that suffer high mortality when infected (Anderson, 1972). Additionally, predators may be able to limit the range of a parasite species through
predation on the host species. Models show that, as wolves continue to expand their range southwards from Canada into the Midwestern US, selective predation on deer infected with chronic wasting disease could eliminate the prion disease from the deer population (Wild et al., 2011).

### 2.7 Using parasites to study range limits

Advances in genetic sequencing technology have allowed molecular ecology to move to the forefront of biological research, and studies of geographic ranges are now increasingly conducted using a molecular ecology framework (Biek and Real, 2010). However, using genetic information to study the ecology and evolution of complex organisms has several inherent difficulties. Substitution rates are often low, leading to negligible genetic variation and differentiation among populations. Detectable evolution occurs over hundreds of thousands of years, imparting a genetic signature of historical processes rather than recent events. In contrast, the ecological and evolutionary dynamics of parasites, especially viruses and bacteria, happen on similar time scales due to highly error-prone replication mechanisms and short generation times. Genetic variation in these organisms is abundant compared to their host organisms and their relatively small genomes make it easier to obtain and sequence their genetic data. For these reasons, parasites are uniquely suited for use in tracking host movement and demography, which can be an important tool for investigating the ecological and evolutionary mechanisms that cause range limits to form. Genetic data from insects, intestinal worms and ectoparasites have been employed to infer host population dynamics, though relatively few studies of this nature have been conducted using viruses.

### 2.8 Using parasites to understand host geographic range limits

Parasites species which are most suitable for host inference are highly hostspecific, have direct life cycles, and do not possess a free-living phase (Nieberding and Olivieri, 2007). These characteristics imply high dependence on the host organism, so that host movements will be reflected in the parasite genealogy. However, the time scale over which host movement can be detected differs for parasites whose ranges are shaped by vicariance or dispersal; the ranges of parasites that co-diverge with their hosts should be most influenced by vicariance whereas the ranges of parasites that are horizontally transmitted are most likely to be shaped by dispersal (Holmes, 2004). Dispersal ability is intimately tied to transmission mode and infectivity, as those that are highly transmissible will be able to more efficiently spread among populations (Holmes, 2004). In viruses, this distinction closely parallels that between DNA and RNA viruses, as DNA viruses generally establish persistent infections while RNA viruses tend to be acute (Villarreal et al., 2000). The genetic structure of acute, horizontally transmitted parasites reflect host contact patterns over short time scales, often providing an estimate of host population structure at a finer resolution than the host phylogeny itself. This can aid in identifying recent dispersal barriers that may be critical for defining current and future distributions. Biek et al. (2006) showed that a host-specific feline retrovirus (FIV) accurately tracked population growth in its cougar host (Puma concolor) following a sharp decline only 80 years earlier. The authors hypothesized that the distinct spatial distribution of viral lineages corresponded to the pattern of previous host range fragmentation even though little genetic structure was detected in the cougar population.

Persistent viruses, microbes or parasites that co-diverge with their host organism are well suited for tracking ancient range fluctuations. For example, a helminth (Heligmosomoides polygyrus) phylogeny that closely corresponded to the phylogeny of its rodent host (Apodemus sylvaticus) further revealed strong subdivisions within the
three primary, geographically distinct host lineages, probably representing the separation of mouse populations that were not yet visible in the host phylogeny (Nieberding et al., 2004). Several parasitic organisms, including Helicobactor pylori, human papillomaviruses and polyomavirus JC (JCV) appear to be ideal candidates for inferring past human migration events (Falush et al., 2003; Holmes, 2004; Wirth et al., 2005). JCV, a persistent DNA virus, is thought to have been associated with humans since the appearance of modern forms in Africa (Yanagihara et al., 2002). Because its evolution rate is two orders of magnitude greater than that of humans (Hatwell and Sharp, 2000), J CV population structure has been used to document past range expansion events through inference of the direction of ancient migration patterns from the Old World to the Americas (Agostini et al., 1996) and from continental Asia throughout the Pacific islands (Yanagihara et al., 2002) and J apan (Yogo et al., 2004).

### 2.9 Studying geographic ranges of parasites

The abundant genetic diversity observed in viral populations makes them ideal organisms with which to empirically test theoretical predictions of the distribution of genetic variation in populations with dynamic range boundaries. The majority of work to date has focused on the invasion of naïve host populations by pathogenic organisms. One such theoretical model, the surfing mutation model, predicts that new mutations generated at the expanding edge of the range are propagated faster than mutations that occur at the center of the range (Edmonds et al., 2004; Klopfstein et al., 2006). The lineages that arise from these edge mutations establish spatially distinct founding populations that are genetically differentiated from neighboring populations. This pattern was observed during a major raccoon rabies epidemic and was still evident 30 years after the initial infection wave (Biek et al., 2007). Theoretical work has shown that range contractions and shifts also impact genetic diversity and that the shape and speed
of these processes can have important consequences on the structuring of genetic variation (Arenas et al., 2012). Understanding how these processes affect variation is essential for predicting the impacts of climate change on biodiversity and for developing conservation strategies that retain maximal genetic diversity within a species. Further work using viruses to identify patterns of variation in expanding populations as well as in those whose ranges are contracting or shifting will allow us to connect ecological and spatial processes to observed genetic patterns over short time scales.

### 2.10 Conclusions

The contemporary study of geographic ranges has evolved considerably since the birth of population biology in the 1960s. While early research focused on identifying specific environmental conditions that were not conducive to the survival of a particular species and employed straightforward models with many simplifying assumptions, current research has shifted towards identifying evolutionary limits to adaptation using genetic data and complex metapopulation models that can incorporate both environmental and evolutionary dynamics in a spatially-explicit context. Previous research focused primarily on understanding the determinants of range limits in plants and animals, neglecting those of parasites, which account for a substantial portion of Earth's biodiversity. While the geographic distribution of the host organism plays an integral part in defining a parasite's range, ecological factors including host abundance distributions and genetic structure must be taken into consideration. Although abiotic conditions are often central to defining the host geographic range, only a subset of parasites, those with free-living stages, ever experience these abiotic conditions; biotic factors are therefore much more important. Parasites and pathogens can provide insight on how microevolution and ecological processes shape their hosts' distributions and
provide a new source of information on how evolutionary processes shape patterns of variation over geographic space.

Several unanswered questions remain regarding the determinants of geographic range limits. First, it is clear that the relative importance of ecological versus evolutionary forces in shaping the geographic distributions of species has not yet been resolved. Although range boundaries seem to arise as a result of ecological conditions, evolutionary forces control their dynamics. We suggest that parasites can provide an informative means with which to better investigate this interaction, owing to their rapid rates of evolution and abundant genetic variation. As the evolutionary rates of hosts are far slower than that of their parasites and because host genetic data often proves more difficult to collect, using parasites to connect observed ecological patterns with genomic data will allow us to track evolution at range borders over short time scales.

Secondly, while the roles of many abiotic factors in establishing range limits for free-living organisms have been well characterized, the importance of biotic factors in setting range limits is an active area of research. Since most parasites complete their entire life-cycles within their host organisms, interactions between parasite and host are therefore the defining factor in establishing the range of many pathogens. At a broader scale, the importance of host community structure as well as interactions between parasite species needs exploration. Worldwide environmental change has led to extensive alterations of host communities and has resulted in massive declines in biodiversity. These ecosystem changes may favor the proliferation of generalist parasites over specialists, warranting further study into the differing interactions of each with their hosts. As parasites and pathogens continue to expand their ranges through global human movement, interactions between parasitic species will become increasingly important. Both the rapidly increasing number of immune-compromised individuals and the elimination of many once common pathogens have led to increases in previously rare
pathogen species. As a recent example, local outbreaks of monkey pox in the Congo have been attributed to waning immunity to pox viruses following the global eradication of smallpox (Heymann et al., 1998). Formerly rare pathogens are alarming future threats, and it is essential to understand the factors that control their current distribution and spread.

Finally, the impact of climate change on the range of organisms, both parasitic and free-living, is one of the most pressing issues in ecological research today. Under current debate is whether climate change will cause the expansion of parasite ranges, leading to an overall increase in global disease burden (Epstein, 2000; Martens, 1998; Martens et al., 1995), or whether parasite ranges will instead shift, for example by expanding at the temperate edge and contracting at the tropical edge (Lafferty, 2009). Under a shift scenario, the net number of humans affected by a disease could potentially remain constant or even decrease as the affected areas shift to present-day temperate zones or high altitude locales, although this prediction is highly dependent on the vulnerability and density of hosts in the areas of expansion (Pascual and Bouma, 2009; Rogers and Randolph, 2000). Although studies have identified some systems for which a shift is either already apparent or predicted to occur (Moore et al., 2012), other recent studies have suggested that expansion rates are exceeding rates of contraction at the trailing edge, for example, in high altitude environments where warming temperatures have allowed vector-borne diseases, such as malaria, to invade previously unsuitable highland areas without a concurrent contraction in already suitable lowland areas (Caminade et al., 2014; Siraj et al., 2014). Further, the overall impact of these new geographic distributions is unclear, especially for infectious diseases of humans. While parasites may expand or shift their ranges as climate changes, the socioeconomic status of these newly colonized areas will influence whether pathogen incursions can be mitigated by human intervention (Randolph, 2010; Sachs and Malaney, 2002). Studies
of wildlife diseases which are not controlled by human intervention may be able to shed light on this question, although multiple confounding factors that affect the ecophysiology of host pathogen interactions complicate the straightforwardness of the conclusions that can be drawn (Altizer et al., 2013). It is clear that the effect of climate change on infectious disease will not be uniform; therefore, the extent of the impact of climate change on disease distribution and burden remains an important area of research.

Long term climate change is predicted to have extensive negative effects on plant and animal biodiversity, in turn affecting the diversity of parasites found on the earth. Parasites could provide a key indicator of host population viability, as parasite ranges should respond faster to climate change than that of their hosts'. According to metabolic theory, rapid metabolic rates, decreased internal processes, decreased number of cells and short generation times will allow parasites to more quickly acclimate to temperature shifts and withstand greater temperature extremes than their hosts (Rohr et al., 2011). Parasite loss could therefore be used to indicate host population declines at specific locations within the range. However, climate change, as well as the increase in climate variability that is also predicted to occur, may alter host-parasite interactions. Thus, the effects of climate change on host immunity, host and parasite life-history traits and habitat suitability may be species-specific. Understanding the effects of increased warming as well as increased climate variability on parasite range is vital, especially since these effects will vary with the system under study. Though many questions still remain unanswered, coupling experimental approaches with theoretical models and taking advantage of new technology and novel systems will shed new light on these longstanding questions.

### 2.11 Tables

| Range Limiting Factor | Adaptation to Parasites | Selected References |
| :--- | :--- | :--- |
| Ecological - Abiotic |  |  |
| Barriers to dispersal | Physical barriers separating host populations; recent globalization <br> often negates this for human pathogens | (Smith and Guegan, 2010; Weiss and <br> McMichael, 2004) |
| Habitat availability | Susceptible hosts must be present | (Adam et al., 2006; Srithayakumar et al., <br> 2011) <br> Habitat abundance |
| Host critical community size is necessary for pathogens to persist | (Bartlett, 1957, 1960) |  |

Ecological - Biotic

| Dispersal ability | Infectivity and transmissibility | (Holmes, 2004; Villarreal et al., 2000) |
| :--- | :--- | :--- |
| Community biodiversity | Invasive species, transmission amplification | (Constantin De Magny et al., 2008; Hoberg <br> et al., 2002) |
| Competition | Interspecific competition between parasites leads to <br> immunological barriers in hosts and competitive exclusion <br> among parasites | (Grenfell et al., 2004; Lietman et al., 1997; <br> Malenke et al., 2011) |
| Mutualisms | Aid in host resistance to infection; facilitate parasite utilization of <br> new host species | (Constantin De Magny et al., 2008; Hedges <br> et al., 2008; Moreira et al., 2009) |
| Apparent competition | Shared parasite limits range of most susceptible host and/ or <br> pathogen | (Anderson, 1972) |
| Predation | Predation on diseased hosts can limit geographic distribution of <br> pathogen | (Case et al., 2005; Holt and Barfield, 2009; <br> Wild et al., 2011) |

Evolutionary

| Genetic conservation | Phylogenetic conservation of infection and replication <br> mechanisms; cross-species transmission more likely between <br> phylogenetically similar hosts | (Albà et al., 2001; Holmes, 2003; Lefeuvre et <br> al., 2007; Martin et al., 2005; Streicker et <br> al., 2010) |
| :--- | :--- | :--- |
| Genetic correlations | Fitness trade offs for pathogens that must replicate in diverse host <br> taxa | (J enkins et al., 2002; Mizokami et al., 1997) |

## Table 2.1 Factors affecting species' geographic distributions and their application to parasites

### 2.12 Figures



Figure 2.1. Geographic distribution of rabies virus in the United States.
Shaded regions correspond to unique rabies virus variants circulating within specific carnivore host species'. (Real et al., 2005b)


Figure 2.2. The effect of patch connectivity on global pathogen persistence within a metapopulation system. Shaded and open circles represent infected and uninfected patches, respectively. Both low and high levels of patch connectivity result in increased metapopulation-wide extinction probability for the pathogen, whereas intermediate patch connectivity promotes pathogen persistence. In systems with low patch connectivity (A), patches in which the pathogen has gone locally extinct do not receive infected colonizers to reseed the epidemic (rescue effect) whereas in systems with high patch connectivity (C), epidemic dynamics become highly synchronized such that a single event could lead to the extinction of the entire metapopulation. Intermediate patch connectivity (B) balances the benefits of the rescue effect with the negative effects of high synchronization of epidemic dynamics across patches.

## Chapter 3

## The Role of Human Transportation Networks in Mediating the Genetic Structure of Seasonal Influenza in the United States

Based on material from: Bozick BA, Real LA (2015) The Role of Human Transportation Networks in Mediating the Genetic Structure of Seasonal Influenza in the United States. PLoS Pathog 11(6): e1004898. DOI: 10. 1371/journal.ppat. 1004898

### 3.1 Introduction

When infectious agents invade naïve host populations and are propagated predominantly by local transmission, we expect to observe wave-like spread across geographic space (Biek et al., 2007; Real et al., 2005a; Walsh et al., 2005). Local transmission processes should concomitantly generate patterns of pathogen genetic variation approximating isolation-by-distance, where the geographic distance between locations and the genetic distance between pathogen variants is positively correlated (Epperson, 2003; Wright, 1943). However, for pathogens of humans and other hosts that frequently travel long distances or along pathways not determined by local geography (e.g. aviation networks), accounting for species-specific movement patterns provides an alternative method of defining distance which may better describe spatial spread. For example, diseases may transmit over a network, spreading first between well-connected populations through to poorly-connected populations. Populations that are geographically close to one another may not necessarily be well connected; distance in this model should instead be defined by the quantity of individuals moving between locations rather than their spatial proximity (Brockmann and Helbing, 2014; Colizza et al., 2006a, b; Gomes et al., 2014; Hufnagel et al., 2004; Rvachev and Longini, 1985; Tatem et al., 2006).

For human pathogens, transmission between distant populations has become increasingly common, as modern transportation now frequently allows individuals to move long distances over short periods of time (J ones et al., 2008; Smith and Guegan, 2010). Recent work has repeatedly shown that incorporating human mobility into epidemic models allows for more accurate predictions of the rate and timing of disease invasion and spread (Balcan et al., 2009a; Brockmann and Helbing, 2014). However, the impact of these various transportation networks on pathogen genetic structure is strongly dependent on spatial scale. Failure to detect similar patterns in structure across multiple spatial resolutions suggests that transmission processes are scale-dependent. For instance, although connectivity based on air travel volume between locations often correlates well with the trajectory of pathogen diffusion at the global scale (Brockmann and Helbing, 2014), at finer resolutions, this mobility network may instead facilitate random mixing among hosts. These contrasting outcomes are influenced by attributes of the mobility network, which can include its size and span in relation to the geographic scale of interest, the number of hosts that utilize it and the regularity of host movements along it, as well as by the epidemiological properties of the pathogen.

Seasonal influenza A, a virus which causes major morbidity and mortality worldwide (Simonsen, 1999), provides an ideal system with which to compare the effects of human movement networks on pathogen population structure across various spatial scales. Although evidence suggests that the H3N2 subtype of influenza A (H3N2) is genetically structured as a source-sink metapopulation at the global scale (Bahl et al., 2011; Russell et al., 2008), it is generally accepted that no structure is present at finer spatial scales (Nelson et al., 2008). This is problematic for the design of containment strategies, since it suggests that the seasonal spread influenza within countries is determined by stochastic processes and is therefore unpredictable. However, epidemiological reports and mortality statistics from influenza-like illness (ILI) data
have revealed that spatial patterns do exist, with greater synchronization in epidemic peak timing observed between cities that are geographically close and exchange many commuters (Viboud et al., 2006b).

Studies tracking the intra-continental spread of influenza have thus far utilized ILI and excess mortality data, which cannot differentiate between the two subtypes of influenza A (H3N2 and H1N1) that circulate each season. Of the two viruses, H3N2 causes the most morbidity and mortality and has been dominant in six of the past ten influenza seasons in the United States (US) (CDC). Its rapid evolution results in annual lineage replacement so that little genetic diversity is observed within seasons (Ferguson et al., 2003). In contrast, lower substitution rates are common for seasonal H1N1, and seasons dominated by this subtype are generally characterized by reduced mortality and morbidity and increased genetic diversity among co-circulating lineages as compared to H3N2 (Ferguson et al., 2003; Rambaut et al., 2008; Simonsen et al., 2011). It follows that these contrasting epidemiological dynamics could lead to subtype-specific population structure and that the patterns revealed previously using ILI data may be driven by a single subtype, but this hypothesis has not yet been formally tested.

We explored whether using alternative measures of distance can explain the population genetic structure of seasonal influenza A subtypes within the US. Since it has been shown that airline travel is important for the spread of influenza at the global scale (Lemey et al., 2014) and that both commuter and airline travel contribute to the epidemiological dynamics of influenza within the US (Brownstein et al., 2006; Viboud et al., 2006b) , we investigated the roles that these transportation networks play at the regional scale. We constructed models of the US aviation and commuter networks and quantified interstate connectedness based on the daily number of individuals exchanged. If transmission is dominated by the local spread of influenza across the commuter network rather than long distance spread over the aviation network, we expect that
sequences collected from pairs of states that are well-connected in terms of commuter flow will be more similar to each other than those collected from poorly-connected state pairs. To test this hypothesis, we obtained influenza sequences collected from 2003-2013 to compare associations of intra-seasonal pairwise genetic distances with geographic and network distance measures. Results indicate that population structure is indeed detectable, though this pattern is subtype specific.

### 3.2 Materials and Methods

## Sequence Data

In total, 3,076 influenza A/H3N2, and 1,366 A/H1N1hemagglutinin sequences collected from 2003-2013 in the continental US were obtained from the National Center for Biotechnology Information Influenza Virus Resource for use in this analysis (Bao et al., 2008). Collection date was used to assign each sequence to a season, with seasons defined as occurring from Oct 1 to May 31. We restricted our analyses to seasons containing more than 90 sequences that were collected in at least 10 different states. This criterion was based on a natural break in the data, as seasons that did not fit this criterion tended to have fewer than 30 sequences that were restricted in their geographic distribution. This criterion was therefore necessary to achieve representative seasonal datasets in terms of sequence diversity and geographic coverage. For example, only 11 H3N2 sequences were available from the 2009-2010 season since the H1N1 subtype was dominant; this season was therefore excluded from all analyses of H3N2 data. Using this criterion, we were able to evaluate influenza population structure in nine seasons for H3N2 (2003-2004 to 2012-2013, excluding 2009-2010), and six seasons for H1N1 (2006-2007 to 2012-2013, excluding the 2009-2010 pandemic; see below). For each subtype, isolates came from all locations within the 48 continental states and the District of Columbia. The specific set of states represented varied seasonally and with each
subtype. GenBank accession numbers for all sequences used in this study, as well their location and collection dates are listed in Table S1.

## Phylogenetic Analysis

Sequences were aligned using MUSCLE in Geneious (Biomatters) and the HA1 domain was extracted for use in all analyses (H3N2: $987 \mathrm{nt}, \mathrm{H} 1 \mathrm{~N} 1: 1701 \mathrm{nt}$ ). Seasonal influenza is introduced into the US multiple times over the course of the season (Nelson et al., 2008). To account for these multiple introductions, phylogenetic trees were inferred separately for each season using a Bayesian framework in the program BEAST (Drummond et al., 2006; Drummond and Rambaut, 2007). To construct phylogenies, we used the SRD06 codon position model to accommodate different substitution rates for the first and second versus the third codon position, with the HKY85 substitution model applied over these two codon positions (Shapiro et al., 2006). For two seasons for which an extremely large number of sequences were available, H3N2 2007-2008 and H3N2 2012-2013, we down-sampled from states that contributed exceptionally large numbers of sequences. For the H3N2 2007-2008 season, the GTR+I+G model used, as convergence could not be achieved using the codon position model. Trees were constructed using a strict molecular clock, with an exponential growth tree prior and relatively uninformative priors on all phylogenetic parameters except for the substitution rate, for which we used a lognormal prior with mean $=0.0055(\mathrm{sd}=0.7)$ substitutions/ site/ year for H3N2 sequences (Nelson et al., 2006) and mean $=0.0018$ substitutions/ site/ year ( $\mathrm{sd}=0.4$ ) for H 1 N 1 sequences (Ferguson et al., 2003). MCMC chains were run until convergence was reached and a maximum clade credibility tree was annotated after removing the first $10 \%$ of the sampled trees as a burn-in. We defined clades as groups of at least 20 sequences stemming from a node with a posterior probability of $\geq 0.9$. We corrected for independent introductions into the US by choosing
clades for which the entire HPD interval for the divergence time of the MRCA did not fall more than three months before the beginning of the flu season. This time limit was chosen as it was generally the most recent time period for which high posterior support could be obtained for clades.

For each clade analyzed, pairwise genetic distances were calculated as the proportion of sites that differed between each pair of sequences. To ensure that the choice of genetic distance metric did not affect our results, analyses were repeated using the evolutionary substitution models available in the R package APE (Paradis et al., 2004). The results remained the same regardless of the distance metric chosen, so we chose to present those results obtained using the raw pairwise distance measure. Pairwise spatial distances were calculated based on the great circle distance between state population centers.

The 2008-2009 and 2009-2010 seasons presented a special case for H1N1, as a new pandemic lineage emerged in the spring of 2009 that differed markedly from the currently and previously circulating H1N1 lineages. As epidemiological dynamics of influenza pandemics differ substantially from those of annual seasonal epidemics (Simonsen et al., 2011), sequences from the pandemic lineage in the 2008-2009 season, as well as the entire 2009-2010 season, were excluded from analyses. To distinguish between antigenically distinct pandemic isolates and the previously circulating H1N1 viruses, a phylogenetic tree was inferred for the 2008-2009 season using a neighborjoining algorithm. Two clades were immediately obvious, each encompassing distinct time periods during the influenza season that corresponded well with the circulation times of the epidemic and pandemic lineages. Using the A/ California/ 07/ 2009 strain of pandemic H1N1 (GenBank accession: FJ 981613) as a reference, sequences were classified and excluded accordingly.

## Transportation Network Models

Data on the origin, destination and passenger volume of airline routes within the continental US during October to March from 2003-2012 were obtained from the Office of Airline Information, Bureau of Transportation Statistics, Research and Innovative Technology Administration (BTS). Data were restricted to this time period to best represent human movement during the US influenza season, which occurs during the fall and winter and generally peaks anytime from late November to March (CDC, 2013). Passenger movement data for each airport were aggregated by state, so that each state was considered a node in each season-specific aviation network model. Data on intrastate passenger movement was excluded. Each seasonal aviation network model therefore contained 48 nodes (all continental US states), with directed edges weighted by the number of daily passengers traveling between each unique state pair during the influenza season. Because there are no airports located within the District of Columbia, sequences from this location were excluded for the aviation analysis. To ensure that this did not affect our results, we repeated the analysis with sequences from the District of Columbia coded as being from Maryland or from Virginia; no qualitative differences in the Mantel test results were observed. To facilitate summary comparisons with the commuter network model, a single aviation network model was also constructed based on the average number of passengers exchanged per day between states over all ten winter seasons

Data on the origin, destination and commuter volume between all US county pairs collected during the 2000 census were available from the US Census Bureau (Census, 2000). Commuter volume estimates were based on census participant responses when questioned on the county location worked in most often during the preceding week. As commuting data are intended as a proxy for long-distance influenza transmission occurring by means other than airline travel, commutes exceeding 150
miles ( 242 km ) were excluded from the final commuter network (and accounted for only $0.07 \%$ of county to county movements). To assess the sensitivity of our results to this assumption, the analyses were repeated using the full commuter network, which included journeys of all distances. For all but one H3N2 clade, and two H1N1 clades tested, results were similar regardless of whether the full or reduced commuter network was used; we therefore only present the results using the reduced commuter matrix. Intra-state commutes were also excluded. Data on commuter movements between counties in neighboring states were aggregated by state so that the final commuter network model contained 49 nodes (all continental US states and the District of Columbia) with directed edges weighted by the number of daily commuters traveling between each unique state pair.

For each transportation network model, each node corresponds to a single state, and each edge represents the total daily number of either commuter or air travel passengers moving between those states. Edges were excluded from the network model if no individuals traveled between the two states on a daily basis. To compare the basic properties of the two different transportation networks, node degrees and graph density metrics were calculated. Node degree is defined as the total number of connections per node and graph density is calculated as the proportion of edges present in the graph out of the maximum number of edges possible.

To assess the validity of aggregating sequences by state, a community detection algorithm based on simulated annealing (Newman and Girvan, 2004; Reichardt and Bornholdt, 2006; Traag and Bruggeman, 2009) was run for both unweighted and weighted networks of county level commuter movements. We used the methods described by Thiemann and colleagues (Thiemann et al., 2010) to compute 1000 partitions of high modularity to determine the underlying community structure for each network. Communities in this context refer to groups of nodes which have stronger ties
internally than externally. The community structure of a network can be summarized by network modularity, Q, which measures the overall magnitude of difference between partitions (Newman and Girvan, 2004). The modularity value of a particular set of partitions is calculated by taking the difference between the fraction of total connections occurring within communities and the expected value of the fraction of total edges occurring within communities in a network of identical community partitions with randomized connections between nodes. Q is bounded between $0-1$, with $\mathrm{Q}=0$ indicating that that the community subdivisions provide no more information than that of a random partitioning of nodes.

Associations between pairwise genetic distances and measures of geographic and network distance were assessed individually for each season through the use of Mantel's test (Legendre and Legendre, 1998). In order to conduct these tests, connection weights between states for each of the transportation networks were symmetrized by taking the sum of both connecting edges. Mantel tests were performed on both the raw connectivity distance matrices (constructed using the raw number of people traveling between states) and connectivity distance matrices constructed using the effective distance metric developed by Brockman et al. (Brockmann and Helbing, 2014). This metric is based on the proportion of individuals commuting between states in relation to the total number of commuter in the entire US. Results were similar regardless of the connectivity metric chosen; all results presented are those results obtained using raw connectivity. To account for multiple comparisons, a Bonferroni correction was applied to the results when multiple clades were tested from a single season. When multiple distance metrics (geographic, aviation or commuter distances) were significantly correlated with genetic distance for a single clade, partial Mantel tests were performed to account for these interactions. Partial Mantel tests allow for the comparison of two matrices while controlling for the effects of a third by regressing the two matrices of interest on the third
matrix, and performing a standard Mantel tests using these residuals. Results of the partial Mantel tests were used to identify the distance metric responsible for driving patterns of population structure.

### 3.3 Results

## Transportation Networks

Comparison of the aviation and commuting networks within the continental US revealed significant differences in their basic properties, despite the similarity in data resolution (travelers/ day) (Fig 3.1). The aviation network, composed of 48 nodes connected by 2,160 edges, is highly homogeneous in terms of the total number of connections per node (degree) and has a high graph density (density $=0.96$ ), reflecting that most states are directly connected to most other states. In contrast, connection weights differed greatly across state pairs. During the influenza season, approximately 1.6 million people travel along the interstate aviation network per day. In contrast, the commuter network is composed of 49 nodes and only 312 edges. Decreased graph density (density $=0.13$ ) in comparison to the aviation network reflects that the commuter network is highly spatially organized, with connections generally only occurring between neighboring states. Over 3.8 million people travel daily across the interstate ground-travel commuter network, and interstate connections in the east tend to be stronger than those in the west.

The community detection algorithm identified an average of 16 communities in the unweighted commuter network with an overall mean modularity of $0.55(\mathrm{sd}=0.003)$ across the 1000 simulations (Fig 3.2A). In the weighted commuter network, an average of 135 communities were identified and mean modularity was $6.03 \times 10^{-4}\left(\mathrm{sd}=1.33 \times 10^{-}\right.$ $\left.{ }^{5}\right)$ (Fig 3.2B). For both networks, communities tend to span multiple states.

## Influenza A/H3N2

Phylogenetic trees were constructed for nine influenza seasons within the US from 2003-2004 to 2012-2013; seven of these seasons contained clades for which we were able to evaluate population structure (Fig S1-S7; see Appendix I). The number of sequences available per season varied from 147 in 2005-2006 to 1,276 in 2012-2013 and the number of states represented during a season varied from 29 in 2003-2004 to 49 in 2010-2011, 2011-2012, and 2012-2013 (Table S2). The most recent common ancestor for each season existed from 1-3 years before present. Clades fitting the criteria for inclusion (see Materials \& Methods) were not available from the 2004-2005 or 2008-2009 seasons. Detailed information on each season and clade tested obtained through the phylogenetic analysis can be found in Table S3.

We detected a significant correlation between genetic distance and commuter distance for seven out of the 23 clades tested encompassing six out of seven seasons studied (Table 1). Mantel r correlation coefficients ranged from 0.09-0.38. We detected a significant correlation between genetic distance and geographic distance for five clades in four of the nine seasons (Mantel r: 0.13-0.32) and between genetic distance and aviation distance for two clades in two seasons (Mantel r: 0.31-0.42). Temporal distance between sequences, measured as the difference in number of days between collections, was never a significant predictor of population structure.

For many clades, more than one distance measurement was significantly associated with genetic distance. After performing partial Mantel tests to account for these interactions, we found that commuter distance remained significant for four clades in four different seasons. Geographic distance remained significant for three clades in three different seasons and air travel remained significant for two clades in two different seasons.

## Influenza A/H1N1

Phylogenetic trees were constructed for six influenza seasons within the US from 2006-2007 to 2012-2013; five of these seasons contained clades for which we were able to evaluate population structure (Fig S8-S12; see Appendix I). Correlations between genetic distance and commuter travel were detected for a greater proportion of clades when the analyses were repeated for H1N1 at the regional scale (Table 2). The number of sequences available per season varied from 165 in 2007-2008 to 371 in 2010-2011 and the number of states represented during a season varied from 16 in 2008-2009 to 48 in 2010-2011 (Table S2). The MRCA for each season existed from 1-4 years before present (Table S4). Detailed information on each season and clade tested obtained through the phylogenetic analysis can be found in Table S4.

Significant associations between genetic distance and commuter network distance occurred in all five seasons (Mantel r: 0.17-0.38). Both aviation network distance and geographic distance were associated with genetic distance in two clades in one and two different seasons, respectively (aviation Mantel r: 0.26-0.32; geographic Mantel r: 0.44-0.56) and temporal distance appeared significant in one clade from the 2011-2012 season (Mantel r: 0.31). After performing partial Mantel tests for clades in which more than one distance measure was significant, the commuter network remained significantly associated with genetic distance in five clades over four different seasons. In the 2012-2013 season, both commuter distance and aviation distance were significantly associated with genetic distance, although partial Mantel tests showed that neither were significant when accounting for the other.

### 3.4 Discussion

We have shown here the first evidence, to our knowledge, that population structure for seasonal influenza A is detectable at the scale of the continental US.

Although all distance metrics were correlated with genetic distance for at least one clade, we find that the commuter network is more often associated with genetic distance than any other measure of spatial or network distance for the H1N1 subtype. Further, the association between genetic distance and the commuter network often remains significant after geographic distance is taken into account, demonstrating that the relative magnitude of host movement over space has a greater influence on the route of pathogen spread than the geographic proximity of sampling locations. In contrast, population structure was not detected in the majority of clades tested for H3N2, even though both geographic distance and commuter distance were, at times, correlated with genetic distance. This discrepancy suggests that epidemiological differences between H3N2 and H1N1 affect our ability to detect population structure of influenza within a season at this spatial scale.

Striking differences in the epidemiological dynamics of seasons dominated by H3N2 and H1N1 have been previously documented (Viboud et al., 2006b). The rapid bicoastal spread of H3N2 should obscure our ability to detect patterns based on geography or commuting if long distance transmission (through the aviation network, for example) quickly moves the virus between spatially distant localities. Models of the effect of $R_{0}$ on the spread of influenza across the US and its implications for spatial synchrony have previously shown that ILI cases in cities across the entire US tend to peak around the same time when influenza spread is rapid (Viboud et al., 2006b). In contrast, seasons dominated by H1N1 tend to be milder and characterized by slower dispersal. The slower nationwide spread of H1N1 may facilitate the detection of population structure if H 1 N 1 is allowed to diffuse over short-range connections once it is introduced into a new geographic area. Differences in the rate of spread between multiple clades from the same season could possibly account for our failure to consistently detect these patterns across all lineages. The degree of matching between
vaccine strains and circulating lineages could also potentially act to reduce transmission so that the commuter network would be able to exert a sufficiently strong influence in structuring the influenza population. However, there are multiple other factors that vary seasonally which could confound this relationship including, for example, vaccine efficacy, availability, population coverage, or age structure of vaccinated individuals. Models combining genetic and epidemiological data may be able to shed light on this proposed relationship but have only recently been utilized (Ferguson et al., 2003; Koelle et al., 2006; Koelle et al., 2010; Ratmann et al., 2012); adding a spatially explicit component to these models remains an area for future research (Bedford et al., 2012).

An investigation into the two circulating lineages of influenza $B$, a virus which causes milder disease than either subtype of influenza A (Atkinson et al., 2012), would provide an interesting point of comparison to our findings. As population structure based on commuter travel is more pronounced for $\mathrm{A} / \mathrm{H} 1 \mathrm{~N} 1$, we might expect it to also be evident for influenza B. However, as influenza B primarily affects children (Atkinson et al., 2012), the role of commuters in transmission may be reduced such that structure is instead based on geographic distance. Interestingly, recent work on the epidemiology of influenza B in China showed that the Yamagata lineage tends to infect older age groups than the Victoria lineage [30]; examining these lineages separately may reveal differences in population structure patterns and/ or modes of spread within the US. So far, little research to date has been done on the spreading patterns of influenza $B$ and unfortunately, few sequences are publicly available on GenBank, as compared to either influenza A subtype.

Apart from biological explanations, uneven sampling may also be responsible for our inability to detect population structure in more seasons, or across all clades within a season. Differences in the number of sequences available for each season are a product of inconsistent sampling among states within a season and differential severity of the
influenza virus across seasons. For example, the number of testing facilities differs by state and the quantity of samples sequenced has historically been a function of individual laboratory capacity (APHL, 2012). Additionally, seasons that are characterized by more severe influenza subtypes or poor vaccine performance tend to yield more sequences (CDC, 2014) and influenza sequencing intensity tends to vary throughout the season. In order to determine the dominant strain circulating during a season, samples are more likely to be collected and tested during the beginning stages of the epidemic, especially when patients present with severe illness or other uncommon symptoms. Furthermore, seasons dominated by H3N2 generally result in higher rates of morbidity and mortality than those dominated by H1N1 or influenza B (Simonsen et al., 2005). Better virologic surveillance in less populous locations that are not travel hubs (i.e. in states outside of New York or Texas for example, which often contributed an excess of sequences per season) would enable us to better catalog influenza diversity outside of major cities and potentially increase our power to detect spatial patterns in this genetic data.

The correlations we detected are not as strong as those observed between these same distance metrics and epidemiological data (Viboud et al., 2006b). First, we caution against the interpretation of the Mantel r value as a standard correlation coefficient such as that calculated from a linear regression. Mantel r correlation coefficients are typically much lower than those reported for other statistical tests, owing to the comparison of distances between variables rather than their absolute values (Legendre and Fortin, 2010). Further, due to differences in the calculation of the sum of squares statistic, a standard $\mathrm{R}^{2}$ cannot be derived from this value for use as a measure of the variation in the dependent variable explained by the predictor variable (Legendre and Fortin, 2010). However, the discrepancy in correlation strength may be due to differences in the underlying processes producing these associations. For example, epidemics in different locations could follow similar trajectories in terms of peak timing if one directly seeded
the other; however, this could also result if the epidemics were initiated at similar times due to similarities between states in population size or climate. In contrast, correlations between locations based on genetic distance should arise if epidemics in one location were directly seeded by the other, and not due to location-specific characteristics. In systems such as this, where long distance dispersal is prevalent, noise due to the circulation of multiple lineages in a single location likely obscures fine scale signatures of diffusion (Nelson et al., 2008). We have attempted to account for this noise by using phylogenetic methods to aggregate samples by clade so that only sequences derived from the same introduction, and therefore the same genetic lineage, are compared. However, uncertainty surrounding divergence dates always exists; that we are able to detect any correlation at all is surprising, as none have been found previously (Nelson et al., 2008).

At this spatial scale, the ability of the commuter network to exert a structuring influence on regional influenza populations is directly counteracted by the aviation network, which instead acts to create a randomly mixed viral population. These opposing effects stem from differences in the predictability of transmission processes within the two transportation networks. The commuter network is highly spatially organized, with 99\% of commutes occurring over distances less than 150 miles ( 242 km ). Individuals travel along the commuter network on a daily basis, repeating these movements for years at a time, increasing both the probability of transmission to coworkers and any others with whom an infected individual encounters regularly, as well as the annual consistency of these infection pathways. These movements along the network lead to a genotypic cline; viral sequences collected from nodes separated by less traveled paths appear less similar than those collected from node pairs that are well connected. In contrast, movement along the aviation network is less predictable. Although individuals traveling by air are likely to remain at their destination for several days, these trips are not likely to reoccur annually or even multiple times within a season, thus counteracting the
structuring effects of routine commuting. That we find any structure at all is an indication that daily travel to and from work is an important route of interstate spread for seasonal influenza. Although infection pathways can be linked to air travel at the global scale (Lemey et al., 2014), at the regional scale, air transportation likely functions to move the virus long distances into new areas that have not yet been invaded (Balcan et al., 2009a) where it then undergoes short-range dispersal by commuters.

In our characterization of the US commuting network, we were able to partition the USinto communities of high modularity based on county-to-county connections. While partitioning these communities using daily total commuter flow estimates (weighted networks) resulted in weakly supported subdivisions that provided little information on about human mobility, analyzing county-to-county connections based on the presence or absence of commuter movements (unweighted networks) resulted in subdivisions of high modularity. These communities tended to span multiple states, lending further support to the hypothesis that interstate commuter travel is a viable means of influenza transmission. More importantly, states tended to be part of multiple communities, suggesting that aggregation of sequences by state may be somewhat arbitrary and that finer scale location data for sequences is needed. Our results are in good agreement with previous characterizations of US community structure (Thiemann et al., 2010), which have used currency movement as a proxy for human mobility. Since human movement tends to be limited to spatially compact groups of counties and repeated studies have shown that commuters are responsible for a significant portion of transmission, grouping sequences by commuting community rather than by state may provide a more accurate method of determining which sequences are most likely to be closely related (Lemey et al., 2014); comparing these sequences sets with network distance may then yield stronger and more consistent relationships between genetic distance and the commuter network. Further, these communities may in fact provide a
measure of the spatial extent over which commuting is responsible for the majority of transmission, with air travel operating to transfer influenza lineages between communities. Unfortunately, the spatial data associated with most publicly available sequences is currently limited to the US state of collection. Since commuting communities are defined by county-level associations, the availability of only state-level reporting hinders our ability to analyze the data at this alternative resolution. Clearly, there is a need for more informative spatial data to be made publicly available in order to facilitate analyses using more natural geographic groupings, rather than those arbitrarily imposed by political boundaries.

The results from our study complement recent findings that the aviation network plays an important role in the world-wide transmission of seasonal influenza. While the aviation network is undoubtedly of importance in structuring populations at the global scale, we find that, when population structure is detectable, it is the commuter network that is of greater importance at more regional scales. Host movement governs disease transmission patterns, and distinct modes of movement by discrete segments of the population can have varying levels of importance. While the magnitude of the correlations we detected was not overly strong, this may not be the case at finer geographic resolutions, such as within commuting communities or at the state-wide level, or at finer temporal resolutions, such as during the onset of an epidemic before any appreciable long distance transmission has occurred. While commuters living near state borders likely accounted for much of the interstate connectivity measured by our metric, at the intrastate scale, commuters moving between counties may comprise a larger segment of the population. However, local movement networks, such as that of children being transported to and from school, may prove more important in structuring influenza populations at this scale. Previous work has suggested that children are responsible for much of the transmission within communities (Medlock and Galvani,
2009). Future work is needed to further elucidate the scales at which different movement patterns contribute most to disease transmission.

### 3.5 Addendum

Since this study was published, additional analyses have been performed that suggest the patterns detected here may be explained by biological processes that do not require the predictable decay of genetic similarity as a function of connectivity based on passenger travel. In particular, the inclusion of multiple sequences collected from within the same state under the Mantel test framework can produce weak, negative correlations between genetic distance and distance measured by travel volume, if travel volume and sequence similarity are both much higher within states than between states. In this case, two clouds of points will be visible in the scatter plots created using the two distance matrices: a cloud of points representing pairwise comparisons between sequences collected from two different states, in which overall genetic diversity is higher but associated travel volumes are lower, and a cloud of points representing pairwise comparisons between sequences collected from within the same state, in which overall genetic diversity is lower and associated travel volumes are higher. The weak negative correlation between these two clouds of points does not indicate that travel volume predicts genetic relatedness outside of state borders, but can explain the significant associations presented in the study. Chapter 4 of this dissertation extends this analysis to consider the spread of influenza epidemics across Europe, taking into account the differences in genetic similarity of sequences collected from different spatial regions. As the conclusions reached in Chapter 4 differ from those presented a here, a re-analysis of the US influenza dataset is undertaken and a more thorough explanation of the data structure issue summarized here is given which provides and alternate and more likely explanation for the patterns detected in this study.

### 3.6 Tables

| Season | Correlation with genetic distance based on: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Temporal | Geographic | Aviation | Commuter |
| 2003-2004 |  |  |  |  |
| clade 1 | $0.01(p=0.43)$ | 0.20 ( $p=0.03$ ) | $0.29(p=0.04)$ | $0.38(p=0.0009)$ |
| clade 2 | 0.12 ( $p=0.14$ ) | 0.07 ( $p=0.16$ ) | -0.13 ( $p=0.89$ ) | $0.09(p=0.15)$ |
| 2005-2006 |  |  |  |  |
| clade 1 | $0.02(p=0.39)$ | $-0.17(p=0.98)$ | $-0.01(p=0.53)$ | $-0.04(p=0.67)$ |
| clade 2 | 0.00 ( $p=0.48$ ) | $0.04(p=0.33)$ | $0.31(p=0.02) *$ | 0.25 ( $p=0.02$ )* |
| 2006-2007 |  |  |  |  |
| clade 1 | $-0.01(p=0.51)$ | $0.22(p=0.009)^{*}$ | -0.02 ( $p=0.57$ ) | 0.13 ( $p=0.005$ ) |
| clade 2 | 0.11 ( $p=0.06$ ) | $0.04(p=0.17)$ | $0.01(p=0.45)$ | $0.04(p=0.05)$ |
| 2007-2008 |  |  |  |  |
| clade 1 | $-0.05(p=0.76)$ | $-0.03(p=0.77)$ | $0.12(p=0.07)$ | $0.04(p=0.06)$ |
| clade 2 | -0.15 ( $p=0.88$ ) | $-0.08(p=0.74)$ | $0.31(p=0.04)$ | -0.10 ( $p=0.85$ ) |
| clade 3 | 0.11 ( $p=0.03$ ) | $-0.04(p=0.81)$ | 0.06 ( $p=0.21$ ) | 0.04 ( $p=0.11$ ) |
| clade 4 | 0.15 ( $\mathrm{p}=0.02$ ) | 0.16 ( $p=0.0007$ )* | 0.06 ( $p=0.23$ ) | $0.09(p=0.0001)$ |
| clade 5 | $-0.02(p=0.70)$ | 0.00 ( $p=0.50$ ) | 0.00 ( $p=0.49$ ) | $0.01(p=0.25)$ |
| 2010-2011 |  |  |  |  |
| clade 1 | $-0.26(p=0.96)$ | -0.06 ( $p=0.64$ ) | $-0.33(p=0.96)$ | -0.10 ( $p=0.91$ ) |
| clade 2 | 0.00 ( $p=0.49$ ) | -0.11 ( $p=0.84$ ) | -0.11 ( $p=0.84$ ) | -0.05 ( $p=0.72$ ) |
| 2011-2012 |  |  |  |  |
| clade 1 | -0.15 ( $p=0.94$ ) | $0.14(p=0.0002)$ | $0.27(p=0.03)$ | 0.14 ( $p=0.02$ ) |
| clade 2 | $-0.07(p=0.80)$ | $0.07(p=0.17)$ | $0.08(p=0.23)$ | 0.06 ( $p=0.15$ ) |
| clade 3 | $0.11(p=0.09)$ | 0.16 ( $p=0.005$ ) | 0.10 ( $p=0.14$ ) | $0.22(p=0.0001)^{*}$ |
| clade 4 | 0.19 ( $p=0.13$ ) | $-0.15(p=0.84)$ | 0.06 ( $p=0.39$ ) | $0.03(p=0.40)$ |
| 2012-2013 |  |  |  |  |
| clade 1 | $-0.06(p=0.65)$ | $-0.13(p=0.76)$ | -0.10 ( $p=0.69$ ) | -0.15 ( $p=0.91$ ) |
| clade 2 | $-0.04(p=0.57)$ | 0.13 ( $p=0.28$ ) | -0.16 ( $p=0.77$ ) | 0.11 ( $p=0.25$ ) |
| clade 3 | $0.24(p=0.06)$ | $-0.04(p=0.61)$ | $-0.19(p=0.90)$ | 0.05 (p=0.23) |
| clade 4 | $0.01(p=0.44)$ | $0.33(p=0.005)$ | $0.42(p=0.003)^{*}$ | $0.32(p=0.006)$ |
| clade 5 | 0.03 ( $p=0.33$ ) | 0.10 ( $p=0.10$ ) | -0.10 ( $p=0.82$ ) | 0.15 ( $p=0.001$ ) |
| clade 6 | $-0.15(p=0.94)$ | $0.07(p=0.09)$ | $-0.07(p=0.70)$ | $0.01(p=0.42)$ |

Significant p-values are based on a Bonferroni correction, computed to account for multiple clade comparisons within a single season. When more than one distance metric is correlated with genetic distance, asterisks denote those metrics that remained significant after partial Mantel tests were conducted (at the $\mathrm{p}=0.05$ level).
doi:10.1371/journal.ppat.1004898.t001
Table 3.1. H3N2 Mantel Correlation Coefficients. Mantel r correlation coefficients measuring association between matrices of genetic, temporal, geographic, aviation network and commuter network distance for H3N2 sequences. Significant pvalues are based on a Bonferroni correction, computed to account for multiple clade comparisons within a single season. When more than one distance metric is correlated with genetic distance, asterisks denote those metrics that remained significant after partial Mantel tests were conducted (at the $\mathrm{p}=0.05$ level).

| Season | Correlation with genetic distance based on: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Temporal | Geographic | Aviation | Commuter |
| 2006-2007 |  |  |  |  |
| clade 1 | 0.11 ( $\mathrm{p}=0.19$ ) | $0.56(p=0.0001)^{*}$ | 0.32 ( $p=0.005$ ) | 0.36 ( $p=0.0003$ ) |
| clade 2 | $-0.09(p=0.76)$ | $0.44(p=0.001)^{*}$ | $-0.21(p=0.98)$ | $0.38(p=0.0001)^{*}$ |
| clade 3 | $0.07(p=0.32)$ | 0.13 ( $p=0.12$ ) | -0.17 ( $p=0.86$ ) | 0.20 ( $p=0.002$ ) |
| 2007-2008 |  |  |  |  |
| clade 1 | $-0.11(p=0.80)$ | $0.07(p=0.23)$ | 0.15 (p=0.20) | $0.20(p=0.04)$ |
| 2010-2011 |  |  |  |  |
| clade 1 | 0.17 ( $p=0.12$ ) | 0.28 ( $p=0.03$ ) | $0.08(p=0.29)$ | $0.28(p=0.005)$ |
| clade 2 | -0.11 ( $p=0.79$ ) | $-0.09(p=0.75)$ | -0.04 ( $p=0.61$ ) | 0.03 ( $p=0.30$ ) |
| clade 3 | 0.00 ( $p=0.49$ ) | -0.16 ( $p=0.99$ ) | -0.12 ( $p=0.92$ ) | -0.04 ( $p=0.83$ ) |
| 2011-2012 |  |  |  |  |
| clade 1 | 0.31 ( $p=0.0002$ ) | $0.09(p=0.08)$ | $0.04(p=0.35)$ | 0.17 ( $p=0.007$ ) |
| clade 2 | $-0.08(p=0.93)$ | 0.00 ( $p=0.50$ ) | 0.01 ( $p=0.46$ ) | $0.02(p=0.30)$ |
| 2012-2013 |  |  |  |  |
| clade 1 | $-0.13(p=0.88)$ | $0.04(p=0.37)$ | $0.26(p=0.04)^{+}$ | $0.22(p=0.03)^{+}$ |

Significant p-values are based on a Bonferroni correction, computed to account for multiple clade comparisons within a single season. When more than one distance metric is correlated with genetic distance, asterisks denote those metrics that remained significant after partial Mantel tests were conducted (at the $\mathrm{p}=0.05$ level).
${ }^{+}$Neither metric remained significant after a partial mantel test was performed (at the $p=0.05$ level).
doi:10.1371/journal.ppat.1004898.1002
Table 3.2. H1N1 Mantel Correlation Coefficients. Mantel r correlation coefficients measuring association between matrices of genetic, temporal, geographic, aviation network and commuter network distance for H1N1 sequences. Significant p-values are based on a Bonferroni correction, computed to account for multiple clade comparisons within a single season. When more than one distance metric is correlated with genetic distance, asterisks denote those metrics that remained significant after partial Mantel tests were conducted (at the $\mathrm{p}=0.05$ level).

+ Neither metric remained significant after a partial mantel test was performed (at the $\mathrm{p}=0.05$ level).


### 3.7 Figures



Figure 3.1. Aviation (A) and Commuter (B) Network Models for the Continental US. Edge colors represent the number of individuals traveling between each state pair per day. Bar plots directly below each network depict the weight (total number of individuals moving in and out of a state; top) and degree (total number of connections in and out of a state; bottom) for each of that network's nodes, ordered from left to right by the longitude of each state's population center. Out-degree/ weight (number of people leaving a state per day) is colored blue and in-degree/ weight (number of people arriving in a state per day) is colored red.


Figure 3.2. US Commuting Communities. Two realizations using the simulated annealing algorithm to partition the US into communities based on an A) unweighted network and B.) weighted network of county-to-county commuter flows. Modularity is similar across all realizations for a given network type, although exact community compositions differ. In all realizations, community boundaries do not neatly coincide with state borders.

## Chapter 4

## Regional transportation networks do not structure seasonal influenza A/H1N1 in Europe

### 4.1 Introduction

The relatively recent rise in global connectedness by long distance transportation networks has facilitated the emergence and worldwide spread of many infectious diseases (Colizza et al., 2007; Khan et al., 2014; Pybus et al., 2015; Semenza et al., 2014). Recent examples of this phenomenon include the 2007 SARS epidemic, which spread rapidly from its origin in Hong Kong to cause outbreaks in distant cities including Toronto, Canada (McLean et al., 2005), West Nile, which spread from the Old World to New York in 2009 and then across the Americas (Weiss and McMichael, 2004) and the recent Ebola epidemic, which caused widespread concern over the potential international exportation of the pathogen from West Africa (Gomes et al., 2014). The trajectories of these outbreaks clearly illustrate that the epidemiological distance between locations should not merely be measured in terms of geography, but also in terms of the volume of human movement (Brockmann and Helbing, 2014).

Influenza A virus is a prime example of a pathogen for which human movement networks provide a direct means of rapid long-distance spread. However, the functions of the various modes of transportation appear to be scale dependent. At the global scale, 2009 pandemic H1N1 epidemic arrival times across various countries are well correlated with an effective distance metric based on international airline passenger volume (Brockmann and Helbing, 2014). Furthermore, the genetic signatures of spatial spread also correspond to global airline connectivity for the seasonal H3N2 subtype (Lemey et al., 2014). At finer, regional scales, commuter movements are associated with viral spreading pathways. Within the United States (US), state-level commuter movements
tend to correlate with the timing of H3N2 epidemic peaks defined by influenza-likeillness and mortality data (Viboud et al., 2006b) as well as with genetic distance between H1N1 sequences (Bozick and Real, 2015).

Although commuting patterns act to structure seasonal influenza spread in the US, the generality of this pattern has not yet been tested. Specifically, countries and continents similar to the US in terms of population and land area rely more heavily on other forms of transportation for frequent long-distance movements (Eurostat, 2015, 2016). These transportation networks could similarly facilitate spread and potentially organize pathogen populations, depending on the underlying structure of the network. Europe in particular presents an interesting case comparison to the US, as it constitutes a collection of relatively contiguous interacting political units with open borders. Europeans similarly utilize airlines and personal cars for travel, but additionally use railway systems at a higher rate than in the US (Eurostat, 2015, 2016; International Union of Railways, 2014). Europe therefore provides an interesting opportunity to investigate whether alternate forms of ground transportation could be similarly associated with influenza spread.

We obtained seasonal influenza $\mathrm{A} / \mathrm{H} 1 \mathrm{~N} 1$ sequences from across Europe over a four year time span to compare associations of intra-seasonal pairwise genetic distances with connectivity measures derived from rail and airline travel between European countries. Results show that rail travel does not appear to correlate with epidemic spread. Comparison of the structure of European rail and aviation networks reveal that the rail network shares several important characteristics with the aviation network that make it more likely to facilitate long-range transmission and random mixing of the influenza population. In addition, a re-examination of the population structure of influenza in the US reveals that, after accounting for scale-specific differences in
transmission and travel intensity, spatial structure is not detectable based on commuter mobility.

### 4.2 Materials and Methods

## Sequence Data

In total, 1143 influenza A/H1N1 hemagglutinin sequences collected in Europe during four influenza seasons from 2007-2011 were obtained from the National Center for Biotechnology Information Influenza Virus Resource for use in the analysis (Bao et al., 2008). This temporal range was chosen to ensure that datasets were representative of both sequence diversity and geographic location; all seasons contained at least 100 sequences collected from at least 15 different countries, although the set of countries and the number of sequences available from each country varied from season to season. To avoid over-representation of countries due to sampling bias, we subsampled from countries that contributed exceptionally large numbers of sequences during a single season. Sequences were assigned to a season based on their collection date, with influenza seasons defined as occurring between Sept 1 and May 31. GenBank accession numbers for all sequences used in this study, as well as their location and collected dates are listed in Table S1.

## Phylogenetic Analysis

Seasonal sequence alignments were constructed using MUSCLE in Geneious (Biomatters), and a portion of the HA1 domain was extracted for use in all analyses ( $>1000 \mathrm{nt}$ ). To account for multiple introductions of influenza into Europe that may have occurred over the course of a single season, we inferred separate phylogenetic trees for each season using a Bayesian framework in the program BEAST (Drummond et al., 2006; Drummond and Rambaut, 2007). Phylogenies were constructed using the SRD06
codon position model to accommodate different substitution rates for the first and second versus the third codon position (Shapiro et al., 2006), with the HKY85 substitution model applied over codons $1+2$ combined, and codon 3 separately. Trees were constructed using a strict molecular clock, with an exponential growth tree prior and relatively uninformative priors on all phylogenetic parameters except for the substitution rate, for which we used a lognormal prior with mean $=0.0018(s d=0.7)$ substitutions/ site/ year based on estimates of seasonal A/H1N1 substitution rates (Ferguson et al., 2003). MCMC chains were run until convergence was achieved, and a maximum clade credibility tree was annotated after removing the first $10 \%$ of the sampled trees as burn-in. We defined clades as groups of at least 10 sequences stemming from a node with a posterior probability of $\geq 0.9$. We corrected for independent introductions into Europe by choosing clades for which the entire highest posterior density interval for the divergence time of the most recent common ancestor did not fall more than three months before the beginning of the influenza season. This limit was generally the most recent time period for which high posterior support could be obtained for clades. Pairwise distances between sequences within clades were calculated as the proportion of sites that differed between each pair of sequences. In our previous study on influenza spread in the US, we found that using a substitution model to calculate pairwise differences did not qualitatively change the measurements in a way that would affect the outcome of the spatial analysis (Bozick and Real, 2015).

## Transportation Network Models

Transportation data for the aviation and rail networks across 29 European countries were obtained from Eurostat (http:// ec.europa.eu/ eurostat/ web/ transport/ data/ database). For both modes of transport, the data were structured such that each reporting country provided counts of
the number of individuals traveling on routes that connected that country with all other partner countries. This data structure provided us with two estimates of passenger volume for each country-to-country connection. Aviation passenger volumes were available by quarter, so we restricted our analyses to transit that occurred from October to March (fourth and first quarters) to best represent human movement during the influenza season, which occurs in the winter in temperate regions (Finkelman et al., 2007; Tamerius et al., 2013; Viboud et al., 2004).

As not all countries reported each year, and not all passenger counts from reporting countries matched completely with the coupled estimates from their partner countries, we constructed composite aviation and rail networks using data from 20072010, the time period during which our influenza sequences had been collected. In these networks, each node represented a country and nodes were connected to each other by edges weighted by the volume of passengers transported between the two countries. We first constructed separate networks for each year of available data. In these networks, passenger volumes were symmetrized to create undirected networks by summing the number of incoming and outgoing people on each connection. Edge weights for the composite air and rail networks were then computed by averaging the reported passenger volumes from both countries over the four years of data. Edges were retained in the composite networks as long as one node had reported passenger flows between itself and the connected node during the four-year time span. These edge weights were compiled into separate adjacency matrices for the aviation and rail networks, which were then used for tests of association between genetic distance and network distances.

Networks that had previously been constructed based on US aviation and commuter data were used for all comparisons between Europe and the US. Details on the construction of the US transport networks can be found in Bozick \&Real (2015).

Networks were compared using a variety of metrics. A node's degree is a measure of its connectedness and is defined as the total number of edges emanating from it. Node volume sums the weights of these edges, with weight defined as the number of passengers traveling on the connection. To determine whether particular nodes acted as hubs on the basis of their connectedness or on the volume of passengers they serviced, we calculated both unweighted and weighted hub indexes for each node (Kleinberg, 1999). The hub index is based on the principal eigenvector of the graph's adjacency matrix. In addition, betweenness centrality can also identify nodes that are important for overall network connectivity. Betweenness centrality is an index of the number of shortest paths that stem from a node. Network density is the ratio of edges present to the total possible number of edges in a fully connected network. Network diameter is a measure of the steps needed to traverse the network; is it calculated as the shortest path between the two most distant nodes in the system.

Communities refer to groups of nodes that have stronger ties internally than externally. Many different community detection algorithms exist; we chose to use the simulated annealing method, following the described by Thiemann et al. (Thiemann et al., 2010). Because this method involves a stochastic algorithm, we ran 100 simulations, recording the modularity of each partition. Modularity, Q , measures the overall magnitude of difference between partitions (Newman and Girvan, 2004) and is calculated by taking the difference between the fraction of total edges occurring within communities and the expected value of the fraction of total edges occurring within communities in a network of identical community partitions with randomized connections between nodes. Q is bounded between $0-1$, with $\mathrm{Q}=0$ indicating that the community subdivisions provide no more information than that of a random partitioning of nodes.

## Spatial Statistics

Pairwise spatial distances between countries were calculated based on the great circle distance between geographic centroids as well as between population centroids (Hamerly, 2006)(Fig 4.1). No qualitative differences were observed between these two distance measures under the Mantel test, so results presented are those of the analysis performed using geographic centroid coordinates.

Mantel tests were used to test for correlations between pairwise genetic distance matrices and matrices composed of geographic distance, aviation network connectivity and rail network connectivity. All transportation metrics were log transformed before analyses were performed. To account for comparisons between sequences from the same location, we tested two data transformations that can produce the symmetric distance matrices required for the Mantel test. First, we found the centroid of the cluster of points corresponding to between-country comparisons and assigned this value to all withincountry comparisons (Broquet et al., 2006). This transformation removes variability introduced by the within-country comparisons and resulted in an $\mathrm{n} x \mathrm{n}$ dimensional distance matrix for each clade where $n$ is equal to the number of sequences tested. Second, we aggregated sequences within a clade by country and calculated the mean genetic distance among all pairwise comparisons for each country-to-country connection. This transformation resulted in an $\mathrm{n} \times \mathrm{n}$ dimensional distance matrix for each clade where n is equal to the number of locations represented. A Bonferroni correction was applied to results when multiple clades from a single season were tested. To visually check for correlations between genetic diversity and travel volume, a regression of genetic diversity on edge weight was performed using pairwise genetic distances pooled across all seasons. To determine the effect that transportation networks have on genetic diversity, we calculated the nucleotide diversity among all sequences
collected from a single country, and then performed regressions of diversity against node degree and node volume for each transportation network. In these analyses, diversity values each corresponded to a single country for a single season.

