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Abstract 

 

Birds of a Feather: Estimating the Population Impact of  

Assortative Mixing by HIV Diagnosis Status and Pre-Exposure Prophylaxis Use on  

HIV Incidence Among Men Who Have Sex With Men 
 

By Kevin M. Maloney 

 

The advent of pre-exposure prophylaxis (PrEP) was a paradigm shift for human 
immunodeficiency virus (HIV) prevention. Uptake among men who have sex with men (MSM) 
was slow, but approximately 20% of PrEP-eligible MSM used PrEP in 2017. Despite optimism, 
HIV incidence among MSM has not declined as fast as projected given coverage levels. We 
hypothesize this may be explained by HIV serosorting and assortative mixing among MSM who 
use PrEP, which creates clusters of PrEP use in sexual networks and decreases the population 
benefit of PrEP. In this dissertation, we conducted three studies to explore the impact of PrEP 
sorting on HIV transmission among MSM. 

In the first study, we estimated HIV serosorting and PrEP sorting patterns, using an egocentric 
sexual network study. We found strong evidence of assortative mixing among MSM with 
diagnosed HIV (39.3%), MSM who used PrEP (31.9%), and MSM who did not use PrEP 
(82.6%). We showed that naïve estimation of HIV and PrEP mixing matrices is biased. We 
presented a reclassification analysis to correct information bias. 

In the second study, we used network estimation and simulation methods to describe cross-
sectional sexual networks of MSM. We estimated that 45% of persistent and 24% of one-time 
partnerships among MSM are concordant without diagnosed HIV and without PrEP use. 
Network models based on degree and demographic mixing statistics produced only 70–80% of 
these partnerships. Our models provide evidence for inefficient network coverage of PrEP. 

In the third study, we used a network-based model of HIV transmission to estimate the impact of 
PrEP sorting on the population benefit of PrEP. Our model showed 2.4% more infections over 
10 years in the scenario with PrEP sorting compared to without PrEP sorting. The effect was 
relatively small, but PrEP sorting may interact with other network-level effects to limit HIV 
prevention in the real world. 

These findings highlight the potential role of network-level factors in mediating the causal 
relationship between PrEP coverage and HIV incidence. Future research should investigate 
PrEP sorting in combination with other network properties to inform interventions to increase 
network coverage and the population benefit of PrEP.  
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Chapter 1. Background and Significance 

Modern HIV Prevention in the US: The PrEP and U=U Era 

Forty years after the first report of human immunodeficiency virus (HIV),1 gay, bisexual, 

and other men who have sex with men (MSM) are still at increased risk for HIV infection in the 

United States, with approximately two-thirds of new infections each year attributed to male-to-

male sexual contact.2 In recent years, prevention efforts have been bolstered by biomedical 

interventions.3 Antiretroviral treatment for persons living with HIV also prevents onward 

transmission by suppressing the viral load (Undetectable = Untransmittable; or U=U).4,5 

Antiretroviral medications, usually taken daily, can also reduce or eliminate the risk for HIV 

infection among persons with HIV, which is a prevention strategy known as pre-exposure 

prophylaxis (PrEP).6,7 Clinical trials with MSM have shown that PrEP can reduce individual risk 

for infection by 99% if taken as recommended.6–8 MSM are an ideal population for PrEP due to 

their increased risk for infection.9 The Centers for Disease Control and Prevention (CDC) 

estimate that 1.1 million US adults are behaviorally indicated for PrEP.10 The US Food and Drug 

Administration approved the first PrEP medication in 2012, but uptake was initially slow and only 

20% of MSM with behavioral indications for PrEP used it in 2017.11  Models of HIV transmission 

suggest that HIV incidence could decrease substantially if PrEP use increases among MSM, 

with additional population-level benefits if targeted to MSM with higher behavioral or 

demographic risk.12–15 However, even at current PrEP coverage levels, a population-level 

benefit is expected.12–15 For example, one model projects a 20% decline in HIV incidence over 

10 years if 20% of PrEP-eligible MSM use it.13 

The PrEP and U=U era has inspired optimism in the fight against HIV. The US federal 

government has recommitted efforts to end HIV, with the 2019 “Ending the HIV Epidemic” 

(EHE) initiative calling for increased PrEP use as one pillar of a broader strategy to prevent 90% 
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of infections by 2030.16 Among MSM, incidence has declined slowly in recent years, with 

approximately 26,100 incident infections in 2014 and 24,400 in 2018, a 6.5% decline.2 Despite 

increased PrEP use in this time, there is a lack of empiric evidence supporting PrEP impact at 

the population level.17 A recent population-level analysis found only a small effect of decreased 

HIV diagnoses as PrEP use has expanded.18 The reasons for gaps between the predicted 

population-level benefit of PrEP and observed trends in HIV incidence are unknown, but myriad 

factors likely contribute.17 Racial disparities in PrEP access and uptake overlap with disparities 

in HIV incidence among MSM, which might partially explain the discrepancy. Despite 43% of 

new diagnoses among Black MSM and 26% among Hispanic/Latino MSM, White MSM were 

more likely to report PrEP use in a 2017 study.2,19 Other disparities exist, including lower uptake 

in the southeast, where incidence is highest, and among young people.11,20 Among persons 

accessing PrEP, early discontinuation (despite ongoing risk) contributes to lower cross-sectional 

coverage in the population, which undermines efforts to expand coverage by improving 

awareness, access, and initial uptake.21–24 Inadequate adherence further decreases 

effectiveness at the individual and population levels.22,25 Progress has been made to close 

disparities in PrEP uptake and effective use, with interventions focusing on various aspects of 

the PrEP care continuum (i.e., access, adherence, and persistence),11,26 yet evidence of 

decreased HIV incidence has lagged. 

There is a need to both monitor progress along the stages of the PrEP care continuum 

and to understand how these factors contribute to decreased incidence on the population level. 

However, given the lack of empiric evidence for PrEP impact at the population level, alternative 

hypotheses should be considered. One potential issue is that cross-sectional PrEP coverage 

(i.e., the fraction of PrEP-eligible MSM using PrEP at any point) may be an incomplete metric to 

predict the population impact of PrEP. Increased coverage should result in decreased 

incidence, as has been shown in predictive models.12–15 However, 20% coverage among PrEP-
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eligible MSM could have varying population impact depending on which PrEP-eligible MSM are 

using PrEP.13 Predicting individual HIV risk is challenging, but risk calculators and other tools 

have been developed to help patients and clinical providers assess risk based on sexual 

behavior and demographics,27–30 and the CDC has defined behavioral indications for PrEP use.9 

However, even after accounting for traditional risk identifiers, such as age, race, geography, and 

individual behavior, PrEP coverage might be inefficiently distributed in the sexual network of 

MSM, so that HIV transmission would proceed uninterrupted among MSM not using PrEP, while 

some MSM who use PrEP have limited risk for infection. Indeed, a recent study found that 6.3% 

of MSM who used PrEP in 2017 were not behaviorally indicated based on CDC guidelines.11  

Furthermore, structural properties of the sexual contact network, including the location 

and density of HIV and PrEP across the network, can influence transmission dynamics and 

PrEP impact, even if all MSM who use PrEP are behaviorally indicated.31–35 Clusters of PrEP 

use in the sexual networks of MSM might form as a result of assortative mixing (preferential 

partnering) among MSM who use PrEP. Assortative mixing could decrease HIV exposure 

among MSM who use PrEP (analogous to herd immunity of vaccines), which would reinforce 

the effectiveness of the intervention among these men. At the same time, PrEP use would 

remain sparse outside of local clusters, so that opportunities for primary and secondary 

prevention are limited. The overarching theory of this dissertation is that clustering of PrEP use 

in the sexual network may contribute to decreased PrEP impact at the population-level. 

Network Structure and Sexual Transmission of HIV 

Networks are representations of persons (nodes) and their connections (edges).31,34 The 

edges can represent any type of specified relationship, including social, professional, or 

familial.31 In an infectious disease framework, network edges represent exposures that are 

opportunities for disease transmission.31 For studies of sexually transmitted infections, including 

HIV, the edges represent sexual partnerships.31,33 The nodes can be characterized by 
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demographic and other descriptors, while characteristics of the edges describe the nature and 

duration of the edge.31 The networks can be represented graphically, and data can be stored 

using vectors and matrices to identify nodes and edges and describe characteristics of each.36 

The networks can be represented cross-sectionally (i.e., a momentary network configuration at 

a single time point) or temporally (i.e., a series of networks with dynamic edge configurations 

over time).36,37 Sexual networks are best represented temporally, because transmission is 

affected by the timing and sequence of partnerships, as well as the number of partnerships in a 

given time frame.38,39 However, cross-sectional network analysis can help identify the 

mechanisms which contribute to transmission in the network. 

Structural properties of networks can directly influence HIV transmission.31–35 Early 

examples of network analysis of sexually transmitted infections include studies of the role of 

assortative sexual mixing (tendency to select partners with shared characteristics; e.g., same 

race partnering),40,41 partnership concurrency (having ≥ 2 partners overlapping in time),38,40,41 

and skewed degree distributions (many individuals have few partners, while a few individuals 

have many partners),40,41 in transmission dynamics. By analyzing the way in which nodes are 

connected in space and time, these studies identified network properties which influence 

epidemic trajectory. Transmission models which do not account for network structure (e.g., 

compartmental models) may be unable to represent complex interactions between population 

mixing (e.g., based on multiple attributes), patterns of behavior (e.g., degree by attributes), and 

biomedical dynamics (e.g., HIV viral load).34 This may be appropriate for some types of 

infectious diseases with diffuse exposures (e.g., airborne pathogens). For other disease types, 

including sexually transmitted infections, in which intimate physical contact is necessary for 

transmission, repeated contact with the same persons(s) is common, large variation in the 

number and type of contacts exists, and the process for partner selection may be highly 
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structured.31,32,34,39 For this class of diseases, it is necessary to account for network structure 

when modeling transmission.  

The way that a set of nodes are connected (the “geometry” of the network) also can 

influence HIV transmission. Diagrams of select concepts are shown in Table 1.1. Degree 

centrality is a measure of a node’s degree relative to other nodes.32 Nodes with higher degree 

have higher centrality and are at greater risk for infection and secondary transmission.33 In 

contrast, less central nodes are peripheral to the network.33 Sets of interconnected nodes are 

known as components and typically contribute to the growth of an epidemic.32 When each node 

in a component is connected to every other node, the component is called a clique.32 Cliques 

and otherwise highly interconnected components form because sexual partners may also share 

social ties (i.e., assortative mixing) or meet in a common venue, such as a bathhouse or bar.42 

As a result of these components, a node that is neighboring a node with HIV will have a higher 

probability of also having HIV than a node randomly selected from the network.42 Components 

with closed loops allow HIV epidemics to grow more rapidly.33,43 As degree and density 

increase, the rate of transmission in the component tends to also increase.33 Assortative mixing 

with respect to low degree results in long linear components.32,33,43 In contrast to higher degree 

components, in which HIV transmission would rapidly saturate, linear components allow 

endemic transmission to occur.32,33,43 Sexual networks of MSM contain both highly dense, 

closed loop components, and linear components.43 Nodes that connect two separate networks 

“bridge” these networks and allow an epidemic to move from one network to another. An 

example of bridging is MSM who inject drugs were found to connect the separate networks of 

heterosexuals who inject drugs and MSM during the early stages of the HIV epidemic in some 

locales.43 
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Table 1.1. Examples of network structures 

The blue node has 
higher centrality 

 
The blue node has 
lower centrality 

 

The interconnected nodes 
form a component 

 
The component forms a 

clique with fully 
Interconnected nodes 

 

The component is  
interconnected in 

a closed loop 

 
The nodes form 

a linear component 

 

 

Statistical Models for Networks 

Many of the structural network properties described above were identified by 

constructing networks with sociometric techniques, such as contact tracing or chain 

sampling.32,33 These methods involve extensive interviewing to identify recent sexual partners. 

The named partners are then enrolled in the study and interviewed for their sexual partners. The 

records are linked to identify any mutual partners shared with the seed participant or other 

members of the network. This process can become unwieldly, as the size of the network grows 

rapidly, and is susceptible to selection bias if study participants are reluctant to name some 

partners for recruitment to the study.33  

Alternatively, network configurations can be estimated and simulated using egocentric 

data.34,44,45 Egocentric studies sample a subset of individuals from the network; the study 

participants (egos) report information about themselves, their contacts (alters), and the duration 

and nature of the relationship (edge). Pairs of egos and alters form dyads. By design, many 

studies do not also sample alters, given that recruitment can be challenging. The alters may be 

enrolled as egos, by chance, but there is usually no formal mechanism (e.g., name matching) to 

match egos with alters, so the ego-reported information is the only source to define egos, alters 
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and edges. Statistical models are used with egocentric data to generate plausible realizations of 

the whole unobserved network.34,44,45  Common parameters derived from egocentric data 

include degree distributions and mixing patterns. Mean degree is the expected number of edges 

for each node.34,45 Mixing patterns influence the probability of edge formation based on nodal 

attributes.34,45 Mixing patterns for categorical attributes (e.g., race) are often just a simple matrix 

of dyads, stratified by attributes of the partners, and the proportions for each potential 

pairing.34,45 For example, the parameters for mixing by race in a simulated population of Black 

and White MSM could be the expected proportions of Black-Black, White-White, and Black-

White dyads.  

Using the parameters estimated from egocentric studies, along with summary measures 

of the whole population, whole networks may be inferred using statistical models estimated with 

sampled data.45 Several methods for this data class have been developed, but one widely used 

approach is exponential random graph models (ERGMs).46,47 ERGMs are a family of statistical 

models which use maximum likelihood methods to estimate features of cross-sectional 

networks.46,47 ERGMs allow for dependence between nodes and edges 45,47 so that the 

probability of an edge forming is dependent on the existence of other edges (a feature of sexual 

networks) and the broader connectivity of the network. The probability distribution for ERGMs is: 

𝑃(𝒀 = 𝒚 | 𝜃) =
exp (𝜃ᇱ𝑔(𝒚))

𝜅(𝜃)
 

where 𝑦 is the observed network of edges, nodes, and nodal attributes; 𝜃 is the model 

coefficients; 𝑔(𝑦) is the network statistics; and 𝜅(𝜃) is a normalizing constant representing all 

possible network configurations. Calculating 𝜅(𝜃) can be computationally demanding, so a 

Markov chain Monte Carlo algorithm is used for efficiency. 

One-time sexual contacts or cross-sectional analyses of persistent partnerships are 

modeled with ERGMs. Temporal ERGMs (TERGMs) are an extension of ERGMs for dynamic 
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networks which represent edge formation and dissolution over time.37 TERGMs are necessary 

to model changes in network structure over time and provide a basis for network-based models 

of infectious disease simulation.36 The TERGMs use two parallel ERGMs: one to model edge 

formation; and one to model edge dissolution. The ERGMs may have different parameters (i.e., 

the factors influencing edge formation may differ from those which influence edge dissolution). 

To handle these processes, the ERGMs may be reexpressed in the conditional logit form: 

𝑙𝑜𝑔𝑖𝑡[𝑃൫𝑌 = 1ห𝒀𝒄൯ = 𝜃ᇱ𝜕(𝑔(𝑦)) 

where 𝑌 is the edge between nodes 𝑖 and 𝑗; 𝒀𝒄 is the rest of the network; and 𝜕(𝑔(𝑦)) are 

change statistics that represent the network configuration changes when 𝑌 changes from 0 to 

1. The conditional logit model for edge formation in a TERGM is: 

𝑙𝑜𝑔𝑖𝑡ൣ𝑃൫𝑌,௧ାଵ = 1ห𝑌,௧ = 0, 𝒀𝒄൯൧ = 𝜃ା
ᇱ 𝜕(𝑔ା(𝑦)) 

where time is simulated in discrete time steps, and 𝑌,௧ାଵ is the edge starting between nodes 𝑖 

and 𝑗 between 𝑡𝑖𝑚𝑒 = 𝑡 and 𝑡 + 1 conditional on the edge not existing at 𝑡. 

A similar expression is used to represent edge dissolution (not shown).37 The edge 

formation and dissolution models may include terms reflecting dependencies (i.e., the existence 

of an edge influences whether another edge forms). Parameter estimates from the ERGM and 

TERGM models are used to implement the stochastic network simulations. One tool to simulate 

infectious disease contact networks is the R software package EpiModel.36 EpiModel integrates 

ERGMs and TERGMs to estimate and simulate networks based on summary statistics from 

egocentric and population-representative data.  

With egocentric data, alters are not recruited and interviewed to report their own sexual 

partners (e.g., by chain sampling subjects) so it is impossible to observe higher-order, non-local 

features of the network.33 However, by modeling assortative mixing patterns, heterogeneous 
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degree distributions, and other network constraints, informed by egocentric data, most network 

features relevant to sexual partnership formation may be represented.48 However, caution 

should be exercised when using the simulated network structures to make inferences about the 

true network from which the egos were sampled.33,48 Studies of networks using egocentric data 

can still yield useful summary information, such as degree distributions and mixing statistics, 

which are properties of the network that influence transmission.33,48 An advantage to egocentric 

network simulation is that participants in egocentric studies may be more likely to honestly 

report certain sexual behaviors and partners since the investigators will not be contacting those 

partners.33 

With the addition of mathematical functions to represent other processes, including 

behavior within dyads, transmission probabilities, entry and exit from the population, and 

biological features of infection, these networks can be used to simulate complex epidemics.36 

More information about network-based mathematical models of epidemics is described below. 

Sexual Partnerships of MSM with Respect to HIV and PrEP 

Sexual partners are not selected randomly. As such, the factors influencing partnership 

selection have a profound effect on sexual networks. Most male-male sexual partnerships occur 

between men of similar age and the same race.49–51 Other characteristics which may influence 

partnership selection include geography, socioeconomic status, and education.52–54 The 

tendency to select partners with a shared characteristic is known as homophily or assortative 

mixing (e.g., homosexual partnerships are assortative with respect to sex); selecting partners 

with a different characteristic is disassortative mixing (e.g., heterosexual partnerships are 

disassortative with respect to sex). As a consequence of assortative mixing, characteristics like 

race tend to be segregated in the sexual network.49–54 
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Assortative mixing by race among MSM is one hypothesis to explain racial disparities in 

HIV,55 based on the theory that sexual networks of Black MSM are denser than networks of 

White MSM. Network density is defined by the number of existing edges relative to the number 

of possible edges in the network.32 Typically, higher mean degree creates denser networks. 

Black MSM do not have higher degree than White MSM,55 but assortative mixing and smaller 

population size can increase density in a subgroup of highly interconnected nodes.33 Although 

assortative mixing is insufficient to fully explain racial disparities,56 mixing patterns remain a key 

area of research. 

Partnership formation in the PrEP and U=U era also depends on HIV status and PrEP 

use, for several reasons. First, HIV and PrEP are independently associated with other factors 

that influence partnership formation, including age, race, geography, socioeconomic status, and 

education.2,11,20,57,58 As a result, individuals with HIV may be more likely to select partners with 

HIV than would be expected by chance alone (similarly, MSM using PrEP may be more likely to 

select partners also using PrEP). Second, some MSM may preferentially select partners based 

on HIV status (either actual or perceived) to reduce the risk of HIV acquisition or 

transmission.59,60 For example, MSM without HIV may select other MSM without HIV as sexual 

partners, while MSM with HIV may select other MSM with HIV. This concept is known as HIV 

serosorting and is well described in the HIV literature. Gaps in routine screening and diagnosis 

of HIV infection undermines serosorting as an effective strategy to reduce HIV risk, since MSM 

with undiagnosed HIV are unaware of their infection and may have a high viral load.61 A related 

phenomenon, PrEP sorting, occurs when individuals seek out partners based on their current 

PrEP use status.62–66 In this case, the sorting pattern may not be exclusively assortative. MSM 

without HIV (including those who do and do not use PrEP) may perceive MSM who use PrEP as 

less likely to have HIV, and therefore lower risk for HIV exposure.62,63,66 On the other hand, 

PrEP use may disrupt traditional HIV serosorting, if MSM who use PrEP are less likely to avoid 
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partnering with MSM living with HIV.62 Similarly, this concept would apply in the opposite 

direction; MSM living with HIV may seek out partners who are using PrEP but otherwise would 

avoid partnering with MSM not living with HIV.62 In some cases, the temporal order between 

PrEP use and partnership selection may be reversed (which would not be captured with cross-

sectional data). For example, PrEP may be initiated because a sero-discordant partnership 

already exists, and similarly discontinued if the relationship ends.21 This type of sorting is not 

caused by PrEP use, but this mechanism still influences the network distribution of PrEP. 

Finally, awareness and acceptability of PrEP may spread within social networks (i.e., diffusion of 

innovations theory67) and their overlapping sexual networks,68 and due to coordinated decision 

making within persistent partnerships,69 thus providing additional mechanisms for nonrandom 

network distribution of PrEP. 

As a result of HIV and PrEP sorting, as well as confounding factors that are 

independently associated with HIV, PrEP, and partnership formation, we hypothesize that the 

location and density of HIV and PrEP in the sexual networks of MSM is nonrandom. Specifically, 

assortative mixing by HIV and PrEP may result in clustering of each in the sexual network (i.e., 

MSM with HIV are more connected to other MSM with HIV, and MSM using PrEP are more 

connected to other MSM using PrEP). Among MSM without HIV, PrEP use may increase 

disassortative mixing with respect to HIV, resulting in greater connectivity to MSM with 

diagnosed HIV. At the same time, assortative mixing among MSM who use PrEP, and 

disassortative mixing between MSM who use PrEP and MSM with diagnosed HIV, will decrease 

partnering with other MSM, including those with undiagnosed HIV. Consequently, the probability 

of exposure to HIV in the network may be differentially associated with both diagnosed HIV 

status and PrEP use, even after accounting for confounders. Given the complex set of factors 

which may influence sorting, it is difficult to predict the magnitude of sorting, and what effect this 

may have on the efficiency of PrEP distribution in the network of MSM. 
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Estimates of HIV and PrEP sorting exist, 59,60,62,64,65,70  but these estimates should be 

interpreted with caution due to potential bias introduced by misclassification and missing data. 

The bias may exist because self-reported HIV serostatus is often unverified and research 

participants are often unable to reliably report the HIV serostatus and PrEP use of their recent 

sexual partners (we explore this further below, and Chapter 2, page 22).68,71 In addition, PrEP is 

still relatively new, so there is little research on sorting patterns with respect to PrEP; older 

estimates of HIV serosorting may not be relevant to the PrEP era. One recent study, however, 

found nonrandom sorting based on HIV and PrEP in a population representative study of 

Canadian MSM.64 The study showed that MSM living with HIV were more likely than MSM 

without HIV to report sexual partners with HIV (66% vs. 12%). Among MSM without HIV, those 

who were using PrEP were more likely to report partners with HIV and less likely to report 

partners of unknown HIV status, compared to those who were not using PrEP (17% and 31% vs 

9% and 50%, respectively). Paradoxically, MSM reporting fewer partners with HIV (but more 

partners of unknown serostatus) may be at increased risk for exposure to HIV, given that MSM 

with undiagnosed HIV may have a high viral load and condoms may not be used if both men 

believe the other is without HIV.4,61 For partnerships in which both men were without HIV, MSM 

using PrEP were more likely to report their partner also used PrEP, compared to MSM not using 

PrEP (51% vs. 20%).64 This study supports our hypothesis that assortative mixing by HIV and 

PrEP may influence the distribution of each across the network of MSM, and that PrEP use by 

MSM without HIV may cause disassortative mixing with respect to diagnosed HIV status. 

Unfortunately, 13% of subjects and 44% of their partners were of unknown serostatus; among 

partners reported to be without HIV, 10% were of unknown PrEP use status.64 Given the large 

amount of missing data and potential for misclassification, it is difficult to determine the true 

magnitude of HIV and PrEP sorting in this population. 

Challenges in Estimating New Network Parameters 
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Partnership formation in network models of MSM is often determined based on attributes 

like age and race. HIV and PrEP are differentially assigned to MSM based on age and race, but 

mixing patterns based on HIV and PrEP may not be explicitly modeled. This approach may 

account for some of the sorting with respect to HIV and PrEP but may not reproduce the real-

world network distribution of HIV and PrEP. 

Mixing patterns based on HIV and PrEP require information about the HIV status and 

PrEP use of both egos (i.e., the study participant) and alters (i.e., the sexual partners that the 

egos report). These data are prone to error due to misclassification and missing data, because 

HIV and PrEP are difficult to report reliably.68,72,73 At the ego-level, misclassification occurs when 

egos self-report values which are objectively incorrect and missing data arise if egos fail to 

report values at all. At the alter-level, data are ego-reported and similarly subject to 

misclassification and missingness. Parameters estimated using misclassified or partially 

observed data can be biased, depending on the underlying mechanism of the error. 

Misclassification and missingness in this context arise from similar mechanisms. Figure 1.1 

shows a directed acyclic graph (DAG) summarizing the possible factors contributing to 

misclassification and missing data among HIV and PrEP values in egocentric studies of MSM. 
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Figure 1.1. Directed acyclic graph of the mechanisms producing 

misclassification and missing data among HIV and PrEP values in 

egocentric studies of MSM 
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 Knowledge of HIV serostatus is not universal among MSM. The CDC recommends that 

sexually active MSM are screened at least annually for HIV, with more frequent screening 

among MSM with higher risk behaviors.73,74 Despite these guidelines, among MSM not 

previously diagnosed with HIV, approximately 28% have not screened for HIV in the past year 

and an additional 10% have never screened.73 As a result, an estimated 16% of HIV infections 

among MSM are undiagnosed.2 A systematic review of internet-using MSM found no 

association between race and having ever screened for HIV, but MSM of older age or higher 

education were more likely to have ever been screened.75 Undiagnosed HIV among MSM is 

more prevalent in the southeast and among young or Black men.2,76,77 Screening for HIV is a 

prerequisite to initiate PrEP and clinical practice guidelines recommend quarterly screening of 

patients using PrEP,9 so screening (and diagnosis of HIV) is also expected to vary by PrEP use.  

Among egos, MSM with undiagnosed HIV may incorrectly self-report their serostatus as 

negative, resulting in misclassification of HIV. Alternatively, egos with a recent risk exposure or 

infrequent screening may report their HIV serostatus as unknown, which is a form of missing 

data. It is unlikely that an ego would incorrectly self-report their HIV serostatus as positive, but 

stigma surrounding HIV and social desirability bias can influence egos living with HIV to self-

report their serostatus as negative.78,79 Self-reported HIV status can be verified with an HIV test, 

although this is expensive for studies to implement and generally not feasible for online surveys. 

Given varying rates of screening and diagnosis, misclassification and missingness are expected 

to vary differentially with respect to age, race, PrEP use and other demographic and behavioral 

factors. Knowledge of PrEP use is easier to self-report, in theory, since egos are presumably 

aware of whether they have used PrEP. However, if an ego does not accurately remember the 

timing of past PrEP use, then PrEP use during a specific partnership could be misclassified or 

reported as unknown.  
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 There are additional challenges to collecting HIV and PrEP data for alters. Since 

egocentric data are usually one-sided (i.e., only one of the two individuals in a dyad is sampled), 

the information about alters is reliant upon what the ego knows and reports. Effective 

conversations surrounding HIV and PrEP do not always occur before sexual encounters,80–88 so 

egos may be unable to accurately report information about their alters.68,72 Discussions of HIV 

occur with differing frequency based on diagnosed HIV status; MSM with diagnosed HIV are 

more likely to discuss their HIV status with sexual partners than MSM without diagnosed 

HIV.68,80,88 Other factors associated with discussing HIV with a sexual partner include age,84 

having a social relationship in addition to sexual,68 meeting online,86,87 and having sex more 

than once with the partner.88 If HIV and PrEP information is not exchanged, egos may report 

these values as unknown, resulting in missing data. Some MSM may incorrectly assume that 

partners who are living with HIV do not have HIV (or vice versa) resulting in 

misclassification.68,72 Similarly, it is possible that some MSM may assume that a partner was 

using PrEP at the time of a sexual encounter, perhaps because the partner was known to use 

PrEP in the past (e.g., PrEP use is listed on a sexual networking app); however, PrEP may have 

been discontinued prior to the encounter or never used at all. 

The misclassification described affects both egos and alters and we hypothesize this to 

be differential with respect to the true HIV and PrEP values, as well as factors independently 

associated with edge formation. As a result, ignoring misclassification could lead to biased 

estimates of the relationship between HIV and PrEP and the probability of edge formation in 

network models. Similarly, the probability that HIV or PrEP is reported unknown is related to the 

true values, as well as important covariate factors. Therefore, the probabilities are missing not at 

random and complete case analysis would likely introduce additional bias to the estimates of 

HIV and PrEP mixing.89 As a result, studies which do not address misclassification and missing 

data might misestimate the magnitude of mixing by HIV and PrEP. The magnitude and direction 
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of this bias is challenging to predict intuitively, given the complex set of factors which determine 

which values are misclassified or reported unknown. However, it is likely that misclassification of 

HIV results in under-reporting of partners with HIV (and over-reporting of those without HIV),78,79 

which we expect would result in an overestimate of assortative mixing among MSM without HIV, 

and underestimate assortative mixing among MSM with HIV. In terms of missing data, it is likely 

that missing values among egos and alters are more commonly negative, given the relatively 

low prevalence of undiagnosed HIV,2 and MSM with diagnosed HIV are more likely to disclose 

their HIV status;68,80,87 in this case, estimates of assortative mixing would be underestimated for 

MSM without diagnosed HIV and overestimated for MSM with diagnosed HIV. Similar logic can 

be applied to PrEP, although there is less information in the published literature to inform the 

potential direction of the bias. However, underreporting of PrEP use among alters (whether due 

to misclassification or missing data) would result in an underestimate of assortative mixing with 

respect to PrEP; and over-reporting of PrEP would result in an overestimate of assortative 

mixing by PrEP use status.  

It may be possible to quantify and reduce the bias by using misclassification correction 

and missing data imputation methods. This is important because network models of HIV 

transmission rely on valid mixing statistics to estimate parameters. Furthermore, improving the 

validity of these estimates could have broader application to studies that use egocentric sexual 

history data, including studies of HIV serosorting and PrEP sorting, disclosure of HIV and PrEP 

in sexual partnerships, and behavioral modification because of HIV and PrEP. 

Network-Based Mathematical Models for HIV Transmission 

Mathematical models of infectious disease transmission are useful tools to estimate 

epidemic potential and the effectiveness of an intervention at the population level.34 Clinical 

trials and observational research studies can provide estimates of an intervention’s efficacy or 

effectiveness on the individual level. The total effects of an intervention on the population level 
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are difficult to predict in infectious disease epidemiology due to indirect effects, which are not 

accounted for using a simple function of individual-level effectiveness and coverage level.34 In 

order to predict the population-level impact of an intervention like PrEP, it is necessary to use 

mathematical models which can account for both direct and indirect effects.34 Traditional 

approaches to modeling epidemics, such as compartmental models, may not be appropriate for 

diseases like HIV, because the nature of contact necessary for transmission involves complex 

human behavior, random-mixing cannot be assumed, and network effects play a large role in 

transmission dynamics.31,32,34,39 Network-based mathematical models allow for increased 

complexity and are suitable for modeling HIV.36 

Network-based mathematical models of HIV transmission are stochastic simulations that 

use dynamic contact networks with additional mathematical functions to model transmission.36 

The contact networks can be simulated using the ERGM and TERGM statistical models 

described above. Algorithms are then added to the model to represent behaviors within 

partnerships (e.g., condom use, anal sex positioning), biological processes (e.g., HIV viral load), 

and the per-contact probability of transmission. The models are initialized with a starting 

population and the epidemic is calibrated to match empirical data. Once calibrated, the model 

can then be used to project forward in time to predict future epidemic outcomes. Counterfactual 

scenarios can be represented by modifying the model parameters.90 For example, a reference 

scenario may be simulated without PrEP, whereas an experimental scenario may include PrEP 

allocated to a portion of the population.13 Under each scenario condition, outcomes are tracked, 

such as cumulative incidence and person-time of PrEP use. By comparing the outcomes of 

counterfactual scenarios, the models provide a causal understanding of the mechanisms which 

impact an epidemic at the population-level.90 

Prior network-based models have estimated the population impact of PrEP, with uptake 

based on individual-level attributes, such as age, race and risk level.12–14,91–93 Recently, we 
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(KMM & SMJ) published a network-based modelling study that estimated the population impact 

of long-acting injectable PrEP (an experimental formulation of PrEP) when available 

concurrently with daily-oral PrEP.94 In general, mathematical models have helped inform public 

policy and reinforce the utility of PrEP when uptake is robust. A potential limitation of these 

models is the assumption of random mixing with respect to diagnosed HIV status and PrEP use, 

conditional on behavior and a limited set of attributes such as age and race. These models may 

partially represent HIV and PrEP sorting in the network using mixing patterns based on nodal 

attributes (e.g., age and race) which are independently associated with HIV and PrEP in the 

model. However, additional sorting within and between groups is likely, based on the 

mechanisms described previously. Models which account for HIV and PrEP sorting in the 

network would overcome this limitation and provide a more realistic estimate of the population-

level impact of PrEP given current uptake. 