### 4.3 Results

## Transportation Networks

Similar to differences observed between air and ground transportation in the US, the European aviation and rail networks differed in their basic properties (Fig 4.2). The rail network was sparser than the aviation network, as not all countries were directly connected to all other countries by rail. This is evident in the lower density of the rail network ( $\mathrm{d}=0.45$ ) as compared to the aviation network ( $\mathrm{d}=0.96$ ). Node connectedness was lower and much more variable in the rail network ( mean $=12.62$, var $=51.31$ ) than in the aviation network (mean =26.9, var =2.81) (Fig 4.2). Degree distribution plots further illustrated these differences (Fig 4.7); the uniformity of the degree distribution of the aviation network indicates that, in terms of unweighted connectivity, few countries acted as travel hubs. In contrast, we observed a wider range of degree values for the rail network, where the number of connections per node was generally lower and more variable. The unweighted hub index further suggested that connectivity among nodes is similar in the aviation network (Fig 4.4A), but showed that, in the rail network, countries geographically located on the outskirts of Europe tended to be less well connected than those more centrally located on the continent (Fig 4.4B).

The daily volume of air travel was 4.2 times that of the rail network (air ~ 821,000 passengers/ day, rail $\sim 194,000$ passengers/ day). Even if seasonal travel volume fluctuations were incorporated, the difference in magnitude between the two network volumes suggested that the aviation network was much more heavily utilized than the
rail network. Travel volume along connections in the rail network steeply declined as a function a function of geographic distance, up to distances of approximately 1500 miles (Fig 4.3). At distances greater than 1500 miles, rail connections between countries were still present, but travel volume along these connections was lower and appeared to be independent of the distance traveled. In contrast, air travel volume was entirely independent of the geographic distance between countries although the majority of air travel occurred at distances less than 2000 miles. The total volume of passengers associated with each node was highly variable in both networks, although a cluster of high volume nodes was apparent in Western Europe in both networks (Fig 4.2). Weighted hub indexes revealed that the United Kingdom acted as a travel hub both in the air and rail networks (Fig 4.4 C,D). We also identified high-volume edges by constructing sparse networks that only retained edges supporting passenger volumes larger than the mean (Fig 4.5). In the rail network, several high-volume edges connect the cluster of countries in northwestern Europe, with Germany providing a link between those countries and the countries of eastern and southern Europe. In this high-volume network, Germany's betweenness centrality, a measure of how centrally located a node is within a network, is notably higher $(b=88)$ that of the next highest country's betweenness centrality (Italy, b=37).

The unweighted diameter of the rail network $(\mathrm{d}=5)$ was higher than that of the aviation network ( $\mathrm{d}=2$ ), indicating that the shortest path between the two most distant nodes in the system involved five steps in the rail network. However, this was due to the relative lack of connections between the Baltic States (Estonia, Latvia and Lithuania) and the rest of Europe. Removal of the Baltic countries from the network resulted in a rail network diameter of two, equal to that of the aviation network.

An analysis of community structure for the aviation and rail networks based on both unweighted and weighted edges using the simulated annealing method (Newman and Girvan, 2004; Reichardt and Bornholdt, 2006; Traag and Bruggeman, 2009) did not detect any high modularity partitions in either network. Modularity was below 0.12 in all community analyses.

We further investigated the basic properties of the European rail network to determine how similar its function was to the of the US commuting network. The US commuting network is made up of 49 nodes, is highly spatially organized and has a density of 0.13 (Fig 4.6). In comparing degree distributions among the two US and two European transportation networks, we found that the European railway network is structurally more similar to the US commuting network, both with larger proportions of lower connectivity nodes than either aviation network, but with generally more connections per node than the US network (Fig 4.7). However, the diameter of the US commuter network was 9, higher than that of the rail network, owing to $99 \%$ of commutes being less than 112km and the much larger geographic expanse that the US network encompasses. Taken together, this evidence suggested that rail network shares properties of both the US commuting network and the European aviation network. US and European aviation networks tended to behave similarly, as the US aviation network is also very dense ( $\mathrm{d}=0.96$ ), its degree distribution is large and highly uniform and it moves approximately 1.8 million passengers per day (Bozick and Real, 2015).

## Influenza A/H1N1

Phylogenetic trees were constructed for four different seasons in which influenza A/H1N1 circulated: 2007-2008, 2008-2009, 2009-2010 and 2010-2011 (Appendix II: Figs S1-S4). A new pandemic lineage of H1N1 emerged during the spring of the 20082009 season, causing a secondary epidemic peak over the summer. We built separate
phylogenetic trees for each H1N1 lineage the circulated that season, but found that no clades met our criteria for inclusion from the 2008-2009 seasonal strain. Therefore, all clades analyzed from this season belonged to the pandemic lineage. This lineage eventually replaced the existing seasonal H1N1 virus, so that all seasons following this were dominated by the pandemic lineage; however, the epidemic dynamics of this lineage eventually approached those resembling the seasonal lineages. In total, we were able to analyze nine clades over these four seasons. The number of sequences used per season varied from 518 in the 2009-2010 season to 111 in the 2007-2008 season, and the number of countries represented varied from 21 in 2007-2008 to 13 in 2010-2011 (Appendix II: Table S3; see Appendix II: Table S4 for a summary of all sequences used in the spatial analysis after clades were been identified and extracted from the original phylogenetic trees). Further details obtained through the phylogenetic analysis are listed in Appendix II: Table S5.

No significant associations between genetic distance and any other measure of distance were detected using either distance matrix formulation for any of the nine clades tested. To further investigate the lack of genetic structure detected, we compared sequence diversity with a variety of network metrics. We found that neither country connectivity (degree) nor travel volume were correlated with nucleotide diversity for either network (all p>0.05). When the data were pooled across seasons, no significant correlations existed between international edge weight and nucleotide diversity for either transportation network (Fig 4.8). Upon further inspection, we found that mean nucleotide diversity was significantly greater between countries than within countries (student's t test, $\mathrm{t}=-10.37, \mathrm{df}=191, \mathrm{p}$-value $<0.001$ ) and that rail travel was also significantly higher within countries than between countries (student's $t$ test, $\mathrm{t}=6.73$, df $=72$, p -value $<0.001$ ).

This finding led us to reexamine the sequence data collected from the United States, as our previous analysis had suggested correlations between genetic distance and commuter volume in multiple clades from multiple seasons. However, this analysis was conducted using all pairwise comparisons between sequences within each clade and did not account for the possibility that sequences collected from the same state might be much more similar and that commuter travel within states might be might higher than between states. As with Europe, we found that when the data were pooled across all seasons, no significant correlation existed between interstate commuter travel volumes and mean pairwise nucleotide diversity for either the H3N2 or H1N1 subtype (Fig 4.10A; blue points/line). Genetic diversity was significantly lower ( $\mathrm{t}=-26.16$, $\mathrm{df}=208$, p -value $<0.001$ ) and commuting volume was significantly higher $(\mathrm{t}=13.29, \mathrm{df}=175, \mathrm{p}$-value $<0.001$ ) within states than between states (Fig 4.9), which resulted in a highly significant negative correlation when all comparisons were included (Fig 4.10A; black line). This correlation, however, was driven solely by the coupling of decreased intra-state genetic diversity with increased intra-state commuting volumes. This was not the case when the US aviation network was considered because intra-state air travel volume is highly variable (Fig 4.10B). We therefore conclude that the significant associations detected previously using the Mantel test were driven by collections of highly influential data points located at the extremes of the genetic and commuting distance space (i.e. highly similar or identical sequences collected from within the same state). Reexamination of the scatter plots from each US clade in which genetic distance appeared significantly correlated with commuter travel volume further showed that these points did indeed drive the significant association. These results were confirmed through the use of the Mantel test after transforming the data for each US clade using the previously described methods (all $\mathrm{p}>0.05$ ). In addition, H3N2 genetic diversity was more variable than for H1N1 (Fig 4.9), which likely accounts for the reduced occurrence of significant
associations detected for the H3N2 comparisons under the Mantel tests. In this case, points corresponding to within-state comparisons would not be as clustered at extreme commuting values and therefore would not have had as great an impact on the overall result.

### 4.4 Discussion

We found that transportation network flows are not associated with the genetic distance between influenza sequences in Europe. This result is not particularly surprising, as we found that the rail transportation network in Europe shares some important characteristics with regional aviation networks (e.g. long range connections and higher node connectivity). Instead of acting to structure contacts within the population, the rail and aviation networks in this area instead most likely facilitate longrange transmission of pathogens by allowing infected hosts to move rapidly over vast geographic expanses. This process leads to an admixed population rather than a spatially structured pathogen population.

Similar to differences observed between air and ground transportation in the US, the European aviation and rail networks differed in their basic properties despite the fact that they were constructed from the same 29 countries. The rail network was sparser than the aviation network, as not all countries were directly connected to all other countries by rail. Country connectivity in the rail network was much more variable than in the aviation network, with geographically distant countries like those in Scandinavia tending to be less connected than those countries that were more central geographically. The total volume of air travel was 4.2 times that of the rail network, demonstrating that the aviation network is much more heavily used than the rail network. In contrast, over 3.6 million people per day traveled along the interstate US commuter network compared
to approximately 1.8 million passengers traveling per day on the US aviation network. Western European countries tended to experience much higher passenger volumes in both the aviation and rail networks, and we found that Germany acts as a link in terms of passenger flow between the cluster of countries in northwestern Europe and the countries of eastern and southern Europe.

Strong community structure was not detected in either the air or rail network. In contrast, we previously found that modularity of the US county-to-county commuting network was 0.55 (Bozick and Real, 2015), a value similar to estimates obtained by Thiemann et al. (Thiemann et al., 2010) using currency movements as a proxy for human movement. The high modularity of the US network is due to well-defined communities composed of geographically compact collections of counties. Although groups of wellconnected nodes were visually apparent in the rail network (Western Europe, for example) connectivity between these countries and the rest of the network was high enough to negate any clustering effects. This likely contributed to the homogenization of the influenza population.

While the properties of the European and US aviation networks were similar, our analysis showed that the properties of the European rail network fell between that of the US commuting network, a low-density, highly spatially organized network, and the aviation network, a high-density network in which most nodes are connected to most other nodes. For the majority of the European rail network, one would only need to traverse two connections in order to reach the two countries farthest from each other in both the rail network and the aviation network. In contrast, one would need to traverse nine connections to reach the two most distantly connected states in the US commuting network. This disparity indicates that, despite the rail network being less dense than the aviation network, pathogens could reach almost any other country in Europe through as
little as two connections, confirming our hypothesis that the rail and aviation networks both promote long range mixing.

Our diversity analysis revealed that genetic distances between sequences collected from within the same country are significantly lower than genetic distances between sequences collected from different countries. If comparisons between samples collected from the same location are not accounted for, incorrect conclusions can be drawn from correlations observed under the Mantel test. Without this correction, a correlation will result merely from the comparison of within population sequence diversity to among population sequence diversity. Under these conditions, no predictable decay in genetic distance exists across locations, but a correlation will nonetheless be detected due to low variation among sequences from the same population. After reanalyzing the US influenza dataset using appropriate transformations and validating our results with a regression of diversity on edge volume, we believe that the correlations previously detected were due to this phenomenon and not to the effect of commuter mobility on influenza transmission. While commuters are thought to contribute to the regional spread of influenza (Viboud et al., 2006b), we cannot at this time definitively corroborate that observation with genetic data at the geographic scales considered and suggest that alternative techniques and more spatially detailed sequence data are necessary to further clarify the role of this host group in epidemic transmission.

It would be interesting to perform a more complete comparative analysis in which commuting networks in the US and Europe could be analyzed for correlations with genetic distance among sequences at a finer resolution that is more consistent with the spatial scale at which actual transmission occurs. At this time, data on the connectivity and volume of human movement due to car travel for the European continent is unavailable for international travel, making even broad comparisons
between Europe and the US difficult. Regardless, commuting networks probably, for the most part, do not extend beyond country borders. Although the European Union operates under an open border policy, it is unlikely that many people regularly work in a country other than the one in which they reside. Further, while sequence availability varied by country, the resolution of the spatial data associated with most of these sequences is not currently fine enough to undertake this analysis.

Although it is not an exact replica, Europe, as a large landmass composed of contiguous political units with open borders, provides a unique comparison to the US which can be further exploited when more detailed data become available. Our findings highlight the need to consider the specific characteristics of the study area and local population before generalizing the existence of previously detected patterns. Understanding the processes generating, or obscuring, the spatial genetic patterns in a particular location will aid in the development of more informed strategies for the surveillance and control of epidemics.

### 4.5 Figures



Figure 4.1. Geographic and Population Centroids of European Countries. Blue dots represent population centroids and red dots are geographic centroids.


Figure 4.2. European Aviation (A) and Rail (B) Networks. Nodes are labeled by European country code (Table S2). Edge colors and widths indicate volume of travel on each connection (wider, red edges have highest travel volumes). Node degree (bottom bar plots) and volume (top bar plots) are plotted below each network according to longitude.


Figure 4.3. Association Between Travel Volume and Geographic Distance for the European Aviation and Rail Networks. While travel volume is independent of geographic distance in the aviation network, passenger flows along rail network connections decrease with increasing geograhpic distance up to approximately 1500 miles.


Figure 4.4. Unweighted and Weighted Hub Indexes. Hub indexes for the air (left) and rail (right) networks. Higher index values indicate greater connectivity (A \&B) and travel volume supported (C \&D).


Figure 4.5. High Volume Edges. Air (A) and rail (B) networks retaining only edges with larger than average volume connections.


Figure 4.6. US Commuting Network. Edge colors and widths indicate volume of travel on each connection (wider, red edges have highest travel volumes). Node degree (bottom bar plot) and volume (top bar plot) are plotted according to longitude. Red bars indicate travel into the state and blue bars indicate travel out of the state. Adapted from PLoS Pathogens, 11(60), Bozick \&Real, The role of human transportation networks in mediating the genetic structure of seasonal influenza, e1004898, 2015.


Figure 4.7. Degree Distribution Comparison of Air and Ground
Transportation Networks. The distribution is based on the fraction of nodes ( $k$ ) with a degree greater than or equal to K


Figure 4.8. Regression of Nucleotide Diversity on Edge Volume: Europe. Dots represent edges connecting two distinct countries (international travel) during a single season in a single clade. No significant associations are present (rail: $p=0.23$; air: $\mathrm{p}=0.62$ ).


Figure 4.9. Genetic Diversity and Commuting Volume Within and Between US States for the H1N1 and H3N2 Subtypes. Genetic diversity is significantly higher between states for both subtypes whereas interstate commuting volume is significantly lower than intra-state commuting volume.


Figure 4.10. Regression of H1N1 Nucleotide Diversity on Edge Volume: US. Edge volumes correspond to commuter travel (A) and air travel (B). When examining the relationship between genetic distance and commuter travel volume (A), a highly significant correlation driven solely by the difference between the two clouds of points is observed when within-state sequence comparisons are included. These clouds of points are composed of comparisons between sequences collected from within the same location (red) and comparisons between sequences collected from two different locations (blue). Black line represents regression using all data (commuter: $\mathrm{R}^{2}=0.04, \mathrm{p}<0.001$; air: $\mathrm{p}=0.3$ ); red and blue lines correspond to regressions considering either only intrastate comparisons (red) (commuter: $\mathrm{p}=0.18$; air: $\mathrm{p}=0.07$ ) or inter-state comparisons (blue) (commuter: $\mathrm{p}=0.05$; air: $\mathrm{p}=0.06$ ).

## Chapter 5

## Modeling the effects of commuter-targeted vaccination strategies on influenza epidemics

### 5.1 Introduction

Annual influenza epidemics result in an estimated 3-5 million global cases of severe illness each year, with $90 \%$ of deaths occurring in adults older than 65 years (Simonsen, 1999; 2016). The total annual economic burden of influenza in the United States has been estimated at $\$ 87.1$ billion when direct medical and productivity costs as well as life-years lost are considered (Molinari et al., 2007). Widespread vaccination is currently our best line of defense against the virus, but the vaccine must be updated annually to track the rapid evolution of the influenza A virus (Rambaut et al., 2008). Therefore, new vaccines must be distributed each season.

Although the CDC currently recommends the seasonal influenza vaccination to all adults and children (Grohskopf et al., 2015), in times of shortages the recommendations instead prioritize older adults, the very young, individuals at high risk and health care workers (Centers for Disease Control and Prevention, 2015d). Current vaccination rates among age groups are approximately $70 \%$ for young children, $56 \%$ for school age children, $38 \%$ for adults and $67 \%$ for adults older than 65 years (Centers for Disease Control and Prevention, 2015a). Despite this, attack rates for influenza are estimated to be between 10-20\%, although they can reach 30-50\% in certain age and social groups (Chunara et al., 2015; Cox and Subbarao, 2000). A drawback of the current policy of prioritizing those at high risk for complications is that the influenza vaccines have the highest efficacy in younger, healthy individuals (Goodwin et al., 2006;

Osterholm et al., 2012). Current recommendations focus on reducing individual risk for high consequence groups rather than on reducing transmission in the population.

A large body of work suggests that vaccination of school age children can provide population-wide benefits, as previous data has shown that school age children are the major driver of influenza within communities, particularly within households (Longini et al., 1982; Worby et al., 2015). Children not only have extremely high contact rates with members of their own age groups, but also frequently contact members of other age groups (Mossong et al., 2007; Wallinga et al., 2006). Accordingly, attack rates tend to be highest for school-aged children. Targeted vaccination of children has been shown to reduce total population incidence both theoretically (Halloran et al., 2002; Longini et al., 1978; Longini et al., 2004; Medlock and Galvani, 2009; Patel et al., 2005; Weycker et al., 2005) and empirically (Monto et al., 1969; Piedra et al., 2005; Reichert et al., 2001). Despite the evidence, the US does not require routine vaccination of children for influenza.

Research on influenza transmission at the regional scale has suggested that commuters are important for inter-community spread. Influenza-like-illness data and mortality data have been utilized to demonstrate correlations between commuter movements and timing of influenza epidemic peaks (Viboud et al., 2006b). Further exploration of the importance of human mobility for pathogen transmission has shown that differences in city-specific commuting patterns are sufficient to cause variation in epidemic dynamics (Dalziel et al., 2013). Given this group's importance in transmitting influenza, it is pertinent to ask whether targeting employed adults, the most mobile segment of the population, provides population-wide benefits similar to those that result from targeting children, the segment of the population experiencing the highest contact rate.

To address the effects of targeting employed adults for vaccination, we built a fully stochastic metapopulation model to track host mobility and interactions between individuals from multiple ages and social groups. We tested multiple vaccination strategies aimed at these different age and social groups and assessed the effectiveness of each by comparing the time to metapopulation-wide infection and total incidence at the end of the epidemic. We confirm that vaccinating children is most successful in terms of reducing incidence, but find that vaccinating adults based on employment status and mobility also lowers total incidence while additionally delaying spatial epidemic spread.

### 5.2 Methods

## Model Formulation

To assess the effect of targeted vaccination of mobile adults on epidemic dynamics, we constructed a fully stochastic metapopulation model that approximates the basic epidemiology of a directly-transmitted human pathogen. The model tracks epidemic progress across 11 interconnected populations with a total metapopulation size of one million individuals. We define each of these interconnected populations as a patch, and designate one patch as a city and the remaining 10 patches as suburbs. We assume that the population in the city accounts for half the total metapopulation size and distribute the remaining individuals evenly among the 10 suburbs.

Within patches, individuals are classified as children, employed adults, adults not in the workforce and elderly. The population is composed of $25 \%$ children, $50 \%$ employed adults, $10 \%$ adults not in the workforce and $15 \%$ elderly. This age and employment distribution approximates data from the US Census Bureau (United States Census Bureau). Contact rates among groups were calculated using previously published
estimates (Mossong et al., 2007), with contact rates among children being the highest and contact rates among the elderly being the lowest.

The model assumes SEIR-type infection dynamics in each patch. Since the model only simulates epidemic progress over the course of a season, we assume a finite population in which no births or deaths occur, and we assume that immunity is complete and long-lasting, such that it does not wane during the time period of the epidemic. The basic equations describing transitions between model compartments for a population group $x$ in a single patch are as follows:
$d S_{x}=-v_{x} S_{x}-\lambda_{x}^{t} S_{x}$
$d E_{x}=\lambda_{x}^{t} S_{x}-\theta E_{x}$
$d I_{x}=\theta E_{x}-\gamma I_{x}$
$d R_{x}=\gamma I_{x}+v_{x} S_{x}$
where:
$\mathrm{x}=$ population group (children, adults in workforce, adults not in workforce, elderly)
$\mathrm{v}=$ vaccination rate
$\lambda=$ force of infection
$\mathrm{t}=\mathrm{time}$ of day
$1 / \theta=$ latent period
$1 / \gamma=$ infectious period

S, E, I and R give the number of susceptible (S), exposed (E), infected (I) and immune (R) individuals. We include both vaccinated individuals and individuals that
have recovered from infection in the immune class. Although we include a term for vaccination of susceptible individuals, we note that all vaccination in the simulations presented occurs before the start of the epidemic, and that the vaccination rate is zero during the course of the epidemic. While we present the equations here as a set of ODE's for clarity, transitions between classes in the model are implemented stochastically based on Gillespie's stochastic simulation algorithm (Gillespie, 1976, 1977).

For each group, the force of infection $\lambda$ is given by a specific $\beta \mathrm{I} / \mathrm{N}$. Within this, $\beta$ can be further decomposed into the product of the probability of transmission, a constant b , and the contact rate between population groups, $\mathrm{C}_{\mathrm{x}, \mathrm{y}}$. The matrix C describes contact rates between three age groups (children, adults and elderly). These rates are adapted from data from Mossong et al. (2007), as well as previously published models of influenza transmission between age groups (Araz et al., 2012; Medlock and Galvani, 2009). To approximate an influenza-like pathogen, we assume a latent period of four days and an infectious period of five days, although published parameter estimates can vary widely depending on the subtype and whether the outbreak is that of a seasonal or pandemic strain (Elveback et al., 1976; Gojovic et al., 2009; Ratmann et al., 2012; Tuite et al., 2010). We use a transmission probability (b) that corresponds to a $\mathrm{R}_{0}$ for the entire metapopulation of 2.3 (Dietz, 1993), which is in line with estimates of a major influenza pandemic (Coburn et al., 2009). However, we recognize that seasonal influenza epidemics in the US are generally characterized by an average $\mathrm{R}_{\mathrm{o}}$ of 1.3 (Viboud et al., 2006b), which we aim to explore in future implementations of the model.

In order to simulate more realistic forms of population mixing, we vary the force of infection $(\lambda)$ for each group based on the time of day (Keeling et al., 2010). Nighttime dynamics only include contacts between residents from the same patch; all groups within a given population interact with each other and infection occurs in a frequency-
dependent manner. Frequency-dependent transmission was used to reflect heterogeneities in host contact rates at coarse spatial scales. At the city-suburb level modeled here, contact rates across cities of different sizes are expected to remain relatively constant rather than scaling with density (Bjornstad et al., 2002; Keeling and Rohani, 2011).

As an example, consider only the infection dynamics in a single patch. At night, $\lambda$ for group $x$ only includes contacts between residents from the same patch and is calculated as:

$$
\lambda_{x}^{n i g h t}=\sum_{y} \frac{\beta_{x, y} I_{y}}{N}
$$

where $N$ is the total number of residents in the patch, and the $x, y$ subscript denotes the $\beta$ calculated from the contact rate between group $x$ and group $y$.

During the day, we assume that children, adults not in the workforce and elderly individuals that reside in the same patch interact in a similar fashion, but that employed adults only interact with other employed adults. Among children, adults not in the workforce and the elderly, the calculation of $\lambda$ remains the same as above, except that the denominator N is modified to exclude employed adults that reside in the patch. Among employed adults, the daytime infection rate is based on contacts between infected and susceptible adults employed in the same patch. The force of infection for adults in the workforce that reside in patch h and work in patch w is therefore calculated as:

$$
\lambda_{(h, w)}^{d a y}=\sum_{j} \beta_{A, A} I_{(j, w)} \frac{1}{\sum_{k} N_{(k, w)}}
$$

where $\beta_{\mathrm{A}, \mathrm{A}}$ denotes transmission between adults. The denominator gives the total number of adults in the workforce that work in patch $w$, allowing us to model frequencydependent transmission.

## Commuting Network

Among employed adults, we define non-commuters as individuals that are employed in their home patch and commuters as individuals that are employed in a patch other than their home patch. We group all employed adults according to their work and home patch combinations and use a matrix to track inter-patch movements. The movement matrix is based on the metapopulation connectivity network, which we defined as a nearest-neighbor network (Fig 5.1). For all simulations, we assume that 50\% of employed adults in each patch are non-commuters and that the commuters from each patch are distributed equally among all connected patches.

## Vaccination

Simulations were run in which from 50,000-800,000 vaccine doses were available (in intervals of 50,000), corresponding to vaccination of from 5-80\% of the entire metapopulation. In each simulation, epidemics were seeded by introducing 10 infected non-commuters into the city patch. We first simulated the random distribution of vaccines. Under this strategy, each patch was allotted vaccines in proportion to its total population size, and each age group in each patch was vaccinated according to its frequency. In all simulations, we assumed that $15 \%$ of every group refused vaccination, even if there were vaccine doses available. This assumption ensured that the epidemic had the opportunity to spread, since employed adults were the only group in this simple model that interacted with individuals from outside their home patch. With this assumption in place, all groups at least partially contributed to infection dynamics across all simulations.

This random distribution strategy was then compared to strategies in which vaccines were initially distributed to one of four target groups: all employed adults, commuters, non-commuters or children. To compare the effects of vaccination across the different targeted strategies, we adopted an approach in which we considered scenarios in which from 50,000-200,000 doses were available as "Limited Vaccination" and scenarios in which from 250,000-800,000 doses were available as "Excess Vaccination". In the limited vaccination scenarios, only the target group received vaccination (i.e. in these scenarios, fewer vaccine doses were available than the maximum possible number of individuals that could be vaccinated in each target group).

In the excess vaccination scenarios, vaccines were first distributed to the target group. When targeting children, commuters and non-commuters, which each made up $25 \%$ of the population, this meant that the maximum possible number of individuals in the target group could be vaccinated. The remaining vaccine doses were then distributed to other groups based on their frequency in the population. Employed adults, however, made up a larger proportion of the population (50\%; commuters and non-commuters combined) than each of the other three target groups. To accurately compare this strategy with the other three, we ensured that, initially, the number of vaccines distributed to employed adults was equal to the maximum number of vaccines that could be distributed to children, commuters or non-commuters. The remaining vaccine doses were then randomly distributed to the rest of the population in the same manner described previously but, in this case, employed adults could continue to be vaccinated with these excess doses based on their remaining frequency in the population (i.e. without being targeted).

## Outcome Metrics

One hundred simulations were run for each vaccination strategy. For all model runs, we quantified epidemic timing using three metrics: (1) the total time necessary for the epidemic to reach all patches, defined as the number of days between peaks in the first patch infected and the last patch infected, (2) time to dispersal, defined as the number of days between the peak in the seeding patch and the peak in the second patch to become infected, and (3) speed of spread, defined as the inverse of the mean time between epidemic peaks across patches excluding the seeding patch. We also recorded the total incidence at the end of the simulation as well as the incidence in each age group at the end of the simulation. We quantified the effectiveness of our intervention strategy by calculating the difference between the total number of possible infections (all individuals that did not receive a vaccination) and the total number of actual infections.

### 5.3 Results

Across all vaccination strategies, increasing vaccination in any of the four target groups (children, employed adults, commuters and non-commuters) decreased the total metapopulation incidence beyond what would be expected if everyone except those vaccinated had become infected (Fig 5.2).

## Limited Vaccine Availability

When vaccination was limited and targeted at either commuters, non-commuters or employed adults, epidemics spread across the metapopulation slower than when vaccination was administered randomly or to children (Fig 5.3). The increase in spreading time was attributable to both an increase in the time necessary for the epidemic to initially disperse out of the introduction patch and a decrease in the speed of spread. At low levels, vaccinating children appeared to decrease the time necessary for
the epidemic to spread across the metapopulation. This effect was due to the synchronization of epidemic peaks across patches, which was not as pronounced under any of the other strategies. Vaccinating children when doses were limited resulted in more infections averted than any other strategy, although vaccination of commuters, non-commuters or working adults all only performed slightly worse (Fig 5.4). All targeted vaccination strategies led to more infections averted than random vaccination. Unsurprisingly, targeted vaccination led to the greatest decreases in incidence in the targeted group when incidence was partitioned by age (Fig 5.5). Furthermore, targeting children had little effect on adult incidence and targeting any class of employed adults had little effect on incidence in children. Although random vaccination produced the greatest decrease in incidence in the elderly, targeted vaccination of children produced a slightly greater reduction in incidence in the elderly than targeted vaccination of commuters, non-commuters or employed adults. No spatial differences in incidence were observed in the city or suburb patches under any vaccination strategy.

## Excess Vaccines Available

Similar trends were observed when vaccine availability was not limited. Total spreading time and dispersal time increased and spreading speed decreased as more vaccines were deployed, an effect which was more pronounced when vaccinating commuters than non-commuters and employed adults (Fig 5.6). Initially targeting children for vaccination resulted in faster spreading speeds than all other strategies tested.

Initial targeted vaccination of children reduced metapopulation-wide incidence the most, the effects of which became more obvious when vaccination doses exceeded 500,000 (Fig 5.7). When more than 500,000 doses were available, random vaccination also led to more infections averted than targeting employed adults, commuters or non-
commuters, and the initial targeted vaccination of children led to greater decreases in incidence in the elderly than the other three targeted strategies (Fig 5.8). Vaccination of approximately $65 \%$ of the population was necessary to prevent most epidemics from occurring.

### 5.4 Discussion

In line with previous studies, we found that targeted vaccination aimed at children yielded the greatest benefit in terms of reducing total incidence. Targeted vaccination of employed adults, commuters and non-commuters resulted in marginally greater total incidences as compared to targeting children, but also delayed epidemic spreading time and speed. These delays could potentially increase the effectiveness of intervention strategies implemented during the course of the epidemic (Germann et al., 2006). The larger reductions in incidence observed when targeting children for vaccination rather than adult subgroups are explained by the underlying differences in contact rates among age groups. Children's contact rates are high both with other children and with individuals in other age groups; vaccinating the group responsible for transmitting the majority of infections therefore led to the greatest decrease in incidence.

Our model included several simplifying assumptions that limit its application to real world transmission processes, particularly for influenza epidemics. First, we quantified the success of each vaccination strategy in terms of incidence rather than mortality. Although estimates of mortality due to influenza and pneumonia correlate well with incidence (Cox and Subbarao, 2000; Simonsen, 1999; Viboud et al., 2006b), influenza-induced mortality varies drastically by age group. In particular, the elderly and the very young tend to suffer much higher mortality due to influenza than older children or healthy adults (Simonsen, 1999; Simonsen et al., 2005). While total incidence may
remain high, mortality in the elderly could be reduced by vaccinating other social groups with whom they interact (Medlock and Galvani, 2009). However, to accurately capture this effect, our model would need to additionally incorporate several important complexities. Specifically, we assumed that vaccine efficacy was $100 \%$, that an individual's probability of transmission was constant regardless of the time since infection and that all infections resulted in symptomatic, infectious cases. In reality, annual influenza vaccine efficacy is probably lower than $70 \%$, with efficacy dropping to as low as $20 \%$ in years when the vaccine does not match the dominant circulating strain (Osterholm et al., 2012). Vaccine efficacy further varies by age group; vaccination is less effective when administered to the elderly than to healthy adults (Goodwin et al., 2006). In addition, vaccination in many epidemic models is often assumed to reduce influenza symptoms and decrease infectiousness, even when it does not provide complete protection against infection (Chao et al., 2010; Medlock and Galvani, 2009; Weycker et al., 2005). Coupled with the reduced probability of transmission by asymptomatic individuals (Patrozou and Mermel, 2009), these complexities could significantly affect measured mortality rates, especially in the elderly and other vulnerable populations. This outcome would not have been apparent in our current model and should be explored in future studies.

Another simplifying assumption of our model was that commuters were the only group that interacted with individuals in patches outside their home patch. In reality, all groups likely interact with each other in many different spatial locations, although the relative magnitude of these interactions likely varies by age and with the spatial scale under observation. At the city-suburb scale that we aimed to replicate, children and adults certainly contact others outside of their home community, although intercommunity interactions between employed adults probably occur more often and more regularly than do inter-community interactions among other groups. In addition to
incorporating the more complex vaccine-related parameters outlined previously, future implementations of the model should also include parameters accounting for the weaker but relevant interactions of other age groups with residents of other communities.

Although the body of literature demonstrating the benefits of vaccinating children against influenza is extensive, this policy has not been widely implemented. The CDC currently recommends vaccination for all healthy adults and children, but vaccination of these groups prior to the start of the 2014-2015 season had only reached around 40\% each (Centers for Disease Control and Prevention, 2015c). Our results suggest a possible alternative strategy that, while marginally less effective that the optimum, could provide additional benefits in terms of epidemic timing and may be easier to implement if adults are more amenable to vaccination than children.

Developing a more complex model that better approximates real-world metapopulation systems will help to further determine the conditions under which vaccination of mobile individuals could control influenza epidemics.

### 5.5 Figures



Figure 5.1. Nearest-Neighbor Commuting Network. The metapopulation is composed of one city population (blue) and 10 suburb populations (orange). Each suburb is connected to two neighboring suburb populations and the city population through commuting. The number of individuals that reside in the city accounts for 50\% of the total metapopulation size.


Figure 5.2. Epidemic Timing and Incidence in Response to Targeted Vaccination. Changes in timing (left), incidence (right) in response to targeted vaccination of children, employed adults, commuters or non-commuters compared with the random distribution of vaccines across all age groups. The vertical dotted line at indicates the point at which excess vaccine doses are available and individuals outside the target group may be vaccinated.


Figure 5.3. Epidemic Timing Under Limited, Targeted Vaccination. Changes in epidemic timing in response to random vaccination and four different targeted strategies when vaccine doses are limited. Plots show total time necessary for the epidemic to spread across the metapopulation (left), time necessary for the epidemic to disperse from the patch of initial introduction (center) and epidemic spreading speed (right).


Figure 5.4. Incidence Under Limited, Targeted Vaccination. Reductions in total incidence in response to random vaccination and four different targeted strategies when vaccine doses are limited. Left panel shows overall reduction in incidence across a range of vaccination levels, right panel shows the percent of infections averted. Dashed line in left panel represents the total possible infections if all individuals that had not been vaccinated were to become infected.


Figure 5.5. Incidence by Age Group Under Limited, Targeted Vaccination. Incidence in children (left), adults (center) and elderly (right) shown.


Figure 5.6. Epidemic Timing Under Excess, Targeted Vaccination. Changes in epidemic timing in response to random vaccination and four different targeted strategies when vaccine doses exceed the total number of individuals in the targeted population. Plots show total time necessary for the epidemic to spread across the metapopulation (left), time necessary for the epidemic to disperse from the patch of initial introduction (center) and epidemic spreading speed (right).


Figure 5.7. Incidence Under Excess, Targeted Vaccination. Reductions in total incidence in response to random vaccination and four different targeted strategies when vaccine doses exceed the total number of individuals in the targeted population. Left panel shows overall reduction in incidence across a range of vaccination levels, right panel shows the percent of infections averted. Dashed line in left panel represents the total possible infections if all individuals that had not been vaccinated were to become infected.


Figure 5.8. Incidence by Age Group Under Excess, Targeted Vaccination. Incidence in children (left), adults (center) and elderly (right) shown.

## Chapter 6

## Summary and Conclusions

Two of the studies presented in this dissertation utilized estimates of human movement along transportation networks to explore whether underlying patterns in seasonal influenza population structure exist at the regional scale. In addition, the information gleaned from this work was used to design and test a novel control strategy aimed at host groups that are important to transmission. This body of work is one of the first to explore spatial patterns previously suggested through epidemiological data with viral genetic sequence data and enhances our understanding of this ubiquitous human pathogen.

The questions addressed in these studies were informed by a detailed understanding of the nuances of host-parasite dynamics over the geographic range. A review of the literature, presented in Chapter 2, demonstrated that pathogens are not evenly distributed within their hosts' ranges and that a variety of factors, both abiotic and biotic, modulate a parasite's ability to evolve in response to changing conditions across the landscape. As a result, parasite genetic variation can be used to gain important insights into host demography, migration and other life-history characteristics, especially in relation to range expansions, contractions and shifts. It is also apparent that there is much more work yet to be done, particularly in relation to ascertaining the relative importance of ecological and evolutionary factors in setting range boundaries, the specific effects of biotic interactions on parasite distributions and the future effects of climate change on host and parasite interactions.

### 6.1 Effects of human mobility on pathogen evolutionary and ecological dynamics

Epidemics spread along spatial pathways defined, in part, by host mobility networks. While local host movement can spatially structure epidemic dynamics and potentially genetic variation, hosts that move rapidly and far disrupt any underlying spatial patterns that might exist by increasing opportunities for long-distance transmission. Recent work using distance metrics derived from mobility networks rather Euclidean distance measurements previously revealed otherwise undetectable patterns in the spread of disease (Brockmann and Helbing, 2014; Lemey et al., 2014; Viboud et al., 2006b). Building on this work, I explored whether similar patterns in the spread of disease can be detected at the regional scale in Chapters 3 and 4, but did not find evidence that influenza epidemics predictably spread between geographic locations based on the volume of passenger travel.

Unlike analyses conducted at the global scale, I found that the regional aviation networks functioned to mix pathogen populations, eroding any structure that may be imposed due to transmission across more local, geographically organized networks. A comparison of the US commuter network and European rail network revealed that the two networks differed in the degree of community partitioning and spatial structure present. The US commuter network was similar to, but not entirely consistent with, geographic distances between states. In comparison, more long-range connections were present in the European rail network; these connections likely allowed for the rapid, long-distance spread of influenza. Furthermore, the high modularity of the US commuting network indicated that semi-insular communities existed at sub-regional scales. Similar partitioning was not observed in the European rail network due to the abundance of long range connections.

Influenza populations within countries were more similar than influenza populations among countries, a finding which suggested that the magnitude of withincountry or within-state transmission is much greater than that between locations; epidemic spread beyond country borders is likely enhanced by long-distance travelers, but their effect is marginal once the infection reaches a new country. This finding also brought to light a potential pitfall in the spatial analysis of genetic sequence data based on mobility networks. I found that associations could be driven by high impact points that consisted of pairwise comparisons between sequences that were highly similar and were collected from within the same location. As travel volume over the commuting and rail network was much higher within locations than between locations, including these comparisons in the analysis could cause significant associations to appear when, in fact, genetic distance did not predictably decline in response to increased connectivity through travel. Further studies using high-resolution spatial genetic data and more precise alternative techniques are necessary to clarify the role of human mobility in regional influenza spread.

In Chapter 5, I explored the relative effectiveness of vaccination strategies targeted at different host groups. Simulations of epidemic spread through a metapopulation revealed that vaccinating commuters was not as effective as vaccinating children in terms of reducing population-wide incidence, but demonstrated that vaccination strategies targeting employed adults delayed the timing and speed of epidemic spread when epidemics were severe. Delaying epidemic spread could potentially be beneficial when vaccination is limited, as it could provide an opportunity for alternative control strategies, such as the distribution of antivirals or the enforcement of social distancing policies, to be implemented. Nonetheless, the optimal strategy of vaccinating children is based on the fundamental idea of targeting those most
responsible for transmission by identifying the age and/ or social group with highest contact rate.

### 6.2 Conclusions, future directions and a call for data

In conclusion, while the spatial genetic patterns of pathogens can be used to gain insight into the ecology of the host organism as it relates to disease transmission, these patterns are not necessarily straightforward and can be difficult to detect, especially when long-range host movement is common. Furthermore, it is important to note that these patterns can be specific to the particular host, location or spatial scale under investigation. While classic spatial statistics were used in the studies presented here, approaches have recently been developed that apply phylogeographic techniques to these same problems (Bedford et al., 2015; Dellicour et al., 2016; Lemey et al., 2014; Magee et al., 2015; Trovao et al., 2015; Zinder et al., 2014). Utilizing these new approaches will not only prove useful for clarifying the findings presented here, but could also be used to further investigate the regional pathways over which influenza and other similar pathogens are likely to spread during future epidemics.

Identifying pathways of epidemic spread within networks, as well as host groups that are important for transmission can potentially inform the design and implementation of policies aimed at controlling disease outbreaks. Although our targeted vaccination strategy did not outperform the policy of vaccinating children, it did perform better than random vaccination during severe epidemics when vaccine doses were limited and provided the additional benefit of delaying epidemic spread. As this result was obtained in an idealized model population, we do not yet know how it would fare under realistic conditions. Census datasets from various regions exist that would allow for the extension of this model to real-world populations. Recently, detailed human
mobility data obtained through cellular phone records were used to identify regional sources and sinks of malaria transmission (Wesolowski et al., 2012). Information such as this will allow public health officials to pinpoint locations in which surveillance should be increased to best track pathogen spread. Similarly identifying sources and sinks of regional influenza spread could assist in the creation of surveillance and control programs that more effectively contain epidemics from the start.

Finally, this work has highlighted the need for the greater availability of spatial genetic sequence data. The recent explosion of genetic sequencing capability has led to development of novel analysis techniques that integrate knowledge from the previously disparate fields of ecology, evolution, bioinformatics, statistics and public health. Gains from this union will be increasingly realized as datasets become available that are rich in genetic, temporal and spatial information. All of the data used in this work, from genetic sequences to transportation networks to population demographics, were publicly available. Limitations on the extent to which spatial patterns could be recovered stemmed, in part, from our present inability to obtain enough data at the necessary spatial resolution to precisely measure transmission dynamics. As an example, future work in this system should aim to examine the effects of human mobility within and across cities, as this is the spatial scale at which actual influenza transmission occurs. Currently, most publicly available influenza sequence data from the US is recorded only at the state level. Studies conducted at finer spatial resolutions would have a greater ability to illuminate actual pathways over which influenza spreads and additionally could integrate the effects of multiple transportation networks. The greater availability of data will lead to a more detailed understanding of the epidemiological and evolutionary dynamics of pathogens like influenza that have such an important impact on global human health.

## Bibliography

Adam, S.G., Caraux, A., Fodil-Cornu, N., Loredo-Osti, J .C., Lesjean-Pottier, S., J aubert, J ., Bubic, I., J onjic, S., Guenet, J .L., Vidal, S.M., et al. (2006). Cmv4, a new locus linked to the NK cell gene complex, controls innate resistance to cytomegalovirus in wildderived mice. J Immunol 176, 5478-5485.

Afrane, Y.A., Little, T.J ., Lawson, B.W., Githeko, A.K., and Yan, G.Y. (2008). Deforestation and vectorial capacity of Anopheles gambiae giles mosquitoes in malaria transmission, Kenya. Emerg Infect Dis 14, 1533-1538.

Agostini, H.T., Ryschkewitsch, C.F., and Stoner, G.L. (1996). Genotype profile of human polyomavirus J C excreted in urine of immunocompetent individuals. J Clin Microbiol 34, 159-164.

Albà, M.M., Das, R., Orengo, C.A., and Kellam, P. (2001). Genomewide function conservation and phylogeny in the herpesviridae. Genome Research 11, 43-54.

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., and Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology letters 9, 467-484.

Altizer, S., Ostfeld, R.S., J ohnson, P.T., Kutz, S., and Harvell, C.D. (2013). Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514-519.

Amundsen, P.A., Lafferty, K.D., Knudsen, R., Primicerio, R., Kristoffersen, R., Klemetsen, A., and Kuris, A.M. (2013). New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia 171, 993-1002.

Anderson, B.J ., Akcakaya, H.R., Araujo, M.B., Fordham, D.A., Martinez-Meyer, E., Thuiller, W., and Brook, B.W. (2009). Dynamics of range margins for metapopulations under climate change. Proc Biol Sci 276, 1415-1420.

Anderson, R.C. (1972). The ecological relationships of meningeal worm and native cervids in North America. J ournal of Wildlife Diseases 8, 304-310.

Antonovics, J . (2009). The effect of sterilizing diseases on host abundance and distribution along environmental gradients. Proc Biol Sci 276, 1443-1448.

Antonovics, J ., and Edwards, M. (2011). Spatio-temporal dynamics of bumblebee nest parasites (Bombus subgenus Psythirus ssp.) and their hosts (Bombus spp.). J Anim Ecol 80, 999-1011.

APHL (2012). Influenza Virologic Surveillance Right Size Roadmap, A.o.P.H. Laboratories, and C.f.D.C.a. Prevention, eds.

Araz, O.M., Galvani, A., and Meyers, L.A. (2012). Geographic prioritization of distributing pandemic influenza vaccines. Health Care Manag Sc 15, 175-187.

Arenas, M., Ray, N., Currat, M., and Excoffier, L. (2012). Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29, 207-218.

Atkinson, W., Wolfe, S., and Hamborsky, J ., eds. (2012). Epidemiology and Prevention of Vaccine-Preventable Diseases, 12 edn (Washington DC: Public Health Foundation).

Baer, G.M., ed. (1975). The natural history of rabies virus (New York: Academic Press).

Bahl, J ., Nelson, M.I., Chan, K.H., Chen, R., Vijaykrishna, D., Halpin, R.A., Stockwell, T.B., Lin, X., Wentworth, D.E., Ghedin, E., et al. (2011). Temporally structured
metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proceedings of the National Academy of Sciences 108, 19359-19364.

Balcan, D., Colizza, V., Goncalves, B., Hu, H., Ramasco, J J ., and Vespignani, A. (2009a). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America 106, 21484-21489.

Balcan, D., Hu, H., Goncalves, B., Bajardi, P., Poletto, C., Ramasco, J J., Paolotti, D., Perra, N., Tizzoni, M., Broeck, V.d.W., et al. (2009b). Seasonal transmission potential and activity peaks of the new influenza $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1)$ : a Monte Carlo likelihood analysis based on human mobility. BMC Medicine 7, 1-12.

Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T., Ostell, J ., and Lipman, D. (2008). The Influenza Virus Resource at the National Center for Biotechnology Information. J ournal of Virology 82, 596-601.

Barrera, R., Amador, M., and MacKay, A.J . (2011). Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San J uan, Puerto Rico. Plos Neglected Tropical Diseases 5.

Barrera, R., Avila, J., and Gonzaleztellez, S. (1993). Unreliable supply of potable water and elevated Aedes aegypti larval indexes: a causal relationship? J ournal of the American Mosquito Control Association 9, 189-195.

Barrera, R., Navarro, J .C., Mora, J.D., Domínguez, D., and González, J . (1995). Public service deficiencies and Aedes aegypti breeding sites in Venezuela. Bulletin of Pan American Health Organization 3, 193-205.

Bartlett, M.S. (1957). Measles periodicity and community size. J ournal of the Royal Statistical Society Series A: General 120, 48-70.

Bartlett, M.S. (1960). The critical community size for measles in the United States. J ournal of the Royal Statistical Society Series A: General 123, 37-44.

Bedford, T., Rambaut, A., and Pascual, M. (2012). Canalization of the evolutionary trajectory of the human influenza virus. Bmc Biol 10.

Bedford, T., Riley, S., Barr, I.G., Broor, S., Chadha, M., Cox, N.J., Daniels, R.S., Gunasekaran, C.P., Hurt, A.C., Kelso, A., et al. (2015). Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217-U206.

Bharti, N., Tatem, A.J ., Ferrari, M.J ., Grais, R.F., Djibo, A., and Grenfell, B.T. (2011). Explaining Seasonal Fluctuations of Measles in Niger Using Nighttime Lights Imagery. Science (New York, NY) 334, 1424-1427.

Bian, G., Xu, Y., Lu, P., Xie, Y., and Xi, Z. (2010). The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. Plos Pathogens 6.

Biek, R., Drummond, A.J., and Poss, M. (2006). A virus reveals population structure and recent demographic history of its carnivore host. Science 311, 538-541.

Biek, R., Henderson, J .C., Waller, L.A., Rupprecht, C.E., and Real, L.A. (2007). A highresolution genetic signature of demographic and spatial expansion in epizootic rabies virus. Proc Natl Acad Sci U SA 104, 7993-7998.

Biek, R., and Real, L.A. (2010). The landscape genetics of infectious disease emergence and spread. Mol Ecol 19, 3515-3531.

Biomatters. Geneious version 5.6.2.

Bjornstad, O.N., Finkenstadt, B.F., and Grenfell, B.T. (2002). Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol Monogr 72, 169-184.

Black, F.L. (1975). Infectious disease in primitive societies. Science 187, 515-518.

Blackburne, B.P., Hay, A.J ., and Goldstein, R.A. (2008). Changing Selective Pressure during Antigenic Changes in Human Influenza H3. Plos Pathog 4, e1000058.

Blyth, C.C., Kelso, A., McPhie, K.A., Ratnamohan, V.M., Catton, M., Druce, J .D., Smith, D.W., Williams, S.H., Huang, Q.S., Lopez, L., et al. (2010). The impact of the pandemic influenza A(H1N1) 2009 virus on seasonal influenza A viruses in the southern hemisphere, 2009. Euro Surveill 15.

Boots, M. (2011). The evolution of resistance to a parasite is determined by resources. The American naturalist 178, 214-220.

Bozick, B.A., and Real, L.A. (2015). The Role of Human Transportation Networks in Mediating the Genetic Structure of Seasonal Influenza in the United States. Plos Pathogens 11.

Briers, R.A. (2003). Range limits and parasite prevalence in a freshwater snail. Proc Biol Sci 270, S178-S180.

Brockhurst, M.A., Buckling, A., Poullain, V., and Hochberg, M.E. (2007). The impact of migration from parasite-free patches on antagonistic host-parasite coevolution. Evolution 61, 1238-1243.

Brockmann, D., and Helbing, D. (2014). The hidden geometry of complex, networkdriven contagion phenomena (December, pg 1337, 2013). Science 343, 730-730.

Broquet, T., Ray, N., Petit, E., Fryxell, J .M., and Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21, 877-889.

Brown, J.H. (1984). On the relationship between abundance and distribution of species. The American naturalist 124, 255-279.

Brown, J.H., and Lomolino, M.V. (1998). Biogeography, 2nd edn (Massachusetts: Sinauer).

Brownstein, J.S., Wolfe, C.J ., and Mandl, K.D. (2006). Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS medicine 3, e401.

BTS. Air Carrier Statistics (Form 41 Traffic): T-100 Market (All Carriers) (Bureau of Transportation Statistics).

Bush, R.M., Fitch, W.M., Bender, C.A., and Cox, N.J . (1999). Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16, 1457-1465.

Calvete, C., Miranda, M.A., Estrada, R., Borras, D., Sarto I Monteys, V., Collantes, F., Garcia-de-Francisco, J.M., Moreno, N., and Lucientes, J . (2006). Spatial distribution of Culicoides imicola, the main vector of bluetongue virus, in Spain. Veterinary Record 158, 130-131.

Caminade, C., Kovats, S., Rocklov, J ., Tompkins, A.M., Morse, A.P., Colon-Gonzalez, F.J ., Stenlund, H., Martens, P., and Lloyd, S.J . (2014). Impact of climate change on global malaria distribution. Proc Natl Acad Sci U S A 111, 3286-3291.

Case, T.J ., Holt, R.D., McPeek, M.A., and Keitt, T.H. (2005). The community context of species' borders: ecological and evolutionary perspectives. Oikos 108, 28-46.

Cauchemez, S., Valleron, A.-J ., Boelle, P.-Y., Flahault, A., and Ferguson, N.M. (2008). Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452, 750-754.

CDC. FluView: A Weekly Influenza Surveillance Report Prepared by the Influenza Division (Atlanta: Centers for Disease Control and Prevention).

CDC (2013). Seasonal Influenza Q\&A (Centers for Disease Control and Prevention, National Center For Immunization and Respiratory Diseases (NCIRD)).

CDC (2014). FluView. In National and Regional Level Outpatient Illness and Viral Surveillance (Centers for Disease Control and Prevention).

Census (2000). United States Census Bureau County-to-County Worker Flow Files (US Census Bureau).

Centers for Disease Control and Prevention (2015a). Flu Vaccination Coverage: United States, 2014-2015 Influenza Season.

Centers for Disease Control and Prevention (2015b). Influenza Type A Viruses.

Centers for Disease Control and Prevention (2015c). National Early Season Flu Vaccination and Coverage, United States, November 2015.

Centers for Disease Control and Prevention (2015d). Vaccination: Who Should Do It, Who Should Not and Who Should Take Precautions.

Centers for Disease Control and Prevention (2016). Past Weekly Surveillance Reports.

Cerrano, C., Bavestrello, G., Bianchi, C.N., Cattaneo-vietti, R., Bava, S., Morganti, C., Morri, C., Picco, P., Sara, G., Schiaparelli, S., et al. (2000). A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (Northwestern Mediterranean), summer 1999. Ecology letters 3, 284-293.

Chao, D.L., Halloran, M.E., Obenchain, V.J ., and Longini, I.M. (2010). FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model. Plos Comput Biol 6.

Chunara, R., Goldstein, E., Patterson-Lomba, O., and Brownstein, J.S. (2015). Estimating influenza attack rates in the United States using a participatory cohort. Sci Rep-Uk 5.

Coburn, B.J ., Wagner, B.G., and Blower, S. (2009). Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). Bmc Medicine 7.

Colizza, V., Barrat, A., Barthelemy, M., and Vespignani, A. (2006a). The modeling of global epidemics: stochastic dynamics and predictability. Bulletin of mathematical biology 68, 1893-1921.

Colizza, V., Barrat, A., Barthelemy, M., and Vespignani, A. (2006b). The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences of the United States of America 103, 2015-2020.

Colizza, V., Barrat, A., Barthélemy, M., and Vespignani, A. (2007). Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Medicine 5, 1-13.

Conner, M.M., and Miller, M.W. (2004). Movement patterns and spatial epidemiology of a prion disease in mule deer population units. Ecological Applications 14, 1870-1881.

Constantin De Magny, G., Durand, P., Renaud, F., and Guegan, J.F. (2008). Health ecology:a new tool, the macroscope. In Ecology and Evolution of Parasitism, F. Thomas, F. Renaud, and J.F. Guegan, eds. (Oxford: Oxford University Press), pp. 129-148.

Cox, N.J ., and Subbarao, K. (2000). Global epidemiology of influenza: Past and present. Annu Rev Med 51, 407-421.

Dalziel, B.D., Pourbohloul, B., and Ellner, S.P. (2013). Human mobility patterns predict divergent epidemic dynamics among cities. Proc Biol Sci 280, 20130763.

Dawood, F.S., J ain, S., Finelli, L., Shaw, M.W., Lindstrom, S., Garten, R.J ., Gubareva, L.V., Xu, X.Y., Bridges, C.B., and Uyeki, T.M. (2009). Emergence of a Novel SwineOrigin Influenza A (H1N1) Virus in Humans Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. New England J ournal of Medicine 360, 2605-2615.

De Castro, F., and Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecology letters 8, 117-126.
de Meeûs, T., and Renaud, F. (2002). Parasites within the new phylogeny of eukaryotes. Trends in Parasitology 18, 247-251.

Dellicour, S., Rose, R., and Pybus, O.G. (2016). Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. Bmc Bioinformatics 16.

Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2, 23-41.

Dobzhansky, T. (1970). Genetics of the evolutionary process, Vol 139 (Columbia University Press New York).

Drummond, A.J ., Ho, S.Y.W., Phillips, M.J ., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. Plos Biology 4, 699-710.

Drummond, A.J ., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evol Biol 7.

Duke-Sylvester, S.M., Bolzoni, L., and Real, L.A. (2011). Strong seasonality produces spatial asynchrony in the outbreak of infectious diseases. J R Soc Interface 8, 817-825.

Edmonds, C.A., Lillie, A.S., and Cavalli-Sforza, L.L. (2004). Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci U SA 101, 975-979.

Elveback, L.R., Fox, J.P., Ackerman, E., Langworthy, A., Boyd, M., and Gatewood, L. (1976). Influenza Simulation-Model for Immunization Studies. AmJ Epidemiol 103, 152165.

Epperson, B.K. (2003). Geographical Genetics (Princeton: Princeton University Press).

Epstein, P.R. (2000). Is global warming harmful to health? Scientific American 283, 5057.

Estrada-Pena, A., Ostfeld, R.S., Peterson, A.T., Poulin, R., and de la Fuente, J . (2014). Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol 30, 205-214.

Eurostat (2015). The EU in the world (Luxembourg: Luxembourg: Publications Office of the European Union).

Eurostat (2016). Passenger Transport Statistics.

Falush, D., Wirth, T., Linz, B., Pritchard, J.K., Stephens, M., Kidd, M., Blaser, M.J ., Graham, D.Y., Vacher, S., Perez-Perez, G.I., et al. (2003). Traces of human migrations in Helicobacter pylori populations. Science 299, 1582-1585.

Fang, L.Q., Wang, L.P., de Vlas, S.J ., Liang, S., Tong, S.L., Li, Y.L., Li, Y.P., Qian, Q., Yang, H., Zhou, M.G., et al. (2012). Distribution and risk factors of 2009 pandemic influenza A (H1N1) in mainland China. Am J Epidemiol 175, 890-897.

Ferguson, N.M., Galvani, A.P., and Bush, R.M. (2003). Ecological and immunological determinants of influenza evolution. Nature 422, 428-433.

Finkelman, B.S., Viboud, C., Koelle, K., Ferrari, M.J ., Bharti, N., and Grenfell, B.T. (2007). Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PloS one 2, e1296.

Fitch, W.M., Bush, R.M., Bender, C.A., and Cox, N.J . (1997). Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 94, 7712-7718.

Ford, E.B. (1975). Ecological Genetics. In Ecological Genetics (Dordrecht: Springer Netherlands), pp. 1-11.

Germann, T.C., Kadau, K., Longini, I.M., and Macken, C.A. (2006). Mitigation strategies for pandemic influenza in the United States. Proceedings of the National Academy of Sciences of the United States of America 103, 5935-5940.

Gibson, L.R., Li, B.T., and Remold, S.K. (2010). Treating cofactors can reverse the expansion of a primary disease epidemic. Bmc Infectious Diseases 10.

Gillespie, D.T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J ournal of Computational Physics 22, 403-434.

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. The J ournal of Physical Chemistry 81, 2340-2361.

Gojovic, M.Z., Sander, B., Fisman, D., Krahn, M.D., and Bauch, C.T. (2009). Modelling mitigation strategies for pandemic (H1N1) 2009. Can Med Assoc J 181, 673-680.

Gomes, M.F.C., Pastore y Piontti, A., Rossi, L., Chao, D., Longini, I., Halloran, M.E., and Vespignani, A. (2014). Assessing the international spreading risk associated with the 2014 West African ebola outbreak. PLOS Currents Outbreaks.

Goodwin, K., Viboud, C., and Simonsen, L. (2006). Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 24, 1159-1169.

Grenfell, B.T., Bjornstad, O.N., and Kappey, J . (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716-723.

Grenfell, B.T., Pybus, O.G., Gog, J.R., and Wood, J.L.N. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327-332.

Grohskopf, L.A., Sokolow, L.Z., Olsen, S.J ., Bresee, J.S., Broder, K.R., and Karron, R.A. (2015). Prevention and Control of Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2015-16 Influenza Season. Mmwr-Morbid Mortal W 64, 818-825.

Gubler, D.J . (2004). The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comparative Immunology Microbiology and Infectious Diseases 27, 319-330.

Guernier, V., Hochberg, M.E., and Guegan, J.F.O. (2004). Ecology drives the worldwide distribution of human diseases. Plos Biol 2, 740-746.

Halloran, M.E., Longini, I.M., Cowart, D.M., and Nizam, A. (2002). Community interventions and the epidemic prevention potential. Vaccine 20, 3254-3262.

Halpin, K., Hyatt, A.D., Plowright, R.K., Epstein, J.H., Daszak, P., Field, H.E., Wang, L., Daniels, P.W., and Henipavirus Ecology Res, G. (2007). Emerging viruses: coming in on a wrinkled wing and a prayer. Clinical Infectious Diseases 44, 711-717.

Hamerly, G. (2006). Population-Weighted European State Centers (Computer Science Department, Baylor University).

Hargreaves, A.L., Samis, K.E., and Eckert, C.G. (2014). Are species' range limits simply niche limits writ large? A review of transplant experiments beyond the range. The American Naturalist 183, 157-173.

Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S., and Samuel, M.D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158-2162.

Hatwell, J .N., and Sharp, P.M. (2000). Evolution of human polyomavirus J C. J Gen Virol 81, 1191-1200.

Hedges, L.M., Brownlie, J .C., O'Neill, S.L., and J ohnson, K.N. (2008). Wolbachia and virus protection in insects. Science 322, 702.

Hemmerter, S., Slapeta, J ., van den Hurk, A.F., Cooper, R.D., Whelan, P.I., Russell, R.C., J ohansen, C.A., and Beebe, N.W. (2007). A curious coincidence: mosquito biodiversity and the limits of the J apanese encephalitis virus in Australasia. Bmc Evol Biol 7.