Networks and Mathematical Simulations to Inform Public Health Policy 

Simulating the sexual networks of MSM will help identify mechanisms for HIV exposure 

and transmission. This will extend the knowledge gained using traditional regression techniques 

to identify groups at risk for infection.33 In this context, the network structures are a framework to 

represent risk, in addition to the traditional risk factors such as demographics, behavior, and 

location. Thus, network structures can guide public health policy and interventions.95,96 Although 

network science was not explicitly invoked at the time, a classic example of this concept in HIV 

is the closing of bathhouses attended by MSM in the early years of the epidemic.95 The 

bathhouses served as social venues in which attendees were part of highly interconnected 

sexual network components which facilitated rapid growth of the epidemic. By closing these 

venues, the network components were disrupted. There are social and ethical consequences to 

these types of public health interventions, so this example should be instructive rather than 

idealized for replication. For example, the network hypothesis for racial disparities in HIV has 
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been used by some to suggest that sex with Black men should be avoided.97 This type of 

“intervention” is impractical in the real world and results in other consequences, including 

stigma, racism, and discrimination.97 

Despite challenges, careful use of network concepts can guide effective and ethical 

interventions,95,96 even when network segmentation is impractical or unethical. For example, 

PrEP could be targeted to highly centralized sub-populations and individuals (e.g., people who 

attend sex parties or exchange sex for money, drugs and other goods).31 PrEP can disrupt 

chains of transmission, resulting in both primary and secondary prevention benefits. Targeting 

PrEP to highly centralized nodes both protects those individuals with higher risk for HIV and 

maximizes efficiency by disrupting more paths on average. Another delivery strategy is to 

provide PrEP to the social and sexual contacts of recently infected individuals, similar to the ring 

vaccination strategy used to contain smallpox,98 and more recently in response to ebola.99,100 

This strategy is based on the theory that neighboring nodes may have similar risks for HIV,42 

and PrEP use may be sparse in areas of the network with prevalent HIV transmission. 

By simulating networks, we can identify opportunities to optimize PrEP delivery. 

Network-based models of HIV transmission can be used to test various network informed PrEP 

delivery strategies. To do this, mixing patterns with respect to HIV and PrEP are needed to 

simulate these networks appropriately.  

Dissertation Aims 

 The purpose of this dissertation is to understand the potential impact of HIV serosorting 

and assortative mixing among MSM who use PrEP on the population benefit of PrEP. These 

analyses will test the hypothesis that assortative mixing among MSM who use PrEP produces 

clusters of PrEP use in the population, which decrease the population benefit of PrEP compared 
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to modelled projections. We hypothesize that network clustering of PrEP is one factor 

contributing to decreased PrEP effectiveness at the population-level. 

In Aim 1, we used 2017–2019 egocentric sexual network data of MSM to estimate 

mixing statistics for HIV serosorting and PrEP sorting. This analysis used missing data and 

reclassification methods to address information bias in egocentric reporting of diagnosed HIV 

status and PrEP use during the partnership. 

 In Aim 2, we estimated and simulated cross-sectional sexual networks of MSM in the US 

to assess mixing by diagnosed HIV status and PrEP use. The network models were fit to 

summary statistics from an egocentric sexual network study, including degree estimates, 

assortative mixing by race/ethnicity and age, and mixing matrices for the interaction of 

diagnosed HIV and PrEP use, weighted to the demographics and MSM in the US We compared 

fully saturated models of the empiric network statistics to less structured parameterizations, to 

quantify the magnitude of nonrandom mixing that is expected based on other network 

properties. 

 In Aim 3, we used a network-based model of HIV transmission to estimate the impact of 

network-clustered PrEP use. The model was developed to represent observed patterns of PrEP 

uptake in our target population of MSM in Atlanta. We compared models with and without PrEP 

sorting to test the hypothesis that assortative mixing by PrEP use status decreases the overall 

impact of PrEP even at fixed coverage levels in the population. 
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Chapter 2. Sexual mixing by diagnosed HIV status and pre-exposure prophylaxis use among 

men who have sex with men: stochastic reclassification to address information bias in 

egocentric network data 

ABSTRACT 

Background: Population-level estimates of sexual network mixing are needed to parameterize 

prediction models of pre-exposure prophylaxis (PrEP) effectiveness to prevent human 

immunodeficiency virus (HIV) among men who have sex with men (MSM). Estimates obtained 

by egocentric sampling are vulnerable to information bias due to incomplete respondent 

knowledge. 

Methods: We estimated patterns of serosorting and PrEP sorting among MSM in the United 

States using data from a 2017–2019 egocentric sexual network study. Respondents served as 

proxies to report the HIV status (test-negative, diagnosed HIV, or unknown) and PrEP use 

(ever, never, or unknown) of recent sexual partners. We contrasted results from a complete-

case analysis (unknown HIV and PrEP excluded) versus a sensitivity analysis with respondent-

reported data stochastically reclassified to simulate unobserved self-reported data from sexual 

partners. 

Results: We found strong evidence of preferential partnering across analytical approaches. The 

reclassification analysis showed concordance among MSM with diagnosed HIV (39.3%; 95% 

simulation interval: 30.9, 46.0), MSM who used PrEP (31.9%; 21.0, 37.4), and MSM who did not 

use PrEP (82.6%; 79.3, 87.1). The fraction of partners with diagnosed HIV was higher among 

MSM who used PrEP (11.1%; 8.6, 13.5) compared to MSM who did not use PrEP (3.7%; 2.7, 

4.6). Comparatively, the complete-case analysis showed higher fractions of partners with 

diagnosed HIV and those who used PrEP, across all strata, and lower fractions of partners who 

did not use PrEP. 
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Discussion: Serosorting and PrEP sorting among MSM may influence HIV transmission 

dynamics and effectiveness of PrEP at the population level. Complete-case analyses may 

misestimate population-level mixing. Sensitivity analyses can reduce bias but validation data are 

needed to verify results. 

BACKGROUND 

Gay, bisexual, and other men who have sex with men (MSM) remain at increased risk for 

human immunodeficiency virus (HIV) in the United States.101 The federal “Ending the HIV 

Epidemic” (EHE) initiative calls for increased use of pre-exposure prophylaxis (PrEP), which can 

decrease individual risk more than 99%.6–8,16 Modeling studies have shown that PrEP has the 

highest impact at a population level if targeted to MSM with greater risk for HIV.12–14 Despite 

normative guidelines to evaluate individual risk,9 non-random mixing in sexual networks may 

influence HIV exposure and decrease the population-level benefit of PrEP.102 Quantitative 

estimates of mixing among MSM are needed to parameterize prediction models of HIV 

epidemics and evaluate progress toward EHE priorities.103 

Serosorting is the preferential selection of sexual partners with the same HIV diagnosis 

status to decrease risk for HIV transmission. Approximately 1 in 6 MSM living with HIV are 

undiagnosed, which limits the effectiveness of serosorting to prevent HIV.59,60,101 Serosorting 

patterns among MSM may be evolving in the U=U era (i.e., Undetectable = Untransmittable), as 

more MSM became aware that HIV treatment prevents onward transmission.104–106 A newer 

phenomenon, PrEP sorting, has also emerged in which partners are selected based on current 

PrEP use.63,64,62,65,70,66 For example, MSM without HIV may prefer sexual partners who use PrEP 

based on the perception of decreased risk for HIV.63 The advent of PrEP and U=U may also 

disrupt traditional serosorting by decreasing barriers (e.g., stigma and fear) to sero-different 

partnerships.62 



24 

Estimates of HIV and PrEP sorting among MSM exist.59,60,62,64,65,70 However, standard 

data collection mechanisms may bias the estimates. First, not all MSM know their HIV status:  

among MSM without an HIV diagnosis, 10% have never screened for HIV and 28% have not 

screened in the past year.73 As a result, self-reported data reflect HIV test history and MSM with 

undiagnosed HIV are not identified. Second, mixing patterns are estimated based on 

concordance or discordance of individual attributes in a sexual partnership. Adaptive sampling 

strategies (e.g., chain-sampling of sexual partners) are ideal, but recruitment is challenging and 

expensive. Egocentric sexual network studies, in which index respondents (i.e., egos) serve as 

a proxy to report the attributes of recent sexual partners, are a convenient alternative. However, 

egocentric studies are vulnerable to misclassification if the ego-reported data is different than 

what the partner would have self-reported.72  

Discussions surrounding HIV status and PrEP use are common in sexual partnerships of 

MSM, but still far from universal.63,65,68,80,87,84,107–109 MSM with diagnosed HIV are more likely to 

initiate these conversations and disclosure tends to be mutual,63,68,80,87,107 so knowledge may be 

differential with respect to HIV diagnosis status.72 Additional variability occurs based on 

partnership duration or commitment level,80,108 overlapping social networks,68,87 and 

demographic factors.68,72,83,84 Less is known about discussions of PrEP which may occur as part 

of a broader negotiation of HIV risk.63,109 Nevertheless, recent egocentric estimates of 

serosorting and PrEP sorting are limited by unknown HIV status and PrEP use in sexual 

partnerships.62,64,65 

Given the potential impact of mixing patterns on HIV transmission dynamics, there is a 

need to address potential bias in egocentric data. In the present study, we estimate HIV 

serosorting and PrEP sorting patterns using a large egocentric study of MSM in the United 

States. We present the data in three ways to demonstrate how estimates may be biased 

depending on analytical decisions: (1) a full-sample analysis, with unknown values included to 
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summarize the data based on ego-reported knowledge; (2) a complete-case analysis, with 

unknown values excluded; and (3) a sensitivity analysis, with ego-reported data stochastically 

reclassified to estimate what the partner would have self-reported had he been surveyed. The 

goal of the sensitivity analysis is to correct for information bias in egocentric estimates of HIV 

and PrEP sorting. 

METHODS 

Study design and sample: We used data from ARTnet, a cross-sectional (2017–2019) 

egocentric sexual network study of MSM in the United States, recruited from MSM who had 

participated in the American Men’s Internet Study.103 Cisgender men aged 15–65 years were 

eligible to participate if they reported a lifetime history of male sexual partners. Respondents 

self-reported demographic and other individual attributes, including HIV status and PrEP use. 

Respondents also completed a 12-month sexual history inventory with detailed questions about 

their most recent oral or anal sexual partners (up to five) including demographics, HIV status, 

PrEP use, type and frequency of sexual activity, and partnership duration and level of 

commitment. We refer to respondents as egos and partners as alters. Total enrollment of 

ARTnet after deduplication was 4,904 egos, who reported on 16,198 alters. 

We restricted the sample to anal-sex partnerships, due to the potential for HIV 

transmission and because serosorting and PrEP sorting decisions may be related to type of 

sexual activity. We further excluded partnerships with missing (or reported unknown) alter race 

and/or ethnicity, because the reclassification model uses alter race/ethnicity. For HIV status and 

PrEP use, we distinguished between responses reported as unknown and less informative 

missingness by excluding partnerships if the ego skipped or refused to answer questions. 

Methodological details of ARTnet and descriptive summary statistics of the full sample have 

been published previously.103 
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Individual-level attributes: Egos self-reported age at survey completion, race, and ethnicity. We 

grouped continuous age into categories (ages 15–24; 25–34; 35–44; 45–54; and 55–65) and 

combined race and ethnicity to one categorical variable (non-Hispanic White; non-Hispanic 

Black; Hispanic/Latino; or other). Alter race and ethnicity was categorized using the same 

definition. Egos were asked to report alter age or an age that “you think is close.” Alternatively, 

egos could estimate alter age relative to their own (e.g., 2–10 years younger). Numerical age 

was then estimated using single imputation and assigned to categories (including an additional 

category for 66 or older). We used the imputation results previously described to maintain 

consistency across ARTnet analyses.103  

Egos self-reported their own HIV status at the time of survey completion. Egos with prior 

HIV test history were classified as either test-negative or diagnosed HIV. Those without HIV test 

history were classified as HIV unknown (this combined: never tested; did not receive results; 

unsure of results; or indeterminate results). Egos with test-negative HIV status were asked 

about PrEP use during each sexual partnership. We classified PrEP use as those who had used 

PrEP (always or sometimes) or those who had not used PrEP for each alter. Screening for HIV 

is a prerequisite for PrEP initiation, so egos with unknown HIV status were not asked about 

PrEP and therefore categorized as never PrEP. 

Ego-reported alter HIV status was classified as diagnosed HIV, test-negative, or HIV 

unknown (combined responses: never tested; has not been tested recently and is uncertain of 

his HIV status; or I don’t know). Egos reported PrEP use for alters with test-negative or 

unknown HIV. We categorized alter PrEP use as used PrEP, did not use PrEP, or unknown (“I 

don’t know”). 

Partnership-level attributes: The geographic location of each partnership (based on ego zip-

code) was categorized for 15 major cities and the 9 US Census Divisions. Egos indicated 

whether each alter is someone they feel committed to above all others (“someone you might call 
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your boyfriend, significant other, life partner or husband”). We created a variable for partnership 

type based on commitment and frequency of sex: main (committed partner); casual (not 

committed but sex occurred more than once); or one-time (not committed and sex occurred 

once). 

Mixing patterns: We estimated mixing patterns for HIV serosorting and separately for PrEP 

sorting (i.e., the interaction of HIV status and PrEP use). For HIV serosorting, we stratified egos 

by HIV status and reported the proportion of alters with concordant or discordant HIV status. 

Similarly, for PrEP sorting, we stratified egos by HIV status and PrEP use, and reported the 

proportion of alters with each combination of HIV and PrEP. We estimated mixing patterns 

based on three alternative approaches and quantified differences between the methods. 

First, we completed a full-sample analysis including unknown values as standalone 

categories. We disaggregated HIV status by test history and ego knowledge (diagnosed HIV, 

test-negative, and HIV unknown). Similarly, we reported PrEP use for egos with test-negative 

HIV, and for alters with test-negative or unknown HIV status. Second, the complete-case 

analysis excluded partnerships with unknown HIV or PrEP. We calculated HIV serosorting 

among egos and alters with test-negative HIV or diagnosed HIV. For PrEP sorting, we further 

excluded alters with unknown PrEP use. Third, the sensitivity analysis used the full sample of 

partnerships and simulated new values for alters by reclassifying the ego-reported data. We 

used a dichotomous definition of HIV diagnosis status (with versus without diagnosed HIV) by 

combining test-negative and unknown HIV. The group of MSM without diagnosed HIV include 

those who are truly without HIV infection and those with undiagnosed HIV. We categorized 

PrEP use or nonuse for each ego and alter without diagnosed HIV. We used the self-reported 

data to classify egos. However, the same dichotomizations for alters would introduce 

misclassification, because the information reported by egos may be different than the 

information the alter would have self-reported. Therefore, we simulated alter data using the 
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methods described below. We reported median results and 95% simulation intervals (SI) across 

all simulation datasets. We compared the results from the sensitivity analysis to the complete-

case analysis by calculating proportion differences and reported the median result and 95% SI. 

Sensitivity analysis to reclassify egocentric data: We used multiple imputation with exponential-

tilt models to reclassify the ego-reported alter HIV status and PrEP use. The goal of the 

sensitivity analysis is to quantify potential information bias in ego-reported data by imputing 

what alters would have self-reported. The method is adapted from prior work in studies of older 

adults, in which a proxy respondent is used if study subjects are unable to complete a survey.110 

In the present study, we apply the method to egocentric data, in which self-reported alter data is 

missing by design and egos serve as proxies for one or more alters. The process is repeated 

multiple times to allow for random variation. In the present study, we used 300 repetitions. We 

used a larger number of repetitions than is required for simple missing data imputation, due to 

the large proportion of unknown values and uncertainty of the reclassification parameters. We 

completed the process in two stages: first to reclassify alter HIV status and second to reclassify 

PrEP use for the subset of alters assigned without diagnosed HIV in the first stage. Full 

methodological details are provided in Appendix A (page 114). 

Briefly, we estimated separate imputation models for alter HIV status and PrEP use, 

using Bayesian multilevel regression with integrated nested Laplace approximation (INLA).111 

The imputation models included a random intercept for each ego and fixed effects for alter 

demographics (age group, race/ethnicity, and the interaction of age group and race/ethnicity), 

ego demographics (age group, race/ethnicity, and the interaction of age group and 

race/ethnicity), ego HIV status (diagnosed HIV, test-negative, or unknown) and PrEP use (used 

PrEP or did not use PrEP), partnership type, and location. We also modeled the three-way 

interaction of partnership type, ego HIV status and PrEP use, to allow mixing patterns to vary by 

partnership type. Predictive probabilities for each observation (ego-reported known and 
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unknown) were drawn from the posterior distributions of the imputation models. The 

probabilities were then adjusted based on assumptions about the sensitivity and specificity of 

the ego-reported data. New values were then imputed for each alter using the adjusted 

probabilities. Final specifications of the model parameters were calibrated to the expected 

prevalence of diagnosed HIV and PrEP use among alters, estimated using the population of 

egos standardized to the age, race/ethnicity, and geographic distribution of alters. 

RESULTS 

The final analytic sample included 3,904 egos with 9,914 alters (Table 2.1) after excluding: egos 

with no recent sexual partners (n = 237); oral-sex-only partnerships (n = 4,796); egos missing 

PrEP use (n = 462); and alters missing race and/or ethnicity (n = 947), HIV status (n = 235), or 

PrEP use (n = 27).  

The egos and alters differed by demographics and ego-reported HIV status and PrEP 

use (Table 2.1). At the partnership-level, 48.0% of egos were aged 35 or older, compared to 

39.2% of alters. A greater proportion of egos were non-Hispanic White (71.4%) compared to 

alters (57.4%), and smaller proportions of egos compared to alters were classified as non-

Hispanic Black (4.9% vs 12.1%) or Hispanic/Latinx (14.8% vs 20.6%). At the partnership level, 

11.2% of egos self-reported diagnosed HIV and 12.3% were of unknown HIV status. 

Alternatively, only 6.6% of alters were reported to have diagnosed HIV and 24.2% were of 

unknown HIV status. Among those without diagnosed HIV, 24.7% of egos used PrEP during the 

partnership, compared to only 15.5% of alters. A substantial proportion of alters without 

diagnosed HIV were of unknown PrEP use (48.6%). 
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Table 2.1. Characteristics of egos and up to five anal-sex alters in the twelve months 

prior to survey completion in a national egocentric sexual network study of men who 

have sex with men in the United States (2017–2019) 

 
  Ego-level   Partnership-level 

 
  Egos   Egos   Alters 

   N %   n %   n % 

Total   3904 100.0   9914 100.0   9914 100.0 

             

Age Group             

15-24   1138 29.1   2583 26.1   2470 24.9 

25-34   1035 26.5   2573 26.0   3560 35.9 

35-44   573 14.7   1558 15.7   1892 19.1 

45-54   634 16.2   1801 18.2   1296 13.1 

55-65   524 13.4   1399 14.1   612 6.2 

66+   --- ---   --- ---   84 0.8 

             

Race and Ethnicity             

Non-Hispanic Black   186 4.8   484 4.9   1195 12.1 

Non-Hispanic White   2810 72.0   7079 71.4   5693 57.4 

Hispanic/Latinx   564 14.4   1466 14.8   2042 20.6 

Other   344 8.8   885 8.9   984 9.9 

             

HIV Status             

Test-negative   2914 74.6   7578 76.4   6857 69.2 

Diagnosed HIV   369 9.5   1114 11.2   655 6.6 

Unknown   621 15.9   1222 12.3   2402 24.2 

             

PrEP Use1             

Never   --- ---   6629 75.3   3320 35.9 

Ever   --- ---   2171 24.7   1438 15.5 

Unknown   --- ---   --- ---   4501 48.6 

             

Partnership Type             

Main   --- ---   --- ---   2155 21.7 

Casual   --- ---   --- ---   4053 40.9 

One-time   --- ---   --- ---   3706 37.4 

 
1Pre-exposure prophylaxis use during the partnership, among egos or alters without 

diagnosed HIV 
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 After reclassification, the median prevalence of diagnosed HIV among alters was 9.4% 

(95% SI: 7.2, 11.1) across all 300 simulated datasets (Appendix Table A.3., page 126). This 

was similar to the expected prevalence (9.9%) based on the population of egos standardized to 

alter demographics. Overall, 98.8% (95% SI: 95.7, 99.7) of alters with ego-reported diagnosed 

HIV remained classified with diagnosed HIV in the simulated data. The fraction reclassified to 

diagnosed HIV was 1.6% (95% SI: 0.1, 3.1) among alters with ego-reported test-negative HIV 

and 7.2% (95% SI: 1.5, 11.2) among unknown HIV. Among all alters, the prevalence of ever 

using PrEP was 17.9% (95% SI: 12.2, 21.6; Appendix Table A.4., page 128). Although widely 

variable across datasets, the median value was slightly higher than the expected prevalence 

(16.5%). Stratified by ego-reported knowledge, the median prevalence of ever used PrEP was 

92.0% (95% SI: 52.5, 98.6) among ever used PrEP was, 2.6% (95% SI: 1.0, 4.0) among never 

used PrEP, and 10.6% (95% SI: 4.4, 16.1) among unknown PrEP. 

The full-sample analysis of serosorting shows concordance among MSM with test-

negative HIV (75.0%) and those with diagnosed HIV (28.7%) (Figure 2.1 and Table 2.2). The 

fraction of alters with unknown HIV was highest among egos with unknown HIV (39.9%) and 

lowest for test-negative HIV (20.9%). Overall, 31.6% of partnerships were excluded from the 

complete-case analysis due to unknown HIV status (Table 2.3). Among the remaining 6,777 

alters, the prevalence of diagnosed HIV was 9.3%. There was 41.0% concordance of diagnosed 

HIV and 94.8% of test-negative HIV. The sensitivity analysis showed similar quantitative results, 

compared to the complete-case analysis, although qualitative interpretation is different based on 

the definition of HIV status. After reclassification, matching among MSM with diagnosed HIV 

was 39.3% (95% SI: 30.9, 46.0). Among MSM without diagnosed HIV concordance was 94.4% 

(95% SI: 93.3, 95.8).
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Table 2.2. Partnership-level mixing by HIV serostatus and pre-exposure prophylaxis use among anal-sex partnerships based on 

ego knowledge in a national egocentric sexual network study of men who have sex with men in the United States (2017–2019) 

             

     HIV Status, Alters   

HIV Status, Egos   Diagnosed HIV Test-negative Unknown HIV   

 n %1   n %2 n %2 n %2   

Diagnosed HIV 1114 11.2   320 28.7 460 41.3 334 30.0   

Test-negative 7578 76.4   310 4.1 5687 75.0 1581 20.9   

Unknown HIV 1222 12.3   25 2.0 710 58.1 487 39.9   

Total 9914 100.0   655 6.6 6857 69.2 2402 24.2   

             

             

     HIV Status and PrEP Use, Alters 

HIV Status and PrEP Use, Egos   Diagnosed HIV Never PrEP Ever PrEP Unknown PrEP 

 n %1   n %2 n %2 n %2 n %2 

Diagnosed HIV 1114 11.2   320 28.7 184 16.5 161 14.5 449 40.3 

Never PrEP 5407 54.5   135 2.5 2188 40.5 583 10.8 2501 46.3 

Ever PrEP 2171 21.9   175 8.1 453 20.9 604 27.8 939 43.3 

Unknown HIV 1222 12.3   25 2.0 495 40.5 90 7.4 612 50.1 

Total 9914 100.0   655 6.6 3320 33.5 1438 14.5 4501 45.4 

             
1Column percentage (all partnerships). 2Row percentage (partnerships, conditional on the ego HIV status or PrEP use). 
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Legend: Panel A: Mixing patterns estimated using the ego-reported data to show the full 

distribution of ego knowledge; Panel B: Data restricted to exclude unknown HIV status; Panel C: 

Ego-reported data stochastically reclassified to approximate unobserved self-reported alter 

data. Percentages shown are median results across 300 simulated datasets. 

 

 

Figure 2.1. Serosorting among men who have sex with men in an egocentric sexual 

network study in the United States (2017–2019) 
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Table 2.3. Partnership-level mixing by HIV diagnosis status among anal-sex partnerships in a national egocentric sexual 

network study of men who have sex with men in the United States (2017–2019) 

                
    Complete-case1   Reclassification Analysis2   Absolute Change3 
                
Egos Alters   N4 %5   N4 95% SI %5 95% SI   PD 95% SI 

With HIV6 With HIV6   320 41.0   438 344, 513 39.3 30.9, 46.0   -1.7 -10.1, 5.0 

 Without HIV7   460 59.0   676 601, 770 60.7 54.0, 69.1   1.7 -5.0, 10.1 

                

Without HIV7 With HIV6   310 5.2   490 366, 593 5.6 4.2, 6.7   0.4 -1.0, 1.5 

 Without HIV7   5687 94.8   8310 8207, 8434 94.4 93.3, 95.8   -0.4 -1.5, 1.0 

                

Total With HIV6   630 9.3   932 710, 1102 9.4 7.2, 11.1   0.1 -2.1, 1.8 

 Without HIV7   6147 90.7   8982 8812, 9204 90.6 88.9, 92.8   -0.1 -1.8, 2.1 

                
1Restricted to partnerships with known ego and alter HIV status. 2Full sample analysis, with alter HIV status stochastically 

reclassified. 3 Prevalence difference (PD) comparing proportions in the reclassification analysis to the complete-case analysis. 
4Number of partnerships. 5Proportion of partnerships, conditional on ego HIV status. 6Diagnosed HIV. 7Without diagnosed HIV: 

complete-case analysis restricted to test-negative HIV; and reclassification analysis includes test-negative or unknown HIV status 
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 The full-sample analysis of PrEP sorting showed varied patterns of alter PrEP use, 

depending on ego HIV status and PrEP use (Figure 2.2 and Table 2.2). There was evidence of 

concordant partnering within each group: never used PrEP (40.5%); ever used PrEP (27.8%); 

and diagnosed HIV (28.7%). The proportion of alters with diagnosed HIV was higher for egos 

who had ever used PrEP (8.1%) compared to egos who had never used PrEP (2.5%). Similarly, 

alter PrEP use was higher among egos with diagnosed HIV (14.5%) compared to egos who had 

never used PrEP (10.8%). Egos with unknown HIV reported the lowest fractions of alters with 

diagnosed HIV (2.0%) or alters who had ever used PrEP (7.4%). Unknown alter PrEP use was 

45.4% overall, with the lowest fraction among egos with diagnosed HIV (40.3%) and the highest 

among egos with unknown HIV (50.1%). 

 The complete-case analysis of PrEP sorting was restricted to 4,452 partnerships after 

excluding unknown HIV and PrEP – comprising only 44.9% of the original sample (Table 2.4 

and Figure 2.2). The prevalence of diagnosed HIV among alters was higher (14.2%, versus 

9.3% in the complete-case analysis of serosorting and 6.6% in the full sample) due to the 

shrinking denominator of remaining alters. Similarly, the fraction of alters who had used PrEP 

was twice as high in the complete-case analysis (28.9%) compared to the full sample (14.5%). 

By excluding unknown values, concordance increased for each group of MSM: 74.0% had not 

used PrEP; 49.9% had used PrEP; and 51.2% were with diagnosed HIV. Other patterns 

remained, including higher prevalence of alters with diagnosed HIV among egos who had used 

PrEP (15.3%) compared to egos who had not used PrEP (5.0%). In the sensitivity analysis, the 

median prevalence of diagnosed HIV and ever used PrEP decreased by 4.8% (95% SI: 3.1, 7.0) 

and 11.0% (95% SI: 7.3, 16.7), respectively, compared to the complete-case analysis. Percent 

concordance after reclassification was 82.6% (95% SI: 79.3, 87.1) for had not used PrEP, 

31.9% (95% SI: 21.0, 37.4) for had used PrEP, and 39.3% (95% SI: 30.9, 46.0) for diagnosed 

HIV. Compared to the complete-case analysis, this represented an absolute increase of 8.6% 
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(95% SI: 5.3, 13.1) concordance among those who had not used PrEP, and a decrease of 

18.0% (95% SI: 12.5, 28.8) for those who had used PrEP and 11.9% (95% SI: 5.2, 20.3) for 

diagnosed HIV. Similar absolute decreases of diagnosed HIV and ever used PrEP among alters 

were observed for each stratum of egos. 
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Legend: Panel A: Mixing patterns estimated using the ego-reported data to show the full 

distribution of ego knowledge; Panel B: Data restricted to exclude unknown HIV status or PrEP 

use; Panel C: Ego-reported data stochastically reclassified to approximate unobserved self-

reported alter data. Percentages shown are median results across 300 simulated datasets, so 

bar totals may not sum to 100%. 

Figure 2.2. Pre-exposure prophylaxis (PrEP) sorting among men who have sex with men in 

an egocentric sexual network study in the United States (2017–2019) 
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Table 2.4. Partnership-level mixing by HIV diagnosis status and PrEP use among anal-sex partnerships in a national egocentric 

sexual network study of men who have sex with men in the United States (2017–2019) 

                
    Complete-case1   Reclassification Analysis2   Absolute Change3 
                
Egos Alters   N4 %5   N4 95% SI %5 95% SI   PD 95% SI 

With HIV6 With HIV6   320 51.2   438 344, 513 39.3 30.9, 46.0   -11.9 -20.3, -5.2 

 Never PrEP7   153 24.5   495 428, 586 44.4 38.5, 52.6   19.9 14.0, 28.1 

 Ever PrEP7   152 24.3   185 127, 229 16.6 11.4, 20.5   -7.7 -12.9, -3.8 

                

Never PrEP7 With HIV6   135 5.0   248 178, 305 3.7 2.7, 4.6   -1.3 -2.3, -0.4 

 Never PrEP7   1983 74.0   5478 5255, 5776 82.6 79.3, 87.1   8.6 5.3, 13.1 

 Ever PrEP7   562 21.0   911 591, 1122 13.7 8.9, 16.9   -7.3 -12.1, -4.1 

                

Ever PrEP7 With HIV6   175 15.3   241 186, 294 11.1 8.6, 13.5   -4.2 -6.7, -1.8 

 Never PrEP7   400 34.9   1237 1126, 1471 57.0 51.9, 67.8   22.1 17.0, 32.9 

 Ever PrEP7   572 49.9   692 456, 812 31.9 21.0, 37.4   -18.0 -28.8, -12.5 

                

Total With HIV6   630 14.2   932 710, 1102 9.4 7.2, 11.1   -4.8 -7.0, -3.1 

 Never PrEP7   2536 57.0   7197 6838, 7848 72.6 69.0, 79.2   15.6 12.0, 22.2 

 Ever PrEP7   1286 28.9   1779 1206, 2145 17.9 12.2, 21.6   -11.0 -16.7, -7.3 

                
1Restricted to partnerships with known ego and alter HIV status and known alter PrEP use. 2Full sample analysis, with alter HIV 

status and PrEP use stochastically reclassified. 3Prevalence difference comparing proportions in the reclassification analysis to 

the complete-case analysis. 4Number of partnerships. 5Proportion of partnerships, conditional on ego HIV status. 6Diagnosed HIV. 
7PrEP use during the partnership among those without diagnosed HIV: complete-case analysis restricted to test-negative HIV; 

and reclassification analysis includes test-negative or unknown HIV status 
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DISCUSSION 

We found evidence of HIV serosorting and PrEP sorting among MSM across each of the 

analytical approaches, including strong concordance by diagnosed HIV status, and among 

those who had used PrEP and those who had not used PrEP. We also found evidence of 

sorting between MSM with diagnosed HIV and those who used PrEP. Our findings quantify the 

role of information bias in egocentric data. Analytical decisions about uncertainty change the 

magnitude of results as well as qualitative interpretation. This has implications for understanding 

population-level PrEP impact because these mixing features influence HIV transmission 

dynamics. Valid estimates are needed to specify model parameters and evaluate PrEP impact 

based on real-world mixing patterns among MSM. 

As PrEP uptake among MSM increases over time and partnering norms potentially 

evolve,20,62,63 periodic monitoring of population-level mixing patterns is needed to inform public 

health modeling and prevention messaging. Our analysis provides a recent (2017–2019) 

estimate of mixing by diagnosed HIV status and PrEP use among MSM in the United States. 

Consistent with previous reports of HIV serosorting in high income countries during the U=U 

era, we found strong concordance of diagnosed HIV status.62,64,65,70 Our estimates of PrEP 

sorting are similarly supported by previous studies in Canada and the US, which showed high 

concordance of PrEP use and nonuse when the overall prevalence of PrEP use exceeds 

10%.62,64,65 In Australian MSM with low prevalence of PrEP use (3%), concordance of PrEP use 

was uncommon,70 but still in excess of the fraction expected by chance alone.112 We also found 

evidence of sorting between MSM with diagnosed HIV and those who use PrEP, similar to 

previous findings,62,64 and consistent with CDC guidelines for PrEP indications.9  

Taken together, existing evidence and our new results provide evidence for the 

concentration of biomedical protection against HIV transmission (i.e., PrEP and U=U) in fewer 

partnerships throughout the sexual network.63 This may substantially decrease opportunities for 
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HIV transmission among MSM using PrEP, despite variable PrEP adherence and longitudinal 

persistence,8,22,113 and gaps in viral suppression among MSM with diagnosed HIV.114 However, 

HIV transmission may proceed uninterrupted in broad components of the sexual network where 

prevention efforts remain sparse. Indeed, our sensitivity analysis found 83% concordance 

among MSM not using PrEP. Additional research is needed to understand how mixing patterns 

interact with other features of sexual network structure (e.g., variable number of partners) to 

determine the full extent of HIV exposure among MSM. 

Quantitative estimates of HIV and PrEP sorting vary across studies, in part because the 

underlying prevalence of diagnosed HIV and PrEP use may be different for each population. 

Our analysis also highlights differences in study design that can produce varying results. 

Complete-case analyses exclude MSM with unknown HIV status or PrEP use; this approach 

requires strong assumptions, including that the data are reported unknown completely at 

random and without additional misclassification.89 We find these assumptions untenable, 

because knowledge of HIV and PrEP within sexual partnerships is likely differential with respect 

to each.72 Our results suggest that bias in complete-case analyses of serosorting may be limited 

when the prevalence of diagnosed HIV is low and specificity is high, even if unknown HIV is 

relatively high – over 30% of partnerships in our sample – although validation data are needed 

to verify this finding. Full mixing patterns of HIV and PrEP sorting may require greater attention 

to information bias. Altogether, 55% of partnerships in our sample were excluded from the 

complete-case analysis of PrEP sorting, which artificially inflated the fractions of alters with 

PrEP use and diagnosed HIV. Our findings suggest that previously reported estimates of PrEP 

sorting may overestimate nonrandom mixing.64 Alternatively, analyses may stratify by ego 

knowledge and include unknown HIV and PrEP as correlates of other behaviors,62,65 but this 

approach does not estimate population-level mixing patterns. Our sensitivity analysis 



41 

demonstrates a third approach, in which ego-reported data are reclassified to estimate the 

unobserved self-reported alter information. 

LIMITATIONS 

Our sensitivity analysis aimed to reduce bias by reclassifying the ego-reported data based on 

assumptions about the sensitivity and specificity of classification. One strength of the sensitivity 

analysis is that our assumptions were explicit and quantified. However, residual bias might 

remain, and new bias could be introduced due to model misspecification. Validation data are 

needed to verify our assumptions and results. The reclassification model uses sensitivity and 

specificity parameters, which are familiar concepts to epidemiologists, but implementation of the 

model is not intuitive. Simpler approaches are possible,115 but validation data are needed to 

quantify the interacting selection and classification mechanisms generating the ego-reported 

data. Future egocentric network studies should chain-recruit a subsample of alters to validate 

the predictive value of ego-reported data. For example, alters could self-report HIV diagnosis 

status and PrEP use, to assess the accuracy of ego-reported information. Finally, we only 

assessed PrEP use among egos who had previously screened for HIV, because HIV screening 

is a pre-requisite for obtaining a PrEP prescription. Some MSM may obtain PrEP from other 

sources (e.g., a friend sharing medication) so we may have underestimated PrEP use in this 

population. However, we expect this bias is minimal. 

CONCLUSIONS 

We found evidence of HIV and PrEP sorting in a 2017–2019 egocentric sexual network study of 

MSM in the United States. Unbiased estimates of population-level mixing are needed to 

understand of PrEP impact.103 However, mixing patterns estimated with egocentric data are 

vulnerable to information bias. We used a sensitivity analysis to quantify and correct for 

potential bias. Our results demonstrate that information bias cannot be ignored, and further 
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studies are needed to verify our results. Egocentric studies should routinely collect validation 

data to assess and correct information bias. 
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Chapter 3. Assortative Mixing by HIV Status and PrEP Use in Sexual Network Models of Men 

Who Have Sex with Men 

ABSTRACT 

Background: Assortative mixing among men who have sex with men (MSM) who use pre-

exposure prophylaxis (PrEP) and by HIV diagnosis status (serosorting) may decrease the 

population benefit of PrEP, by concentrating PrEP in the sexual network and resulting in more 

partnerships in which both men are not using PrEP.  

Methods: We used a 2017–2019 egocentric study of MSM in the United States to estimate 

network statistics. Exponential random graph models (ERGMs) were fit to the observed network 

data to estimate cross-sectional networks of persistent and one-time partnerships. We 

compared fully saturated ERGM parameterizations to less saturated parameterizations 

(including degree heterogeneity and assortative mixing by age and race/ethnicity) to elucidate 

the mechanisms generating the observed HIV and PrEP mixing statistics. 

Results: An estimated 45.3% of persistent and 23.6% of one-time partnerships among MSM 

were concordant between MSM without diagnosed HIV and not using PrEP. Models based on 

degree heterogeneity and assortative mixing within demographic groups reproduced only 79.1% 

and 69.8%, respectively, of these partnerships. 

Discussion: Excess partnering among MSM not using PrEP, due to HIV and PrEP sorting, may 

partially explain sustained HIV diagnoses among MSM despite increased PrEP use. 

Interventions are needed to expand PrEP use beyond existing clusters in the sexual network. 

  



44 

BACKGROUND 

Renewed human immunodeficiency virus (HIV) prevention efforts in the United States, including 

the federal “Ending the HIV Epidemic” (EHE) initiative, prioritize pre-exposure prophylaxis 

(PrEP) allocation to populations at increased risk for HIV, including gay, bisexual, and other 

men who have sex with men (MSM).16 Uptake among MSM was initially slow, but by 2017 

approximately 20% of MSM with indications accessed PrEP.11 Coverage remains substantially 

lower than the predicted levels needed to meet the EHE goal of preventing 90% of infections by 

2030, but mathematical models project a 20% decline in infections over ten years even at 2017 

coverage levels.116 Despite projections, HIV diagnoses among MSM have remained relatively 

constant.117 There are multiple intersecting factors that contribute to the HIV diagnosis rate, but 

a recent ecological analysis of increasing PrEP coverage over time found only small effects on 

reducing HIV diagnoses.17,18  

One hypothesis for gaps between the predicted and observed population impact of PrEP 

are network effects, including nonrandom sexual partnering by HIV status and PrEP use. 

Recent studies have found high levels of assortative mixing (i.e., concordance of shared 

attributes) among MSM who use PrEP,62,64,65 which may decrease the efficiency of PrEP 

distribution in the sexual networks of MSM. Network analyses are needed to understand how 

nonrandom mixing influences PrEP coverage in the sexual network even at fixed coverage 

levels in the population. 

Decades of research has shown high levels of assortative mixing by HIV status, which is 

attributed to multiple mechanisms.59,60,118 First, transmission within ongoing partnerships 

induces concordance among MSM living with HIV.119 Second, assortative mixing by race, 

ethnicity, age, and other factors associated with HIV prevalence, increases the probability of 

randomly selecting a sexual partner with the same HIV status.120–122 Third, partners may be 

selected preferentially based on perceived or disclosed HIV diagnosis status (i.e., serosorting) 
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as an HIV prevention strategy.59,60,118 The effectiveness of serosorting is undermined by the 

prevalence of undiagnosed HIV (approximately 15% of MSM living with HIV in the US are 

undiagnosed).2,59,60 Serosorting intentions may change in the PrEP era, especially with 

increasing awareness that treatment of HIV prevents onward transmission (i.e., Undetectable = 

Untransmittable; or U=U),4,5 but the results presented in Chapter 2 (page 22), as well as other 

recent cross-sectional estimates, show persistent concordance among MSM in high-resource 

countries.62,64,65,70,123  

A newer phenomenon of PrEP sorting has been identified, including concordance of 

both PrEP use and PrEP nonuse among MSM without diagnosed HIV.62,64,65 Similar to mixing by 

HIV status, this might be partially explained by assortative mixing within demographic groups 

and disparities in PrEP coverage. However, this is unlikely to fully explain the high levels of 

concordance observed among MSM in the US – approximately 30% among MSM who use 

PrEP and 80% among MSM who do not use PrEP (Chapter 2, page 22). Alternative 

mechanisms include preferential partnering among MSM who use PrEP as an HIV prevention 

strategy,66 diffusion of PrEP awareness and uptake along overlapping social and sexual 

networks,124 and coordinated decision making within ongoing partnerships.69 There is also 

evidence of disassortative mixing between MSM with diagnosed HIV and those who use PrEP 

(Chapter 2, page 22),64 which is consistent with Centers for Disease Control and Prevention 

guidelines for PrEP indications.9 Nonrandom mixing by HIV diagnosis status and PrEP use may 

impact the total population-level benefit of PrEP by varying the location of HIV and PrEP in 

sexual networks and opportunities both for primary and secondary prevention.125 However, it is 

unclear how observed mixing patterns interact with other network properties, such as degree 

heterogeneity (number of partners) and assortative mixing within demographic groups, to 

generate the network-level structures that determine the location and density of HIV and PrEP 

in the sexual network.  



46 

In this study, we used data from a 2017–2019 egocentric network study of MSM in the 

US to estimate individual and partnership network statistics, including degree, assortative 

mixing by race/ethnicity and age, and mixing matrices for the interaction of diagnosed HIV 

status and PrEP use. Using statistical models for networks, we estimated the distribution of 

diagnosed HIV and current PrEP use in the sexual networks of US MSM. We also compared 

models fully parameterized to the observed network statistics to models with less structured 

parameterizations to quantify the magnitude of nonrandom mixing that is expected based on 

other network properties. This comparative analysis will help elucidate the causal mechanisms 

which vary the efficiency of PrEP coverage in sexual networks. The results of this study provide 

a descriptive summary of the sexual networks of MSM in the PrEP and U=U era. 

METHODS  

Empirical network data: Network data used in this analysis were drawn from ARTnet, a 2017–

2019 egocentric sexual network study of cisgender MSM in the United States.103 A full summary 

of the ARTnet population and methods has been published previously.103 Briefly, MSM were 

recruited from those who completed the American Men’s Internet Study who also reported a 

lifetime history of male-male sexual activity and were aged 15–65 years. Respondents self-

reported their own attributes at the time of the study, including age, race, ethnicity, HIV status 

and test history, and current PrEP use. Respondents also reported their past-year sexual 

history, including degree of anal-sex partnerships by type: momentary persistent (i.e., sex 

typically occurs at least one time per month and is expected to continue) or one-time (i.e., sex 

occurred once). For up to five of their most recent sexual partnerships in the past year, 

respondents reported: the partner’s age, race, ethnicity, HIV status, and PrEP use during the 

partnership; their own PrEP use during the partnership; type and frequency of sexual activity; 

duration of the partnership; and level of commitment (main or casual). Race and ethnicity were 

combined to create a single categorical variable (non-Hispanic White, non-Hispanic Black, 
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Hispanic/Latinx, or other) and age was categorized in 10-year age groups. We dichotomized 

HIV status (diagnosed HIV versus test-negative or unknown) for each respondent and partner. 

Similarly, PrEP use was dichotomized (ever versus never) for each partner and at the 

partnership-level for each respondent. We calculated partner degree for momentary persistent 

partners (total), persistent partners stratified by type (main versus casual), and cumulative 

monthly one-time partners (past-year total divided by 12 for a monthly average). The ARTnet 

sample included 4,904 egos (study participants) and 16,198 alters (partners egos reported on). 

Network estimation and simulation: Exponential random graph models (ERGMs) were fit to the 

observed network data using the ergm R package.126,127 These models estimated properties of 

cross-sectional networks of MSM (nodes) and their anal-sex partnerships (edges). ERGMs were 

fit to alternative network parameterizations, including heterogeneity in degree and mixing, 

hypothesized as the generative processes for the observed network data. Model fits were 

assessed by visual inspection of MCMC trace plots. Output parameters from each ERGM were 

used to simulate 10,000 complete synthetic networks. 

Simulated population: We created a synthetic population of 10,000 nodes to represent a cross-

section of MSM aged 15–65 years in the US. The nodes were assigned demographic attributes 

based on post-censal estimates of the US population in 2019,128 restricted to men aged 15–65 

years. Next, we used models of ARTnet data to assign HIV status and PrEP use. We first 

assigned HIV status (with or without diagnosed HIV) using logistic regression fit to continuous 

age, age-squared, race/ethnicity, and the interaction of race/ethnicity with each age term. 

Among nodes without diagnosed HIV, PrEP use was similarly assigned based on current PrEP 

use (at the time of the study) among ARTnet respondents without diagnosed HIV. 

Summary network statistics: Degree and mixing statistics were estimated using the ARTnet 

sample and stratified by partnership type: main, casual, total persistent (main and casual), and 

one-time partners. We used the ARTnet respondents to estimate mean degree overall and 
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stratified by age group, race/ethnicity, diagnosed HIV status, and current PrEP use. Overall and 

marginal mean degree estimates were standardized to the nodal attributes of the simulated 

population. We estimated mixing matrices using the subset of partnerships in which anal-sex 

occurred (n = 9,914). Mixing statistics represented the proportion of partnerships with 

concordant or discordant attributes conditional on strata of respondents. We estimated 

assortative mixing statistics both for age group and race/ethnicity (i.e., concordant matching 

within each stratum). Full mixing matrices were estimated for the interaction of HIV status and 

PrEP use (concordant between MSM with diagnosed HIV, MSM using PrEP, or MSM not using 

PrEP; and discordant pairings of the three groups). It can be challenging for survey respondents 

to accurately report the HIV status and PrEP use of their sexual partners, resulting in 

misclassification and missing data. Therefore, we used the median results from a previous 

sensitivity analysis of the ARTnet sample which estimated mixing by diagnosed HIV status and 

PrEP use (Chapter 2, page 22). The sensitivity analysis reclassified partners’ HIV status and 

PrEP use to approximate what the partners would have self-reported had they been surveyed. 

The mixing statistics represent unobserved partnership-level information that can be challenging 

to estimate without collecting information from partners directly. 

Network model parameterizations: We estimated ERGMs for each partnership type, with models 

fit to the synthetic nodal attributes and the egocentric network data. The models included 

standardized mean degree statistics (overall and stratified by age group, race/ethnicity, HIV 

status, and PrEP use) and mixing statistics for age group, race/ethnicity, and the interaction of 

HIV status and PrEP use (Figure 3.1). We compared the fully parameterized models to less 

structured models. Nodal attributes remained fixed, and we also held constant overall mean 

degree for each partnership type so that the total number of edges remained constant. The first 

three experimental models included varying parameterizations of degree without mixing 

statistics (i.e., random mixing models). Model 1 included only the overall mean degree. Model 2 
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added degree heterogeneity by age group and race/ethnicity. Model 3 included the Model 2 

parameters and added degree heterogeneity by HIV status and current PrEP use (i.e., fully 

parameterized degree heterogeneity). Finally, Model 4 used assortative mixing statistics for age 

group and race/ethnicity plus fully parameterized degree heterogeneity. The four models were 

used to estimate the magnitude of nonrandom mixing that is expected based on degree 

heterogeneity and demographic mixing. 

 

 

 

 

 

 

 

 

 

Simulated network outcomes: We tracked the distribution of HIV status and PrEP use in each of 

the 10,000 simulated networks for each model parameterization. First, we tracked the 

distribution of edges in each network, including total number of edges, number with concordant 

HIV statuses (for both with or without diagnosed HIV) or discordant HIV statuses, and number of 

concordant or discordant edges for each of the combinations of diagnosed HIV and PrEP use. 

For each pairing, we also calculated the proportion out of all edges in the network. Second, we 

reported mixing matrices for the interaction of HIV status and PrEP use. To do this, we stratified 

the nodes by HIV status and PrEP use and calculated the proportions of partners with 

Figure 3.1. Network model scenarios 
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diagnosed HIV, and those using PrEP or not using PrEP. Third, we compared the fully 

parameterized model to Model 4 (fully parameterized degree and assortative mixing within 

demographic groups) and calculated the population attributable fraction for the proportions of 

edges concordant with diagnosed HIV, using PrEP, or not using PrEP. For each scenario, we 

reported median results and 95% simulation intervals (SI) across all 10,000 simulations. 

RESULTS 

We will first summarize the simulated population attributes and network statistics used to 

parameterize the models. Next, we will summarize the simulated networks fully parameterized 

to the empiric network data. Last, we will compare the fully parameterized networks to the four 

less structured experimental models.  

The prevalence of diagnosed HIV in the simulated population was 13.5% (Appendix 

Table B.1). Prevalence was lowest among young MSM and increased by age group (1.4% to 

23.2%). Prevalence also varied by race/ethnicity, with 29.3% of Black, 14.7% of Hispanic/Latinx, 

10.1% of White, and 9.8% of other. Current PrEP use was 15.1% overall, with variations by age 

and race/ethnicity. PrEP was lower among MSM aged 15–24 (7.1%) and 55–65 (11.6%), and 

lowest among Black MSM (11.6%). 

Table 3.1 shows the standardized marginal mean degree estimates. Overall mean 

degree was 0.40 for main, 0.65 for casual, 1.05 for total persistent, and 0.43 for cumulative one-

time partners. Mean degree varied only slightly by race/ethnicity or age group. Differences by 

diagnosed HIV status and PrEP use were negligible for main partner degree, while greater 

variation was observed for casual and one-time partner degree. MSM who used PrEP had the 

highest casual (1.22) and one-time (1.10) partner degree, while MSM who did not use PrEP had 

the lowest (0.47 and 0.24, respectively). MSM with diagnosed HIV had an average of 0.97 

casual and 0.69 one-time partner degree. 
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Table 3.1. Mean momentary degree for persistent partners and cumulative degree for one-

time partnerships, stratified by select characteristics, among men who have sex with men in 

the United States. 

   Persistent Partnerships1     

   Main2   Casual   Total   One-time3  

   n4   n4   n4   n5  

Total   0.40   0.65   1.05   0.43  

              

Age Group              

15–24   0.36   0.30   0.66   0.27  

25–34   0.46   0.51   0.96   0.40  

35–44   0.48   0.75   1.23   0.52  

45–54   0.41   0.88   1.29   0.54  

55–65   0.28   0.85   1.13   0.45  

              

Race & Ethnicity              

Non-Hispanic              

Black   0.27   0.63   0.91   0.35  

White   0.41   0.64   1.05   0.44  

Other   0.38   0.73   1.11   0.37  

Hispanic/Latinx   0.42   0.69   1.11   0.48  

              

HIV & PrEP              

No PrEP   0.39   0.47   0.87   0.24  

PrEP   0.39   1.22   1.60   1.10  

Diagnosed HIV   0.42   0.97   1.39   0.69  

              1Partnerships in which anal sex occurs more than one time. 2Committed to each other 

above all other partners. 3Partnerships in which anal sex occurs only one time. 4Mean 

momentary degree; cross-sectional frequency of persistent partners. 5Mean cumulative 

(monthly) degree; frequency of one-time partners. 
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 Table 3.2 summarizes the mixing statistics from the observed network data. Assortative 

mixing within race/ethnicity and age groups was stronger for main partners than casual or one-

time partners. Younger MSM and White MSM had the highest assortative mixing fractions 

across partnership types, while assortative mixing was lowest among older MSM and those in 

the “other” race/ethnicity group. The full mixing patterns of diagnosed HIV and PrEP use 

showed concordance across partnership types: PrEP nonuse (86.4% main, 71.3% casual, and 

74.5% one-time partners), PrEP use (45.3% main, 41.0% casual, and 33.3% one-time 

partners), and diagnosed HIV (44.7% main, 49.3% casual, and 46.1% one-time partners). We 

also observed disassortative mixing, with higher fractions of partners with diagnosed HIV among 

nodes using PrEP (16.4% main, 10.1% casual, and 7.9% one-time partners) compared to nodes 

not using PrEP (4.0% main, 8.4% casual, and 7.0% one-time partners). 
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Table 3.2. Sexual partnership mixing by age group, race and ethnicity, HIV diagnosis 

status and pre-exposure prophylaxis use, stratified by partnership type, among men who 

have sex with men in the United States. 

   Persistent Partnerships1     

   Main2   Casual   Total   One-time3  

   %   %   %   %  

Age Group4              

15-24   71.8   53.5   61.1   49.3  

25-34   65.6   52.1   57.5   52.4  

35-44   43.1   26.8   32.2   30.1  

45-54   33.6   24.7   27.1   22.8  

55-65   28.4   15.6   18.4   17.2  

              
Race & Ethnicity4              

Non-Hispanic              

Black   50.5   53.9   53.1   48.5  

White   70.7   61.3   64.6   60.8  

Other   24.7   15.0   18.1   18.6  

Hispanic/Latinx   42.9   38.6   40.1   37.0  

              
HIV & PrEP5              

No PrEP              

No PrEP   86.4   71.3   76.9   74.5  

PrEP   9.6   20.3   16.3   18.5  

Diagnosed HIV   4.0   8.4   6.8   7.0  

PrEP              

No PrEP   38.3   48.8   45.9   58.7  

PrEP   45.3   41.0   42.3   33.3  

Diagnosed HIV   16.4   10.1   11.8   7.9  

Diagnosed HIV              

No PrEP   31.2   22.1   25.5   30.7  

PrEP   24.2   28.6   27.0   23.2  

Diagnosed HIV   44.7   49.3   47.6   46.1  

              1Partnerships in which anal sex occurs more than one time. 2Committed to each other 

above all other partners. 3Partnerships in which anal sex occurs only one time. 
4Expected assortative (within group) mixing fraction. 5Expected mixing fractions for the 

interaction of HIV diagnosis status and PrEP use. 

 



54 

 Table 3.3 summarizes the edge distribution in simulated networks fully parameterized to 

the empiric network data, including degree heterogeneity, assortative mixing within 

demographic groups, and the mixing matrices for diagnosed HIV and PrEP use. Of all edges in 

the networks, the fraction between nodes with diagnosed HIV was 6.9% (95% SI: 5.8, 8.1) of 

main, 10.3% (95%: 9.3, 11.3) of casual, and 11.0% (95% SI: 9.7, 12.3) of one-time partnerships. 

The remaining 93.1% (95% SI: 91.9, 94.2) of main, 89.7% (95% SI: 88.7, 90.7) of casual, and 

88.0% (95% SI: 87.7, 90.3) of one-time partnerships in each network are opportunities for HIV 

transmission to occur. The prevalence of edges with discordant diagnosed HIV statuses was 

lower in main partner networks (13.3%; 95% SI: 11.8, 14.9) compared to casual (17.7%; 95% 

SI: 16.3, 19.0) and one-time (17.9%; 95% SI: 16.3, 19.6) partner networks. PrEP use varied by 

partnership type, resulting in similar prevalence of discordant edges with one node with 

diagnosed HIV and one node without diagnosed HIV and not using PrEP: 8.6% (95% SI: 7.9, 

9.4) of all persistent edges and 6.8% (95% SI: 5.8, 7.8) of one-time edges. The prevalence of 

edges concordant without diagnosed HIV was 74.8% (95% SI: 73.6, 76.0) of all persistent and 

71.1% (95% SI: 69.1, 72.9) of one-time edges. Variable PrEP coverage and assortative mixing 

resulted in 61.4% (95% SI: 59.1, 63.5) of main, 36.0% (95% SI: 34.5, 37.8) of casual, and 

23.6% (95% SI: 21.8, 25.4) of one-time partnership edges concordant among those not using 

PrEP. 
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Table 3.3. Distribution of network edges in fully parameterized models stratified by partnership type 

   Median (95% Simulation Interval)  

   Persistent Partnerships1     
 

  Main   Casual   Total   One-time2  

              
Edges (total N)   1975 (1889, 2058)   3248 (3130, 3359)   5223 (5076, 5378)   2148 (2056, 2241)   

             
HIV Mixing (%)              

Concordant              

Without HIV3   79.7 (77.9, 81.5)   72.0 (70.6, 73.5)   74.8 (73.6, 76.0)   71.1 (69.1, 72.9)  

With HIV3   6.9 (5.8, 8.1)   10.3 (9.3, 11.3)   8.9 (8.1, 9.9)   11.0 (9.7, 12.3)  

Discordant   13.3 (11.8, 14.9)   17.7 (16.3, 19.0)   16.2 (15.2, 17.3)   17.9 (16.3, 19.6)  

              
HIV & PrEP Mixing (%)              

Concordant              

No PrEP   61.4 (59.1, 63.5)   36.0 (34.5, 37.8)   45.3 (43.9, 46.6)   23.6 (21.8, 25.4)  

PrEP   6.1 (5.1, 7.2)   12.0 (10.9, 13.0)   9.6 (8.8, 10.4)   18.0 (16.5, 19.6)  

With HIV3   6.9 (5.8, 8.1)   10.3 (9.3, 11.3)   8.9 (8.1, 9.9)   11.0 (9.7, 12.3)  

Discordant              

No PrEP–PrEP   12.2 (10.9, 13.7)   24.0 (22.6, 25.5)   19.9 (18.7, 21.0)   29.5 (27.6, 31.4)  

No PrEP–With HIV3   7.5 (6.4, 8.7)   8.5 (7.5, 9.5)   8.6 (7.9, 9.4)   6.8 (5.8, 7.8)  

PrEP–With HIV3   5.9 (4.8, 6.9)    9.2 (8.2, 10.3)   7.6 (6.9, 8.3)   11.0 (9.8, 12.5)  

 1Momentary persistent partnerships. 2Cumulative (monthly) one-time partnerships. 3With or without diagnosed HIV. 
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 Table 3.4 summarizes the mixing matrices for diagnosed HIV status and PrEP use from 

the fully parameterized network simulations. Median results from these analyses are presented 

in Figure 3.2. Across partnership types, MSM with diagnosed HIV had the highest proportion of 

partnerships to other MSM with diagnosed HIV: 52.5% (95% SI: 49.2, 55.7) of all persistent and 

55.2% (95% SI: 51.2, 59.0) of one-time edges. Similarly, among nodes with PrEP use, 41.2% 

(95% SI: 38.8, 43.6) of all persistent and 47.0% (95% SI: 44.2, 49.8) of one-time edges were 

concordant with PrEP use. Concordance among nodes not using PrEP varied more 

substantially by partnership type. Among nodes not using PrEP, 86.1% (95% SI: 84.7, 87.4) of 

main, 68.9% (95% SI: 67.1, 70.8) of casual, and 56.5% (95% SI: 53.7, 559.2) of one-time 

partners were concordant and also not using PrEP. Nodes using PrEP, compared to nodes not 

using PrEP, had higher fractions of partners with diagnosed HIV: 16.3% (95% SI: 14.7, 17.8) 

versus 7.2% (95% SI: 6.6, 7.9) among all persistent, and 14.4% (95% SI: 12.8, 16.3) versus 

8.1% (95% SI: 6.9, 9.4) among one-time partners. 
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Table 3.4. Mixing by HIV status and PrEP use in fully parameterized models stratified by partnership type 

   Median (95% Simulation Interval)  

   Persistent Partnerships1     
 

  Main   Casual   Total   One-time2  

              
No PrEP (N3)   2812 (2673, 2952)   3397 (3248, 3554)   6218 (6029, 6428)   1794 (1689, 1901)  

With HIV (%4)   5.3 (4.4, 6.1)   8.1 (7.2, 9.1)   7.2 (6.6, 7.9)   8.1 (6.9, 9.4)  

No PrEP (%4)   86.1 (84.7, 87.4)   68.9 (67.1, 70.8)   76.1 (74.9, 77.2)   56.5 (53.7, 59.2)  

PrEP (%4)   8.6 (7.6, 9.7)   23.0 (21.4, 24.5)   16.7 (15.7, 17.7)   35.4 (32.8, 37.9)  
              

PrEP (N3)   599 (543, 660)   1856 (1754, 1952)   2444 (2319, 2557)   1644 (1547, 1740)  

With HIV (%4)   19.3 (16.1, 22.7)   16.0 (14.4, 18.0)   16.3 (14.7, 17.8)   14.4 (12.8, 16.3)  

No PrEP (%4)   40.3 (36.1, 44.8)   42.0 (39.5, 44.7)   42.5 (40.2, 44.8)   38.6 (36.0, 41.2)  

PrEP (%4)   40.4 (35.5, 45.2)   41.9 (39.0, 44.7)   41.2 (38.8, 43.6)   47.0 (44.2, 49.8)  

              

With HIV (N3)   537 (480, 593)   1242 (1162, 1320)   1783 (1681, 1909)   856 (789, 927)  

With HIV (%4)   50.8 (45.4, 56.3)   53.7 (50.4, 57.2)   52.5 (49.2, 55.7)   55.2 (51.2, 59.0)  

No PrEP (%4)   27.6 (23.6, 31.8)   22.2 (19.7, 24.7)   25.3 (23.0, 27.6)   17.1 (14.5, 19.6)  

PrEP (%4)   21.6 (17.8, 25.4)   24.0 (21.5, 26.9)   22.3 (20.2, 24.5)   27.7 (24.6, 31.2)  

 1Momentary persistent partnerships. 2Cumulative (monthly) one-time partnerships. 3Total network edges by HIV status and PrEP 

use of nodes; each edge is counted twice (once for each node in a dyad). 4Proportion of edges based on partner HIV status and 

PrEP use. 
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Legend: Cross-sectional networks stratified by partnership type and fully specified to observed 
network data in an egocentric sexual network study of MSM in the US. Results are median 
values across 10,000 simulations per scenario. Proportions represent partnership mixing by HIV 
status and PrEP use. Panel A: Main persistent partnerships; Panel B: Casual persistent 
partnerships; Panel C: Total (main and casual) persistent partnerships; Panel D: Cumulative 
(monthly) one-time partnerships. 

  

Figure 3.2. Mixing by human immunodeficiency virus (HIV) diagnosis status and current 

pre-exposure prophylaxis (PrEP) use in simulated sexual networks of 10,000 men who 

have sex with men. 
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We were unable to reproduce the observed levels of HIV serosorting and PrEP sorting 

with less structured ERGM parameterizations. Appendix Tables B.3–B.6 (pages 132–135) 

summarize the distribution of network edges, while Figure 3.3 and Appendix Tables B.7–B.10 

(pages 136–139) summarize the mixing matrices for each parameterization of network 

structure. First, we compared Models 1–3 to isolate the influence of degree on network 

structure. The overall number of edges remained constant across model parameterizations, on 

average, due to fixed overall mean degree. However, the marginal mean degree parameters 

changed the average number of edges for nodes with different attributes. There was little 

variation between the models with homogenous degree (Model 1) and those with degree 

heterogeneity by age group and race/ethnicity (Model 2), despite differences in HIV prevalence 

and PrEP uptake between demographic groups. The number of edges among nodes with PrEP 

use and those with diagnosed HIV increased slightly, but larger changes were observed when 

adding degree heterogeneity by HIV status and PrEP use (Model 3). For example, the fraction 

of edges concordant without PrEP use in casual partner networks was 51.0% (95% SI: 49.3, 

52.8) in Model 1 but only 26.6% (95% SI: 25.1, 28.1) in Model 3. The absolute difference is 

greater in one-time partner networks and smaller in main partner networks. In casual partner 

networks, discordant partnering between MSM with different HIV statuses increased from 23.2% 

(95% SI: 21.8, 24.7) in Model 1 to 32.1% (95% SI: 30.5, 33.7) in Model 3. The net change in 

partnering between MSM with different HIV statuses was entirely attributable to partnerships in 

which PrEP was used, with no net change in the overall fraction without PrEP use. Similar 

changes were observed for discordant partnering among one-time partners, but no change was 

observed for main partners. Despite varying edge distribution and mixing matrices across 

Models 1–3, the mixing matrices within each model were undifferentiated when comparing 

nodes with different HIV or PrEP use statuses.  
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Legend: Cross-sectional networks stratified by partnership type. Alternative parameterizations 
based on observed network data in an egocentric sexual network study of MSM in the US: 
Model 1 = homogenous degree, random mixing; Model 2 = degree heterogeneity by age and 
race/ethnicity, random mixing; Model 3 = degree heterogeneity by age, race/ethnicity, HIV 
status and PrEP use, random mixing; Model 4 = degree heterogeneity by age, race/ethnicity, 
HIV status and PrEP use, and mixing by age and race/ethnicity. Results are median values 
across 10,000 simulations per scenario. Proportions represent partnership mixing by HIV status 
and PrEP use. Panel A: Main persistent partnerships; Panel B: Casual persistent partnerships; 
Panel C: Total (main and casual) persistent partnerships; Panel D: Cumulative (monthly) one-
time partnerships. 

 

 

Figure 3.3. Mixing by human immunodeficiency virus (HIV) diagnosis status and current 

pre-exposure prophylaxis (PrEP) use in simulated sexual networks of 10,000 men who 

have sex with men (MSM), stratified by partnership type. 
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Mixing matrices begin to differentiate after adding assortative mixing statistics for age 

group and race/ethnicity (Model 4). However, a comparison of Model 4 and Model 3 shows only 

small changes. The models also remain substantially different than the fully parameterized 

models, as evidenced by the population attributable fractions presented in Table 3.5. For 

example, compared to the fully parameterized model, Model 4 underestimated the proportion of 

all edges concordant with diagnosed HIV: 8.9% (95% SI: 8.1, 9.9) versus 3.8% (95% SI: 3.3, 

4.3) of all persistent edges, and 11.0% (95% SI: 9.7, 12.3) versus 5.1% (95% SI: 4.2, 6.1) of 

one-time partnership edges. This means that the fraction of edges concordant with diagnosed 

HIV attributable to degree heterogeneity and assortative mixing was only 42.6% (95% SI: 37.0, 

48.8) in persistent partnership networks and 46.5% (95% SI: 38.5, 55.4) in one-time partnership 

networks. The population attributable fractions were higher for concordance among nodes using 

PrEP and nodes not using PrEP. Model 4 only accounted for 79.1% (95% SI: 76.1, 82.1) of 

persistent partnerships concordant without PrEP use and 69.8% (95% SI: 62.9, 77.4) of one-

time partnerships. These partnerships were the largest group in the networks, including 45.3% 

(95% SI: 43.9, 46.6) of all persistent edges and 23.6% (95% SI: 21.8, 25.4) of all one-time 

partnership edges in the fully parameterized models, so even small or moderate relative 

differences may translate to large absolute differences on the population-level. 
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Table 3.5. Assortative mixing by HIV status and PrEP use attributable to degree 

heterogeneity and assortative mixing within demographic groups compared to models fully 

parameterized to empiric mixing statistics. 

    
 Model 41 Full Model1 PAF2 

 %3 %3 %3 

Main Partners    
No PrEP 50.8 (48.6, 53.0) 61.4 (59.1, 63.5) 82.8 (79.1, 86.8) 
PrEP 2.3 (1.7, 3.0) 6.1 (5.1, 7.2) 38.3 (28.9, 49.9) 
With HIV 2.7 (2.0, 3.5) 6.9 (5.8, 8.1) 39.2 (29.8, 50.3) 
    
Casual Partners    
No PrEP 27.2 (25.8, 28.8) 36.0 (34.5, 37.8) 75.6 (71.1, 80.3) 
PrEP 8.2 (7.2, 9.2) 12.0 (10.9, 13.0) 68.4 (60.1, 77.1) 
With HIV 4.6 (3.9, 5.2) 10.3 (9.3, 11.3) 44.6 (38.2, 51.4) 
    
Total Persistent    
No PrEP 35.8 (34.5, 37.1) 45.3 (43.9, 46.6) 79.1 (76.1, 82.1) 
PrEP 5.4 (4.7, 6.0) 9.6 (8.8, 10.4) 56.2 (49.7, 62.6) 
With HIV 3.8 (3.3, 4.3) 8.9 (8.1, 9.9) 42.6 (37.0, 48.8) 
    
One-time    
No PrEP 16.5 (14.9, 18.1) 23.6 (21.8, 25.4) 69.8 (62.9, 77.4) 
PrEP 15.2 (13.9, 16.7) 18.0 (16.5, 19.6) 84.8 (76.3, 94.4) 
With HIV 5.1 (4.2, 6.1) 11.0 (9.7, 12.3) 46.5 (38.5, 55.4) 
    1Model 4 includes parameters for overall mean degree, degree 
heterogeneity by age group, race/ethnicity, HIV status and PrEP, and 
assortative mixing within age groups and race/ethnicity. The Full Model adds 
full mixing patterns by HIV status and PrEP use to the Model 4 parameters. 
2Population attributable fraction; proportion of assortative mixing in the full 
model attributable to Model 4 parameters. 
3Median percentage and 95% simulation interval 
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DISCUSSION 

This study estimated PrEP coverage in the sexual networks of MSM in the United States during 

the PrEP and U=U era. Our network modeling approach combined sexual partnership network 

degree and mixing statistics derived from egocentric network data in a simulated population 

representing MSM in the US. We found evidence of assortative partnering by HIV status and 

PrEP use, including excess clustering of PrEP in the sexual network. This likely provides a high 

level of protection among MSM who use PrEP, but HIV transmission may proceed uninterrupted 

in areas of the network with relatively sparse PrEP use. This has implications for projecting 

future PrEP impact, as well as public health planning for PrEP distribution. 