Heymann, D.L., Szczeniowski, M., and Esteves, K. (1998). Re-emergence of monkeypox in Africa: a review of the past six years. British Medical Bulletin 54, 693-702.

Hickling, R., Roy, D.B., Hill, J.K., and Thomas, C.D. (2005). A northward shift of range margins in British Odonata. Global Change Biology 11, 502-506.

Hillyard, P.D. (1996). Ticks of North-West Europe: keys and notes for identification of the species (Shrewsbury, England: Published for the Linnean Society of London and the Estuarine and Coastal Sciences Association by Field Studies Council).

Hoberg, E.P., and Brooks, D.R. (2008). A macroevolutionary mosaic: episodic hostswitching, geographical colonization and diversification in complex host- parasite systems. Journal of Biogeography 35, 1533-1550.

Hoberg, E.P., Kutz, S.J ., Nagy, J ., J enkins, E., Elkin, B., Branigan, M., and Cooley, D. (2002). Protostrongylus stilesi (Nematoda : Protostrongylidae): Ecological isolation and putative host-switching between Dall's sheep and muskoxen in a contact zone. Comparative Parasitology 69, 1-9.

Hofmann, E., Bushek, D., Ford, S., Guo, X.M., Haidvogel, D., Hedgecock, D., Klinck, J ., Milbury, C., Narvaez, D., Powell, E., et al. (2009). Understanding how disease and environment combine to structure resistance in estuarine bivalve populations. Oceanography 22, 212-231.

Hollingsworth, T.D., Ferguson, N.M., and Anderson, R.M. (2007). Frequent travelers and rate of spread of epidemics. Emerg Infect Dis 13, 1288-1294.

Holmes, E.C. (2003). Error thresholds and the constraints to RNA virus evolution. Trends in Microbiology 11, 543-546.

Holmes, E.C. (2004). The phylogeography of human viruses. Mol Ecol 13, 745-756.

Holmes, E.C. (2009). The Evolution and Emergence of RNA Viruses (Oxford, New York: Oxford University Press).

Holt, R.D., and Barfield, M. (2009). Trophic interactions and range limits: the diverse roles of predation. Proc Biol Sci 276, 1435-1442.

Hongoh, V., Berrang-Ford, L., Scott, M.E., and Lindsay, L.R. (2012). Expanding geographical distribution of the mosquito, Culex pipiens, in Canada under climate change. Applied Geography 33, 53-62.

Hosseini, P.R., Dhondt, A.A., and Dobson, A. (2004). Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. Proc Biol Sci 271, 2569-2577.

Hufnagel, L., Brockmann, D., and Geisel, T. (2004). Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences of the United States of America 101, 15124-15129.

International Union of Railways (2014). Railway Statistics.

J enkins, G.M., Rambaut, A., Pybus, O.G., and Holmes, E.C. (2002). Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J Mol Evol 54, 156-165.

J ones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J .L., and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990-993.

J ousimo, J., Tack, A.J.M., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C., and Laine, A.-L. (2014). Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289-1293.

Kawaoka, Y., Krauss, S., and Webster, R.G. (1989). Avian-to-Human Transmission of the Pb1 Gene of Influenza-a Viruses in the 1957 and 1968 Pandemics. J ournal of Virology 63, 4603-4608.

Keeling, M.J ., Bjørnstad, O.N., and Grenfell, B.T. (2004). Metapopulation Dynamics of Infectious Diseases. In Ecology, Genetics and Evolution of Metapopulations, H. Ilkka, and E.G. Oscar, eds. (Burlington: Academic Press), pp. 415-445.

Keeling, M.J ., Danon, L., Vernon, M.C., and House, T.A. (2010). Individual identity and movement networks for disease metapopulations. Proc Natl Acad Sci U SA 107, 88668870.

Keeling, M.J ., and Rohani, P. (2011). Modeling Infectious Diseases in Humans and Animals (Princeton University Press).

Khan, K., Bogoch, I., Brownstein, J .S., Miniota, J ., Nicolucci, A., Hu, W., Nsoesie, E.O., Cetron, M., Creatore, M.I., German, M., et al. (2014). Assessing the origin of and potential for international spread of chikungunya virus from the Caribbean. PLoS Curr 6.

Kleinberg, J.M. (1999). Authoritative sources in a hyperlinked environment. J Acm 46, 604-632.

Klopfstein, S., Currat, M., and Excoffier, L. (2006). The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23, 482-490.

Koelle, K., Cobey, S., Grenfell, B., and Pascual, M. (2006). Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314, 18981903.

Koelle, K., Khatri, P., Kamradt, M., and Kepler, T.B. (2010). A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. J R Soc Interface 7, 1257-1274.

Koelle, K., and Rasmussen, D.A. (2015). The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans. eLife 4, e07361.

Krasnov, B.R., Poulin, R., Shenbrot, G.I., Mouillot, D., and Khokhlova, I.S. (2005). Host specificity and geographic range in haematophagous ectoparasites. Oikos 108, 449-456.

Kubinak, J.L., Ruff, J.S., Hyzer, C.W., Slev, P.R., and Potts, W.K. (2012). Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proceedings of the National Academy of Sciences of the United States of America 109, 3422-3427.

Kutz, S.J ., Hoberg, E.P., Polley, L., and J enkins, E.J . (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proc Biol Sci 272, 2571-2576.

Lafferty, K.D. (2009). The ecology of climate change and infectious diseases. Ecology 90, 888-900.

Lavenu, A., Leruez-Ville, M., Chaix, M.L., Boelle, P.Y., Rogez, S., Freymuth, F., Hay, A., Rouzioux, C., and Carrat, F. (2006). Detailed analysis of the genetic evolution of influenza virus during the course of an epidemic. Epidemiol Infect 134, 514-520.

Lefeuvre, P., Lett, J.M., Reynaud, B., and Martin, D.P. (2007). Avoidance of protein fold disruption in natural virus recombinants. Plos Pathog 3, 1782-1789.

Legendre, P., and Fortin, M.J . (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular ecology resources 10, 831-844.

Legendre, P., and Legendre, L. (1998). Numerical Ecology (Amsterdam: Elsevier).

Lemey, P., Rambaut, A., Bedford, T., Faria, N., Bielejec, F., Baele, G., Russell, C.A., Smith, D.J ., Pybus, O.G., Brockmann, D., et al. (2014). UnifyingViral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2. Plos Pathogens 10.

Leonard, K.J . (1969). Factors affecting rates of stem rust increase in mixed plantings of susceptible and resistant oat varieties. Phytopathology 59, 1845-\&

Lietman, T., Porco, T., and Blower, S. (1997). Leprosy and tuberculosis: the epidemiological consequences of cross-immunity. American J ournal of Public Health 87, 1923-1927.

Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J ., and Naumova, E.N. (2007). Influenza Seasonality: Underlying Causes and Modeling Theories. J ournal of Virology 81, 5429-5436.

Longini, I.M., Ackerman, E., and Elveback, L.R. (1978). An optimization model for influenza A epidemics. Math Biosci 38, 141-157.

Longini, I.M., Halloran, M.E., Nizam, A., and Yang, Y. (2004). Containing Pandemic Influenza with Antiviral Agents. Am J Epidemiol 159, 623-633.

Longini, I.M., Koopman, J.S., Monto, A.S., and Fox, J.P. (1982). Estimating household and community transmission parameters for influenza. Am J Epidemiol 115, 736-751.

Louhi, K.-R., Karvonen, A., Rellstab, C., and J okela, J . (2010). Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infection, Genetics and Evolution 10, 1271-1277.

Magee, D., Beard, R., Suchard, M.A., Lemey, P., and Scotch, M. (2015). Combining phylogeography and spatial epidemiology to uncover predictors of H5N1 influenza A virus diffusion. Arch Virol 160, 215-224.

Malenke, J.R., Newbold, N., and Clayton, D.H. (2011). Condition-specific competition governs the geographic distribution and diversity of ectoparasites. The American naturalist 177, 522-534.

Martens, P. (1998). Health and climate change: modelling the impacts of global warming and ozone depletion (London, UK: Earthscan).

Martens, W.J ., Niessen, L.W., Rotmans, J ., J etten, T.H., and McMichael, A.J . (1995). Potential impact of global climate change on malaria risk. Environ Health Perspect 103, 458-464.

Martin, D.P., van der Walt, E., Posada, D., and Rybicki, E.P. (2005). The evolutionary value of recombination is constrained by genome modularity. Plos Genetics 1, 475-479.

McLean, A.R., May, R.M., Pattison, J., and Weiss, R.A. (2005). SARS. A Case Study in Emerging Infections (Oxford, UK: Oxford University Press).

Medlock, J., and Galvani, A.P. (2009). Optimizing influenza vaccine distribution. Science 325, 1705-1708.

Mills, J.N., Gage, K.L., and Khan, A.S. (2010). Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: A Review and Proposed Research Plan. Environ Health Perspect 118, 1507-1514.

Mizokami, M., Orito, E., Ohba, K., Ikeo, K., Lau, J.Y.N., and Gojobori, T. (1997). Constrained evolution with respect to gene overlap of hepatitis B virus. J Mol Evol 44, S83-S90.

Molinari, N.A.M., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., and Bridges, C.B. (2007). The annual impact of seasonal influenza in the US: Measuring disease burden and costs. Vaccine 25, 5086-5096.

Monto, A.S., Davenport, F.M., Napier, J.A., and Francis, T. (1969). Effect of vaccination of a school-age population upon the course of an A2/Hong Kong influenza epidemic. Bulletin of the World Health Organization 41, 537-542.

Moore, S., Shrestha, S., Tomlinson, K.W., and Vuong, H. (2012). Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. J R Soc Interface 9, 817-830.

Moreira, L.A., Iturbe-Ormaetxe, I., J effery, J .A., Lu, G., Pyke, A.T., Hedges, L.M., Rocha, B.C., Hall-Mendelin, S., Day, A., Riegler, M., et al. (2009). A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139, 1268-1278.

Mossong, J ., Jit, M., Hens, N., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Scalia-Tomba, G.P., Wallinga, J ., Sadkowska-Todys, M., et al. (2007). Social contact and mixing patterns relevant to the spread of infectious diseases: a multi-country populationbased survey. Eur J Public Health 17, 57-58.

Nadler, S.A. (1995). Microevolution and the Genetic-Structure of Parasite Populations. J Parasitol 81, 395-403.

Nelson, M.I., Edelman, L., Spiro, D.J ., Boyne, A.R., Bera, J ., Halpin, R., Ghedin, E., Miller, M.A., Simonsen, L., Viboud, C., et al. (2008). Molecular epidemiology of A/H3N2 and A/H1N1 influenza virus during a single epidemic season in the United States. Plos Pathog 4.

Nelson, M.I., and Holmes, E.C. (2007). The evolution of epidemic influenza. Nat Rev Genet 8, 196-205.

Nelson, M.I., Simonsen, L., Viboud, C., Miller, M.A., and Holmes, E.C. (2007).
Phylogenetic analysis reveals the global migration of seasonal influenza A viruses. Plos Pathogens 3, 1220-1228.

Nelson, M.I., Simonsen, L., Viboud, C., Miller, M.A., Taylor, J ., George, K.S., Griesemer, S.B., Ghedi, E., Sengamalay, N.A., Spiro, D.J ., et al. (2006). Stochastic processes are key determinants of short-term evolution in influenza A virus. Plos Pathogens 2, 1144-1151.

Nelson, M.I., Tan, Y., Ghedin, E., Wentworth, D.E., St George, K., Edelman, L., Beck, E.T., Fan, J.A., Lam, T.T.Y., Kumar, S., et al. (2011). Phylogeography of the Spring and Fall Waves of the H1N1/ 09 Pandemic Influenza Virus in the United States. J ournal of Virology 85, 828-834.

Newman, M.E., and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, Statistical, nonlinear, and soft matter physics 69, 026113.

Nguyen-Van-Tam, J .S. (1998). Epidemiology of Influenza. In Textbook of Influenza, K.G. Nicholson, R.G. Webster, and A.J . Hay, eds. (Malden, Massachusetts: Blackwell Science), pp. 181-206.

Nieberding, C., Morand, S., Libois, R., and Michaux, J.R. (2004). A parasite reveals cryptic phylogeographic history of its host. Proc Biol Sci 271, 2559-2568.

Nieberding, C.M., and Olivieri, I. (2007). Parasites: proxies for host genealogy and ecology? Trends in ecology \& evolution 22, 156-165.

Nuismer, S.L. (2006). Parasite local adaptation in a geographic mosaic. Evolution 60, 24-30.

Nuismer, S.L., and Kirkpatrick, M. (2003). Gene flow and the coevolution of parasite range. Evolution 57, 746-754.

Nuismer, S.L., Thompson, J .N., and Gomulkiewicz, R. (2003). Coevolution between hosts and parasites with partially overlapping geographic ranges. J ournal of Evolutionary Biology 16, 1337-1345.

O'Brien, S.J ., and Evermann, J.F. (1988). Interactive influence of infectious disease and genetic diversity in natural populations. Trends in ecology \& evolution 3, 254-259.

Osterholm, M.T., Kelley, N.S., Sommer, A., and Belongia, E.A. (2012). Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12, 36-44.

Paradis, E., Claude, J ., and Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289-290.

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J ., Tammaru, T., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583.

Pascual, M., and Bouma, M.J . (2009). Do rising temperatures matter? Ecology 90, 906912.

Patel, R., Longini, I.M., J r., and Halloran, M.E. (2005). Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J Theor Biol 234, 201-212.

Patrozou, E., and Mermel, L.A. (2009). Does Influenza Transmission Occur from Asymptomatic Infection or Prior to Symptom Onset? Public Health Rep 124, 193-196.

Piedra, P.A., Gaglani, M.J ., Kozinetz, C.A., Herschler, G., Riggs, M., Griffith, M., Fewlass, C., Watts, M., Hessel, C., Cordova, J ., et al. (2005). Herd immunity in adults against influenza-related illnesses with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine 23, 1540-1548.

Price, P.W. (1980). Evolutionary Biology of Parasites (Princeton, NewJ ersey: Princeton University Press).

Pulliam, H.R. (2000). On the relationship between niche and distribution. Ecology letters 3, 349-361.

Purse, B.V., Mellor, P.S., Rogers, D.J ., Samuel, A.R., Mertens, P.P.C., and Baylis, M. (2005). Climate change and the recent emergence of bluetongue in Europe. Nature Reviews Microbiology 3, 171-181.

Pybus, O.G., Tatem, A.J ., and Lemey, P. (2015). Virus evolution and transmission in an ever more connected world. P R Soc B 282.

Raffel, T.R., Rohr, J .R., Kiesecker, J.M., and Hudson, P.J . (2006). Negative effects of changing temperature on amphibian immunity under field conditions. Funct Ecol 20, 819-828.

Rambaut, A., Pybus, O.G., Nelson, M.I., Viboud, C., Taubenberger, J.K., and Holmes, E.C. (2008). The genomic and epidemiological dynamics of human influenza A virus. Nature 453, 615-619.

Ramey, A.M., Pearce, J.M., Ely, C.R., Guy, L.M.S., Irons, D.B., Derksen, D.V., and Ip, H.S. (2010). Transmission and reassortment of avian influenza viruses at the AsianNorth American interface. Virology 406, 352-359.

Randolph, S.E. (2010). To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Veterinary Parasitology 167, 92-94.

Randolph, S.E., Green, R.M., Peacey, M.F., and Rogers, D.J . (2000). Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 15-23.

Rannala, B., and Michalakis, Y. (2003). Population genetics and cospeciation: from process to pattern. In Tangled Trees Phylogeny, Cospeciation and Coevolution, R.D.M. Page, ed. (Chicago University Press), pp. 120-143.

Rapoport, E.H. (1975). Areografia: estrategias geograficas de las especies. (Mexico City: Fondo de Cultura Economica).

Rapoport, E.H. (1982). Areography: geographical strategies of species, Vol 1, 1 edn (New York: Fundacion Bariloche).

Ratmann, O., Donker, G., Meijer, A., Fraser, C., and Koelle, K. (2012). Phylodynamic Inference and Model Assessment with Approximate Bayesian Computation: Influenza as a Case Study. Plos Comput Biol 8.

Real, L.A., and Biek, R. (2007). Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J R Soc Interface 4, 935-948.

Real, L.A., Henderson, J .C., Biek, R., Snaman, J ., J ack, T.L., Childs, J .E., Stahl, E., Waller, L., Tinline, R., and Nadin-Davis, S. (2005a). Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci U SA 102, 12107-12111.

Real, L.A., Russell, C., Waller, L., Smith, D., and Childs, J . (2005b). Spatial dynamics and molecular ecology of North American rabies. J Hered 96, 253-260.

Reichardt, J., and Bornholdt, S. (2006). Statistical mechanics of community detection. Physical review E, Statistical, nonlinear, and soft matter physics 74, 016110.

Reichert , T.A., Sugaya , N., Fedson , D.S., Glezen , W.P., Simonsen , L., and Tashiro , M. (2001). The J apanese Experience with Vaccinating Schoolchildren against Influenza. New England J ournal of Medicine 344, 889-896.

Reiter, P., Lathrop, S., Bunning, M., Biggerstaff, B., Singer, D., Tiwari, T., Baber, L., Amador, M., Thirion, J., Hayes, J., et al. (2003). Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9, 86-89.

Reullier, J., PÉRez-Tris, J., Bensch, S., and Secondi, J . (2006). Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Mol Ecol 15, 753-763.

Robb, G.N., McDonald, R.A., Chamberlain, D.E., and Bearhop, S. (2008). Food for thought: supplementary feeding as a driver of ecological change in avian populations. Frontiers in Ecology and the Environment 6, 476-484.

Rogers, D.J ., and Randolph, S.E. (2000). The global spread of malaria in a future, warmer world. Science 289, 1763-1766.

Rohr, J .R., Dobson, A.P., J ohnson, P.T.J ., Kilpatrick, A.M., Paull, S.H., Raffel, T.R., RuizMoreno, D., and Thomas, M.B. (2011). Frontiers in climate change-disease research. Trends in ecology \& evolution 26, 270-277.

Rohr, J.R., and Raffel, T.R. (2010). Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proceedings of the National Academy of Sciences of the United States of America 107, 8269-8274.

Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L., Estrella, N., Seguin, B., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353-357.

Russell, C.A., J ones, T.C., Barr, I.G., Cox, N.J ., Garten, R.J ., Gregory, V., Gust, I.D., Hampson, A.W., Hay, A.J ., Hurt, A.C., et al. (2008). The global circulation of seasonal influenza A (H3N2) viruses. Science 320, 340-346.

Rvachev, L.A., and Longini, I.M. (1985). A mathematical model for the global spread of influenza. Math Biosci 75, 1-1.

Sachs, J., and Malaney, P. (2002). The economic and social burden of malaria. Nature 415, 680-685.

Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., and J ones, J .H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences 107, 22020-22025.

Scholtissek, C., Rohde, W., Von Hoyningen, V., and Rott, R. (1978a). On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13-20.

Scholtissek, C., von Hoyningen, V., and Rott, R. (1978b). Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1). Virology 89, 613-617.

Semenza, J.C., Sudre, B., Miniota, J ., Rossi, M., Hu, W., Kossowsky, D., Suk, J.E., Van Bortel, W., and Khan, K. (2014). International dispersal of dengue through air travel: importation risk for Europe. PLoS Negl Trop Dis 8, e3278.

Shapiro, B., Rambaut, A., and Drummond, A.J . (2006). Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23, 7-9.

Shih, A.C.-C., Hsiao, T.-C., Ho, M.-S., and Li, W.-H. (2007). Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proceedings of the National Academy of Sciences of the United States of America 104, 6283-6288.

Simonsen, L. (1999). The global impact of influenza on morbidity and mortality. Vaccine 17, S3-S10.

Simonsen, L., Reichert, T.A., Viboud, C., Blackwelder, W.C., Taylor, R.J ., and Miller, M.A. (2005). Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch Intern Med 165, 265-272.

Simonsen, L., Viboud, C., Taylor, R.J ., and Miller, M.A. (2011). The epidemiology of influenza and its control. Birkhauser Adv Infec, 27-54.

Siraj, A.S., Santos-Vega, M., Bouma, M.J ., Yadeta, D., Ruiz Carrascal, D., and Pascual, M. (2014). Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154-1158.

Smith, D.J ., Lapedes, A.S., de J ong, J .C., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D.M.E., and Fouchier, R.A.M. (2004). Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science 305, 371-376.

Smith, D.L., Waller, L.A., Russell, C.A., Childs, J.E., and Real, L.A. (2005). Assessing the role of long-distance translocation and spatial heterogeneity in the raccoon rabies epidemic in Connecticut. Prev Vet Med 71, 225-240.

Smith, G.J .D., Vijaykrishna, D., Bahl, J ., Lycett, S.J ., Worobey, M., Pybus, O.G., Ma, S.K., Cheung, C.L., Raghwani, J., Bhatt, S., et al. (2009). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122-U1107.

Smith, K.F., and Guegan, J.F. (2010). Changing Geographic Distributions of Human Pathogens. Annu Rev Ecol Evol S 41, 231-250.

Soberón, J ., and Peterson, A.T. (2005). Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2, 1-10.

Spiegel, J ., Bennett, S., Hattersley, L., Hayden, M.H., Pattamaporn, K., Sustriayu, N., Nan Chee Wang, D., Zielinski-Gutierrez, E., and Gubler, D. (2005). Barriers and bridges to prevention and control of dengue: the need for a social-ecological approach. Ecohealth 2, 273-290.

Srithayakumar, V., Castillo, S., Rosatte, R.C., and Kyle, C.J . (2011). MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus). Immunogenetics 63, 103-113.

Stein, R.A. (2011). Super-spreaders in infectious diseases. Int J Infect Dis 15, e510-513.

Stevens, G.C. (1989). The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American naturalist 133, 240-256.

Stoddard, S.T., Morrison, A.C., Vazquez-Prokopec, G.M., Paz Soldan, V., Kochel, T.J ., Kitron, U., Elder, J.P., and Scott, T.W. (2009). The Role of Human Movement in the Transmission of Vector-Borne Pathogens. PLoS Negl Trop Dis 3, e481.

Streicker, D.G., Turmelle, A.S., Vonhof, M.J ., Kuzmin, I.V., McCracken, G.F., and Rupprecht, C.E. (2010). Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676-679.

Tamerius, J .D., Shaman, J ., Alonso, W.J ., Bloom-Feshbach, K., Uejio, C.K., Comrie, A., and Viboud, C. (2013). Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates. Plos Pathog 9, e1003194.

Tatem, A.J ., Rogers, D.J ., and Hay, S.I. (2006). Global transport networks and infectious disease spread. In Advances in Parasitology, A.G. Simon I. Hay, and J.R. David, eds. (Academic Press), pp. 293-343.

Taubenberger, J.K., Reid, A.H., Lourens, R.M., Wang, R., Jin, G., and Fanning, T.G. (2005). Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889893.

Teixeira, L., Ferreira, A., and Ashburner, M. (2008). The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster. Plos Biology 6, 2753-2763.

Templeton, A.R. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7, 381-397.

Thieltges, D.W., Hof, C., Borregaard, M.K., Dehling, D.M., Brandle, M., Brandl, R., and Poulin, R. (2011). Range size patterns in European freshwater trematodes. Ecography 34, 982-989.

Thiemann, C., Theis, F., Grady, D., Brune, R., and Brockmann, D. (2010). The structure of borders in a small world. PloS one 5, e15422.

Thompson, J.N. (2005). The Geographic Mosaic Theory of Coevolution (Chicago, Illinois: University of Chicago Press).

Traag, V.A., and Bruggeman, J . (2009). Community detection in networks with positive and negative links. Physical review E, Statistical, nonlinear, and soft matter physics 80, 036115.

Trovao, N.S., Suchard, M.A., Baele, G., Gilbert, M., and Lemey, P. (2015). Bayesian Inference Reveals Host-Specific Contributions to the Epidemic Expansion of Influenza A H5N1. Mol Biol Evol 32, 3264-3275.

Tuite, A.R., Fisman, D.N., Kwong, J.C., and Greer, A.L. (2010). Optimal Pandemic Influenza Vaccine Allocation Strategies for the Canadian Population. PloS one 5.

United States Census Bureau. Population Estimates.

Valle, D., and Clark, J . (2013). Conservation Efforts May Increase Malaria Burden in the Brazilian Amazon. PloS one 8.

Van Den Hurk, A.F., Craig, S.B., Tulsiani, S.M., and J ansen, C.C. (2010). Emerging tropical diseases in Australia. Part 4. Mosquitoborne diseases. Ann Trop Med Parasitol 104, 623-640.

Vazquez-Prokopec, G.M., Bisanzio, D., Stoddard, S.T., Paz-Soldan, V., Morrison, A.C., Elder, J .P., Ramirez-Paredes, J ., Halsey, E.S., Kochel, T.J ., Scott, T.W., et al. (2013). Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment. PloS one 8.

Viboud, C., Alonso, W.J ., and Simonsen, L. (2006a). Influenza in Tropical Regions. PLoS medicine 3, e89.

Viboud, C., Bjornstad, O.N., Smith, D.L., Simonsen, L., Miller, M.A., and Grenfell, B.T. (2006b). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447-451.

Viboud, C., Boelle, P.Y., Pakdaman, K., Carrat, F., Valleron, A.J ., and Flahault, A. (2004). Influenza epidemics in the United States, France, and Australia, 1972-1997. Emerg Infect Dis 10, 32-39.

Viboud, C., Miller, M., Olson, D., Osterholm, M., and Simonsen, L. (2010). Preliminary Estimates of Mortality and Years of Life Lost Associated with the 2009 A/H1N1 Pandemic in the US and Comparison with Past Influenza Seasons. PLoS Curr 2, RRN1153.

Villarreal, L.P., Defilippis, V.R., and Gottlieb, K.A. (2000). Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 272, 1-6.

Wallinga, J., Teunis, P., and Kretzschmar, M. (2006). Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol 164, 936-944.

Walsh, P.D., Biek, R., and Real, L.A. (2005). Wave-like spread of Ebola Zaire. Plos Biol 3, 1946-1953.

Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J ., Fox, R., Huntley, B., Roy, D.B., Telfer, M.G., J effcoate, S., Harding, P., et al. (2001). Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65-69.

Watson, D.W., Mullens, B.A., and Petersen, J .J . (1993). Behavioral fever response of Musca domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 61, 10-16.

Webster, R.G., Bean, W.J ., Gorman, O.T., Chambers, T.M., and Kawaoka, Y. (1992). Evolution and Ecology of Influenza-a Viruses. Microbiol Rev 56, 152-179.

Webster, W.A., Casey, G.A., Tabel, H., and Corner, A.H. (1974). Skunk rabies in Ontario. Canadian Veterinary J ournal 15, 163-167.

Weiss, R.A., and McMichael, A.J . (2004). Social and environmental risk factors in the emergence of infectious diseases. Nature Medicine 10, S70-S76.

Wesolowski, A., Eagle, N., Tatem, A.J., Smith, D.L., Noor, A.M., Snow, R.W., and Buckee, C.O. (2012). Quantifying the Impact of Human Mobility on Malaria. Science 338, 267-270.

Weycker, D., Edelsberg, J ., Halloran, M.E., Longini, I.M., J r., Nizam, A., Ciuryla, V., and Oster, G. (2005). Population-wide benefits of routine vaccination of children against influenza. Vaccine 23, 1284-1293.

Wild, M.A., Hobbs, N.T., Graham, M.S., and Miller, M.W. (2011). The role of predation in disease control: a comparison of selective and nonselective removal on prion disease dynamics in deer. J ournal of Wildlife Diseases 47, 78-93.

Wilson, I., and Cox, N. (1990a). Structural Basis of Immune Recognition of Influenza Virus Hemagglutinin. Annual Review of Immunology 8, 737-787.

Wilson, I.A., and Cox, N.J . (1990b). Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 8, 737-771.

Wilson, M.E., and Chen, L.H. (2002). Dengue in the Americas. Dengue Bulletin 26.

Wirth, T., Meyer, A., and Achtman, M. (2005). Deciphering host migrations and origins by means of their microbes. Mol Ecol 14, 3289-3306.

Wolf, Y.I., Viboud, C., Holmes, E.C., Koonin, E.V., and Lipman, D.J . (2006). Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1, 34.

Wood, C.L., and Lafferty, K.D. (2013). Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends in ecology \& evolution 28, 239-247.

Wood, C.L., Lafferty, K.D., DeLeo, G., Young, H.S., Hudson, P.J ., and Kuris, A.M. (2014). Does biodiversity protect humans against infectious disease? Ecology 95, 817-832.

Woolhouse, M.E.J., Taylor, L.H., and Haydon, D.T. (2001). Population biology of multihost pathogens. Science 292, 1109-1112.

Worby, C.J ., Chaves, S.S., Wallinga, J ., Lipsitch, M., Finelli, L., and Goldstein, E. (2015). On the relative role of different age groups in influenza epidemics. Epidemics-Neth 13, 10-16.

World Health Organization (2016). Influenza (Seasonal) Fact Sheet.

Wright, S. (1943). Isolation by distance. Genetics 28, 114-138.

Yanagihara, R., Nerurkar, V.R., Scheirich, I., Agostini, H.T., Mgone, C.S., Cui, X.H., J obes, D.V., Cubitt, C.L., Ryschkewitsch, C.F., Hrdy, D.B., et al. (2002). J Cvirus genotypes in the Western Pacific suggest Asian mainland relationships and virus association with early population movements. Human Biology 74, 473-488.

Yogo, Y., Sugimoto, C., Zheng, H.Y., Ikegaya, H., Takasaka, T., and Kitamura, T. (2004). J C virus genotyping offers a new paradigm in the study of human populations. Reviews in Medical Virology 14, 179-191.

Zinder, D., Bedford, T., Baskerville, E.B., Woods, R.J ., Roy, M., and Pascual, M. (2014). Seasonality in the migration and establishment of H3N2 Influenza lineages with epidemic growth and decline. Bmc Evol Biol 14.

## Appendix I

## Supplementary Material for Chapter 3

## I. 1 Supplementary Tables

Table S1. Accession numbers, locations and collection dates of all sequences used.

| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU502382 | UT | 11/13/2003 | H3N2 | KC892423 | AR | 12/5/2011 |
| H3N2 | EU501336 | TX | 10/2/2003 | H3N2 | KC893078 | CO | 1/11/2012 |
| H3N2 | EU502360 | TX | 10/3/2003 | H3N2 | CY112122 | CO | 1/30/2012 |
| H3N2 | CY008916 | NY | 11/12/2003 | H3N2 | CY112152 | CO | 2/14/2012 |
| H3N2 | CY000065 | NY | 12/9/2003 | H3N2 | KC892669 | MO | 1/17/2012 |
| H3N2 | EU502288 | NJ | 11/20/2003 | H3N2 | KC893015 | MO | 1/17/2012 |
| H3N2 | CY000889 | NY | 1/6/2004 | H3N2 | KC892644 | MO | 3/6/2012 |
| H3N2 | CY000761 | NY | 1/30/2004 | H3N2 | CY112181 | NE | 2/24/2012 |
| H3N2 | EU502316 | NY | 11/19/2003 | H3N2 | KC892453 | MO | 2/28/2012 |
| H3N2 | CY001053 | NY | 11/16/2003 | H3N2 | KC892391 | NE | 11/2/2011 |
| H3N2 | CY001029 | NY | 1/6/2004 | H3N2 | KC892250 | CO | 11/8/2011 |
| H3N2 | CY001229 | NY | 1/6/2004 | H3N2 | KC892488 | VA | 1/14/2012 |
| H3N2 | CY000917 | NY | 12/19/2003 | H3N2 | KC892263 | AR | 10/7/2011 |
| H3N2 | CY000001 | NY | 12/20/2003 | H3N2 | KC892818 | AR | 1/11/2012 |
| H3N2 | CY001421 | NY | 12/1/2003 | H3N2 | KC892621 | KS | 12/11/2011 |
| H3N2 | CY008868 | NY | 11/24/2003 | H3N2 | CY112100 | CO | 12/14/2011 |
| H3N2 | CY009260 | NY | 1/15/2004 | H3N2 | KC893022 | WY | 1/10/2012 |
| H3N2 | CY008892 | NY | 12/15/2003 | H3N2 | CY112154 | CO | 2/7/2012 |
| H3N2 | CY008884 | NY | 12/8/2003 | H3N2 | KC893034 | KS | 1/11/2012 |
| H3N2 | CY009252 | NY | 1/12/2004 | H3N2 | KC893134 | UT | 1/30/2012 |
| H3N2 | CY000193 | NY | 12/16/2003 | H3N2 | KC892903 | LA | 3/22/2012 |
| H3N2 | EU502189 | GA | 12/15/2003 | H3N2 | KC892845 | NV | 3/30/2012 |
| H3N2 | EU502190 | GA | 12/15/2003 | H3N2 | KC892578 | IA | 3/5/2012 |
| H3N2 | CY090957 | TX | 11/20/2003 | H3N2 | CY112153 | CO | 2/13/2012 |
| H3N2 | EU502406 | WI | 12/16/2003 | H3N2 | KC892162 | WY | 4/4/2012 |
| H3N2 | CY090965 | NJ | 11/26/2003 | H3N2 | KC893043 | WY | 3/26/2012 |
| H3N2 | EU502130 | AZ | 10/23/2003 | H3N2 | CY112167 | FL | 3/2/2012 |
| H3N2 | EU502356 | TX | 10/3/2003 | H3N2 | KC892209 | NM | 3/15/2012 |
| H3N2 | EU502359 | TX | 10/3/2003 | H3N2 | KC892778 | WY | 5/10/2012 |
| H3N2 | EU502353 | TX | 10/3/2003 | H3N2 | CY112101 | CO | 1/9/2012 |
| H3N2 | EU502187 | FL | 11/6/2003 | H3N2 | CY112188 | CO | 3/2/2012 |
| H3N2 | EU502198 | GA | 11/3/2003 | H3N2 | KC892393 | CO | 2/1/2012 |
| H3N2 | CY001021 | NY | 10/28/2003 | H3N2 | CY120873 | OH | 3/26/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU502355 | TX | 10/3/2003 | H3N2 | CY120872 | OH | 3/26/2012 |
| H3N2 | EU502367 | TX | 10/27/2003 | H3N2 | CY120874 | OH | 3/26/2012 |
| H3N2 | EU502357 | TX | 10/3/2003 | H3N2 | CY120871 | OH | 3/26/2012 |
| H3N2 | EU502354 | TX | 10/3/2003 | H3N2 | CY120878 | OH | 3/26/2012 |
| H3N2 | EU502358 | TX | 10/3/2003 | H3N2 | CY120870 | OH | 3/26/2012 |
| H3N2 | CY001624 | NY | 11/28/2003 | H3N2 | CY120876 | OH | 3/26/2012 |
| H3N2 | CY090941 | CA | 11/13/2003 | H3N2 | KC892723 | MD | 5/14/2012 |
| H3N2 | EU501337 | TX | 10/3/2003 | H3N2 | KC892150 | VA | 4/1/2012 |
| H3N2 | CY001285 | NY | 10/31/2003 | H3N2 | KC892597 | ME | 5/21/2012 |
| H3N2 | CY000049 | NY | 12/4/2003 | H3N2 | CY120857 | CA | 3/15/2012 |
| H3N2 | CY000057 | NY | 12/10/2003 | H3N2 | KC513484 | AZ | 3/27/2012 |
| H3N2 | EU502199 | GA | 11/7/2003 | H3N2 | KC893104 | MN | 1/14/2012 |
| H3N2 | CY001045 | NY | 12/29/2003 | H3N2 | KC892582 | MN | 5/3/2012 |
| H3N2 | EU502304 | NY | 12/29/2003 | H3N2 | KC892558 | AL | 3/1/2012 |
| H3N2 | EF473613 | NY | 12/29/2003 | H3N2 | CY120858 | FL | 3/15/2012 |
| H3N2 | CY090925 | SC | 10/21/2003 | H3N2 | CY112107 | FL | 12/1/2011 |
| H3N2 | CY001064 | NY | 12/10/2003 | H3N2 | KC892531 | AL | 12/7/2011 |
| H3N2 | CY000161 | NY | 12/8/2003 | H3N2 | KC892156 | NC | 3/14/2012 |
| H3N2 | EU502352 | TX | 12/1/2003 | H3N2 | KC892407 | PA | 11/16/2011 |
| H3N2 | EU502275 | NE | 11/14/2003 | H3N2 | CY130179 | NY | 5/3/2012 |
| H3N2 | EF473616 | NE | 11/14/2003 | H3N2 | KC892212 | OR | 4/7/2012 |
| H3N2 | CY000105 | NY | 12/15/2003 | H3N2 | KC892895 | VA | 3/4/2012 |
| H3N2 | EU502279 | NE | 12/8/2003 | H3N2 | KC892673 | GA | 11/22/2011 |
| H3N2 | EF473627 | NE | 12/8/2003 | H3N2 | CY125791 | MA | 4/19/2012 |
| H3N2 | EU502370 | TX | 10/13/2003 | H3N2 | KC892889 | NY | 2/15/2012 |
| H3N2 | EF473614 | AZ | 12/22/2003 | H3N2 | KC893018 | TX | 1/16/2012 |
| H3N2 | EU502131 | AZ | 12/22/2003 | H3N2 | KC892279 | NC | 12/1/2011 |
| H3N2 | CY000089 | NY | 12/8/2003 | H3N2 | KC892193 | NC | 12/1/2011 |
| H3N2 | EU502245 | MO | 11/11/2003 | H3N2 | KC892960 | OR | 11/11/2011 |
| H3N2 | EU502124 | AZ | 11/26/2003 | H3N2 | CY112119 | WA | 11/10/2011 |
| H3N2 | CY001293 | NY | 12/4/2003 | H3N2 | KC892336 | MT | 2/3/2012 |
| H3N2 | CY002344 | NY | 11/28/2003 | H3N2 | KC892722 | CO | 5/5/2012 |
| H3N2 | CY001712 | NY | 11/28/2003 | H3N2 | CY112155 | IL | 2/15/2012 |
| H3N2 | EU502172 | CO | 11/3/2003 | H3N2 | CY112193 | IL | 3/2/2012 |
| H3N2 | CY000033 | NY | 1/9/2004 | H3N2 | KC892218 | IA | 4/14/2012 |
| H3N2 | CY000097 | NY | 12/10/2003 | H3N2 | CY112190 | IL | 2/6/2012 |
| H3N2 | CY000153 | NY | 12/8/2003 | H3N2 | CY112140 | IL | 1/31/2012 |
| H3N2 | CY000169 | NY | 12/10/2003 | H3N2 | KC892866 | IL | 2/21/2012 |
| H3N2 | CY001205 | NY | 12/16/2003 | H3N2 | CY112192 | IL | 2/24/2012 |
| H3N2 | CY000973 | NY | 12/29/2003 | H3N2 | CY112189 | IL | 3/7/2012 |
| H3N2 | CY000145 | NY | 12/4/2003 | H3N2 | CY112191 | IL | 2/21/2012 |
| H3N2 | CY008908 | NY | 1/13/2004 | H3N2 | CY112194 | IL | 3/5/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY001213 | NY | 12/29/2003 | H3N2 | CY120911 | IL | 3/9/2012 |
| H3N2 | CY092201 | IL | 10/28/2003 | H3N2 | KC892918 | KY | 3/6/2012 |
| H3N2 | CY090933 | MO | 11/6/2003 | H3N2 | CY112156 | IL | 2/15/2012 |
| H3N2 | EF473629 | NE | 12/4/2003 | H3N2 | KC892860 | FL | 3/7/2012 |
| H3N2 | EU502276 | NE | 12/4/2003 | H3N2 | CY120860 | IL | 3/15/2012 |
| H3N2 | EU502302 | NY | 1/4/2004 | H3N2 | CY120869 | OH | 3/26/2012 |
| H3N2 | EF473619 | NY | 1/4/2004 | H3N2 | KC892901 | MO | 3/15/2012 |
| H3N2 | EF473628 | WI | 1/7/2004 | H3N2 | CY148788 | MA | 1/10/2012 |
| H3N2 | EU502411 | WI | 1/7/2004 | H3N2 | KC892971 | CA | 5/1/2012 |
| H3N2 | EU502318 | OK | 10/24/2003 | H3N2 | KC892641 | CA | 12/1/2011 |
| H3N2 | EU502213 | IA | 11/17/2003 | H3N2 | KC892685 | MN | 12/16/2011 |
| H3N2 | EU502212 | IA | 11/13/2003 | H3N2 | KC893110 | NY | 1/15/2012 |
| H3N2 | CY092108 | IL | 1/20/2004 | H3N2 | KC892523 | DE | 11/23/2011 |
| H3N2 | CY000901 | NY | 11/12/2003 | H3N2 | KC893004 | MA | 1/23/2012 |
| H3N2 | EU502267 | NC | 12/10/2003 | H3N2 | KC893164 | ME | 4/3/2012 |
| H3N2 | EU502393 | VA | 11/6/2003 | H3N2 | KF789696 | ME | 4/3/2012 |
| H3N2 | EU502339 | SD | 12/2/2003 | H3N2 | KC513477 | AZ | 4/9/2012 |
| H3N2 | CY090973 | GA | 1/20/2004 | H3N2 | KC892954 | NM | 4/16/2012 |
| H3N2 | EU501278 | LA | 10/21/2003 | H3N2 | KC892600 | NV | 3/5/2012 |
| H3N2 | EU502122 | AR | 11/17/2003 | H3N2 | KC892691 | CO | 4/15/2012 |
| H3N2 | EU502186 | FL | 11/4/2003 | H3N2 | KC892727 | WY | 5/3/2012 |
| H3N2 | CY001648 | NY | 11/18/2003 | H3N2 | KC513482 | AZ | 4/3/2012 |
| H3N2 | EF473611 | NC | 12/29/2003 | H3N2 | KC513483 | AZ | 3/24/2012 |
| H3N2 | EU502270 | NC | 12/29/2003 | H3N2 | KC893001 | VA | 1/23/2012 |
| H3N2 | EU502123 | AR | 10/16/2003 | H3N2 | KC893113 | PA | 1/25/2012 |
| H3N2 | CY090949 | SC | 11/13/2003 | H3N2 | KC892471 | NC | 2/14/2012 |
| H3N2 | CY000249 | NY | 12/18/2003 | H3N2 | CY112171 | NC | 2/28/2012 |
| H3N2 | CY092209 | GA | 12/5/2003 | H3N2 | KC892976 | NC | 5/2/2012 |
| H3N2 | CY000009 | NY | 11/19/2003 | H3N2 | KC892555 | NC | 3/5/2012 |
| H3N2 | CY000965 | NY | 12/26/2003 | H3N2 | CY112196 | NY | 3/6/2012 |
| H3N2 | CY001341 | NY | 12/23/2003 | H3N2 | KC892915 | UT | 4/1/2012 |
| H3N2 | EF473632 | NC | 12/19/2003 | H3N2 | KC892968 | ID | 3/25/2012 |
| H3N2 | EU502268 | NC | 12/19/2003 | H3N2 | KC892248 | TX | 4/15/2012 |
| H3N2 | CY001061 | NY | 12/1/2003 | H3N2 | KC892495 | VT | 3/3/2012 |
| H3N2 | EF473620 | VA | 12/3/2003 | H3N2 | KC892952 | TX | 4/15/2012 |
| H3N2 | EU502390 | VA | 12/3/2003 | H3N2 | KC892309 | VT | 5/3/2012 |
| H3N2 | CY000473 | NY | 10/27/2003 | H3N2 | CY120886 | NV | 3/3/2012 |
| H3N2 | CY001037 | NY | 10/31/2003 | H3N2 | KC892227 | ID | 4/11/2012 |
| H3N2 | CY000017 | NY | 12/2/2003 | H3N2 | KC892291 | WI | 2/3/2012 |
| H3N2 | CY000505 | NY | 12/8/2003 | H3N2 | CY120912 | OH | 3/14/2012 |
| H3N2 | CY000081 | NY | 12/9/2003 | H3N2 | CY120877 | OH | 3/26/2012 |
| H3N2 | CY000949 | NY | 12/10/2003 | H3N2 | KC892991 | MI | 4/3/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY000561 | NY | 1/6/2004 | H3N2 | CY112195 | IL | 3/5/2012 |
| H3N2 | CY008900 | NY | 11/21/2003 | H3N2 | CY120900 | OH | 4/23/2012 |
| H3N2 | CY008876 | NY | 12/31/2003 | H3N2 | KC892184 | IN | 4/3/2012 |
| H3N2 | CY000881 | NY | 12/10/2003 | H3N2 | CY120901 | OH | 4/23/2012 |
| H3N2 | CY000513 | NY | 10/31/2003 | H3N2 | CY120914 | OH | 3/14/2012 |
| H3N2 | EF473618 | NY | 1/5/2004 | H3N2 | KC892450 | KS | 3/1/2012 |
| H3N2 | EU502303 | NY | 1/5/2004 | H3N2 | KC892276 | NH | 4/10/2012 |
| H3N2 | EF473624 | VA | 11/19/2003 | H3N2 | KC892492 | ME | 3/2/2012 |
| H3N2 | EU502395 | VA | 11/19/2003 | H3N2 | KC892480 | MA | 3/4/2012 |
| H3N2 | CY000137 | NY | 12/2/2003 | H3N2 | KC892588 | NH | 5/5/2012 |
| H3N2 | CY001632 | NY | 11/27/2003 | H3N2 | KC892657 | NH | 5/5/2012 |
| H3N2 | EF473621 | NE | 12/16/2003 | H3N2 | KC892149 | NC | 4/19/2012 |
| H3N2 | EU502281 | NE | 12/16/2003 | H3N2 | KC892174 | FL | 4/4/2012 |
| H3N2 | CY009244 | NY | 11/19/2003 | H3N2 | KF789697 | PA | 4/21/2012 |
| H3N2 | CY000121 | NY | 12/13/2003 | H3N2 | KC892570 | PA | 4/21/2012 |
| H3N2 | EU502423 | WV | 11/5/2003 | H3N2 | KC892198 | OR | 10/3/2011 |
| H3N2 | CY091173 | CA | 12/17/2003 | H3N2 | KC892618 | WA | 12/13/2011 |
| H3N2 | CY091213 | CA | 12/19/2003 | H3N2 | KC892352 | WA | 1/26/2012 |
| H3N2 | CY091221 | CA | 12/16/2003 | H3N2 | KC892885 | WA | 3/8/2012 |
| H3N2 | EF473625 | NY | 4/22/2004 | H3N2 | KC892444 | WA | 3/2/2012 |
| H3N2 | EU502313 | NY | 4/22/2004 | H3N2 | KC892355 | WA | 2/2/2012 |
| H3N2 | CY000025 | NY | 11/29/2003 | H3N2 | KC892376 | ID | 2/2/2012 |
| H3N2 | CY001640 | NY | 11/28/2003 | H3N2 | KC892379 | WA | 2/2/2012 |
| H3N2 | CY000257 | NY | 2/5/2004 | H3N2 | CY120897 | WA | 4/12/2012 |
| H3N2 | CY000957 | NY | 12/16/2003 | H3N2 | KC893012 | ID | 1/16/2012 |
| H3N2 | EF473612 | NC | 12/23/2003 | H3N2 | KC892815 | WA | 1/11/2012 |
| H3N2 | EU502266 | NC | 12/23/2003 | H3N2 | CY112162 | WA | 2/14/2012 |
| H3N2 | EU502293 | NM | 12/1/2003 | H3N2 | KC892504 | WA | 2/25/2012 |
| H3N2 | EF473623 | NM | 12/1/2003 | H3N2 | CY120898 | WA | 4/9/2012 |
| H3N2 | EU502294 | NM | 12/1/2003 | H3N2 | KC893093 | SD | 1/3/2012 |
| H3N2 | EU502436 | WY | 12/2/2003 | H3N2 | KC893116 | MN | 1/30/2012 |
| H3N2 | EF473617 | OR | 12/29/2003 | H3N2 | KC892517 | ND | 3/6/2012 |
| H3N2 | EU502320 | OR | 12/29/2003 | H3N2 | KC892306 | MN | 2/15/2012 |
| H3N2 | CY000377 | NY | 12/18/2003 | H3N2 | KC892278 | MN | 3/8/2012 |
| H3N2 | CY000353 | NY | 11/26/2003 | H3N2 | KC893126 | MN | 4/8/2012 |
| H3N2 | CY000265 | NY | 12/11/2003 | H3N2 | KC893123 | WI | 4/2/2012 |
| H3N2 | CY001221 | NY | 12/29/2003 | H3N2 | KC893072 | OR | 1/4/2012 |
| H3N2 | CY000177 | NY | 12/8/2003 | H3N2 | CY112120 | WA | 11/21/2011 |
| H3N2 | CY001112 | NY | 10/28/2003 | H3N2 | KC892608 | NV | 11/4/2011 |
| H3N2 | CY000909 | NY | 12/3/2003 | H3N2 | KC892694 | WY | 12/30/2011 |
| H3N2 | CY000361 | NY | 12/2/2003 | H3N2 | KC892871 | NV | 3/2/2012 |
| H3N2 | CY000041 | NY | 12/3/2003 | H3N2 | KC892812 | NV | 1/10/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY000769 | NY | 12/16/2003 | H3N2 | KC892361 | NV | 2/7/2012 |
| H3N2 | CY000521 | NY | 12/12/2003 | H3N2 | CY120908 | CA | 3/14/2012 |
| H3N2 | CY001088 | NY | 12/1/2003 | H3N2 | KC892392 | NV | 4/3/2012 |
| H3N2 | CY001096 | NY | 12/4/2003 | H3N2 | KC892874 | NV | 3/4/2012 |
| H3N2 | EU502129 | AZ | 10/23/2003 | H3N2 | KC892224 | NV | 4/3/2012 |
| H3N2 | CY001512 | NY | 12/16/2003 | H3N2 | KC892221 | NV | 4/6/2012 |
| H3N2 | EU502128 | AZ | 11/10/2003 | H3N2 | KC892892 | PA | 3/19/2012 |
| H3N2 | CY000129 | NY | 11/11/2003 | H3N2 | KC892462 | ID | 2/13/2012 |
| H3N2 | CY091461 | CA | 12/10/2003 | H3N2 | KC892879 | NV | 3/12/2012 |
| H3N2 | EU502437 | WY | 12/9/2003 | H3N2 | CY120894 | CO | 4/17/2012 |
| H3N2 | EF473609 | WY | 12/9/2003 | H3N2 | KC893006 | GA | 1/15/2012 |
| H3N2 | EU502371 | TX | 11/5/2003 | H3N2 | KF182366 | CA | 3/12/2012 |
| H3N2 | EU501516 | OK | 12/8/2003 | H3N2 | KC892508 | NM | 2/20/2012 |
| H3N2 | CY000073 | NY | 12/12/2003 | H3N2 | KC892514 | RI | 3/7/2012 |
| H3N2 | EF473622 | AZ | 1/28/2004 | H3N2 | KC892934 | FL | 3/12/2012 |
| H3N2 | CY000777 | NY | 12/21/2003 | H3N2 | KC892739 | TN | 4/10/2012 |
| H3N2 | EU502336 | SD | 1/11/2004 | H3N2 | KC892921 | TN | 3/15/2012 |
| H3N2 | EU502214 | ID | 11/6/2003 | H3N2 | KC892511 | TN | 3/1/2012 |
| H3N2 | CY000785 | NY | 12/9/2003 | H3N2 | CY120862 | TX | 3/15/2012 |
| H3N2 | EU501290 | TN | 12/3/2003 | H3N2 | KC892974 | TN | 4/19/2012 |
| H3N2 | CY091117 | MO | 1/9/2004 | H3N2 | KC892172 | IN | 2/1/2012 |
| H3N2 | EU502127 | AZ | 1/28/2004 | H3N2 | KC892732 | CT | 1/22/2012 |
| H3N2 | EU502399 | VT | 12/22/2003 | H3N2 | KC892744 | PA | 12/28/2011 |
| H3N2 | EF473633 | NC | 12/1/2003 | H3N2 | KC892456 | NY | 2/16/2012 |
| H3N2 | EU502269 | NC | 12/21/2003 | H3N2 | KC893096 | TN | 1/9/2012 |
| H3N2 | EF473626 | WI | 1/2/2004 | H3N2 | KC892400 | IA | 11/17/2011 |
| H3N2 | EU502408 | WI | 1/2/2004 | H3N2 | KC892257 | IA | 11/5/2011 |
| H3N2 | CY000345 | NY | 11/12/2003 | H3N2 | KC892955 | IA | 12/17/2011 |
| H3N2 | EU502221 | IN | 12/17/2003 | H3N2 | KC892609 | OK | 2/24/2012 |
| H3N2 | EU502398 | VT | 12/19/2003 | H3N2 | CY120856 | CO | 3/9/2012 |
| H3N2 | EU501484 | NY | 1/6/2004 | H3N2 | KC892909 | NE | 3/5/2012 |
| H3N2 | CY000369 | NY | 1/5/2004 | H3N2 | KC892801 | NE | 1/14/2012 |
| H3N2 | CY090981 | MO | 1/12/2005 | H3N2 | KC892468 | KY | 2/15/2012 |
| H3N2 | EU502286 | NH | 10/11/2004 | H3N2 | CY112183 | NE | 2/29/2012 |
| H3N2 | EU502409 | WI | 10/8/2004 | H3N2 | KF182352 | TX | 3/14/2012 |
| H3N2 | EU502345 | TN | 2/7/2005 | H3N2 | KF182348 | TX | 3/20/2012 |
| H3N2 | EU502346 | TN | 2/11/2005 | H3N2 | KC892428 | NE | 12/15/2011 |
| H3N2 | EU502412 | WI | 10/18/2004 | H3N2 | CY112180 | NE | 3/5/2012 |
| H3N2 | EU501578 | WA | 10/14/2004 | H3N2 | KC892465 | CO | 2/5/2012 |
| H3N2 | EU502401 | WA | 10/14/2004 | H3N2 | KC892159 | KY | 4/2/2012 |
| H3N2 | EU502282 | NE | 11/9/2004 | H3N2 | KC892773 | IN | 5/14/2012 |
| H3N2 | CY002024 | NY | 11/30/2004 | H3N2 | KC892297 | NE | 2/6/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU502238 | ME | 11/29/2004 | H3N2 | KC893087 | NC | 1/19/2012 |
| H3N2 | CY002584 | NY | 12/1/2004 | H3N2 | CY112161 | NE | 2/8/2012 |
| H3N2 | CY002464 | NY | 1/6/2005 | H3N2 | CY112118 | NE | 1/9/2012 |
| H3N2 | EU502233 | MA | 1/7/2005 | H3N2 | CY112182 | NE | 2/29/2012 |
| H3N2 | EU502228 | KY | 11/27/2004 | H3N2 | KC892594 | WI | 5/5/2012 |
| H3N2 | EU502230 | KY | 4/1/2005 | H3N2 | KC892326 | WV | 2/5/2012 |
| H3N2 | CY006131 | NY | 1/19/2005 | H3N2 | KC892975 | NE | 3/5/2012 |
| H3N2 | EU502229 | KY | 12/3/2004 | H3N2 | KC892561 | CO | 3/7/2012 |
| H3N2 | EU502136 | AZ | 1/5/2005 | H3N2 | KC892710 | KY | 5/10/2012 |
| H3N2 | CY002736 | NY | 1/4/2005 | H3N2 | KC892962 | MN | 11/2/2011 |
| H3N2 | EU502290 | NJ | 2/13/2005 | H3N2 | KC892998 | MN | 10/2/2011 |
| H3N2 | CY002256 | NY | 12/29/2004 | H3N2 | KC892702 | VT | 12/26/2011 |
| H3N2 | EU502248 | MO | 12/29/2004 | H3N2 | KC892399 | OH | 11/5/2011 |
| H3N2 | EU502416 | WI | 1/17/2005 | H3N2 | KC892416 | MN | 11/17/2011 |
| H3N2 | CY091005 | IL | 4/6/2005 | H3N2 | KC892741 | NJ | 10/6/2011 |
| H3N2 | CY090989 | SC | 2/11/2005 | H3N2 | KC892521 | MS | 11/23/2011 |
| H3N2 | FJ975056 | OK | 3/4/2005 | H3N2 | KC892432 | MT | 11/30/2011 |
| H3N2 | EU502429 | WY | 1/14/2005 | H3N2 | KC892696 | MD | 12/26/2011 |
| H3N2 | EU502428 | WY | 1/14/2005 | H3N2 | KC893099 | AZ | 12/9/2011 |
| H3N2 | EU502430 | WY | 1/14/2005 | H3N2 | KC892266 | UT | 11/6/2011 |
| H3N2 | EU502244 | MO | 2/11/2005 | H3N2 | KC892413 | UT | 11/28/2011 |
| H3N2 | EU502247 | Mo | 1/3/2005 | H3N2 | KC892364 | CA | 1/18/2012 |
| H3N2 | EF462544 | OK | 2/21/2005 | H3N2 | CY120884 | TX | 3/26/2012 |
| H3N2 | EU502433 | WY | 2/2/2005 | H3N2 | CY112179 | WA | 2/17/2012 |
| H3N2 | EU502432 | WY | 2/1/2005 | H3N2 | KC893180 | NY | 1/16/2012 |
| H3N2 | EU502431 | WY | 2/3/2005 | H3N2 | KC893183 | NY | 1/16/2012 |
| H3N2 | EU502426 | WY | 3/10/2005 | H3N2 | KC892882 | WA | 3/13/2012 |
| H3N2 | EU502256 | MT | 1/28/2005 | H3N2 | KC892388 | WA | 2/29/2012 |
| H3N2 | EU502255 | MT | 1/28/2005 | H3N2 | CY120896 | WA | 4/20/2012 |
| H3N2 | EU502298 | NV | 4/22/2005 | H3N2 | CY112163 | WA | 2/7/2012 |
| H3N2 | EU502392 | VA | 1/7/2005 | H3N2 | CY120899 | WA | 4/14/2012 |
| H3N2 | EU502254 | MT | 10/2/2004 | H3N2 | CY120861 | WA | 3/16/2012 |
| H3N2 | EF462550 | OK | 3/4/2005 | H3N2 | KC892303 | DE | 2/15/2012 |
| H3N2 | EU502373 | TX | 10/12/2004 | H3N2 | KC892616 | DE | 3/12/2012 |
| H3N2 | EU502232 | LA | 1/26/2005 | H3N2 | KC893081 | SC | 1/11/2012 |
| H3N2 | CY091429 | CA | 2/7/2005 | H3N2 | CY112169 | NV | 2/23/2012 |
| H3N2 | EU501469 | MS | 12/14/2004 | H3N2 | KC892635 | NV | 3/1/2012 |
| H3N2 | CY092217 | NJ | 2/10/2005 | H3N2 | KC892774 | SC | 1/4/2012 |
| H3N2 | CY002408 | NY | 12/21/2004 | H3N2 | CY112142 | OH | 2/2/2012 |
| H3N2 | CY006076 | NY | 2/2/2005 | H3N2 | CY120892 | CA | 4/9/2012 |
| H3N2 | CY091125 | GA | 1/25/2005 | H3N2 | KC893023 | OH | 3/8/2012 |
| H3N2 | EU502274 | ND | 10/20/2004 | H3N2 | KC892284 | OH | 3/8/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU501511 | ND | 10/20/2004 | H3N2 | CY120880 | OH | 3/26/2012 |
| H3N2 | EU502169 | CO | 10/27/2004 | H3N2 | KC892906 | OH | 3/12/2012 |
| H3N2 | EU502414 | WI | 11/22/2004 | H3N2 | KC892988 | MI | 10/2/2011 |
| H3N2 | EU501580 | WI | 11/6/2004 | H3N2 | KC892253 | CA | 10/9/2011 |
| H3N2 | CY002600 | NY | 12/26/2004 | H3N2 | KC893107 | MD | 1/18/2012 |
| H3N2 | EU502417 | WI | 1/21/2005 | H3N2 | KC893166 | MD | 1/18/2012 |
| H3N2 | EU502415 | WI | 1/17/2005 | H3N2 | KC892806 | VA | 1/17/2012 |
| H3N2 | EU502413 | WI | 11/22/2004 | H3N2 | KC892349 | PA | 2/9/2012 |
| H3N2 | CY003408 | NY | 12/27/2004 | H3N2 | CY112106 | DC | 1/25/2012 |
| H3N2 | EU502135 | AZ | 2/15/2005 | H3N2 | KC892655 | CA | 10/26/2011 |
| H3N2 | EU502337 | SD | 12/2/2004 | H3N2 | KC893090 | AL | 1/21/2012 |
| H3N2 | CY003056 | NY | 1/24/2005 | H3N2 | KC892230 | DE | 4/21/2012 |
| H3N2 | EU502210 | IA | 1/30/2005 | H3N2 | KC892373 | IA | 2/16/2012 |
| H3N2 | EU502374 | TX | 12/14/2004 | H3N2 | KC892474 | AL | 2/16/2012 |
| H3N2 | EU502410 | WI | 11/29/2004 | H3N2 | KC893169 | VA | 2/1/2012 |
| H3N2 | EU502283 | NE | 3/23/2005 | H3N2 | KC892317 | NH | 2/20/2012 |
| H3N2 | EU502227 | KS | 1/18/2005 | H3N2 | KC892573 | NY | 4/4/2012 |
| H3N2 | EF462551 | OK | 3/2/2005 | H3N2 | KC892638 | CA | 11/24/2011 |
| H3N2 | EF462549 | OK | 3/16/2005 | H3N2 | KC892719 | NY | 5/14/2012 |
| H3N2 | CY002064 | NY | 12/21/2004 | H3N2 | CY120890 | CO | 4/4/2012 |
| H3N2 | CY002048 | NY | 12/27/2004 | H3N2 | KC892799 | IA | 1/3/2012 |
| H3N2 | CY002032 | NY | 1/29/2005 | H3N2 | KC892206 | NV | 4/2/2012 |
| H3N2 | EU502385 | UT | 1/12/2005 | H3N2 | KC892838 | MI | 3/6/2012 |
| H3N2 | EU502400 | VT | 12/13/2004 | H3N2 | KC892429 | IN | 11/29/2011 |
| H3N2 | EU502418 | WI | 1/20/2005 | H3N2 | KC892256 | TX | 10/16/2011 |
| H3N2 | EU502170 | CO | 1/21/2005 | H3N2 | KC892268 | MT | 3/18/2012 |
| H3N2 | CY092257 | CA | 2/8/2005 | H3N2 | KC892995 | UT | 1/1/2012 |
| H3N2 | CY091549 | CA | 2/7/2005 | H3N2 | KC892699 | NH | 12/28/2011 |
| H3N2 | EU502425 | WV | 1/25/2005 | H3N2 | CY112099 | WA | 11/11/2011 |
| H3N2 | CY002456 | NY | 2/22/2005 | H3N2 | KC892567 | SC | 2/27/2012 |
| H3N2 | CY006147 | NY | 2/2/2005 | H3N2 | KC892334 | MA | 2/21/2012 |
| H3N2 | CY002016 | NY | 1/3/2005 | H3N2 | KC892809 | VT | 1/16/2012 |
| H3N2 | CY006139 | NY | 2/1/2005 | H3N2 | KC892667 | RI | 4/18/2012 |
| H3N2 | EU502278 | NE | 1/3/2005 | H3N2 | KC892926 | MI | 3/5/2012 |
| H3N2 | EU502309 | NY | 1/3/2005 | H3N2 | CY120883 | WA | 3/25/2012 |
| H3N2 | EU502289 | NJ | 12/26/2004 | H3N2 | KC892675 | WA | 4/15/2012 |
| H3N2 | EU502378 | TX | 2/9/2005 | H3N2 | KC892192 | VA | 2/17/2012 |
| H3N2 | CY002216 | NY | 12/9/2004 | H3N2 | KC892320 | VA | 2/17/2012 |
| H3N2 | CY006371 | NY | 11/27/2004 | H3N2 | KC892329 | GA | 2/6/2012 |
| H3N2 | CY003664 | NY | 11/8/2004 | H3N2 | KC892323 | RI | 1/30/2012 |
| H3N2 | CY008516 | NY | 10/19/2004 | H3N2 | CY112105 | CO | 1/9/2012 |
| H3N2 | EU502394 | VA | 1/7/2005 | H3N2 | KC892498 | WI | 3/3/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU502193 | GA | 12/14/2004 | H3N2 | KF182345 | CA | 3/13/2012 |
| H3N2 | EU502335 | SC | 2/4/2005 | H3N2 | KC892519 | WI | 5/7/2012 |
| H3N2 | CY002472 | NY | 12/28/2004 | H3N2 | KC892181 | AL | 4/4/2012 |
| H3N2 | CY002712 | NY | 11/8/2004 | H3N2 | KC892367 | CA | 2/1/2012 |
| H3N2 | CY009268 | NY | 12/10/2004 | H3N2 | KC893059 | AL | 3/20/2012 |
| H3N2 | CY002504 | NY | 12/7/2004 | H3N2 | KC892288 | VT | 2/2/2012 |
| H3N2 | CY006291 | NY | 2/8/2005 | H3N2 | KF790169 | OK | 10/8/2012 |
| H3N2 | CY003640 | NY | 2/9/2005 | H3N2 | CY141188 | FL | 12/19/2012 |
| H3N2 | CY003648 | NY | 3/7/2005 | H3N2 | KF790491 | LA | 11/6/2012 |
| H3N2 | CY002056 | NY | 1/7/2005 | H3N2 | CY134692 | GA | 12/3/2012 |
| H3N2 | EU502310 | NY | 1/5/2005 | H3N2 | CY134703 | SC | 10/26/2012 |
| H3N2 | EU502330 | RI | 1/24/2005 | H3N2 | CY141221 | NY | 12/24/2012 |
| H3N2 | CY002440 | NY | 12/16/2004 | H3N2 | CY134649 | FL | 12/6/2012 |
| H3N2 | EU502192 | GA | 1/6/2005 | H3N2 | CY134666 | MD | 11/26/2012 |
| H3N2 | EU502184 | FL | 3/10/2005 | H3N2 | KF790479 | SC | 10/29/2012 |
| H3N2 | CY002080 | NY | 12/24/2004 | H3N2 | CY141255 | SC | 12/17/2012 |
| H3N2 | EU502252 | MS | 2/27/2005 | H3N2 | CY183121 | TX | 1/7/2013 |
| H3N2 | CY002288 | NY | 12/9/2004 | H3N2 | CY134668 | OH | 11/28/2012 |
| H3N2 | CY002000 | NY | 1/17/2005 | H3N2 | KF789707 | KY | 12/3/2012 |
| H3N2 | CY003040 | NY | 12/28/2004 | H3N2 | KF789670 | VA | 12/5/2012 |
| H3N2 | EU502375 | TX | 12/27/2004 | H3N2 | KF789804 | VA | 12/5/2012 |
| H3N2 | CY006115 | NY | 11/1/2004 | H3N2 | KF789782 | MI | 12/3/2012 |
| H3N2 | CY002040 | NY | 12/22/2004 | H3N2 | KF789819 | VA | 12/5/2012 |
| H3N2 | CY002720 | NY | 1/4/2005 | H3N2 | KF789706 | TN | 12/7/2012 |
| H3N2 | CY002424 | NY | 11/18/2004 | H3N2 | KF790495 | TN | 11/1/2012 |
| H3N2 | CY007643 | NY | 11/18/2004 | H3N2 | KF790048 | SC | 10/29/2012 |
| H3N2 | CY002768 | NY | 11/22/2004 | H3N2 | KF790488 | SC | 11/2/2012 |
| H3N2 | CY003032 | NY | 11/6/2004 | H3N2 | KF789899 | KY | 11/19/2012 |
| H3N2 | CY002608 | NY | 11/11/2004 | H3N2 | KF789604 | KY | 11/19/2012 |
| H3N2 | CY006435 | NY | 11/11/2004 | H3N2 | CY134721 | SC | 11/14/2012 |
| H3N2 | CY019141 | NY | 12/22/2004 | H3N2 | CY141223 | NY | 12/24/2012 |
| H3N2 | CY006123 | NY | 1/7/2005 | H3N2 | CY171599 | IL | 1/1/2013 |
| H3N2 | CY019811 | NY | 12/22/2004 | H3N2 | CY182921 | TX | 12/23/2012 |
| H3N2 | CY090997 | SC | 3/10/2005 | H3N2 | CY171223 | IL | 12/17/2012 |
| H3N2 | CY019157 | NY | 12/22/2004 | H3N2 | KF886309 | SC | 2/15/2013 |
| H3N2 | CY002264 | NY | 1/28/2005 | H3N2 | KF790402 | NE | 1/11/2013 |
| H3N2 | CY002192 | NY | 12/20/2004 | H3N2 | KF790093 | WI | 10/5/2012 |
| H3N2 | CY002416 | NY | 11/5/2004 | H3N2 | KF790209 | MS | 10/9/2012 |
| H3N2 | CY019165 | NY | 12/22/2004 | H3N2 | KM244537 | MS | 1/4/2013 |
| H3N2 | CY002200 | NY | 1/3/2005 | H3N2 | KM244534 | MS | 11/27/2012 |
| H3N2 | CY002224 | NY | 12/22/2004 | H3N2 | CY134707 | GA | 11/1/2012 |
| H3N2 | CY002760 | NY | 11/6/2004 | H3N2 | CY134702 | GA | 10/31/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY006155 | NY | 1/18/2005 | H3N2 | CY141196 | FL | 1/8/2013 |
| H3N2 | CY019149 | NY | 12/22/2004 | H3N2 | CY168007 | MA | 12/28/2012 |
| H3N2 | CYOO2240 | NY | 1/29/2005 | H3N2 | CY141209 | MD | 12/18/2012 |
| H3N2 | CY002488 | NY | 3/23/2005 | H3N2 | CY141197 | FL | 1/9/2013 |
| H3N2 | CY003336 | NY | 12/28/2004 | H3N2 | KJ741963 | CT | 12/31/2012 |
| H3N2 | EU501485 | NY | 11/18/2004 | H3N2 | KF928626 | SC | 12/3/2012 |
| H3N2 | EU501486 | NY | 11/18/2004 | H3N2 | KF199859 | SC | 12/3/2012 |
| H3N2 | EU502306 | NY | 11/9/2004 | H3N2 | CY134694 | FL | 12/6/2012 |
| H3N2 | EU502307 | NY | 11/19/2004 | H3N2 | CY134670 | GA | 11/26/2012 |
| H3N2 | EU502308 | NY | 11/19/2004 | H3N2 | KF789805 | GA | 12/2/2012 |
| H3N2 | EU502191 | GA | 1/27/2005 | H3N2 | CY134693 | AL | 12/3/2012 |
| H3N2 | EU502419 | WI | 1/8/2005 | H3N2 | CY171447 | IL | 12/28/2012 |
| H3N2 | CY002280 | NY | 11/4/2004 | H3N2 | CY134658 | AL | 12/11/2012 |
| H3N2 | CY002184 | NY | 2/15/2005 | H3N2 | CY170999 | CA | 2/4/2013 |
| H3N2 | EU502246 | MO | 10/22/2004 | H3N2 | CY134719 | SC | 11/14/2012 |
| H3N2 | CY091133 | TX | 2/16/2005 | H3N2 | KF789944 | FL | 1/3/2013 |
| H3N2 | CY003048 | NY | 1/18/2005 | H3N2 | KF790287 | SC | 11/7/2012 |
| H3N2 | CY002072 | NY | 3/4/2005 | H3N2 | KJ741955 | CT | 12/29/2012 |
| H3N2 | EU502427 | WY | 3/15/2005 | H3N2 | CY134677 | GA | 11/29/2012 |
| H3N2 | CY019269 | NY | 1/10/2005 | H3N2 | KF789596 | CO | 11/14/2012 |
| H3N2 | CY020533 | NY | 1/10/2005 | H3N2 | KF790063 | DE | 12/19/2012 |
| H3N2 | CY019277 | NY | 1/10/2005 | H3N2 | KF790081 | DE | 12/19/2012 |
| H3N2 | CY019293 | NY | 1/10/2005 | H3N2 | KF790242 | NV | 10/31/2012 |
| H3N2 | CY019285 | NY | 1/10/2005 | H3N2 | KM244532 | MS | 11/21/2012 |
| H3N2 | EU502424 | WV | 1/5/2005 | H3N2 | KM244550 | MS | 11/28/2012 |
| H3N2 | CY002728 | NY | 12/15/2004 | H3N2 | KF790265 | MS | 11/13/2012 |
| H3N2 | CY019317 | NY | 1/10/2005 | H3N2 | KM244545 | MS | 11/14/2012 |
| H3N2 | CY019301 | NY | 1/10/2005 | H3N2 | KM244548 | MS | 11/21/2012 |
| H3N2 | CY002448 | NY | 2/16/2005 | H3N2 | KM244547 | MS | 11/20/2012 |
| H3N2 | CY006084 | NY | 3/8/2005 | H3N2 | CY134639 | OH | 12/4/2012 |
| H3N2 | CY019309 | NY | 1/10/2005 | H3N2 | CY134660 | OH | 11/15/2012 |
| H3N2 | CY002008 | NY | 2/2/2005 | H3N2 | CY134687 | OH | 11/28/2012 |
| H3N2 | CY003344 | NY | 1/4/2005 | H3N2 | CY134669 | OH | 11/28/2012 |
| H3N2 | CY002432 | NY | 12/8/2004 | H3N2 | CY134662 | OH | 12/4/2012 |
| H3N2 | CY003416 | NY | 12/16/2004 | H3N2 | CY186155 | TX | 1/14/2013 |
| H3N2 | CY002480 | NY | 1/5/2005 | H3N2 | KF789983 | FL | 10/4/2012 |
| H3N2 | CY002592 | NY | 12/20/2004 | H3N2 | KF790278 | NY | 10/16/2012 |
| H3N2 | CY019189 | NY | 1/10/2005 | H3N2 | CY171735 | IL | 1/25/2013 |
| H3N2 | CY002176 | NY | 12/1/2004 | H3N2 | CY171279 | IL | 12/19/2012 |
| H3N2 | CY002784 | NY | 12/9/2004 | H3N2 | CY171551 | IL | 12/31/2012 |
| H3N2 | CY002776 | NY | 2/15/2005 | H3N2 | CY171519 | IL | 12/30/2012 |
| H3N2 | CY002208 | NY | 12/20/2004 | H3N2 | KF789748 | LA | 12/4/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY003072 | NY | 12/16/2004 | H3N2 | CY134690 | LA | 12/4/2012 |
| H3N2 | CY020053 | NY | 1/10/2005 | H3N2 | CY171311 | IL | 12/25/2012 |
| H3N2 | CY019253 | NY | 12/27/2004 | H3N2 | CY171607 | IL | 1/1/2013 |
| H3N2 | CY019261 | NY | 12/27/2004 | H3N2 | KF790178 | VT | 10/15/2012 |
| H3N2 | CY019819 | NY | 12/27/2004 | H3N2 | KM244549 | MS | 11/26/2012 |
| H3N2 | CY002248 | NY | 12/28/2004 | H3N2 | CY134638 | FL | 12/2/2012 |
| H3N2 | CY019245 | NY | 12/27/2004 | H3N2 | KM244533 | MS | 11/26/2012 |
| H3N2 | CY002232 | NY | 12/27/2004 | H3N2 | CY134700 | FL | 10/26/2012 |
| H3N2 | CY019181 | NY | 12/27/2004 | H3N2 | KM244544 | MS | 11/9/2012 |
| H3N2 | CY021989 | NY | 12/27/2004 | H3N2 | CY141185 | FL | 12/18/2012 |
| H3N2 | CY019173 | NY | 12/27/2004 | H3N2 | CY134691 | AL | 12/4/2012 |
| H3N2 | CY091525 | CA | 12/2/2005 | H3N2 | CY148668 | MA | 1/20/2013 |
| H3N2 | EU502132 | AZ | 1/11/2006 | H3N2 | KM244543 | MS | 1/30/2013 |
| H3N2 | EU501835 | WI | 10/19/2005 | H3N2 | CY134699 | AL | 12/5/2012 |
| H3N2 | EU502197 | GA | 1/24/2006 | H3N2 | CY141192 | FL | 1/4/2013 |
| H3N2 | CY172191 | NY | 11/10/2005 | H3N2 | CY141187 | FL | 12/18/2012 |
| H3N2 | CY091501 | CA | 10/25/2005 | H3N2 | CY134698 | AL | 12/5/2012 |
| H3N2 | CY172287 | NY | 2/14/2006 | H3N2 | KF789680 | VA | 11/13/2012 |
| H3N2 | CY091013 | CA | 11/30/2005 | H3N2 | KF789674 | MD | 11/13/2012 |
| H3N2 | EU502249 | MO | 1/3/2006 | H3N2 | CY134689 | LA | 12/4/2012 |
| H3N2 | EU502404 | WA | 11/30/2005 | H3N2 | CY163422 | FL | 1/5/2013 |
| H3N2 | EU502234 | MA | 11/30/2005 | H3N2 | CY141200 | FL | 12/17/2012 |
| H3N2 | CY091509 | CA | 11/2/2005 | H3N2 | KF789912 | AL | 12/18/2012 |
| H3N2 | EU502321 | OR | 11/29/2005 | H3N2 | KF789606 | ND | 11/12/2012 |
| H3N2 | CY058073 | NY | 1/1/2006 | H3N2 | KF789877 | AR | 12/19/2012 |
| H3N2 | EU502311 | NY | 1/1/2006 | H3N2 | KF790227 | ME | 10/28/2012 |
| H3N2 | CY172223 | NY | 1/11/2006 | H3N2 | KF790185 | LA | 10/30/2012 |
| H3N2 | CY054275 | NY | 1/1/2006 | H3N2 | KF790187 | MD | 10/13/2012 |
| H3N2 | CY091541 | CA | 12/5/2005 | H3N2 | KF790425 | TX | 11/2/2012 |
| H3N2 | EU502216 | ID | 12/21/2005 | H3N2 | CY134804 | TX | 11/20/2012 |
| H3N2 | CY020077 | NY | 2/23/2006 | H3N2 | CY134796 | TX | 11/20/2012 |
| H3N2 | CY020069 | NY | 2/23/2006 | H3N2 | CY182897 | TX | 12/21/2012 |
| H3N2 | CY020061 | NY | 2/23/2006 | H3N2 | CY183057 | TX | 1/3/2013 |
| H3N2 | CY020357 | NY | 2/23/2006 | H3N2 | CY135020 | TX | 12/1/2012 |
| H3N2 | CY019827 | NY | 2/23/2006 | H3N2 | CY135164 | TX | 12/8/2012 |
| H3N2 | CY172255 | NY | 1/24/2006 | H3N2 | CY141186 | FL | 12/18/2012 |
| H3N2 | CY173599 | NY | 12/20/2005 | H3N2 | CY134657 | AL | 12/11/2012 |
| H3N2 | CY172207 | NY | 1/4/2006 | H3N2 | CY141179 | AL | 12/14/2012 |
| H3N2 | EU502196 | GA | 1/23/2006 | H3N2 | KF790432 | OR | 10/29/2012 |
| H3N2 | CY091045 | IL | 2/15/2006 | H3N2 | CY170871 | CA | 12/24/2012 |
| H3N2 | EU516029 | OH | 3/1/2006 | H3N2 | KF790229 | OK | 11/1/2012 |
| H3N2 | CY172279 | NY | 2/7/2006 | H3N2 | CY183065 | TX | 1/4/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU502347 | TN | 3/7/2006 | H3N2 | KF789587 | NH | 11/19/2012 |
| H3N2 | EU516031 | OH | 4/3/2006 | H3N2 | CY183025 | TX | 1/2/2013 |
| H3N2 | EU502195 | GA | 1/18/2006 | H3N2 | KF790236 | NY | 10/17/2012 |
| H3N2 | CY091141 | GA | 1/9/2006 | H3N2 | KF789927 | CA | 12/18/2012 |
| H3N2 | CY172239 | NY | 1/13/2006 | H3N2 | KF790502 | PA | 11/9/2012 |
| H3N2 | CY172231 | NY | 1/12/2006 | H3N2 | KF790262 | NH | 11/8/2012 |
| H3N2 | CY091517 | CA | 11/29/2005 | H3N2 | CY148300 | MA | 11/12/2012 |
| H3N2 | CY091021 | TX | 12/19/2005 | H3N2 | KF790461 | NM | 1/2/2013 |
| H3N2 | EU502215 | ID | 11/27/2005 | H3N2 | CY148404 | MA | 12/7/2012 |
| H3N2 | EU502273 | NC | 2/21/2006 | H3N2 | KF790524 | MD | 11/11/2012 |
| H3N2 | CY172431 | NY | 3/7/2006 | H3N2 | CY141253 | OK | 1/7/2013 |
| H3N2 | CY172495 | NY | 3/14/2006 | H3N2 | CY170471 | CA | 1/30/2013 |
| H3N2 | CY091029 | IL | 12/23/2005 | H3N2 | KF790100 | WY | 10/5/2012 |
| H3N2 | EU502211 | IA | 12/12/2005 | H3N2 | KF790138 | NC | 1/3/2013 |
| H3N2 | EU502280 | NE | 4/1/2006 | H3N2 | KF789615 | OK | 2/5/2013 |
| H3N2 | CY172271 | NY | 2/7/2006 | H3N2 | CY147292 | OK | 1/28/2013 |
| H3N2 | CY172247 | NY | 1/24/2006 | H3N2 | KF790019 | NM | 3/13/2013 |
| H3N2 | EU502287 | NH | 3/6/2006 | H3N2 | CY171135 | IL | 12/6/2012 |
| H3N2 | CY172399 | NY | 2/27/2006 | H3N2 | CY149116 | MA | 1/15/2013 |
| H3N2 | CY091053 | CA | 2/21/2006 | H3N2 | KF790398 | DC | 3/27/2013 |
| H3N2 | EU501621 | CA | 10/11/2005 | H3N2 | CY141259 | SD | 1/7/2013 |
| H3N2 | EU502323 | PA | 11/13/2005 | H3N2 | CY171663 | IL | 1/7/2013 |
| H3N2 | EU502376 | TX | 11/15/2005 | H3N2 | CY171127 | IL | 12/5/2012 |
| H3N2 | CY172463 | NY | 3/12/2006 | H3N2 | KF886323 | IL | 1/28/2013 |
| H3N2 | CY172471 | NY | 3/12/2006 | H3N2 | KF928630 | CA | 1/8/2013 |
| H3N2 | EU502331 | RI | 3/6/2006 | H3N2 | KF790325 | DE | 1/7/2013 |
| H3N2 | CY172343 | NY | 2/16/2006 | H3N2 | CY171463 | IL | 12/28/2012 |
| H3N2 | EU502314 | NY | 4/17/2006 | H3N2 | CY171655 | IL | 1/7/2013 |
| H3N2 | EU502185 | FL | 12/5/2005 | H3N2 | KM244546 | MS | 11/15/2012 |
| H3N2 | CY172415 | NY | 3/6/2006 | H3N2 | CY134717 | SD | 11/15/2012 |
| H3N2 | EU501905 | FL | 1/19/2006 | H3N2 | CY134730 | SD | 11/20/2012 |
| H3N2 | CY058071 | FL | 1/19/2006 | H3N2 | KF790323 | NM | 12/8/2012 |
| H3N2 | CY172303 | NY | 2/15/2006 | H3N2 | KF789769 | OH | 11/16/2012 |
| H3N2 | CY172455 | NY | 3/9/2006 | H3N2 | KF790512 | ID | 1/4/2013 |
| H3N2 | CY172527 | NY | 3/31/2006 | H3N2 | CY134648 | FL | 12/4/2012 |
| H3N2 | CY054272 | FL | 1/19/2006 | H3N2 | CY141260 | SD | 12/12/2012 |
| H3N2 | CY172383 | NY | 2/20/2006 | H3N2 | CY134663 | OH | 12/4/2012 |
| H3N2 | CY091037 | TX | 2/13/2006 | H3N2 | KJ741957 | CT | 12/30/2012 |
| H3N2 | CY172503 | NY | 3/16/2006 | H3N2 | KF790190 | MI | 10/2/2012 |
| H3N2 | CY172519 | NY | 3/22/2006 | H3N2 | KF790051 | SD | 10/30/2012 |
| H3N2 | CY172511 | NY | 3/20/2006 | H3N2 | KF789794 | SD | 10/29/2012 |
| H3N2 | CY172215 | NY | 1/8/2006 | H3N2 | KF790009 | SD | 10/29/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CYO20101 | NY | 3/1/2006 | H3N2 | KF790373 | OH | 1/14/2013 |
| H3N2 | CY019843 | NY | 3/1/2006 | H3N2 | KF790446 | WY | 11/5/2012 |
| H3N2 | CY019333 | NY | 3/1/2006 | H3N2 | CY134656 | SD | 12/13/2012 |
| H3N2 | CY019851 | NY | 3/1/2006 | H3N2 | KF789775 | SD | 10/29/2012 |
| H3N2 | CY172447 | NY | 3/8/2006 | H3N2 | KF789688 | SD | 10/12/2012 |
| H3N2 | CYO20109 | NY | 3/1/2006 | H3N2 | KF789791 | SD | 10/29/2012 |
| H3N2 | EF462554 | OK | 1/12/2006 | H3N2 | KF789826 | WA | 12/1/2012 |
| H3N2 | CY091077 | MO | 4/5/2006 | H3N2 | KF928640 | IL | 12/21/2012 |
| H3N2 | EU501986 | TN | 3/1/2006 | H3N2 | CY169927 | MA | 1/24/2013 |
| H3N2 | EU502277 | NE | 1/16/2006 | H3N2 | CY134673 | WA | 11/15/2012 |
| H3N2 | EU502251 | MO | 2/3/2006 | H3N2 | KF789728 | NC | 3/7/2013 |
| H3N2 | EU501966 | KY | 4/2/2006 | H3N2 | CY134688 | OH | 12/4/2012 |
| H3N2 | CY091085 | IL | 4/6/2006 | H3N2 | KF790213 | IA | 10/3/2012 |
| H3N2 | CY091061 | SC | 3/28/2006 | H3N2 | KF789689 | NE | 11/26/2012 |
| H3N2 | EU502292 | NJ | 1/21/2006 | H3N2 | CY134667 | SD | 11/27/2012 |
| H3N2 | CY172327 | NY | 2/15/2006 | H3N2 | KF790135 | NY | 1/2/2013 |
| H3N2 | CY172295 | NY | 2/14/2006 | H3N2 | KF789923 | ND | 12/6/2012 |
| H3N2 | EU502386 | UT | 12/6/2005 | H3N2 | KF790452 | SD | 2/1/2013 |
| H3N2 | EF462553 | OK | 2/25/2006 | H3N2 | CY170039 | MA | 2/13/2013 |
| H3N2 | EU502421 | WI | 4/7/2006 | H3N2 | KF790454 | NV | 2/1/2013 |
| H3N2 | EU199252 | WY | 2/9/2006 | H3N2 | KF789646 | ID | 1/15/2013 |
| H3N2 | EU502434 | WY | 2/9/2006 | H3N2 | KJ741956 | CT | 12/30/2012 |
| H3N2 | CY091533 | CA | 11/15/2005 | H3N2 | CY170639 | CA | 1/8/2013 |
| H3N2 | EU502377 | TX | 11/28/2005 | H3N2 | CY169031 | MA | 12/27/2012 |
| H3N2 | CY172199 | NY | 12/27/2005 | H3N2 | CY141270 | VA | 1/3/2013 |
| H3N2 | EU502171 | CO | 12/3/2005 | H3N2 | CY141195 | FL | 1/7/2013 |
| H3N2 | EU502242 | MN | 3/13/2006 | H3N2 | CY170239 | MA | 1/7/2013 |
| H3N2 | EU502090 | WY | 1/23/2006 | H3N2 | KF789605 | WV | 11/20/2012 |
| H3N2 | CY054271 | NH | 1/2/2006 | H3N2 | CY169767 | MA | 1/13/2013 |
| H3N2 | CY058070 | NH | 1/2/2006 | H3N2 | KF789722 | OH | 12/9/2012 |
| H3N2 | EU502391 | VA | 1/30/2006 | H3N2 | KF790125 | MO | 3/15/2013 |
| H3N2 | EU502134 | AZ | 3/2/2006 | H3N2 | KF789709 | MO | 3/15/2013 |
| H3N2 | EU502133 | AZ | 2/22/2006 | H3N2 | CY163424 | GA | 1/24/2013 |
| H3N2 | EU502250 | MO | 2/24/2006 | H3N2 | CY134655 | SC | 12/12/2012 |
| H3N2 | CY172311 | NY | 4/20/2006 | H3N2 | KF789732 | VT | 12/10/2012 |
| H3N2 | CY020093 | NY | 2/28/2006 | H3N2 | CY170399 | MA | 1/31/2013 |
| H3N2 | CY019325 | NY | 2/28/2006 | H3N2 | KF886321 | AZ | 1/6/2013 |
| H3N2 | CY172407 | NY | 2/28/2006 | H3N2 | KF789953 | OH | 1/14/2013 |
| H3N2 | CY020085 | NY | 2/28/2006 | H3N2 | CY141281 | WA | 1/7/2013 |
| H3N2 | CY019939 | NY | 2/28/2006 | H3N2 | KF886337 | SC | 2/6/2013 |
| H3N2 | CY019835 | NY | 2/28/2006 | H3N2 | KF790333 | DC | 12/17/2012 |
| H3N2 | EF462555 | OK | 1/3/2006 | H3N2 | KF790023 | NM | 3/22/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU502194 | GA | 1/2/2006 | H3N2 | KF790036 | NV | 3/25/2013 |
| H3N2 | EU502322 | OR | 2/6/2006 | H3N2 | CY147306 | OK | 4/3/2013 |
| H3N2 | EU502271 | NC | 3/9/2006 | H3N2 | KF790205 | CO | 10/13/2012 |
| H3N2 | EU502317 | OH | 1/26/2006 | H3N2 | KF789582 | NC | 11/15/2012 |
| H3N2 | CY013797 | NY | 3/22/2006 | H3N2 | KF790104 | CO | 10/13/2012 |
| H3N2 | CY012792 | NY | 3/22/2006 | H3N2 | KF789579 | IN | 11/14/2012 |
| H3N2 | EU502272 | NC | 2/8/2006 | H3N2 | KF790244 | IN | 11/8/2012 |
| H3N2 | EU502312 | NY | 1/26/2006 | H3N2 | CY141190 | FL | 1/2/2013 |
| H3N2 | EF473473 | NY | 1/26/2006 | H3N2 | KJ741959 | MO | 12/30/2012 |
| H3N2 | CY054274 | NY | 1/26/2006 | H3N2 | KF789550 | NV | 2/4/2013 |
| H3N2 | CY172263 | NY | 2/6/2006 | H3N2 | KF789571 | AL | 5/22/2013 |
| H3N2 | CY091069 | TX | 4/4/2006 | H3N2 | CY171367 | IL | 12/26/2012 |
| H3N2 | CY172439 | NY | 3/7/2006 | H3N2 | KF790500 | KS | 11/5/2012 |
| H3N2 | CY172359 | NY | 2/17/2006 | H3N2 | KM244540 | MS | 1/14/2013 |
| H3N2 | CY172375 | NY | 2/17/2006 | H3N2 | KF789787 | MI | 11/18/2012 |
| H3N2 | CY172335 | NY | 2/16/2006 | H3N2 | CY134652 | NY | 12/10/2012 |
| H3N2 | CY172367 | NY | 2/17/2006 | H3N2 | CY134654 | NY | 12/13/2012 |
| H3N2 | CY172351 | NY | 2/17/2006 | H3N2 | CY134644 | NY | 12/6/2012 |
| H3N2 | CY172423 | NY | 3/7/2006 | H3N2 | CY134643 | NY | 12/6/2012 |
| H3N2 | CY172319 | NY | 2/15/2006 | H3N2 | CY134678 | NY | 12/6/2012 |
| H3N2 | CY172479 | NY | 3/13/2006 | H3N2 | CY134646 | NY | 12/6/2012 |
| H3N2 | EU502420 | WI | 3/29/2006 | H3N2 | CY168335 | MA | 1/18/2013 |
| H3N2 | CY172391 | NY | 2/24/2006 | H3N2 | CY147290 | MI | 1/16/2013 |
| H3N2 | CY013232 | NY | 4/5/2006 | H3N2 | KF789650 | MS | 1/11/2013 |
| H3N2 | CY172487 | NY | 3/13/2006 | H3N2 | CY141231 | NY | 1/7/2013 |
| H3N2 | CYO20125 | NY | 3/2/2006 | H3N2 | KJ741967 | CT | 12/28/2012 |
| H3N2 | CYO20133 | NY | 3/2/2006 | H3N2 | KF789885 | ME | 12/12/2012 |
| H3N2 | CY020365 | NY | 3/2/2006 | H3N2 | KJ741954 | CT | 12/30/2012 |
| H3N2 | CY019859 | NY | 3/2/2006 | H3N2 | CY170831 | CA | 1/25/2013 |
| H3N2 | CY020117 | NY | 3/2/2006 | H3N2 | KF790517 | CA | 1/29/2013 |
| H3N2 | CY014159 | NY | 4/5/2006 | H3N2 | CY134836 | TX | 11/24/2012 |
| H3N2 | CY016995 | NY | 4/6/2006 | H3N2 | KF790230 | ND | 10/19/2012 |
| H3N2 | CY025485 | NY | 3/5/2007 | H3N2 | KF789716 | CO | 12/4/2012 |
| H3N2 | EU516019 | DE | 3/17/2007 | H3N2 | CY134642 | CO | 12/4/2012 |
| H3N2 | EU100715 | WI | 12/15/2006 | H3N2 | KF790439 | WI | 11/6/2012 |
| H3N2 | EU199362 | WI | 2/14/2007 | H3N2 | KF789673 | MO | 11/26/2012 |
| H3N2 | CY025843 | NY | 3/5/2007 | H3N2 | CY147293 | OK | 2/1/2013 |
| H3N2 | CY026147 | CO | 1/8/2007 | H3N2 | CY171383 | IL | 12/27/2012 |
| H3N2 | EU100713 | MD | 12/17/2006 | H3N2 | KF790413 | WI | 1/24/2013 |
| H3N2 | CY025739 | CA | 1/29/2007 | H3N2 | CY134637 | FL | 11/26/2012 |
| H3N2 | EU199380 | MN | 3/26/2007 | H3N2 | KJ741973 | CT | 12/29/2012 |
| H3N2 | CY172895 | NY | 2/6/2007 | H3N2 | KJ741974 | CT | 12/27/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY022877 | CA | 2/5/2007 | H3N2 | CY134647 | NY | 12/6/2012 |
| H3N2 | EU199363 | VT | 2/1/2007 | H3N2 | CY169871 | MA | 1/21/2013 |
| H3N2 | CY172751 | NY | 2/11/2007 | H3N2 | CY171503 | IL | 12/29/2012 |
| H3N2 | EU100720 | FL | 1/9/2007 | H3N2 | KF789759 | NV | 12/10/2012 |
| H3N2 | EU100696 | WI | 12/27/2006 | H3N2 | KF790455 | CA | 1/7/2013 |
| H3N2 | EU502586 | WI | 12/27/2006 | H3N2 | KJ741972 | CT | 12/29/2012 |
| H3N2 | EU502602 | WI | 12/27/2006 | H3N2 | KF789633 | LA | 2/19/2013 |
| H3N2 | EU100697 | NY | 11/29/2006 | H3N2 | CY170791 | CA | 2/2/2013 |
| H3N2 | EU502546 | NY | 11/29/2006 | H3N2 | KF789740 | MN | 3/6/2013 |
| H3N2 | CY030197 | IL | 3/14/2007 | H3N2 | KF790368 | OH | 11/8/2012 |
| H3N2 | CY030205 | VA | 3/13/2007 | H3N2 | KF790160 | WI | 11/1/2012 |
| H3N2 | EU199343 | CO | 2/25/2007 | H3N2 | CY171103 | IL | 12/2/2012 |
| H3N2 | CY022878 | CO | 2/26/2007 | H3N2 | CY171495 | IL | 12/29/2012 |
| H3N2 | EU199276 | NJ | 1/14/2007 | H3N2 | CY141214 | NE | 1/10/2013 |
| H3N2 | EU199278 | NJ | 1/27/2007 | H3N2 | CY134636 | SC | 11/26/2012 |
| H3N2 | CY026195 | CA | 3/13/2007 | H3N2 | CY171247 | IL | 12/18/2012 |
| H3N2 | CY031563 | CA | 3/12/2007 | H3N2 | KF790473 | NM | 1/16/2013 |
| H3N2 | CY025835 | NY | 2/21/2007 | H3N2 | KF790334 | PA | 1/10/2013 |
| H3N2 | EU199345 | WI | 3/26/2007 | H3N2 | CY170895 | CA | 2/4/2013 |
| H3N2 | EU199359 | PA | 3/9/2007 | H3N2 | CY169919 | MA | 1/24/2013 |
| H3N2 | CY172767 | NY | 2/28/2007 | H3N2 | KF886306 | IL | 2/13/2013 |
| H3N2 | CY025859 | AL | 3/7/2007 | H3N2 | KF789640 | VT | 2/19/2013 |
| H3N2 | EU199272 | WI | 1/15/2007 | H3N2 | KF789628 | KS | 2/5/2013 |
| H3N2 | CY172831 | NY | 3/26/2007 | H3N2 | CY141189 | FL | 12/27/2012 |
| H3N2 | CY172783 | NY | 3/5/2007 | H3N2 | KF789619 | CT | 2/1/2013 |
| H3N2 | CY025907 | KY | 2/21/2007 | H3N2 | KF886312 | IL | 1/17/2013 |
| H3N2 | CY025747 | TX | 3/2/2007 | H3N2 | KF790028 | MI | 3/28/2013 |
| H3N2 | EU199271 | NY | 2/1/2007 | H3N2 | CY141219 | NJ | 1/3/2013 |
| H3N2 | EU199279 | NJ | 2/1/2007 | H3N2 | KF790066 | CO | 1/1/2013 |
| H3N2 | CY022876 | CO | 10/30/2006 | H3N2 | KF789741 | TN | 2/22/2013 |
| H3N2 | EU516100 | CA | 12/8/2006 | H3N2 | CY170511 | CA | 1/23/2013 |
| H3N2 | EU100685 | CA | 12/8/2006 | H3N2 | CY141251 | NC | 12/18/2012 |
| H3N2 | EU100686 | CA | 12/8/2006 | H3N2 | CY141250 | NC | 1/8/2013 |
| H3N2 | EU502585 | WI | 12/16/2006 | H3N2 | CY171431 | IL | 12/28/2012 |
| H3N2 | EU100716 | WI | 12/16/2006 | H3N2 | KM244531 | MS | 1/22/2013 |
| H3N2 | EU100670 | WI | 12/16/2006 | H3N2 | KF789906 | CA | 1/29/2013 |
| H3N2 | EU502584 | WI | 12/16/2006 | H3N2 | CY141184 | DC | 1/4/2013 |
| H3N2 | EU199255 | CO | 12/8/2006 | H3N2 | CY170527 | CA | 1/8/2013 |
| H3N2 | EU502573 | CO | 12/8/2006 | H3N2 | KF789977 | OR | 1/11/2013 |
| H3N2 | EU100701 | WI | 12/12/2006 | H3N2 | CY147291 | FL | 1/24/2013 |
| H3N2 | CY022882 | CO | 3/12/2007 | H3N2 | KM244541 | MS | 1/17/2013 |
| H3N2 | EU199280 | TN | 2/9/2007 | H3N2 | CY171487 | IL | 12/28/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU199267 | IN | 1/23/2007 | H3N2 | KF789656 | OR | 1/11/2013 |
| H3N2 | EU199268 | IN | 2/1/2007 | H3N2 | CY170535 | CA | 1/21/2013 |
| H3N2 | EU100714 | MD | 12/12/2006 | H3N2 | KM244542 | MS | 1/23/2013 |
| H3N2 | CY025341 | FL | 3/14/2007 | H3N2 | KF790041 | KS | 1/4/2013 |
| H3N2 | CY026243 | CA | 3/6/2007 | H3N2 | CY171263 | IL | 12/18/2012 |
| H3N2 | CY172791 | NY | 3/7/2007 | H3N2 | CY171255 | IL | 12/18/2012 |
| H3N2 | CY172903 | NY | 3/26/2007 | H3N2 | CY171423 | IL | 12/27/2012 |
| H3N2 | CY172775 | NY | 3/2/2007 | H3N2 | KF790478 | LA | 1/20/2013 |
| H3N2 | CY026019 | IL | 1/15/2007 | H3N2 | KF790357 | MS | 1/8/2013 |
| H3N2 | CYO26027 | IL | 1/15/2007 | H3N2 | KM244539 | MS | 1/9/2013 |
| H3N2 | CY026883 | KY | 2/5/2007 | H3N2 | KM244535 | MS | 1/4/2013 |
| H3N2 | CY027579 | CA | 2/28/2007 | H3N2 | CY141193 | FL | 1/4/2013 |
| H3N2 | CY092249 | CA | 4/30/2007 | H3N2 | CY170519 | CA | 1/13/2013 |
| H3N2 | CY022888 | CO | 4/2/2007 | H3N2 | CY170455 | CA | 1/23/2013 |
| H3N2 | CY025883 | VT | 3/1/2007 | H3N2 | KF790167 | WA | 10/13/2012 |
| H3N2 | CY025541 | VT | 2/26/2007 | H3N2 | KF789535 | CA | 2/2/2013 |
| H3N2 | CY172863 | NY | 4/15/2007 | H3N2 | KF789725 | MT | 12/12/2012 |
| H3N2 | CY172855 | NY | 4/13/2007 | H3N2 | KF789752 | OR | 11/11/2012 |
| H3N2 | CY027195 | VT | 3/1/2007 | H3N2 | CY135060 | TX | 12/4/2012 |
| H3N2 | CY025899 | IL | 2/27/2007 | H3N2 | CY134956 | TX | 11/28/2012 |
| H3N2 | CY025867 | VT | 3/2/2007 | H3N2 | CY168871 | MA | 12/26/2012 |
| H3N2 | CY025501 | VT | 3/2/2007 | H3N2 | CY182841 | TX | 12/18/2012 |
| H3N2 | CY025875 | VT | 2/27/2007 | H3N2 | KF789780 | KS | 12/5/2012 |
| H3N2 | CY033457 | VT | 2/16/2007 | H3N2 | CY183081 | TX | 1/4/2013 |
| H3N2 | CY034406 | VT | 3/5/2007 | H3N2 | KF790360 | OK | 1/21/2013 |
| H3N2 | CY025413 | VT | 3/5/2007 | H3N2 | KF790464 | OK | 1/21/2013 |
| H3N2 | EU516054 | CO | 2/6/2007 | H3N2 | CY141279 | WA | 12/27/2012 |
| H3N2 | EU199258 | CO | 1/17/2007 | H3N2 | KF789614 | MD | 2/10/2013 |
| H3N2 | CY172879 | NY | 4/24/2007 | H3N2 | CY186051 | TX | 1/22/2013 |
| H3N2 | EU199284 | VA | 3/14/2007 | H3N2 | CY141263 | TX | 1/8/2013 |
| H3N2 | EU199265 | TX | 1/30/2007 | H3N2 | CY182953 | TX | 12/29/2012 |
| H3N2 | CY022934 | IL | 2/4/2007 | H3N2 | CY186107 | TX | 1/15/2013 |
| H3N2 | EU199357 | MA | 3/6/2007 | H3N2 | CY183185 | TX | 1/9/2013 |
| H3N2 | EU199285 | VA | 3/5/2007 | H3N2 | CY186019 | TX | 1/22/2013 |
| H3N2 | CY172815 | NY | 3/16/2007 | H3N2 | CY135132 | TX | 12/7/2012 |
| H3N2 | EU199365 | VT | 4/11/2007 | H3N2 | CY134756 | TX | 11/12/2012 |
| H3N2 | CY172807 | NY | 3/15/2007 | H3N2 | KF790448 | CA | 10/28/2012 |
| H3N2 | EU199360 | SC | 2/28/2007 | H3N2 | KF789547 | PA | 2/20/2013 |
| H3N2 | EU199346 | WI | 3/10/2007 | H3N2 | KF789684 | RI | 11/28/2012 |
| H3N2 | CY172799 | NY | 3/8/2007 | H3N2 | KF790064 | VT | 12/5/2012 |
| H3N2 | CY027715 | IL | 2/24/2007 | H3N2 | KF790084 | VT | 12/5/2012 |
| H3N2 | CY026251 | CO | 3/7/2007 | H3N2 | KF790356 | UT | 1/3/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CYO22880 | CO | 3/5/2007 | H3N2 | CY135068 | TX | 12/4/2012 |
| H3N2 | CY092241 | CA | 3/19/2007 | H3N2 | CY182777 | TX | 12/15/2012 |
| H3N2 | CY025477 | IL | 2/19/2007 | H3N2 | CY186139 | TX | 1/20/2013 |
| H3N2 | CY026787 | CA | 3/7/2007 | H3N2 | CY186123 | TX | 1/27/2013 |
| H3N2 | CY027587 | IL | 3/6/2007 | H3N2 | KF790457 | NM | 1/18/2013 |
| H3N2 | EU199259 | GA | 1/16/2007 | H3N2 | CY183089 | TX | 1/5/2013 |
| H3N2 | EU199376 | TX | 2/27/2007 | H3N2 | CY141182 | CO | 1/4/2013 |
| H3N2 | EU199347 | TX | 3/8/2007 | H3N2 | KF790106 | KY | 10/7/2012 |
| H3N2 | CY034414 | NY | 3/14/2007 | H3N2 | CY134684 | MD | 12/3/2012 |
| H3N2 | CY172735 | NY | 2/10/2007 | H3N2 | CY141183 | DC | 12/28/2012 |
| H3N2 | CY025731 | NY | 3/6/2007 | H3N2 | KF790316 | DC | 12/17/2012 |
| H3N2 | CY172871 | NY | 4/16/2007 | H3N2 | CY170647 | CA | 1/7/2013 |
| H3N2 | CY025643 | NY | 1/17/2007 | H3N2 | KF790532 | MD | 4/3/2013 |
| H3N2 | CY172847 | NY | 4/13/2007 | H3N2 | CY141218 | NJ | 12/20/2012 |
| H3N2 | CY172839 | NY | 4/11/2007 | H3N2 | CY141176 | AL | 12/20/2012 |
| H3N2 | CY035882 | MS | 2/6/2007 | H3N2 | KM244551 | MS | 12/7/2012 |
| H3N2 | CY022891 | CO | 4/2/2007 | H3N2 | CY141213 | NE | 1/3/2013 |
| H3N2 | CY022890 | CO | 4/2/2007 | H3N2 | CY170479 | CA | 1/22/2013 |
| H3N2 | EU516105 | WI | 1/21/2007 | H3N2 | CY141280 | WA | 1/6/2013 |
| H3N2 | EU199273 | WI | 1/21/2007 | H3N2 | KF789618 | NE | 2/9/2013 |
| H3N2 | CY028443 | KY | 1/17/2007 | H3N2 | KF790361 | FL | 5/1/2013 |
| H3N2 | EU199368 | ID | 5/14/2007 | H3N2 | KF789998 | MT | 10/4/2012 |
| H3N2 | CY022889 | CO | 3/19/2007 | H3N2 | KF790109 | DE | 10/20/2012 |
| H3N2 | CY022884 | CO | 3/12/2007 | H3N2 | CY134675 | DE | 11/27/2012 |
| H3N2 | CY022883 | CO | 3/12/2007 | H3N2 | KF789701 | DE | 1/3/2013 |
| H3N2 | CY027547 | CO | 1/8/2007 | H3N2 | KF790429 | DE | 11/5/2012 |
| H3N2 | CY027539 | CO | 1/8/2007 | H3N2 | KF790440 | DE | 11/12/2012 |
| H3N2 | EU199257 | CO | 1/9/2007 | H3N2 | KF790286 | IN | 10/22/2012 |
| H3N2 | CY026771 | WA | 2/12/2007 | H3N2 | KF790275 | AZ | 10/22/2012 |
| H3N2 | EU502580 | WA | 12/18/2006 | H3N2 | KF790270 | AZ | 10/22/2012 |
| H3N2 | EU100700 | WA | 12/18/2006 | H3N2 | CY170991 | CA | 1/8/2013 |
| H3N2 | EU502579 | WA | 12/19/2006 | H3N2 | CY171231 | IL | 12/17/2012 |
| H3N2 | EU100699 | WA | 12/19/2006 | H3N2 | CY171055 | IL | 11/12/2012 |
| H3N2 | EU199274 | ID | 1/22/2007 | H3N2 | CY171047 | IL | 11/5/2012 |
| H3N2 | EU199270 | NY | 1/30/2007 | H3N2 | CY170591 | CA | 1/16/2013 |
| H3N2 | CY026843 | OR | 2/13/2007 | H3N2 | CY170727 | CA | 1/31/2013 |
| H3N2 | CY027795 | OR | 2/6/2007 | H3N2 | KF789613 | NC | 2/22/2013 |
| H3N2 | CY027075 | OR | 2/13/2007 | H3N2 | CY141252 | OH | 1/11/2013 |
| H3N2 | EU100698 | WA | 1/10/2007 | H3N2 | CY171239 | IL | 12/18/2012 |
| H3N2 | CY026163 | CO | 3/7/2007 | H3N2 | CY171119 | IL | 12/4/2012 |
| H3N2 | CY172823 | NY | 3/23/2007 | H3N2 | CY147297 | OK | 3/5/2013 |
| H3N2 | CY027107 | OR | 2/19/2007 | H3N2 | KF790011 | OK | 3/13/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY027683 | OR | 2/6/2007 | H3N2 | KF790345 | IN | 1/22/2013 |
| H3N2 | EU199371 | ID | 4/23/2007 | H3N2 | KF789871 | MI | 1/3/2013 |
| H3N2 | CY026035 | AL | 3/1/2007 | H3N2 | KF789829 | CT | 11/28/2012 |
| H3N2 | CY031555 | KY | 3/12/2007 | H3N2 | KF789591 | NJ | 11/19/2012 |
| H3N2 | CY022935 | IL | 3/18/2007 | H3N2 | KF789671 | NJ | 11/28/2012 |
| H3N2 | CY022892 | CO | 4/2/2007 | H3N2 | CY170551 | CA | 1/9/2013 |
| H3N2 | CY026827 | OR | 2/26/2007 | H3N2 | KF790384 | NM | 12/10/2012 |
| H3N2 | CY028475 | TX | 3/14/2007 | H3N2 | KF789842 | NC | 3/21/2013 |
| H3N2 | CY026667 | CO | 2/14/2007 | H3N2 | KF790404 | IA | 5/2/2013 |
| H3N2 | CY027867 | VA | 3/12/2007 | H3N2 | KF789810 | IA | 11/20/2012 |
| H3N2 | CY025421 | CA | 2/19/2007 | H3N2 | CY141199 | FL | 12/13/2012 |
| H3N2 | EU199367 | WA | 1/26/2007 | H3N2 | CY134664 | NY | 11/20/2012 |
| H3N2 | EU199361 | ID | 1/25/2007 | H3N2 | CY148500 | MA | 12/26/2012 |
| H3N2 | CY025707 | IL | 3/1/2007 | H3N2 | KF789958 | WV | 1/3/2013 |
| H3N2 | CY027123 | OR | 2/13/2007 | H3N2 | CY141246 | NY | 12/14/2012 |
| H3N2 | CY028371 | OR | 2/8/2007 | H3N2 | CY134726 | NY | 11/16/2012 |
| H3N2 | EU199369 | MN | 2/4/2007 | H3N2 | CY169215 | MA | 12/30/2012 |
| H3N2 | EU199378 | MN | 3/17/2007 | H3N2 | CY141239 | NY | 12/18/2012 |
| H3N2 | EU199262 | NM | 1/16/2007 | H3N2 | CY141229 | NY | 1/5/2013 |
| H3N2 | EU199261 | NM | 1/13/2007 | H3N2 | CY183169 | TX | 1/8/2013 |
| H3N2 | EU199264 | TX | 1/23/2007 | H3N2 | CY141228 | NY | 1/6/2013 |
| H3N2 | CY027563 | TX | 2/20/2007 | H3N2 | KJ741952 | CT | 12/30/2012 |
| H3N2 | CY025851 | TX | 2/26/2007 | H3N2 | KF789966 | RI | 4/3/2013 |
| H3N2 | EU199358 | MN | 4/27/2007 | H3N2 | CY141245 | NY | 12/15/2012 |
| H3N2 | CY022937 | LA | 3/11/2007 | H3N2 | KF790277 | NY | 10/20/2012 |
| H3N2 | CY026603 | WA | 2/8/2007 | H3N2 | KJ741968 | CT | 12/30/2012 |
| H3N2 | EU199266 | MO | 2/3/2007 | H3N2 | CY134680 | NY | 12/1/2012 |
| H3N2 | EU199281 | MO | 2/22/2007 | H3N2 | CY168231 | MA | 1/24/2013 |
| H3N2 | CY026259 | IL | 3/7/2007 | H3N2 | KJ741958 | CT | 12/30/2012 |
| H3N2 | CYO26747 | IL | 3/6/2007 | H3N2 | CY141220 | NY | 12/19/2012 |
| H3N2 | CYO26307 | VA | 1/8/2007 | H3N2 | CY168727 | MA | 12/23/2012 |
| H3N2 | CY030053 | CO | 2/28/2007 | H3N2 | CY134697 | NY | 11/27/2012 |
| H3N2 | CY027571 | CO | 3/7/2007 | H3N2 | CY134661 | NY | 11/28/2012 |
| H3N2 | CY025723 | CO | 3/6/2007 | H3N2 | CY134728 | NY | 11/16/2012 |
| H3N2 | CY054277 | PA | 3/3/2007 | H3N2 | KF790224 | RI | 11/6/2012 |
| H3N2 | EU199282 | MN | 2/14/2007 | H3N2 | CY134640 | NY | 12/1/2012 |
| H3N2 | CY172759 | NY | 2/16/2007 | H3N2 | CY134653 | NY | 12/6/2012 |
| H3N2 | CY058074 | PA | 3/3/2007 | H3N2 | CY134695 | NY | 11/30/2012 |
| H3N2 | CY028740 | VA | 3/1/2007 | H3N2 | CY148492 | MA | 12/26/2012 |
| H3N2 | CY026275 | TX | 3/9/2007 | H3N2 | CY134685 | NY | 12/3/2012 |
| H3N2 | EU199375 | TX | 5/31/2007 | H3N2 | CY168367 | MA | 1/21/2013 |
| H3N2 | EU199377 | SD | 1/23/2007 | H3N2 | CY134696 | NY | 11/26/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU199277 | NJ | 1/24/2007 | H3N2 | KF928622 | OK | 11/29/2012 |
| H3N2 | EU199260 | MO | 1/29/2007 | H3N2 | CY170759 | CA | 1/29/2013 |
| H3N2 | CY025755 | FL | 2/2/2007 | H3N2 | CY141215 | NV | 12/26/2012 |
| H3N2 | CY028299 | OH | 2/12/2007 | H3N2 | KF790331 | WA | 1/19/2013 |
| H3N2 | CY026555 | TX | 2/20/2007 | H3N2 | CY134676 | WA | 11/25/2012 |
| H3N2 | CY025277 | IL | 3/9/2007 | H3N2 | KF789847 | WA | 1/7/2013 |
| H3N2 | EU199344 | TX | 4/16/2007 | H3N2 | KF789828 | ID | 12/13/2012 |
| H3N2 | EU516042 | PA | 3/3/2007 | H3N2 | CY141254 | SC | 12/17/2012 |
| H3N2 | CY026707 | CO | 2/26/2007 | H3N2 | CY148940 | MA | 1/9/2013 |
| H3N2 | CY172743 | NY | 2/12/2007 | H3N2 | CY141181 | CO | 12/17/2012 |
| H3N2 | CY025603 | VT | 2/28/2007 | H3N2 | KF790348 | UT | 2/3/2013 |
| H3N2 | CY025611 | CO | 3/8/2007 | H3N2 | KF790330 | MD | 1/9/2013 |
| H3N2 | CY022879 | CO | 3/5/2007 | H3N2 | KF790329 | NV | 12/29/2012 |
| H3N2 | EU516049 | PA | 3/3/2007 | H3N2 | KF790339 | DE | 1/12/2013 |
| H3N2 | CY022893 | CO | 4/2/2007 | H3N2 | KF790076 | NE | 1/2/2013 |
| H3N2 | CY026923 | OH | 3/2/2007 | H3N2 | CY141257 | SD | 1/3/2013 |
| H3N2 | CY022886 | CO | 3/12/2007 | H3N2 | KF789544 | WA | 2/14/2013 |
| H3N2 | EU199379 | WY | 3/14/2007 | H3N2 | KF790418 | NH | 2/3/2013 |
| H3N2 | EU199364 | SD | 1/21/2007 | H3N2 | KF789799 | ID | 11/24/2012 |
| H3N2 | EU100722 | NC | 1/18/2007 | H3N2 | KF790438 | UT | 11/12/2012 |
| H3N2 | CY025349 | CO | 2/6/2007 | H3N2 | KF789957 | MT | 1/4/2013 |
| H3N2 | EU199370 | WA | 3/4/2007 | H3N2 | KF790065 | MN | 1/8/2013 |
| H3N2 | CY025715 | NY | 2/27/2007 | H3N2 | KF790307 | MO | 1/22/2013 |
| H3N2 | CY025931 | CO | 2/27/2007 | H3N2 | KF789541 | CO | 2/12/2013 |
| H3N2 | EU199283 | NC | 3/22/2007 | H3N2 | CY141178 | AL | 1/16/2013 |
| H3N2 | EU516045 | MI | 5/3/2007 | H3N2 | KF790516 | WA | 11/27/2012 |
| H3N2 | CY022887 | CO | 3/19/2007 | H3N2 | KF790077 | OR | 12/24/2012 |
| H3N2 | EU199373 | DE | 3/19/2007 | H3N2 | KF789818 | WA | 12/8/2012 |
| H3N2 | CY022885 | CO | 3/12/2007 | H3N2 | KF789637 | ID | 11/19/2012 |
| H3N2 | EU199372 | RI | 5/17/2007 | H3N2 | KF790527 | MN | 11/14/2012 |
| H3N2 | EU516032 | MI | 4/18/2007 | H3N2 | CY141211 | MD | 1/2/2013 |
| H3N2 | CY027499 | OH | 2/23/2007 | H3N2 | CY141269 | VA | 12/26/2012 |
| H3N2 | CY022894 | CO | 4/2/2007 | H3N2 | CY134674 | MD | 11/28/2012 |
| H3N2 | CY031994 | MD | 2/11/2008 | H3N2 | KF199856 | OK | 11/29/2012 |
| H3N2 | EU516073 | FL | 10/9/2007 | H3N2 | KF789753 | WA | 12/5/2012 |
| H3N2 | EU566973 | WI | 11/28/2007 | H3N2 | CY170663 | CA | 1/25/2013 |
| H3N2 | FJ975058 | OK | 12/5/2007 | H3N2 | CY141277 | WA | 12/31/2012 |
| H3N2 | FJ975061 | OK | 2/11/2008 | H3N2 | CY141271 | VA | 1/3/2013 |
| H3N2 | FJ975062 | OK | 2/11/2008 | H3N2 | KF789915 | DE | 12/18/2012 |
| H3N2 | EU516044 | NV | 10/5/2007 | H3N2 | CY141256 | SC | 12/19/2012 |
| H3N2 | EU779524 | ID | 2/1/2008 | H3N2 | KF790214 | ID | 10/9/2012 |
| H3N2 | EU516202 | AZ | 12/23/2007 | H3N2 | KF789590 | NV | 11/18/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | EU516067 | CA | 11/1/2007 | H3N2 | CY141191 | FL | 1/2/2013 |
| H3N2 | EU516203 | NC | 11/6/2007 | H3N2 | KF789539 | MI | 1/31/2013 |
| H3N2 | EU516212 | CA | 12/10/2007 | H3N2 | CY171015 | CA | 1/9/2013 |
| H3N2 | CY030034 | MD | 1/17/2008 | H3N2 | KF790503 | NV | 1/5/2013 |
| H3N2 | EU516213 | TN | 12/21/2007 | H3N2 | CY141205 | KY | 1/2/2013 |
| H3N2 | CY030021 | MD | 1/17/2008 | H3N2 | KF790127 | CO | 12/28/2012 |
| H3N2 | CY032018 | NJ | 2/7/2008 | H3N2 | KF886344 | MO | 2/11/2013 |
| H3N2 | CY031990 | MD | 1/27/2008 | H3N2 | KF789627 | CA | 1/30/2013 |
| H3N2 | EU779510 | FL | 2/6/2008 | H3N2 | KM244536 | MS | 1/4/2013 |
| H3N2 | CY032065 | SC | 2/22/2008 | H3N2 | KF789600 | MT | 11/17/2012 |
| H3N2 | CY044764 | MA | 2/27/2008 | H3N2 | KF790257 | AL | 10/29/2012 |
| H3N2 | CY032619 | SC | 2/29/2008 | H3N2 | KF789597 | AL | 11/19/2012 |
| H3N2 | EU567008 | WI | 11/21/2007 | H3N2 | KM244538 | MS | 1/9/2013 |
| H3N2 | CY031930 | CO | 1/28/2008 | H3N2 | KF789623 | KY | 2/7/2013 |
| H3N2 | CY032074 | SC | 3/20/2008 | H3N2 | KF790351 | KY | 1/9/2013 |
| H3N2 | CY037575 | OH | 2/26/2008 | H3N2 | KF790256 | PA | 10/24/2012 |
| H3N2 | EU885497 | LA | 1/10/2008 | H3N2 | KF790408 | TX | 4/29/2013 |
| H3N2 | EU716462 | LA | 1/2/2008 | H3N2 | KF790414 | NE | 1/2/2013 |
| H3N2 | CY032034 | OK | 2/4/2008 | H3N2 | CY141278 | WA | 1/1/2013 |
| H3N2 | CY032109 | TX | 1/24/2008 | H3N2 | CY171031 | CA | 1/24/2013 |
| H3N2 | CY032635 | MS | 2/27/2008 | H3N2 | KF789838 | WI | 3/5/2013 |
| H3N2 | CY032585 | TX | 3/3/2008 | H3N2 | KF790302 | NJ | 1/19/2013 |
| H3N2 | CY173271 | NY | 3/11/2008 | H3N2 | KF789731 | NM | 2/23/2013 |
| H3N2 | EU566995 | MO | 12/18/2007 | H3N2 | KF789954 | RI | 1/10/2013 |
| H3N2 | EU516211 | CA | 12/18/2007 | H3N2 | KF789891 | KS | 12/12/2012 |
| H3N2 | EU516215 | AZ | 12/27/2007 | H3N2 | KF790053 | WY | 1/3/2013 |
| H3N2 | EU516207 | WI | 12/20/2007 | H3N2 | CY170743 | CA | 1/9/2013 |
| H3N2 | CY030032 | NC | 1/12/2008 | H3N2 | CY183297 | TX | 1/13/2013 |
| H3N2 | CY030033 | NV | 1/14/2008 | H3N2 | CY183313 | TX | 1/19/2013 |
| H3N2 | EU885520 | NE | 1/22/2008 | H3N2 | CY134715 | FL | 11/13/2012 |
| H3N2 | EU779508 | MN | 1/21/2008 | H3N2 | CY148772 | MA | 1/10/2013 |
| H3N2 | CY032119 | TX | 1/25/2008 | H3N2 | CY148716 | MA | 1/10/2013 |
| H3N2 | EU779498 | MS | 1/25/2008 | H3N2 | KF790482 | FL | 4/1/2013 |
| H3N2 | CY036967 | NY | 2/25/2008 | H3N2 | KF789585 | FL | 11/23/2012 |
| H3N2 | EU779520 | MS | 1/23/2008 | H3N2 | KF789895 | NH | 12/14/2012 |
| H3N2 | EU885540 | WA | 12/12/2007 | H3N2 | KF789889 | WI | 12/11/2012 |
| H3N2 | EU516214 | WA | 12/12/2007 | H3N2 | CY169263 | MA | 12/31/2012 |
| H3N2 | EU516208 | AZ | 12/14/2007 | H3N2 | CY141282 | WA | 1/7/2013 |
| H3N2 | CY031920 | CA | 2/4/2008 | H3N2 | CY141202 | GA | 1/11/2013 |
| H3N2 | CY030030 | SC | 1/10/2008 | H3N2 | KF790232 | IA | 10/18/2012 |
| H3N2 | CY032113 | TX | 1/25/2008 | H3N2 | KF790248 | IA | 11/12/2012 |
| H3N2 | CY032121 | TX | 1/28/2008 | H3N2 | KF790311 | NE | 12/18/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY032112 | TX | 1/24/2008 | H3N2 | KF790419 | NY | 12/25/2012 |
| H3N2 | CY032000 | AR | 2/6/2008 | H3N2 | KJ741971 | CT | 12/27/2012 |
| H3N2 | CY032020 | NJ | 3/6/2008 | H3N2 | CY141276 | WA | 12/18/2012 |
| H3N2 | CY037863 | CA | 2/19/2008 | H3N2 | KJ741970 | CT | 12/29/2012 |
| H3N2 | EU852003 | NE | 1/24/2008 | H3N2 | KJ741969 | CT | 12/29/2012 |
| H3N2 | FJ975074 | OK | 3/1/2008 | H3N2 | CY141212 | NE | 12/18/2012 |
| H3N2 | CY037567 | KY | 2/25/2008 | H3N2 | CY168767 | MA | 12/24/2012 |
| H3N2 | CY038791 | CA | 2/13/2008 | H3N2 | CY171687 | IL | 1/14/2013 |
| H3N2 | CY031886 | AL | 3/14/2008 | H3N2 | KF790010 | WI | 4/8/2013 |
| H3N2 | CY038815 | CA | 2/20/2008 | H3N2 | CY183017 | TX | 1/2/2013 |
| H3N2 | EU516206 | NJ | 12/19/2007 | H3N2 | KF790459 | ND | 1/27/2013 |
| H3N2 | EU516062 | TX | 11/11/2007 | H3N2 | KF789841 | NJ | 3/11/2013 |
| H3N2 | EU516210 | FL | 11/14/2007 | H3N2 | KF790037 | ND | 3/30/2013 |
| H3N2 | EU516077 | FL | 11/7/2007 | H3N2 | KJ741953 | CT | 12/30/2012 |
| H3N2 | EU516205 | TX | 10/13/2007 | H3N2 | CY141274 | VA | 1/10/2013 |
| H3N2 | CY032029 | NC | 3/20/2008 | H3N2 | KF790039 | NY | 3/27/2013 |
| H3N2 | CY030036 | LA | 1/15/2008 | H3N2 | KF886335 | CA | 1/9/2013 |
| H3N2 | CY030044 | LA | 1/22/2008 | H3N2 | KF790416 | IA | 1/4/2013 |
| H3N2 | CY030012 | NV | 12/26/2007 | H3N2 | KF789879 | VA | 1/4/2013 |
| H3N2 | CY173111 | NY | 1/30/2008 | H3N2 | KF789630 | WY | 2/8/2013 |
| H3N2 | CY038839 | CA | 2/21/2008 | H3N2 | CY141210 | MD | 1/2/2013 |
| H3N2 | CY044500 | MA | 1/28/2008 | H3N2 | CY149124 | MA | 1/15/2013 |
| H3N2 | CY032014 | NV | 1/30/2008 | H3N2 | KF886341 | SC | 1/24/2013 |
| H3N2 | EU885526 | VT | 2/1/2008 | H3N2 | CY141180 | AZ | 1/3/2013 |
| H3N2 | CY032200 | MD | 2/1/2008 | H3N2 | KF790403 | DE | 2/1/2013 |
| H3N2 | CY034424 | NV | 2/19/2008 | H3N2 | KF789770 | NC | 12/10/2012 |
| H3N2 | CYO31925 | CA | 3/4/2008 | H3N2 | CY130197 | OK | 10/5/2012 |
| H3N2 | FJ532086 | IL | 2/19/2008 | H3N2 | KF790514 | AZ | 12/12/2012 |
| H3N2 | CY173183 | NY | 2/18/2008 | H3N2 | CY141216 | NV | 1/11/2013 |
| H3N2 | CY044461 | MA | 2/26/2008 | H3N2 | CY170495 | CA | 1/29/2013 |
| H3N2 | EU779532 | GA | 2/26/2008 | H3N2 | KF789567 | ID | 2/15/2013 |
| H3N2 | CY044740 | MA | 2/26/2008 | H3N2 | KF789767 | NM | 4/30/2013 |
| H3N2 | FJ549055 | IL | 2/19/2008 | H3N2 | CY148412 | MA | 12/2/2012 |
| H3N2 | EU851999 | NY | 2/13/2008 | H3N2 | CY168951 | MA | 12/26/2012 |
| H3N2 | FJ549056 | NY | 2/13/2008 | H3N2 | CY148644 | MA | 12/21/2012 |
| H3N2 | CY173175 | NY | 2/13/2008 | H3N2 | CY169295 | MA | 12/31/2012 |
| H3N2 | CY034463 | WA | 2/27/2008 | H3N2 | CY169599 | MA | 1/5/2013 |
| H3N2 | CY032040 | OK | 2/19/2008 | H3N2 | CY168775 | MA | 12/24/2012 |
| H3N2 | CY031884 | AL | 2/15/2008 | H3N2 | KJ741961 | CT | 12/30/2012 |
| H3N2 | CY032011 | NE | 2/15/2008 | H3N2 | CY169271 | MA | 12/31/2012 |
| H3N2 | CY030003 | NV | 12/26/2007 | H3N2 | CY168695 | MA | 12/22/2012 |
| H3N2 | CY032035 | OK | 2/6/2008 | H3N2 | CY134705 | CO | 10/30/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY031903 | AR | 2/14/2008 | H3N2 | CY141201 | GA | 1/4/2013 |
| H3N2 | CY030048 | OK | 1/23/2008 | H3N2 | KF790129 | VA | 4/4/2013 |
| H3N2 | CY030017 | CO | 1/22/2008 | H3N2 | KF790137 | OK | 1/4/2013 |
| H3N2 | CY031921 | CA | 2/9/2008 | H3N2 | CY147304 | SC | 3/29/2013 |
| H3N2 | CY032085 | SD | 3/28/2008 | H3N2 | KF886315 | SC | 1/9/2013 |
| H3N2 | CY032627 | OK | 2/26/2008 | H3N2 | KF790201 | NC | 1/3/2013 |
| H3N2 | CY044780 | MA | 3/1/2008 | H3N2 | CY141268 | VA | 12/19/2012 |
| H3N2 | CY037847 | KS | 3/5/2008 | H3N2 | KF790119 | LA | 4/11/2013 |
| H3N2 | EU885532 | OR | 3/11/2008 | H3N2 | CY141249 | NC | 12/27/2012 |
| H3N2 | CY032108 | TX | 1/24/2008 | H3N2 | KJ741964 | CT | 12/30/2012 |
| H3N2 | CY032032 | OK | 1/30/2008 | H3N2 | KF789736 | MT | 2/21/2013 |
| H3N2 | EU716446 | MD | 1/29/2008 | H3N2 | CY134713 | OK | 11/13/2012 |
| H3N2 | EU885516 | NJ | 3/14/2008 | H3N2 | CY141194 | FL | 1/4/2013 |
| H3N2 | CY031933 | CO | 2/3/2008 | H3N2 | KF789560 | FL | 2/12/2013 |
| H3N2 | CY032019 | NJ | 2/14/2008 | H3N2 | KJ741962 | CT | 12/29/2012 |
| H3N2 | CY032136 | TX | 2/5/2008 | H3N2 | KJ741966 | CT | 12/30/2012 |
| H3N2 | CY032579 | OK | 2/28/2008 | H3N2 | KF789840 | CA | 2/21/2013 |
| H3N2 | CY044548 | MA | 2/7/2008 | H3N2 | CY147299 | CA | 3/7/2013 |
| H3N2 | CY032189 | WA | 3/26/2008 | H3N2 | KF790362 | NY | 4/10/2013 |
| H3N2 | CY032649 | TX | 2/11/2008 | H3N2 | KJ741960 | CT | 12/29/2012 |
| H3N2 | CY031939 | FL | 3/3/2008 | H3N2 | KF789949 | NY | 3/18/2013 |
| H3N2 | CY034471 | CA | 3/4/2008 | H3N2 | KF790389 | MN | 4/16/2013 |
| H3N2 | CY034445 | CA | 2/20/2008 | H3N2 | KF789888 | NJ | 5/15/2013 |
| H3N2 | CY032634 | AL | 2/27/2008 | H3N2 | KF790032 | FL | 3/21/2013 |
| H3N2 | CY031890 | AZ | 3/27/2008 | H1N1 | EU516143 | NJ | 1/23/2007 |
| H3N2 | CY034451 | WA | 5/7/2008 | H1N1 | CY026627 | NY | 2/7/2007 |
| H3N2 | EU851993 | LA | 1/13/2008 | H1N1 | CY027603 | NY | 2/16/2007 |
| H3N2 | CY038495 | PA | 2/21/2008 | H1N1 | EU199325 | MD | 1/30/2007 |
| H3N2 | EU716492 | VA | 2/5/2008 | H1N1 | CY026523 | CO | 1/22/2007 |
| H3N2 | CY044540 | MA | 2/6/2008 | H1N1 | EU199355 | NY | 4/2/2007 |
| H3N2 | EU851995 | LA | 1/12/2008 | H1N1 | CY172631 | NY | 2/6/2007 |
| H3N2 | CY032008 | NE | 2/6/2008 | H1N1 | EU716569 | CA | 12/6/2006 |
| H3N2 | CY031938 | FL | 2/14/2008 | H1N1 | EU199354 | CA | 1/29/2007 |
| H3N2 | CY034461 | WA | 3/27/2008 | H1N1 | EU199348 | CA | 12/14/2006 |
| H3N2 | CY032007 | NE | 2/6/2008 | H1N1 | CY026539 | CA | 2/21/2007 |
| H3N2 | CY037799 | OH | 2/18/2008 | H1N1 | CY028307 | CA | 3/1/2007 |
| H3N2 | CY030023 | OK | 1/23/2008 | H1N1 | CY026587 | KY | 3/1/2007 |
| H3N2 | CY044596 | MA | 2/15/2008 | H1N1 | CY026371 | MS | 2/20/2007 |
| H3N2 | CY044429 | MA | 2/13/2008 | H1N1 | CY026699 | TN | 1/18/2007 |
| H3N2 | EU885501 | FL | 2/5/2008 | H1N1 | EU716572 | CA | 1/13/2007 |
| H3N2 | CY032565 | TX | 2/12/2008 | H1N1 | CY028315 | TX | 2/8/2007 |
| H3N2 | CY034443 | CA | 2/19/2008 | H1N1 | EU199328 | TX | 1/31/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY034442 | CA | 2/15/2008 | H1N1 | CY031140 | TN | 2/12/2007 |
| H3N2 | CY032015 | NV | 1/30/2008 | H1N1 | CY026499 | TX | 3/1/2007 |
| H3N2 | CY031922 | CA | 2/9/2008 | H1N1 | CYO26339 | TX | 3/7/2007 |
| H3N2 | CY032167 | TX | 2/22/2008 | H1N1 | CY027883 | TX | 3/5/2007 |
| H3N2 | CY044644 | MA | 2/20/2008 | H1N1 | CYO28323 | TX | 1/11/2007 |
| H3N2 | CY034470 | MS | 3/3/2008 | H1N1 | CYO25445 | TX | 3/1/2007 |
| H3N2 | CY031896 | AR | 2/5/2008 | H1N1 | CYO28219 | TX | 2/26/2007 |
| H3N2 | CY031919 | CA | 2/6/2008 | H1N1 | CY027043 | IL | 2/1/2007 |
| H3N2 | CY032046 | OK | 2/13/2008 | H1N1 | CY028075 | TN | 1/26/2007 |
| H3N2 | CY173159 | NY | 2/6/2008 | H1N1 | CY028395 | TN | 2/14/2007 |
| H3N2 | CY032173 | TX | 3/13/2008 | H1N1 | CY172711 | NY | 1/27/2007 |
| H3N2 | CY030046 | NE | 1/24/2008 | H1N1 | EU199353 | SD | 1/27/2007 |
| H3N2 | CY034469 | TX | 3/5/2008 | H1N1 | CY027771 | OK | 1/22/2007 |
| H3N2 | CY044588 | MA | 2/14/2008 | H1N1 | EU100704 | FL | 12/14/2006 |
| H3N2 | CY044620 | MA | 2/19/2008 | H1N1 | EU100712 | WI | 12/19/2006 |
| H3N2 | CY032043 | OK | 2/22/2008 | H1N1 | CY025213 | TX | 12/20/2006 |
| H3N2 | CY044788 | MA | 3/2/2008 | H1N1 | CY028339 | FL | 2/7/2007 |
| H3N2 | CY037735 | KY | 2/27/2008 | H1N1 | CY026659 | FL | 3/5/2007 |
| H3N2 | CY037687 | KY | 2/20/2008 | H1N1 | CY027955 | OR | 2/5/2007 |
| H3N2 | CY031931 | CO | 1/27/2008 | H1N1 | CY026899 | OR | 2/8/2007 |
| H3N2 | CY031932 | CO | 2/4/2008 | H1N1 | CY027691 | OR | 2/5/2007 |
| H3N2 | CY044708 | MA | 2/24/2008 | H1N1 | CY028211 | OR | 2/7/2007 |
| H3N2 | CY030052 | SC | 1/3/2008 | H1N1 | CY027083 | OR | 2/9/2007 |
| H3N2 | CY031898 | AR | 2/8/2008 | H1N1 | CY027203 | MS | 1/22/2007 |
| H3N2 | CY030051 | VA | 1/23/2008 | H1N1 | CY028756 | VA | 2/6/2007 |
| H3N2 | CY032130 | TX | 2/1/2008 | H1N1 | CY027747 | TN | 2/27/2007 |
| H3N2 | EU779502 | IN | 1/22/2008 | H1N1 | CY037783 | TN | 1/29/2007 |
| H3N2 | CY032101 | TX | 1/22/2008 | H1N1 | CY027379 | TN | 1/29/2007 |
| H3N2 | CY032628 | OK | 2/27/2008 | H1N1 | CY026891 | TN | 1/26/2007 |
| H3N2 | CY031924 | CA | 2/12/2008 | H1N1 | CY027731 | TN | 3/5/2007 |
| H3N2 | CY031895 | AR | 2/4/2008 | H1N1 | CY028379 | VA | 2/19/2007 |
| H3N2 | CY031892 | AR | 1/23/2008 | H1N1 | CY027835 | KS | 1/26/2007 |
| H3N2 | CY031911 | AR | 2/13/2008 | H1N1 | CY028035 | KY | 1/19/2007 |
| H3N2 | EU885507 | IN | 2/20/2008 | H1N1 | CY027723 | TN | 1/29/2007 |
| H3N2 | CY032016 | NV | 2/8/2008 | H1N1 | CY172695 | NY | 4/10/2007 |
| H3N2 | CY032618 | SC | 2/29/2008 | H1N1 | CY025771 | FL | 2/14/2007 |
| H3N2 | CY032022 | NM | 2/11/2008 | H1N1 | CY027315 | FL | 2/7/2007 |
| H3N2 | CY173087 | NY | 1/18/2008 | H1N1 | CY025659 | VT | 2/15/2007 |
| H3N2 | CY030561 | CA | 2/2/2008 | H1N1 | CY025795 | VT | 1/26/2007 |
| H3N2 | CY031923 | CA | 2/10/2008 | H1N1 | CY028003 | TN | 2/15/2007 |
| H3N2 | CY037543 | CA | 2/19/2008 | H1N1 | CY027131 | TN | 1/29/2007 |
| H3N2 | CY044445 | MA | 2/24/2008 | H1N1 | CY172727 | NY | 2/11/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY044453 | MA | 2/25/2008 | H1N1 | CY027019 | KY | 2/6/2007 |
| H3N2 | CY032609 | WA | 2/27/2008 | H1N1 | CY027163 | TX | 2/15/2007 |
| H3N2 | CY032576 | AR | 2/22/2008 | H1N1 | CY026963 | TX | 2/5/2007 |
| H3N2 | CY034446 | CA | 2/20/2008 | H1N1 | CY037775 | TN | 2/20/2007 |
| H3N2 | CY030037 | IL | 1/17/2008 | H1N1 | CY027451 | TN | 2/26/2007 |
| H3N2 | CY031913 | AR | 2/15/2008 | H1N1 | CY028083 | KY | 2/22/2007 |
| H3N2 | CY031899 | AR | 2/11/2008 | H1N1 | CY028051 | KY | 2/26/2007 |
| H3N2 | CY031906 | AR | 2/14/2008 | H1N1 | CY172679 | NY | 2/28/2007 |
| H3N2 | CY031897 | AR | 2/6/2008 | H1N1 | EU516296 | CA | 1/29/2007 |
| H3N2 | CY038831 | OH | 2/21/2008 | H1N1 | CY027659 | TX | 1/31/2007 |
| H3N2 | CY032135 | TX | 2/4/2008 | H1N1 | CY025955 | TX | 2/6/2007 |
| H3N2 | CY031916 | CA | 2/2/2008 | H1N1 | CY026211 | TX | 2/6/2007 |
| H3N2 | EU779534 | TX | 3/12/2008 | H1N1 | CY026267 | TX | 2/15/2007 |
| H3N2 | CY044628 | MA | 2/19/2008 | H1N1 | CY026187 | TX | 2/15/2007 |
| H3N2 | CY044724 | MA | 2/24/2008 | H1N1 | CY027323 | TX | 2/19/2007 |
| H3N2 | CY032039 | OK | 2/14/2008 | H1N1 | CY026403 | TX | 2/13/2007 |
| H3N2 | CY032118 | TX | 1/22/2008 | H1N1 | EU199349 | CA | 1/23/2007 |
| H3N2 | CY032147 | TX | 2/14/2008 | H1N1 | CY025389 | TX | 2/22/2007 |
| H3N2 | CY032155 | TX | 2/19/2008 | H1N1 | EU199352 | CA | 1/25/2007 |
| H3N2 | CY032002 | MS | 2/8/2008 | H1N1 | CY096851 | CO | 3/1/2007 |
| H3N2 | CY031926 | CA | 3/8/2008 | H1N1 | CY025357 | KY | 2/20/2007 |
| H3N2 | CY032204 | MD | 2/5/2008 | H1N1 | CY025509 | KY | 1/29/2007 |
| H3N2 | CY032024 | NM | 2/13/2008 | H1N1 | CY026515 | KY | 1/23/2007 |
| H3N2 | CY031937 | CO | 2/12/2008 | H1N1 | CY025261 | KY | 1/23/2007 |
| H3N2 | CY173223 | NY | 2/27/2008 | H1N1 | EU100706 | IA | 12/29/2006 |
| H3N2 | CY037671 | KY | 2/14/2008 | H1N1 | CY026531 | CA | 2/14/2007 |
| H3N2 | CY044333 | TX | 1/7/2008 | H1N1 | CY028459 | CA | 2/26/2007 |
| H3N2 | CY032131 | TX | 2/5/2008 | H1N1 | EU199286 | NM | 2/5/2007 |
| H3N2 | CY032063 | SC | 2/25/2008 | H1N1 | CY025493 | KY | 1/18/2007 |
| H3N2 | CY032069 | SC | 3/3/2008 | H1N1 | CY028139 | KS | 2/5/2007 |
| H3N2 | CY032004 | MS | 2/5/2008 | H1N1 | CY027211 | CA | 3/9/2007 |
| H3N2 | EU852009 | IA | 3/23/2008 | H1N1 | CY172591 | NY | 1/29/2007 |
| H3N2 | CY032005 | MS | 2/5/2008 | H1N1 | CY027227 | CO | 3/5/2007 |
| H3N2 | CY030556 | MS | 2/7/2008 | H1N1 | CY027139 | OH | 2/6/2007 |
| H3N2 | CY032001 | MS | 2/8/2008 | H1N1 | CY027355 | CA | 3/7/2007 |
| H3N2 | CY037511 | MS | 2/14/2008 | H1N1 | CY172703 | NY | 1/10/2007 |
| H3N2 | CY037719 | MS | 2/25/2008 | H1N1 | EU199308 | IL | 12/11/2006 |
| H3N2 | CY030552 | MS | 2/5/2008 | H1N1 | CY027467 | OH | 2/23/2007 |
| H3N2 | CY030553 | MS | 2/6/2008 | H1N1 | CY027763 | OH | 1/30/2007 |
| H3N2 | CY030557 | MS | 2/6/2008 | H1N1 | CY172623 | NY | 2/6/2007 |
| H3N2 | CY030555 | MS | 2/5/2008 | H1N1 | CYO25221 | MI | 12/28/2006 |
| H3N2 | CY032003 | MS | 2/8/2008 | H1N1 | CY027243 | TN | 1/29/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY032105 | TX | 1/22/2008 | H1N1 | CY025667 | KY | 3/8/2007 |
| H3N2 | CY031917 | CA | 2/3/2008 | H1N1 | CY026979 | KY | 2/5/2007 |
| H3N2 | CY031935 | CO | 2/13/2008 | H1N1 | CY025939 | KY | 3/7/2007 |
| H3N2 | EU716449 | TX | 1/15/2008 | H1N1 | CY026227 | KY | 3/7/2007 |
| H3N2 | CY032013 | NV | 1/17/2008 | H1N1 | CY027371 | KY | 2/26/2007 |
| H3N2 | CY030038 | CO | 1/24/2008 | H1N1 | CY028147 | KY | 2/6/2007 |
| H3N2 | EU716512 | WI | 1/30/2008 | H1N1 | CY027675 | KY | 2/27/2007 |
| H3N2 | CY031993 | MD | 2/5/2008 | H1N1 | EU199338 | TX | 2/6/2007 |
| H3N2 | CY032010 | NE | 2/14/2008 | H1N1 | CY025285 | NY | 2/22/2007 |
| H3N2 | CY173167 | NY | 2/10/2008 | H1N1 | CY025373 | CA | 2/26/2007 |
| H3N2 | EU716486 | NJ | 1/25/2008 | H1N1 | CY026355 | CA | 2/9/2007 |
| H3N2 | CY031918 | CA | 2/4/2008 | H1N1 | CY028772 | VA | 2/20/2007 |
| H3N2 | CY032573 | TX | 2/13/2008 | H1N1 | CY027843 | CA | 1/30/2007 |
| H3N2 | CY032629 | OK | 2/27/2008 | H1N1 | CY025587 | TX | 3/6/2007 |
| H3N2 | CY044437 | MA | 2/21/2008 | H1N1 | CY028403 | OH | 2/23/2007 |
| H3N2 | CY032568 | TX | 2/11/2008 | H1N1 | CY026643 | NY | 2/13/2007 |
| H3N2 | CY031980 | LA | 2/1/2008 | H1N1 | CY041450 | CA | 2/26/2007 |
| H3N2 | CY032622 | TX | 2/27/2008 | H1N1 | CY172567 | NY | 12/27/2006 |
| H3N2 | EU779506 | MN | 1/11/2008 | H1N1 | CY172559 | NY | 12/17/2006 |
| H3N2 | EU716476 | GA | 1/22/2008 | H1N1 | EU199309 | WI | 12/29/2006 |
| H3N2 | FJ975059 | OK | 1/20/2008 | H1N1 | EU199350 | NE | 2/6/2007 |
| H3N2 | EU779526 | OK | 2/16/2008 | H1N1 | CY172575 | NY | 1/4/2007 |
| H3N2 | FJ975060 | OK | 1/20/2008 | H1N1 | CY026219 | KY | 1/12/2007 |
| H3N2 | CY032124 | TX | 1/30/2008 | H1N1 | CY172599 | NY | 2/3/2007 |
| H3N2 | CY032038 | OK | 2/12/2008 | H1N1 | CY172615 | NY | 2/5/2007 |
| H3N2 | CY036999 | OH | 3/6/2008 | H1N1 | CY027419 | TN | 2/13/2007 |
| H3N2 | CY031889 | AZ | 2/7/2008 | H1N1 | CY025595 | IL | 2/26/2007 |
| H3N2 | CY032607 | SD | 3/6/2008 | H1N1 | CY025437 | IL | 2/19/2007 |
| H3N2 | CY034444 | CA | 2/20/2008 | H1N1 | CY026795 | IL | 3/1/2007 |
| H3N2 | CY032021 | NM | 2/7/2008 | H1N1 | CY027147 | NC | 12/18/2006 |
| H3N2 | CY031936 | CO | 2/12/2008 | H1N1 | CY027235 | VA | 1/30/2007 |
| H3N2 | CY032023 | NM | 2/11/2008 | H1N1 | CY026907 | VA | 2/13/2007 |
| H3N2 | CY039111 | OH | 2/19/2008 | H1N1 | CY026859 | NC | 1/29/2007 |
| H3N2 | CY032631 | CA | 2/22/2008 | H1N1 | CY027707 | VA | 3/7/2007 |
| H3N2 | CY034438 | OK | 2/21/2008 | H1N1 | CY027939 | VA | 2/14/2007 |
| H3N2 | CY030041 | AL | 1/25/2008 | H1N1 | CY028419 | IL | 2/8/2007 |
| H3N2 | CY032115 | TX | 1/23/2008 | H1N1 | CY027275 | IL | 1/30/2007 |
| H3N2 | CY032102 | TX | 1/22/2008 | H1N1 | CY027699 | IL | 1/31/2007 |
| H3N2 | CY032144 | TX | 2/12/2008 | H1N1 | CY027483 | IL | 1/30/2007 |
| H3N2 | CY032037 | OK | 2/12/2008 | H1N1 | CY027819 | IL | 1/25/2007 |
| H3N2 | CY044580 | MA | 2/14/2008 | H1N1 | CY027091 | IL | 2/1/2007 |
| H3N2 | CY032599 | TX | 2/10/2008 | H1N1 | CY026971 | IL | 1/29/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY037647 | KY | 3/20/2008 | H1N1 | CY027435 | IL | 1/29/2007 |
| H3N2 | CY044612 | MA | 2/19/2008 | H1N1 | CY028067 | IL | 1/29/2007 |
| H3N2 | CY030043 | IL | 1/17/2008 | H1N1 | CY027395 | IL | 2/1/2007 |
| H3N2 | CY032009 | NE | 2/8/2008 | H1N1 | CY172607 | NY | 2/5/2007 |
| H3N2 | CY044524 | MA | 1/31/2008 | H1N1 | CY027851 | KS | 1/30/2007 |
| H3N2 | CY044676 | MA | 2/21/2008 | H1N1 | CY172719 | NY | 2/9/2007 |
| H3N2 | CY044668 | MA | 2/21/2008 | H1N1 | CY027595 | TX | 2/27/2007 |
| H3N2 | CY044716 | MA | 2/24/2008 | H1N1 | EU199303 | PA | 11/20/2006 |
| H3N2 | CY044636 | MA | 2/19/2008 | H1N1 | CY025763 | VT | 3/2/2007 |
| H3N2 | CY032141 | TX | 2/7/2008 | H1N1 | CY025819 | VT | 3/11/2007 |
| H3N2 | CY032574 | SD | 3/11/2008 | H1N1 | CY026571 | VT | 3/12/2007 |
| H3N2 | EU885518 | TN | 3/21/2008 | H1N1 | CY026619 | VT | 3/5/2007 |
| H3N2 | FJ686925 | TN | 3/21/2008 | H1N1 | CY037463 | VT | 3/2/2007 |
| H3N2 | CY031981 | LA | 2/5/2008 | H1N1 | CY025469 | VT | 3/12/2007 |
| H3N2 | CY037495 | OH | 2/14/2008 | H1N1 | CY026171 | VT | 3/12/2007 |
| H3N2 | CY031983 | LA | 3/6/2008 | H1N1 | CY025301 | VT | 1/22/2007 |
| H3N2 | CY038847 | KS | 2/26/2008 | H1N1 | CY025651 | VT | 1/26/2007 |
| H3N2 | CY030550 | MS | 2/5/2008 | H1N1 | CY027099 | FL | 1/22/2007 |
| H3N2 | CY031955 | IL | 2/6/2008 | H1N1 | CY027611 | FL | 2/27/2007 |
| H3N2 | CY032569 | IL | 2/12/2008 | H1N1 | CY026547 | FL | 3/13/2007 |
| H3N2 | CY031904 | AR | 2/14/2008 | H1N1 | CY037455 | VT | 2/16/2007 |
| H3N2 | CY173263 | NY | 3/12/2008 | H1N1 | CY026755 | VT | 3/8/2007 |
| H3N2 | CY034425 | SC | 2/20/2008 | H1N1 | CY172687 | NY | 3/19/2007 |
| H3N2 | CY044381 | NY | 3/17/2008 | H1N1 | CY172639 | NY | 2/7/2007 |
| H3N2 | CY036935 | PA | 2/20/2008 | H1N1 | EU199332 | MN | 1/25/2007 |
| H3N2 | CY037487 | KS | 2/12/2008 | H1N1 | EU100703 | FL | 12/19/2006 |
| H3N2 | CY031934 | CO | 2/13/2008 | H1N1 | CY025891 | MS | 3/7/2007 |
| H3N2 | CY041458 | OH | 2/13/2008 | H1N1 | CY025317 | MS | 2/12/2007 |
| H3N2 | CY031940 | FL | 3/3/2008 | H1N1 | CY025803 | MS | 1/22/2007 |
| H3N2 | CY038783 | MS | 2/11/2008 | H1N1 | CY027251 | TN | 2/14/2007 |
| H3N2 | CY032643 | OK | 2/13/2008 | H1N1 | CY028411 | VA | 2/19/2007 |
| H3N2 | CY032617 | SC | 2/29/2008 | H1N1 | CY027475 | TN | 2/12/2007 |
| H3N2 | CY032082 | SD | 3/6/2008 | H1N1 | CY026939 | VA | 2/5/2007 |
| H3N2 | FJ975057 | OK | 1/24/2008 | H1N1 | CY026731 | NY | 1/31/2007 |
| H3N2 | CY031910 | AR | 2/13/2008 | H1N1 | CY026379 | NY | 1/23/2007 |
| H3N2 | CY032177 | WA | 2/19/2008 | H1N1 | CY028099 | VA | 2/22/2007 |
| H3N2 | CY034466 | WA | 2/27/2008 | H1N1 | CY172671 | NY | 2/28/2007 |
| H3N2 | CY032178 | WA | 2/18/2008 | H1N1 | CY028027 | OH | 3/6/2007 |
| H3N2 | CY030027 | WA | 1/23/2008 | H1N1 | CY027635 | TN | 2/22/2007 |
| H3N2 | CY032176 | WA | 2/12/2008 | H1N1 | CY025995 | VA | 1/29/2007 |
| H3N2 | CY032181 | WA | 2/22/2008 | H1N1 | CY027899 | CO | 3/1/2007 |
| H3N2 | CY032175 | WA | 1/29/2008 | H1N1 | CY026835 | VA | 2/1/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY032180 | WA | 2/20/2008 | H1N1 | CY026363 | TX | 2/6/2007 |
| H3N2 | CY032614 | WA | 2/29/2008 | H1N1 | CY027555 | TX | 2/7/2007 |
| H3N2 | CY037599 | KS | 2/28/2008 | H1N1 | CY025563 | TX | 2/27/2007 |
| H3N2 | CY032577 | MS | 2/26/2008 | H1N1 | CY027179 | TX | 2/6/2007 |
| H3N2 | CY037727 | FL | 2/26/2008 | H1N1 | CY025397 | TX | 2/7/2007 |
| H3N2 | CY032187 | WA | 3/22/2008 | H1N1 | CY025293 | TX | 2/21/2007 |
| H3N2 | CY034455 | WA | 3/4/2008 | H1N1 | CY026347 | TX | 2/13/2007 |
| H3N2 | CY034476 | WA | 3/4/2008 | H1N1 | CY026635 | TX | 2/15/2007 |
| H3N2 | CY032636 | MS | 2/27/2008 | H1N1 | CY027027 | VA | 2/12/2007 |
| H3N2 | CY032613 | WA | 2/29/2008 | H1N1 | CY025987 | VA | 2/12/2007 |
| H3N2 | EU885514 | WA | 3/3/2008 | H1N1 | CY027755 | VA | 1/30/2007 |
| H3N2 | CY032639 | MS | 2/29/2008 | H1N1 | CY027931 | OR | 2/13/2007 |
| H3N2 | CY032188 | WA | 3/26/2008 | H1N1 | CY027827 | VA | 1/25/2007 |
| H3N2 | CY034459 | WA | 3/12/2008 | H1N1 | CY027491 | TN | 3/1/2007 |
| H3N2 | CY032610 | WA | 2/27/2008 | H1N1 | CY025381 | AL | 2/28/2007 |
| H3N2 | CY032096 | TN | 3/25/2008 | H1N1 | CY026715 | TX | 3/12/2007 |
| H3N2 | CY032075 | SC | 3/27/2008 | H1N1 | CY027963 | OK | 2/12/2007 |
| H3N2 | CY032638 | MS | 2/28/2008 | H1N1 | CY025365 | TX | 1/11/2007 |
| H3N2 | CY031998 | MS | 3/3/2008 | H1N1 | CY028331 | TX | 2/12/2007 |
| H3N2 | CY032071 | SC | 3/10/2008 | H1N1 | CY025269 | TX | 3/5/2007 |
| H3N2 | CY032612 | WA | 2/29/2008 | H1N1 | CY027891 | CA | 2/27/2007 |
| H3N2 | CY041474 | FL | 3/12/2008 | H1N1 | CY026675 | CA | 2/20/2007 |
| H3N2 | CY044852 | MA | 3/14/2008 | H1N1 | CY028467 | CA | 3/8/2007 |
| H3N2 | EU716453 | WI | 2/7/2008 | H1N1 | EU516022 | OH | 12/28/2006 |
| H3N2 | CY032058 | SC | 1/28/2008 | H1N1 | CY026579 | CO | 1/30/2007 |
| H3N2 | CY037855 | OH | 2/14/2008 | H1N1 | EU100708 | NM | 12/31/2006 |
| H3N2 | CY173151 | NY | 2/6/2008 | H1N1 | CY031571 | OH | 3/12/2007 |
| H3N2 | CY032611 | WA | 2/28/2008 | H1N1 | CY027219 | KY | 1/12/2007 |
| H3N2 | CY037519 | OH | 2/18/2008 | H1N1 | CY031148 | OH | 2/6/2007 |
| H3N2 | CY035054 | PA | 1/15/2008 | H1N1 | CY026651 | KY | 1/12/2007 |
| H3N2 | CY038487 | PA | 2/5/2008 | H1N1 | CY025309 | KY | 1/26/2007 |
| H3N2 | CY034457 | WA | 3/9/2008 | H1N1 | CY025547 | TX | 3/7/2007 |
| H3N2 | CY031956 | IL | 2/6/2008 | H1N1 | CY026739 | KY | 1/22/2007 |
| H3N2 | CY031949 | IL | 2/1/2008 | H1N1 | CY025699 | KY | 1/18/2007 |
| H3N2 | EU566967 | GA | 1/15/2008 | H1N1 | CY025923 | KY | 1/16/2007 |
| H3N2 | CY044516 | MA | 1/28/2008 | H1N1 | CY028195 | KY | 12/6/2006 |
| H3N2 | CY032195 | MD | 1/17/2008 | H1N1 | CY027067 | OH | 2/26/2007 |
| H3N2 | CY032575 | AZ | 3/12/2008 | H1N1 | CY025915 | KY | 1/24/2007 |
| H3N2 | CY037623 | FL | 3/10/2008 | H1N1 | CY027387 | OH | 2/9/2007 |
| H3N2 | CY038871 | FL | 3/10/2008 | H1N1 | CY026811 | KY | 1/24/2007 |
| H3N2 | CY173279 | NY | 3/27/2008 | H1N1 | CY025229 | KY | 12/18/2006 |
| H3N2 | EU885538 | NY | 4/21/2008 | H1N1 | CY025453 | KY | 1/23/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY173295 | NY | 4/21/2008 | H1N1 | CY027331 | KY | 2/8/2007 |
| H3N2 | CY031883 | AL | 2/13/2008 | H1N1 | CY025461 | KY | 1/30/2007 |
| H3N2 | CY031879 | AL | 2/5/2008 | H1N1 | CY037655 | OH | 3/2/2007 |
| H3N2 | CY031952 | IL | 2/4/2008 | H1N1 | CY026947 | OH | 3/5/2007 |
| H3N2 | CY032033 | OK | 2/5/2008 | H1N1 | CY030061 | OH | 2/12/2007 |
| H3N2 | CY032062 | SC | 2/8/2008 | H1N1 | CY027171 | KY | 1/25/2007 |
| H3N2 | CY031957 | IL | 2/8/2008 | H1N1 | CY026851 | OH | 2/19/2007 |
| H3N2 | CY037615 | KS | 3/5/2008 | H1N1 | CY025787 | KY | 1/15/2007 |
| H3N2 | CY037879 | KY | 2/25/2008 | H1N1 | CY026003 | OH | 1/29/2007 |
| H3N2 | CY031900 | AR | 2/11/2008 | H1N1 | CY027803 | IL | 1/16/2007 |
| H3N2 | CY032571 | IL | 2/14/2008 | H1N1 | CY026955 | OH | 1/29/2007 |
| H3N2 | CY037807 | KS | 2/19/2008 | H1N1 | CY026803 | KY | 1/23/2007 |
| H3N2 | EU885522 | WA | 3/13/2008 | H1N1 | CY030727 | KY | 1/24/2007 |