Our study adds to the literature describing HIV and PrEP mixing among MSM in high-

resource countries. Recent studies using egocentric network data have shown that traditional 

HIV serosorting (assortative mixing by perceived or disclosed HIV status) has persisted in 

recent years,62,64,65,70,123 while new patterns have emerged, including assortative mixing by PrEP 

use status and discordant mixing between MSM with diagnosed HIV and those who use 

PrEP.62,64,65 The findings have been qualitatively consistent across studies, although quantitative 

estimates vary based on study design and population. Mixing matrices reflect the underlying 

prevalence of diagnosed HIV and PrEP use in the sampled population of respondents and their 

reported sexual partners, which may not be generalizable to all MSM in the target population. 

The network modeling approach provides adjusted mixing estimates using the observed 

network data with a synthetic population representative of US MSM (analogous to population 

weighting of prevalence or risk estimates).129  

Our models provide evidence of inefficient network coverage of PrEP, which may 

partially explain the sustained HIV diagnosis rate among MSM despite increasing PrEP 

coverage in the population.17,18 One study estimates that PrEP use in the past 12 months 

increased from less than 2% in 2013 to approximately 20% in 2017.11 The US EHE initiative 
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calls for increased PrEP use to decrease incidence,16 but PrEP is expensive and interventions 

to increase PrEP coverage will use finite public health resources.17 Efforts should therefore 

prioritize strategies which maximize coverage in the network for the greatest impact on HIV 

incidence.91,130 This can be achieved in part by targeting distribution to MSM with more partners, 

but our models show that assortative partnering among MSM who use PrEP can partially offset 

the benefit of increased PrEP use among MSM with higher degree. This means that progress 

also requires expanding PrEP use beyond the population subgroups where it is already 

concentrated. This has proven challenging. Progress has been made to close disparities by 

race and ethnicity, but not age,11 and PrEP remains clustered within demographic groups. 

Network-based models of PrEP should include full mixing patterns of HIV and PrEP 

sorting to model gaps in the network coverage of PrEP. We estimated that 45% of all persistent 

partnerships and 24% of all one-time partnerships were between men without diagnosed HIV 

and not using PrEP. Models based on degree heterogeneity and assortative partnering within 

demographic groups accounted for only 70–80% of partnerships between men not using PrEP. 

There were also differences in the fraction of partnerships with different HIV statuses, including 

those with and without PrEP use, so it is difficult to predict the net impact on HIV transmission 

dynamics. A recent study showed increased PrEP impact in scenarios with HIV serosorting,125 

but this model did not consider additional PrEP sorting mechanisms. Few other models of PrEP 

incorporate HIV serosorting,131–133 and none explore the impact of assortative partnering among 

PrEP users.  

LIMITATIONS 

First, our observed network data come from a convenience sample of US MSM. This was our 

motivation for using a synthetic population with population-based demographic weights. We also 

standardized the marginal mean degree estimates to the synthetic population. However, 

oversampling of MSM with higher or lower degree could bias our estimates regardless of 
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standardization. We are unable to assess whether our sampled population differs from the 

broader population of MSM in terms of number of partners or sorting behaviors. Second, 

egocentric network data like ARTnet are limited by what the egos know about their sexual 

partners. As shown in Chapter 2 (page 32), 24% of partners were of unknown HIV status and 

49% of partners not known to have diagnosed HIV were of unknown PrEP use status. This 

study attempted to reduce bias due to unknown or misreported partner information using a 

reclassification sensitivity analysis. The present study is based on these results. Our network 

models may be biased if the reclassification sensitivity analysis did not minimize bias in the 

sorting estimates. Third, our network models are cross-sectional, but diagnosed HIV status and 

PrEP use may change over time. We were therefore unable to determine the extent to which 

sorting patterns arose due to HIV transmission within persistent partnerships or due to PrEP 

initiation within HIV discordant partnerships. We also may have overestimated the prevalence of 

PrEP use in the persistent partnership networks because we defined PrEP use as ever/never 

throughout the partnership. Finally, we did not model geography or other factors which may 

partially explain the observed sorting patterns. 

CONCLUSIONS 

This study provides several new findings which describe the sexual network structure of MSM 

and the distribution of diagnosed HIV status and PrEP use. We showed that observed patterns 

of assortative mixing by diagnosed HIV status and PrEP use cannot be fully explained by other 

network properties, including degree heterogeneity and assortative mixing by age and 

race/ethnicity. Our future work will incorporate these mixing estimates in mechanistic models of 

HIV transmission to assess the potential impact of HIV serosorting and PrEP sorting on the 

population benefit of PrEP. Our findings show that efforts to increase PrEP use among MSM 

may be ineffective to reduce HIV transmission at the population level, if distribution is not 

targeted to expand beyond existing clusters of PrEP.  
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Chapter 4. Modeling the impact of network clustered HIV pre-exposure prophylaxis on HIV 

incidence 

ABSTRACT 

Background: Approximately 20% of men who have sex with men (MSM) with behavioral 

indications for pre-exposure prophylaxis (PrEP) used PrEP in 2017. However, ecological studies 

of PrEP impact have not found an association between increased PrEP use over time and 

decreasing HIV diagnoses among MSM. 

Methods: We used a network-based model of HIV among MSM to test the hypothesis that 

assortative mixing among MSM who use PrEP decreases the population benefit of PrEP, 

compared to a scenario without PrEP mixing, due to clustering of PrEP use in the sexual 

network. We allocated PrEP based on estimates of degree heterogeneity and mixing statistics 

from an egocentric network study. 

Results: There were 2.4% more (95% simulation interval: 10.3 less, 16.8 more) infections over 

10 years in the scenario with PrEP sorting compared to without PrEP sorting. The excess 

transmission was attributable to partnerships in which both men were not using PrEP and 

partnerships between MSM with diagnosed HIV and MSM not using PrEP. 

Discussion: The total effect of PrEP sorting was relatively small in our model. However, PrEP 

sorting may interact with other network-level factors to decrease PrEP impact in the real world. 

Public health interventions to increase PrEP use should seek to increase coverage in the sexual 

network to maximize the prevention benefit of PrEP coverage in the population. 
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BACKGROUND  

Daily-oral pre-exposure prophylaxis (PrEP) for the prevention of human immunodeficiency virus 

(HIV) is more than 99% effective.8,134 Uptake of PrEP among men who have sex with men 

(MSM) in the United States was initially slow, but by 2017 approximately 20% of MSM with 

indications for PrEP were using it.11 Mathematical models predict a 20% decline in HIV 

incidence over ten years at 2017 PrEP coverage levels,116 yet diagnoses among MSM have 

remained relatively constant over the past decade.117 A recent population-level analysis of PrEP 

found only a small effect on the HIV diagnosis rate.18 The federal “Ending the HIV Epidemic” 

initiative aims to increase PrEP use among MSM to meet the goal of 90% fewer incident 

infections by 2030.16 Yet it is unclear whether current policies for PrEP allocation are sufficient 

to meet these targets, given the lack of empiric evidence for PrEP impact at the population level. 

The reasons for gaps between the predicted and observed epidemic trajectory are not fully 

understood.17 Progress has been made to increase PrEP uptake and effective use by focusing 

on various aspects of the PrEP care continuum (i.e., access, adherence, and persistence).11,26 

However, PrEP impact may also depend on network-level factors. Inefficient PrEP coverage in 

the sexual network may facilitate sustained transmission and decrease the impact of PrEP at 

the population level. 

 The location and density of PrEP in the sexual network is influenced by various 

individual-level behaviors and partnership-level decisions.31,35 Assortative mixing within 

demographic groups segments the sexual network by race/ethnicity, age, geography, and other 

factors.120–122 Disparities in HIV prevalence and PrEP coverage within these groups generates 

unequal distribution of each across the sexual network. There is also evidence of sorting by HIV 

status and PrEP use beyond the levels expected based on demographics alone (Chapter 3, 

page 43).62,64,65,70,123 Preferential partnering by HIV status (i.e., serosorting) is an HIV prevention 

strategy used by some MSM, but effectiveness depends on frequent screening to limit 
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transmission by undiagnosed HIV infection.59,60,118 Concordant partnering between MSM with 

HIV can also occur due to transmission within ongoing partnerships, even if one or both men 

were without HIV when the sexual partnership began.119 More recently, egocentric sexual 

network studies of MSM describe PrEP sorting, including assortative mixing among MSM who 

use PrEP.62,64,65 This may produce clusters of PrEP use in the sexual network and increases the 

number of partnerships in which neither man is using PrEP (Chapter 3, page 43). Assortative 

mixing among MSM who use PrEP might therefore decrease PrEP impact at the population 

level by varying opportunities for both primary and secondary prevention. The potential impact 

of network clustered PrEP use on HIV transmission dynamics has not been evaluated. 

 In this study, we used a network-based model of HIV transmission dynamics to explore 

the impact of PrEP sorting among MSM.15,36,116 The model was developed to represent 

observed patterns of PrEP uptake in our target population of MSM in Atlanta. We modeled 

estimates of PrEP sorting by varying the propensity for partnership formation based on current 

PrEP use as well as coordinated PrEP decision making within ongoing partnerships. We 

compared models with and without PrEP sorting to test the hypothesis that assortative mixing 

by PrEP use status decreases the overall impact of PrEP even at fixed PrEP coverage levels in 

the population. Our models may inform strategies to allocate PrEP efficiently to meet EHE goals 

of 90% fewer infections by 2030. 

METHODS 

We used a mathematical model of HIV transmission dynamics among MSM in the Atlanta area 

with a time horizon of 10 years. The model was calibrated to the diagnosed HIV prevalence of 

Black, White, and Hispanic/Latinx MSM, aged 15–65 years, in Atlanta. We used EpiModel,36 a 

software package for modeling infectious disease transmission over dynamic contact networks 

with temporal exponential random graph models (TERGMs).37 The model builds on previous 
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work exploring PrEP impact among MSM,15,116 by incorporating PrEP sorting patterns to the 

dynamic sexual network. Full methodological details can be found in Appendix C (page 140). 

Sexual Network Model: We used ARTnet, a 2017–2019 egocentric sexual network study of 

4,904 MSM reporting on 16,198 sexual partnerships, to estimate all network and behavioral 

parameters, including mean degree (number of partners), partnership durations, and mixing 

statistics.103 Target statistics for HIV serosorting and PrEP sorting were based on the median 

results of the analysis described in Chapter 2 (page 22). Selected target statistics used in this 

study can be found in Table 4.1. Statistical network models were fit to summary statistics from 

ARTnet to estimate formation and dissolution parameters for main, casual, and one-time sexual 

partnerships. We estimated three sets of network parameters for each of the partnership types: 

one set of base parameters; and one set for each of the two PrEP scenarios (i.e., with and 

without PrEP sorting). 

The base model parameters were used to calibrate the HIV epidemic prior to PrEP 

introduction. The base models included formation parameters for partnership type, degree 

(including heterogeneity by diagnosed HIV status), assortative mixing within age and 

race/ethnicity groups, and mixing by anal-sex position preferences (i.e., receptive and insertive). 

Dissolution of main and casual partnerships was based on the estimated median partnership 

durations and modeled with a constant hazard which was stratified by age of the partners. We 

also included HIV serosorting parameters for the one-time partnership network. We did not 

model serosorting for the persistent partnership networks, because cross-sectional estimates of 

HIV serosorting in persistent partnerships overestimate serosorting, compared to mixing at the 

time of partnership formation, due to transmission within partnerships over time. In other words, 

the prevalence of partnerships with different HIV statuses decreases with relationship age, while 

there is an increase in partnerships concordant with diagnosed HIV. The persistent partnership 

networks based on other model parameters approximated HIV serosorting in the real world, but 
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this is a simplification of mixing in the population. Both PrEP models were fit to the same 

summary statistics included in the base models, and included parameters for degree 

heterogeneity by PrEP use status. The PrEP sorting model also included assortative mixing 

statistics for the group of MSM using PrEP. 

Table 4.1. Target degree, rate of one-time partners, and mixing statistics for cross-

sectional network structure, stratified by partnership type 

          
  Main   Casual   One-time  

          Degree  n1   n1   n2  

Without Diagnosed HIV3  0.39   0.48   0.06  

Not Using PrEP  0.39   0.35   0.03  

Using PrEP  0.38   0.92   0.17  

With Diagnosed HIV  0.42   0.72   0.11  

          

Mixing  %   %   %  

Without Diagnosed HIV3,4  93.2   90.9   92.4  

Not Using PrEP  86.4   71.3   74.5  

Using PrEP  45.3   41.0   33.3  

With Diagnosed HIV4  44.7   49.3   46.1  

Discordant HIV5  19.6   22.7   24.3  

 1Mean momentary degree  
2Mean weekly rate of one-time partners 
3MSM without diagnosed HIV include those with undiagnosed HIV infection 
4Fraction of within-group mixing 
5Fraction of all partnerships 

 

The network was initialized with 10,000 MSM and relationship formation and dissolution 

occurred stochastically under the base model conditions. The population varied in size due to 

entry (sexual debut) and exit (death or aging out at 65 years). The network parameters were 

substituted along with the introduction of PrEP according to each of the model scenarios. This 

process retained the existing sexual network (i.e., persistent partnerships were not disrupted) 
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but relationship formation and dissolution at subsequent time steps followed the new network 

parameters. 

HIV Transmission and Disease Progression: HIV transmission occurred stochastically with a 

per-act probability, which varied based on condom use,135 sexual positioning,136 circumcision 

status of the insertive partner,137 PrEP use of the partner without HIV,25 and HIV viral load of the 

partner with HIV.4,138 Condom use varied based on demographic attributes of the partners, 

duration and type of partnership, and PrEP use within each partnership. Individuals with HIV 

were diagnosed, initiated antiretroviral therapy (ART), and maintained viral suppression, based 

on variable rates of HIV screening, HIV care engagement, and ART adherence.139,140 Viral loads 

varied continuously according to the natural history of HIV infection in the absence of ART.141,142 

Disease progression occurred in stages (acute, chronic, and AIDS) with corresponding changes 

in viral load and mortality rates. 

PrEP Uptake, Adherence, and Persistence: Uptake of PrEP was determined with both individual 

and partnership-dependent mechanisms. Individuals without HIV were eligible to initiate PrEP 

based on CDC guidelines for PrEP indications.9 First, individual initiation occurred stochastically 

among all PrEP-eligible MSM at each time step, based on an overall initiation probability which 

varied with main and casual partner degree, and quintiles of one-time partner rates (Table 4.2). 

Second, to generate concordant partnering by PrEP use status, we simulated mutual PrEP 

decision making within persistent partnerships. This was operationalized by identifying main and 

casual partnerships, at each time step, in which both MSM are PrEP-eligible but only one 

partner initiated PrEP under the individual initiation mechanism. The partner who did not initiate 

PrEP was then given a second chance to initiate PrEP, within the same time step, based on 

different probabilities for main and casual partnerships. Individuals were limited to one chance 

at partnership-based PrEP initiation, even if multiple persistent partnerships met the criteria in 

the same time step; in these cases, if the qualifying partnerships were a mixture of main and 
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casual partners, initiation was based on the main partnership probability. Finally, if PrEP was 

not initiated during the time step, then the individual returns to the pool of PrEP-eligible MSM. 

The initiation cycle repeated at each time step and was memoryless (i.e., initiation probabilities 

did not depend on individual PrEP use history or PrEP initiation by a persistent partner at a 

previous time step). 

 Following PrEP initiation, MSM were assigned a PrEP adherence level, with 78.4% 

maintaining the high-adherence level associated with a 99% relative reduction in HIV 

transmission.25,143 PrEP indications were reassessed annually and PrEP was discontinued if 

indications had lapsed. Spontaneous discontinuation also occurred, at a constant rate, based on 

an estimated median 224 days to discontinuation.15,144 Similar to initiation mechanisms, we 

simulated partnership-dependent discontinuation by identifying persistent partnerships in which 

both men are using PrEP at the beginning of the time step, but only one discontinues. We 

implemented partnership-dependent discontinuation with varying probabilities for main and 

casual partners. 

PrEP Sorting Scenarios: We modeled two scenarios of PrEP distribution in the sexual networks: 

(1) without PrEP sorting; and (2) with PrEP sorting. Degree distributions were held constant 

across scenarios, to isolate the impact of varying sorting mechanisms. We modeled PrEP 

sorting among persistent partners with assortative mixing targets for MSM using PrEP, by 

substituting the dynamic network parameters and varying the PrEP uptake and discontinuation 

probabilities. We did not directly model PrEP sorting for one-time partners, because the model 

without PrEP sorting generated assortative mixing among MSM using PrEP (median = 30.9%, 

Appendix Table C.14) that is similar to the observed mixing statistics from ARTnet (33.3%, 

Table 4.1). We were unable to model this slight increase to PrEP sorting among one-time 

partners without inadvertently increasing the magnitude of HIV serosorting. Among main and 

casual partners, respectively, the model without PrEP sorting generated only 12.1% and 24.1% 
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assortative mixing among MSM using PrEP (Appendix Table C.14). The ARTnet targets were 

45.3% and 41.0% for main and casual partners, respectively, so there was a larger difference 

between the models with and without PrEP sorting. 

Assortative mixing among MSM using PrEP caused changes throughout the network in 

the distribution of partnerships with concordant or discordant PrEP use statuses, due to the 

constraints imposed by fixed degree distributions, overall PrEP coverage, and the base network 

model conditions. By increasing the number of partnerships which are concordant with PrEP 

use, there were fewer opportunities for MSM who use PrEP to partner with either MSM who are 

not using PrEP or MSM with diagnosed HIV. In turn, the prevalence of other partnering 

combinations increased, including concordant partnering among MSM who are not using PrEP 

and discordant partnering between MSM with diagnosed HIV and MSM who are not using PrEP. 

Calibration, Simulation, and Analysis: The model was initialized with the base network model 

conditions, to establish a stable HIV epidemic before PrEP was introduced. The model was 

calibrated to 2013–2014 prevalence estimates of diagnosed HIV infection among Atlanta MSM 

(33.3% Black; 12.7% Hispanic/Latinx; and 8.4% White).145 

The calibrated PrEP uptake parameters are shown in Table 4.2. PrEP was introduced to 

the model in two stages over a five-year phase-in period. The first stage maintained the base 

network model parameters (i.e., without PrEP degree or sorting parameters) for one year, to 

allow PrEP use to increase steadily before substituting the network model parameters. This was 

necessary because the network models including PrEP parameters require >0% PrEP use in 

the population. The rate of PrEP initiation in the first stage was calibrated to reach a steady 

state of 20% PrEP use among PrEP-eligible MSM after 5 years, based on 2017 estimates of US 

MSM,11 if the simulations continued beyond 1 year. The second stage (years 2–5 of the PrEP 

phase-in) was repeated twice: once without PrEP sorting and once with PrEP sorting. The 

network model parameters were substituted at the beginning of year 2, using the network 
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models either with or without PrEP sorting. The PrEP initiation probabilities were calibrated to 

maintain an average of 20% PrEP coverage among PrEP-eligible MSM at the end of year 5.11 

The calibrated initiation probabilities also varied by main and casual partner degree, and 

quintiles of one-time partner rates, based on target statistics from ARTnet, and to maintain 

similar distributions between the scenarios. 
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Table 4.2. Calibrated probabilities for PrEP uptake based on individual initiation and 

partnership-dependent mechanisms 

       
  Without 

PrEP Sorting 
  

With 
PrEP Sorting 

 

Individual Initiation       
Overall Initiation Probability1  0.00479   0.00257  
       
Main Partner Degree2       

0  1.38   1.35  
1  0.75   0.7  
2  1.0   1.0  

       
Casual Partner Degree2       

0  0.82   0.77  
1  2.1   2.1  
2  2.3   2.5  
3  2.3   2.5  

       
One-time Partner Rate2,3       

0  0.3   0.05  
0.61  1.0   0.8  
2.22  1.2   2.75  
16.94  1.64   3.5  

       
Partnership-dependent PrEP       
Main Partners       

Initiation4  0   0.7  
Discontinuation5  0   0.7  

       
Casual Partners       

Initiation4  0   0.75  
Discontinuation5  0   0.5  

       
1Base probability of PrEP initiation per week, conditional on PrEP eligibility. 
2Multiplicative scalar for relative changes to the base initiation probability. 
3Based on quintiles of one-time partner rates (yearly); quintiles 1 and 2 each 

have a rate of 0 one-time partners and the same PrEP initiation probability. 
4Probability of initiating PrEP concordant with a persistent partner. 
5Probability of discontinuing PrEP concordant with a persistent partner. 
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The scenarios were simulated 500 times for 10 years each, following the initial five-year 

phase-in of PrEP. For each scenario, we tracked network outcomes, including mean degree by 

diagnosed HIV status and PrEP use status; HIV serosorting and PrEP sorting statistics (i.e., 

mixing matrices); and the overall prevalence of partnerships with each combination of 

diagnosed HIV status and PrEP use status. We also tracked HIV outcomes, including HIV 

prevalence at the end of 10 years; HIV incidence rates per 100 person-years at risk, overall and 

stratified by PrEP use; per-act probabilities of HIV transmission; and cumulative incidence over 

10 years, overall and for each combination of partnerships with concordant or discordant PrEP 

use and HIV diagnosis statuses. Cumulative incidence differences (CID) and relative cumulative 

incidence differences (RCID) were calculated by comparing cumulative incidence in the 

scenario with PrEP sorting to the reference scenario without PrEP sorting. The CID is the 

absolute difference between cumulative incidence in the scenario with PrEP sorting and the 

scenario without PrEP sorting. The RCID is the CID divided by the cumulative incidence without 

PrEP sorting. We summarized the results with the median values and 95% simulation intervals 

(SI) across all simulations. 

RESULTS 

Figure 4.1 compares mixing statistics in the referent scenario without PrEP sorting to the 

scenario with PrEP sorting (full numerical results presented in Appendix Table C.14). 

Assortative mixing among MSM with diagnosed HIV was similar to the ARTnet target statistics 

(Table 4.1) for main partners, but the magnitude of assortative mixing in casual partner 

networks (34.3% without PrEP sorting and 35.7% with PrEP sorting) was less than the target 

statistic (49.3%). At the same time, there was excess assortative mixing among MSM with 

diagnosed HIV in the one-time partner networks (55.6% without PrEP sorting and 58.8% with 

PrEP sorting) compared to the target statistic (46.1%). This means that there were more casual 

partnerships and fewer one-time partnerships with different diagnosed HIV statuses than the 
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target network statistics. The models with and without PrEP sorting were similar with respect to 

these differences. 

 

 

Legend: Ref = referent scenario without PrEP sorting; PS = PrEP sorting scenario; Values 

shown are median results across 500 simulations in each scenario 

  

Figure 4.1. Mixing statistics in scenarios with and without PrEP sorting, average over year 10 
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Assortative mixing among MSM using PrEP was 12.1% among main partners and 

24.1% among casual partners, in the scenario without PrEP sorting. These proportions 

increased to 46.9% for main partners and 43.7% for casual partners, in the scenario with PrEP 

sorting. These were similar to the target statistics of 45.3% and 41.0%, respectively. In both 

scenarios, assortative mixing for one-time partners (30.9%; no change between scenarios) was 

slightly less than the fraction estimated in ARTnet (33.3%). The increased assortative mixing 

among main and casual partners using PrEP was balanced by decreased mixing with MSM not 

using PrEP. There was no change to mixing with MSM with diagnosed HIV for main partners, 

while mixing decreased only slightly for casual partners (20.0% without PrEP sorting vs. 18.6% 

with PrEP sorting). Among MSM not using PrEP, there was an increase to assortative mixing in 

main (75.6% without PrEP sorting vs. 80.1% with PrEP sorting) and casual (51.6% without PrEP 

sorting vs. 57.3% with PrEP sorting) partnerships. Assortative mixing among one-time partners 

not using PrEP was 52.1% without PrEP sorting and 52.5% with PrEP sorting. Across 

partnership types and in both scenarios, assortative mixing among MSM not using PrEP was 

lower than the fraction estimated in ARTnet: 86.4% for main, 71.3% for casual, and 74.5% for 

one-time. 

 Figure 4.2 compares the scenarios with respect to the prevalence of partnerships with 

different combinations of diagnosed HIV status and PrEP use status (full numerical results 

presented in Appendix Table C.15). The number of main, casual, and one-time partnerships 

was similar across the two scenarios, due to fixed degree distributions (Appendix Table C.16). 

The prevalence of persistent partnerships concordant with PrEP use (i.e., the proportion out of 

all partnerships, stratified by type) was higher in the scenario with PrEP sorting compared to 

without (1.2% vs. 4.6% for main; and 5.0% vs. 9.0% for casual). Increased assortative mixing 

among MSM using PrEP results in fewer partnerships between MSM using PrEP and MSM not 

using PrEP (15.7% vs. 9.0% for main; and 23.0% vs. 15.4% for casual). There was also an 
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increase to the prevalence of partnerships between men not using PrEP (53.7% vs. 56.5% for 

main, and 26.9% vs. 29.5% for casual). Among casual partners, there was a small decrease to 

discordant partnerships between MSM using PrEP and MSM with diagnosed HIV (8.3% vs. 

7.6%) and corresponding increase to partnering between MSM not using PrEP and MSM with 

diagnosed HIV (27.5% vs. 28.4%). There was no similar change for main partnerships. Among 

one-time partners, there was a small decrease to the fraction of partnerships with different 

diagnosed HIV statuses (23.6% vs. 22.8%). 
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Legend: Panels A–C use a different y-axis scale than Panels D–F 

Figure 4.2. Prevalence of partnerships with different combinations of diagnosed HIV status and PrEP use 
status, stratified by partnership type, in scenarios with and without PrEP sorting 
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 Table 4.3 summarizes HIV outcomes across the two scenarios. The relative cumulative 

incidence difference shows that there were 2.4% more (95% SI: 10.3% less, 16.8% more) 

incident infections over 10 years in the scenario with PrEP sorting compared to without PrEP 

sorting. The final HIV prevalence, fraction diagnosed versus undiagnosed, and prevalence of 

PrEP use among PrEP-eligible MSM, was similar across the two scenarios. The median HIV 

incidence rate in year 10 was the same in both scenarios, although the 95% simulation interval 

indicates a slightly higher rate in the scenario with HIV sorting. Among all MSM susceptible to 

HIV acquisition, the HIV incidence rate per 100 person-years at risk was 0.84 (95% SI: 0.59, 

1.06) without PrEP sorting and 0.84 (95% SI: 0.63, 1.09) with PrEP sorting. However, there 

were diverging effects based on PrEP use. Among MSM not using PrEP, the trend was similar 

to overall incidence rates: 0.94 (95% SI: 0.66, 1.19) without PrEP sorting vs. 0.94 (95% SI: 0.71, 

1.21) with PrEP sorting. For MSM using PrEP, the HIV incidence rate was lower in the scenario 

with PrEP sorting: 0.16 (95% SI: 0.00, 0.49) without PrEP sorting vs. 0.09 (95% SI: 0.00, 0.41) 

with PrEP sorting. The per-act probability of HIV transmission in partnerships with different HIV 

statuses was the same in both scenarios (Appendix Table C.17) so differences in the HIV 

incidence rates are attributable to varying mixing in the networks. 
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Table 4.3. HIV incidence and prevalence outcomes in scenarios without versus with HIV 

pre-exposure prophylaxis (PrEP) sorting 

       
  Without PrEP 

Sorting 

  With PrEP 

Sorting 

 

       
  Median (95% SI)1   Median (95% SI)1  

       
PrEP Prevalence,2 %  19.7 (18.9, 20.5)   19.7 (18.8, 20.6)  

HIV Prevalence,3 %  20.0 (19.3, 20.7)   20.1 (19.4, 20.9)  

Diagnosed,4 %  89.0 (87.7, 90.5)   89.1 (87.8, 90.4)  

Undiagnosed,4 %  11.0 (9.5, 12.3)   10.9 (9.6, 12.2)  

Incidence Rate5       

Overall, 100-1 PYAR  0.84 (0.59, 1.06)   0.84 (0.63, 1.09)  

Not Using PrEP, 100-1 PYAR  0.94 (0.66, 1.19)   0.94 (0.71, 1.21)  

Using PrEP, 100-1 PYAR  0.16 (0.00, 0.49)   0.09 (0.00, 0.41)  

Cumulative incidence,6 N  832 (755, 906)   850 (777, 939)  

Relative Cumulative Incidence 

Difference,7 % 

    
2.4 (-10.3, 16.8) 

 

       1Median and 95% simulation interval over 500 simulations in each scenario 
2Among PrEP-eligible MSM, mean over year 10 
3HIV prevalence at the end of 10 years 
4Percent of all infections diagnosed versus undiagnosed, mean over year 10 
5HIV incidence per 100 person-years at risk, mean over year 10 
6Total infections over 10 years 
7Difference of the cumulative incidence in the scenario with PrEP sorting compared 

to without PrEP sorting, divided by cumulative incidence in the scenario without 

PrEP sorting, mean over 10 years 
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 Table 4.4 presents cumulative incidence stratified by attributes of the two partners. 

There were 20 more (95% SI: 92 less, 132 more) infections over 10 years, in the scenario with 

PrEP sorting compared to without PrEP sorting. Most incident infections, in both scenarios, 

occurred among MSM not using PrEP and were attributable to partners with diagnosed HIV. 

Cumulative incidence increased for partnerships in which both partners were without diagnosed 

HIV and not using PrEP (n = 8; 95% SI: -56, 69) and in partnerships in which one partner is not 

using PrEP and the other partner is with diagnosed HIV (n = 14; 95% SI: -55, 86). There were 

fewer infections attributable to partnerships in which one man is using PrEP and the other is not 

using PrEP (n = -4; 95% SI: -15, 7). 
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Table 4.4. HIV incidence over 10 years, overall and stratified by individual and partnership level attributes at the time of HIV 

transmission, in scenarios without and with PrEP sorting 

   Without PrEP Sorting   With PrEP Sorting  

   N1,2 %2,3   N1,2 %2,3 CID2,4  

Total 
  832 

(755, 906) 
---   

850 
(777, 939) 

--- 
20 

(-92, 132) 
 

PrEP Use, Susceptible Partner           

Not Using PrEP 
  814 

(737, 887) 
97.9 

(92.8, 100.0) 
  

832 
(764, 920) 

98.4 
(93.7, 100.0) 

21 
(-82, 129) 

 

Using PrEP 
  20 

(11, 29) 
2.1 

(0.0, 7.2) 
  

17 
(10, 28) 

1.6 
(0.0, 6.3) 

-2 
(-14, 10) 

 

Diagnosis Status, Partner with HIV           

With Diagnosed HIV 
  607 

(556, 657) 
73.4 

(61.0, 85.4) 
  

621 
(569, 673) 

74.3 
(60.6, 85.2) 

15 
(-57, 87) 

 

With Undiagnosed HIV 
  227 

(184, 275) 
26.6 

(14.6, 39.0) 
  

230 
(187, 277) 

25.7 
(14.8, 39.4) 

4 
(-62, 67) 

 

Partnership Level PrEP Use and HIV 
Diagnosis Status 

  
       

 

Not Using PrEP – Not Using PrEP 
  212 

(170, 256) 
24.7 

(13.6, 36.9) 
  

220 
(178, 264) 

24.6 
(14.3, 37.7) 

8 
(-56, 69) 

 

Not Using PrEP – Using PrEP 
  13 

(6, 22) 
1.2 

(0.0, 6.0) 
  

9 
(3, 18) 

0.6 
(0.0, 4.8) 

-4 
(-15, 7) 

 

Using PrEP – Using PrEP 
  0 

(0, 2) 
0.0 

(0.0, 0.0) 
  

0 
(0, 3) 

0.0 
(0.0, 0.8) 

0 
(-2, 3) 

 

Not Using PrEP – With Diagnosed HIV 
  594 

(542, 644) 
71.6 

(58.7, 84.4) 
  

608 
(557, 660) 

72.9 
(59.3, 83.2) 

14 
(-55, 86) 

 

Using PrEP – With Diagnosed HIV 
  12 

(6, 20) 
1.1 

(0.0, 5.6) 
  

12 
(6, 20) 

1.1 
(0.0, 5.5) 

0 
(-10, 10) 

 

           1Median and 95% simulation interval across 500 simulations of each scenario; 2Cumulative incidence over 10 years; 3Fraction of 
all incident infections; 4Cumulative incidence difference in simulations with PrEP sorting vs. without PrEP sorting 
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DISCUSSION 

In this study, we projected a minor increase to HIV incidence when MSM who use PrEP are 

clustered in the sexual network due to assortative mixing. However, the results were widely 

variable, and incidence decreased in many simulations. The magnitude of effect was not large 

enough to explain gaps between the predicted and observed population-level impact of PrEP. 

However, analyses of the mechanisms contributing to transmission dynamics provide support 

for our hypothesis that assortative mixing among MSM who use PrEP may contribute to 

sustained HIV incidence despite increased PrEP coverage among MSM in the US. Our model 

demonstrates that individual and partnership-level decisions among MSM who use PrEP can 

impact transmission dynamics by varying opportunities for primary and secondary prevention. 