| H3N2 | CY037535 | KY | 2/18/2008 | H1N1 | CY025635 | KY | 2/5/2007 |
| H3N2 | CY032073 | SC | 3/20/2008 | H1N1 | CY027115 | TN | 2/2/2007 |
| H3N2 | EU885536 | MN | 3/19/2008 | H1N1 | CY027403 | OH | 2/5/2007 |
| H3N2 | CY037639 | KY | 3/19/2008 | H1N1 | CY027259 | OH | 3/5/2007 |
| H3N2 | CY034465 | WA | 2/27/2008 | H1N1 | CY027003 | OH | 2/28/2007 |
| H3N2 | CY034449 | IL | 1/28/2008 | H1N1 | CY027443 | OH | 1/30/2007 |
| H3N2 | CY030045 | MD | 1/17/2008 | H1N1 | CY026011 | OH | 1/30/2007 |
| H3N2 | EU885499 | MN | 1/6/2008 | H1N1 | CY025971 | OH | 2/16/2007 |
| H3N2 | CY032203 | MD | 2/3/2008 | H1N1 | CY028123 | OH | 2/19/2007 |
| H3N2 | EU779500 | IN | 1/17/2008 | H1N1 | CY027947 | VA | 3/13/2007 |
| H3N2 | EU716505 | WI | 2/1/2008 | H1N1 | CY026683 | VT | 1/16/2007 |
| H3N2 | FJ686942 | NY | 3/6/2008 | H1N1 | CY172655 | NY | 2/13/2007 |
| H3N2 | EU885524 | NJ | 4/4/2008 | H1N1 | EU516144 | MN | 2/1/2007 |
| H3N2 | FJ179356 | NM | 5/10/2008 | H1N1 | CY028291 | TX | 1/16/2007 |
| H3N2 | CY173127 | NY | 1/28/2008 | H1N1 | CY027811 | TX | 1/16/2007 |
| H3N2 | CY034423 | SC | 2/17/2008 | H1N1 | CY027987 | OH | 2/26/2007 |
| H3N2 | CY037559 | KY | 2/21/2008 | H1N1 | EU516109 | GA | 1/30/2007 |
| H3N2 | EU716435 | TN | 1/16/2008 | H1N1 | CY028107 | TN | 1/25/2007 |
| H3N2 | EU779504 | TN | 2/1/2008 | H1N1 | CY031546 | VA | 1/29/2007 |
| H3N2 | CY032637 | MS | 2/27/2008 | H1N1 | CY027915 | KY | 2/13/2007 |
| H3N2 | CY034454 | WA | 3/3/2008 | H1N1 | CY028355 | KY | 2/6/2007 |
| H3N2 | CY031874 | AL | 1/31/2008 | H1N1 | CY026875 | KY | 1/30/2007 |
| H3N2 | CY031966 | IL | 2/11/2008 | H1N1 | CY026867 | KY | 1/31/2007 |
| H3N2 | CY034441 | AL | 2/21/2008 | H1N1 | CY027051 | KY | 2/2/2007 |
| H3N2 | CY173143 | NY | 2/5/2008 | H1N1 | CY028043 | KY | 2/23/2007 |
| H3N2 | CY031959 | IL | 2/8/2008 | H1N1 | CY028163 | KY | 2/13/2007 |
| H3N2 | CY032640 | AR | 2/11/2008 | H1N1 | CY025245 | IL | 1/4/2007 |
| H3N2 | CY031872 | AL | 1/23/2008 | H1N1 | CY025237 | IL | 1/5/2007 |
| H3N2 | CY032036 | OK | 2/7/2008 | H1N1 | CY027739 | KS | 1/24/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY032044 | OK | 2/22/2008 | H1N1 | CY025525 | TX | 2/6/2007 |
| H3N2 | CY032578 | OK | 2/28/2008 | H1N1 | CY026595 | TX | 2/15/2007 |
| H3N2 | CY032047 | OK | 3/4/2008 | H1N1 | CY027619 | TX | 2/8/2007 |
| H3N2 | CY032048 | OK | 3/14/2008 | H1N1 | CY036855 | TX | 2/5/2007 |
| H3N2 | CY036975 | OH | 2/26/2008 | H1N1 | CY025683 | TX | 2/6/2007 |
| H3N2 | CY044756 | MA | 2/26/2008 | H1N1 | CY031551 | KS | 1/30/2007 |
| H3N2 | CY031967 | IL | 2/22/2008 | H1N1 | CY027427 | KS | 2/12/2007 |
| H3N2 | EU852007 | IA | 3/21/2008 | H1N1 | CY027347 | IL | 2/12/2007 |
| H3N2 | CY031951 | IL | 2/4/2008 | H1N1 | CY027363 | IL | 1/29/2007 |
| H3N2 | CY032567 | IL | 2/11/2008 | H1N1 | CY027667 | IL | 1/26/2007 |
| H3N2 | CY032041 | OK | 2/19/2008 | H1N1 | CY026179 | IL | 2/8/2007 |
| H3N2 | CY032080 | SD | 2/14/2008 | H1N1 | CY026611 | IL | 2/21/2007 |
| H3N2 | CY038799 | FL | 2/14/2008 | H1N1 | CY027651 | VA | 3/8/2007 |
| H3N2 | CY044732 | MA | 2/25/2008 | H1N1 | CY025325 | IL | 2/21/2007 |
| H3N2 | CY032045 | OK | 2/25/2008 | H1N1 | EU199294 | NE | 1/25/2007 |
| H3N2 | CY173247 | NY | 3/6/2008 | H1N1 | CY026691 | IL | 1/6/2007 |
| H3N2 | CY173239 | NY | 3/3/2008 | H1N1 | CY025675 | KY | 2/12/2007 |
| H3N2 | CY030031 | OK | 1/18/2008 | H1N1 | CY028115 | TN | 3/5/2007 |
| H3N2 | CY030554 | MS | 2/6/2008 | H1N1 | CY030069 | KS | 1/30/2007 |
| H3N2 | CY031912 | AR | 2/14/2008 | H1N1 | CY027779 | KY | 2/19/2007 |
| H3N2 | CY036959 | OH | 2/19/2008 | H1N1 | CY027979 | KS | 2/12/2007 |
| H3N2 | CY038823 | KY | 2/21/2008 | H1N1 | CY025571 | IL | 2/12/2007 |
| H3N2 | CY031960 | IL | 2/7/2008 | H1N1 | CY027907 | IL | 3/1/2007 |
| H3N2 | CY035190 | PA | 2/20/2008 | H1N1 | CY026387 | TX | 2/27/2007 |
| H3N2 | CY032066 | SC | 2/16/2008 | H1N1 | CY025517 | IL | 2/28/2007 |
| H3N2 | CY031901 | AR | 2/11/2008 | H1N1 | CY172647 | NY | 2/13/2007 |
| H3N2 | CY034428 | TX | 2/26/2008 | H1N1 | CY025979 | KY | 1/31/2007 |
| H3N2 | CY044820 | MA | 4/16/2008 | H1N1 | CY028019 | KY | 2/5/2007 |
| H3N2 | CY173207 | NY | 2/19/2008 | H1N1 | CY025429 | KY | 1/24/2007 |
| H3N2 | EU716502 | WI | 1/31/2008 | H1N1 | CY028451 | TN | 1/25/2007 |
| H3N2 | CY031942 | FL | 4/1/2008 | H1N1 | CY028131 | OK | 3/5/2007 |
| H3N2 | CY041466 | FL | 2/26/2008 | H1N1 | EU100710 | WI | 2/1/2007 |
| H3N2 | EU914859 | FL | 3/11/2008 | H1N1 | CY028748 | KY | 2/21/2007 |
| H3N2 | CY031997 | MS | 3/5/2008 | H1N1 | CY028347 | IL | 1/29/2007 |
| H3N2 | CY032582 | SC | 2/28/2008 | H1N1 | CY027787 | IL | 2/9/2007 |
| H3N2 | CY032644 | AR | 2/13/2008 | H1N1 | CY028011 | KS | 1/26/2007 |
| H3N2 | CY032583 | SC | 2/26/2008 | H1N1 | CY033465 | OR | 3/15/2007 |
| H3N2 | CY032584 | SC | 2/25/2008 | H1N1 | CY028363 | KS | 2/5/2007 |
| H3N2 | CY030558 | MS | 2/7/2008 | H1N1 | CY027011 | KY | 2/16/2007 |
| H3N2 | CY044652 | MA | 2/20/2008 | H1N1 | CY025947 | KY | 2/13/2007 |
| H3N2 | CY032179 | WA | 2/19/2008 | H1N1 | CY026987 | KY | 2/16/2007 |
| H3N2 | EU516219 | VA | 12/13/2007 | H1N1 | CY027035 | KS | 1/30/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY032557 | MD | 12/22/2007 | H1N1 | CY027459 | KY | 2/6/2007 |
| H3N2 | EU885542 | MS | 1/15/2008 | H1N1 | CY026235 | CO | 3/5/2007 |
| H3N2 | FJ686931 | MO | 2/26/2008 | H1N1 | CY025963 | KS | 2/1/2007 |
| H3N2 | FJ549038 | MO | 2/26/2008 | H1N1 | CY027995 | VA | 1/29/2007 |
| H3N2 | CY031943 | IL | 1/17/2008 | H1N1 | CY026931 | VA | 2/13/2007 |
| H3N2 | CY032157 | TX | 2/11/2008 | H1N1 | CY031132 | VA | 2/9/2007 |
| H3N2 | EU885503 | TN | 2/4/2008 | H1N1 | EU516297 | FL | 10/31/2006 |
| H3N2 | CY032042 | OK | 2/19/2008 | H1N1 | EU199333 | NY | 12/13/2006 |
| H3N2 | CY039415 | MS | 2/14/2008 | H1N1 | CY172551 | NY | 12/13/2006 |
| H3N2 | CY032651 | IL | 2/12/2008 | H1N1 | EU100711 | WI | 12/9/2006 |
| H3N2 | CY031891 | AZ | 4/9/2008 | H1N1 | EU100707 | MN | 12/29/2006 |
| H3N2 | CY032076 | SC | 3/27/2008 | H1N1 | EU100709 | NC | 12/28/2006 |
| H3N2 | CY032077 | SC | 3/27/2008 | H1N1 | CY172543 | NY | 12/11/2006 |
| H3N2 | CY039095 | OH | 2/18/2008 | H1N1 | CY028203 | TN | 1/22/2007 |
| H3N2 | CY044469 | MA | 2/27/2008 | H1N1 | CY172583 | NY | 1/6/2007 |
| H3N2 | CY037791 | KY | 2/15/2008 | H1N1 | CY026395 | MS | 3/13/2007 |
| H3N2 | CY034429 | AL | 2/19/2008 | H1N1 | CY027859 | VA | 2/20/2007 |
| H3N2 | EU885528 | IL | 3/21/2008 | H1N1 | CY028155 | VA | 2/20/2007 |
| H3N2 | CY031907 | AR | 2/12/2008 | H1N1 | CY027643 | VA | 2/14/2007 |
| H3N2 | CY044572 | MA | 2/13/2008 | H1N1 | CY027971 | VA | 2/13/2007 |
| H3N2 | CY037591 | KY | 2/27/2008 | H1N1 | EU516021 | TX | 3/28/2007 |
| H3N2 | CY032061 | SC | 2/13/2008 | H1N1 | CY026763 | CA | 2/16/2007 |
| H3N2 | FJ179350 | MI | 4/1/2008 | H1N1 | CY172663 | NY | 2/22/2007 |
| H3N2 | CY044692 | MA | 2/24/2008 | H1N1 | CY025811 | VT | 1/22/2007 |
| H3N2 | CY044812 | MA | 3/13/2008 | H1N1 | CY027267 | TN | 2/12/2007 |
| H3N2 | CY035174 | PA | 2/11/2008 | H1N1 | CY027187 | VT | 3/1/2007 |
| H3N2 | CY032566 | IL | 2/11/2008 | H1N1 | CY028059 | TN | 2/12/2007 |
| H3N2 | CY044772 | MA | 2/27/2008 | H1N1 | CY027627 | FL | 3/13/2007 |
| H3N2 | CY032068 | SC | 2/17/2008 | H1N1 | CY028387 | NC | 2/19/2007 |
| H3N2 | CY036983 | FL | 2/26/2008 | H1N1 | CY026995 | NC | 2/19/2007 |
| H3N2 | CY031909 | AR | 2/12/2008 | H1N1 | CY026331 | TX | 3/6/2007 |
| H3N2 | CY032581 | SC | 2/28/2008 | H1N1 | CY025691 | TX | 2/20/2007 |
| H3N2 | CY032070 | SC | 3/3/2008 | H1N1 | CY041442 | TX | 2/16/2007 |
| H3N2 | CY030018 | IL | 1/4/2008 | H1N1 | CY025579 | MS | 2/2/2007 |
| H3N2 | EU567010 | AR | 1/14/2008 | H1N1 | CY027875 | MS | 12/28/2006 |
| H3N2 | CY032097 | TX | 1/15/2008 | H1N1 | EU199341 | MS | 12/18/2006 |
| H3N2 | CY031947 | IL | 1/31/2008 | H1N1 | CY037439 | TX | 2/26/2007 |
| H3N2 | CY031946 | IL | 1/29/2008 | H1N1 | CY026779 | CO | 2/13/2007 |
| H3N2 | CY034436 | IL | 2/19/2008 | H1N1 | CY026819 | CO | 2/16/2007 |
| H3N2 | CY034501 | IL | 2/20/2008 | H1N1 | CY027339 | TX | 2/20/2007 |
| H3N2 | CY173199 | NY | 2/19/2008 | H1N1 | CY025333 | CO | 2/12/2007 |
| H3N2 | CY031894 | AR | 2/4/2008 | H1N1 | CY027411 | AL | 3/6/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY039431 | KY | 3/3/2008 | H1N1 | CY037663 | KY | 2/21/2007 |
| H3N2 | CY037703 | KY | 2/21/2008 | H1N1 | CY025619 | MS | 2/1/2007 |
| H3N2 | EU567012 | NJ | 12/31/2007 | H1N1 | CY025627 | MS | 1/26/2007 |
| H3N2 | CY037711 | NY | 2/25/2008 | H1N1 | CY025555 | MS | 1/31/2007 |
| H3N2 | CY037823 | KY | 2/25/2008 | H1N1 | CY027283 | KY | 2/21/2007 |
| H3N2 | CY030015 | AL | 1/23/2008 | H1N1 | CY037447 | FL | 2/13/2007 |
| H3N2 | CY173215 | NY | 2/19/2008 | H1N1 | CY025533 | FL | 2/20/2007 |
| H3N2 | CY032030 | NC | 2/13/2008 | H1N1 | CY025779 | FL | 2/21/2007 |
| H3N2 | CY031885 | AL | 2/19/2008 | H1N1 | CY026723 | FL | 2/26/2007 |
| H3N2 | FJ686946 | NY | 4/21/2008 | H1N1 | CY026323 | FL | 2/20/2007 |
| H3N2 | CY032172 | TX | 2/29/2008 | H1N1 | CY025405 | CO | 2/7/2007 |
| H3N2 | CY038855 | KY | 3/10/2008 | H1N1 | CY026915 | VA | 2/21/2007 |
| H3N2 | EU567004 | AR | 1/4/2008 | H1N1 | CY026507 | TN | 1/26/2007 |
| H3N2 | CY034448 | OH | 1/18/2008 | H1N1 | CY025827 | CO | 1/30/2007 |
| H3N2 | EU779522 | VA | 2/1/2008 | H1N1 | CY027059 | TN | 2/2/2007 |
| H3N2 | CY034440 | OH | 1/18/2008 | H1N1 | CY026315 | CA | 2/20/2007 |
| H3N2 | FJ179354 | MN | 3/10/2008 | H1N1 | CY026563 | TX | 2/23/2007 |
| H3N2 | FJ686930 | MO | 2/26/2008 | H1N1 | EU516094 | MN | 10/25/2007 |
| H3N2 | CY035158 | PA | 1/10/2008 | H1N1 | EU779632 | CA | 2/6/2008 |
| H3N2 | CY039423 | KY | 2/18/2008 | H1N1 | EU567000 | MA | 1/7/2008 |
| H3N2 | CY035150 | PA | 1/22/2008 | H1N1 | EU516295 | OR | 12/3/2007 |
| H3N2 | CY035182 | PA | 2/8/2008 | H1N1 | EU516292 | OR | 12/6/2007 |
| H3N2 | CY035062 | PA | 1/23/2008 | H1N1 | EU516247 | MA | 12/1/2007 |
| H3N2 | CY035046 | PA | 1/17/2008 | H1N1 | EU516251 | NY | 12/5/2007 |
| H3N2 | CY035166 | PA | 1/25/2008 | H1N1 | CY172935 | NY | 1/21/2008 |
| H3N2 | CY031876 | AL | 2/4/2008 | H1N1 | FJ532088 | TX | 1/29/2008 |
| H3N2 | CY031962 | IL | 2/7/2008 | H1N1 | FJ532071 | TX | 1/25/2008 |
| H3N2 | CY030047 | NC | 1/17/2008 | H1N1 | EU516245 | TX | 12/11/2007 |
| H3N2 | EU716482 | SD | 1/18/2008 | H1N1 | CY037327 | WA | 1/10/2008 |
| H3N2 | CY031948 | IL | 1/31/2008 | H1N1 | EU566989 | NM | 1/3/2008 |
| H3N2 | CY037551 | OH | 2/19/2008 | H1N1 | EU516238 | WA | 12/19/2007 |
| H3N2 | CY031882 | AL | 2/11/2008 | H1N1 | EU516253 | WA | 12/14/2007 |
| H3N2 | CY030022 | OK | 1/14/2008 | H1N1 | FJ532072 | ID | 2/28/2008 |
| H3N2 | CY034437 | AZ | 2/8/2008 | H1N1 | EU516303 | WA | 11/6/2007 |
| H3N2 | EU852001 | NC | 2/11/2008 | H1N1 | EU516081 | WA | 11/6/2007 |
| H3N2 | EU716437 | WI | 2/4/2008 | H1N1 | CY172911 | NY | 1/14/2008 |
| H3N2 | CY031965 | IL | 2/7/2008 | H1N1 | CY172927 | NY | 1/22/2008 |
| H3N2 | CY032012 | NE | 3/20/2008 | H1N1 | CY172943 | NY | 1/22/2008 |
| H3N2 | CY032079 | SD | 2/8/2008 | H1N1 | EU516301 | WA | 12/27/2007 |
| H3N2 | CY032078 | SD | 2/4/2008 | H1N1 | EU887027 | FL | 1/11/2008 |
| H3N2 | CY032081 | SD | 2/25/2008 | H1N1 | CY173063 | NY | 2/26/2008 |
| H3N2 | CY032084 | SD | 4/2/2008 | H1N1 | EU851987 | NY | 2/5/2008 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY031984 | MD | 1/26/2008 | H1N1 | JN582055 | NY | 2/5/2008 |
| H3N2 | CY030042 | AR | 1/16/2008 | H1N1 | EU566981 | IL | 12/12/2007 |
| H3N2 | CY044492 | MA | 12/15/2007 | H1N1 | EU516300 | PA | 1/2/2008 |
| H3N2 | CY031963 | IL | 2/7/2008 | H1N1 | CY172967 | NY | 2/4/2008 |
| H3N2 | CY031929 | CO | 1/22/2008 | H1N1 | CY172991 | NY | 2/6/2008 |
| H3N2 | CY030020 | MD | 1/9/2008 | H1N1 | EU516299 | CA | 10/24/2007 |
| H3N2 | CY030035 | MD | 1/9/2008 | H1N1 | EU887022 | FL | 12/16/2007 |
| H3N2 | CY173103 | NY | 1/24/2008 | H1N1 | EU516096 | CA | 10/2/2007 |
| H3N2 | CY031992 | MD | 2/1/2008 | H1N1 | EU516091 | PA | 11/13/2007 |
| H3N2 | CY037479 | OH | 2/12/2008 | H1N1 | EU779630 | GA | 2/6/2008 |
| H3N2 | CY044804 | MA | 3/12/2008 | H1N1 | CY044660 | MA | 2/20/2008 |
| H3N2 | CY032049 | OK | 3/27/2008 | H1N1 | EU516241 | IA | 11/28/2007 |
| H3N2 | CY032562 | FL | 1/30/2008 | H1N1 | EU516092 | GA | 10/3/2007 |
| H3N2 | EU885509 | NY | 1/24/2008 | H1N1 | EU516298 | FL | 12/16/2007 |
| H3N2 | CY173135 | NY | 2/4/2008 | H1N1 | EU887023 | FL | 12/16/2007 |
| H3N2 | CY031914 | AR | 2/17/2008 | H1N1 | CY173031 | NY | 2/18/2008 |
| H3N2 | CY031905 | AR | 2/14/2008 | H1N1 | CY173023 | NY | 2/18/2008 |
| H3N2 | CY032201 | MD | 2/3/2008 | H1N1 | EU779628 | NC | 2/14/2008 |
| H3N2 | CY032202 | MD | 2/3/2008 | H1N1 | CY038762 | DC | 2/1/2008 |
| H3N2 | EU885512 | AR | 3/2/2008 | H1N1 | EU887024 | PA | 12/12/2007 |
| H3N2 | CY034462 | WA | 2/27/2008 | H1N1 | EU887025 | PA | 12/12/2007 |
| H3N2 | CY037871 | KY | 2/25/2008 | H1N1 | EU516248 | CO | 11/6/2007 |
| H3N2 | CY173095 | NY | 1/24/2008 | H1N1 | FJ532083 | WA | 2/18/2008 |
| H3N2 | CY031989 | MD | 1/27/2008 | H1N1 | EU516259 | CO | 10/31/2007 |
| H3N2 | CY031985 | MD | 1/27/2008 | H1N1 | EU516244 | CO | 10/15/2007 |
| H3N2 | CY031988 | MD | 1/27/2008 | H1N1 | EU716538 | CO | 12/9/2007 |
| H3N2 | CY031987 | MD | 1/27/2008 | H1N1 | EU516097 | FL | 11/1/2007 |
| H3N2 | CY032199 | MD | 1/30/2008 | H1N1 | EU887026 | PA | 12/21/2007 |
| H3N2 | CY031991 | MD | 1/30/2008 | H1N1 | EU516291 | CA | 12/5/2007 |
| H3N2 | CY031986 | MD | 1/27/2008 | H1N1 | EU516018 | CO | 11/12/2007 |
| H3N2 | CY032184 | WA | 3/10/2008 | H1N1 | EU516294 | CA | 12/3/2007 |
| H3N2 | CY034456 | WA | 3/9/2008 | H1N1 | CY172951 | NY | 1/29/2008 |
| H3N2 | CY032198 | MD | 1/30/2008 | H1N1 | EU716557 | PA | 12/10/2007 |
| H3N2 | CY032196 | MD | 1/27/2008 | H1N1 | EU779610 | FL | 1/7/2008 |
| H3N2 | CY032197 | MD | 1/30/2008 | H1N1 | EU516239 | IL | 12/16/2007 |
| H3N2 | EU516217 | NC | 11/26/2007 | H1N1 | EU516252 | CO | 11/12/2007 |
| H3N2 | CY032028 | NC | 2/1/2008 | H1N1 | EU516240 | PA | 12/10/2007 |
| H3N2 | EU779530 | MO | 2/20/2008 | H1N1 | EU851983 | MS | 1/24/2008 |
| H3N2 | CY032067 | SC | 2/16/2008 | H1N1 | EU716559 | PA | 12/20/2007 |
| H3N2 | CY037527 | KY | 2/18/2008 | H1N1 | EU516302 | CO | 12/6/2007 |
| H3N2 | CY030024 | TX | 1/3/2008 | H1N1 | EU716556 | PA | 12/20/2007 |
| H3N2 | CY032027 | NC | 1/30/2008 | H1N1 | CY044484 | MA | 12/4/2007 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY032641 | AR | 2/12/2008 | H1N1 | EU779634 | IL | 3/11/2008 |
| H3N2 | CY173119 | NY | 1/29/2008 | H1N1 | CY044532 | MA | 2/4/2008 |
| H3N2 | CY031915 | AR | 3/14/2008 | H1N1 | EU779621 | MS | 1/24/2008 |
| H3N2 | CY032642 | AR | 2/11/2008 | H1N1 | CY044373 | MA | 2/3/2008 |
| H3N2 | CY037631 | NY | 3/12/2008 | H1N1 | EU716563 | NY | 1/28/2008 |
| H3N2 | EU852005 | TX | 3/19/2008 | H1N1 | EU779611 | LA | 1/13/2008 |
| H3N2 | CY030040 | AL | 1/25/2008 | H1N1 | EU779613 | SD | 1/9/2008 |
| H3N2 | CY031954 | IL | 2/6/2008 | H1N1 | EU716619 | NJ | 1/25/2008 |
| H3N2 | CY031958 | IL | 2/8/2008 | H1N1 | EU779633 | NE | 1/21/2008 |
| H3N2 | CY032026 | NC | 1/28/2008 | H1N1 | CY172983 | NY | 2/4/2008 |
| H3N2 | CY044357 | PA | 2/6/2008 | H1N1 | EU887029 | ND | 12/29/2007 |
| H3N2 | CY032186 | WA | 3/14/2008 | H1N1 | GQ475830 | MT | 2/29/2008 |
| H3N2 | CY044508 | MA | 1/28/2008 | H1N1 | EU779617 | TN | 1/17/2008 |
| H3N2 | CY031964 | IL | 2/7/2008 | H1N1 | CY044564 | MA | 2/12/2008 |
| H3N2 | CY037815 | KY | 2/19/2008 | H1N1 | CY172975 | NY | 2/4/2008 |
| H3N2 | CY031908 | AR | 2/12/2008 | H1N1 | EU516088 | TX | 12/4/2007 |
| H3N2 | CY173255 | NY | 3/10/2008 | H1N1 | EU516255 | TX | 11/26/2007 |
| H3N2 | CY037839 | KS | 3/5/2008 | H1N1 | EU516089 | WA | 10/4/2007 |
| H3N2 | CY044476 | MA | 3/3/2008 | H1N1 | EU779631 | CA | 1/15/2008 |
| H3N2 | CY032626 | NJ | 2/27/2008 | H1N1 | EU779614 | NY | 1/30/2008 |
| H3N2 | CY035038 | PA | 1/23/2008 | H1N1 | CY173071 | NY | 3/6/2008 |
| H3N2 | CY032059 | SC | 1/31/2008 | H1N1 | CY173055 | NY | 2/26/2008 |
| H3N2 | EU716470 | WI | 2/1/2008 | H1N1 | CY173047 | NY | 2/20/2008 |
| H3N2 | CY037503 | CA | 2/13/2008 | H1N1 | CY173039 | NY | 2/20/2008 |
| H3N2 | CY031999 | MS | 2/6/2008 | H1N1 | EU779624 | OK | 2/20/2008 |
| H3N2 | CY031982 | LA | 2/7/2008 | H1N1 | EU779625 | IN | 2/18/2008 |
| H3N2 | CY031881 | AL | 2/11/2008 | H1N1 | EU516237 | IL | 12/13/2007 |
| H3N2 | CY032183 | WA | 3/6/2008 | H1N1 | EU887031 | ID | 1/22/2008 |
| H3N2 | CY037607 | NY | 2/28/2008 | H1N1 | EU716526 | CO | 1/7/2008 |
| H3N2 | CY037743 | NY | 3/6/2008 | H1N1 | EU779623 | OK | 2/5/2008 |
| H3N2 | CY034439 | AL | 2/20/2008 | H1N1 | CY044556 | MA | 2/9/2008 |
| H3N2 | CY044700 | MA | 2/24/2008 | H1N1 | EU566991 | AZ | 11/14/2007 |
| H3N2 | CY032182 | WA | 3/6/2008 | H1N1 | FJ532084 | TX | 3/6/2008 |
| H3N2 | CY034458 | WA | 3/12/2008 | H1N1 | EU516246 | AZ | 12/2/2007 |
| H3N2 | CY034460 | WA | 3/19/2008 | H1N1 | EU566993 | NJ | 1/4/2008 |
| H3N2 | CY032615 | MA | 2/26/2008 | H1N1 | EU567015 | NM | 12/18/2007 |
| H3N2 | CY172175 | NY | 2/29/2008 | H1N1 | GQ475792 | TN | 3/14/2008 |
| H3N2 | CY032099 | TX | 1/20/2008 | H1N1 | EU887032 | NJ | 2/18/2008 |
| H3N2 | CY034450 | WA | 3/5/2008 | H1N1 | EU716571 | ID | 1/22/2008 |
| H3N2 | CY031877 | AL | 2/5/2008 | H1N1 | EU566986 | NJ | 1/11/2008 |
| H3N2 | CY031873 | AL | 1/30/2008 | H1N1 | EU567007 | NJ | 1/17/2008 |
| H3N2 | CY030039 | AR | 1/14/2008 | H1N1 | CY037679 | FL | 2/14/2008 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY031944 | IL | 1/17/2008 | H1N1 | EU716585 | FL | 12/28/2007 |
| H3N2 | CY031953 | IL | 2/5/2008 | H1N1 | EU716574 | FL | 1/4/2008 |
| H3N2 | CY031950 | IL | 2/4/2008 | H1N1 | EU516250 | FL | 12/10/2007 |
| H3N2 | CY173191 | NY | 2/18/2008 | H1N1 | EU516293 | FL | 12/4/2007 |
| H3N2 | CY031941 | FL | 3/20/2008 | H1N1 | CY038807 | FL | 2/15/2008 |
| H3N2 | CY031927 | CA | 3/18/2008 | H1N1 | CY173007 | NY | 2/10/2008 |
| H3N2 | CY031961 | IL | 2/7/2008 | H1N1 | EU566984 | PA | 1/7/2008 |
| H3N2 | CY032060 | SC | 2/6/2008 | H1N1 | EU516086 | TX | 10/15/2007 |
| H3N2 | EU779528 | WI | 2/4/2008 | H1N1 | EU716596 | MD | 1/4/2008 |
| H3N2 | CY038863 | KY | 3/10/2008 | H1N1 | EU566990 | WI | 12/5/2007 |
| H3N2 | CY032064 | SC | 2/25/2008 | H1N1 | CY044341 | NJ | 2/14/2008 |
| H3N2 | CY036991 | KS | 3/5/2008 | H1N1 | EU566966 | AZ | 12/22/2007 |
| H3N2 | EU779514 | WI | 1/23/2008 | H1N1 | FJ179358 | AZ | 12/12/2007 |
| H3N2 | CY039103 | MS | 2/18/2008 | H1N1 | EU516243 | AZ | 12/6/2007 |
| H3N2 | CY031995 | MA | 2/11/2008 | H1N1 | FJ179359 | AZ | 12/12/2007 |
| H3N2 | CY031996 | MA | 2/13/2008 | H1N1 | EU779622 | WY | 2/14/2008 |
| H3N2 | CY044796 | MA | 3/11/2008 | H1N1 | FJ532094 | NC | 1/9/2008 |
| H3N2 | CY031968 | IL | 3/13/2008 | H1N1 | FJ532087 | NC | 1/9/2008 |
| H3N2 | CY037831 | KY | 3/4/2008 | H1N1 | CY172919 | NY | 1/17/2008 |
| H3N2 | CY037583 | KY | 2/27/2008 | H1N1 | FJ179360 | PA | 12/13/2007 |
| H3N2 | CY036951 | MS | 2/11/2008 | H1N1 | GQ475714 | NJ | 2/26/2008 |
| H3N2 | CY032190 | WA | 3/31/2008 | H1N1 | EU779627 | NC | 2/6/2008 |
| H3N2 | CY032072 | SC | 3/19/2008 | H1N1 | EU851990 | VT | 2/18/2008 |
| H3N2 | EU885505 | GA | 2/7/2008 | H1N1 | EU779629 | GA | 2/9/2008 |
| H3N2 | CY031928 | CO | 1/16/2008 | H1N1 | EU779615 | FL | 2/6/2008 |
| H3N2 | CY032031 | NC | 2/1/2008 | H1N1 | CY037695 | KY | 2/20/2008 |
| H3N2 | CY030019 | LA | 1/15/2008 | H1N1 | GQ466386 | GA | 1/23/2008 |
| H3N2 | CY032117 | TX | 1/22/2008 | H1N1 | EU851978 | WI | 12/30/2007 |
| H3N2 | CY034435 | TX | 2/20/2008 | H1N1 | GQ475631 | IL | 12/28/2007 |
| H3N2 | CY032559 | TX | 1/29/2008 | H1N1 | EU566975 | IN | 1/29/2008 |
| H3N2 | CY031945 | IL | 1/29/2008 | H1N1 | EU516257 | IL | 12/12/2007 |
| H3N2 | EU779512 | TN | 1/31/2008 | H1N1 | EU851985 | MN | 1/15/2008 |
| H3N2 | CY032129 | TX | 2/1/2008 | H1N1 | GQ475641 | IL | 12/23/2007 |
| H3N2 | CY044604 | MA | 2/18/2008 | H1N1 | CY058495 | NJ | 11/24/2007 |
| H3N2 | CY044844 | MA | 2/20/2008 | H1N1 | EU516083 | NJ | 11/24/2007 |
| H3N2 | CY032593 | TX | 1/28/2008 | H1N1 | GQ475687 | NJ | 2/2/2008 |
| H3N2 | CY032017 | NJ | 2/5/2008 | H1N1 | EU716548 | NJ | 1/21/2008 |
| H3N2 | CY031875 | AL | 2/4/2008 | H1N1 | EU779618 | NJ | 2/6/2008 |
| H3N2 | CY031878 | AL | 2/5/2008 | H1N1 | EU566982 | NJ | 12/30/2007 |
| H3N2 | CY031902 | AR | 2/14/2008 | H1N1 | EU516258 | NJ | 12/16/2007 |
| H3N2 | CY032633 | IL | 2/27/2008 | H1N1 | EU567013 | NJ | 1/22/2008 |
| H3N2 | CY032156 | TX | 2/11/2008 | H1N1 | GQ466359 | NJ | 1/8/2008 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | FJ179352 | MN | 4/7/2008 | H1N1 | CY044684 | MA | 2/23/2008 |
| H3N2 | FJ686948 | NY | 5/13/2008 | H1N1 | EU566979 | NJ | 2/2/2008 |
| H3N2 | CY032185 | WA | 3/14/2008 | H1N1 | EU716598 | WA | 1/10/2008 |
| H3N2 | CY173287 | NY | 3/28/2008 | H1N1 | EU887030 | WI | 1/28/2008 |
| H3N2 | EU885530 | SC | 3/21/2008 | H1N1 | CY172999 | NY | 2/9/2008 |
| H3N2 | CY031880 | AL | 2/6/2008 | H1N1 | EU566970 | MD | 12/26/2007 |
| H3N2 | CY032093 | TN | 3/19/2008 | H1N1 | EU566976 | PA | 1/15/2008 |
| H3N2 | CY032095 | TN | 3/20/2008 | H1N1 | EU887034 | SC | 3/28/2008 |
| H3N2 | CY032094 | TN | 3/20/2008 | H1N1 | CY173079 | NY | 3/6/2008 |
| H3N2 | EU716469 | WI | 1/31/2008 | H1N1 | EU779626 | NC | 2/5/2008 |
| H3N2 | CY036927 | PA | 1/23/2008 | H1N1 | CY173015 | NY | 2/13/2008 |
| H3N2 | CY173231 | NY | 3/3/2008 | H1N1 | CY172959 | NY | 1/31/2008 |
| H3N2 | EU885534 | MN | 3/13/2008 | H1N1 | EU779616 | TN | 1/15/2008 |
| H3N2 | CY032083 | SD | 3/24/2008 | H1N1 | JN582063 | NY | 2/13/2008 |
| H3N2 | CY037887 | OH | 3/4/2008 | H1N1 | CY089035 | MA | 2/2/2009 |
| H3N2 | CY031893 | AR | 1/31/2008 | H1N1 | KC780041 | KY | 1/26/2009 |
| H3N2 | CY032143 | TX | 2/12/2008 | H1N1 | CY069413 | WA | 1/9/2009 |
| H3N2 | CY032652 | AR | 2/12/2008 | H1N1 | CY100868 | NV | 2/1/2009 |
| H3N2 | CY034434 | IL | 2/19/2008 | H1N1 | CY069397 | NJ | 1/9/2009 |
| H3N2 | CY032621 | OK | 2/22/2008 | H1N1 | CY080833 | MA | 2/13/2009 |
| H3N2 | CY032086 | SD | 4/8/2008 | H1N1 | CY080985 | MA | 2/19/2009 |
| H3N2 | CY044748 | MA | 2/26/2008 | H1N1 | CY074331 | CA | 4/29/2009 |
| H3N2 | CY034464 | WA | 2/27/2008 | H1N1 | CY089757 | MA | 2/14/2009 |
| H3N2 | GQ895019 | GA | 5/3/2009 | H1N1 | CY089083 | MA | 3/1/2009 |
| H3N2 | GQ385820 | MD | 1/20/2009 | H1N1 | CY074291 | CA | 4/29/2009 |
| H3N2 | FJ686926 | MA | 10/29/2008 | H1N1 | CY074163 | CA | 4/29/2009 |
| H3N2 | FJ686935 | MA | 10/29/2008 | H1N1 | CY100796 | TX | 3/1/2009 |
| H3N2 | FJ686917 | ID | 10/7/2008 | H1N1 | CY100804 | NV | 1/1/2009 |
| H3N2 | FJ686939 | ID | 10/16/2008 | H1N1 | KC782273 | MI | 1/15/2009 |
| H3N2 | CY069421 | NM | 2/9/2009 | H1N1 | CY173311 | NY | 1/26/2009 |
| H3N2 | GQ385862 | TX | 3/4/2009 | H1N1 | CY173335 | NY | 1/28/2009 |
| H3N2 | CY068097 | CA | 4/27/2009 | H1N1 | CY074387 | CA | 4/25/2009 |
| H3N2 | GQ385889 | NH | 2/16/2009 | H1N1 | CY173439 | NY | 2/26/2009 |
| H3N2 | FJ686933 | WA | 12/8/2008 | H1N1 | CY173495 | NY | 3/17/2009 |
| H3N2 | GQ895034 | FL | 2/8/2009 | H1N1 | CY173487 | NY | 3/16/2009 |
| H3N2 | GQ385860 | OR | 2/24/2009 | H1N1 | CY173503 | NY | 3/23/2009 |
| H3N2 | GQ385822 | MN | 12/23/2008 | H1N1 | CY100772 | TX | 1/1/2009 |
| H3N2 | GQ369883 | ND | 12/15/2008 | H1N1 | CY074611 | CA | 4/26/2009 |
| H3N2 | CY093287 | NJ | 1/1/2009 | H1N1 | CY092337 | CA | 4/29/2009 |
| H3N2 | GQ385902 | NE | 12/22/2008 | H1N1 | CY074155 | CA | 4/29/2009 |
| H3N2 | GQ385858 | MA | 1/9/2009 | H1N1 | CY064839 | CA | 4/28/2009 |
| H3N2 | GQ895010 | WA | 3/9/2009 | H1N1 | CY092093 | CA | 4/26/2009 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | GQ385884 | IN | 1/19/2009 | H1N1 | CY074091 | CA | 4/29/2009 |
| H3N2 | FJ549053 | CO | 10/15/2008 | H1N1 | CY074251 | CA | 4/29/2009 |
| H3N2 | CY050532 | NY | 4/27/2009 | H1N1 | CY074259 | CA | 4/29/2009 |
| H3N2 | GQ385932 | NM | 1/27/2009 | H1N1 | CY074267 | CA | 4/29/2009 |
| H3N2 | GQ385918 | TX | 3/18/2009 | H1N1 | CY074603 | CA | 4/27/2009 |
| H3N2 | CY068593 | CA | 5/6/2009 | H1N1 | CY074211 | CA | 4/29/2009 |
| H3N2 | CY068361 | CA | 4/1/2009 | H1N1 | CY073845 | CA | 4/28/2009 |
| H3N2 | GQ369814 | CO | 12/17/2008 | H1N1 | CY074299 | CA | 4/29/2009 |
| H3N2 | GQ369815 | CO | 12/24/2008 | H1N1 | CY064799 | CA | 4/27/2009 |
| H3N2 | FJ686937 | CO | 10/29/2008 | H1N1 | CY074627 | CA | 4/26/2009 |
| H3N2 | GQ369860 | MN | 12/28/2008 | H1N1 | CY074427 | CA | 4/30/2009 |
| H3N2 | GQ385815 | CO | 1/21/2009 | H1N1 | CY074667 | CA | 4/27/2009 |
| H3N2 | GQ385838 | CO | 1/16/2009 | H1N1 | CY070903 | CA | 4/27/2009 |
| H3N2 | GQ385864 | CO | 1/1/2009 | H1N1 | CY050764 | NY | 4/29/2009 |
| H3N2 | GQ895000 | CA | 12/3/2008 | H1N1 | CY081017 | MA | 3/17/2009 |
| H3N2 | CY173527 | NY | 2/22/2009 | H1N1 | CY073853 | CA | 4/28/2009 |
| H3N2 | GQ385915 | NY | 2/22/2009 | H1N1 | CY074403 | CA | 4/30/2009 |
| H3N2 | GQ369848 | MA | 12/12/2008 | H1N1 | CY074587 | CA | 5/8/2009 |
| H3N2 | KC535384 | MA | 12/12/2008 | H1N1 | CY074459 | CA | 5/2/2009 |
| H3N2 | GQ385894 | PA | 3/8/2009 | H1N1 | CY074395 | CA | 4/27/2009 |
| H3N2 | CY173511 | NY | 1/26/2009 | H1N1 | CY074099 | CA | 4/29/2009 |
| H3N2 | GQ385904 | VA | 1/5/2009 | H1N1 | CY074579 | CA | 5/8/2009 |
| H3N2 | GQ385874 | SC | 12/31/2008 | H1N1 | CY074563 | CA | 5/10/2009 |
| H3N2 | GQ895027 | NY | 1/21/2009 | H1N1 | CY050548 | NY | 4/29/2009 |
| H3N2 | GQ385929 | ID | 3/14/2009 | H1N1 | CY074571 | CA | 5/17/2009 |
| H3N2 | CY067937 | CA | 4/30/2009 | H1N1 | CY074515 | CA | 5/1/2009 |
| H3N2 | CY068201 | CA | 4/28/2009 | H1N1 | CY074227 | CA | 4/29/2009 |
| H3N2 | CY068145 | CA | 4/28/2009 | H1N1 | CY074411 | CA | 4/30/2009 |
| H3N2 | CY064815 | CA | 4/26/2009 | H1N1 | CY070911 | CA | 4/28/2009 |
| H3N2 | CY067221 | CA | 4/28/2009 | H1N1 | CY069365 | SC | 3/1/2009 |
| H3N2 | CY068161 | CA | 4/28/2009 | H1N1 | KC780035 | TN | 3/9/2009 |
| H3N2 | GQ369892 | PA | 12/11/2008 | H1N1 | KC780089 | TX | 3/19/2009 |
| H3N2 | GQ369926 | WI | 12/25/2008 | H1N1 | CY080913 | MA | 3/10/2009 |
| H3N2 | GQ385900 | MT | 1/26/2009 | H1N1 | CY080841 | MA | 2/13/2009 |
| H3N2 | FJ686922 | MT | 12/9/2008 | H1N1 | CY089059 | MA | 2/18/2009 |
| H3N2 | CY173559 | NY | 3/16/2009 | H1N1 | CY074419 | CA | 4/30/2009 |
| H3N2 | GQ385829 | WA | 1/25/2009 | H1N1 | CY074451 | CA | 4/30/2009 |
| H3N2 | GQ385935 | TX | 1/26/2009 | H1N1 | CY050772 | NY | 5/9/2009 |
| H3N2 | CY173535 | NY | 2/25/2009 | H1N1 | CY064871 | CA | 4/25/2009 |
| H3N2 | GQ385923 | WA | 3/30/2009 | H1N1 | CY064807 | CA | 4/27/2009 |
| H3N2 | CY072190 | CA | 5/23/2009 | H1N1 | CY074547 | CA | 5/7/2009 |
| H3N2 | CY068025 | CA | 5/23/2009 | H1N1 | CY074235 | CA | 4/29/2009 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | GQ369906 | TX | 12/26/2008 | H1N1 | CY074539 | CA | 5/2/2009 |
| H3N2 | GQ895037 | NV | 12/16/2008 | H1N1 | CY074107 | CA | 4/28/2009 |
| H3N2 | KC535390 | WI | 12/23/2008 | H1N1 | CY074619 | CA | 4/27/2009 |
| H3N2 | GQ369928 | WI | 12/23/2008 | H1N1 | CY074371 | CA | 4/29/2009 |
| H3N2 | CY089749 | MA | 1/16/2009 | H1N1 | CY074115 | CA | 4/29/2009 |
| H3N2 | GQ385856 | MA | 1/20/2009 | H1N1 | CY073813 | CA | 4/27/2009 |
| H3N2 | CY064855 | CA | 4/27/2009 | H1N1 | CY074443 | CA | 5/5/2009 |
| H3N2 | CY067229 | CA | 5/7/2009 | H1N1 | CY074523 | CA | 4/30/2009 |
| H3N2 | CY068862 | CA | 4/28/2009 | H1N1 | CY074507 | CA | 4/30/2009 |
| H3N2 | GQ385920 | VT | 2/13/2009 | H1N1 | CY074363 | CA | 4/29/2009 |
| H3N2 | CY093343 | TX | 2/1/2009 | H1N1 | CY074139 | CA | 4/29/2009 |
| H3N2 | CY092353 | CA | 4/29/2009 | H1N1 | CY074467 | CA | 5/1/2009 |
| H3N2 | GQ385876 | WA | 3/3/2009 | H1N1 | CY074203 | CA | 4/29/2009 |
| H3N2 | CY068273 | CA | 4/29/2009 | H1N1 | CY074219 | CA | 4/29/2009 |
| H3N2 | CY072206 | CA | 4/26/2009 | H1N1 | CY073829 | CA | 4/27/2009 |
| H3N2 | GQ385827 | NC | 12/29/2008 | H1N1 | CY074083 | CA | 4/28/2009 |
| H3N2 | GQ385851 | WI | 2/5/2009 | H1N1 | CY073805 | CA | 4/27/2009 |
| H3N2 | GQ385835 | AZ | 2/27/2009 | H1N1 | CY074347 | CA | 4/29/2009 |
| H3N2 | GQ385906 | WY | 2/2/2009 | H1N1 | CY074499 | CA | 4/30/2009 |
| H3N2 | CY050540 | NY | 4/30/2009 | H1N1 | CY074555 | CA | 5/4/2009 |
| H3N2 | CY093359 | AZ | 3/1/2009 | H1N1 | CY080761 | MA | 2/24/2009 |
| H3N2 | CY064847 | CA | 4/27/2009 | H1N1 | CY050476 | NY | 4/27/2009 |
| H3N2 | CY092329 | CA | 4/28/2009 | H1N1 | CY074659 | CA | 4/27/2009 |
| H3N2 | CY068345 | CA | 3/30/2009 | H1N1 | CY074147 | CA | 4/28/2009 |
| H3N2 | CY093263 | AL | 2/1/2009 | H1N1 | CY074323 | CA | 4/30/2009 |
| H3N2 | GQ385926 | WA | 3/16/2009 | H1N1 | CY074435 | CA | 4/30/2009 |
| H3N2 | GQ385846 | IA | 1/2/2009 | H1N1 | CY092345 | CA | 4/28/2009 |
| H3N2 | CY173575 | NY | 2/19/2009 | H1N1 | CY074179 | CA | 4/29/2009 |
| H3N2 | CY093327 | NV | 2/1/2009 | H1N1 | CY074123 | CA | 4/27/2009 |
| H3N2 | CY068401 | CA | 4/30/2009 | H1N1 | CY080849 | MA | 2/14/2009 |
| H3N2 | CY064823 | CA | 4/27/2009 | H1N1 | CY074307 | CA | 4/29/2009 |
| H3N2 | CY068377 | CA | 4/30/2009 | H1N1 | CY074283 | CA | 4/29/2009 |
| H3N2 | CY066519 | CA | 4/28/2009 | H1N1 | CY069373 | SD | 3/1/2009 |
| H3N2 | CY068417 | CA | 4/30/2009 | H1N1 | CY100844 | AL | 4/1/2009 |
| H3N2 | CY068473 | CA | 5/2/2009 | H1N1 | CY100836 | IL | 3/1/2009 |
| H3N2 | CY068249 | CA | 4/28/2009 | H1N1 | CY074475 | CA | 4/30/2009 |
| H3N2 | CY068726 | CA | 4/29/2009 | H1N1 | CY074531 | CA | 4/30/2009 |
| H3N2 | CY064887 | CA | 4/27/2009 | H1N1 | CY073821 | CA | 4/28/2009 |
| H3N2 | CY068798 | CA | 4/28/2009 | H1N1 | CY080945 | MA | 1/20/2009 |
| H3N2 | GQ385832 | WA | 4/6/2009 | H1N1 | KC782260 | ND | 1/19/2009 |
| H3N2 | CY068441 | CA | 4/30/2009 | H1N1 | CY089709 | MA | 2/11/2009 |
| H3N2 | CY068425 | CA | 4/30/2009 | H1N1 | CY064831 | CA | 4/27/2009 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY068694 | CA | 4/27/2009 | H1N1 | CY074339 | CA | 4/29/2009 |
| H3N2 | CY089741 | MA | 4/1/2009 | H1N1 | CY074635 | CA | 4/27/2009 |
| H3N2 | KC535331 | WA | 5/5/2009 | H1N1 | CY074643 | CA | 4/26/2009 |
| H3N2 | KC535336 | WA | 5/1/2009 | H1N1 | KC782263 | MO | 5/5/2009 |
| H3N2 | KC535337 | WA | 5/3/2009 | H1N1 | CY050660 | NY | 4/27/2009 |
| H3N2 | KC535342 | WA | 5/1/2009 | H1N1 | CY074483 | CA | 4/30/2009 |
| H3N2 | CY067253 | CA | 5/4/2009 | H1N1 | CY073837 | CA | 4/29/2009 |
| H3N2 | CY068545 | CA | 5/4/2009 | H1N1 | CY074651 | CA | 4/27/2009 |
| H3N2 | CY068465 | CA | 4/29/2009 | H1N1 | CY074171 | CA | 4/28/2009 |
| H3N2 | CY068830 | CA | 4/26/2009 | H1N1 | CY074355 | CA | 4/29/2009 |
| H3N2 | CY067985 | CA | 5/20/2009 | H1N1 | CY074491 | CA | 4/30/2009 |
| H3N2 | FJ686928 | WI | 12/3/2008 | H1N1 | CY070895 | CA | 4/27/2009 |
| H3N2 | CY093295 | AR | 2/1/2009 | H1N1 | CY074187 | CA | 4/29/2009 |
| H3N2 | CY068782 | CA | 4/27/2009 | H1N1 | CY074379 | CA | 5/1/2009 |
| H3N2 | GQ385825 | NH | 2/28/2009 | H1N1 | CY074195 | CA | 4/29/2009 |
| H3N2 | GQ369809 | CA | 12/20/2008 | H1N1 | CY089043 | MA | 2/4/2009 |
| H3N2 | CY068193 | CA | 4/28/2009 | H1N1 | CY089155 | MA | 1/30/2009 |
| H3N2 | CY068177 | CA | 4/28/2009 | H1N1 | CY080753 | MA | 2/23/2009 |
| H3N2 | GQ385849 | WI | 1/7/2009 | H1N1 | CY089139 | MA | 1/22/2009 |
| H3N2 | CY089393 | MA | 1/30/2009 | H1N1 | CY089147 | MA | 1/29/2009 |
| H3N2 | CY173567 | NY | 2/9/2009 | H1N1 | CY080673 | MA | 2/10/2009 |
| H3N2 | CY089773 | MA | 4/27/2009 | H1N1 | CY080650 | MA | 2/10/2009 |
| H3N2 | CY068449 | CA | 4/30/2009 | H1N1 | CY080785 | MA | 2/26/2009 |
| H3N2 | CY173591 | NY | 3/2/2009 | H1N1 | CY089163 | MA | 2/4/2009 |
| H3N2 | CY173583 | NY | 2/24/2009 | H1N1 | CY080809 | MA | 3/1/2009 |
| H3N2 | GQ385869 | IN | 4/15/2009 | H1N1 | CY080737 | MA | 2/20/2009 |
| H3N2 | CY067929 | CA | 4/28/2009 | H1N1 | CY080658 | MA | 2/11/2009 |
| H3N2 | CY050492 | NY | 4/27/2009 | H1N1 | CY089067 | MA | 2/20/2009 |
| H3N2 | CY068758 | CA | 4/28/2009 | H1N1 | CY080697 | MA | 2/11/2009 |
| H3N2 | CY173543 | NY | 3/1/2009 | H1N1 | CY080969 | MA | 2/12/2009 |
| H3N2 | GQ385891 | PA | 1/22/2009 | H1N1 | CY089091 | MA | 2/13/2009 |
| H3N2 | KC535318 | MD | 5/6/2009 | H1N1 | CY080817 | MA | 3/3/2009 |
| H3N2 | CY050708 | NY | 5/3/2009 | H1N1 | CY080594 | MA | 2/19/2009 |
| H3N2 | CY050700 | NY | 5/3/2009 | H1N1 | CY080929 | MA | 3/23/2009 |
| H3N2 | CY080475 | NY | 5/15/2009 | H1N1 | CY080602 | MA | 1/30/2009 |
| H3N2 | CY050564 | NY | 4/29/2009 | H1N1 | CY173479 | NY | 3/10/2009 |
| H3N2 | KC535319 | MN | 5/4/2009 | H1N1 | CY080610 | MA | 4/1/2009 |
| H3N2 | GQ895044 | KS | 5/1/2009 | H1N1 | CY089075 | MA | 3/3/2009 |
| H3N2 | CY068838 | CA | 4/25/2009 | H1N1 | CY080937 | MA | 3/24/2009 |
| H3N2 | CY068625 | CA | 5/18/2009 | H1N1 | CY089051 | MA | 2/19/2009 |
| H3N2 | CY081025 | MA | 2/12/2009 | H1N1 | CY080721 | MA | 2/20/2009 |
| H3N2 | CY089733 | MA | 2/27/2009 | H1N1 | CY080889 | MA | 3/9/2009 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | ---: |
| H3N2 | GQ385872 | MT | $3 / 3 / 2009$ | H1N1 | CY080769 | MA | $2 / 24 / 2009$ |
| H3N2 | CY068289 | CA | $4 / 29 / 2009$ | H1N1 | CY080953 | MA | $2 / 9 / 2009$ |
| H3N2 | CY068385 | CA | $4 / 30 / 2009$ | H1N1 | CY081001 | MA | $2 / 22 / 2009$ |
| H3N2 | CY067205 | CA | $5 / 1 / 2009$ | H1N1 | CY080921 | MA | $3 / 13 / 2009$ |
| H3N2 | CY068878 | CA | $4 / 29 / 2009$ | H1N1 | CY080993 | MA | $2 / 23 / 2009$ |
| H3N2 | CY064879 | CA | $4 / 28 / 2009$ | H1N1 | CY080626 | MA | $1 / 29 / 2009$ |
| H3N2 | CY050636 | NY | $5 / 1 / 2009$ | H1N1 | CY088577 | MA | $1 / 29 / 2009$ |
| H3N2 | CY058764 | NY | $5 / 6 / 2009$ | H1N1 | CY080977 | MA | $2 / 13 / 2009$ |
| H3N2 | CY068790 | CA | $4 / 29 / 2009$ | H1N1 | CY080729 | MA | $2 / 21 / 2009$ |
| H3N2 | CY068553 | CA | $5 / 3 / 2009$ | H1N1 | CY080689 | MA | $2 / 11 / 2009$ |
| H3N2 | CY068257 | CA | $4 / 29 / 2009$ | H1N1 | CY089131 | MA | $1 / 14 / 2009$ |
| H3N2 | CY068678 | CA | $4 / 28 / 2009$ | H1N1 | CY080705 | MA | $2 / 18 / 2009$ |
| H3N2 | CY092361 | CA | $4 / 29 / 2009$ | H1N1 | CY080634 | MA | $1 / 31 / 2009$ |
| H3N2 | CY068633 | CA | $4 / 28 / 2009$ | H1N1 | CY173343 | NY | $1 / 28 / 2009$ |
| H3N2 | GQ385887 | NV | $4 / 8 / 2009$ | H1N1 | CY089830 | MA | $1 / 28 / 2009$ |
| H3N2 | CY068233 | CA | $4 / 28 / 2009$ | H1N1 | CY080793 | MA | $2 / 27 / 2009$ |
| H3N2 | CY068537 | CA | $5 / 4 / 2009$ | H1N1 | CY081009 | MA | $2 / 20 / 2009$ |
| H3N2 | CY068710 | CA | $4 / 29 / 2009$ | H1N1 | CY080857 | MA | $2 / 27 / 2009$ |
| H3N2 | CY068481 | CA | $4 / 30 / 2009$ | H1N1 | CY050756 | NY | $5 / 13 / 2009$ |
| H3N2 | GQ895031 | OR | $5 / 25 / 2009$ | H1N1 | CY074131 | CA | $4 / 30 / 2009$ |
| H3N2 | CY072198 | CA | $4 / 26 / 2009$ | H1N1 | CY080618 | MA | $4 / 27 / 2009$ |
| H3N2 | CY068489 | CA | $5 / 1 / 2009$ | H1N1 | CY050748 | NY | $5 / 26 / 2009$ |
| H3N2 | CY068337 | CA | $5 / 2 / 2009$ | H1N1 | CY073861 | CA | $4 / 29 / 2009$ |
| H3N2 | CY068225 | CA | $4 / 29 / 2009$ | H1N1 | CY074315 | CA | $4 / 29 / 2009$ |
| H3N2 | CY068209 | CA | $4 / 28 / 2009$ | H1N1 | CY080825 | MA | $2 / 13 / 2009$ |
| H3N2 | CY068185 | CA | $4 / 29 / 2009$ | HQ3N2 | CY09369 | CA | $4 / 29 / 2009$ |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY093248 | TX | 2/1/2009 | H1N1 | CY092872 | IL | 1/26/2011 |
| H3N2 | GQ895022 | TX | 2/24/2009 | H1N1 | KC881748 | OR | 1/18/2011 |
| H3N2 | KF765565 | TX | 4/1/2009 | H1N1 | KC882173 | CA | 12/8/2010 |
| H3N2 | CY068321 | CA | 4/29/2009 | H1N1 | KC882160 | NY | 12/7/2010 |
| H3N2 | CY050580 | NY | 5/2/2009 | H1N1 | KC881582 | IL | 12/29/2010 |
| H3N2 | CY068585 | CA | 5/11/2009 | H1N1 | KC882150 | ID | 2/7/2011 |
| H3N2 | CY068129 | CA | 4/28/2009 | H1N1 | CY097797 | DC | 12/26/2010 |
| H3N2 | CY068009 | CA | 5/26/2009 | H1N1 | CY097821 | DC | 12/24/2010 |
| H3N2 | CY068017 | CA | 5/26/2009 | H1N1 | CY097868 | DC | 1/1/2011 |
| H3N2 | CY068121 | CA | 4/27/2009 | H1N1 | CY090027 | DC | 1/28/2011 |
| H3N2 | CY067953 | CA | 4/30/2009 | H1N1 | CY097860 | DC | 1/1/2011 |
| H3N2 | KC535458 | GA | 5/1/2009 | H1N1 | KC882015 | AZ | 3/8/2011 |
| H3N2 | CY055083 | NY | 5/24/2009 | H1N1 | KC881922 | UT | 2/18/2011 |
| H3N2 | GQ895050 | SC | 3/9/2009 | H1N1 | KC882147 | TX | 2/16/2011 |
| H3N2 | CY093255 | FL | 5/1/2009 | H1N1 | KC881988 | PA | 2/22/2011 |
| H3N2 | CY068433 | CA | 4/30/2009 | H1N1 | KC882217 | TX | 3/6/2011 |
| H3N2 | KC535324 | KS | 5/9/2009 | H1N1 | KC881754 | OR | 1/28/2011 |
| H3N2 | CY068033 | CA | 5/11/2009 | H1N1 | KC882208 | PA | 3/13/2011 |
| H3N2 | CY068049 | CA | 5/11/2009 | H1N1 | KC882043 | PA | 2/23/2011 |
| H3N2 | CY173551 | NY | 3/16/2009 | H1N1 | KC882018 | MD | 2/2/2011 |
| H3N2 | CY068617 | CA | 5/5/2009 | H1N1 | KC882339 | MD | 2/2/2011 |
| H3N2 | CY089765 | MA | 5/11/2009 | H1N1 | KC881697 | NJ | 3/3/2011 |
| H3N2 | CY068041 | CA | 5/26/2009 | H1N1 | KC881789 | NC | 1/18/2011 |
| H3N2 | CY067921 | CA | 4/27/2009 | H1N1 | CY134473 | MA | 1/27/2011 |
| H3N2 | CY068822 | CA | 4/27/2009 | H1N1 | KC881783 | VT | 1/14/2011 |
| H3N2 | CY068561 | CA | 5/11/2009 | H1N1 | KC882019 | VT | 1/14/2011 |
| H3N2 | CY067237 | CA | 5/2/2009 | H1N1 | KC881756 | NJ | 1/13/2011 |
| H3N2 | CY068686 | CA | 4/28/2009 | H1N1 | KC881576 | WI | 1/6/2011 |
| H3N2 | CY068137 | CA | 4/28/2009 | H1N1 | KC881920 | MA | 2/3/2011 |
| H3N2 | CY067245 | CA | 5/1/2009 | H1N1 | KC882087 | NY | 1/29/2011 |
| H3N2 | CY068457 | CA | 5/1/2009 | H1N1 | KC881916 | ME | 3/11/2011 |
| H3N2 | CY068854 | CA | 4/26/2009 | H1N1 | CY134465 | MA | 1/13/2011 |
| H3N2 | CY068353 | CA | 4/30/2009 | H1N1 | KC882012 | MA | 3/7/2011 |
| H3N2 | CY068577 | CA | 5/11/2009 | H1N1 | CY129862 | MA | 2/16/2011 |
| H3N2 | CY067969 | CA | 5/4/2009 | H1N1 | KC881931 | NY | 2/21/2011 |
| H3N2 | CY068217 | CA | 4/28/2009 | H1N1 | CY134569 | MA | 2/17/2011 |
| H3N2 | CY068806 | CA | 4/29/2009 | H1N1 | KC882257 | CA | 2/15/2011 |
| H3N2 | CY067213 | CA | 4/30/2009 | H1N1 | KC881648 | WI | 3/17/2011 |
| H3N2 | CY068702 | CA | 4/28/2009 | H1N1 | KC881758 | IA | 1/5/2011 |
| H3N2 | CY068393 | CA | 4/30/2009 | H1N1 | KC881676 | GA | 3/5/2011 |
| H3N2 | CY067977 | CA | 5/4/2009 | H1N1 | KC882125 | FL | 2/3/2011 |
| H3N2 | CY068569 | CA | 5/9/2009 | H1N1 | CY092888 | SC | 1/25/2011 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY068601 | CA | 5/18/2009 | H1N1 | KC881836 | PA | 11/16/2010 |
| H3N2 | CY068105 | CA | 4/27/2009 | H1N1 | KC882102 | PA | 11/16/2010 |
| H3N2 | CY068529 | CA | 5/6/2009 | H1N1 | KC881857 | PA | 11/17/2010 |
| H3N2 | CY068513 | CA | 5/6/2009 | H1N1 | KC881791 | NY | 1/4/2011 |
| H3N2 | CY064863 | CA | 4/27/2009 | H1N1 | KC881679 | MS | 2/23/2011 |
| H3N2 | CY068497 | CA | 5/1/2009 | H1N1 | KC881877 | MS | 2/23/2011 |
| H3N2 | CY068297 | CA | 4/27/2009 | H1N1 | KC882188 | CA | 2/9/2011 |
| H3N2 | CY068742 | CA | 4/28/2009 | H1N1 | KC881735 | PA | 1/22/2011 |
| H3N2 | CY068329 | CA | 5/1/2009 | H1N1 | KC882322 | NE | 2/25/2011 |
| H3N2 | CY068169 | CA | 4/29/2009 | H1N1 | KC881851 | NH | 10/4/2010 |
| H3N2 | CY068505 | CA | 5/1/2009 | H1N1 | KC881632 | CT | 1/12/2011 |
| H3N2 | CY068870 | CA | 4/28/2009 | H1N1 | CY129654 | NY | 3/24/2011 |
| H3N2 | CY069349 | WA | 2/9/2009 | H1N1 | KC882220 | WA | 3/8/2011 |
| H3N2 | CY068766 | CA | 4/28/2009 | H1N1 | KC882259 | WY | 1/3/2011 |
| H3N2 | CY092377 | CA | 5/1/2009 | H1N1 | CY111206 | MA | 1/19/2011 |
| H3N2 | CY067197 | CA | 4/29/2009 | H1N1 | CY134497 | MA | 2/7/2011 |
| H3N2 | CY050820 | NY | 5/20/2009 | H1N1 | KC881937 | NM | 2/21/2011 |
| H3N2 | CY050804 | NY | 5/17/2009 | H1N1 | KC881912 | NM | 2/7/2011 |
| H3N2 | CY068001 | CA | 5/19/2009 | H1N1 | KC881943 | NM | 2/9/2011 |
| H3N2 | CY068409 | CA | 4/30/2009 | H1N1 | KC882138 | NM | 3/7/2011 |
| H3N2 | CY050732 | NY | 5/5/2009 | H1N1 | KC882111 | CA | 10/29/2010 |
| H3N2 | CY050684 | NY | 4/29/2009 | H1N1 | KC882168 | IA | 11/29/2010 |
| H3N2 | CY068089 | CA | 4/25/2009 | H1N1 | KC882099 | MT | 11/22/2010 |
| H3N2 | CY068113 | CA | 4/25/2009 | H1N1 | KC882290 | CA | 2/21/2011 |
| H3N2 | CY068521 | CA | 5/6/2009 | H1N1 | CY092880 | CA | 1/28/2011 |
| H3N2 | CY067961 | CA | 5/9/2009 | H1N1 | CY176562 | MA | 2/4/2011 |
| H3N2 | CY070919 | CA | 5/9/2009 | H1N1 | KC881725 | WI | 2/14/2011 |
| H3N2 | CY050812 | NY | 5/15/2009 | H1N1 | KC882187 | NY | 3/14/2011 |
| H3N2 | CY050692 | NY | 4/27/2009 | H1N1 | KC881596 | FL | 5/24/2011 |
| H3N2 | CY068718 | CA | 4/28/2009 | H1N1 | CY134585 | MA | 2/21/2011 |
| H3N2 | CY050620 | NY | 5/2/2009 | H1N1 | KC882090 | KS | 2/8/2011 |
| H3N2 | KC535453 | NY | 5/23/2009 | H1N1 | KC881653 | TX | 3/1/2011 |
| H3N2 | CY050724 | NY | 4/30/2009 | H1N1 | CY111538 | MA | 2/3/2011 |
| H3N2 | CY068281 | CA | 4/29/2009 | H1N1 | CY134553 | MA | 2/16/2011 |
| H3N2 | CY050788 | NY | 5/11/2009 | H1N1 | CY097805 | DC | 12/24/2010 |
| H3N2 | CY058796 | NY | 5/19/2009 | H1N1 | KC881634 | NC | 12/23/2010 |
| H3N2 | CY067993 | CA | 5/11/2009 | H1N1 | KC881719 | NC | 3/1/2011 |
| H3N2 | CY068265 | CA | 4/30/2009 | H1N1 | KC882151 | GA | 11/15/2010 |
| H3N2 | CY067945 | CA | 5/4/2009 | H1N1 | KC882293 | CA | 3/13/2011 |
| H3N2 | CY050468 | NY | 4/26/2009 | H1N1 | KC881722 | WI | 2/6/2011 |
| H3N2 | CY050508 | NY | 4/28/2009 | H1N1 | KC881854 | NV | 2/13/2011 |
| H3N2 | CY050596 | NY | 4/27/2009 | H1N1 | KC881714 | IL | 3/9/2011 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY050556 | NY | 4/28/2009 | H1N1 | KC881876 | AZ | 2/1/2011 |
| H3N2 | CY058780 | NY | 5/18/2009 | H1N1 | KC881814 | TN | 3/8/2011 |
| H3N2 | CY080459 | NY | 5/4/2009 | H1N1 | KC881573 | NV | 1/20/2011 |
| H3N2 | CY080483 | NY | 5/23/2009 | H1N1 | KC882114 | TX | 11/30/2010 |
| H3N2 | CY058756 | NY | 5/1/2009 | H1N1 | KC882071 | MA | 1/8/2011 |
| H3N2 | CY084393 | NY | 5/6/2009 | H1N1 | KC882331 | VA | 1/6/2011 |
| H3N2 | CY050484 | NY | 4/28/2009 | H1N1 | CY129870 | DC | 1/10/2011 |
| H3N2 | CY050836 | NY | 5/11/2009 | H1N1 | CY129878 | DC | 1/13/2011 |
| H3N2 | CY050668 | NY | 5/1/2009 | H1N1 | KC881898 | MD | 1/10/2011 |
| H3N2 | CY050452 | NY | 4/27/2009 | H1N1 | KC881728 | DC | 2/12/2011 |
| H3N2 | CY050460 | NY | 4/27/2009 | H1N1 | CY097837 | DC | 12/30/2010 |
| H3N2 | CY050604 | NY | 4/27/2009 | H1N1 | KC882078 | GA | 12/31/2010 |
| H3N2 | CY050588 | NY | 4/28/2009 | H1N1 | CY097813 | DC | 12/28/2010 |
| H3N2 | CY050516 | NY | 4/28/2009 | H1N1 | KC882349 | MD | 1/24/2011 |
| H3N2 | CY058772 | NY | 5/13/2009 | H1N1 | KC881787 | ME | 2/1/2011 |
| H3N2 | CY050796 | NY | 5/13/2009 | H1N1 | KC881701 | MD | 1/14/2011 |
| H3N2 | CY050572 | NY | 4/28/2009 | H1N1 | KC882366 | CO | 12/29/2010 |
| H3N2 | CY058804 | NY | 5/24/2009 | H1N1 | KC882117 | CA | 10/19/2010 |
| H3N2 | CY080467 | NY | 5/16/2009 | H1N1 | KC881705 | NC | 1/20/2011 |
| H3N2 | CY050780 | NY | 5/18/2009 | H1N1 | KC881716 | NC | 1/20/2011 |
| H3N2 | CY055099 | NY | 5/20/2009 | H1N1 | CY111262 | MA | 2/1/2011 |
| H3N2 | CY050716 | NY | 4/27/2009 | H1N1 | CY134521 | MA | 2/12/2011 |
| H3N2 | CY050500 | NY | 4/28/2009 | H1N1 | CY167468 | TN | 12/10/2010 |
| H3N2 | CY050740 | NY | 4/28/2009 | H1N1 | CY167660 | TN | 3/3/2011 |
| H3N2 | CY050676 | NY | 4/29/2009 | H1N1 | KC882073 | MO | 11/30/2010 |
| H3N2 | CY089629 | NY | 5/21/2009 | H1N1 | KC882081 | CT | 2/13/2011 |
| H3N2 | CY084385 | NY | 4/28/2009 | H1N1 | KC881643 | WI | 1/15/2011 |
| H3N2 | KC535452 | MD | 5/11/2009 | H1N1 | KC882176 | AR | 11/30/2010 |
| H3N2 | CY050524 | NY | 4/28/2009 | H1N1 | KC881850 | MS | 1/13/2011 |
| H3N2 | CY058748 | NY | 4/28/2009 | H1N1 | CY111286 | MA | 2/11/2011 |
| H3N2 | CY050628 | NY | 4/29/2009 | H1N1 | KC881744 | WA | 1/11/2011 |
| H3N2 | KC882784 | CA | 12/8/2010 | H1N1 | KC881609 | WA | 1/5/2011 |
| H3N2 | KC882775 | WA | 12/2/2010 | H1N1 | KC882314 | WI | 2/25/2011 |
| H3N2 | CY084298 | NV | 12/6/2010 | H1N1 | KC881760 | KS | 1/19/2011 |
| H3N2 | KC882702 | SC | 12/2/2010 | H1N1 | KC881949 | KS | 1/19/2011 |
| H3N2 | CY111382 | MA | 3/5/2011 | H1N1 | KC881785 | TX | 1/23/2011 |
| H3N2 | KC882820 | IL | 1/4/2011 | H1N1 | KC881997 | NH | 2/11/2011 |
| H3N2 | KC882781 | AZ | 11/9/2010 | H1N1 | KC881598 | NE | 1/20/2011 |
| H3N2 | KC883278 | SC | 10/3/2010 | H1N1 | CY134489 | MA | 1/27/2011 |
| H3N2 | KC882974 | KS | 2/14/2011 | H1N1 | CY092896 | SC | 1/29/2011 |
| H3N2 | KC883070 | IL | 1/22/2011 | H1N1 | KC882398 | DE | 2/12/2011 |
| H3N2 | KC882992 | IL | 1/22/2011 | H1N1 | KC882336 | MD | 2/22/2011 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC883261 | MD | 12/22/2010 | H1N1 | KC882346 | ME | 2/17/2011 |
| H3N2 | CY093232 | DC | 11/23/2010 | H1N1 | CY111398 | MA | 3/8/2011 |
| H3N2 | KC883264 | CO | 2/6/2011 | H1N1 | KC881909 | NY | 12/9/2010 |
| H3N2 | KC883000 | FL | 2/3/2011 | H1N1 | KC882032 | UT | 10/12/2010 |
| H3N2 | KC883342 | NH | 1/17/2011 | H1N1 | KC882418 | NC | 1/31/2011 |
| H3N2 | KC882589 | AR | 1/6/2011 | H1N1 | KC882037 | KS | 3/1/2011 |
| H3N2 | KC882979 | IN | 1/15/2011 | H1N1 | KC882214 | OR | 2/7/2011 |
| H3N2 | KC882950 | VA | 1/11/2011 | H1N1 | KC882165 | MN | 12/5/2010 |
| H3N2 | KC883039 | AL | 4/4/2011 | H1N1 | KC882154 | IA | 12/23/2010 |
| H3N2 | CY167732 | TN | 3/16/2011 | H1N1 | KC882170 | DE | 12/7/2010 |
| H3N2 | KC882834 | NH | 11/23/2010 | H1N1 | KC882054 | WI | 10/2/2010 |
| H3N2 | KC882577 | NC | 12/9/2010 | H1N1 | KC881764 | DC | 1/18/2011 |
| H3N2 | KC883364 | IN | 2/17/2011 | H1N1 | KC881884 | MT | 2/2/2011 |
| H3N2 | KC883320 | DC | 1/2/2011 | H1N1 | KC881636 | FL | 1/4/2011 |
| H3N2 | KC882551 | WV | 1/8/2011 | H1N1 | KC881848 | IN | 1/16/2011 |
| H3N2 | KC882709 | IN | 12/13/2010 | H1N1 | KC881628 | NC | 1/15/2011 |
| H3N2 | KC882548 | WV | 1/2/2011 | H1N1 | KC882184 | MN | 4/19/2011 |
| H3N2 | KC883362 | FL | 2/12/2011 | H1N1 | KC881585 | NM | 3/29/2011 |
| H3N2 | KC883147 | MO | 3/2/2011 | H1N1 | KC881924 | NC | 2/16/2011 |
| H3N2 | KC882772 | OR | 11/23/2010 | H1N1 | KC881772 | NC | 1/27/2011 |
| H3N2 | CY111318 | MA | 2/18/2011 | H1N1 | CY111278 | MA | 2/7/2011 |
| H3N2 | CY084311 | TX | 12/29/2010 | H1N1 | KC881579 | UT | 1/18/2011 |
| H3N2 | KC882908 | CA | 1/16/2011 | H1N1 | KC881766 | RI | 1/7/2011 |
| H3N2 | KC882883 | NJ | 11/28/2010 | H1N1 | CY097829 | DC | 12/29/2010 |
| H3N2 | CY093224 | DC | 11/17/2010 | H1N1 | KC882411 | DE | 2/4/2011 |
| H3N2 | KC882867 | DC | 12/29/2010 | H1N1 | KC882419 | DE | 2/4/2011 |
| H3N2 | KC883137 | NY | 3/1/2011 | H1N1 | KC881864 | IL | 1/12/2011 |
| H3N2 | CY116699 | MA | 1/19/2011 | H1N1 | KC882084 | IA | 2/13/2011 |
| H3N2 | KC883198 | RI | 3/7/2011 | H1N1 | CY111294 | MA | 2/15/2011 |
| H3N2 | KC882698 | MT | 10/24/2010 | H1N1 | KC881873 | VA | 2/15/2011 |
| H3N2 | KC882681 | GA | 10/22/2010 | H1N1 | CY134537 | MA | 2/14/2011 |
| H3N2 | KC883323 | VT | 1/10/2011 | H1N1 | KC882075 | VA | 2/15/2011 |
| H3N2 | KC882855 | MN | 12/19/2010 | H1N1 | KC882285 | NJ | 2/22/2011 |
| H3N2 | KC883120 | MN | 1/4/2011 | H1N1 | KC881827 | KY | 11/1/2010 |
| H3N2 | KC882843 | MN | 12/7/2010 | H1N1 | KC881830 | KY | 11/1/2010 |
| H3N2 | KC882845 | MN | 11/25/2010 | H1N1 | KC881802 | TX | 1/5/2011 |
| H3N2 | KC882870 | MN | 11/23/2010 | H1N1 | KC882052 | TX | 1/5/2011 |
| H3N2 | KC882851 | MN | 12/6/2010 | H1N1 | KC881630 | WV | 1/1/2011 |
| H3N2 | KC882609 | NV | 2/8/2011 | H1N1 | KC882231 | KY | 12/8/2010 |
| H3N2 | KC882541 | ME | 12/28/2010 | H1N1 | KC881866 | OH | 1/11/2011 |
| H3N2 | KC882873 | MN | 12/28/2010 | H1N1 | CY092417 | MO | 1/25/2011 |
| H3N2 | KC882455 | WY | 12/21/2010 | H1N1 | CY167476 | TN | 12/16/2010 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC883223 | NE | 3/10/2011 | H1N1 | CY167492 | TN | 1/14/2011 |
| H3N2 | KC882488 | NE | 1/20/2011 | H1N1 | CY167548 | TN | 2/2/2011 |
| H3N2 | CY116707 | MA | 2/1/2011 | H1N1 | CY167716 | TN | 3/25/2011 |
| H3N2 | KC882896 | KS | 12/26/2010 | H1N1 | CY167556 | TN | 2/4/2011 |
| H3N2 | CY167620 | TN | 2/25/2011 | H1N1 | KC882211 | WA | 2/10/2011 |
| H3N2 | CY167628 | TN | 3/7/2011 | H1N1 | KC882196 | IN | 2/20/2011 |
| H3N2 | CY111238 | MA | 1/15/2011 | H1N1 | KC882235 | OH | 2/1/2011 |
| H3N2 | CY111174 | MA | 1/13/2011 | H1N1 | KC882334 | MD | 2/25/2011 |
| H3N2 | CY111358 | MA | 2/28/2011 | H1N1 | KC882096 | NC | 11/22/2010 |
| H3N2 | CY111302 | MA | 2/16/2011 | H1N1 | KC882232 | AL | 1/4/2011 |
| H3N2 | CY134609 | MA | 2/25/2011 | H1N1 | KC881910 | MI | 2/23/2011 |
| H3N2 | KC883233 | MA | 12/31/2010 | H1N1 | KC882278 | MI | 3/30/2011 |
| H3N2 | CY134529 | MA | 2/13/2011 | H1N1 | KC882205 | UT | 3/10/2011 |
| H3N2 | CY111342 | MA | 2/24/2011 | H1N1 | CY111254 | MA | 1/27/2011 |
| H3N2 | CY111142 | MA | 1/3/2011 | H1N1 | KC881960 | RI | 2/2/2011 |
| H3N2 | KC882621 | MA | 1/9/2011 | H1N1 | KC882029 | KY | 10/11/2010 |
| H3N2 | KC882536 | ME | 1/3/2011 | H1N1 | KC881822 | PA | 2/28/2011 |
| H3N2 | KC882563 | NJ | 1/11/2011 | H1N1 | KC881658 | CO | 3/23/2011 |
| H3N2 | KC882557 | NJ | 1/11/2011 | H1N1 | KC882039 | NY | 3/20/2011 |
| H3N2 | KC883165 | VT | 4/12/2011 | H1N1 | KC882301 | MO | 1/10/2011 |
| H3N2 | CY111446 | MA | 3/17/2011 | H1N1 | KC881868 | AZ | 12/25/2010 |
| H3N2 | KC882813 | ND | 1/14/2011 | H1N1 | KC882013 | KS | 12/1/2010 |
| H3N2 | CY111390 | MA | 2/26/2011 | H1N1 | KC881569 | NE | 1/8/2011 |
| H3N2 | KC882849 | VT | 12/21/2010 | H1N1 | KC881835 | NE | 2/12/2011 |
| H3N2 | KC882806 | WI | 12/28/2010 | H1N1 | KC881862 | SC | 1/5/2011 |
| H3N2 | KC882856 | VT | 12/22/2010 | H1N1 | KC882123 | CO | 3/8/2011 |
| H3N2 | KC882521 | NJ | 2/3/2011 | H1N1 | KC881892 | WI | 1/20/2011 |
| H3N2 | KC882595 | NC | 2/1/2011 | H1N1 | KC881833 | KY | 11/10/2010 |
| H3N2 | KC882499 | MA | 3/4/2011 | H1N1 | CY176442 | OH | 1/21/2011 |
| H3N2 | KC882862 | DE | 12/20/2010 | H1N1 | KC882362 | IN | 2/7/2011 |
| H3N2 | KC882879 | VT | 1/5/2011 | H1N1 | KC882343 | IN | 1/19/2011 |
| H3N2 | KC883156 | NY | 4/13/2011 | H1N1 | KC882263 | KY | 12/6/2010 |
| H3N2 | KC882941 | NH | 1/31/2011 | H1N1 | KC881750 | AR | 1/13/2011 |
| H3N2 | CY134545 | MA | 2/15/2011 | H1N1 | KC881952 | SD | 1/12/2011 |
| H3N2 | KC882739 | LA | 12/7/2010 | H1N1 | KC881639 | SD | 1/12/2011 |
| H3N2 | CY111246 | MA | 1/28/2011 | H1N1 | KC882120 | DE | 11/10/2010 |
| H3N2 | KC882764 | NV | 11/5/2010 | H1N1 | KC882261 | IN | 12/13/2010 |
| H3N2 | KC883207 | KY | 10/18/2010 | H1N1 | KC882395 | MD | 3/2/2011 |
| H3N2 | KC882882 | VT | 1/10/2011 | H1N1 | KC881972 | MN | 2/18/2011 |
| H3N2 | KC882497 | MA | 12/15/2010 | H1N1 | KC881905 | MN | 2/18/2011 |
| H3N2 | CY111134 | MA | 1/4/2011 | H1N1 | KC882223 | CA | 3/2/2011 |
| H3N2 | KC882888 | NJ | 12/7/2010 | H1N1 | KC881592 | NC | 2/25/2011 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC883302 | GA | 12/31/2010 | H1N1 | KC881612 | CA | 1/17/2011 |
| H3N2 | CY139586 | MA | 1/25/2011 | H1N1 | KC882202 | WI | 2/25/2011 |
| H3N2 | CY111214 | MA | 1/19/2011 | H1N1 | CY111374 | MA | 3/3/2011 |
| H3N2 | KC883104 | DE | 3/6/2011 | H1N1 | KC881682 | TN | 2/23/2011 |
| H3N2 | CY111182 | MA | 1/13/2011 | H1N1 | KC881624 | MN | 1/6/2011 |
| H3N2 | KC882512 | PA | 12/12/2010 | H1N1 | KC881606 | OK | 1/4/2011 |
| H3N2 | CY111454 | MA | 3/23/2011 | H1N1 | CY167724 | TN | 4/13/2011 |
| H3N2 | KC882822 | SD | 1/6/2011 | H1N1 | KC882255 | MO | 12/21/2010 |
| H3N2 | KC883110 | VT | 3/6/2011 | H1N1 | KC882253 | ME | 12/28/2010 |
| H3N2 | CY091565 | SC | 1/28/2011 | H1N1 | KC882288 | AR | 4/14/2011 |
| H3N2 | KC882662 | SC | 11/12/2010 | H1N1 | KC882251 | CT | 12/14/2010 |
| H3N2 | KC883356 | SC | 2/14/2011 | H1N1 | KC881741 | CA | 1/7/2011 |
| H3N2 | CY111350 | MA | 2/26/2011 | H1N1 | CY167748 | TN | 3/31/2011 |
| H3N2 | KC882917 | WA | 1/22/2011 | H1N1 | CY167756 | TN | 4/4/2011 |
| H3N2 | CY111326 | MA | 2/21/2011 | H1N1 | CY167309 | TN | 3/17/2011 |
| H3N2 | CY111310 | MA | 2/18/2011 | H1N1 | CY167580 | TN | 2/11/2011 |
| H3N2 | CY084327 | NC | 1/4/2011 | H1N1 | CY167588 | TN | 2/14/2011 |
| H3N2 | KC882946 | VT | 2/7/2011 | H1N1 | KC882157 | RI | 11/18/2010 |
| H3N2 | KC882553 | NJ | 12/28/2010 | H1N1 | KC881637 | AL | 12/28/2010 |
| H3N2 | KC883129 | NY | 1/31/2011 | H1N1 | KC881615 | CA | 1/27/2011 |
| H3N2 | CY111422 | MA | 3/12/2011 | H1N1 | KC881729 | OR | 12/21/2010 |
| H3N2 | KC882953 | MN | 1/19/2011 | H1N1 | KC881805 | TN | 2/23/2011 |
| H3N2 | KC882591 | RI | 1/25/2011 | H1N1 | KC882199 | MT | 3/3/2011 |
| H3N2 | KC882944 | VT | 2/7/2011 | H1N1 | KC882295 | MO | 3/9/2011 |
| H3N2 | CY117581 | MA | 2/14/2011 | H1N1 | KC881663 | FL | 3/15/2011 |
| H3N2 | CY134601 | MA | 2/24/2011 | H1N1 | KC881810 | LA | 3/22/2011 |
| H3N2 | KC883142 | DE | 4/11/2011 | H1N1 | KC882403 | LA | 3/24/2011 |
| H3N2 | CY134505 | MA | 2/10/2011 | H1N1 | KC881882 | NC | 1/14/2011 |
| H3N2 | KC883114 | VA | 2/2/2011 | H1N1 | KC881856 | WA | 2/17/2011 |
| H3N2 | CY134593 | MA | 2/22/2011 | H1N1 | KC882192 | CT | 4/2/2011 |
| H3N2 | KC883306 | TN | 12/27/2010 | H1N1 | KC882127 | WY | 1/28/2011 |
| H3N2 | KC882893 | VT | 1/18/2011 | H1N1 | CY092904 | GA | 1/27/2011 |
| H3N2 | KC882523 | MD | 2/7/2011 | H1N1 | KC882136 | NM | 4/19/2011 |
| H3N2 | KC882502 | RI | 3/3/2011 | H1N1 | KC881890 | CO | 1/24/2011 |
| H3N2 | KC883427 | MD | 3/27/2011 | H1N1 | KC882226 | NE | 3/3/2011 |
| H3N2 | KC883209 | PA | 10/28/2010 | H1N1 | KC881706 | NY | 4/13/2011 |
| H3N2 | KC882721 | ND | 12/13/2010 | H1N1 | KC881707 | NY | 4/13/2011 |
| H3N2 | KC883297 | LA | 10/7/2010 | H1N1 | KC891090 | RI | 2/29/2012 |
| H3N2 | KC882509 | WY | 12/16/2010 | H1N1 | KC891378 | OR | 12/16/2011 |
| H3N2 | KC882729 | WI | 11/12/2010 | H1N1 | KC891263 | FL | 12/20/2011 |
| H3N2 | KC882618 | RI | 3/7/2011 | H1N1 | KC891219 | MD | 4/1/2012 |
| H3N2 | KC882462 | FL | 12/10/2010 | H1N1 | KC891078 | WA | 2/13/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY084303 | FL | 12/10/2010 | H1N1 | CY148003 | GA | 2/1/2012 |
| H3N2 | KC882935 | NH | 1/13/2011 | H1N1 | KC891059 | SC | 11/29/2011 |
| H3N2 | KC883292 | CA | 10/5/2010 | H1N1 | KC891355 | NY | 12/14/2011 |
| H3N2 | KC882777 | CA | 11/13/2010 | H1N1 | KC891483 | NJ | 1/17/2012 |
| H3N2 | KC882752 | MA | 1/9/2011 | H1N1 | CY148251 | GA | 2/1/2012 |
| H3N2 | CY134481 | MA | 1/27/2011 | H1N1 | KC891289 | GA | 3/5/2012 |
| H3N2 | CY111190 | MA | 1/21/2011 | H1N1 | KC891503 | DE | 2/12/2012 |
| H3N2 | CY111166 | MA | 1/12/2011 | H1N1 | KC891573 | DE | 2/12/2012 |
| H3N2 | CY134513 | MA | 2/12/2011 | H1N1 | KC891210 | CA | 11/16/2011 |
| H3N2 | CY111270 | MA | 2/7/2011 | H1N1 | KC891250 | FL | 12/7/2011 |
| H3N2 | KC882491 | OK | 12/7/2010 | H1N1 | KC891202 | FL | 12/7/2011 |
| H3N2 | KC883307 | MI | 1/4/2011 | H1N1 | KC891023 | FL | 10/30/2011 |
| H3N2 | KC882624 | NE | 1/27/2011 | H1N1 | KC891201 | FL | 10/30/2011 |
| H3N2 | CY111230 | MA | 1/13/2011 | H1N1 | KC891317 | VT | 12/22/2011 |
| H3N2 | KC883017 | UT | 3/10/2011 | H1N1 | KC891468 | NH | 1/30/2012 |
| H3N2 | KC883374 | MT | 4/5/2011 | H1N1 | KC891341 | MN | 3/20/2012 |
| H3N2 | KC883240 | NC | 1/27/2011 | H1N1 | CY176706 | MN | 2/27/2012 |
| H3N2 | CY084300 | NV | 11/4/2010 | H1N1 | KC891015 | CA | 1/18/2012 |
| H3N2 | KC882604 | WY | 11/28/2010 | H1N1 | KC891364 | FL | 1/3/2012 |
| H3N2 | KC882836 | NY | 12/1/2010 | H1N1 | KC891106 | NY | 3/22/2012 |
| H3N2 | CY117589 | MA | 3/9/2011 | H1N1 | KC891264 | PA | 3/17/2012 |
| H3N2 | KC882891 | DC | 12/31/2010 | H1N1 | KC891556 | IL | 4/16/2012 |
| H3N2 | KC882801 | AL | 11/3/2010 | H1N1 | KC891193 | IL | 4/16/2012 |
| H3N2 | KC882665 | SC | 11/28/2010 | H1N1 | KC891026 | WI | 10/16/2011 |
| H3N2 | KC882811 | WI | 1/6/2011 | H1N1 | KC891320 | IN | 3/2/2012 |
| H3N2 | CY111222 | MA | 1/13/2011 | H1N1 | KC891010 | VT | 2/6/2012 |
| H3N2 | KC882968 | IA | 2/19/2011 | H1N1 | KC891382 | VT | 2/1/2012 |
| H3N2 | CY084299 | AL | 12/16/2010 | H1N1 | KC891385 | UT | 1/17/2012 |
| H3N2 | KC882465 | AL | 12/16/2010 | H1N1 | KC891372 | UT | 1/17/2012 |
| H3N2 | KC882999 | MT | 2/9/2011 | H1N1 | KC891205 | CO | 11/26/2011 |
| H3N2 | KC883353 | MT | 1/10/2011 | H1N1 | KC891149 | KY | 3/29/2012 |
| H3N2 | KC883424 | KS | 3/29/2011 | H1N1 | KC891246 | NM | 3/6/2012 |
| H3N2 | KC883102 | NH | 3/1/2011 | H1N1 | KC891032 | WV | 1/31/2012 |
| H3N2 | KC883258 | ID | 1/5/2011 | H1N1 | KC891035 | OR | 1/24/2012 |
| H3N2 | KC882526 | ME | 2/3/2011 | H1N1 | KC891063 | MD | 2/14/2012 |
| H3N2 | CY111334 | MA | 2/23/2011 | H1N1 | KC508625 | AZ | 2/29/2012 |
| H3N2 | CY084330 | SC | 1/3/2011 | H1N1 | KC891260 | PA | 12/19/2011 |
| H3N2 | KC882584 | ID | 1/2/2011 | H1N1 | KC891461 | ID | 1/27/2012 |
| H3N2 | KC882479 | TX | 12/31/2010 | H1N1 | KC891143 | CO | 3/28/2012 |
| H3N2 | CY084328 | OK | 1/5/2011 | H1N1 | KC891306 | CO | 3/28/2012 |
| H3N2 | CY084324 | MA | 1/10/2011 | H1N1 | KC891096 | ND | 2/26/2012 |
| H3N2 | KC883350 | FL | 1/17/2011 | H1N1 | KC891099 | ND | 2/26/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | ---: |
| H3N2 | KC883010 | MT | $3 / 2 / 2011$ | H1N1 | KC891432 | OH | $3 / 2 / 2012$ |
| H3N2 | KC883407 | WA | $3 / 8 / 2011$ | H1N1 | KC891471 | NM | $1 / 26 / 2012$ |
| H3N2 | KC883008 | MT | $3 / 2 / 2011$ | H1N1 | KC891177 | LA | $4 / 3 / 2012$ |
| H3N2 | CY084302 | CO | $12 / 17 / 2010$ | H1N1 | KJ411983 | AZ | $4 / 13 / 2012$ |
| H3N2 | KC882674 | UT | $10 / 14 / 2010$ | H1N1 | KC891043 | TN | $2 / 2 / 2012$ |
| H3N2 | CY084326 | NV | $1 / 18 / 2011$ | H1N1 | KC891424 | MA | $3 / 12 / 2012$ |
| H3N2 | KC883086 | NV | $4 / 4 / 2011$ | H1N1 | KC891522 | TX | $3 / 19 / 2012$ |
| H3N2 | KC882902 | CA | $1 / 15 / 2011$ | H1N1 | KC891395 | FL | $5 / 1 / 2012$ |
| H3N2 | KC883038 | WY | $3 / 23 / 2011$ | H1N1 | KC891057 | TX | $3 / 14 / 2012$ |
| H3N2 | KC883435 | MN | $4 / 18 / 2011$ | H1N1 | KC891115 | NY | $3 / 5 / 2012$ |
| H3N2 | KC883084 | OR | $3 / 28 / 2011$ | H1N1 | KC891417 | NY | $3 / 5 / 2012$ |
| H3N2 | KC882685 | UT | $11 / 3 / 2010$ | H1N1 | JX905426 | FL | $2 / 27 / 2012$ |
| H3N2 | CY084306 | OK | $10 / 18 / 2010$ | H1N1 | KC891020 | TX | $3 / 14 / 2012$ |
| H3N2 | CY125717 | MA | $2 / 21 / 2011$ | H1N1 | KC891276 | TX | $3 / 2 / 2012$ |
| H3N2 | KC882876 | VT | $1 / 2 / 2011$ | H1N1 | KC891228 | IA | $4 / 12 / 2012$ |
| H3N2 | KC883327 | VA | $12 / 27 / 2010$ | H1N1 | CY176698 | NY | $3 / 21 / 2012$ |
| H3N2 | CY111430 | MA | $3 / 16 / 2011$ | H1N1 | CY147995 | GA | $2 / 1 / 2012$ |
| H3N2 | KC882719 | MT | $12 / 26 / 2010$ | H1N1 | CY148211 | GA | $2 / 1 / 2012$ |
| H3N2 | CY111546 | MA | $2 / 8 / 2011$ | H1N1 | CY148099 | GA | $2 / 1 / 2012$ |
| H3N2 | CY111414 | MA | $3 / 14 / 2011$ | H1N1 | CY148091 | GA | $2 / 1 / 2012$ |
| H3N2 | KC883131 | IA | $4 / 1 / 2011$ | H1N1 | CY148083 | GA | $2 / 1 / 2012$ |
| H3N2 | CY084316 | CO | $1 / 18 / 2011$ | H1N1 | CY148203 | GA | $2 / 1 / 2012$ |
| H3N2 | CY116715 | MA | $3 / 1 / 2011$ | H1N1 | CY148075 | GA | $2 / 1 / 2012$ |
| H3N2 | CY134561 | MA | $2 / 14 / 2011$ | H1N1 | CY147979 | GA | $2 / 1 / 2012$ |
| H3N2 | KC882530 | CO | $3 / 25 / 2011$ | H1N1 | CY148163 | GA | $2 / 1 / 2012$ |
| H3N2 | KC882744 | UT | $1 / 18 / 2011$ | KC82 | KC883135 | WV | $3 / 29 / 2011$ |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC883034 | MI | 3/18/2011 | H1N1 | KC513476 | AZ | 4/4/2012 |
| H3N2 | KC883121 | CT | 3/3/2011 | H1N1 | KC513478 | AZ | 4/4/2012 |
| H3N2 | KC883420 | VA | 3/2/2011 | H1N1 | CY148155 | GA | 2/1/2012 |
| H3N2 | KC883338 | CA | 2/1/2011 | H1N1 | CY147971 | GA | 2/1/2012 |
| H3N2 | KC882938 | NH | 2/1/2011 | H1N1 | CY147963 | GA | 2/1/2012 |
| H3N2 | KC883429 | VT | 5/3/2011 | H1N1 | CY148171 | GA | 2/1/2012 |
| H3N2 | KC883003 | WI | 2/25/2011 | H1N1 | KC891231 | OR | 4/11/2012 |
| H3N2 | CY111438 | MA | 3/17/2011 | H1N1 | KC891391 | ID | 5/1/2012 |
| H3N2 | KC883152 | CT | 4/2/2011 | H1N1 | KC891474 | NE | 2/9/2012 |
| H3N2 | CY111470 | MA | 4/25/2011 | H1N1 | KC891239 | ME | 3/6/2012 |
| H3N2 | CY111366 | MA | 3/2/2011 | H1N1 | KC891267 | RI | 3/21/2012 |
| H3N2 | KC883158 | MN | 3/18/2011 | H1N1 | KC891437 | CA | 3/30/2012 |
| H3N2 | KC883018 | WI | 3/6/2011 | H1N1 | KC891055 | UT | 5/8/2012 |
| H3N2 | CY134577 | MA | 2/18/2011 | H1N1 | KC891181 | NM | 4/30/2012 |
| H3N2 | KC883160 | MN | 5/8/2011 | H1N1 | CY148259 | GA | 2/1/2012 |
| H3N2 | KC882538 | PA | 3/15/2011 | H1N1 | KC891129 | IL | 2/13/2012 |
| H3N2 | KC883387 | WI | 5/3/2011 | H1N1 | KC891179 | IL | 2/29/2012 |
| H3N2 | KC883315 | CT | 11/24/2010 | H1N1 | KC891280 | TN | 3/5/2012 |
| H3N2 | KC883246 | ID | 3/15/2011 | H1N1 | KC891102 | MI | 3/4/2012 |
| H3N2 | CY117597 | MA | 3/21/2011 | H1N1 | KC891234 | AZ | 1/24/2012 |
| H3N2 | CY167564 | TN | 2/7/2011 | H1N1 | KC891087 | KY | 2/10/2012 |
| H3N2 | KC882758 | TX | 10/14/2010 | H1N1 | KC891158 | KY | 2/19/2012 |
| H3N2 | KC883150 | NH | 4/11/2011 | H1N1 | KC891350 | UT | 3/15/2012 |
| H3N2 | KC882695 | KY | 11/9/2010 | H1N1 | KC891184 | ID | 4/8/2012 |
| H3N2 | KC882518 | MA | 2/7/2011 | H1N1 | KC891037 | NC | 2/7/2012 |
| H3N2 | KC882506 | KY | 12/15/2010 | H1N1 | KC891313 | CA | 5/1/2012 |
| H3N2 | CY167572 | TN | 2/7/2011 | H1N1 | KC891480 | MD | 1/28/2012 |
| H3N2 | KC883345 | KS | 1/21/2011 | H1N1 | KC891029 | MO | 2/6/2012 |
| H3N2 | KC883022 | IN | 3/12/2011 | H1N1 | KC891464 | TX | 2/1/2012 |
| H3N2 | CY167612 | TN | 2/22/2011 | H1N1 | KC891054 | TX | 1/7/2012 |
| H3N2 | CY084314 | CA | 1/11/2011 | H1N1 | KC891222 | FL | 4/3/2012 |
| H3N2 | KC883139 | NE | 4/4/2011 | H1N1 | KC891427 | GA | 2/24/2012 |
| H3N2 | CY111150 | MA | 1/5/2011 | H1N1 | KC891251 | GA | 2/24/2012 |
| H3N2 | KC883057 | MA | 1/5/2011 | H1N1 | KC891135 | IL | 3/8/2012 |
| H3N2 | CY091557 | TX | 1/25/2011 | H1N1 | KC891358 | TX | 1/9/2012 |
| H3N2 | KC883390 | TX | 1/12/2011 | H1N1 | KC891248 | ID | 2/18/2012 |
| H3N2 | KC882459 | TX | 12/7/2010 | H1N1 | KC891161 | NV | 4/4/2012 |
| H3N2 | CY084309 | TX | 12/21/2010 | H1N1 | KC891492 | GA | 1/29/2012 |
| H3N2 | CY084310 | TX | 12/29/2010 | H1N1 | KC891325 | CA | 12/28/2011 |
| H3N2 | KC883234 | IN | 12/19/2010 | H1N1 | KC891007 | UT | 2/1/2012 |
| H3N2 | KC882630 | KY | 1/18/2011 | H1N1 | KC891093 | TX | 2/26/2012 |
| H3N2 | KC882742 | TX | 12/28/2010 | H1N1 | KC513480 | AZ | 4/3/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY084312 | AZ | 1/7/2011 | H1N1 | KC891132 | IL | 3/12/2012 |
| H3N2 | KC882482 | CA | 12/14/2010 | H1N1 | KC891050 | IL | 3/12/2012 |
| H3N2 | CY084297 | AZ | 12/6/2010 | H1N1 | KC891051 | IL | 3/8/2012 |
| H3N2 | KC882493 | AZ | 12/6/2010 | H1N1 | KC891118 | NH | 4/11/2012 |
| H3N2 | KC883359 | ND | 2/8/2011 | H1N1 | KC891415 | PA | 4/16/2012 |
| H3N2 | KC883049 | WI | 4/15/2011 | H1N1 | KC891273 | WY | 3/10/2012 |
| H3N2 | KC883030 | MS | 4/12/2011 | H1N1 | KC891196 | VA | 4/25/2012 |
| H3N2 | KC882615 | MS | 3/15/2011 | H1N1 | KC891339 | LA | 3/15/2012 |
| H3N2 | KC883413 | AZ | 2/17/2011 | H1N1 | KC891548 | CA | 1/19/2012 |
| H3N2 | CY111406 | MA | 3/13/2011 | H1N1 | KC891446 | CA | 1/19/2012 |
| H3N2 | KC883054 | FL | 5/1/2011 | H1N1 | KC891126 | SC | 4/8/2012 |
| H3N2 | KC882982 | AL | 1/5/2011 | H1N1 | KC891534 | TX | 2/23/2012 |
| H3N2 | KC893175 | MS | 2/8/2011 | H1N1 | KC891425 | AL | 3/19/2012 |
| H3N2 | KC882929 | DE | 1/25/2011 | H1N1 | KC891170 | WA | 3/20/2012 |
| H3N2 | KC883415 | NM | 4/7/2011 | H1N1 | KC891582 | MD | 3/8/2012 |
| H3N2 | KC882724 | FL | 12/29/2010 | H1N1 | KC891109 | NY | 3/19/2012 |
| H3N2 | KC882736 | WA | 12/10/2010 | H1N1 | KC891283 | WA | 2/24/2012 |
| H3N2 | CY167644 | TN | 3/2/2011 | H1N1 | KC891152 | NC | 3/28/2012 |
| H3N2 | CY167652 | TN | 3/7/2011 | H1N1 | KC891406 | NM | 5/3/2012 |
| H3N2 | CY167317 | TN | 3/31/2011 | H1N1 | KC891190 | NJ | 5/2/2012 |
| H3N2 | CY084313 | AZ | 1/10/2011 | H1N1 | KC891164 | NM | 3/29/2012 |
| H3N2 | KC883380 | MI | 4/5/2011 | H1N1 | KC891388 | NM | 3/29/2012 |
| H3N2 | KC882830 | DE | 11/30/2010 | H1N1 | KC891066 | KS | 2/13/2012 |
| H3N2 | KC882533 | NE | 2/25/2011 | H1N1 | KC891047 | IL | 3/2/2012 |
| H3N2 | KC882860 | IA | 12/30/2010 | H1N1 | KC891138 | IL | 3/2/2012 |
| H3N2 | CY167516 | TN | 1/21/2011 | H1N1 | KC891389 | NH | 3/10/2012 |
| H3N2 | CY084315 | CO | 1/3/2011 | H1N1 | KC891528 | TX | 3/2/2012 |
| H3N2 | CY111198 | MA | 1/18/2011 | H1N1 | KC891477 | WI | 2/3/2012 |
| H3N2 | CY084333 | TX | 1/11/2011 | H1N1 | KC891187 | IA | 4/14/2012 |
| H3N2 | KC882601 | CO | 11/23/2010 | H1N1 | KC513475 | AZ | 3/14/2012 |
| H3N2 | KC882692 | FL | 10/30/2010 | H1N1 | KC891343 | VA | 3/9/2012 |
| H3N2 | KC882734 | TX | 12/6/2010 | H1N1 | KC891574 | NY | 4/17/2012 |
| H3N2 | KC882598 | MS | 2/8/2011 | H1N1 | KC891314 | NM | 4/9/2012 |
| H3N2 | KC882994 | WI | 2/8/2011 | H1N1 | KC891225 | MT | 3/26/2012 |
| H3N2 | KC882918 | VT | 1/27/2011 | H1N1 | KC891559 | TX | 3/16/2012 |
| H3N2 | KC882568 | GA | 2/10/2011 | H1N1 | KC891323 | AL | 1/6/2012 |
| H3N2 | KC883377 | WI | 4/12/2011 | H1N1 | KC891588 | TX | 1/10/2012 |
| H3N2 | CY167540 | TN | 2/4/2011 | H1N1 | KC891449 | NC | 1/23/2012 |
| H3N2 | CY167692 | TN | 3/18/2011 | H1N1 | KC891360 | ME | 1/11/2012 |
| H3N2 | CY167700 | TN | 3/22/2011 | H1N1 | KC891363 | TX | 1/15/2012 |
| H3N2 | CY167676 | TN | 3/18/2011 | H1N1 | CY125783 | MA | 3/26/2012 |
| H3N2 | CY167764 | TN | 4/7/2011 | H1N1 | KC891040 | UT | 2/9/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY167604 | TN | 2/18/2011 | H1N1 | KC891072 | OK | 2/21/2012 |
| H3N2 | CY167532 | TN | 1/28/2011 | H1N1 | KC891307 | TX | 4/1/2012 |
| H3N2 | CY167684 | TN | 3/15/2011 | H1N1 | KC891167 | TX | 4/1/2012 |
| H3N2 | CY167708 | TN | 3/15/2011 | H1N1 | KC891384 | CO | 1/4/2012 |
| H3N2 | CY167668 | TN | 3/15/2011 | H1N1 | KC891408 | NC | 3/1/2012 |
| H3N2 | CY167596 | TN | 2/16/2011 | H1N1 | KC891513 | TX | 3/8/2012 |
| H3N2 | CY167740 | TN | 3/23/2011 | H1N1 | KC891516 | CA | 2/20/2012 |
| H3N2 | KC883419 | MO | 1/5/2011 | H1N1 | KC891216 | NC | 4/26/2012 |
| H3N2 | KC882606 | NY | 11/14/2010 | H1N1 | KC891458 | MO | 1/18/2012 |
| H3N2 | CY084331 | SC | 1/18/2011 | H1N1 | KC891075 | ID | 1/31/2012 |
| H3N2 | KC883029 | WI | 3/30/2011 | H1N1 | CY176714 | OH | 3/12/2012 |
| H3N2 | KC882690 | FL | 11/1/2010 | H1N1 | KC891123 | ME | 4/4/2012 |
| H3N2 | CY084325 | NV | 1/18/2011 | H1N1 | KC891495 | WI | 1/10/2012 |
| H3N2 | KC883285 | SD | 12/15/2010 | H1N1 | KC891509 | TX | 1/26/2012 |
| H3N2 | KC882716 | SD | 12/15/2010 | H1N1 | KC891500 | TX | 2/24/2012 |
| H3N2 | CY084332 | TX | 1/7/2011 | H1N1 | KC891569 | TX | 2/25/2012 |
| H3N2 | KC882799 | WI | 10/23/2010 | H1N1 | KC891506 | TX | 1/26/2012 |
| H3N2 | KC882570 | CO | 12/8/2010 | H1N1 | KC891540 | TX | 1/26/2012 |
| H3N2 | CY084301 | AZ | 12/20/2010 | H1N1 | KC891541 | TX | 2/21/2012 |
| H3N2 | KC883203 | MD | 1/7/2011 | H1N1 | KC891543 | TX | 2/25/2012 |
| H3N2 | KC883183 | CA | 1/3/2011 | H1N1 | KC891367 | CO | 1/4/2012 |
| H3N2 | KC883311 | SC | 1/19/2011 | H1N1 | CY125775 | MA | 2/21/2012 |
| H3N2 | KC883333 | LA | 1/12/2011 | H1N1 | KC891270 | NV | 3/3/2012 |
| H3N2 | CY084318 | FL | 1/17/2011 | H1N1 | KC513481 | AZ | 3/10/2012 |
| H3N2 | KC883075 | OK | 2/8/2011 | H1N1 | KC891242 | KS | 3/13/2012 |
| H3N2 | KC883249 | OK | 11/3/2010 | H1N1 | KC891519 | TX | 3/12/2012 |
| H3N2 | KC882712 | GA | 11/24/2010 | H1N1 | CY176530 | NC | 3/8/2012 |
| H3N2 | KC883252 | AR | 11/22/2010 | H1N1 | KC891176 | IA | 3/17/2012 |
| H3N2 | CY167524 | TN | 1/24/2011 | H1N1 | KC891346 | CO | 3/21/2012 |
| H3N2 | KC883451 | MS | 2/8/2011 | H1N1 | KC891443 | NH | 3/10/2012 |
| H3N2 | KC883077 | LA | 2/17/2011 | H1N1 | KC891562 | TX | 3/27/2012 |
| H3N2 | KC882955 | MN | 1/21/2011 | H1N1 | KC891146 | WY | 4/5/2012 |
| H3N2 | CY092281 | CA | 1/16/2011 | H1N1 | KC891282 | SC | 2/27/2012 |
| H3N2 | CY091573 | IL | 1/19/2011 | H1N1 | KC891291 | GA | 3/7/2012 |
| H3N2 | KC882514 | PA | 1/4/2011 | H1N1 | KC891112 | NY | 3/7/2012 |
| H3N2 | KC883024 | GA | 3/15/2011 | H1N1 | KC891173 | OK | 3/5/2012 |
| H3N2 | CY111478 | MA | 3/11/2011 | H1N1 | KC891563 | IL | 1/25/2012 |
| H3N2 | CY111462 | MA | 3/29/2011 | H1N1 | KC891566 | IL | 1/25/2012 |
| H3N2 | KC882900 | NM | 11/30/2010 | H1N1 | KC891060 | TX | 2/12/2012 |
| H3N2 | KC883116 | MN | 2/19/2011 | H1N1 | CY176690 | NY | 3/6/2012 |
| H3N2 | KC883221 | ID | 3/6/2011 | H1N1 | KC891081 | WA | 2/13/2012 |
| H3N2 | KC883336 | NV | 1/27/2011 | H1N1 | KC891019 | TX | 3/7/2012 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | CY080268 | OK | 11/20/2010 | H1N1 | KC891305 | TX | 3/7/2012 |
| H3N2 | CY080269 | OK | 11/22/2010 | H1N1 | KF647920 | MN | 10/29/2012 |
| H3N2 | KC882545 | MD | 11/16/2010 | H1N1 | KF648213 | WI | 10/15/2012 |
| H3N2 | KC883059 | TX | 2/8/2011 | H1N1 | KF647925 | WY | 12/4/2012 |
| H3N2 | KC883394 | WA | 2/2/2011 | H1N1 | KF648122 | WY | 12/26/2012 |
| H3N2 | KC882483 | CA | 1/3/2011 | H1N1 | KF648274 | SC | 11/13/2012 |
| H3N2 | KC883126 | MO | 2/11/2011 | H1N1 | KF648244 | SC | 10/22/2012 |
| H3N2 | KC883095 | NM | 3/8/2011 | H1N1 | KF199855 | SC | 10/10/2012 |
| H3N2 | KC882977 | DC | 2/15/2011 | H1N1 | CY130173 | SC | 10/3/2012 |
| H3N2 | KC882962 | VT | 2/12/2011 | H1N1 | KF928610 | SC | 10/2/2012 |
| H3N2 | KC882793 | OR | 12/20/2010 | H1N1 | CY130176 | SC | 10/4/2012 |
| H3N2 | KC883299 | LA | 12/29/2010 | H1N1 | CY171159 | IL | 12/7/2012 |
| H3N2 | KC882639 | TX | 2/5/2011 | H1N1 | KF648273 | IN | 1/14/2013 |
| H3N2 | KC882633 | WY | 2/17/2011 | H1N1 | KF648023 | NY | 12/2/2012 |
| H3N2 | KC883443 | NM | 1/24/2011 | H1N1 | KF648106 | MA | 1/2/2013 |
| H3N2 | KC882840 | IA | 12/13/2010 | H1N1 | KF648105 | MA | 1/2/2013 |
| H3N2 | KC882817 | OH | 1/17/2011 | H1N1 | KF648206 | NY | 10/2/2012 |
| H3N2 | KC883433 | MN | 3/18/2011 | H1N1 | KF648261 | NY | 10/2/2012 |
| H3N2 | CY084305 | OH | 12/30/2010 | H1N1 | KF648005 | IN | 11/25/2012 |
| H3N2 | KC882923 | DE | 1/23/2011 | H1N1 | CY168807 | MA | 12/25/2012 |
| H3N2 | CY167500 | TN | 1/21/2011 | H1N1 | CY168879 | MA | 12/26/2012 |
| H3N2 | KC883371 | TN | 3/16/2011 | H1N1 | KF648276 | RI | 12/5/2012 |
| H3N2 | KC883093 | CA | 3/25/2011 | H1N1 | CY168423 | MA | 1/30/2013 |
| H3N2 | KC882439 | IA | 12/30/2010 | H1N1 | CY148316 | MA | 12/23/2012 |
| H3N2 | KC883099 | WA | 4/6/2011 | H1N1 | CY169975 | MA | 2/3/2013 |
| H3N2 | KC883219 | WY | 1/12/2011 | H1N1 | KF648250 | KY | 2/8/2013 |
| H3N2 | KC882958 | CT | 2/6/2011 | H1N1 | CY183217 | TX | 1/9/2013 |
| H3N2 | KC882790 | TX | 12/20/2010 | H1N1 | CY170695 | CA | 1/15/2013 |
| H3N2 | CY167508 | TN | 1/24/2011 | H1N1 | KF886313 | CA | 1/23/2013 |
| H3N2 | KC883216 | MS | 1/3/2011 | H1N1 | KF648104 | OH | 1/8/2013 |
| H3N2 | CY091581 | CA | 1/14/2011 | H1N1 | KF648220 | OK | 2/12/2013 |
| H3N2 | CY167484 | TN | 1/7/2011 | H1N1 | KF648124 | FL | 3/11/2013 |
| H3N2 | KC893178 | MS | 2/8/2011 | H1N1 | KF648201 | GA | 4/8/2013 |
| H3N2 | KC882965 | IA | 2/18/2011 | H1N1 | CY186067 | TX | 1/21/2013 |
| H3N2 | KC882914 | NM | 1/18/2011 | H1N1 | KF648100 | TX | 12/15/2012 |
| H3N2 | KC882628 | RI | 1/31/2011 | H1N1 | KF647924 | WI | 11/14/2012 |
| H3N2 | KC882644 | ID | 2/8/2011 | H1N1 | KF886333 | CA | 1/30/2013 |
| H3N2 | KC882579 | ID | 11/23/2010 | H1N1 | CY170839 | CA | 1/19/2013 |
| H3N2 | KC882829 | KS | 10/21/2010 | H1N1 | CY141258 | SD | 1/4/2013 |
| H3N2 | CY167282 | TN | 12/8/2010 | H1N1 | CY169863 | MA | 1/21/2013 |
| H3N2 | KC882678 | AL | 10/28/2010 | H1N1 | CY183145 | TX | 1/8/2013 |
| H3N2 | KC883212 | CO | 1/2/2011 | H1N1 | CY186043 | TX | 2/5/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC882727 | IL | 12/24/2010 | H1N1 | KF648256 | CA | 1/22/2013 |
| H3N2 | KC883062 | WI | 2/23/2011 | H1N1 | KF648136 | CA | 1/22/2013 |
| H3N2 | KC882705 | OH | 11/16/2010 | H1N1 | KF647968 | ID | 2/8/2013 |
| H3N2 | CY084329 | OK | 1/7/2011 | H1N1 | CY170927 | CA | 1/26/2013 |
| H3N2 | CY084308 | TX | 12/21/2010 | H1N1 | KF647974 | IL | 3/11/2013 |
| H3N2 | KC883201 | NE | 1/7/2011 | H1N1 | KF648045 | NM | 3/14/2013 |
| H3N2 | KC883317 | IA | 12/19/2010 | H1N1 | CY147208 | IL | 4/9/2013 |
| H3N2 | CY092273 | CA | 1/28/2011 | H1N1 | KF647933 | TX | 10/18/2012 |
| H3N2 | CY092265 | CA | 1/28/2011 | H1N1 | KF648153 | FL | 3/13/2013 |
| H3N2 | KC882471 | OK | 12/23/2010 | H1N1 | CY147203 | CA | 1/29/2013 |
| H3N2 | CY084307 | OK | 12/23/2010 | H1N1 | CY147209 | AL | 4/19/2013 |
| H3N2 | KC883329 | CT | 1/7/2011 | H1N1 | CY163419 | NY | 3/26/2013 |
| H3N2 | KC882612 | PA | 2/17/2011 | H1N1 | KF648036 | NJ | 3/19/2013 |
| H3N2 | KC883080 | LA | 3/15/2011 | H1N1 | KF648221 | WI | 5/24/2013 |
| H3N2 | CY167636 | TN | 2/24/2011 | H1N1 | KF648196 | NC | 4/9/2013 |
| H3N2 | KC883367 | FL | 3/17/2011 | H1N1 | KF648164 | LA | 4/11/2013 |
| H3N2 | KC883408 | NV | 3/7/2011 | H1N1 | KF648063 | NJ | 12/8/2012 |
| H3N2 | KC882930 | KS | 1/7/2011 | H1N1 | CY170079 | MA | 3/17/2013 |
| H3N2 | KC882984 | UT | 2/12/2011 | H1N1 | CY170087 | MA | 3/18/2013 |
| H3N2 | KC882971 | KS | 2/1/2011 | H1N1 | KF648073 | PA | 12/19/2012 |
| H3N2 | KC883383 | KY | 3/9/2011 | H1N1 | KF647915 | IN | 2/2/2013 |
| H3N2 | JQ290164 | WV | 11/21/2011 | H1N1 | KF648152 | VT | 4/8/2013 |
| H3N2 | JN866186 | ME | 10/10/2011 | H1N1 | KF648094 | PA | 12/19/2012 |
| H3N2 | JX905419 | UT | 3/29/2012 | H1N1 | KF648091 | TX | 12/17/2012 |
| H3N2 | JX905414 | UT | 3/29/2012 | H1N1 | KF648075 | PA | 12/18/2012 |
| H3N2 | JQ070792 | IN | 10/22/2011 | H1N1 | KF648095 | PA | 12/18/2012 |
| H3N2 | JN992750 | IN | 10/22/2011 | H1N1 | KF647987 | PA | 1/18/2013 |
| H3N2 | JQ070784 | IN | 10/22/2011 | H1N1 | KF648183 | TN | 1/9/2013 |
| H3N2 | JQ290172 | IA | 11/14/2011 | H1N1 | KF647917 | NE | 2/6/2013 |
| H3N2 | JQ290180 | IA | 11/14/2011 | H1N1 | KF648041 | KS | 3/21/2013 |
| H3N2 | JQ070760 | IA | 11/14/2011 | H1N1 | KF647938 | PA | 11/23/2012 |
| H3N2 | JQ070776 | IA | 11/14/2011 | H1N1 | CY141237 | NY | 1/20/2013 |
| H3N2 | JQ290188 | IA | 11/14/2011 | H1N1 | CY141236 | NY | 1/18/2013 |
| H3N2 | JQ070768 | IA | 11/14/2011 | H1N1 | CY141238 | NY | 1/20/2013 |
| H3N2 | KC892260 | FL | 10/20/2011 | H1N1 | CY147202 | NY | 1/22/2013 |
| H3N2 | KC892312 | MT | 4/4/2012 | H1N1 | KF648255 | NY | 1/22/2013 |
| H3N2 | KC893075 | CA | 1/10/2012 | H1N1 | CY141233 | NY | 1/7/2013 |
| H3N2 | KC892829 | CA | 2/20/2012 | H1N1 | KF648147 | GA | 1/2/2013 |
| H3N2 | KC892796 | CA | 1/4/2012 | H1N1 | CY141272 | VA | 1/10/2013 |
| H3N2 | KC893047 | OR | 10/4/2011 | H1N1 | CY163412 | GA | 2/21/2013 |
| H3N2 | KC892706 | MS | 5/14/2012 | H1N1 | CY163416 | KY | 3/12/2013 |
| H3N2 | KC892274 | MA | 4/20/2012 | H1N1 | KF648093 | NC | 2/13/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC892370 | NM | 1/24/2012 | H1N1 | KF648254 | MD | 1/4/2013 |
| H3N2 | CY120913 | OH | 2/14/2012 | H1N1 | KF647914 | PA | 2/14/2013 |
| H3N2 | KC893171 | TX | 2/6/2012 | H1N1 | CY147201 | CA | 1/17/2013 |
| H3N2 | KC892294 | ME | 2/3/2012 | H1N1 | KF648039 | KY | 3/30/2013 |
| H3N2 | KC892776 | DE | 12/28/2011 | H1N1 | KF648162 | PA | 4/9/2013 |
| H3N2 | KC892477 | MI | 2/2/2012 | H1N1 | CY163414 | NY | 2/25/2013 |
| H3N2 | KC892965 | MI | 12/25/2011 | H1N1 | KF648219 | CA | 1/12/2013 |
| H3N2 | KC892626 | NH | 3/4/2012 | H1N1 | KF648163 | UT | 4/14/2013 |
| H3N2 | KC893054 | RI | 4/17/2012 | H1N1 | KF648252 | WA | 1/18/2013 |
| H3N2 | KC893132 | RI | 4/17/2012 | H1N1 | CY168535 | MA | 12/19/2012 |
| H3N2 | KF182358 | IL | 2/29/2012 | H1N1 | CY182929 | TX | 12/28/2012 |
| H3N2 | KC892405 | MA | 11/23/2011 | H1N1 | CY170255 | MA | 1/7/2013 |
| H3N2 | KC892953 | FL | 11/29/2011 | H1N1 | CY147205 | MS | 1/31/2013 |
| H3N2 | KC893002 | TX | 12/16/2011 | H1N1 | CY163417 | CO | 3/22/2013 |
| H3N2 | KC892758 | NY | 12/23/2011 | H1N1 | KF647966 | TX | 3/3/2013 |
| H3N2 | KC892485 | VT | 3/16/2012 | H1N1 | KF886308 | GA | 3/14/2013 |
| H3N2 | KC892576 | MD | 4/24/2012 | H1N1 | KF647964 | MN | 3/1/2013 |
| H3N2 | KC892564 | GA | 3/4/2012 | H1N1 | CY141273 | VA | 1/11/2013 |
| H3N2 | KC892896 | NY | 5/10/2012 | H1N1 | CY183329 | TX | 1/15/2013 |
| H3N2 | KC893122 | NJ | 2/3/2012 | H1N1 | KF886304 | IL | 2/4/2013 |
| H3N2 | KC892168 | SC | 4/9/2012 | H1N1 | CY141275 | VA | 1/15/2013 |
| H3N2 | KC892724 | FL | 5/3/2012 | H1N1 | KF886298 | CA | 2/8/2013 |
| H3N2 | KC892793 | TX | 1/5/2012 | H1N1 | CY141217 | NV | 1/15/2013 |
| H3N2 | KC892850 | CA | 3/21/2012 | H1N1 | KF886299 | SC | 2/6/2013 |
| H3N2 | CY120885 | CA | 3/29/2012 | H1N1 | CY170671 | CA | 1/8/2013 |
| H3N2 | CY120907 | CA | 3/8/2012 | H1N1 | CY170679 | CA | 1/8/2013 |
| H3N2 | KC892177 | NC | 4/9/2012 | H1N1 | CY168095 | MA | 1/10/2013 |
| H3N2 | CY120895 | CO | 3/20/2012 | H1N1 | CY171543 | IL | 12/30/2012 |
| H3N2 | KC892856 | FL | 3/13/2012 | H1N1 | KF648089 | NC | 12/27/2012 |
| H3N2 | KC892790 | FL | 1/9/2012 | H1N1 | KF648198 | CA | 3/9/2013 |
| H3N2 | KC892437 | CA | 1/25/2012 | H1N1 | KF647903 | IA | 5/11/2013 |
| H3N2 | KC893057 | VA | 4/4/2012 | H1N1 | CY163408 | NV | 2/14/2013 |
| H3N2 | KC892552 | NM | 3/1/2012 | H1N1 | KF648027 | NM | 4/10/2013 |
| H3N2 | CY130180 | WA | 5/13/2012 | H1N1 | KF648114 | WI | 1/2/2013 |
| H3N2 | CY120893 | WA | 4/8/2012 | H1N1 | KF886307 | CA | 1/7/2013 |
| H3N2 | CY120882 | WA | 3/24/2012 | H1N1 | KF648265 | NM | 1/4/2013 |
| H3N2 | CY120887 | NV | 4/3/2012 | H1N1 | CY163418 | NY | 3/27/2013 |
| H3N2 | KF182353 | CA | 5/22/2012 | H1N1 | KF648138 | FL | 1/23/2013 |
| H3N2 | CY130178 | NJ | 5/3/2012 | H1N1 | KF648253 | MO | 2/5/2013 |
| H3N2 | KC892549 | OR | 3/8/2012 | H1N1 | CY163411 | OH | 2/21/2013 |
| H3N2 | CY112168 | NV | 3/5/2012 | H1N1 | KF648193 | TN | 3/26/2013 |
| H3N2 | KC892876 | NV | 3/13/2012 | H1N1 | CY186099 | TX | 2/8/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3N2 | KC513479 | AZ | 3/31/2012 | H1N1 | CY163413 | TX | 2/14/2013 |
| H3N2 | CY120881 | CA | 3/26/2012 | H1N1 | KF648235 | MS | 5/20/2013 |
| H3N2 | KC892677 | CA | 5/4/2012 | H1N1 | KF886345 | SC | 1/15/2013 |
| H3N2 | KC892632 | TX | 3/2/2012 | H1N1 | CY134632 | FL | 12/7/2012 |
| H3N2 | CY120891 | CA | 4/9/2012 | H1N1 | CY141198 | FL | 1/16/2013 |
| H3N2 | CY120905 | NV | 4/16/2012 | H1N1 | CY134634 | FL | 12/12/2012 |
| H3N2 | KC892863 | AZ | 4/5/2012 | H1N1 | CY134633 | FL | 12/13/2012 |
| H3N2 | KC892937 | WI | 11/5/2011 | H1N1 | KF647994 | FL | 12/12/2012 |
| H3N2 | KC892978 | NY | 10/2/2011 | H1N1 | KF648240 | TN | 10/31/2012 |
| H3N2 | KC892165 | OH | 4/3/2012 | H1N1 | KF647927 | CA | 10/19/2012 |
| H3N2 | KC892186 | IN | 3/26/2012 | H1N1 | KF648189 | CA | 3/8/2013 |
| H3N2 | KC892269 | KY | 11/4/2011 | H1N1 | KF647963 | LA | 2/19/2013 |
| H3N2 | KC893060 | OH | 2/19/2012 | H1N1 | KF648180 | KY | 12/25/2012 |
| H3N2 | CY120875 | OH | 3/26/2012 | H1N1 | KF648110 | NY | 1/7/2013 |
| H3N2 | KC892339 | KY | 2/3/2012 | H1N1 | KF886319 | SC | 2/1/2013 |
| H3N2 | CY120868 | OH | 3/26/2012 | H1N1 | KF647941 | MD | 11/8/2012 |
| H3N2 | CY120879 | OH | 3/26/2012 | H1N1 | KF648092 | PA | 12/4/2012 |
| H3N2 | KC892992 | IN | 10/3/2011 | H1N1 | CY182713 | TX | 12/12/2012 |
| H3N2 | KC892751 | NM | 12/29/2011 | H1N1 | KF648178 | TX | 1/5/2013 |
| H3N2 | KC892190 | CO | 10/23/2011 | H1N1 | CY135116 | TX | 12/6/2012 |
| H3N2 | KC893019 | SC | 12/19/2011 | H1N1 | CY135108 | TX | 12/6/2012 |
| H3N2 | KC892358 | OR | 2/2/2012 | H1N1 | KF886326 | OK | 1/28/2013 |
| H3N2 | KC892394 | WY | 2/6/2012 | H1N1 | CY186187 | TX | 1/27/2013 |
| H3N2 | KC893009 | MT | 1/17/2012 | H1N1 | CY186131 | TX | 1/30/2013 |
| H3N2 | KF182350 | CA | 1/18/2012 | H1N1 | KF648010 | NH | 11/24/2012 |
| H3N2 | KC892766 | IN | 12/8/2011 | H1N1 | KF647967 | FL | 2/26/2013 |
| H3N2 | KC892761 | WI | 1/2/2012 | H1N1 | KF648149 | UT | 1/20/2013 |
| H3N2 | KF182344 | CA | 1/24/2012 | H1N1 | KF648115 | NJ | 11/20/2012 |
| H3N2 | KC892300 | KS | 2/1/2012 | H1N1 | KF647953 | FL | 5/7/2013 |
| H3N2 | KC892482 | FL | 2/24/2012 | H1N1 | CY170095 | MA | 4/26/2013 |
| H3N2 | KC892489 | WI | 12/18/2011 | H1N1 | KF648230 | UT | 5/12/2013 |
| H3N2 | KC892822 | NM | 2/16/2012 | H1N1 | KF648182 | MN | 12/20/2012 |
| H3N2 | CY120909 | CO | 2/23/2012 | H1N1 | KF647996 | MN | 12/13/2012 |
| H3N2 | KC892153 | MS | 2/18/2012 | H1N1 | KF648067 | NM | 1/6/2013 |
| H3N2 | CY112187 | CO | 2/23/2012 | H1N1 | KF648272 | NM | 1/6/2013 |
| H3N2 | CY120865 | FL | 3/19/2012 | H1N1 | KF648246 | UT | 2/3/2013 |
| H3N2 | CY112170 | OK | 3/1/2012 | H1N1 | KF648049 | AZ | 1/14/2013 |
| H3N2 | KC892591 | VA | 5/15/2012 | H1N1 | KF648001 | CO | 3/23/2013 |
| H3N2 | KC892716 | UT | 5/16/2012 | H1N1 | KF647905 | NY | 5/8/2013 |
| H3N2 | KC892410 | CO | 11/22/2011 | H1N1 | CY163410 | OH | 2/21/2013 |
| H3N2 | KC893084 | MS | 1/12/2012 | H1N1 | KF886342 | IL | 1/28/2013 |
| H3N2 | KC892931 | OR | 3/29/2012 | H1N1 | CY147206 | MS | 3/4/2013 |


| Subtype | Accession | State | Date | Subtype | Accession | State | Date |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| H3N2 | KC892769 | CO | $12 / 25 / 2011$ | H1N1 | KF648229 | CA | $5 / 3 / 2013$ |
| H3N2 | CY120863 | TX | $3 / 15 / 2012$ | H1N1 | KF647918 | AL | $2 / 25 / 2013$ |
| H3N2 | CY120864 | TX | $3 / 16 / 2012$ | H1N1 | CY163421 | FL | $5 / 2 / 2013$ |
| H3N2 | CY120867 | TX | $3 / 22 / 2012$ | H1N1 | KF648087 | FL | $5 / 2 / 2013$ |


|  | H3N2 |  | H1N1 |  |
| :---: | :---: | :---: | :---: | :---: |
| Season | Sequences <br> (Full) | Locations | Sequences <br> (Full) | Locations |
| $2003-2004$ | 191 | 29 | - | - |
| $2004-2005$ | 189 | 34 | - | - |
| $2005-2006$ | 147 | 30 | - | - |
| $2006-2007$ | 211 | 34 | 371 | 28 |
| $2007-2008$ | $662(760)$ | 38 | 165 | 34 |
| $2008-2009$ | 302 | 32 | 196 | 16 |
| $2010-2011$ | 410 | 49 | 247 | 48 |
| $2011-2012$ | 400 | 49 | 216 | 44 |
| $2012-2013$ | 564 | 49 | 171 | 39 |