 Despite the minor impact of PrEP sorting on HIV incidence in our model, we presented 

mechanisms by which network-level factors may influence the population benefit of PrEP. We 

showed that assortative mixing among MSM who use PrEP results in decreased HIV incidence 

in this group (analogous to herd immunity of vaccines). At the same time, concentration of PrEP 

in fewer partnerships caused HIV incidence to increase among MSM not using PrEP – yielding 

a net increase to cumulative incidence in the population. The magnitude of assortative mixing 

among MSM not using PrEP was lower in our model, compared to the target statistics, because 

we were unable to model serosorting in persistent partnerships or modify the sorting 

mechanisms in one-time partnerships. Therefore, we may have underestimated excess 

transmission in the group of MSM not using PrEP, along with the net negative influence of PrEP 

sorting on transmission dynamics. Previous mathematical models have explored the varying 

impact of PrEP on HIV incidence depending on individual-level factors, including which PrEP-

eligible MSM are using PrEP,91,116,130,133,146 and PrEP-mediated sexual behavior 

changes,125,132,147 while other models have explored various systems-level factors, including 

PrEP care delivery models and combination prevention packages.15,92,132,148 This study adds to 
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the literature by demonstrating the potential role of network-level factors in further limiting the 

population benefit of PrEP. 

Prior models of mixing among MSM have explored the impact of HIV serosorting, but not 

PrEP sorting. A recent modeling study of MSM in Canada found a minor decrease to the 

population benefit of PrEP if MSM who use PrEP discontinue HIV serosorting following PrEP 

initiation,125 due to increased partnering between MSM with diagnosed HIV and MSM using 

PrEP. Wang et al employed a partnership balancing mechanism in which the overall number of 

partnerships was fixed, so decreased HIV serosorting among MSM using PrEP caused 

cascading effects in the population. These effects included increased assortative mixing among 

MSM not using PrEP, with a corresponding increase to infections attributable to these 

partnerships. Although the research question was different (the Wang model explored HIV 

serosorting, while our model explored PrEP sorting) these two studies highlight related 

phenomena of nonrandom mixing among MSM. Both models have limitations. Wang et al used 

a deterministic compartmental model, which facilitated successful implementation of the 

partnership balancing mechanism; however, models of this kind are not individual based, so 

many of the complex factors which influence transmission dynamics were not represented (e.g., 

individual variation in sexual behavior). Our model was more complex, but we were unable to 

vary mixing with the same degree of success. The net effect was small in both studies, but 

serosorting and PrEP sorting decisions may interact to produce a larger impact on HIV 

transmission dynamics. Future research should explore the combined effect of these 

phenomena. 

Our model was part of a broader set of questions about which MSM are using PrEP. 

Following others,15,116 we allocated PrEP by first identifying which MSM are PrEP-eligible based 

on CDC indications.9 However, there are multiple ways that MSM may be indicated for PrEP, so 

individual risk and location in the sexual network are variable among PrEP-eligible MSM.149 For 
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example, some PrEP-eligible MSM have more than one concurrent partner of unknown HIV 

status, while others may be in a monogamous partnership with a partner living with diagnosed 

HIV. Uptake of PrEP varies based on which indications establish eligibility, and some MSM who 

report PrEP use are not considered eligible based on CDC indications.11 We partially accounted 

for this variability by allocating PrEP according to degree estimates from ARTnet. However, we 

did not model other differences, including increased uptake among MSM with main or casual 

partners living with HIV. A future model should build on our work modeling assortative mixing 

among MSM who use PrEP, by exploring other ways that PrEP coverage varies in the network.  

LIMITATIONS 

There are several important limitations to our model. First, as discussed earlier, we were unable 

to calibrate the model to estimated serosorting patterns in the population. This means that our 

model underestimated the number of partnerships concordant without PrEP use. We also did 

not model other ways that mixing varies (e.g., the interaction of PrEP use status and HIV 

serosorting). Our future work will include a model of HIV serosorting, to further explore the role 

of variable population mixing. Second, we modeled PrEP coverage based on degree and 

mixing, so we were unable to also stratify by race/ethnicity and age. This would require 

increasing the population size, with a trade-off of increased computation time required to 

complete the simulations. PrEP sorting may impact communities differently, due to disparities in 

HIV incidence and PrEP coverage, so these are important factors to explore in a future model. 

Third, we modeled concordant PrEP use in persistent partnerships using probabilities selected 

during calibration. This mechanism could be improved with empiric estimates of coordinated 

decision making in main and casual partnerships. Finally, our estimate of PrEP sorting was 

based on a sensitivity analysis of the ARTnet data. We used the median results from this 

analysis, but it is possible that there was residual bias. We did not vary the magnitude of PrEP 

sorting (e.g., by using the lower and upper values of the 95% simulation interval from the 
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sensitivity analysis) because of the challenges of calibrating the model to HIV serosorting and 

imposing further PrEP sorting. The mechanisms presented with the current model are unlikely to 

vary with different estimates of mixing, but the magnitude of effect may be different than 

projected. 

CONCLUSIONS 

The federal “Ending the HIV Epidemic” initiative calls for increased PrEP use to decrease HIV 

incidence by 90% in the next decade, but there has yet to be empiric evidence supporting PrEP 

impact at the population level. In the present study, we explored the potential role of network 

clustered PrEP in limiting the population benefit of PrEP. The overall effect in our model was 

small. However, assortative mixing among MSM who use PrEP might be just one factor among 

several which decrease the efficiency of PrEP coverage in the sexual network. A future model 

should build on our work by exploring the interaction of multiple network-level factors. 
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Chapter 5. Conclusions and Public Health Implications 

The goal of this dissertation was to explore the potential impact of HIV serosorting and 

assortative mixing among MSM who use PrEP on the population benefit of PrEP. Reinvigorated 

efforts to end the HIV epidemic in the US rely heavily on PrEP as a core component of a 

broader strategy to decrease HIV incidence by 90% by 2030.16 Clinical trials show that PrEP 

can reduce individual risk by 99%.6,8 Approximately 20% of PrEP-eligible MSM used PrEP in 

2017.11 Mathematical models suggest that HIV incidence could decrease by 20% over 10 years 

at 2017 coverage levels,12–15 yet ecological estimates of PrEP coverage and HIV diagnoses 

among MSM have found limited impact.17,18 There are likely many factors contributing to gaps 

between the observed and predicted HIV epidemic trajectory. Public health efforts have 

centered on improving overall PrEP coverage and effective use in the population, and 

decreasing demographic disparities along the PrEP continuum of care. However, PrEP 

coverage may be unequal in the sexual network beyond levels expected based on demographic 

disparities. 

Assortative mixing among MSM who use PrEP could produce clusters of PrEP use in 

the sexual network, which we hypothesized would decrease opportunities for primary and 

secondary prevention, compared to counterfactual scenarios with less clustered PrEP, and 

decrease the overall population benefit of PrEP. In the current studies, we estimated mixing 

statistics for the interaction of diagnosed HIV status and PrEP use in the sexual networks of 

MSM. We used these statistics to estimate and simulate cross-sectional sexual networks of 

MSM in the US, to quantify the magnitude of excess HIV serosorting and PrEP sorting beyond 

the levels expected based on other network properties. Finally, we used a network-based model 

of HIV transmission to estimate the impact of assortative mixing among MSM who use PrEP on 

the population benefit of PrEP. In this chapter, we review the findings of this dissertation and 

discuss innovations, public health implications, and future directions. 
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Review of major findings 

 In Chapter 2, we estimated HIV serosorting and PrEP sorting patterns among MSM in 

the US, using a 2017–2019 egocentric sexual networking study. Respondents reported their 

own attributes, as well as sexual and medical history, including HIV status and PrEP use. The 

respondents also served as proxies to report information about their recent sexual partners. 

Mixing matrices estimated with egocentric data are vulnerable to information bias, due to 

incomplete respondent knowledge.68,71,72 We used a reclassification sensitivity analysis to 

minimize information bias and compared the results to a complete-case analysis.  

We found strong evidence of preferential partnering across analytical approaches. The 

reclassification analysis showed concordance among MSM with diagnosed HIV (39.3%) and 

among MSM who used PrEP (31.9%) and MSM who had not used PrEP (82.6%). The fraction 

of partners with diagnosed HIV was higher among MSM who used PrEP (11.1%) compared to 

MSM who had not used PrEP (3.7%). Comparatively, the complete-case analysis overestimated 

the fractions of partners with diagnosed HIV or partners who used PrEP, across all strata, and 

underestimated partners who had not used PrEP. This is because of our assumption that MSM 

with diagnosed HIV and MSM who use PrEP are more likely to discuss their HIV status and 

PrEP use with sexual partners, compared to MSM without diagnosed HIV and not using PrEP. 

Our analysis provides a recent estimate of HIV serosorting and PrEP sorting among MSM, 

which is supported by previous estimates in the literature.62,64,65 Quantitative estimates vary 

across studies, which is to be expected given varying prevalence of diagnosed HIV and PrEP 

use in the underlying populations. However, our results show that differences in analytical 

decisions surrounding incomplete or misclassified data can bias results. We concluded that 

complete-case analyses of PrEP sorting likely overestimate assortative mixing. 

In Chapter 3, we estimated and simulated cross-sectional sexual networks of MSM in 

the US. Exponential random graph models (ERGMs) were fit to egocentric summary statistics, 
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weighted to the demographics of MSM in the US. Model parameters from the fit models were 

used to simulate cross-sectional networks. We estimated models fully parameterized to the 

observed network data, including summary statistics for degree heterogeneity, assortative 

mixing by race/ethnicity and age, and full mixing matrices for the interaction of diagnosed HIV 

status and PrEP use. We compared fully saturated model parameterizations to less saturated 

parameterizations to elucidate the mechanisms generating the observed HIV and PrEP mixing 

statistics. 

We estimated that 45% of all persistent partnerships and 24% of one-time partnerships 

among MSM are between men without diagnosed HIV and not using PrEP. Models based on 

degree heterogeneity and assortative mixing within demographic groups accounted for only 70–

80% of these partnerships. The excess partnering among MSM not using PrEP is due to 

assortative mixing among MSM who use PrEP and among MSM with diagnosed HIV. Our 

models provide evidence for inefficient network coverage of PrEP, which may partially explain 

sustained incidence despite increasing PrEP use over time.11,17,18 The US EHE initiative aims to 

decrease HIV incidence by expanding PrEP use,16 but our results show that PrEP coverage in 

sexual networks can vary depending on which PrEP-eligible MSM are using PrEP. We propose 

using network coverage as an additional metric to measure progress, as policies continue to 

focus on increased PrEP use in the population. Maximizing network coverage can be achieved 

by targeting PrEP to MSM with more partners, but our results show that assortative mixing 

among MSM who use PrEP can undermine this strategy. Efforts should prioritize expanding 

PrEP use outside the population subgroups where it is already concentrated. 

In Chapter 4, we used a network-based model of HIV transmission dynamics among 

MSM to estimate the impact of assortative mixing among MSM who use PrEP. The model was 

developed to represent observed patterns of PrEP use in our target population of MSM in 

Atlanta, including 20% coverage among PrEP-eligible MSM. We allocated PrEP based on 
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degree estimates by partnership type, so that MSM using PrEP had more casual and one-time 

partners, on average, than MSM not using PrEP. We compared models with and without PrEP 

sorting for differences in HIV incidence and network structure, to test the hypothesis that 

network clustering of PrEP decreases the population benefit of PrEP. 

Our model projected a minor increase to HIV incidence when MSM who use PrEP are 

clustered in the sexual network. Compared to the model without PrEP sorting, there were 2.4% 

more incident infections over 10 years in the model with PrEP sorting. However, the results 

were variable and incidence was lower in some simulations (95% simulation interval: 10.3% 

less, 16.8% more). The excess incidence was attributable to increased partnering between 

MSM not using PrEP, and partnering between MSM not using PrEP and MSM with diagnosed 

HIV. The overall effect was relatively minor, but analyses of the mechanisms involved support 

our hypothesis that assortative mixing among MSM who use PrEP decreases the population 

benefit of PrEP by concentrating its use in fewer partnerships. Our model also showed that 

PrEP sorting decreases the HIV incidence rate among MSM who use PrEP, even though overall 

incidence is greater than the scenario without PrEP sorting. This is because assortative mixing 

among MSM who use PrEP decreases exposure to HIV (either diagnosed or undiagnosed) for 

these men. This further supports our hypothesis that clustering of PrEP use in the sexual 

network increases the prevention benefit for MSM using PrEP, while decreasing opportunities 

for primary and secondary prevention throughout the network. 

Innovations 

 This dissertation represents a number of innovations, both with respect to methodology 

and HIV prevention more broadly. First, we estimated HIV serosorting and PrEP sorting patterns 

among MSM in the PrEP and U=U era. There has been decades of research summarizing HIV 

serosorting among MSM.60 More recently, studies have described the newer phenomenon of 

PrEP sorting.62,64,65 The reported outcomes, mixing matrices, are relatively simple summary 
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statistics. Nevertheless, valid estimation of these matrices is not a simple task, due to bias that 

is introduced when respondents are unable to accurately report information about their sexual 

partners, as is the case for HIV status and PrEP use. Bias of this kind threatens the validity of 

HIV serosorting and PrEP sorting estimates obtained by egocentric study design. Our 

reclassification sensitivity analysis is a novel approach to addressing information bias in mixing 

matrices and other network statistics. The method can be improved by estimating bias 

parameters with a validation sub-study to the main sample. For example, a small portion of the 

sample (e.g., 10%) could be selected to refer their sexual partners to participate in the study. 

The records would be linked, in order to assess the ego-reported information for accuracy. The 

results of such analyses could serve as bias parameters for a reclassification model. This would 

substantially reduce uncertainty in the results and researchers could use simpler reclassification 

mechanisms. We propose routine collection of validation data for egocentric studies of hard-to-

report information, such as a sexual partner’s HIV status and PrEP use. We present our current 

work as evidence of the substantial impact of bias and as a guide for reclassification methods. 

Second, we used network models to estimate PrEP coverage in the sexual networks of 

MSM. The most common metric to summarize PrEP coverage uses individuals (e.g., PrEP-

eligible MSM) as the denominator. For example, 20% of PrEP-eligible MSM used PrEP in 

2017.11 Increasing PrEP coverage among MSM is a central goal of the US “Ending the HIV 

Epidemic” initiative,16 but population-level analyses of PrEP impact have not found a substantial 

effect of decreased HIV incidence as PrEP coverage has increased.17,18 Our analyses show that 

PrEP coverage in the sexual network may vary, even if coverage in population remains fixed, 

which could mediate the casual relationship between PrEP coverage in the population and HIV 

incidence. Network coverage depends on coverage in the population, but also varies based on 

degree distributions and mixing patterns. Coverage in the population is both intuitive and simple 

to calculate, but coverage in the network may be more proximal to prevention outcomes. We 
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present network coverage as a new metric to monitor public health progress, to evaluate the 

population-level association between PrEP coverage and HIV incidence, and to define targets 

for increased PrEP use. 

Third, our analysis is the first to use network estimation and simulation analyses to 

elucidate the mechanisms generating the observed patterns of HIV serosorting and PrEP 

sorting among MSM. We showed that network coverage of PrEP increases if PrEP is used by 

MSM with higher degree, but this benefit can be partially offset by assortative mixing which 

produces clusters of PrEP use. We also found that only 70–80% of concordant partnering 

among MSM not using PrEP is attributable to degree heterogeneity and demographic mixing. 

This means that increasing PrEP coverage in the sexual network will require a mixed strategy of 

targeting MSM with more partners and MSM outside of existing clusters. 

Fourth, we used a mathematical model of HIV to provide the first estimates of the 

population-level impact of assortative mixing among MSM who use PrEP. The model was 

adapted from a previously published model of HIV transmission among MSM in Atlanta,13,15,36 

and includes a number of new features. The model is network-based, so we varied mixing by 

substituting the parameters governing the dynamic network. This required multiple versions of 

the network parameterizations. We adapted the Krivitsky150 method for adjusting the network 

parameters to the population size (which typically occurs automatically at each time-step) for 

seamless substitution of the network parameters to the existing network structure. Population 

mixing is influenced by degree distributions, so we included network parameters for degree 

heterogeneity by diagnosed HIV status and PrEP use. Prior studies have used a fixed nodal 

attribute (“risk group”) to model a skewed distribution of one-time partner rates in the population; 

we modified this mechanism so that one-time partner rates could change over time (i.e., 

individual nodes could change “risk groups”) so that mean rates by group remain stable. 

Network parameters govern partnership formation and dissolution, but HIV and PrEP 
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concordance can change over time within persistent partnerships, due to HIV transmission (or 

diagnosis) and intermittent PrEP use. Therefore, we also modified the mechanisms to allocate 

PrEP among PrEP-eligible MSM. Following prior models,13,15 we used an overall initiation 

probability to vary the rate of PrEP uptake and calibrated overall coverage to 20% among PrEP-

eligible MSM. In this process, we varied PrEP initiation based on main, casual, and one-time 

partner degree, and calibrated these probabilities so that degree distributions were the same for 

the models with and without PrEP sorting. We modeled coordinated decision making in 

persistent partnerships by incorporating a partner-dependent mechanism for PrEP initiation and 

discontinuation. These mechanism can be used in future research to vary PrEP coverage in the 

sexual network. Finally, we assessed the mechanisms contributing to increased HIV incidence 

by tracking network propertied over time and attributing incident infections to partnerships with 

different combinations of diagnosed HIV status and PrEP use. 

Relevance and public health impact 

The advent of both PrEP and U=U, with major clinical trials published in 2010 and 

2011,4,6 respectively, was a paradigm shift for HIV prevention. A decade later, however, we 

have yet to observe the predicted decrease in HIV incidence among MSM following increased 

PrEP use.17,18 Myriad factors contribute to HIV transmission dynamics. Public health efforts 

have prioritized individual (e.g., awareness) and systems-level (e.g., normative guidelines 

defining PrEP indications) factors of the PrEP care continuum. The goal of these efforts is to 

increase effective PrEP use among MSM at risk for HIV acquisition and limit transmission in the 

population. This dissertation investigated the role of assortative mixing among MSM who use 

PrEP, a network-level factor, as an additional mechanism contributing to sustained HIV 

incidence among MSM. We demonstrated that network coverage of PrEP can vary depending 

on which PrEP-eligible MSM are using PrEP, which may undermine prevention efforts despite 

increased PrEP coverage in the population. 
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Our models of HIV transmission predicted a relatively small effect of PrEP sorting on 

decreasing the population-level HIV prevention benefit of PrEP. However, the mechanisms 

presented support our hypothesis that network clustering decreases PrEP impact at the 

population level. One implication of these findings is that interventions to increase PrEP 

coverage should be designed to maximize PrEP coverage in the network. The US EHE already 

prioritizes specific communities of MSM, defined by demographic attributes and geography, for 

interventions to increase PrEP access and use.16 These efforts, if successful, are likely to 

increase PrEP coverage in the network, but progress may be slow and inefficient without 

concerted effort to deliver PrEP outside of the community clusters where it is already 

concentrated. It will be challenging to target interventions to individuals based on their location 

in the sexual network (which is unobservable in practice) but strategies exist to leverage 

networks (both sexual and social) for targeted diffusion of interventions.151 Alternatively, existing 

public health systems for HIV screening can be used for PrEP delivery. For example, individuals 

newly diagnosed with HIV are referred to contact tracing systems to identify sexual partners for 

HIV screening. This is a convenient way to identify MSM who may be located in the sexual 

network where PrEP use is sparse. Screening remains a priority, but negative results should be 

followed by linkage to PrEP services. Finally, normative guidelines, such as CDC guidance for 

PrEP prescribing,9 can incorporate partner PrEP use in algorithms to assess risk and define 

indications. 

This dissertation also has implications for mathematical modeling of PrEP. Previous 

models have explored the varying impact of PrEP on HIV incidence depending on individual-

level factors, including which PrEP-eligible MSM are using PrEP,91,116,130,133,146 and PrEP-

mediated sexual behavior changes,125,132,147 while other models have explored various systems-

level factors, including PrEP care delivery models and combination prevention 

packages.15,92,132,148 Our results show that PrEP impact can also vary depending on mixing, as 
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well as modelling decisions about which PrEP-eligible MSM are using PrEP. The magnitude of 

effect was small, but we were unable to fully model the observed network structures. Our work 

can be extended, so that PrEP sorting patterns are routinely built into models of PrEP impact. 

This is important to investigate the role of network-level factors in mediating the causal 

relationship between PrEP coverage in the population and HIV incidence. 

Future Directions 

 Our work has generated a number of new research questions which warrant 

investigation. First, assortative mixing among MSM who use PrEP is just one way that PrEP 

coverage varies in the network. Our analyses show that coverage also varies by degree and the 

full mixing pattern of diagnosed HIV status and PrEP use. We focused on assortative mixing 

among MSM who use PrEP, because of the overarching hypothesis for this dissertation, but our 

future work will explore the independent and combined impact of other network-level factors. 

We will begin by re-calibrating the base model to cross-sectional estimates of HIV serosorting, 

which will increase assortative mixing among MSM without diagnosed HIV. We will then vary 

PrEP coverage based on our mean degree estimates and the full mixing pattern of HIV and 

PrEP. Second, we modeled PrEP allocation among PrEP-eligible MSM based on CDC 

guidelines for PrEP indications,9 but a recent study shows that some MSM who use PrEP are 

not considered PrEP-eligible.11 As we continue to model network coverage of PrEP, it will be 

important to account for these men and understand their place in the sexual network. Third, we 

did not vary PrEP coverage based on race/ethnicity or age. It will be important to explore how 

network-level factors interact with demographic disparities in PrEP coverage to reinforce 

unequal HIV burden in the population. This will require a larger simulated population (e.g., 

beginning with 25,000 nodes instead of 10,000) so that we can vary PrEP use by more factors. 

 Fourth, our reclassification sensitivity analysis to estimate HIV serosorting and PrEP 

sorting with egocentric sexual network data used parameters (i.e., assumptions about sensitivity 
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and specificity) derived from external literature sources and expert knowledge. Future studies 

should collect validation sub-study data. For example, egos would be surveyed as usual (i.e., 

self-report their own information and serve as a proxy to report information about sexual 

partners) then refer their sexual partners to participate in the study. The records would be linked 

and compared for accuracy. The results of this analysis could be used to parameterize a 

reclassification model. This would decrease uncertainty by tying the bias parameters to the 

parent study. This would also enable researchers to use a simpler reclassification model with 

direct estimates of information bias (opposed to indirect assumptions about knowledge within 

sexual partnerships). As technology evolves, it is also possible to mail HIV screening kits to sub-

study participants, in order to estimate the prevalence of undiagnosed HIV in the population and 

verify self-reported data. Finally, the sub-study could generate other network statistics, such as 

mixing with respect to degree (e.g., the tendency of MSM with many partners to partner with 

MSM who have few partners) which may influence overall network structure and HIV 

transmission dynamics. 

 Finally, this dissertation was focused on HIV prevention, but other sexually transmitted 

infections (STIs) are transmitted along the same sexual networks. A prior model showed that 

PrEP could act to decrease bacterial STI incidence, because clinical practice guidelines call for 

quarterly screening which would decrease the prevalence of asymptomatic and undiagnosed 

infections.9,152 However, this effect could be undermined by PrEP sorting, if bacterial STIs 

proliferate rapidly within dense clusters of PrEP use and emanate outward to other regions of 

the sexual network where MSM are not using PrEP (and screening for STIs may be less 

frequent on average). Future models of bacterial STIs should explore these dynamics as a 

hypothesis for increasing incidence among MSM. 
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Appendix A. Chapter 2 Technical Supplement 

 

General approach 

We used multiple imputation with exponential-tilt models to stochastically reclassify the 

ego-reported alter HIV status and PrEP use.110 The method uses multiple imputation techniques 

from the missing data literature to estimate a joint probability distribution of the ego-reported 

data. Predictive probabilities for each observation (ego-reported known and unknown) are 

drawn from the posterior distribution of the model parameters. The probabilities are then 

adjusted based on assumptions about the sensitivity and specificity of the ego-reported data. 

Finally, new values are imputed for each alter using the adjusted probabilities. The approach is 

similar to probabilistic methods used to correct misclassification.115 However, the imputation 

model is used to estimate which observations are likely candidates for reclassification. This is 

especially useful for the observations initially reported unknown. The process is repeated 

multiple times to allow for random variation, for a total of M = 300 datasets. We completed the 

process in two stages: first to reclassify alter HIV status and second to reclassify PrEP use for 

alters without diagnosed HIV.  

Reclassification model 

We define 𝑌 as the unobserved alter-reported outcome (e.g., HIV diagnosis status) for 

the 𝑖th ego and 𝑗th alter. We consider modeling 𝑌 as a function of 𝑋, a fully-observed 

exposure (e.g., the 𝑖th ego’s HIV diagnosis status), and 𝒁, a set of fully-observed covariates, 

𝑃(𝑌 = 𝑦|𝑋 = 𝑥 , 𝒁 = 𝒛). This probability is inestimable with standard egocentric data. 

Instead, we specify an imputation model with the ego-reported 𝑌
∗  to estimate 𝑃(𝑌

∗ = 𝑦
∗ |𝑋 =

𝑥 , 𝒁 = 𝒛). Egocentric data typically include multiple observations (i.e., alters) for each ego, so 

the imputation model must account for correlated outcomes. In the present analysis, we used 
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Bayesian multilevel regression with integrated nested Laplace approximation (INLA).111 The 

models used random intercepts for each ego to account for correlation among alters. The 

Bayesian approach allowed us to use the observations with known values in the response, to 

estimate a predictive distribution for the observations with unknown values.153 

We can relate 𝑃(𝑌
∗ = 𝑦

∗ |𝑋 = 𝑥 , 𝒁 = 𝒛) to 𝑃(𝑌 = 𝑦|𝑋 = 𝑥 , 𝒁 = 𝒛) with the 

following equation110: 

 𝑃(𝑌 = 1|𝑋 = 𝑥 , 𝒁 = 𝒛) =
𝑃(𝑌

∗ = 1|𝑋 = 𝑥 , 𝒁 = 𝒛) + 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦
∗ , 𝒛൯ − 1

𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ + 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦

∗ , 𝒛൯ − 1
 (1) 

Equation (1) is derived from methods to adjust aggregate cell counts of misclassified prevalence 

estimates using the sensitivity and specificity of the classification mechanism.154 Here, we apply 

the equation to individual-level data and allow the sensitivity and specificity to vary based on 𝑥, 

𝑦
∗  and 𝒁. We define the sensitivity, 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦

∗ , 𝒛൯ = 𝑃(𝑌
∗ = 1|𝑌 = 1, 𝑋 = 𝑥 , 𝒁 = 𝒛), and 

specificity, 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦
∗ , 𝒛൯ = 𝑃(𝑌

∗ = 0|𝑌 = 0, 𝑋 = 𝑥 , 𝒁 = 𝒛). In other words, the sensitivity is 

the probability that the ego-reported values is 1, given that the alter would have reported 1, 

conditional on the covariates 𝑥 and 𝒁. Similarly, the specificity is the probability that the ego-

reported value is 0, given that the alter would have also reported 0. Larger 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ will 

decrease 𝑃(𝑌 = 1|𝑋 = 𝑥 , 𝒁 = 𝒛), relative to 𝑃(𝑌
∗ = 1|𝑋 = 𝑥 , 𝒁 = 𝒛); whereas larger 

𝑆𝑝𝑒𝑐൫𝑥 , 𝑦
∗ , 𝒛൯ will increase 𝑃(𝑌 = 1|𝑋 = 𝑥 , 𝒁 = 𝒛). As a binomial probability, 𝑃(𝑌 = 1|𝑋 =

𝑥 , 𝒁 = 𝒛) is constrained by [0, 1], so 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ and 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦

∗ , 𝒛൯ are also constrained: 

 1 − 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦
∗ , 𝒛൯ < 𝑃(𝑌

∗ = 1|𝑋 = 𝑥 , 𝒁 = 𝒛) < 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ (2) 

It can be challenging to supply values for all strata of 𝑥, 𝑦
∗  and 𝒁, especially if high-

dimensional, while also satisfying Equation (2) for varying 𝑃(𝑌
∗ = 1|𝑋 = 𝑥 , 𝒁 = 𝒛) estimated 
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for each observation. As a simplification, we can reduce the parameter set and specify target 

values for sensitivity and specificity based on important strata of 𝑥, 𝑦
∗  and 𝒁. 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦

∗ , 𝒛൯ 

and 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦
∗ , 𝒛൯ are then varied using exponential-tilt models. 

Exponential-tilt model 

Exponential-tilt models are used in the missing data literature when data are missing not 

at random and researchers must specify the mechanism for selection, which may vary for strata 

of the outcome, exposure, or covariates. Exponential-tilt models can be used to “tilt” (i.e., vary) 

𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ and 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦

∗ , 𝒛൯ based on 𝑥, 𝑦
∗  and 𝒁. The exponential-tilt model for 

misclassification is as follows: 

 

𝑃൫𝑌
∗ = 𝑦

∗ ห𝑌 = 𝑦 , 𝑋 = 𝑥 , 𝒁 = 𝒛൯ = 

𝑃(𝑌
∗ = 𝑦

∗ | 𝑋 = 𝑥 , 𝒁 = 𝒛)𝑒(௬,௬∗)

𝑃(𝑌
∗ = 0| 𝑋 = 𝑥 , 𝒁 = 𝒛)𝑒(௬,) + 𝑃(𝑌

∗ = 1| 𝑋 = 𝑥 , 𝒁 = 𝒛)𝑒(௬,ଵ)
 

(3) 

The parameter 𝑞(𝑦, 𝑦∗) is used to vary 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ and 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦

∗ , 𝒛൯. The 

parameters 𝑞(1,1) and 𝑞(0,0) relate to the sensitivity and specificity, respectively, and 𝑞(1,0) = 

𝑞(0,1) = 0. Conveniently, if 𝑞(1,1) > 0 and 𝑞(0,0) > 0, then 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ and 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦

∗ , 𝒛൯ 

can vary without violating Equation (2).  

The parameters 𝑞(1,1) and 𝑞(0,0) are not immediately intuitive, but can be defined using 

target values for sensitivity and specificity, 𝑆𝑒𝑛𝑠்௧ and 𝑆𝑝𝑒𝑐்௧, respectively, and a 

median value of 𝑃(𝑌
∗ = 𝑦

∗ | 𝑋 = 𝑥, 𝒁 = 𝒛), denoted 𝜋. The parameters 𝑞(1,1) and 𝑞(0,0) relate 

to 𝑆𝑒𝑛𝑠்௧, 𝑆𝑝𝑒𝑐்௧, and 𝜋, with the following equations: 

 𝑆𝑒𝑛𝑠்௧ =
𝜋𝑒(ଵ,ଵ)

(1 − 𝜋) + 𝜋𝑒(ଵ,ଵ)
 (4) 
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 𝑆𝑝𝑒𝑐்௧ =
(1 − 𝜋)𝑒(,)

(1 − 𝜋)𝑒(,) + 𝜋
 (5) 

Equations (4) and (5) can be rearranged to solve for the parameters: 𝑞(1,1) =

𝑙𝑜𝑔𝑖𝑡൫𝑆𝑒𝑛𝑠்௧൯ − 𝑙𝑜𝑔𝑖𝑡(𝜋) and 𝑞(0,0) = 𝑙𝑜𝑔𝑖𝑡൫𝑆𝑝𝑒𝑐்௧൯ + 𝑙𝑜𝑔𝑖𝑡(𝜋). Researchers can then 

vary 𝑆𝑒𝑛𝑠்௧ and 𝑆𝑝𝑒𝑐்௧ based on 𝑦
∗ , 𝑥 and 𝒛 to obtain stratum specific values for 𝑞(1,1) 

and 𝑞(0,0). Used with Equation (3), the parameters provide unique values of 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ 

and 𝑆𝑝𝑒𝑐൫𝑥 , 𝑦
∗ , 𝒛൯ for each observation to satisfy Equation (2). 

Specifying reclassification parameters 

 There are multiple approaches to parameterization of the reclassification model, 

depending on data availability, purpose of the analysis, and strength of the assumptions.110 

Gold-standard methods to correct for misclassification require a validation sub-study or external 

validation data to quantify the magnitude of potential bias and estimate parameters for 

reclassification.115 When validation data are unavailable or imperfect, researchers may specify 

parameter estimates (or a range of estimates) based on plausible values from the literature or 

expert opinion, or calibrated to reach some pre-specified target prevalence. Alternatively, the 

target values may represent extreme scenarios (maximum and minimum possible values) to 

demonstrate the robustness of the effect estimate; however, extreme scenarios can be 

uninformative if the goal is to reduce bias in the estimate. Therefore, we specified target values 

representing a range of plausible values obtained from a review of the published literature, a 

validation dataset, and calibration of the model to the data. We assigned a uniform distribution 

to vary each parameter stochastically and drew a complete set of parameters for each of the 

𝑀 = 300 reclassification datasets. Other probability distributions (e.g., beta distribution) may 

better describe the shape and magnitude of variability, but we used uniform distributions to 



118 

reflect uncertainty without validation data. We used an algorithm to ensure larger or smaller 

values depending on strata of 𝑥, 𝑦
∗  and 𝒁. 

Reclassification of alter HIV status 

The expected prevalence of diagnosed HIV among alters was 9.9%, based on the 

prevalence among egos standardized to the age, race, ethnicity, and geographic distribution of 

alters. We first specified an imputation model for the joint binomial probability distribution of ego-

reported alter HIV status (diagnosed HIV vs test-negative). From the posterior distribution of the 

model, we randomly drew 300 sets of linear predictors for each observation (known and 

unknown) and transformed each with the inverse-logit function to obtain binomial predictive 

probabilities. We then drew 300 sets of reclassification parameters and adjusted the predictive 

probabilities using Equation (3). We then imputed 300 sets of new values using Equation (1). 