Table S2. Number of sequences per season and number of locations (US states) represented for influenza A/H3N2 and A/H1N1. Numbers in parentheses indicate the total number of publicly available sequences for those seasons; because of the extremely large sample size as compared to other seasons, subsamples were taken from states in these seasons that contributed an excessive number of sequences.

| Season | Root Height | Growth Rate | Clock Rate | Clade | Clade Divergence Date | Sequences | Locations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003-2004 | $\begin{gathered} 1.424 \\ (1.02-1.909) \end{gathered}$ | $\begin{gathered} 3.669 \\ (1.87-5.555) \end{gathered}$ | $\begin{gathered} 0.005572 \\ (0.003461-0.007759) \end{gathered}$ | 1 2 | $\begin{aligned} & 2003.598(2003.424-2003.738) \\ & 2003.282(2002.925-2003.581) \end{aligned}$ | 30 59 | 12 17 |
| 2004-2005 | $\begin{gathered} 1.656 \\ (1.087-2.278) \end{gathered}$ | $\begin{gathered} 3.764 \\ (2.005-5.592) \end{gathered}$ | $\begin{gathered} 0.004694 \\ (0.003013-0.006469) \end{gathered}$ | NA | NA | NA | NA |
| 2005-2006 | $\begin{gathered} 1.35 \\ (0.951-1.816) \end{gathered}$ | $\begin{gathered} 2.636 \\ (1.243-4.181) \end{gathered}$ | $\begin{gathered} 0.009151 \\ (0.006521-0.02082) \end{gathered}$ | 1 2 | $\begin{aligned} & 2005.337(2005.066-2005.572) \\ & 2005.784(2005.662-2005.886) \end{aligned}$ | 49 29 | 17 10 |
| 2006-2007 | $\begin{gathered} 1.647 \\ (1.137-2.251) \end{gathered}$ | $\begin{gathered} 2.713 \\ (1.306-4.2) \end{gathered}$ | $\begin{gathered} 0.007733 \\ (0.005568-0.009923) \end{gathered}$ | 1 2 | $\begin{aligned} & 2006.684(2006.533-2006.819) \\ & 2006.684(2006.533-2006.819) \end{aligned}$ | 50 112 | 15 29 |
|  |  |  |  | 1 | 2007.344 (2007.223-2007.578) | 78 | 29 |
|  |  |  |  | 2 | 2007.752 (2007.613-2007.876) | 28 | 16 |
| 2007-2008 | $\begin{gathered} 1.528 \\ (1.165-1.962) \end{gathered}$ | $\begin{gathered} 3.391 \\ (2.142-4.782) \end{gathered}$ | $\begin{gathered} 0.006833 \\ (0.005487-0.008296) \end{gathered}$ | 3 | 2007.752 (2007.613-2007.876) | 159 | 32 |
|  |  |  |  | 4 | 2007.679 (2007.536-2007.811) | 107 | 25 |
|  |  |  |  | 5 | 2007.679 (2007.536-2007.811) | 277 | 32 |
| 2008-2009 | $\begin{gathered} 1.532 \\ (1.007-2.073) \end{gathered}$ | $\begin{gathered} 2.084 \\ (1.163-2.964) \end{gathered}$ | $\begin{gathered} 0.006681 \\ (0.005259-0.008227) \end{gathered}$ | NA | NA | NA | NA |
| 2010-2011 | $\begin{gathered} 1.947 \\ (1.488-2.42) \end{gathered}$ | $\begin{gathered} 3.486 \\ (2.362-4.683) \end{gathered}$ | $\begin{gathered} 0.005383 \\ (0.004137-0.006641) \end{gathered}$ | 1 2 | $2010.523(2010.320-2010.709)$ $2010.566(2010.401-2010.731)$ | 23 62 | 16 23 |


| 2011-2012 | $\begin{gathered} 2.205 \\ (1.723-2.741) \end{gathered}$ | $\begin{gathered} 2.697 \\ (1.906-3.531) \end{gathered}$ | $\begin{gathered} 0.00577 \\ (0.0041006-0.0062034) \end{gathered}$ | 1 | 2011.397 (2011.773-2011.365) | 41 | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 2 | 2011.191 (2011.577-2011.14) | 67 | 23 |
|  |  |  |  | 3 | 2011.301 (2011.69-2011.263) | 49 | 26 |
|  |  |  |  | 4 | 2011.805 (2011.897-2011.65) | 23 | 9 |
| 2012-2013 | $\begin{gathered} 2.841 \\ (2.178-3.603) \end{gathered}$ | $\begin{gathered} 2.088 \\ (1.347-2.864) \end{gathered}$ | $\begin{gathered} 0.004942 \\ (0.003892-0.006008) \end{gathered}$ | 1 | 2012.591 (2012.418-2012.746) | 21 | 11 |
|  |  |  |  | 2 | 2012.621 (2012.445-2012.774) | 20 | 9 |
|  |  |  |  | 3 | 2012.450 (2012.263-2012.618) | 33 | 22 |
|  |  |  |  | 4 | 2012.354 (2012.137-2012.561) | 35 | 15 |
|  |  |  |  | 5 | 2012.354 (2012.137-2012.561) | 37 | 19 |
|  |  |  |  | 6 | 2012.616 (2012.466-2012.750) | 46 | 23 |

Table S3. Summary of epidemiological and evolutionary dynamics of H3N2 epidemics based on phylogenetic analyses of each influenza season. Root Height' is measured in years before present, with the present time equal to the latest sampling date. 'Clock rate' is measured in substitutions/ site/ year. 'Sequences' represents the number of sequences analyzed per clade and 'Locations' represents the number of states these sequences were collected from.

| Season | Root Height | Growth Rate | Clock Rate | Clade | Clade Divergence Date | Sequences | Locations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006-2007 | $\begin{gathered} 4.102 \\ (2.868-5.429) \end{gathered}$ | $\begin{gathered} 1.031 \\ (0.567-1.51) \end{gathered}$ | $\begin{gathered} 0.004611 \\ (0.003438-0.005903) \end{gathered}$ | 1 | 2006.686 (2006.51-2006.831) | 35 | 10 |
|  |  |  |  | 2 | 2006.467 (2006.176-2006.732) | 38 | 11 |
|  |  |  |  | 3 | 2006.780 (2006.621-2006.917) | 28 | 9 |
| 2007-2008 | $\begin{gathered} 4.237 \\ (2.288-6.999) \end{gathered}$ | $\begin{gathered} 1.541 \\ (0.648-2.473) \end{gathered}$ | $\begin{gathered} 0.002746 \\ (0.00122-0.004286) \end{gathered}$ | 1 | 2006.960 (2006.143-2007.573) | 23 | 13 |
| 2008-2009 | $\begin{gathered} 1.363 \\ (0.944-1.874) \end{gathered}$ | $\begin{gathered} \hline 1.645 \\ (0.59-2.679) \end{gathered}$ | $\begin{gathered} \hline 0.006018 \\ (0.003936-0.008157) \end{gathered}$ | NA | NA | NA | NA |
| 2010-2011 | $\begin{gathered} 2.26 \\ (1.705-2.901) \end{gathered}$ | $\begin{gathered} 2.083 \\ (1.329-2.909) \end{gathered}$ | $\begin{gathered} 0.004176 \\ (0.003123-0.005239) \end{gathered}$ | 1 | 2010.549 (2010.443-2010.803) | 23 | 14 |
|  |  |  |  | 2 | 2010.364 (2010.22-2010.667) | 25 | 17 |
|  |  |  |  | 3 | 2010.374 (2010.253-2010.627) | 86 | 38 |
| 2011-2012 | 913 | $\begin{gathered} 1.8 \\ (0.946-2.701) \end{gathered}$ | $\begin{gathered} 0.005543 \\ (0.004205-0.006926) \end{gathered}$ | 1 | 2011.870 (2011.763-2011.964) | 33 | 15 |
|  | (1.459-2.418) |  |  | 2 | 2011.615 (2011.424-2011.790) | 113 | 35 |
| 2012-2013 | $\begin{gathered} \hline 3.028 \\ (2.188-3.941) \end{gathered}$ | $\begin{gathered} \hline 0.933 \\ (0.388-1.524) \end{gathered}$ | $\begin{gathered} 0.005109 \\ (0.003875-0.006435) \end{gathered}$ | 1 | 2012.708 (2012.623-2012.846) | 29 | 14 |

Table S4. Summary of epidemiological and evolutionary dynamics of H1N1 epidemics based on phylogenetic analyses of each influenza season. Root Height' is measured in years before present, with the present time equal to the latest sampling date. 'Clock rate' is measured in substitutions/ site/ year. 'Sequences' represents the number of sequences analyzed per clade and 'Locations' represents the number of states these sequences were collected from.

## I. 2 Supplementary Figures and Captions

Figures S1-S9. Phylogenetic trees estimated using influenza A/H3N2 HA sequences sampled from a single subtype within a single influenza season (labeled at bottom left) in the US using a Bayesian method. Clades used for association tests are highlighted in green. Posterior probability values ( $>0.9$ ) are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is measured in years.

Figures S10-S15. Phylogenetic trees estimated using influenza A/H1N1 HA sequences sampled from a single subtype within a single influenza season (labeled at bottom left) in the US using a Bayesian method. Clades used for association tests are highlighted in green. Posterior probability values ( $>0.9$ ) are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is measured in years.







|  |
| :---: |








## Appendix II

## Supplementary Material for Chapter 4

## II. 1 Supplementary Tables

Table S1. List of Accession Numbers, Dates and Countries. "Used" column indicates whether or not a sequence was part of a clade used in the spatial analysis

| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AB477004 | 1/29/2008 | y | NL | FJ654307 | 1/8/2008 | $y$ | GR |
| AB477005 | 2/11/2008 | y | NL | FJ654308 | 12/11/2007 | y | SE |
| AB477007 | 2/15/2008 | y | NL | FJ654309 | 1/22/2008 | y | IT |
| AB477008 | 12/21/2007 | y | NL | FJ654310 | 1/2/2008 | y | PT |
| CY034598 | 2/27/2008 | y | DE | FJ654311 | 1/10/2008 | y | DE |
| CY034599 | 2/27/2008 | y | DE | FJ654312 | 1/3/2008 | y | ES |
| CY034600 | 2/27/2008 | y | DE | FJ654313 | 1/21/2008 | y | BG |
| CY034601 | 2/27/2008 | y | DE | FJ654314 | 1/14/2008 | y | CZ |
| CY034602 | 2/27/2008 | y | DE | FJ654315 | 2/12/2008 | - | UA |
| CY034605 | 2/27/2008 | y | DE | FJ654316 | 1/14/2008 | y | RO |
| CY034607 | 2/27/2008 | y | DE | FJ654318 | 1/31/2008 | y | PT |
| CY034608 | 2/27/2008 | y | DE | FJ654319 | 12/21/2007 | y | ES |
| CY034610 | 2/27/2008 | $y$ | DE | FJ654320 | 1/25/2008 | - | HU |
| CY034611 | 2/27/2008 | $y$ | DE | FJ654321 | 1/10/2008 | y | SI |
| CY034615 | 2/27/2008 | $y$ | DE | FJ654322 | 1/10/2008 | $y$ | SI |
| CY034616 | 2/27/2008 | y | DE | FJ654323 | 1/21/2008 | y | RO |
| CY034617 | 2/27/2008 | y | DE | FJ654324 | 2/13/2008 | $y$ | IT |
| CY034618 | 2/27/2008 | y | DE | FJ654325 | 1/31/2008 | - | HR |
| CY036666 | 11/21/2007 | y | NO | FJ654329 | 1/23/2008 | - | LV |
| CY036667 | 11/27/2007 | y | NO | FJ654330 | 2/6/2008 | - | UA |
| CY036668 | 1/14/2008 | y | NO | FJ654334 | 1/17/2008 | y | AT |
| CY036677 | 12/2/2007 | y | NO | FJ654339 | 12/24/2007 | $y$ | SE |
| CY036682 | 1/23/2008 | y | NO | FN423713 | 6/1/2009 | $y$ | LU |
| CY036683 | 1/28/2008 | y | NO | GQ183633 | 5/10/2009 | $y$ | FI |
| CY039527 | 4/29/2009 | y | NL | GQ184630 | 5/21/2009 | - | RU |
| CY043334 | 6/4/2009 | y | DK | GQ214138 | 4/30/2009 | - | FR |
| CY043342 | 6/4/2009 | $y$ | DK | GQ214144 | 4/30/2009 | y | FR |
| CY043350 | 6/9/2009 | y | DK | GQ214151 | 4/29/2009 | - | FR |
| CY045482 | 5/4/2009 | y | DE | GQ214156 | 5/1/2009 | y | FR |
| CY045490 | 5/6/2009 | y | DE | GQ219586 | 5/21/2009 | - | RU |
| CY045495 | 6/3/2009 | y | DE | GQ227545 | 5/8/2009 | $y$ | SE |
| CY046061 | 6/20/2009 | y | IT | GQ232099 | 5/21/2009 | , | IT |
| CY046062 | 6/16/2009 | y | IT | GQ247726 | 5/26/2009 | - | RU |
| CY046063 | 6/10/2009 | y | IT | GQ249333 | 5/1/2009 | y | FR |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY046064 | 7/17/2009 | $y$ | IT | GQ249337 | 5/11/2009 | $y$ | FR |
| CY046065 | 7/17/2009 | y | IT | GQ251035 | 5/3/2009 | y | IT |
| CY046066 | 7/21/2009 | y | IT | GQ255897 | 5/22/2009 | - | RU |
| CY046946 | 5/29/2009 | y | NO | GQ255900 | 5/26/2009 | - | RU |
| CY046952 | 6/28/2009 | y | NO | GQ283484 | 5/27/2009 | y | IT |
| CY051984 | 5/16/2009 | y | NO | GQ283488 | 5/26/2009 | y | FI |
| CY051985 | 5/27/2009 | y | NO | GQ283493 | 5/28/2009 | y | FI |
| CY051986 | 7/27/2009 | y | NO | GQ329066 | 5/23/2009 | y | FR |
| CY051987 | 7/29/2009 | y | NO | GQ329070 | 6/2/2009 | y | FR |
| CY051988 | 8/11/2009 | y | NO | GQ329076 | 6/2/2009 | y | FR |
| CY051989 | 8/10/2009 | y | NO | GQ329082 | 5/22/2009 | y | FR |
| CY051990 | 8/19/2009 | y | NO | GQ329088 | 5/6/2009 | y | FR |
| CY051991 | 8/11/2009 | y | NO | GQ329093 | 6/2/2009 | y | FR |
| CY051992 | 8/28/2009 | y | NO | GQ329100 | 5/17/2009 | y | FR |
| CY051993 | 8/27/2009 | y | NO | GQ329106 | 5/6/2009 | y | FR |
| CY051994 | 8/31/2009 | y | NO | GQ330645 | 6/3/2009 | - | RU |
| CY051998 | 9/8/2009 | y | NO | GQ351290 | 6/14/2009 | y | IT |
| CY052003 | 9/1/2009 | - | NO | GQ351319 | 6/6/2009 | y | IT |
| CY052004 | 8/27/2009 | y | NO | GQ359765 | 5/29/2009 | y | SE |
| CY052005 | 9/9/2009 | - | NO | GQ360060 | 5/30/2009 | y | SE |
| CY052006 | 9/9/2009 | y | NO | GQ365368 | 6/1/2009 | y | SE |
| CY052008 | 9/20/2009 | - | NO | GQ365658 | 4/29/2009 | y | DE |
| CY052009 | 10/2/2009 | - | NO | GQ365666 | 5/2/2009 | y | DE |
| CY052010 | 10/14/2009 | - | NO | GQ365674 | 5/4/2009 | y | DE |
| CY052011 | 10/12/2009 | - | NO | GQ375284 | 5/26/2009 | - | RU |
| CY052012 | 10/19/2009 | - | NO | GQ392022 | 7/9/2009 | - | RU |
| CY052013 | 10/24/2009 | - | NO | GQ392029 | 6/17/2009 | y | IT |
| CY052014 | 10/23/2009 | y | NO | GQ421199 | 6/8/2009 | y | IT |
| CY053416 | 11/1/2009 | - | RU | GQ421200 | 6/11/2009 | y | IT |
| CY053627 | 11/10/2009 | - | RU | GQ421201 | 7/1/2009 | y | IT |
| CY053681 | 11/1/2009 | - | RU | GQ421203 | 7/12/2009 | y | IT |
| CY053689 | 11/1/2009 | - | RU | GQ464408 | 4/28/2009 | y | ES |
| CY053728 | 11/1/2009 | - | RU | GQ494354 | 6/20/2009 | - | RU |
| CY053736 | 11/1/2009 | - | RU | GQ496142 | 7/22/2009 | - | RU |
| CY053744 | 11/1/2009 | - | RU | GQ496149 | 7/24/2009 | - | RU |
| CY053752 | 11/1/2009 | - | RU | GQ527167 | 8/12/2009 | - | RU |
| CY054630 | 11/1/2009 | - | RU | GU211227 | 9/22/2009 | - | RU |
| CY054638 | 11/1/2009 | - | RU | GU220604 | 8/4/2009 | - | RS |
| CY054646 | 11/1/2009 | - | RU | GU290047 | 6/27/2009 | y | CZ |
| CY054654 | 11/1/2009 | - | RU | GU290055 | 7/15/2009 | y | CZ |
| CY054662 | 11/1/2009 | - | RU | GU292341 | 7/24/2009 | y | FI |
| CY054670 | 11/12/2009 | - | RU | GU371256 | 11/16/2009 | - | RU |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY054678 | 11/5/2009 | - | RU | GU371263 | 11/11/2009 | - | RU |
| CY056939 | 10/30/2009 | - | BE | GU433025 | 7/19/2009 | - | RU |
| CY056947 | 11/20/2009 | y | DK | GU433033 | 7/21/2009 | - | RU |
| CY056955 | 12/13/2009 | - | GR | GU451254 | 11/14/2009 | - | RU |
| CY056963 | 12/7/2009 | - | DK | GU480943 | 8/10/2009 | - | RU |
| CY056971 | 12/10/2009 | - | DK | GU560008 | 11/18/2009 | - | RU |
| CY056979 | 12/2/2009 | - | DK | GU560016 | 11/22/2009 | - | RU |
| CY056987 | 12/7/2009 | - | PO | GU562450 | 11/25/2009 | - | RU |
| CY057045 | 10/26/2009 | - | GB | GU562458 | 1/4/2010 | - | RU |
| CY057049 | 11/5/2009 | - | GB | GU576500 | 7/15/2009 | y | IT |
| CY057050 | 10/29/2009 | - | GB | GU576501 | 7/16/2009 | y | IT |
| CY057059 | 10/17/2009 | - | GB | GU576502 | 7/17/2009 | y | IT |
| CY057062 | 11/18/2009 | - | GB | GU576504 | 7/17/2009 | y | IT |
| CY057069 | 11/19/2009 | - | GB | GU576506 | 7/17/2009 | y | IT |
| CY057350 | 12/4/2009 | - | DE | GU576508 | 8/3/2009 | y | IT |
| CY061267 | 10/29/2009 | y | BE | GU576510 | 8/5/2009 | y | IT |
| CY062675 | 11/13/2009 | y | ES | GU576512 | 8/6/2009 | y | IT |
| CY062691 | 11/24/2009 | - | DK | GU576514 | 8/16/2009 | y | IT |
| CY062699 | 11/27/2009 | y | DK | GU576515 | 8/19/2009 | y | IT |
| CY062707 | 12/13/2009 | - | GR | GU576517 | 8/19/2009 | y | IT |
| CY062715 | 12/13/2009 | - | GR | GU576519 | 8/21/2009 | y | IT |
| CY062723 | 12/13/2009 | - | GR | GU576521 | 8/21/2009 | y | IT |
| CY062731 | 12/15/2009 | - | GR | GU576522 | 8/31/2009 | y | IT |
| CY062739 | 11/19/2009 | - | DE | GU576540 | 12/31/2009 | y | IT |
| CY062755 | 11/26/2009 | - | ES | GU576542 | 1/9/2010 | - | IT |
| CY062763 | 12/2/2009 | - | ES | GU592889 | 12/18/2009 | - | RU |
| CY062771 | 12/4/2009 | - | ES | GU592905 | 12/14/2009 | - | RU |
| CY062779 | 12/10/2009 | - | BE | GU727825 | 12/4/2009 | - | RU |
| CY062787 | 11/10/2009 | y | DK | HM101145 | 11/25/2009 | - | RU |
| CY062795 | 11/20/2009 | - | DK | HM104477 | 12/5/2009 | - | RU |
| CY062803 | 11/26/2009 | - | AT | HM124383 | 3/2/2010 | - | RU |
| CY062811 | 11/11/2009 | - | DK | HM157254 | 12/4/2009 | - | RU |
| CY062819 | 12/7/2009 | - | DK | HM173599 | 11/12/2009 | - | RU |
| CY062827 | 12/3/2009 | - | PO | HM189312 | 11/2/2009 | - | RU |
| CY062835 | 12/30/2009 | - | GR | HM189320 | 11/25/2009 | - | RU |
| CY062843 | 12/30/2009 | - | GR | HM189352 | 11/10/2009 | - | RU |
| CY062851 | 12/17/2009 | - | GR | HM189357 | 11/5/2009 | - | RU |
| CY062859 | 12/18/2009 | - | GR | HM189358 | 11/18/2009 | - | RU |
| CY062867 | 12/18/2009 | - | GR | HM189359 | 8/25/2009 | - | RU |
| CY062875 | 12/19/2009 | - | GR | HM189360 | 11/10/2009 | - | RU |
| CY062899 | 12/20/2009 | y | GR | HM189361 | 11/26/2009 | - | RU |
| CY062907 | 12/21/2009 | - | GR | HM189362 | 9/25/2009 | - | RU |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY062915 | 12/26/2009 | - | GR | HM189363 | 9/25/2009 | - | RU |
| CY062923 | 12/26/2009 | y | GR | HM189364 | 9/25/2009 | - | RU |
| CY062931 | 12/18/2009 | - | DE | HM189365 | 9/25/2009 | - | RU |
| CY062947 | 12/17/2009 | - | ES | HM189366 | 9/26/2009 | - | RU |
| CY062955 | 12/24/2009 | - | ES | HM189367 | 7/16/2009 | - | RU |
| CY062963 | 12/23/2009 | - | ES | HM189368 | 11/26/2009 | - | RU |
| CY062971 | 12/28/2009 | - | DK | HM189369 | 7/15/2009 | - | RU |
| CY062979 | 1/5/2010 | y | DE | HM189370 | 8/16/2009 | - | RU |
| CY062987 | 1/5/2010 | y | AT | HM189371 | 12/1/2009 | - | RU |
| CY062995 | 12/21/2009 | - | EE | HM189372 | 10/1/2009 | - | RU |
| CY063003 | 1/4/2010 | - | EE | HM189373 | 10/24/2009 | - | RU |
| CY063011 | 1/7/2010 | - | EE | HM189374 | 11/24/2009 | - | RU |
| CY063019 | 12/15/2009 | - | ES | HM189375 | 11/24/2009 | - | RU |
| CY063027 | 12/30/2009 | - | ES | HM189376 | 11/24/2009 | - | RU |
| CY063035 | 12/30/2009 | - | ES | HM189377 | 7/25/2009 | - | RU |
| CY063043 | 12/10/2009 | - | DE | HM189378 | 11/19/2009 | - | RU |
| CY063051 | 12/15/2009 | y | BE | HM189379 | 12/9/2009 | - | RU |
| CY063059 | 12/30/2009 | - | BE | HM189380 | 7/30/2009 | - | RU |
| CY063582 | 11/10/2009 | y | NO | HM189381 | 8/25/2009 | - | RU |
| CY063590 | 12/9/2009 | - | GR | HM189382 | 8/13/2009 | - | RU |
| CY063598 | 11/20/2009 | - | DE | HM189383 | 11/24/2009 | - | RU |
| CY063606 | 12/2/2009 | - | DK | HM189384 | 8/4/2009 | - | RU |
| CY063638 | 12/29/2009 | - | GR | HM189385 | 7/28/2009 | - | RU |
| CY063646 | 12/29/2009 | - | GR | HM189386 | 11/9/2009 | - | RU |
| CY063654 | 12/18/2009 | - | GR | HM189387 | 11/21/2009 | - | RU |
| CY064772 | 12/11/2009 | - | DE | HM189388 | 8/5/2009 | - | RU |
| CY065115 | 11/15/2009 | - | NL | HM189389 | 9/10/2009 | - | RU |
| CY065131 | 11/16/2009 | - | NL | HM189390 | 11/30/2009 | - | RU |
| CY065158 | 6/23/2009 | y | GB | HM189391 | 11/23/2009 | - | RU |
| CY065206 | 4/28/2009 | y | GB | HM189392 | 9/21/2009 | - | RU |
| CY065350 | 5/3/2009 | y | GB | HM189393 | 9/17/2009 | - | RU |
| CY065446 | 5/11/2009 | y | GB | HM189394 | 9/21/2009 | - | RU |
| CY065598 | 6/3/2009 | y | GB | HM189395 | 9/21/2009 | - | RU |
| CY065776 | 11/30/2009 | - | NL | HM189396 | 11/23/2009 | - | RU |
| CY065784 | 12/4/2009 | - | NL | HM189397 | 11/21/2009 | - | RU |
| CY065792 | 8/25/2009 | y | NL | HM189398 | 11/23/2009 | - | RU |
| CY065808 | 10/31/2009 | - | NL | HM189399 | 8/17/2009 | - | RU |
| CY065816 | 11/5/2009 | - | NL | HM189400 | 7/13/2009 | - | RU |
| CY065824 | 11/17/2009 | - | NL | HM189401 | 8/10/2009 | - | RU |
| CY065832 | 11/7/2009 | - | NL | HM189402 | 8/12/2009 | - | RU |
| CY065840 | 12/1/2009 | - | NL | HM189403 | 11/18/2009 | - | RU |
| CY065856 | 11/19/2009 | - | NL | HM189404 | 11/25/2009 | - | RU |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY065864 | 10/23/2009 | - | NL | HM189405 | 11/23/2009 | - | RU |
| CY065872 | 1/4/2010 | - | NL | HM189406 | 11/20/2009 | - | RU |
| CY065880 | 9/4/2009 | - | NL | HM189407 | 8/12/2009 | - | RU |
| CY065888 | 12/7/2009 | y | NL | HM189408 | 11/23/2009 | - | RU |
| CY065896 | 12/2/2009 | - | NL | HM189409 | 11/30/2009 | - | RU |
| CY065904 | 9/10/2009 | - | NL | HM189410 | 11/2/2009 | - | RU |
| CY065912 | 9/10/2009 | - | NL | HM189413 | 11/4/2009 | - | RU |
| CY065920 | 9/30/2009 | - | NL | HM189414 | 10/31/2009 | - | RU |
| CY066599 | 12/15/2009 | - | GR | HM189415 | 7/15/2009 | - | RU |
| CY066607 | 12/15/2009 | - | GR | HM189416 | 7/15/2009 | - | RU |
| CY066615 | 12/15/2009 | Y | GR | HM189417 | 11/18/2009 | - | RU |
| CY066623 | 12/15/2009 | - | GR | HM189418 | 11/18/2009 | - | RU |
| CY066631 | 11/19/2009 | - | DE | HM189420 | 7/18/2009 | - | RU |
| CY066647 | 11/20/2009 | - | DE | HM189421 | 11/13/2009 | - | RU |
| CY066663 | 11/30/2009 | - | DE | HM189423 | 11/12/2009 | - | RU |
| CY066671 | 12/10/2009 | - | BE | HM189424 | 8/14/2009 | - | RU |
| CY066679 | 11/20/2009 | - | DK | HM189425 | 8/13/2009 | - | RU |
| CY066687 | 11/25/2009 | - | DK | HM189426 | 7/16/2009 | - | RU |
| CY066695 | 11/27/2009 | - | DK | HM189427 | 7/17/2009 | - | RU |
| CY066703 | 11/19/2009 | - | AT | HM189428 | 8/5/2009 | - | RU |
| CY066711 | 11/24/2009 | - | AT | HM189429 | 7/18/2009 | - | RU |
| CY066719 | 11/17/2009 | - | ES | HM567592 | 5/24/2009 | y | IE |
| CY066727 | 10/30/2009 | - | BE | HM567736 | 5/31/2009 | y | GB |
| CY066735 | 11/3/2009 | - | BE | HM567808 | 5/26/2009 | y | IE |
| CY066743 | 11/4/2009 | - | BE | HM567816 | 6/1/2009 | y | IE |
| CY066823 | 10/28/2009 | - | BE | HM567824 | 6/5/2009 | y | IE |
| CY066831 | 11/3/2009 | - | ES | HM567832 | 5/26/2009 | y | IE |
| CY066839 | 11/11/2009 | - | ES | HM567840 | 5/29/2009 | y | IE |
| CY066847 | 11/13/2009 | - | ES | HM567848 | 5/31/2009 | y | IE |
| CY066935 | 11/19/2009 | - | DK | HM567896 | 6/5/2009 | y | GB |
| CY066943 | 11/23/2009 | - | DK | HM567928 | 6/9/2009 | y | GB |
| CY066951 | 11/24/2009 | - | DK | HM567936 | 6/7/2009 | y | GB |
| CY066959 | 11/26/2009 | - | DK | HM567944 | 6/7/2009 | y | GB |
| CY066967 | 11/26/2009 | y | DK | HM567968 | 11/20/2009 | - | GB |
| CY066975 | 11/24/2009 | y | DK | HM567984 | 11/18/2009 | - | GB |
| CY066983 | 11/9/2009 | - | BE | HM568008 | 11/23/2009 | - | GB |
| CY066991 | 11/18/2009 | - | BE | HM568024 | 11/23/2009 | - | GB |
| CY066999 | 11/16/2009 | - | DE | HM568040 | 11/25/2009 | - | GB |
| CY067007 | 11/25/2009 | - | DE | HM568048 | 10/20/2009 | - | GB |
| CY067015 | 11/13/2009 | - | DE | HM568144 | 9/10/2009 | - | GB |
| CY067023 | 11/13/2009 | - | DE | HM569740 | 3/2/2010 | - | RU |
| CY067031 | 11/21/2009 | y | DK | HQ228025 | 6/12/2009 | y | FI |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY067039 | 11/21/2009 | - | DK | HQ228026 | 6/12/2009 | $y$ | FI |
| CY067047 | 11/22/2009 | y | DK | HQ228028 | 6/11/2009 | y | FI |
| CY067055 | 11/28/2009 | - | DK | HQ228029 | 6/13/2009 | y | FI |
| CY067063 | 12/13/2009 | - | GR | HQ228030 | 6/15/2009 | $y$ | FI |
| CY067071 | 12/13/2009 | y | GR | HQ228031 | 6/20/2009 | $y$ | FI |
| CY067079 | 12/13/2009 | - | GR | HQ228032 | 6/18/2009 | $y$ | FI |
| CY067087 | 12/13/2009 | - | GR | HQ228033 | 6/19/2009 | $y$ | FI |
| CY067103 | 12/13/2009 | - | GR | HQ228034 | 6/18/2009 | y | FI |
| CY067111 | 12/13/2009 | - | GR | HQ228035 | 6/19/2009 | y | FI |
| CY067119 | 12/13/2009 | - | GR | HQ228036 | 6/19/2009 | y | FI |
| CY067127 | 12/16/2009 | - | GR | HQ228037 | 6/19/2009 | y | FI |
| CY067135 | 12/15/2009 | - | GR | HQ228038 | 6/18/2009 | y | FI |
| CY067151 | 12/15/2009 | - | GR | HQ228039 | 6/18/2009 | y | FI |
| CY067159 | 12/17/2009 | - | GR | HQ228040 | 6/18/2009 | y | FI |
| CY067167 | 12/8/2009 | - | DE | HQ228041 | 6/18/2009 | y | FI |
| CY067175 | 12/9/2009 | - | DE | HQ228042 | 6/23/2009 | y | FI |
| CY067635 | 10/27/2009 | - | NO | HQ228043 | 6/28/2009 | y | FI |
| CY067651 | 11/18/2009 | y | BE | HQ228044 | 7/3/2009 | y | FI |
| CY069114 | 11/17/2009 | - | ES | HQ228045 | 7/4/2009 | y | FI |
| CY069122 | 11/24/2009 | y | ES | HQ228046 | 7/4/2009 | y | FI |
| CY069130 | 11/26/2009 | - | ES | HQ228047 | 7/3/2009 | y | FI |
| CY069138 | 11/30/2009 | - | ES | HQ228048 | 7/7/2009 | y | FI |
| CY069146 | 11/23/2009 | - | DE | HQ228049 | 7/9/2009 | y | FI |
| CY069162 | 12/21/2009 | - | GR | HQ228050 | 7/9/2009 | y | FI |
| CY069170 | 12/21/2009 | - | GR | HQ228051 | 7/12/2009 | y | FI |
| CY069186 | 12/26/2009 | y | GR | HQ228052 | 7/13/2009 | y | FI |
| CY069194 | 12/26/2009 | - | GR | HQ228053 | 7/14/2009 | y | FI |
| CY069218 | 11/30/2009 | y | DE | HQ228054 | 7/14/2009 | , | FI |
| CY069226 | 12/4/2009 | y | DE | HQ228055 | 7/15/2009 | , | FI |
| CY069234 | 12/9/2009 | - | DE | HQ228056 | 7/15/2009 | y | FI |
| CY069757 | 6/30/2009 | y | GB | HQ228057 | 8/31/2009 | y | FI |
| CY069781 | 5/2/2009 | y | GB | HQ228059 | 9/8/2009 | y | FI |
| CY069821 | 5/4/2009 | $y$ | GB | HQ228061 | 7/9/2009 | y | FI |
| CY069853 | 5/11/2009 | $y$ | GB | HQ228062 | 7/21/2009 | y | FI |
| CY069893 | 6/2/2009 | $y$ | GB | HQ228063 | 7/22/2009 | y | FI |
| CY070158 | 6/10/2009 | $y$ | GB | HQ228064 | 7/27/2009 | y | FI |
| CY070170 | 6/29/2009 | y | GB | HQ228065 | 7/27/2009 | y | FI |
| CY070171 | 6/23/2009 | y | GB | HQ228067 | 9/9/2009 | - | FI |
| CY070178 | 6/29/2009 | y | GB | HQ228070 | 9/18/2009 | - | FI |
| CY070201 | 7/1/2009 | y | GB | HQ228071 | 9/18/2009 | - | FI |
| CY070204 | 7/2/2009 | y | GB | HQ228072 | 9/23/2009 | - | FI |
| CY070220 | 7/7/2009 | y | GB | HQ228073 | 10/16/2009 | - | FI |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY070225 | 6/22/2009 | $y$ | GB | HQ228074 | 7/20/2009 | $y$ | FI |
| CY070226 | 6/21/2009 | y | GB | HQ228075 | 7/17/2009 | y | FI |
| CY070227 | 7/7/2009 | y | GB | HQ228076 | 7/16/2009 | y | FI |
| CY070238 | 6/30/2009 | y | GB | HQ228079 | 7/20/2009 | y | FI |
| CY070239 | 6/30/2009 | y | GB | HQ228084 | 10/5/2009 | - | FI |
| CY070243 | 7/12/2009 | y | GB | HQ228085 | 9/30/2009 | - | FI |
| CY070245 | 7/8/2009 | y | GB | HQ228088 | 11/12/2009 | y | FI |
| CY070265 | 7/14/2009 | y | GB | HQ228089 | 11/24/2009 | - | FI |
| CY070281 | 7/17/2009 | y | GB | HQ228090 | 11/21/2009 | y | FI |
| CY070286 | 5/17/2009 | y | GB | HQ228091 | 11/20/2009 | - | FI |
| CY070320 | 7/23/2009 | y | GB | HQ228092 | 11/16/2009 | - | FI |
| CY070329 | 7/25/2009 | y | GB | HQ228093 | 11/19/2009 | y | FI |
| CY070332 | 7/29/2009 | y | GB | HQ228094 | 11/28/2009 | y | FI |
| CY070335 | 7/30/2009 | y | GB | HQ228095 | 10/12/2009 | - | FI |
| CY070338 | 7/13/2009 | y | GB | HQ228096 | 10/13/2009 | - | FI |
| CY070363 | 9/2/2009 | - | GB | HQ228097 | 10/9/2009 | y | FI |
| CY070364 | 9/2/2009 | - | GB | HQ228098 | 10/20/2009 | - | FI |
| CY070369 | 9/9/2009 | - | GB | HQ228099 | 10/20/2009 | - | FI |
| CY070379 | 9/7/2009 | - | GB | HQ228100 | 10/21/2009 | - | FI |
| CY070383 | 9/14/2009 | - | GB | HQ228101 | 10/20/2009 | - | FI |
| CY070385 | 9/15/2009 | - | GB | HQ228102 | 10/14/2009 | y | FI |
| CY070395 | 9/21/2009 | - | GB | HQ228103 | 10/21/2009 | y | FI |
| CY070408 | 9/27/2009 | - | GB | HQ228104 | 10/26/2009 | - | FI |
| CY070426 | 10/1/2009 | - | GB | HQ228105 | 10/26/2009 | - | FI |
| CY070434 | 9/28/2009 | y | GB | HQ228106 | 10/26/2009 | - | FI |
| CY070435 | 9/27/2009 | - | GB | HQ228107 | 10/27/2009 | y | FI |
| CY070446 | 10/4/2009 | - | GB | HQ228108 | 10/27/2009 | - | FI |
| CY070451 | 10/5/2009 | - | GB | HQ228109 | 10/27/2009 | - | FI |
| CY070467 | 10/12/2009 | - | GB | HQ228110 | 10/26/2009 | y | FI |
| CY070470 | 10/11/2009 | - | GB | HQ228111 | 11/11/2009 | y | FI |
| CY070482 | 10/14/2009 | - | GB | HQ228112 | 11/14/2009 | y | FI |
| CY070485 | 10/14/2009 | - | GB | HQ228113 | 11/18/2009 | - | FI |
| CY070504 | 10/16/2009 | - | GB | HQ228114 | 11/14/2009 | - | FI |
| CY070516 | 10/16/2009 | y | GB | HQ228115 | 11/6/2009 | y | FI |
| CY070523 | 10/20/2009 | - | GB | HQ228116 | 10/12/2009 | - | FI |
| CY070528 | 10/21/2009 | - | GB | HQ228117 | 11/15/2009 | - | Fl |
| CY070535 | 11/1/2009 | y | GB | HQ228118 | 11/19/2009 | - | Fl |
| CY070549 | 11/3/2009 | - | GB | HQ228119 | 11/10/2009 | - | Fl |
| CY070556 | 11/2/2009 | y | GB | HQ228121 | 11/12/2009 | - | Fl |
| CY070563 | 11/4/2009 | - | GB | HQ228123 | 11/17/2009 | - | Fl |
| CY070564 | 10/26/2009 | - | GB | HQ228124 | 10/22/2009 | - | Fl |
| CY070566 | 11/6/2009 | - | GB | HQ228125 | 11/13/2009 | - | FI |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY070572 | 11/9/2009 | - | GB | HQ228126 | 11/19/2009 | - | FI |
| CY070587 | 11/17/2009 | y | GB | HQ228127 | 12/16/2009 | y | FI |
| CY070591 | 11/17/2009 | - | GB | HQ228128 | 11/20/2009 | y | FI |
| CY070596 | 11/20/2009 | y | GB | HQ228129 | 11/20/2009 | - | FI |
| CY070601 | 11/18/2009 | - | GB | HQ228130 | 11/24/2009 | - | FI |
| CY070604 | 11/17/2009 | y | GB | HQ228131 | 11/24/2009 | y | FI |
| CY070605 | 11/11/2009 | - | GB | HQ228132 | 11/25/2009 | - | FI |
| CY070608 | 11/14/2009 | - | GB | HQ228133 | 12/9/2009 | - | FI |
| CY070609 | 11/13/2009 | y | GB | HQ228134 | 11/8/2009 | y | FI |
| CY070614 | 11/23/2009 | - | GB | HQ228135 | 11/9/2009 | - | FI |
| CY070618 | 11/24/2009 | - | GB | HQ228136 | 11/6/2009 | y | FI |
| CY070619 | 11/24/2009 | - | GB | HQ228137 | 11/5/2009 | - | FI |
| CY070620 | 11/23/2009 | - | GB | HQ228138 | 11/5/2009 | - | FI |
| CY070629 | 11/25/2009 | - | GB | HQ228139 | 11/2/2009 | - | FI |
| CY070630 | 11/23/2009 | - | GB | HQ228140 | 12/24/2009 | - | FI |
| CY070633 | 11/24/2009 | - | GB | HQ228141 | 12/1/2009 | - | FI |
| CY070634 | 11/20/2009 | - | GB | HQ228142 | 12/6/2009 | - | FI |
| CY070635 | 11/22/2009 | - | GB | HQ228143 | 10/27/2009 | - | FI |
| CY070642 | 11/25/2009 | - | GB | HQ228144 | 1/12/2010 | y | FI |
| CY070647 | 12/8/2009 | - | GB | HQ228145 | 1/13/2010 | - | FI |
| CY070650 | 12/11/2009 | - | GB | HQ228146 | 2/2/2010 | - | FI |
| CY070652 | 12/9/2009 | - | GB | HQ228147 | 1/26/2010 | - | FI |
| CY070653 | 12/11/2009 | - | GB | HQ420235 | 11/20/2009 | - | PO |
| CY070662 | 12/15/2009 | - | GB | HQ834746 | 10/13/2010 | - | RU |
| CY070679 | 5/21/2009 | y | GB | HQ891281 | 12/3/2010 | - | RU |
| CY070689 | 5/24/2009 | y | GB | JF340083 | 1/25/2010 | - | RU |
| CY070690 | 5/24/2009 | y | GB | JF429392 | 11/21/2009 | - | FR |
| CY070709 | 5/29/2009 | y | GB | JF429393 | 11/25/2009 | - | FR |
| CY070711 | 5/24/2009 | y | GB | JF429394 | 11/17/2009 | - | FR |
| CY070717 | 6/1/2009 | y | GB | JF429395 | 11/23/2009 | - | FR |
| CY070724 | 6/3/2009 | y | GB | JF429396 | 9/14/2009 | - | FR |
| CY070733 | 12/29/2009 | - | GB | JF682629 | 1/25/2011 | y | CZ |
| CY070738 | 11/25/2009 | - | GB | JF701798 | 1/30/2008 | y | FR |
| CY071055 | 1/5/2010 | - | AT | JF701802 | 1/30/2008 | y | FR |
| CY071063 | 12/23/2009 | - | EE | JF701804 | 2/4/2008 | y | FR |
| CY071071 | 1/7/2010 | - | EE | JF701806 | 2/6/2008 | y | FR |
| CY071079 | 12/2/2009 | y | DE | JF701808 | 2/1/2008 | y | FR |
| CY071087 | 12/2/2009 | y | DE | JF701812 | 2/12/2008 | y | FR |
| CY071095 | 12/11/2009 | - | ES | JF701813 | 2/18/2008 | y | FR |
| CY071103 | 12/16/2009 | - | BE | JF701818 | 2/25/2008 | y | FR |
| CY071111 | 12/22/2009 | - | DE | JF701821 | 2/24/2008 | y | FR |
| CY071127 | 12/31/2009 | - | GR | JF701824 | 2/19/2008 | y | FR |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY071135 | 1/13/2010 | - | GR | JF701826 | 2/16/2008 | Y | FR |
| CY071143 | 1/14/2010 | - | GR | JF701827 | 2/13/2008 | y | FR |
| CY071151 | 1/19/2010 | - | GR | JF906183 | 2/12/2010 | - | NL |
| CY071159 | 1/11/2010 | - | GR | JN185093 | 1/25/2011 | - | RU |
| CY071167 | 1/21/2010 | Y | GR | JN185098 | 1/24/2011 | - | RU |
| CY071175 | 1/24/2010 | - | GR | JN185100 | 2/9/2011 | - | RU |
| CY071191 | 12/2/2009 | - | DE | JN185102 | 2/2/2011 | - | RU |
| CY071199 | 12/23/2009 | - | DE | JN185103 | 2/7/2011 | - | RU |
| CY071207 | 1/8/2010 | - | DE | JN185106 | 2/8/2011 | - | RU |
| CY071215 | 1/11/2010 | - | DE | JN185107 | 1/23/2011 | - | RU |
| CY071223 | 11/19/2009 | y | NO | JN185108 | 1/23/2011 | - | RU |
| CY071231 | 12/29/2009 | - | PO | JN185110 | 1/24/2011 | - | RU |
| CY071239 | 12/29/2009 | - | PO | JN185111 | 2/3/2011 | - | RU |
| CY071247 | 11/24/2009 | y | ES | JN185113 | 1/24/2011 | - | RU |
| CY071255 | 12/16/2009 | - | ES | JN185114 | 2/7/2011 | - | RU |
| CY071263 | 1/30/2010 | - | GR | JN185115 | 1/26/2011 | - | RU |
| CY071271 | 2/2/2010 | - | GR | JN185116 | 1/26/2011 | - | RU |
| CY071279 | 2/5/2010 | - | GR | JN185117 | 2/10/2011 | - | RU |
| CY071287 | 2/5/2010 | - | GR | JN596858 | 8/6/2009 | - | RU |
| CY071295 | 1/18/2010 | - | GR | JN601076 | 11/23/2010 | - | FI |
| CY071303 | 1/25/2010 | - | GR | JN601077 | 11/29/2010 | - | FI |
| CY071311 | 1/27/2010 | - | GR | JN601078 | 12/3/2010 | - | FI |
| CY071319 | 2/3/2010 | - | GR | JN601079 | 12/3/2010 | - | FI |
| CY071375 | 2/5/2010 | - | DE | JN601080 | 12/3/2010 | - | FI |
| CY072222 | 11/25/2009 | y | DE | JN601081 | 12/3/2010 | - | FI |
| CY072230 | 11/26/2009 | - | DE | JN601082 | 12/8/2010 | - | FI |
| CY072238 | 11/30/2009 | - | DE | JN601083 | 12/7/2010 | - | FI |
| CY072246 | 11/23/2009 | y | DK | JN601084 | 12/3/2010 | - | FI |
| CY072254 | 11/24/2009 | y | DK | JN601085 | 12/7/2010 | - | FI |
| CY072262 | 12/2/2009 | - | PO | JN601086 | 12/9/2010 | y | FI |
| CY072270 | 12/2/2009 | - | PO | JN601087 | 12/9/2010 | - | FI |
| CY072278 | 12/3/2009 | y | PO | JN601088 | 12/9/2010 | - | FI |
| CY072286 | 12/3/2009 | - | PO | JN601089 | 12/9/2010 | y | FI |
| CY072294 | 12/7/2009 | - | PO | JN601090 | 12/9/2010 | - | FI |
| CY072302 | 12/7/2009 | - | PO | JN601091 | 12/9/2010 | - | FI |
| CY072310 | 12/8/2009 | - | PO | JN601092 | 12/13/2010 | - | FI |
| CY072342 | 12/13/2009 | - | GR | JN601093 | 12/13/2010 | - | FI |
| CY072350 | 12/13/2009 | - | GR | JN601094 | 12/14/2010 | - | FI |
| CY072358 | 12/20/2009 | - | GR | JN601095 | 12/9/2010 | - | FI |
| CY072366 | 12/20/2009 | - | GR | JN601096 | 12/9/2010 | - | FI |
| CY072374 | 12/25/2009 | y | GR | JN601097 | 12/9/2010 | - | FI |
| CY072382 | 12/26/2009 | - | GR | JN601098 | 12/13/2010 | y | FI |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY072390 | 12/26/2009 | - | GR | JN601099 | 12/13/2010 | - | FI |
| CY072398 | 12/28/2009 | - | GR | JN601100 | 12/14/2010 | - | FI |
| CY072406 | 12/29/2009 | - | GR | JN601101 | 12/13/2010 | y | FI |
| CY072414 | 12/30/2009 | - | GR | JN601102 | 12/14/2010 | - | FI |
| CY072422 | 12/30/2009 | - | GR | JN601103 | 12/14/2010 | - | FI |
| CY072430 | 12/30/2009 | - | GR | JN601104 | 12/14/2010 | - | FI |
| CY072438 | 12/30/2009 | - | GR | JN601105 | 12/13/2010 | - | FI |
| CY072446 | 12/30/2009 | - | GR | JN601106 | 12/13/2010 | y | FI |
| CY072454 | 12/17/2009 | - | GR | JN601107 | 12/14/2010 | - | FI |
| CY072462 | 12/17/2009 | - | GR | JN601108 | 12/14/2010 | - | FI |
| CY072470 | 12/17/2009 | - | GR | JN601109 | 1/12/2011 | - | FI |
| CY072478 | 12/18/2009 | - | GR | JN601110 | 1/14/2011 | - | FI |
| CY072486 | 12/18/2009 | - | GR | JN704791 | 2/22/2011 | - | RU |
| CY072494 | 12/20/2009 | - | GR | JN714484 | 12/31/2010 | - | RU |
| CY072518 | 12/20/2009 | - | GR | JN714492 | 1/26/2011 | - | RU |
| CY072526 | 1/7/2010 | - | EE | JN714500 | 2/22/2011 | - | RU |
| CY072542 | 12/9/2009 | - | PO | JN714508 | 2/5/2011 | - | RU |
| CY072550 | 12/9/2009 | - | PO | JN714513 | 2/4/2011 | - | RU |
| CY073006 | 12/26/2009 | - | GR | JN714514 | 2/8/2011 | - | RU |
| CY073118 | 10/31/2009 | - | RU | JN714517 | 3/14/2011 | - | RU |
| CY073182 | 12/15/2009 | - | RS | JN714518 | 2/11/2011 | - | RU |
| CY073190 | 11/18/2009 | - | RS | JN714520 | 1/2/2011 | - | RU |
| CY073198 | 11/18/2009 | - | RS | JN714522 | 1/27/2011 | - | RU |
| CY073206 | 12/14/2009 | - | RS | JN714524 | 1/25/2011 | - | RU |
| CY073214 | 12/14/2009 | - | RS | JN714525 | 1/25/2011 | - | RU |
| CY073222 | 12/10/2009 | - | RS | JN714526 | 1/28/2011 | - | RU |
| CY073230 | 12/10/2009 | - | RS | JN714527 | 1/28/2011 | - | RU |
| CY073238 | 11/29/2009 | - | RS | JN714528 | 1/25/2011 | - | RU |
| CY073246 | 11/29/2009 | - | RS | JN714529 | 1/28/2011 | - | RU |
| CY073254 | 12/23/2009 | - | GR | JQ041354 | 2/3/2011 | - | RU |
| CY073481 | 11/13/2009 | - | DE | JQ173148 | 7/27/2009 | y | FI |
| CY073489 | 12/15/2009 | - | GR | JQ173156 | 5/10/2009 | y | FI |
| CY073497 | 12/1/2009 | y | DE | JQ173164 | 11/25/2009 | y | FI |
| CY073505 | 12/20/2009 | - | GR | JQ409126 | 5/25/2009 | y | FI |
| CY073725 | 12/7/2009 | - | DK | JQ409134 | 6/13/2009 | y | FI |
| CY073733 | 2/5/2010 | - | EE | JQ409142 | 6/13/2009 | y | FI |
| CY073741 | 11/18/2009 | - | DK | JQ431196 | 8/21/2009 | y | FR |
| CY073749 | 11/26/2009 | - | DK | JQ431197 | 8/11/2009 | y | FR |
| CY073765 | 12/3/2009 | - | ES | JQ431205 | 8/17/2009 | y | FR |
| CY073773 | 1/5/2010 | - | AT | JQ431206 | 8/13/2009 | y | FR |
| CY073877 | 12/15/2009 | - | GR | JQ431207 | 8/13/2009 | y | FR |
| CY075059 | 1/6/2010 | - | GR | JQ431208 | 8/24/2009 | y | FR |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY075067 | 1/6/2010 | $y$ | GR | JQ431209 | 8/24/2009 | y | FR |
| CY075075 | 2/17/2010 | - | GR | JQ431210 | 8/19/2009 | y | FR |
| CY075475 | 11/2/2009 | - | RU | JQ431211 | 8/26/2009 | y | FR |
| CY075477 | 11/3/2009 | - | RU | JQ431212 | 8/14/2009 | y | FR |
| CY075479 | 11/10/2009 | - | RU | JQ431213 | 8/20/2009 | y | FR |
| CY075480 | 8/13/2009 | - | RU | JQ431215 | 8/19/2009 | y | FR |
| CY075482 | 11/13/2009 | - | RU | JQ431216 | 8/21/2009 | y | FR |
| CY075483 | 11/14/2009 | - | RU | JQ431217 | 8/18/2009 | y | FR |
| CY075485 | 10/26/2009 | - | RU | JQ431218 | 8/22/2009 | y | FR |
| CY075487 | 10/28/2009 | - | RU | JQ431219 | 8/26/2009 | y | FR |
| CY075488 | 10/29/2009 | - | RU | JQ431221 | 8/24/2009 | y | FR |
| CY083248 | 11/3/2009 | - | RU | JQ612499 | 10/26/2009 | - | HU |
| CY083543 | 11/10/2009 | - | HU | JQ612507 | 1/12/2010 | - | HU |
| CY083551 | 11/10/2009 | - | HU | JX625395 | 6/30/2009 | y | GB |
| CY083559 | 12/4/2009 | y | HU | JX625459 | 7/13/2009 | y | GB |
| CY083690 | 11/30/2009 | - | ES | JX625467 | 7/17/2009 | y | GB |
| CY083729 | 11/26/2009 | y | DE | JX625513 | 10/9/2009 | - | GB |
| CY083745 | 12/11/2009 | - | ES | JX625702 | 11/28/2010 | - | GB |
| CY083761 | 11/25/2009 | - | DK | JX625710 | 11/29/2010 | y | GB |
| CY083768 | 12/10/2009 | - | GR | JX625742 | 11/30/2010 | - | GB |
| CY083776 | 11/25/2009 | y | DK | JX625782 | 12/6/2010 | - | GB |
| CY083787 | 11/30/2009 | y | DK | JX625798 | 12/10/2010 | - | GB |
| CY083805 | 12/17/2009 | - | ES | JX625806 | 12/9/2010 | - | GB |
| CY083825 | 12/3/2009 | - | PO | JX625862 | 12/13/2010 | y | GB |
| CY083902 | 12/13/2009 | - | GR | JX625870 | 12/14/2010 | y | GB |
| CY083910 | 11/23/2009 | y | DK | JX625886 | 12/16/2010 | - | GB |
| CY083918 | 12/3/2009 | - | PO | JX625894 | 12/14/2010 | y | GB |
| CY083926 | 12/11/2009 | - | PO | JX625910 | 12/16/2010 | - | GB |
| CY083934 | 12/11/2009 | - | PO | JX625934 | 12/20/2010 | y | GB |
| CY088613 | 11/26/2009 | - | DE | JX625950 | 12/16/2010 | y | GB |
| CY088621 | 12/21/2009 | - | DK | KC222636 | 7/22/2009 | y | DE |
| CY088729 | 11/18/2009 | - | NL | KC620386 | 7/21/2009 | y | DE |
| CY090861 | 2/9/2010 | - | NL | KF560302 | 4/15/2011 | y | FI |
| CY091601 | 2/7/2011 | - | RU | KF860844 | 9/1/2009 | - | ES |
| CY091609 | 2/14/2011 | - | RU | KF860845 | 11/14/2009 | y | ES |
| CY091613 | 2/21/2011 | - | RU | KF860846 | 1/29/2010 | y | ES |
| CY091616 | 1/26/2011 | - | RU | KF897777 | 9/14/2010 | - | FR |
| CY091620 | 1/27/2011 | - | RU | KF897785 | 12/26/2010 | - | FR |
| CY097892 | 1/14/2011 | - | RU | KF897793 | 12/20/2010 | - | FR |
| CY097900 | 1/21/2011 | - | RU | KF897801 | 12/22/2010 | - | FR |
| CY097932 | 2/3/2011 | - | RU | KF897809 | 1/1/2011 | y | FR |
| CY097980 | 1/18/2011 | y | HU | KJ549778 | 7/22/2009 | y | DE |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY097988 | 1/27/2011 | y | HU | KP456197 | 3/13/2008 | - | UA |
| CY097996 | 1/27/2011 | y | HU | KP456205 | 1/14/2008 | y | RO |
| CY098004 | 1/18/2011 | - | CZ | KP456268 | 1/2/2008 | y | PT |
| CY098028 | 1/31/2011 | - | RU | KP456364 | 1/9/2008 | y | GB |
| CY098036 | 2/2/2011 | - | RU | KP456386 | 3/3/2008 | - | UA |
| CY098060 | 1/31/2011 | - | RU | KP456439 | 1/21/2008 | y | RO |
| CY103841 | 3/11/2011 | - | RU | KP456446 | 1/10/2008 | y | DE |
| CY103843 | 3/11/2011 | - | RU | KP456509 | 1/10/2008 | y | RO |
| CY103845 | 1/31/2011 | - | RU | KP456565 | 1/10/2008 | y | SI |
| CY103847 | 2/2/2011 | - | RU | KP456666 | 12/14/2007 | y | FR |
| CY103851 | 2/4/2011 | - | RU | KP456714 | 1/22/2008 | y | IT |
| CY103853 | 2/20/2011 | - | RU | KP456896 | 10/12/2007 | y | NL |
| CY103855 | 2/20/2011 | - | RU | KP456929 | 12/11/2007 | $y$ | SE |
| CY107260 | 11/12/2009 | - | GB | KP457217 | 1/3/2008 | y | ES |
| CY107340 | 10/15/2009 | - | GB | KP457268 | 1/25/2008 | - | HU |
| CY107403 | 11/5/2009 | - | GB | KP457295 | 12/11/2007 | y | NO |
| CY107418 | 12/14/2009 | - | GB | KP457321 | 11/26/2007 | y | NO |
| CY107453 | 2/4/2010 | y | GB | KP457328 | 1/21/2008 | y | BG |
| CY107472 | 6/10/2009 | y | GB | KP457365 | 2/6/2008 | - | UA |
| CY107585 | 6/3/2009 | y | GB | KP457403 | 12/31/2007 | y | GB |
| CY107693 | 6/24/2009 | y | GB | KP457648 | 2/19/2008 | - | UA |
| CY115862 | 8/11/2009 | y | NL | KP457914 | 12/24/2007 | y | SE |
| CY129435 | 1/19/2011 | y | GB | KP458144 | 1/15/2008 | y | RO |
| CY129451 | 1/28/2011 | y | GR | KP458150 | 3/27/2008 | - | UA |
| CY129459 | 2/12/2011 | y | GR | KP458193 | 12/10/2007 | y | NO |
| CY129467 | 2/12/2011 | y | GR | KP458208 | 1/8/2008 | y | GR |
| CY129475 | 2/25/2011 | - | GR | KP458248 | 2/13/2008 | y | IT |
| CY129485 | 2/27/2011 | y | GR | KP458257 | 12/17/2007 | - | FR |
| CY129499 | 1/18/2010 | y | DE | KP458277 | 1/23/2008 | - | LV |
| CY129546 | 1/13/2011 | y | DK | KP458391 | 11/15/2007 | y | GB |
| CY129550 | 1/26/2011 | - | EE | KP458403 | 1/29/2008 | y | NO |
| CY129558 | 2/14/2011 | y | PO | KP458424 | 12/8/2007 | y | NO |
| CY129590 | 2/8/2011 | y | DE | KP458513 | 3/3/2008 | - | UA |
| CY129598 | 1/13/2011 | y | DE | KP458638 | 1/10/2008 | y | SI |
| CY129606 | 2/18/2011 | y | DE | KP458677 | 1/2/2008 | y | NO |
| CY129614 | 2/23/2011 | - | DE | KP458745 | 2/12/2008 | - | UA |
| CY129622 | 2/1/2011 | - | DE | KP458776 | 12/7/2007 | y | NO |
| CY129630 | 2/10/2011 | y | DE | KP458980 | 1/14/2008 | y | RO |
| CY129638 | 2/18/2011 | y | DE | KP459033 | 3/6/2008 | - | UA |
| CY129662 | 1/19/2011 | - | GR | KP459059 | 12/21/2007 | y | NL |
| CY129670 | 1/27/2011 | - | GR | KP459061 | 1/6/2008 | y | BE |
| CY129678 | 2/1/2011 | y | GR | KP459165 | 12/19/2007 | - | LV |


| ACCESSION | DATE | Used | Country | ACCESSION | DATE | Used | Country |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CY129686 | 2/18/2011 | - | GR | KP459215 | 1/15/2008 | y | RO |
| CY129694 | 2/24/2010 | y | GR | LN845774 | 3/18/2010 | - | GB |
| CY129702 | 2/4/2011 | y | GR | LN846336 | 12/16/2010 | - | GB |
| CY129710 | 2/11/2011 | y | GR | LN846344 | 12/16/2010 | y | GB |
| CY129718 | 2/25/2011 | y | GR | LN846470 | 12/22/2010 | y | GB |
| CY129726 | 2/27/2011 | - | GR | LN846494 | 2/4/2010 | - | GB |
| CY129734 | 2/21/2011 | - | ES | LN846518 | 12/20/2010 | y | GB |
| CY129830 | 1/5/2011 | y | GB | LN846550 | 12/8/2009 | y | GB |
| CY129886 | 2/21/2011 | y | BE | LN846558 | 1/4/2011 | - | GB |
| CY129894 | 2/11/2011 | y | DE | LN846566 | 12/21/2010 | y | GB |
| CY129902 | 2/15/2011 | - | DE | LN846631 | 1/12/2011 | y | GB |
| CY129910 | 1/25/2011 | - | DK | LN846639 | 1/9/2011 | - | GB |
| CY129918 | 1/21/2011 | y | DK | LN846655 | 12/2/2010 | - | GB |
| CY129926 | 1/19/2011 | y | DK | LN846795 | 12/30/2010 | y | GB |
| CY129934 | 1/20/2011 | y | DK | LN849998 | 12/18/2010 | y | GB |
| CY129942 | 2/4/2011 | y | DK | LN850014 | 1/12/2011 | y | GB |
| CY129950 | 1/27/2011 | - | EE | LN850054 | 12/15/2010 | y | GB |
| CY129958 | 2/1/2011 | - | EE | LN850133 | 12/15/2010 | y | GB |
| CY129966 | 2/2/2011 | - | EE | LN850284 | 12/18/2010 | y | GB |
| CY129974 | 1/31/2011 | - | PO | LN850308 | 12/14/2010 | y | GB |
| CY129982 | 2/4/2011 | - | PO | LN850364 | 12/2/2010 | y | GB |
| CY176397 | 2/23/2011 | y | PO | LN850719 | 11/30/2010 | y | GB |
| CY176474 | 1/27/2011 | - | GR | LN866284 | 12/23/2010 | y | GB |
| CY176482 | 2/12/2011 | y | GR | LN866301 | 12/22/2010 | y | GB |
| CY176546 | 1/5/2011 | - | GB | LN866317 | 11/25/2010 | - | GB |
| CY176570 | 1/25/2011 | y | DK | LN867325 | 12/9/2010 | y | GB |
| CY176578 | 1/14/2011 | y | DK | LN867357 | 12/12/2010 | - | GB |
| CY176586 | 2/7/2011 | y | DK | LN867365 | 12/21/2010 | y | GB |
| CY176594 | 2/8/2011 | y | PO | LN867431 | 1/1/2011 | - | GB |
| CY176754 | 2/15/2011 | - | DE | LN867454 | 12/14/2010 | - | GB |
| CY176802 | 1/19/2011 | y | GR | LN867470 | 1/8/2011 | - | GB |
| CY176810 | 1/28/2011 | y | GR | LN867494 | 12/23/2010 | y | GB |
| EU685785 | 1/10/2008 | $y$ | FR | LN867502 | 11/30/2010 | $y$ | GB |
| EU685786 | 1/13/2008 | $y$ | FR | LN867518 | 12/17/2010 | - | GB |
| FJ264950 | 2/13/2008 | $y$ | DK | LN867660 | 12/23/2010 | $y$ | GB |
| FJ445028 | 1/9/2008 | $y$ | GB | LN867692 | 12/16/2010 | y | GB |
| FJ445089 | 11/15/2007 | y | GB | LN867724 | 12/11/2010 | y | GB |
| FJ445090 | 12/31/2007 | y | GB | LN867740 | 12/16/2010 | - | GB |
| FJ654300 | 1/6/2008 | y | BE | LN867756 | 4/15/2010 | - | GB |
| FJ654304 | 11/26/2007 | y | NO | LN867796 | 12/20/2010 | - | GB |
| FJ654305 | 12/12/2007 | y | NO | LN867852 | 12/17/2010 | y | GB |
| FJ654306 | 12/10/2007 | y | NO | LN867876 | 12/17/2010 | y | GB |

Table S2. European Country Codes

| Country | Code |
| :---: | :---: |
| Albania | AL |
| Austria | AT |
| Belgium | BE |
| Bulgaria | BG |
| Croatia | HR |
| Cyprus | CY |
| CzechRepublic | CZ |
| Denmark | DK |
| Estonia | EE |
| Finland | FI |
| France | FR |
| Germany | DE |
| Greece | GR |
| Hungary | HU |
| Iceland | IS |
| Ireland | IE |
| Italy | IT |
| Latvia | LV |
| Liechtenstein | LI |
| Lithuania | LT |
| Luxembourg | LU |
| Malta | MT |
| Moldova | MD |
| Netherlands | NL |
| Norway | NO |
| Poland | PO |
| Portugal | PT |
| Romania | RO |
| Russia | RU |
| Slovakia | SK |
| Slovenia | SI |
| Spain | ES |
| Sweden | SE |
| Switzerland | CH |
| Yugoslavia | MK |
| Turkey | TR |
| Ukraine | UA |
| UnitedKingdom | GB |

Table S3. Summary of Available Sequences. Number of sequences available on Genbank per season and per European country.

| Country | $\mathbf{2 0 0 7} \mathbf{- 2 0 0 8}$ | $\mathbf{2 0 0 8} \mathbf{- 2 0 0 9}$ | $\mathbf{2 0 0 9} \mathbf{- 2 0 1 0}$ | $\mathbf{2 0 1 0} \mathbf{- 2 0 1 1}$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AT | 1 | 0 | 6 | 0 | 7 |
| BE | 2 | 0 | 14 | 1 | 17 |
| BG | 2 | 0 | 0 | 0 | 2 |
| CZ | 1 | 2 | 0 | 2 | 5 |
| DE | 16 | 9 | 36 | 10 | 71 |
| DK | 1 | 3 | 35 | 9 | 48 |
| EE | 0 | 0 | 7 | 4 | 11 |
| ES | 3 | 1 | 28 | 1 | 33 |
| FI | 0 | 50 | 67 | 36 | 153 |
| FR | 16 | 31 | 5 | 5 | 57 |
| GB | 6 | 50 | 76 | 53 | 185 |
| GR | 2 | 0 | 85 | 17 | 104 |
| HR | 1 | 0 | 0 | 0 | 1 |
| HU | 2 | 0 | 5 | 3 | 10 |
| IE | 0 | 7 | 0 | 0 | 7 |
| IT | 4 | 30 | 2 | 0 | 36 |
| LU | 0 | 1 | 0 | 0 | 1 |
| LV | 3 | 0 | 0 | 0 | 3 |
| NL | 6 | 3 | 21 | 0 | 30 |
| NO | 16 | 15 | 14 | 0 | 45 |
| PO | 0 | 0 | 18 | 5 | 23 |
| PT | 3 | 0 | 0 | 0 | 3 |
| RO | 8 | 0 | 0 | 0 | 8 |
| RS | 0 | 1 | 9 | 0 | 10 |
| RU | 0 | 43 | 90 | 53 | 186 |
| SE | 4 | 4 | 0 | 0 | 8 |
| SI | 4 | 0 | 0 | 0 | 4 |
| UA | 10 | 0 | 0 | 0 | 10 |
| Total | $\mathbf{1 1 1}$ | $\mathbf{2 5 0}$ | $\mathbf{5 1 8}$ | $\mathbf{1 9 9}$ | $\mathbf{1 0 7 8}$ |

Table S4. Summary of Sequences Used. Number of sequences used per season and per European country. Asterisk indicates countries for which no rail passenger volume data was available.

| Country | $\mathbf{2 0 0 7} \mathbf{- 2 0 0 8}$ | $\mathbf{2 0 0 8} \mathbf{- 2 0 0 9}$ | $\mathbf{2 0 0 9} \mathbf{- 2 0 1 0}$ | $\mathbf{2 0 1 0} \mathbf{- 2 0 1 1}$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AT | 1 | 0 | 1 | 0 | 2 |
| BE | 2 | 0 | 3 | 1 | 6 |
| BG | 2 | 0 | 0 | 0 | 2 |
| CZ | 1 | 2 |  | 1 | 4 |
| DE | 16 | 9 | 9 | 6 | 40 |
| DK | 1 | 3 | 12 | 8 | 24 |
| EE | 0 | 0 | 0 | 0 | 0 |
| ES | 3 | 1 | 5 | 0 | 9 |
| FI | 0 | 50 | 20 | 6 | 76 |
| FR | 15 | 29 | 0 | 1 | 45 |
| GB | 6 | 50 | 10 | 33 | 99 |
| GR | 2 | 0 | 9 | 11 | 22 |
| HR | 0 | 0 | 0 | 0 | 0 |
| HU | 0 | 0 | 1 | 3 | 4 |
| IE | 0 | 7 | 0 | 0 | 7 |
| IT | 4 | 30 | 1 | 0 | 35 |
| LU | 0 | 1 | 0 | 0 | 1 |
| LV | 0 | 0 | 0 | 0 | 0 |
| NL | 6 | 3 | 1 | 0 | 10 |
| NO | 16 | 15 | 5 | 0 | 36 |
| PO | 0 | 0 | 1 | 3 | 4 |
| PT | 3 | 0 | 0 | 0 | 3 |
| RO | 8 | 0 | 0 | 0 | 8 |
| RS* | 0 | 0 | 0 | 0 | 0 |
| RU* | 0 | 0 | 0 | 0 | 0 |
| SE | 4 | 4 | 0 | 0 | 8 |
| SI | 4 | 0 | 0 | 0 | 4 |
| UA* | 0 | 0 | 0 | 0 | 0 |
| Total | $\mathbf{9 4}$ | $\mathbf{2 0 4}$ | $\mathbf{7 8}$ | $\mathbf{7 3}$ | $\mathbf{4 4 9}$ |



Table S5. Summary of epidemiological and evolutionary dynamics of European H1N1 epidemics based on
phylogenetic analyses of each influenza season. 'Root Height' is measured in years before present, with the present time equal to the latest sampling date. 'Clock rate' is measured in substitutions/ site/ year. 'Sequences' represents the number of sequences analyzed per clade and 'Locations' represents the number of states these sequences were collected from.

## II. 2 Supplementary Figures and Captions

Figure S1. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from a single subtype within the 2007-2008 influenza season using a Bayesian method. Clades used for association tests are highlighted in green and have a posterior probability values $>0.9$. Horizontal axis is measured in years.

Figure S2. Phylogenetic tree estimated using influenza A/H1N1HA sequences sampled from a single subtype within the 2008-2009 influenza season using a Bayesian method. Clades used for association tests are highlighted in green and have a posterior probability values $>0.9$. Horizontal axis is measured in years.

Figure S3. Phylogenetic tree estimated using influenza A/H1N1HA sequences sampled from a single subtype within the 2009-2010 influenza season using a Bayesian method. Clades used for association tests are highlighted in green and have a posterior probability values $>0.9$. Horizontal axis is measured in years.

Figure S4. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from a single subtype within the 2010-2011 influenza season using a Bayesian method. Clades used for association tests are highlighted in green and have a posterior probability values $>0.9$. Horizontal axis is measured in years.