We retained each dataset to reclassify alter PrEP use and for final analysis of the data. Results 

of the reclassification model (Appendix Table 3) were similar to the expected prevalence of 

diagnosed HIV. 

Imputation model 

We specified an imputation model for the joint binomial probability distribution of ego-

reported alter HIV status (diagnosed HIV vs test-negative) using Bayesian regression with INLA. 

The models included a random intercept for each ego. We modeled as fixed effects the alter 

demographics (age group, race/ethnicity, and the interaction of age group and race/ethnicity), 

ego demographics (age group, race/ethnicity, and the interaction of age group and 

race/ethnicity), ego HIV status (diagnosed HIV, test-negative, or HIV unknown) and PrEP use 

(ever or never), partnership type, and location. We also modeled the three-way interaction of 

partnership type with ego HIV status and PrEP use to allow ego-alter mixing patterns to vary by 

partnership type. From the posterior distribution of the model, we randomly drew 300 sets of 
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linear predictors for each observation (known and unknown) and transformed each with the 

inverse-logit function to obtain binomial predictive probabilities. 

Reclassification parameters 

We varied the sensitivity and specificity parameters stochastically, drawing a new set for 

each of the 300 datasets. A 2011–2013 study chain-sampled MSM to compare ego-reported 

alter HIV status to alter self-report.72 Overall, the study showed 98.6% specificity (combined 

test-negative and HIV unknown) and 64.9% sensitivity (unpublished data). In other words, few 

of the ego-reported values were considered false-positives, when compared to the alter-

reported data. Alternatively, the false-negative fraction was higher. The data are informative, but 

may not be generalizable to our analysis due to differences in study design, population and 

years of data collection (i.e., 2011–2013, before the PrEP era). 

Therefore, we reviewed the literature for estimates of HIV status disclosure in sexual 

partnerships of MSM.68,80,84,87,108 The studies were varied in terms of geography and 

characteristics of the sample populations, as well as the outcomes reported. A 2017 study of 

European MSM found that disclosure of HIV status to most recent sexual partner was 56% 

among MSM with diagnosed HIV and 35% among those without HIV.80 Similar findings of 

greater disclosure among MSM with diagnosed HIV, compared to those without, was reported in 

other studies (although prevalence estimates were not consistently reported).68,87 This supports 

the hypothesis that alters with test-negative HIV would be disproportionately misclassified as 

unknown HIV. The disclosure findings varied by partnership type, with increased disclosure for 

persistent partners compared to one-time partners, and increased disclosure for committed 

(main) partners compared to casual.80,88 Finally, disclosure tends to be mutual.68,80,88  

We assumed high 𝑆𝑝𝑒𝑐்௧ for all observations using a uniform distribution 

~𝑈[0.97, 1.00]. Given the relatively narrow range of values, we did not vary 𝑆𝑝𝑒𝑐்௧ for strata 
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of covariates. However, the mean predictive probability (i.e., 𝑃(𝑌
∗ = 1|𝑋 = 𝑥 , 𝒁 = 𝒛)) for 

alters with diagnosed HIV (by ego report) was only 0.406. To ensure that the adjusted predictive 

probability (i.e., 𝑃(𝑌 = 1|𝑋 = 𝑥 , 𝒁 = 𝒛)) was closer to 1.00 (i.e., low false-positive fraction) 

we calibrated the model by setting 𝑞(1,1) = 0.01 for alters with diagnosed HIV (by ego-report). 

By Equation (3), this sets 𝑆𝑒𝑛𝑠൫𝑥 , 𝑦
∗ , 𝒛൯ ≈ 𝑃(𝑌

∗ = 1|𝑋 = 𝑥 , 𝒁 = 𝒛). Using Equation (1) with 

high specificity, this approach ensures that 𝑃൫𝑌 = 1ห𝑋 = 𝑥 , 𝒁 = 𝒛൯ is high for all alters with 

diagnosed HIV (by ego-report), with relatively higher or lower values based on 𝑃(𝑌
∗ = 1|𝑋 =

𝑥 , 𝒁 = 𝒛). 

For alters with test-negative or unknown HIV status, we varied 𝑆𝑒𝑛𝑠்௧ based on 

assumptions about the sensitivity of disclosing diagnosed HIV in sexual partnerships of MSM. 

To represent uncertainty, we specified a broad range of values for sensitivity (36%–100%) with 

variability based on the ego-reported alter HIV status and PrEP use, partnership type, and the 

ego HIV status. We first drew a starting value for sensitivity from a uniform distribution  

~𝑈[0.98, 1.00] for each of the 300 reclassification datasets. The starting value represented the 

highest possible 𝑆𝑒𝑛𝑠்௧ for each dataset, and was used for alters classified as a main 

partner with ego-reported test-negative HIV status. We then decreased the target sensitivity if 

the alter was classified as a casual or one-time partner, or if the ego-reported HIV status was 

unknown. We increased the sensitivity if the alter used PrEP (ego-reported) to represent greater 

certainty of the ego-reported alter HIV status (i.e., decrease probability of reclassification to 

diagnosed HIV). Finally, we considered mutual disclosure and increased the sensitivity if the 

ego self-reported diagnosed HIV and reported the alter HIV status as test-negative. We used 

uniform distributions to specify the magnitude of the absolute decrease relative to the starting 

values (Appendix Table 1) and used the following Equation to calculate the target sensitivity for 

each strata of partnership type, alter HIV status and PrEP use (ego-reported), and ego HIV 

status: 
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 𝑆𝑒𝑛𝑠்௧
∗ =  𝑆𝑒𝑛𝑠ௌ௧௧ − (𝐴ெ + 𝐴௦௨ + 𝐴ைି௧) ∗ 𝐵 ∗ 𝐶 ∗ 𝐷 (6) 

Where 𝑆𝑒𝑛𝑠்௧
∗  is the target sensitivity for strata of partnership type, alter HIV status and 

PrEP use (ego-reported), and ego HIV status; 𝑆𝑒𝑛𝑠ௌ௧௧ is the starting sensitivity parameter; 𝐴 

is a set of linear modifiers based on partnership type; 𝐵 is a scalar based on alter HIV status 

(ego-reported); 𝐶 ~ 𝑈[0,1] if the alter PrEP use is Ever (by ego-report), else 𝐶 = 1 ; and 

𝐷 ~ 𝑈[0,1] if the ego self-reports diagnosed HIV and the alter HIV status is test-negative (by 

ego-report), else 𝐷 = 1. The scalars 𝐶 and 𝐷 offset decreases in sensitivity based on 

partnership type or unknown HIV status, with a broad range of possible values due to 

uncertainty. The parameters were drawn from uniform distributions, so that each of the 300 

datasets used a unique set of parameters. By using Equation (6) we can vary the parameters 

stochastically, while maintaining higher or lower values based on the assumptions. The median 

prevalence of diagnosed HIV among alters after reclassification was 9.4% (95% simulation 

interval: 7.2, 11.1; Appendix Table 3) which is similar to the expected prevalence (9.9%). 

Therefore, no additional calibration of the parameters was necessary. 
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Appendix Table A.1. Alter HIV status reclassification parameters 

Parameter Distribution    

𝑆𝑒𝑛𝑠ௌ௧௧ ~𝑈[0.98, 1.00]    

𝐴ெ ~𝑈[0.03, 0.05]    

𝐴௦௨ ~𝑈[0.01, 0.03]    

𝐴ைି௧ ~𝑈[0.035, 0.045]    

Partnership Type 
Alter HIV 

status 
𝑨 𝑩 

Possible values1 for 
𝑺𝒆𝒏𝒔𝑻𝒂𝒓𝒈𝒆𝒕

∗  

Main Test-negative 𝐴ெ 0 [0.98, 1.00] 

Main Unknown 𝐴ெ 5 [0.73, 0.85] 

Casual Test-negative 𝐴ெ + 𝐴௦௨ 1 [0.90, 0.96] 

Casual Unknown 𝐴ெ + 𝐴௦௨ 5 [0.58, 0.80] 

One-time Test-negative 
𝐴ெ + 𝐴௦௨

+ 𝐴ைି௧ 
1 [0.86, 0.93] 

One-time Unknown 
𝐴ெ + 𝐴௦௨

+ 𝐴ைି௧ 
5 [0.36, 0.63] 

1Based on 𝐶 = 𝐷 = 1. If 𝐶 < 1 or 𝐷 < 1, then the minimum possible value for 𝑆𝑒𝑛𝑠்௧
∗  

remains the same and the maximum possible value is 1.00. 

 

Reclassification of alter PrEP use 

The expected prevalence of PrEP use among alters was 16.5%, based on the 

distribution among egos standardized to the age, race, ethnicity, and geographic distribution of 

alters. We specified imputation models for PrEP use using the varying subset of alters classified 

without diagnosed HIV status in each of the 300 datasets. From the posterior distribution of 

each model, we randomly drew 1 set of linear predictors for each observation (known and 
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unknown) and transformed each with the inverse-logit function to obtain binomial predictive 

probabilities (for a total of 300 sets of predictive probabilities). We randomly drew 300 sets of 

reclassification parameters and adjusted the predictive probabilities using Equation (3). We then 

imputed 300 sets of new values using Equation (1). We retained each dataset for final analysis 

of the data. Results of the reclassification model are shown in (Appendix Table 4). 

Imputation model 

We specified imputation models for the joint binomial probability distribution of ego-

reported alter PrEP use (ever vs never) using Bayesian regression with INLA. We fit 300 unique 

models to the varying subset of alters classified without diagnosed HIV. We used the same 

modelling approach and set of predictors used for the model of HIV diagnosis status. From the 

posterior distribution of each model, we drew one predictive value for each observation (for a 

total of 300 unique values across all datasets). 

Reclassification parameters 

 Less is known about discussions of PrEP use in sexual partnerships of MSM. Overall, 

we assumed higher sensitivity (65%–100%) compared to classification of diagnosed HIV, due to 

decreased stigma compared to HIV infection and motivations to disclose PrEP use to negotiate 

other sexual behaviors (i.e., condom use). At the same time, we used a broader range of values 

for specificity (70%–100%) because motivations to discuss PrEP may be lower for MSM not 

using PrEP, compared to motivations to disclose test-negative HIV status. In addition, this 

allowed for more false-positive misclassification. This may occur because PrEP use among 

MSM is inconsistent longitudinally and may be discontinued prior to the onset of a sexual 

partnership,113 even if previously discussed or reported passively (e.g., on sexual networking 

apps).63,109 Similar to HIV reclassification, we varied the PrEP reclassification parameters based 

on strata of partnership type, alter PrEP use (ego-reported), and ego HIV status and PrEP use. 
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 We varied the target specificity by partnership type, assigning different values to main, 

casual and one-time partners. We used the distribution ~𝑈[0.70 1.00] for each strata of 

partnership type, but restricted each so that values were always highest for main partners and 

lowest for one-time partners, for each of the 300 sets of parameters. The mean predictive 

probability for alters with ever PrEP was 0.56, which would result in ~44% reclassification to 

never PrEP based on the imputation model alone. Similar to the calibration of the HIV 

reclassification model, we varied 𝑞(1,1) for alters with Ever PrEP using a uniform distribution 

~𝑈[0.01, 0.1]. Using this approach, the adjusted probabilities for alters with ever PrEP was 

increased closer to 1.00, with variability based on the imputation model and the target specificity 

parameters.  

We varied target sensitivity using a similar mechanism as the HIV reclassification 

(Appendix Table 2). We first drew a starting value from the distribution ~𝑈[0.98, 1.00], which 

was used for alters classified as main partners and Never PrEP. We decreased the sensitivity 

for casual or one-time partners, and for alters with unknown PrEP. To account for mutual 

disclosure, we increased the sensitivity if the ego self-reported diagnosed HIV or PrEP use. We 

varied target sensitivity using the following Equation: 

 𝑆𝑒𝑛𝑠்௧
∗ =  𝑆𝑒𝑛𝑠ௌ௧௧ − (𝐴ெ + 𝐴௦௨ + 𝐴ைି௧) ∗ 𝐵 ∗ 𝐶 ∗ 𝐷 (7) 

Where 𝑆𝑒𝑛𝑠்௧
∗  is the target sensitivity for strata of partnership type, alter PrEP use (ego-

reported), and ego HIV status and PrEP use; 𝑆𝑒𝑛𝑠ௌ௧௧ is the starting sensitivity parameter; 𝐴 

is a set of linear modifiers based on partnership type; 𝐵 is a scalar based on alter PrEP use 

(ego-reported); 𝐶 ~ 𝑈[0,1] if the ego self-reports diagnosed HIV and the alter PrEP use is Never, 

else 𝐶 = 1; and 𝐷 ~ 𝑈[0,1] if the ego self-reports PrEP use (by ego-report) and the alter PrEP 

use is Never, else 𝐷 = 1. The scalars 𝐶 and 𝐷 offset decreases in sensitivity based on 

partnership type, with a broad range of possible values due to uncertainty. The parameters were 
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drawn from uniform distributions, so that each of the 300 datasets used a unique set of 

parameters. By using Equation (7) we can vary the parameters stochastically, while maintaining 

higher or lower values based on the assumptions. 

 

Appendix Table A.2. Alter PrEP use reclassification parameters 

Parameter Distribution    

𝑆𝑒𝑛𝑠ௌ௧௧ ~𝑈[0.98, 1.00]    

𝐴ெ ~𝑈[0.02, 0.04]    

𝐴௦௨ ~𝑈[0.01, 0.03]    

𝐴ைି௧ ~𝑈[0.02, 0.04]    

Partnership Type 
Alter HIV 

status 
𝑨 𝑩 

Possible values1 for 
𝑺𝒆𝒏𝒔𝑻𝒂𝒓𝒈𝒆𝒕

∗  

Main Never PrEP 𝐴ெ 0 [0.98, 1.00] 

Main Unknown 𝐴ெ 3 [0.86, 0.94] 

Casual Never PrEP 𝐴ெ + 𝐴௦௨ 1 [0.91, 0.97] 

Casual Unknown 𝐴ெ + 𝐴௦௨ 3 [0.77, 0.91] 

One-time Never PrEP 
𝐴ெ + 𝐴௦௨

+ 𝐴ைି௧ 
1 [0.87, 0.95] 

One-time Unknown 
𝐴ெ + 𝐴௦௨

+ 𝐴ைି௧ 
3 [0.65, 0.85] 

1Based on 𝐶 = 𝐷 = 1. If 𝐶 < 1 or 𝐷 < 1, then the minimum possible value for 𝑆𝑒𝑛𝑠்௧
∗  

remains the same and the maximum possible value is 1.00. 
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Chapter 2 Supplementary Results 

 

Appendix Table A.3. Mean HIV reclassification parameters and results across 300 datasets 

      % HIV+ (after reclassification) 

 % HIV+ P(Y* = 1) Sens(x,z,y*) Spec(x,z,y*) P(Y = 1) Median 95% SI 

Total 6.6% 9.1% 74.5% 94.0% 9.4% 9.4% 7.2% 11.1% 

Age Group         

15-24 1.5% 2.3% 58.6% 98.6% 2.5% 2.5% 1.7% 3.3% 

25-34 4.9% 6.7% 76.0% 95.7% 7.0% 7.1% 5.3% 8.7% 

35-44 10.0% 13.9% 82.2% 90.8% 14.1% 14.2% 10.8% 16.9% 

45-54 12.7% 17.2% 83.9% 88.5% 17.4% 17.4% 13.5% 20.7% 

55-65 12.6% 16.7% 83.3% 88.8% 17.0% 16.8% 13.6% 20.5% 

66+ 15.5% 21.5% 86.2% 84.9% 20.9% 20.2% 15.5% 28.6% 

Race/ethnicity         

Non-Hispanic Black 9.4% 15.4% 79.8% 90.0% 14.6% 14.6% 10.5% 18.1% 

Non-Hispanic 
White 

6.7% 8.6% 75.0% 94.3% 9.1% 9.1% 7.2% 10.6% 

Hispanic/ Latinx 5.9% 8.5% 73.2% 94.5% 8.7% 8.8% 6.3% 10.6% 

Other 4.2% 5.6% 67.4% 96.2% 6.0% 6.0% 4.5% 7.7% 

Ego-reported         

Diagnosed HIV 100.0% 40.3% 40.5% 74.2% 98.8% 98.8% 95.7% 99.7% 
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Test-negative 0.0% 6.0% 84.0% 95.3% 1.6% 1.6% 0.1% 3.1% 

Unknown 0.0% 9.7% 56.0% 95.0% 7.2% 7.2% 1.5% 11.2% 

Main         

Total 8.4% 9.2% 86.9% 93.5% 10.0% 10.0% 8.5% 11.5% 

Diagnosed HIV 100.0% 39.6% 39.7% 74.6% 98.8% 98.9% 95.0% 100.0% 

Test-negative 0.0% 6.4% 94.9% 94.9% 1.7% 1.6% 0.1% 3.3% 

Unknown 0.0% 6.6% 60.5% 96.7% 4.6% 4.3% 0.5% 8.9% 

Casual         

Total 7.9% 10.7% 77.6% 92.9% 10.9% 10.9% 8.5% 12.8% 

Diagnosed HIV 100.0% 41.9% 42.1% 72.9% 98.8% 98.8% 95.8% 100.0% 

Test-negative 0.0% 6.8% 84.7% 94.6% 1.8% 1.8% 0.1% 3.6% 

Unknown 0.0% 12.4% 66.4% 93.2% 8.7% 8.6% 1.8% 14.1% 

One-time         

Total 4.2% 7.3% 63.6% 95.6% 7.3% 7.3% 4.8% 9.2% 

Diagnosed HIV 100.0% 38.1% 38.3% 76.2% 98.8% 98.7% 95.5% 100.0% 

Test-negative 0.0% 4.5% 74.5% 96.4% 1.2% 1.1% 0.0% 2.6% 

Unknown 0.0% 8.3% 48.6% 95.9% 6.6% 6.7% 1.3% 10.5% 
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Appendix Table A.4. Mean PrEP reclassification parameters and results across 300 datasets 

      
% Ever PrEP (after 

reclassification) 

 
%Ever 
PrEP 

P(Y* = 1) Sens(x,z,y*) Spec(x,z,y*) P(Y = 1) Median 95% SI 

Total 15.5% 34.5% 76.4% 70.3% 19.8% 19.8% 13.6% 23.7% 

Age Group         

15-24 9.4% 19.9% 67.6% 83.1% 12.2% 12.3% 8.3% 14.9% 

25-34 17.4% 38.5% 79.5% 67.0% 22.1% 22.0% 14.9% 26.3% 

35-44 19.6% 44.2% 81.4% 61.7% 25.0% 25.1% 16.5% 29.8% 

45-54 18.3% 43.2% 81.2% 62.5% 23.8% 23.7% 16.2% 28.7% 

55-65 13.3% 29.2% 74.1% 75.1% 17.1% 16.9% 12.0% 20.8% 

66+ 12.7% 22.8% 66.6% 80.4% 14.9% 14.3% 8.1% 20.8% 

Race/ethnicity         

Non-Hispanic Black 11.9% 32.9% 73.4% 71.5% 17.1% 17.2% 11.3% 21.9% 

Non-Hispanic White 16.6% 34.5% 77.0% 70.4% 20.5% 20.5% 13.9% 24.4% 

Hispanic/ Latinx 14.9% 36.3% 76.7% 68.8% 19.9% 19.8% 13.5% 24.2% 

Other 14.8% 32.8% 75.5% 71.8% 19.1% 19.1% 12.8% 23.4% 

Ego-reported         

Ever PrEP 100.0% 56.0% 57.0% 58.7% 91.7% 92.0% 52.5% 98.6% 

Never PrEP 0.0% 19.1% 85.0% 82.4% 2.6% 2.6% 1.0% 4.0% 
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Unknown 0.0% 39.1% 75.9% 64.6% 10.7% 10.6% 4.4% 16.1% 

Main         

Total 14.7% 16.2% 76.8% 88.6% 15.4% 15.4% 13.8% 16.5% 

Ever PrEP 100.0% 45.5% 46.3% 82.2% 96.0% 96.1% 86.2% 99.6% 

Never PrEP 0.0% 10.7% 85.7% 90.3% 1.4% 1.3% 0.4% 2.3% 

Unknown 0.0% 15.1% 56.4% 86.7% 4.3% 4.0% 0.5% 8.2% 

Casual         

Total 17.9% 34.8% 75.9% 70.5% 22.1% 22.2% 13.3% 25.6% 

Ever PrEP 100.0% 55.6% 56.5% 60.3% 94.4% 94.5% 47.2% 99.1% 

Never PrEP 0.0% 24.3% 85.2% 77.5% 3.3% 3.2% 1.3% 5.6% 

Unknown 0.0% 34.5% 76.9% 69.2% 9.1% 8.9% 3.8% 13.7% 

One-time         

Total 13.5% 44.3% 76.3% 59.7% 20.2% 20.1% 9.2% 26.4% 

Ever PrEP 100.0% 63.4% 64.3% 42.3% 87.3% 86.8% 7.0% 98.1% 

Never PrEP 0.0% 29.0% 83.5% 72.8% 4.1% 4.0% 1.3% 7.0% 

Unknown 0.0% 44.5% 76.9% 59.4% 12.4% 12.4% 5.1% 18.7% 
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Appendix B. Chapter 3 Supplementary Results 

 

Appendix Table B.1. Characteristics of a simulated population of 10,000 men who have 

sex with men in the United States 

   
Total 

  Without diagnosed HIV   Diagnosed 

HIV      No PrEP   PrEP   

   N %1   N %2   N %2   N %2 

Total   10000 100.0   7141 71.4   1514 15.1   1345 13.5 

                 

Age group                 

15–24   2006 20.1   1834 91.4   143 7.1   29 1.4 

25–34   2117 21.2   1655 78.2   332 15.7   130 6.1 

35–44   1927 19.3   1216 63.1   428 22.2   283 14.7 

45–54   1838 18.4   1059 57.6   365 19.9   414 22.5 

55–65   2112 21.1   1377 65.2   246 11.6   489 23.2 

                 

Race & ethnicity                

Non-Hispanic                 

Black   1306 13.1   771 59.0   152 11.6   383 29.3 

White   6045 60.5   4521 74.8   915 15.1   609 10.1 

Other   736 7.4   546 74.2   118 16.0   72 9.8 

Hispanic/ Latinx   1913 19.1   1303 68.1   329 17.2   281 14.7 

                 
1Column percent 
2Row percent 
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Appendix Table B.2. Characteristics of ARTnet egos 

   
Total 

  Without diagnosed HIV   Diagnosed 

HIV      No PrEP   PrEP   

   N %1   N %2   N %2   N %2 

Total   4502 100.0   3437 76.3   638 14.2   427 9.5 

                 

Age group                 

15–24   1248 27.7   1164 93.3   73 5.8   11 0.9 

25–34   1160 25.8   894 77.1   199 17.2   67 5.8 

35–44   643 14.3   440 68.4   122 19.0   81 12.6 

45–54   767 17.0   473 61.7   150 19.6   144 18.8 

55–65   684 15.2   466 68.1   94 13.7   124 18.1 

                 

Race & ethnicity                

Non-Hispanic                 

Black   232 5.2   140 60.3   28 12.1   64 27.6 

White   3423 72.0   2483 76.6   476 14.7   284 8.8 

Other   404 9.0   326 80.7   53 13.1   25 8.7 

Hispanic/ Latinx   623 13.8   488 78.3   81 13.0   54 6.2 

                 
1Column percent 
2Row percent 
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Appendix Table B.3. Distribution of network edges – all persistent partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

Edges (total N) 5241 (5099, 5387) 5235 (5108, 5375) 5238 (5101, 5391) 5236 (5093, 5384) 5223 (5076, 5378)  
     

HIV mixing (%)      

Concordant      

Without HIV 74.9 (73.8, 76.1) 72.6 (71.4, 73.8) 67.5 (66.2, 68.8) 68.0 (66.8, 69.3) 74.8 (73.6, 76.0) 

With HIV 1.8 (1.5, 2.2) 2.2 (1.8, 2.6) 3.2 (2.7, 3.6) 3.8 (3.3, 4.3) 8.9 (8.1, 9.9) 

Discordant 23.3 (22.1, 24.4) 25.2 (24.0, 26.4) 29.3 (28.1, 30.6) 28.2 (26.9, 29.4) 16.2 (15.2, 17.3) 

      

HIV & PrEP mixing (%)      

Concordant      

No PrEP 51.0 (49.6, 52.4) 47.6 (46.3, 49.0) 34.9 (33.7, 36.2) 35.8 (34.5, 37.1) 45.3 (43.9, 46.6) 

PrEP 2.3 (1.9, 2.7) 2.6 (2.2, 3.1) 5.3 (4.7, 5.9) 5.4 (4.7, 6.0) 9.6 (8.8, 10.4) 

With HIV 1.8 (1.5, 2.2) 2.2 (1.8, 2.6) 3.2 (2.7, 3.6) 3.8 (3.3, 4.3) 8.9 (8.1, 9.9) 

Discordant      

No PrEP–PrEP 21.7 (20.5, 22.8) 22.4 (21.2, 23.5) 27.3 (26.0, 28.5) 26.8 (25.6, 28.0) 19.9 (18.7, 21.0) 

No PrEP–With HIV 19.2 (18.1, 20.2) 20.4 (19.3, 21.5) 21.1 (20.0, 22.2) 19.8 (18.7, 20.8) 8.6 (7.9, 9.4) 

PrEP–With HIV 4.1 (3.5, 4.6) 4.8 (4.3, 5.4) 8.2 (7.5, 8.9) 8.4 (7.6, 9.1) 7.6 (6.9, 8.3) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.4. Distribution of network edges – main persistent partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

Edges (total N) 1978 (1894, 2066) 1975 (1884, 2060) 1977 (1892, 2063) 1971 (1885, 2056) 1975 (1889, 2058)  
     

HIV mixing (%)      

Concordant      

Without HIV 75.0 (72.9, 76.9) 77.2 (75.3, 79.0) 73.3 (71.3, 75.2) 73.8 (71.8, 75.7) 79.7 (77.9, 81.5) 

With HIV 1.8 (1.2, 2.4) 1.5 (1.0, 2.0) 2.1 (1.5, 2.7) 2.7 (2.0, 3.5) 6.9 (5.8, 8.1) 

Discordant 23.3 (21.4, 25.2) 21.4 (19.5, 23.2) 24.7 (22.8, 26.6) 23.5 (21.6, 25.4) 13.3 (11.8, 14.9) 

      

HIV & PrEP mixing (%)      

Concordant      

No PrEP 51.0 (48.8, 53.2) 51.6 (49.5, 53.8) 49.8 (47.7, 52.0) 50.8 (48.6, 53.0) 61.4 (59.1, 63.5) 

PrEP 2.3 (1.7, 2.9) 2.5 (1.9, 3.3) 2.2 (1.6, 2.9) 2.3 (1.7, 3.0) 6.1 (5.1, 7.2) 

With HIV 1.8 (1.2, 2.4) 1.5 (1.0, 2.0) 2.1 (1.5, 2.7) 2.7 (2.0, 3.5) 6.9 (5.8, 8.1) 

Discordant      

No PrEP–PrEP 21.7 (19.8, 23.6) 23.0 (21.2, 24.9) 21.2 (19.5, 23.0) 20.6 (18.9, 22.5) 12.2 (10.9, 13.7) 

No PrEP–With HIV 19.2 (17.4, 21.0) 17.5 (15.8, 19.2) 20.3 (18.6, 22.1) 18.9 (17.1, 20.6) 7.5 (6.4, 8.7) 

PrEP–With HIV 4.1 (3.2, 5.0) 3.9 (3.1, 4.8) 4.3 (3.4, 5.2) 4.6 (3.7, 5.5) 5.9 (4.8, 6.9) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.5. Distribution of network edges – casual persistent partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

Edges (total N) 3264 (3156, 3375) 3268 (3157, 3378) 3267 (3154, 3375) 3268 (3150, 3383) 3248 (3130, 3359)  
     

HIV mixing (%)      

Concordant      

Without HIV 74.9 (73.4, 76.4) 69.8 (68.2, 71.4) 63.9 (62.2, 65.5) 64.5 (62.9, 66.1) 72.0 (70.6, 73.5) 

With HIV 1.8 (1.4, 2.3) 2.7 (2.2, 3.3) 4.0 (3.4, 4.7) 4.6 (3.9, 5.2) 10.3 (9.3, 11.3) 

Discordant 23.2 (21.8, 24.7) 27.5 (26.0, 29.1) 32.1 (30.5, 33.7) 30.9 (29.5, 32.4) 17.7 (16.3, 19.0) 

      

HIV & PrEP mixing (%)      

Concordant      

No PrEP 51.0 (49.3, 52.8) 45.2 (43.5, 46.9) 26.6 (25.1, 28.1) 27.2 (25.8, 28.8) 36.0 (34.5, 37.8) 

PrEP 2.3 (1.8, 2.8) 2.7 (2.1, 3.2) 8.0 (7.1, 8.9) 8.2 (7.2, 9.2) 12.0 (10.9, 13.0) 

With HIV 1.8 (1.4, 2.3) 2.7 (2.2, 3.3) 4.0 (3.4, 4.7) 4.6 (3.9, 5.2) 10.3 (9.3, 11.3) 

Discordant      

No PrEP–PrEP 21.6 (20.2, 23.0) 21.9 (20.4, 23.2) 29.3 (27.8, 30.9) 29.0 (27.5, 30.7) 24.0 (22.6, 25.5) 

No PrEP–With HIV 19.2 (17.8, 20.5) 22.2 (20.8, 23.6) 20.7 (19.3, 22.1) 19.4 (18.1, 20.8) 8.5 (7.5, 9.5) 

PrEP–With HIV 4.1 (3.4, 4.8) 5.4 (4.6, 6.2) 11.4 (10.3, 12.5) 11.5 (10.4, 12.7)  9.2 (8.2, 10.3) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.6. Distribution of network edges – cumulative (monthly) one-time partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

Edges (total N) 2159 (2069, 2252) 2159 (2068, 2249) 2158 (2066, 2255) 2160 (2073, 2255) 2148 (2056, 2241)  
     

HIV mixing (%)      

Concordant      

Without HIV 75.0 (73.1, 76.8) 72.8 (70.9, 74.7) 61.5 (59.5, 63.4) 62.2 (60.3, 64.2) 71.1 (69.1, 72.9) 

With HIV 1.8 (1.2, 2.4) 2.2 (1.6, 2.8) 4.7 (3.8, 5.6) 5.1 (4.2, 6.1) 11.0 (9.7, 12.3) 

Discordant 23.2 (21.4, 25.0) 25.0 (23.2, 26.9) 33.9 (32.0, 35.7) 32.7 (30.7, 34.5) 17.9 (16.3, 19.6) 

      

HIV & PrEP mixing (%)      

Concordant      

No PrEP 51.1 (48.9, 53.2) 47.6 (45.5, 49.8) 15.8 (14.2, 17.3) 16.5 (14.9, 18.1) 23.6 (21.8, 25.4) 

PrEP 2.3 (1.7, 2.9) 2.6 (2.0, 3.4) 14.9 (13.4, 16.4) 15.2 (13.9, 16.7) 18.0 (16.5, 19.6) 

With HIV 1.8 (1.2, 2.4) 2.2 (1.6, 2.8) 4.7 (3.8, 5.6) 5.1 (4.2, 6.1) 11.0 (9.7, 12.3) 

Discordant      

No PrEP–PrEP 21.6 (19.9, 23.4) 22.5 (20.7, 24.4) 30.8 (28.9, 32.7) 30.5 (28.6, 32.5) 29.5 (27.6, 31.4) 

No PrEP–With HIV 19.2 (17.5, 20.9) 20.3 (18.6, 22.0) 17.2 (15.6, 18.7) 15.9 (14.3, 17.4) 6.8 (5.8, 7.8) 

PrEP–With HIV 4.1 (3.2, 4.9) 4.8 (3.9, 5.7) 16.7 (15.2, 18.1) 16.8 (15.3, 18.3) 11.0 (9.8, 12.5) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.7. Mixing by HIV status and PrEP use – all persistent partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

No PrEP (N) 7485 (7267, 7708) 7231 (7032, 7444) 6193 (6001, 6399) 6189 (5995, 6380) 6218 (6029, 6428) 

With HIV (%) 13.4 (12.6, 14.2) 14.8 (13.9, 15.7) 17.9 (16.8, 18.9) 16.7 (15.8, 17.7) 7.2 (6.6, 7.9) 

No PrEP (%) 71.4 (70.2, 72.6) 69.0 (67.8, 70.2) 59.1 (57.6, 60.5) 60.6 (59.1, 62.0) 76.1 (74.9, 77.2) 

PrEP (%) 15.2 (14.3, 16.1) 16.2 (15.3, 17.1) 23.1 (21.9, 24.2) 22.7 (21.5, 23.8) 16.7 (15.7, 17.7) 

      

PrEP (N) 1589 (1507, 1677) 1694 (1608, 1784) 2415 (2317, 2521) 2405 (2291, 2529) 2444 (2319, 2557) 

With HIV (%) 13.4 (11.7, 15.2) 14.8 (13.2, 16.6) 17.8 (16.3, 19.3) 18.2 (16.6, 19.8) 16.3 (14.7, 17.8) 

No PrEP (%) 71.4 (68.8, 74.0) 69.1 (66.4, 71.6) 59.1 (56.9, 61.4) 58.3 (55.9, 60.8) 42.5 (40.2, 44.8) 

PrEP (%) 15.1 (12.8, 17.6) 16.1 (13.7, 18.5) 23.0 (20.8, 25.4) 23.5 (21.0, 25.7) 41.2 (38.8, 43.6) 

      

With HIV (N) 1409 (1332, 1490) 1550 (1467, 1632) 1868 (1779, 1960) 1873 (1786, 1973) 1783 (1681, 1909) 

With HIV (%) 13.5 (11.1, 15.9) 14.7 (12.3, 17.4) 17.7 (15.5, 20.1) 21.4 (18.9, 23.8) 52.5 (49.2, 55.7) 

No PrEP (%) 71.4 (68.8, 74.2) 69.1 (66.3, 71.7) 59.2 (56.7, 61.7) 55.3 (52.6, 57.8) 25.3 (23.0, 27.6) 

PrEP (%) 15.1 (13.3, 17.0) 16.2 (14.5, 18.0) 23.0 (21.2, 25.0) 23.4 (21.4, 25.4) 22.3 (20.2, 24.5) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.8. Mixing by HIV status and PrEP use – main persistent partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

No PrEP (N) 2825 (2694, 2962) 2838 (2699, 2974) 2792 (2660, 2928) 2781 (2654, 2915) 2812 (2673, 2952) 

With HIV (%) 13.4 (12.1, 14.8) 12.2 (10.9, 13.4) 14.4 (13.1, 15.8) 13.4 (12.0, 14.7) 5.3 (4.4, 6.1) 

No PrEP (%) 71.4 (69.4, 73.3) 71.8 (70.0, 73.7) 70.6 (68.7, 72.4) 72.0 (70.1, 73.9) 86.1 (84.7, 87.4) 

PrEP (%) 15.2 (13.8, 16.7) 16.0 (14.6, 17.5) 15.0 (13.7, 16.4) 14.6 (13.3, 16.1) 8.6 (7.6, 9.7) 

      

PrEP (N) 600 (549, 652) 631 (579, 686) 593 (543, 643) 590 (541, 642) 599 (543, 660) 

With HIV (%) 13.4 (10.8, 16.3) 12.1 (9.7, 14.9) 14.4 (11.5, 17.3) 15.3 (12.4, 18.4) 19.3 (16.1, 22.7) 

No PrEP (%) 71.6 (67.1, 75.7) 72.0 (67.6, 76.2) 70.7 (66.5, 74.9) 69.0 (64.7, 73.3) 40.3 (36.1, 44.8) 

PrEP (%) 15.0 (11.3, 18.9) 15.8 (11.9, 19.8) 14.9 (11.0, 19.0) 15.7 (11.8, 19.6) 40.4 (35.5, 45.2) 

      

With HIV (N) 531 (483, 581) 480 (435, 525) 569 (522, 618) 569 (519, 621) 537 (480, 593) 

With HIV (%) 13.2 (9.4, 17.3) 12.1 (8.2, 16.2) 14.3 (10.5, 18.5) 18.7 (14.4, 23.1) 50.8 (45.4, 56.3) 

No PrEP (%) 71.6 (67.0, 75.9) 71.8 (67.4, 76.5) 70.7 (66.2, 75.0) 65.4 (60.8, 70.0) 27.6 (23.6, 31.8) 

PrEP (%) 15.1 (12.1, 18.4) 16.0 (12.8, 19.4) 15.0 (12.1, 18.0) 15.8 (12.9, 19.0) 21.6 (17.8, 25.4) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.9. Mixing by HIV status and PrEP use – casual persistent partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

No PrEP (N) 4664 (4490, 4836) 4395 (4230, 4557) 3372 (3233, 3512) 3366 (3227, 3504) 3397 (3248, 3554) 

With HIV (%) 13.4 (12.4, 14.5) 16.5 (15.3, 17.7) 20.1 (18.7, 21.5) 18.9 (17.6, 20.2) 8.1 (7.2, 9.1) 

No PrEP (%) 71.4 (70.0, 72.9) 67.3 (65.6, 68.7) 51.6 (49.5, 53.5) 52.9 (50.9, 54.9) 68.9 (67.1, 70.8) 

PrEP (%) 15.1 (14.1, 16.2) 16.3 (15.1, 17.4) 28.4 (26.8, 30.2) 28.2 (26.6, 30.0) 23.0 (21.4, 24.5) 

      

PrEP (N) 988 (921, 1053) 1064 (996, 1136) 1850 (1758, 1948) 1859 (1757, 1968) 1856 (1754, 1952) 

With HIV (%) 13.4 (11.3, 15.7) 16.4 (14.2, 18.9) 20.1 (18.3, 22.0) 20.2 (18.3, 22.3) 16.0 (14.4, 18.0) 

No PrEP (%) 71.5 (68.0, 74.7) 67.1 (63.9, 70.4) 51.7 (49.2, 54.2) 51.1 (48.4, 53.7) 42.0 (39.5, 44.7) 

PrEP (%) 15.1 (12.1, 18.2) 16.4 (13.5, 19.5) 28.2 (25.6, 30.7) 28.8 (25.8, 31.6) 41.9 (39.0, 44.7) 

      

With HIV (N) 877 (818, 941) 1075 (1007, 1145) 1311 (1232, 1384) 1310 (1231, 1385) 1242 (1162, 1320) 

With HIV (%) 13.6 (10.4, 16.9) 16.3 (13.4, 19.5) 20.0 (17.2, 22.9) 22.9 (20.0, 25.5) 53.7 (50.4, 57.2) 

No PrEP (%) 71.3 (67.7, 74.9) 67.4 (64.0, 70.7) 51.6 (48.6, 54.6) 48.5 (45.7, 51.4) 22.2 (19.7, 24.7) 

PrEP (%) 15.1 (12.7, 17.6) 16.3 (14.1, 18.7) 28.3 (25.9, 31.0) 28.6 (26.1, 31.4) 24.0 (21.5, 26.9) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix Table B.10. Mixing by HIV status and PrEP use – cumulative (monthly) one-time partnerships 

 Median (95% simulation interval)  
Model 1 Model 2 Model 3 Model 4 Full Model 

No PrEP (N) 3085 (2946, 3231) 2979 (2842, 3118) 1718 (1623, 1818) 1713 (1619, 1813) 1794 (1689, 1901) 

With HIV (%) 13.4 (12.2, 14.7) 14.7 (13.3, 16.0) 21.6 (19.6, 23.6) 20.0 (18.0, 22.0) 8.1 (6.9, 9.4) 

No PrEP (%) 71.4 (69.6, 73.3) 69.0 (67.1, 70.9) 39.7 (36.8, 42.6) 41.6 (38.5, 44.5) 56.5 (53.7, 59.2) 

PrEP (%) 15.1 (13.8, 16.5) 16.3 (14.8, 17.8) 38.7 (36.2, 41.3) 38.4 (35.9, 41.2) 35.4 (32.8, 37.9) 

      

PrEP (N) 653 (599, 708) 703 (647, 760) 1667 (1572, 1763) 1679 (1592, 1775) 1644 (1547, 1740) 

With HIV (%) 13.4 (10.8, 16.2) 14.7 (12.0, 17.4) 21.6 (19.6, 23.6) 21.6 (19.7, 23.5) 14.4 (12.8, 16.3) 

No PrEP (%) 71.5 (67.5, 75.6) 69.1 (65.0, 73.2) 39.9 (37.3, 42.4) 39.2 (36.7, 42.0) 38.6 (36.0, 41.2) 

PrEP (%) 15.1 (11.3, 18.9) 16.2 (12.6, 20.1) 38.5 (35.6, 41.5) 39.2 (36.6, 42.2) 47.0 (44.2, 49.8) 

      

With HIV (N) 579 (529, 630) 634 (580, 688) 933 (870, 998) 927 (861, 992) 856 (789, 927) 

With HIV (%) 13.4 (9.6, 17.3) 14.7 (11.2, 18.6) 21.6 (18.0, 25.1) 23.8 (20.2, 27.7) 55.2 (51.2, 59.0) 

No PrEP (%) 71.5 (67.3, 75.9) 69.0 (64.9, 72.9) 39.7 (36.4, 43.1) 37.0 (33.6, 40.4) 17.1 (14.5, 19.6) 

PrEP (%) 15.1 (12.2, 18.3) 16.3 (13.3, 19.3) 38.6 (35.4, 41.9) 39.1 (35.9, 42.5) 27.7 (24.6, 31.2) 

Model 1: Null model – homogenous degree; random mixing 

Model 2: Degree heterogeneity by age and race/ethnicity; random mixing 

Model 3: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; random mixing 

Model 4: Degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age and race/ethnicity 

Model 5: Fully parameterized model – degree heterogeneity by age, race/ethnicity, HIV status and PrEP use; mixing by age, 

race/ethnicity, HIV status and PrEP use 
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Appendix C. Chapter 4 Technical Supplement 

The following technical appendix is based on a document written by Samuel Jenness 

(Dissertation Advisor). The original document has been modified for various studies with the 

EpiModel software,15,152,155–157 by several contributing authors, and adapted by Kevin Maloney 

for this dissertation. 

1 INTRODUCTION 

This supplementary technical appendix describes the mathematical model structure, 

parameterization, and statistical analysis of the accompanying paper in further detail. 

1.1  Model Framework 

The mathematical models for HIV transmission dynamics presented in this study are network-

based transmission models in which uniquely identifiable sexual partnership dyads were 

simulated and tracked over time. This partnership structure is represented through the use of 

temporal exponential-family random graph models (TERGMs), described in Section 3. On top of 

this dynamic network simulation, the epidemic model represents demography (entries, exits, 

and aging), interhost epidemiology (disease transmission), intrahost epidemiology (disease 

progression), and clinical epidemiology (disease diagnosis and treatment and prevention 

interventions). Individual attributes related to these processes are stored and updated in 

discrete time over the course of each epidemic simulation. 

The modeling methods presented here utilize and extend the EpiModel software platform to 

incorporate HIV-specific epidemiology and transmission dynamics. The HIV extensions for men 

who have sex with men (MSM) were originally developed by Goodreau et al. for use in prior 

modeling studies of MSM in the United States and South America,158–160 and subsequently used 

for a model for HIV preexposure prophylaxis (PrEP) among US MSM.15,152,155–157 The most 

recent innovation in our modeling platform has been to incorporate primary data from the 
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ARTnet study of MSM in the United States directly into the workflow for parameterizing the 

network and behavioral components.161  

1.2 Model Software 

The models in this study were programmed in the R and C++ software languages using the 

EpiModel [http://epimodel.org/] software platform for epidemic modeling. EpiModel was 

developed by the authors for simulating complex network-based mathematical models of 

infectious diseases, with a primary focus on HIV and sexually transmitted infections (STIs).162 

EpiModel depends on Statnet [http://statnet.org/], a suite of software in R for the representation, 

visualization, and statistical analysis of complex network data.163 

EpiModel allows for a modular expansion of its built-in modeling tools to address novel research 

questions. We have developed a set of extension modules into a software package called 

EpiModelHIV. This software is available for download, along with the scripts used in the 

execution of these models. The tools and scripts to run these models are contained in two 

GitHub repositories: 

 [http://github.com/statnet/EpiModelHIV] contains the general extension software package. 

Installing this using the instructions listed at the repository homepage will also load in 

EpiModel and the other dependencies. We use a branching repository architecture on 

Github; the branch of the repository associated with this research project is CombPrev. 

 [http://github.com/EpiModel/PrEP-Mixing] contains the scripts to execute the models and to 

run the statistical analyses provided in the manuscript. 

1.3 Core Model Specifications 

We started with a network size of 10,000 MSM aged 15 to 65 to represent the larger population 

of sexually active MSM in the Atlanta metropolitan area. The population size was allowed to 

increase and decrease with arrivals into the sexually active population at age 15 and departures 
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related to mortality or aging out of the sexually active population at age 65. MSM were stratified 

by Black, Hispanic, and White/other race/ethnicity in proportions equivalent to Census-derived 

proportions. Further details on the demography (race and age) are provided in Section 5. We 

used a four-stage simulation framework, first calibrating the model to diagnosed HIV prevalence 

for 60 years of burn-in time (Stage 1), then calibrating the model to current estimated levels of 

PrEP coverage for 5 years of burn-in time (Stages 2 and 3). Stage 2 introduced PrEP for 1 year, 

in order to establish PrEP use in the population before Stage 3. At the beginning of Stage 3 

(year 2 of PrEP phase-in) the network model parameters were substituted for each of the 

scenarios with and without PrEP sorting. The models with and without PrEP sorting were 

simulated for 10 years each (Stage 4). The time unit used throughout the simulations was one 

week. Unless otherwise noted, all rate-based parameters listed below are to be interpreted as 

the rate per week and all duration-based estimates are to be interpreted as the duration in 

weeks. 

2 THE ARTnet STUDY 

This model featured an innovative parameterization design in which primary individual-level and 

partnership-level data were used to estimate statistical models for summary statistics that were 

then entered into the epidemic model. The primary data source for network structure and 

behavioral data was the ARTnet study, described below. Wherever possible, we used primary 

data from this study for model parameterization, and only relied on the secondary published 

literature for model parameters that could be generalized across target populations (e.g., HIV 

natural history or clinical response parameters). 

2.1 Study Design 

This analysis used data collected in the ARTnet study of MSM in the United States in 2017–

2019.161 MSM were recruited directly after participating in the American Men’s Internet Study 

(AMIS),164 a parent web-based study about MSM sexual health that recruited through banner 
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ads placed on websites or social network applications. At the completion of AMIS, MSM were 

asked to participate in ARTnet, which focused on sexual network features. ARTnet data 

collection occurred in two waves (following AMIS): July 2017 to February 2018 and September 

2018 to January 2019. 

Eligibility criteria for ARTnet were male sex at birth, current male cisgender identity, lifetime 

history of sexual activity with another man, and age between 15 and 65. Respondents were 

deduplicated within and across survey waves (based on IP and email addresses), resulting in a 

final sample of 4904 participants who reported on 16198 sexual partnerships. The Emory 

University Institutional Review Board approved the study. 

2.2 Primary Measures 

ARTnet participants were first asked about demographic and health-related information. 

Covariates used in this analysis included race, age, ZIP Code of residence, and current HIV 

status. ZIP Codes were transformed into Census regions/divisions and urbanicity levels by 

matching against county databases (using standardized methods for selecting county in the 

small number of cases when ZIP Codes crossed county lines). Participants reporting as never 

testing for HIV, having indeterminate test results, or never receiving test results were classified 

as having an unknown HIV status. 

Participants were then asked detailed partner-specific questions for up to 5 most recent 

partners. The detailed partner-specific questions included attributes of the partner and details 

about the partnership itself. Partner attributes considered here included age, race/ethnicity, and 

HIV status. Participants were allowed to report any partner attribute as unknown. When partner 

age was unknown, age was imputed based on a response to a categorical question (e.g., 5–10 

years younger/older, 2–5 years younger/older). Partner HIV status and PrEP use was imputed 

with a reclassification analysis to estimate mixing matrices for HIV diagnosis status and PrEP 

use status. The methods and results of this analysis are presented in Chapter 2 (page 22) of 
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this dissertation. Partnerships were classified into three types: “main” (respondent reported they 

considered this partner a “boyfriend, significant other, or life partner”) casual (someone they 

have had sex with more than once, but not a main partner), and one-time.165 For one-time 

partners, we asked for the date that sexual activity occurred. For persistent (main and casual) 

partnerships, we asked for the date of most recent sex, the date first sex (which could have 

been prior to the past year), and whether the partnership was ongoing (if the participant 

expected sexual activity would occur in the future). For each partnership, we asked whether (for 

one-time) or how frequently (for persistent) anal sex occurred. 

Outcome measures include descriptive statistics for characteristics of participants and their 

reported partnerships, and the aggregate network statistics used to estimate the TERGMs 

underlying epidemic simulations on dynamic networks. The network statistics include ego 

degree, attribute mixing in partnerships, and the current length of ongoing partnerships, 

stratified by the attributes of persons and partnerships. Degree is a property of individuals, 

whereas mixing and length are properties of partnerships. Degree was defined as the ongoing 

number of persistent partners measured on the day of the survey (includes main and casual 

partnerships). Degree is not defined for one-time partnerships, so for these we instead 

calculated a weekly rate of new contacts by subtracting the total main and casual partners from 

the total past-year partners, and dividing by 52. Partnership length for main and casual 

partnerships was calculated by taking the difference between the survey date and the 

partnership start date. The mean length of ongoing partnerships is the network statistic needed 

for TERGM estimation; the logic and derivation are explained here.162 Mixing was measured by 

the relative frequency of partnerships that occurred within and between groups defined by 

race/ethnicity, age group, HIV diagnosis status, and PrEP use status. 
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2.3 Statistical Analysis  

We fit a series of general linear models (GLMs) to estimate summary statistics for features of 

the sexual network structure and the behavior within partnerships. Specific GLM 

parameterizations are detailed below in the discussion of each set of model parameters. 

Common across all models was the general approach of including geography of residence as a 

main effect with two levels (Atlanta versus all other areas). This allowed for the model 

coefficients and predicted summary statistics to vary by geography while ensuring stability of 

outcomes under the assumption of conditional exchangeability. 

3 NETWORKS OF SEXUAL PARTNERSHIPS 

We modeled networks of three interacting types of sexual relations: main partnerships, casual 

(but persistent) partnerships, and one-time anal intercourse contacts. We first describe the 

methods conceptually, including the parameters used to guide the model and their derivation, 

and then present the formal statistical modeling methods. Consistent with our parameter 

derivations, all relationships are defined as those in which anal intercourse is expected to occur 

at least once. 

3.1  Conceptual Representation of Sexual Networks 

Our modeling methods aim to preserve certain features of the cross-sectional and dynamic 

network structure as observed in our primary data, while also allowing for mean relational 

durations to be targeted to those reported for different groups and relational types. Our 

methods do so within the context of changing population size (due to births, deaths, arrivals 

and departures from the population) and changing composition by attributes such as age. The 

broader motivation, methodological details, and link between models and primary data are 

described here.162 

The network features that we aim to preserve are as follows: 
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 Persistent (Main and Casual) Partnerships 

o The mean degree (number of ongoing partners), stratified by main and casual 

partnership types, and the proportion of men with concurrency (2 or more ongoing 

partners) for each partnership type, at any time point. 

o Variations in the mean degree specific to each persistent partnership type by: 

 Race/ethnicity group (3 categories for Black, Hispanic, and White/other 

MSM). 

 Age group (5 categories for 15–24, 25–34, 35–44, 45–54, and 55–64). 

 Diagnosed HIV status (with diagnosed HIV; and without diagnosed HIV, 

including MSM without HIV and MSM with undiagnosed HIV) 

Cross-type degree: Degree in the other persistent partnership type (e.g., mean 

degree of MSM for main partnerships given current casual degree of 0, 1, 2, 

3). 

o Selection of partners within the same race/ethnicity group (mixing by race/ethnicity). 

o Selection of partners within the same age group (mixing by age). 

o Mean partnership durations, stratified by main and casual partnership types, and by 

mixing within age groups. 

 One-Time Partnerships 

o The overall rate of having one-time anal intercourse partnerships per week. 

o Variations in this contact rate by: 

 Race/ethnicity group. 

 Age group. 

 Diagnosed HIV status. 

 Total persistent degree (sum of main and casual partnerships ongoing). 

 Risk level heterogeneity above variations by the other four factors (mean 

partnership rates for five quintiles of MSM stratified by mean one-time rates). 
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o Selection of partners within the same race/ethnicity group (mixing by race/ethnicity). 

o Selection of partners within the same age group (mixing by age). 

o Selection of partners with the same HIV diagnosis status (HIV serosorting). 

 Common to Persistent and One-Time Partnership Types 

o Prohibitions against MSM with incompatible sexual positioning roles (e.g., no 

partnerships between exclusively receptive MSM). 

3.1.1  Overall Mean Degree for Persistent Partnerships  

Ongoing persistent partnerships (whether main or casual) were defined from the partnership-

level ARTnet dataset as those in which sex had already occurred more than once, and in which 

the respondent anticipated having sex again. The momentary main or casual mean degree is 

then defined as the mean of the degree of all MSM for main or casual partnerships on the day of 

study. We estimated this with a Poisson model with main or casual degree as the outcome and 

a dummy variable for Atlanta residence as the predictor and then exponentiating the 

coefficients, resulting in an estimated mean main degree of 0.396 and a mean casual degree of 

0.541.  

In addition, we modeled the proportion of MSM with concurrency (degree of 2 or more) by 

partnership type. This was estimated with logistic regression models for binary outcomes with a 

dummy variable for Atlanta residence as the predictor. Taking the inverse of the logit of the 

coefficient yielded the predicted probabilities of 0.9% for main concurrency and 14.5% for 

casual concurrency.  

3.1.2  Heterogeneity in Mean Degrees for Persistent Partnerships 

We estimated the heterogeneity in main and casual mean degree by fitting three Poisson 

regression models. For race/ethnicity, we estimated the mean degree for each group within the 

target population by including dummy variables for city and race/ethnicity. For age, we modeled 
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the semi-parametric relationship between age and mean degrees by including city, age group, 

and square root of age group to allow for a non-linear relationship between age and the 

outcome. For HIV and PrEP, we estimated mean degree for MSM with diagnosed HIV, MSM 

without diagnosed HIV and not using PrEP, and MSM without diagnosed HIV and using PrEP, 

with a dummy variable for city. We then calculated a weighted average of MSM with and without 

PrEP to estimate an overall mean degree for MSM without diagnosed HIV. For cross type 

degree, we modeled the mean degree for main partnerships as a function of degree of casual 

partnerships, and vice versa, again with city also as a predictor. For each of the 6 models (2 

partnership types times three predictors of interest), we estimated the statistical models and 

then exponentiated the coefficients to obtain the rates for each stratum. Those are shown in the 

Table below. 

Appendix Table C.1. Heterogeneity in Mean Main and Casual Degree by 

Race/Ethnicity, Age Group, diagnosed HIV status, and Cross Type Degree of Ego 

(Respondent) 

Predictor Main Mean Degree Casual Mean Degree 

Race/Ethnicity   

Black 0.279 0.605 

Hispanic 0.423 0.513 

White 0.412 0.534 

Age Group   

15–24 0.374 0.297 

25–34 0.469 0.479 

35–44 0.449 0.615 

45–54 0.373 0.701 

55–64 0.284 0.742 

HIV status   

Without diag. HIV 0.387 0.483 

With diag. HIV 0.424 0.719 

Cross Type Degree   
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0 0.440 0.632 

1 0.352 0.401 

2 0.282 0.254 

3 0.225 — 

3.1.3  Mixing by Race/Ethnicity and Age for Persistent Partnerships 

Respondents reported on their perception of the race and ethnicity (Hispanic/non-Hispanic) for 

each partner. We categorized the respondents’ and partners’ races into three mutually exclusive 

groups: Black, Hispanic, and White/other. Using logistic regression models, we estimated the 

proportion of partnerships were between MSM of the same race (within-group mixing) by 

evaluating relationship between the respondent group and partner group as a binary outcome 

(using geography of residence predictor as a main effect with two levels, Atlanta versus all other 

areas). The inverse logit of the coefficients is then interpreted as the predicted probability of a 

same-race/ethnicity partnership. The values were 76.5% for main partnerships and 63.3% for 

casual partnerships. 

For mixing by age, we used a model parameterization for the 5-category age group that allowed 

for differences in the level of age mixing that could vary by age group (differential homophily). 

We fit a logistic regression model for partnerships, with being in a partnership of the same age 

group as the outcome and the age group of the respondent as the main predictor. With the 

inverse logit transformation, the probabilities of partnerships within the same age group, 

stratified by partnership type are shown in the table below. 

Appendix Table C.2. Proportion of Main and Casual Partnerships within the Same 

Age Group, by Age of Ego (Respondent) 

Age Group Main Within Group  Casual Within Group 

15–24 79.5% 56.4% 

25–34 69.7% 43.8% 

35–44 57.8% 31.9% 
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45–54 44.8% 22.1% 

55–64 32.6% 14.6% 

3.1.4  Duration of Persistent Partnerships 

We model partnership dissolution as a heterogenous, geometrically distributed process with 

unique parameters for each relational type. The geometric distribution for relational durations 

implies a “memoryless process,” which is a common assumption within ordinary differential 

equation modeling. Although this assumption implies that the rate of dissolution does not 

depend on the current age of the partnership, the overall exponential shape of the dissolution 

distribution matches reasonably well to empirical data on relational durations. The fit is improved 

considerably when the partnership types are stratified, as we do here, implying a mixture of 

geometric distributions. Once one-time contacts are removed, and longer-duration main 

partnerships are separated from shorter-term causal partnerships, the hypergeometric 

distribution fits the empirical data on partnership durations well.  

The fit is improved further by stratifying based on the interaction between partnership type and 

age of the both members within the dyad. For this analysis, we explored how relationship 

duration varied by multiple demographic characteristics, and unsurprisingly age was most 

strongly associated with duration. For this model parameterization, we specifically elected to 

estimate and input based on matched age groups (that is, partnerships between two persons of 

the same age). 

As detailed in previous work,158,162 for memoryless processes, the expected age of an extant 

(ongoing) relationship at any moment in time is an unbiased estimator of the expected 

uncensored duration of relationships, given the balancing effects of right-censoring and length 

bias for this distribution. Raw relational ages were calculated as the difference between first sex 

date and the study date for each dyad the ego reported sex with more than once in the interval. 

To derive our estimator of relational age, we take the median of the observed distribution and 
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then calculate the mean for the geometric distributions associated with that median. To account 

for estimation within the Atlanta target population, we weighted this estimator by the inverse of 

the relative differences in Atlanta partnerships to non-Atlanta partnerships. 

The resulting expected relational ages are summarized in the table below. 

 

Appendix Table C.3. Duration of Main and Casual Partnerships by Dyadic Age Group 

of Ego (Respondent) and Alter (Partner) 

Dyadic Age Group 
Main Relational Age 
(Weeks) 

Casual Relational Age 
(Weeks) 

Both 15–24 71.2 50.5 

Both 25–34 253.5 72.5 

Both 35–44 523.3 112.1 

Both 45–54 637.1 161.3 

Both 55–64 903.1 147.4 

Different Groups 217.9 106.4 

3.1.6 Overall Mean One-Time Contact Rate 

In addition to persistent main and casual partnerships, we modeled one-time sexual contacts 

involving anal intercourse based on ARTnet reports on the number and variation in these types 

of relations. As noted above, degree is not defined for one-time contacts, so for these we 

instead calculated a weekly rate of new contacts by subtracting the total main and casual 

partners from the total past-year partners. We estimated the weekly rate by fitting a Poisson 

regression model with the count of one-time contacts as a function of city, exponentiating the 

coefficient to get the predicted count, and dividing by 52 to get the week rate. The overall mean 

one-time contact rate was 0.076 AI contacts per week. 

3.1.7 Heterogeneity in One-Time Contact Rates  

Individuals were assigned a risk level strata at entry to the population, with 20% probability for 

each of the quintiles, which correspond to different rates of one-time partners. Individuals with 
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more one-time partners are at higher risk for HIV acquisition, so over time the distribution of risk 

levels becomes imbalanced between MSM with and without HIV. This results in MSM with HIV 

disproportionately in higher risk quintiles, while relatively few are in the lower risk quintiles, so 

the overall mean degree among MSM with HIV is higher than the specified target statistic. 

Therefore, we reassigned risk levels at each time step for the group of MSM screening for HIV 

(regardless of test results) by randomly shuffling risk levels within the group. This ensures that, 

on average, quintiles of risk level are equally distributed among MSM with and without 

diagnosed HIV. We excluded MSM who are using PrEP from this mechanism, because PrEP 

initiation probabilities varied with risk level (i.e., MSM with higher rates of one-time partners are 

more likely to initiate PrEP). This stabilizes the mean one-time partner rates among MSM using 

PrEP. For MSM using PrEP who screen positive for HIV infection (disproportionately those with 

more one-time partners) we re-assigned risk level along with the pool of MSM not using PrEP 

who are screening for HIV. 

Heterogeneity in one-time contact rates was modeled with four Poisson regression 

models to estimate the rates as a function of race/ethnicity, age group, diagnosed HIV status, 

risk level strata, and total persistent (main plus casual) degree. We fit these models with 

geography of residence as a main effect (which had two levels, Atlanta versus all other areas, 

with the former level used for predictions) and exponentiated the coefficients and then divided 

by 52 to get the group-specific rates. For age group, similar to the estimation of degree, we 

modeled this semi-parametrically by including age group and the square root of age group as 

the joint predictors (along with city). The results are shown in the table below. 
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Appendix Table C.4. Weekly One-Time Contact Rates by Race/Ethnicity, Age Group, 

diagnosed HIV status, Risk Level, and Total Persistent Degree of Ego (Respondent) 

Predictor Weekly Contact Rate 

Race/Ethnicity  

Black 0.062 

Hispanic 0.071 

White 0.079 

Age Group  

15–24 0.048 

25–34 0.075 

35–44 0.089 

45–54 0.093 

55–64 0.087 

HIV status  

Without diag. HIV 0.064 

With diag. HIV 0.112 

Risk Level Quintile  

1 0.000 

2 0.000 

3 0.012 

4 0.043 

5 0.326 

Total Persistent Degree  

0 0.049 

1 0.057 

2 0.121 

3+ 0.284 
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3.1.8 Mixing by Race/Ethnicity, Age, and diagnosed HIV status, for One-Time Contacts 

We used a similar approach to within-group mixing by race/ethnicity and age group for one-time 

contacts to the one used for persistent contacts, with one difference that we did not model 

differential homophily by age group to improve model stability. Therefore, the overall proportion 

of one-time contacts that were within the same race/ethnic group was 67.6% and the proportion 

of one-time contacts that were within the same age group was 32.8%. Unlike persistent 

partnerships, we included HIV serosorting targets for one-time contacts. We did not model 

differential homophily and instead specified the proportion of partnerships with discordant 

diagnosed HIV statuses, which was 24.3%.  

3.1.9 Mixing by Sexual Role Across All Partnership Types 

We assign men a fixed sexual role preference (exclusively insertive, exclusively receptive, 

versatile). The model then includes an absolute prohibition, such that two exclusively insertive 

men cannot partner, nor can two exclusively receptive men. We estimated the proportion men 

were in each category (insertive, receptive, and versatile) by analyzing whether men had only 

insertive anal intercourse, only receptive anal intercourse, or both insertive and receptive anal 

intercourse (respectively) in their past five anal partnerships over the past year. These 

proportions were stratified (restricted) by geography of residence to the city of Atlanta. The 

proportions were: 18.5% exclusively insertive, 27.1% exclusively receptive, and 54.4% versatile. 

3.2  Statistical Representation of Sexual Networks 

Exponential-family random graph models (ERGMs) and their dynamic extension temporal 

ERGMs (TERGMs) provide a foundation for statistically principled simulation of local and global 

network structure given a set of target statistics from empirical data. Main and casual 

relationships were modeled using TERGMs,166 since they persist for multiple time steps. One-

time contacts, on the other hand, were modeled using cross-sectional ERGMs.167 Formally, our 

statistical models for relational dynamics can be represented as five equations for the 
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conditional log odds (logits) of relational formation and persistence at time t (for main and casual 

relationships) or for relational existence at time t (for one-time contacts): 

𝑙𝑜𝑔𝑖𝑡 ቀ𝑃൫𝑌,௧ = 1ห 𝑌,௧ିଵ = 0, 𝑌,௧
 ൯ቁ  = 𝜃

ା ᇱ
𝜕൫𝑔

ା (𝑦)൯ Main partnership formation 

𝑙𝑜𝑔𝑖𝑡 ቀ𝑃൫𝑌,௧ = 1ห 𝑌,௧ିଵ = 0, 𝑌,௧
 ൯ቁ  = 𝜃

ାᇱ
𝜕൫𝑔

ା(𝑦)൯ Casual partnership formation 

𝑙𝑜𝑔𝑖𝑡 ቀ𝑃൫𝑌,௧ = 1ห 𝑌,௧ିଵ = 1, 𝑌,௧
 ൯ቁ  = 𝜃

ି ᇱ𝜕൫𝑔
ି (𝑦)൯ Main partnership persistence 

𝑙𝑜𝑔𝑖𝑡 ቀ𝑃൫𝑌,௧ = 1ห 𝑌,௧ିଵ = 1, 𝑌,௧
 ൯ቁ  = 𝜃

ିᇱ𝜕൫𝑔
ି(𝑦)൯ Casual partnership persistence 

𝑙𝑜𝑔𝑖𝑡 ቀ𝑃൫𝑌,௧ = 1ห 𝑌,௧
 ൯ቁ  = 𝜃

ᇱ𝜕൫𝑔(𝑦)൯ One-time contact existence 

where: 

 𝑌,௧ = the relational status of persons i and j at time t (1 = in relationship/contact, 0 = 

not). 

 𝑌,௧
  = the network complement of i,j at time t, i.e. all relations in the network other than 

i,j. 

 𝑔(𝑦) = vector of network statistics in each model (the empirical statistics defined in the 

tables above). 

 𝜃 = vector of parameters in the model. 

For 𝑔(𝑦) and 𝜃, the superscript distinguishes the formation model (+), persistence model (-) and 

existence models (neither). The subscript indicates the main (m), casual (c) and one-time (o) 

models. 

The recursive dependence among the relationships renders the model impossible to evaluate 

using standard techniques; we use MCMC in order to obtain the maximum likelihood estimates 

for the 𝜽 vectors given the 𝒈(𝒚) vectors. 

Our method of converting the statistics laid out in Section 3.1 into our fully specified network 

models consists of the following steps: 
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1. Construct a cross-sectional network of 10,000 men with no relationships. 

2. Assign men demographics (race/ethnicity and age) based on Census data for Atlanta 

and assign men sexual roles based on frequencies listed above, as well as one-time risk 

quintiles (20% of the men in each race per quintile). 

3. Calculate the target statistics (i.e., the expected count of each statistic at any given 

moment in time) associated with the terms in the formation model (for the main and 

casual partnerships) and in the existence model (for one-time contacts). 

4. Assign each node a place-holder main and casual degree (number of on-going 

partnerships) that is consistent with the estimated distributions, and store these numbers 

as a nodal attribute. (Note: this does not actually require individuals to be paired up into 

the partnerships represented by those degrees). 

5. For the main and casual networks, use the mean relational durations by age group 

combination to calculate the parameters of the persistence model, using closed-form 

solutions, given that the models are dyadic-independent (each relationship’s persistence 

probability is independent of all others). 

6. For the main and casual networks, estimate the coefficients for the formation model that 

represent the maximum likelihood estimates for the expected cross-sectional network 

structure. 

7. For the one-off network, estimate the coefficients for the existence model that represent 

the maximum likelihood estimates for the expected cross-sectional network structure. 

Steps 5–7 occur within the EpiModel software, and use the ERGM and STERGM methods 

therein. They are completed efficiently by the use of an approximation in Step 6.168 During the 

subsequent model simulation, we use the method of Krivitsky169 to adjust the coefficient for the 

first term in each model at each time step, in order to preserve the same expected mean degree 

(relationships per person) over time in the face of changing network size and nodal composition. 
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At all stages of the project, simulated partnership networks were checked to ensure that they 

indeed retained the expected cross-sectional structure and relational durations throughout the 

simulations. 

3.3  Addition of PrEP Degree and Sorting Network Parameters 

The two experimental scenarios (with and without PrEP sorting) required different network 

parameterizations than the base network models. We first estimated new network parameters 

by fitting network models to the base model target statistics, plus additional statistics for PrEP 

use status. For the model without PrEP sorting, we added degree distribution estimates for the 

subsets of MSM with and without PrEP use among all MSM without diagnosed HIV (a group 

that includes those without HIV and those with undiagnosed HIV). Similarly, the models with 

PrEP sorting added degree distributions for PrEP use status, as well as assortative mixing 

statistics for MSM using PrEP. We modeled assortative mixing among MSM using PrEP for 

main and casual partners, but not one-time partners. This is because the target for assortative 

mixing among one-time partners using PrEP is 33.3%, while the model without PrEP sorting 

already produces an average of 30.9% assortative mixing among one-time partners using PrEP. 

We were unable to increase assortative mixing to 33.3% without inadvertently inducing changes 

to serosorting, so we decided to model PrEP sorting for persistent partnerships only. The target 

statistic for main partnerships was 45.3% and for casual partnerships it was 41.0%. Assortative 

mixing in models without PrEP sorting was 12.1% for main partners, and 24.1% for casual 

partners, so the difference in assortative mixing was more substantial and important to model. 

We did not model full mixing matrices for the interaction of PrEP use status and 

diagnosed HIV status (i.e., assortative mixing among MSM not using PrEP; mixing between 

MSM with and without PrEP use; mixing between MSM with/without PrEP use and MSM with 

diagnosed HIV). However, by modeling within group mixing for MSM using PrEP (in the 

scenario with PrEP sorting) the prevalence of other partnership combinations also varies. This is 
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because of the constraints imposed by fixed degree targets and the other network parameters. 

As the number of partnerships concordant with PrEP use increases, MSM with PrEP use have 

fewer partnerships with (1) MSM not using PrEP; and (2) MSM with diagnosed HIV. In turn, 

there is an increase to within group mixing for MSM not using PrEP, and discordant mixing 

between MSM not using PrEP and MSM with diagnosed HIV. This partnership balancing 

mechanism avoids over-parameterizing the network models, so that degree distributions and 

HIV serosorting do not vary between the two scenarios. 

The network models with PrEP parameters were substituted into the simulation one year after 

the introduction of PrEP. To do this, we performed the initial calibration of the model to burn-in 

the HIV epidemic. We were unable to incorporate network parameters based on PrEP use at 

the same time step as PrEP introduction, because network simulation with PrEP parameters 

requires >0% PrEP use in the population. Therefore, we introduced PrEP using an initiation 

probability compatible with 20% PrEP use among PrEP-eligible MSM after five years. After one 

year of PrEP introduction, the simulation was stopped in order to supply the new network 

parameters. 

The network parameters for the respective scenarios were added to the simulation. Each set of 

parameters (estimated for a population of N = 10,000) was adjusted for the population size at 

the time of substitution to the model, using the Krivitsky169 method. The simulations proceeded 

for four years, for a total of five years of PrEP burn-in for each scenario. 
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4 BEHAVIOR WITHIN SEXUAL PARTNERSHIPS 

In this study, we model three phenomena consecutively within relationships at each time step: 

the number of anal intercourse sex acts, condom use per sex act, and sexual role per sex act. 

We simulate these within all relationships regardless of HIV status (whether diagnosed or not).  

4.1  Anal Intercourse Acts Per Partnership 

The rate of anal intercourse is applicable to persistent (main and casual) partnerships in which 

there are repeated AI acts between the start and end of the partnership. We use ARTnet data 

on the overall rate and predictors of variation in rates unique to each partnership type. For one-

time contacts, we assumed that the number of AI exposures was one by definition, although 

there could have been multiple AI acts within an exposure due to role versatility (see Section 

4.4). 

4.1.1  Measurement of Acts in ARTnet 

We measured the number of acts within each reported partnership within the ARTnet study by 

asking participants about the frequency of AI acts. Study participants could report on the 

average number of acts within the partnership over the past year by week, month, year, or total 

partnership duration. We then scaled this into a total weekly act rate. The final ARTnet 

partnership-level dataset on 16198 partnerships includes this weekly rate as the outcome and 

predictors at the individual and dyadic level that we used for statistical modeling as described 

below. 

4.1.2  Statistical Models of Act Rates 

With this partnership-level dataset, we then modeled the count of acts per year per partnership 

based on the Poisson regression formula:  

Yi ~ 0 + 1X1 + 2X1
2 + 3X2 + 4X3 + 5X1X3 + 6X4 + 7X4

2 + 8X5 + 9X6 

where: 



160 

 

 Yi = Log of the count of acts per year 

X1 = Duration of partnership in weeks at the survey date. 

X2 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6 

categories to capture within and across group mixing: Black-Black, Black-

Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White. 

X3 = Partnership type (main or casual). 

X4 = The combined age of ego and alter in years. 

X5 = The concordant diagnosed HIV-positive status of both ego and alter (as perceived 

by the ego), compared to all other combinations of dyadic HIV status. 

X6 = Residence in the Atlanta metropolitan area.  

Note that we modeled the partnership duration and combined age of partners quadratically, and 

we modeled the interaction of partnership duration and partnership type. Terms within the 

prediction model were selection based on a combination of a priori theory and exploratory data 

analysis. The coefficients for the model, and their lower and upper 95% confidence intervals, 

are presented in the table below. Exponentiating any linear combination of coefficients will yield 

the yearly rates, which may be converted to weekly through division. 
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Appendix Table C.5. Statistical Model of Act Rates in Main and Casual Partnerships 

  Model Parameter Estimate Lower 95% CI Upper 95% CI 

0 (Intercept) 4.9615 4.9208 5.002 

1 (Duration) -0.0013 -0.0013 -0.0012 

2 (Duration2) 6.3197E-07 6.0598E-07 6.5781E-07 

3 (B-H/W Combo) 0.5196 0.4888 0.5505 

3 (H-B/W Combo) 0.2178 0.1908 0.2449 

3 (H-H Combo) 0.1967 0.1687 0.2250 

3 (W-B/H Combo) 0.4758 0.4505 0.5013 

3 (W-W Combo) 0.1765 0.1516 0.2016 

4 (Casual Type) -1.0373 -1.0458 -1.0287 

5 (Duration x Casual Type) -0.0009 -0.0010 -0.0009 

6 (Combined Age) -0.0113 -0.0122 -0.0104 

7 (Combined Age2) 5.6269E-05 5.0154E-05 6.2374E-05 

8 (HIV+ Concordant) 0.3614 0.3452 0.3776 

9 (Atlanta residence) -0.0229 -0.0396 -0.0063 
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4.1.3  Predicted Rates in Epidemic Model 

Predicted weekly rates of AI based on the linear combination of partnership and individual 

attributes is then obtained dynamically by predicting from the statistical model with inputs based 

on the current simulated population. EpiModel tracks the current age of partners, the duration of 

their partnership, their racial combination, and the partnership type. This set of predictors was 

input into a predict function in R to obtain the weekly mean rates in each strata. The size of the 

potential set of strata and corresponding predicted means is therefore nearly infinite based on 

all the potential combinations of input values. 

In Supplemental Figure 1 below, we display some example weekly rates based on a subset of 

model inputs. This figure shows that rates decline in partnerships with a longer duration, that 

they are higher in partnerships in which both partners are younger, they are lower for casual 

partnerships (ptype = 2) compared to main partnerships, and that they are higher in White-

White partnerships compared to Black-Black partnerships. The act rates generally ranged from 

0.5 acts per week to 2 acts per week. Other predicted rates may be obtained by exponentiating 

the coefficients in the table above and dividing by 52 (to convert from yearly rates to weekly 

rates).  
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Based on these model predictions, which represent means for each linear combination, we then 

drew individual counts of acts per partnership per time step in EpiModel using the rpois function 

to draw randomly from the Poisson distribution with a vector of parameters, one value for each 

partnership. In addition to these data-driven statistical calculations, we also assumed that MSM 

in late stages of AIDS (HIV viral load above 5.75), had no acts due to active disease that would 

limit their sexual activity. We had no primary data in ARTnet on sexual partnerships in this late 

disease stage, but prior analysis and modeling studies support a general decline in sexual 

activity due to AIDS.170 

 

Appendix Figure C.1. Predicted Weekly AI Rates from the Poisson Statistical Model, 

by Partnership Duration, Partnership Type (1 = Main; 2 = Casual), Combined Partner 

Age, and Racial Combination. 
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4.2  Condom Use Per Act 

We modeled condom use within all three partnership types (main, casual, and one-time 

contacts) based on ARTnet data on the frequency of condom use within reported partnerships. 

We followed the same general approach to measuring, fitting statistical models, and dynamically 

predicting condom use within EpiModel as we used for rates of AI.  

4.2.1 Measurement of Condom Use in ARTnet 

We measured condom use within partnerships in the ARTnet study by asking about the 

frequency of condom use (for persistent partnerships) or whether condom use occurred (for 

one-time partnerships) during anal intercourse. Study participants first reported on the number 

of AI acts that occurred in the time intervals described above, and then we followed-up with a 

question on the number of those total acts that involved condom use. We then transformed 

these subsetted counts into proportions of acts that were condom-protected. This resulted in a 

U-shaped distribution of proportions, with most persistent partnerships involving either always or 

never condom use. For this current study, we simplified the outcome variable to any condom 

use (yes, no) over the past year. 

4.2.2  Statistical Models of Condom Use Probabilities 

With the outcome described above, we used the partnership-level dataset to fit two logistic 

regression models for any condom use in the partnership, with one model for persistent (main 

and casual) and another model for one-time partnerships. The linear model formula for 

persistent partnerships was as follows: 

Yi ~ 0 + 1X1 + 2X1
2 + 3X2 + 4X3 + 5X1X3 + 6X4 + 7X4

2 + 8X5 + 9X6 + 10X7 

where: 

 Yi = Log odds of the probability of condom use per act. 

X1 = Duration of partnership in weeks at the survey date. 
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X2 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6 

categories to capture within and across group mixing: Black-Black, Black-

Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White. 

X3 = Partnership type (main or casual). 

X4 = The combined age of ego and alter in years. 

X5 = The concordant diagnosed HIV-positive status of both ego and alter (compared to 

all other combinations of dyadic HIV status). 

X6 = Current use of pre-exposure prophylaxis (PrEP) by the ego (respondent).  

X7 = Residence in the Atlanta metropolitan area.  

Note that we modeled the partnership duration and combined age of partners quadratically, and 

we modeled the interaction of partnership duration and partnership type. Terms within the 

prediction model were selected based on a combination of a priori theory and exploratory data 

analysis. The coefficients for the model, and their lower and upper 95% confidence intervals, 

are presented in the table below. Taking the inverse logit of the linear combination of 

coefficients will yield to the strata-specific predicted probabilities of condom use within the 

partnership. 
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 Appendix Table C.6. Statistical Model of Per Act Condom Use Probability for Main 

and Casual Partnerships 

 

 

For the logistic regression model of one-time partnerships, we used a similar logistic regression 

approach as for persistent partnerships but dropped the partnership duration and partnership 

type (since there was only one type for this model) predictor variables. The corresponding linear 

model formula for persistent partnerships was as follows: 

Yi ~ 0 + 1X1 + 2X2 + 3X2
2 + 4X3 + 5X4 + 6X5 

where: 

Yi = Log odds of the probability of condom use per one-time contact. 

Model Parameter Estimate Lower 95% CI Upper 95% CI 

0 (Intercept) 2.008 1.3020 2.7144 

1 (Duration) -0.0031 -0.0040 -0.0023 

2 (Duration2) 1.2561E-06 5.8878E-07 1.8614E-06 

3 (B-H/W Combo) -0.3355 -0.8549 0.1802 

3 (H-B/W Combo) -0.3692 -0.7798 0.04214 

3 (H-H Combo) -0.3989 -0.8314 0.0336 

3 (W-B/H Combo) -0.4402 -0.8235 -0.0557 

3 (W-W Combo) -0.5031 -0.8738 -0.1310 

4 (Casual Type) 0.5710 0.4084 0.7347 

5 (Duration x Casual Type) -0.0467 -0.0638 -0.0294 

6 (Combined Age) 0.0002 9.5502E-05 0.0003 

7 (Combined Age2) -1.6150 -2.1624 -1.1322 

8 (HIV+ Concordant) -0.5248 -0.6790 -0.3724 

9 (PrEP Use) 0.1701 -0.1385 0.4743 

10 (Atlanta residence) 0.0012 0.0005 0.0019 
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X1 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6 

categories to capture within and across group mixing: Black-Black, Black-

Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White. 

X2 = The combined age of ego and alter in years. 

X3 = The concordant diagnosed HIV-positive status of both ego and alter (compared to 

all other combinations of dyadic HIV status). 

X4 = Current use of pre-exposure prophylaxis (PrEP).  

X5 = Residence in the Atlanta metropolitan area.  

The coefficients for the model, and their lower and upper 95% confidence intervals, are 

presented in the table below. Taking the inverse logit of the linear combination of coefficients 

will yield to the strata-specific predicted probabilities of condom use within the partnership. 

Appendix Table C.7. Statistical Model of Per-Act Condom Use Probability for One-

Time Sexual Contacts 

Model Parameter Estimate Lower 95% CI Upper 95% CI 

0 (Intercept) 2.4287 1.6597 3.2007 

1 (B-H/W Combo) 0.1526 -0.3728 0.6785 

1 (H-B/W Combo) -0.1042 -0.5311 0.3221 

1 (H-H Combo) -0.10538 -0.5617 0.3506 

1 (W-B/H Combo) -0.1189 -0.5205 0.2825 

1 (W-W Combo) -0.2507 -0.6414 0.1396 

2 (Combined Age) -0.0542 -0.0733 -0.0351 

2 (Combined Age2) 0.0003 0.0001 0.0004 

3 (HIV+ Concordant) -1.8369 -2.6547 -1.1610 

4 (PrEP Use) -0.7133 -0.8732 -0.5553 

5 (Atlanta residence) 0.3102 0.0107 0.6095 
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4.2.3  Predicted Probabilities in Epidemic Model 

Predicted probabilities of condom use conditional on an AI act were calculated based on the 

linear combination of partnership and individual attributes obtained dynamically by predicting 

from the statistical model with inputs based on the current simulated population. This set of 

predictors was input into a predict function in R to obtain the expected mean probabilities.  

In Supplemental Figure 2 below, we display some example probabilities based on a subset of 

model inputs. This figure shows that condom use is lower in partnerships of a longer duration, 

generally higher in casual compared to main partnerships, lower in partnerships in which both 

partners are older, and lower in partnerships in which the ego (respondent) reported currently 

using PrEP. Other predicted probabilities may be obtained from Supplemental Table 6 by taking 

the inverse logit of the linear combination of coefficients of interest. 



169 

 

 

Supplemental Figure 3 shows the predicted probabilities for the second logistic model, for 

condom use within one-time AI contacts. Here we display variation in condom use by combined 

age of the partners, current PrEP use, and racial combination of the partners. As the figure 

shows, condom use is lower within partners of a lower combined age, higher in partnerships 

involving Black MSM (race.combo = 1 or 2), and lower among current PrEP users.  

Based on these model predictions, which represent expected probabilities for each linear 

combination, we then drew individual probabilities of condom use per act in EpiModel using the 

rbinom function to draw randomly from the binomial (Bernoulli) distribution with a vector of 

 

 

Appendix Figure C.2. Predicted Probabilities of Condom Use Per AI Act in Persistent 

Partnerships from the Logistic Regression Model, by Partnership Duration, 

Partnership Type (1 = Main; 2 = Casual), Combined Partner Age, and PrEP Use. 
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parameters, one value for each act. This generated a set of 0’s and 1’s for whether condom use 

occurred within the act as a function of the predictors in the statistical model. 

 

 

 
4.4  Sexual Role 

Men were assigned an individual sexual role preference (exclusively insertive, exclusively 

receptive, or versatile) as described in Section 3.1.9. Relationships between two exclusively 

insertive or two exclusively receptive men are prohibited via the TERGM models. Versatile men 

were further assigned a preference for being an the insertive partner drawn from a uniform 

distribution between 0 and 1 upon entry into the population; we refer to this proportion as the 

‘insertivity quotient’. When two versatile men were simulated to have an AI act, their sexual 

 

Appendix Figure C.3. Predicted Probabilities of Condom Use in One-Time AI Contacts from the 
Logistic Regression Model, by Combined Partner Age, Current PrEP Use, and Racial 
Combination of Partners. 
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positions during that act must be determined (all other combinations have only one allowed 

direction). One option is for men to engage in intra-event versatility (IEV; i.e. both men engage 

in insertive and receptive AI during the act). The probability of this is was derived from the 

partner-specific role data described in Section 3.1.9. If IEV does not occur, then each man’s 

probability of being the insertive partner equals his insertivity quotient divided by the sum of the 

two men’s insertivity quotients. 

5 DEMOGRAPHY AND INITIAL CONDITIONS 

In this model, there are three demographic processes: entries, exits, and aging. Entries and 

exits are conceptualized as flows into and out of the sexually active population of interest: MSM 

aged 15 to 65 years old. Entry into this population represents the time at which persons become 

at risk of infection via male-to-male sexual intercourse, and we model these flows as starting at 

an age associated with sexual debut and ending at an age potentially before death (age 65). 

This age range also mapped directly on to the eligibility criteria of the ARTnet study.161 

5.1 Arrivals at Sexual Onset 

All persons enter the network at age 15, which was the lower age boundary of ARTnet. The 

number of new entries at each time step was based on a fixed rate (0.052 per 100 person-

weeks) that kept the overall network size in a relatively stable state. The model parameter 

governing this rate was tuned iteratively in order to generate simulations with a population size 

at equilibrium, given the inherent variability in population flows related to background mortality, 

sexual cessation (i.e., reaching the upper age limit of 65), and disease-induced mortality. At 

each time step, the exact number of men entering the population was simulated by drawing 

from a Poisson distribution with the rate parameter.  
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5.2  Initialization of Attributes 

Persons entering the population were assigned attributes in different categories. Some 

attributes remained fixed by definition (e.g., race/ethnicity), others were fixed by assumption 

(e.g., insertive versus receptive sexual role), and others were allowed to vary over time (e.g., 

age and disease status). Here we describe attributes initialized at the outset in the model and 

for arrivals into the population at each time step: 

 Race/ethnicity. This model was based on a race/ethnic population composition 

categorized into three mutually exclusive groups: Black, Hispanic, and White/other. At the 

outset of the model simulations, individuals were randomly assigned into one of these 

three groups with a probability equal to the proportions each represented in the Atlanta 

metropolitan target population based on 2018 Census data estimates for men aged 15 to 

65. Those probabilities were: 51.5% Black, 4.6% Hispanic, and 43.9% White. Incoming 

nodes during the dynamic simulation were also randomly assigned a race/ethnicity in 

these proportions. 

 Age. In the dynamic simulation, as noted above, all nodes were assigned an age of 15, 

which incrementally grew in weekly time steps. At the outset of the model simulations, we 

assigned nodes an age based on a uniform distribution, with ages from 15 to 65. This 

population-level age distribution was expected to converge to a more realistic distribution 

during model burn-in and calibration (explained in Section 9.2). 

 HIV Status. In the dynamic simulation, all nodes were assigned an HIV status of 

uninfected upon arrival into the population. This reflects the assumption that arrival 

corresponded with sexual debut, before which exposure to HIV would be very rare. At the 

outset of the model simulations, we randomly seeded the nodes with HIV infection by 

fitting and predicting from a logistic regression of diagnosed HIV status from the ARTnet 

data. This model incorporated city (residence in Atlanta), age, and race/ethnicity as the 

primary predictors based on the self-reported diagnosed HIV status reported by ARTnet 
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respondents. These initial infections were all assumed to be diagnosed based on this 

outcome. We did not expect that this initial condition of diagnosed HIV prevalence at the 

outset of the burn-in model to match the calibrated disease prevalence prior to 

experimental intervention models; instead this statistical modeling approach allowed for a 

data-driven seeding of HIV infection in the population that was distributed according to 

known demographic and geographic heterogeneity. Further description of the transition 

from initial HIV conditions to calibrated levels are provided in Section 8.2. 

 Circumcision Status. Circumcision status was randomly assigned to incoming nodes at 

arrival and for all nodes as initial conditions in the simulations. Based on empirical data 

from Atlanta MSM,171 89.6% of men were circumcised before sexual onset. As described 

in Section 8, circumcision was associated with a 60% reduction in the per-act probability of 

infection for HIV- males for insertive anal intercourse only (i.e., circumcision did not lower 

the transmission probability if the HIV+ partner was insertive).159,172 

5.3 Departures from the Network 

All persons exited the network by age 65, either from mortality or by reaching the upper age 

bound of the MSM target population of interest. This upper limit of 65 was modeled 

deterministically (probability = 1), but other exits due to mortality were modeled stochastically. 

Departures included both natural (non-HIV) and disease-induced mortality causes before age 

65. Background mortality rates were based on US all-cause mortality rates specific to age and 

race/ethnicity from the National Vital Statistics life tables.173 The following table shows the 

probability of mortality per year by age and race/ethnicity. 
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Appendix Table C.8. Age- and Race/Ethnicity-Specific Probabilities of Mortality 

among Men in the United States 

Age Black Hispanic White 

15–19 0.00124 0.00062 0.00064 

20–24 0.00213 0.00114 0.00128 

25–29 0.00252 0.00127 0.00166 

30–34 0.00286 0.00132 0.00199 

35–39 0.00349 0.00154 0.00226 

40–44 0.00422 0.00186 0.00272 

45–49 0.00578 0.00271 0.00382 

50–54 0.00870 0.00440 0.00591 

55–59 0.01366 0.00643 0.00889 

60–64 0.02052 0.00980 0.01266 

These yearly probabilities were transformed into weekly risks. Natural mortality was then 

applied to persons within the population at each time step stochastically by drawing from a 

Bernoulli distribution for each eligible person with a probability parameter corresponding to that 

the age- and race-specific risk of death. Disease-related mortality, in contrast, was modeled 

based on clinical disease progression, as described in Section 6. 

5.4 Aging 

The aging process in the population was linear by time step for all persons. The unit of time step 

in these simulations was one week, and therefore, persons were aged in weekly steps between 

the minimum and maximum ages allow (15 and 65 years old). Evolving age impacted 

background mortality, age-based mixing in forming new partnerships, and other features of the 

epidemic model described below. Persons who exited the network were no longer active and 

their attributes such as age were no longer updated. 
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6 INTRAHOST EPIDEMIOLOGY 

Intrahost epidemiology includes features related to the natural disease progression within HIV+ 

persons in the absence of clinical intervention. The main component of progression that was 

explicitly modeled for this study was HIV viral load. In contrast to other modeling studies that 

model both CD4 and viral load, our study used viral load progression to control both interhost 

epidemiology (HIV transmission rates) and disease progression eventually leading to mortality. 

Following prior approaches,152,155,158,159,174 we modeled changes in HIV viral load to account for 

the heightened viremia during acute-stage infection, viral set point during the long chronic stage 

of infection, and subsequent rise of VL at clinical AIDS towards disease-related mortality. The 

HIV viral load has a direct impact on the rates of HIV transmission within serodiscordant pairs in 

the model, and this interaction is detailed in Section 8. A starting viral load of 0 is assigned to all 

persons upon infection. From there, the natural viral load curve is fit with the following 

parameters.  

Appendix Table C.9. HIV Natural History Parameters 

Parameter Value Reference 

Time to peak viremia in acute stage 45 days Little175 

Level of peak viremia 6.886 log10 Little175 

Time from peak viremia to viral set point 45 days Little,175 Leynaert176 

Level of viral set point 4.5 log10 Little175 

Duration of chronic stage infection (no ART) 3550 days Buchbinder,177 Katz178 

Duration of AIDS stage 728 days Buchbinder177 

Peak viral load during AIDS 7 log10 Estimated from average duration of AIDS 

After infection, it takes 45 days to reach peak viremia, at a level of 6.886 log10. From peak 

viremia, it takes another 45 days to reach viral set point, which is set at a level of 4.5 log10. 

Changes occur linearly on the log scale. The total time of acute stage infection is therefore 3 

months. The duration of chronic stage infection in the absence of clinical intervention is 3550 
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days, or 9.7 years. The total duration of pre-AIDS disease from infection is therefore 

approximately 10 years. At onset of AIDS, HIV viral load rises linearly on the log scale from 4.5 

log10 to 7 log10. The time spent in the AIDS stage is 728 days, or 2 years. This viral load 

trajectory is for ART-naïve persons only, and the influence of ART on disease progression is 

detailed in Section 7. These transitions are deterministic for all ART-naïve persons. In the AIDS 

stage, disease-related mortality is imposed stochastically with a homogenous risk of 1/104, 

corresponding to average duration of the AIDS stage in weeks. This is accomplished by drawing 

from a binomial (Bernoulli) distribution for all eligible individuals in the AIDS stage. 

7 CLINICAL EPIDEMIOLOGY 

Clinical epidemiological processes in the model refer to all steps along the HIV care continuum 

after initial HIV infection: diagnosis, linkage to ART care, adherence to ART, and HIV viral load 

suppression. In this model, these clinical features have interactions with behavioral features 

detailed above, as well as impacts on the rates of HIV transmission, detailed in the next section. 

The features of our model’s clinical processes generally follow the steps of the HIV care 

continuum, in which persons transition across states from infection to diagnosis to ART initiation 

to HIV viral suppression.179 

7.1  HIV Diagnostic Screening 

Both HIV-uninfected and HIV-infected persons in our model were exposed to regular interval-

based HIV screening that served as a common entry point for HIV prevention and HIV treatment 

services, respectively. Individuals screened at routine intervals first based on whether they were 

currently using PrEP or not. For HIV screening outside of PrEP care, we used race/ethnicity 

stratified rates estimated and calibrated for a previous model of the HIV care continuum.15 The 

numerical results from this parameterization are shown in Supplemental Table 10.  
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Appendix Table C.10. Model Parameterization for HIV Screening 

 Black MSM Hispanic MSM White MSM 

Target Statistic: Diagnosed Fraction180 80.4% 79.9% 88.0% 

Simulations: Diagnosed Fractions 80.8% 79.4% 88.0% 

Calibrated Rates (per Week) 0.00385 0.00380 0.00690 

Inter-Test Interval (Years) 5.00 5.06 2.79 

Diagnostic Delay (Years) 3.20 3.21 2.32 

The target statistics for the diagnosed fraction were drawn from a Georgia Department of Public 

Health surveillance report based on laboratory data for MSM in 2017, the most recent year for 

which the data were available. The diagnosed fraction was higher for White MSM compared to 

black and Hispanic MSM. After calibration, the simulated diagnosed fractions were nearly 

identical to those targets. The calibrated screening rates per week were higher among White 

MSM, and lower among Black and Hispanic MSM, consistent with producing the differentials in 

the diagnosed fractions across the groups. These weekly rates were consistent with average 

inter-test intervals, or the average time between HIV negative screening events, of 2.8 to 5.1 

years. Note that these intervals represent marginal averages across the target population; some 

MSM may screen more frequently while others screen very rarely.  

Diagnostic testing was simulated stochastically using draws from a binomial distribution with 

probability parameters equal to these stratified probabilities. This generated a population-level 

geometric distribution of times since last test. 

For PrEP users, we modeled HIV screening practice based on CDC clinical practice 

guidelines.181 The guidelines recommend ongoing screening at 3-month intervals for MSM 

actively using PrEP. This schedule was imposed for all PrEP users active in their PrEP use, 
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regardless of PrEP adherence categories. We also assumed no racial/ethnic variation in HIV 

screening rates for PrEP users.  

Finally, we also modeled a 21-day window period after infection during which the tests of the 

truly HIV+ persons would show as negative to account for the lack of antibody response 

immediately after infection.182 HIV+ persons who tested after this window period would be 

correctly diagnosed with 100% test sensitivity. Individual-level attributes for diagnosis status and 

time since last HIV test were recorded for all MSM. 

7.2 Antiretroviral Therapy (ART) Initiation 

Following HIV diagnosis, individuals were linked to HIV care that provided ART. In the absence 

of quantitative data and based on current clinical practice guidelines for MSM in the US, we 

assumed no gap between treatment entry and ART initiation. Although the intermediate steps of 

the HIV care continuum are often characterized by any linkage to HIV care and/or ART, we 

selected a second HIV care continuum target of linkage to HIV care specifically within one 

month of diagnosis for two reasons. First, in the dynamic modeling context, the temporally 

defined threshold easily mapped on to the tracking implemented for simulated individuals in the 

model. Second, there were readily available surveillance estimates for this outcome. With 

respect to the latter, we used data from the Georgia Department of Public Health care 

continuum estimates for 2017, stratified by transmission risk level and race/ethnicity. We used 

race/ethnicity stratified rates estimated and calibrated for a previous model of the HIV care 

continuum.15 

Supplemental Table 11 shows the numerical results of the calibration. The rate of care 

establishment was highest for White MSM, and lower for Black and Hispanic MSM. With the 

calibrated rates, the model simulations matched these target statistics. The inverse of these 
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rates implied that the average time to ART initiation after HIV diagnosis was between 4 to 6 

weeks on average. 

Appendix Table C.11. Model Parameterization for ART Linkage After Diagnosis 

 Black MSM Hispanic MSM White MSM 

Target Statistic: Fraction Linked within 1m180 62% 65% 76% 

Simulations: Fraction Linked 62.4% 65.1% 76.5% 

Calibrated Rates (per Week) 0.1775 0.1900 0.2521 

Time to ART (in Weeks) 5.6 5.3 4.0 

7.3 ART Adherence and HIV Viral Load Suppression 

MSM who initiated ART could cycle on and off treatment, where cycling off treatment resulted in 

an increase in the VL back up to the assumed set point of 4.5 log10. The slope of changes to VL 

were calculated such that it took a total of 3 months to transition between the set point and the 

on-treatment viral loads.183 Individuals on ART could reach full suppression with sustained ART 

use. The nadir HIV viral load level was assumed to be 1.5 log10 among those at full suppression 

levels.183 The latter corresponds to an absolute viral load below the standard levels of detection 

(VL = 50).184 Viral load was tracked and updated continuously over time based on the natural 

history of HIV disease by stage, and current use of ART.  

The patterns of ART adherence (cycling on and off ART) leading to full HIV viral suppression 

were estimated based on an analysis of HIV care patterns among MSM in the United States185 

and model calibration was based on a previous model of the HIV care continuum.15 The rates of 

cycling off ART after initially starting (the “halting rate”) and the rates of cycling back on after a 

period of stopping (the “reinitiation rate”) controlled overall levels of HIV viral suppression. 

Supplemental Table 12 shows the numerical results of the calibration. Georgia Department of 

Public Health data for MSM in 2017 were the target statistics for the proportion of diagnosed 

MSM with a suppressed viral load in the cross-section. The “halting rate” was calibrated in a 
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previous model of the HIV care continuum.15 Supplemental Table 12 shows the numerical 

results of the calibration.  

Appendix Table C.12. Model Parameterization for ART Retention Rates After Linkage 

 Black MSM Hispanic MSM White MSM 

Target Statistic: Fraction VL Suppressed180 55% 60% 72% 

Simulations: Fraction VL Suppressed 55.7% 58.7% 71.8% 

Calibrated Halting Rates (per Week) 0.0062 0.0055 0.0031 

Time to First ART Stoppage (in Weeks) 161.3 181.8 322.6 

Time to First ART Stoppage (in Years) 3.1 3.5 6.2 

The corresponding halting rates were therefore lowest in White MSM and highest in Black MSM. 

The inverse of these rates implied a time to first stopping ART after initiation of 161 to 323 

weeks. 

7.4  AIDS Disease Progression and AIDS-Related Mortality  

Progression to AIDS after ART initiation was modeled based on the cumulative time on and off 

ART for individuals who had been linked to treatment (persons never linked to ART progressed 

according the rates in Section 6). The maximum untreated time between infection and the start 

of AIDS was 9.7 years.177 Therefore, an individual who spent this much time off ART during the 

course of infection progressed to AIDS. We assumed a maximum time off ART of 15 years, 

similar to previous models.158 Persons who had ever initiated ART progressed through AIDS at 

a similar rate as those who were ART-naïve, but ART use during the AIDS stage was 

associated with the same declines in HIV VL as in pre-AIDS stages. However, to account for 

treatment failure during the AIDS stage, the same mortality rate (1/104 weeks) was applied to 

persons on active ART and those not on active ART within the AIDS stage. 
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8 INTERHOST EPIDEMIOLOGY 

Interhost epidemiological processes represent the HIV-1 disease transmission within the model. 

Disease transmission occurs between sexual partners who are active on a given time step. This 

section will describe how the overall rate is calculated as a function of the intrahost 

epidemiological profile of each member of a partnership, and behavioral features within the 

dyad. 

8.1  HIV-Discordant Dyads 

At each time step in the simulation, a list of active dyads was selected based on the current 

composition of the network. This was called an “edgelist.” Given the three types of partnerships 

detailed above, the full edgelist was a concatenation of the type-specific sublists. The complete 

edgelist reflects the work of the STERGM- and ERGM-based network simulations, wherein 

partnerships formed on the basis of nodal attributes and degree distributions (see Section 3). 

From the full edgelist, a disease-discordant subset was created by removing those dyads in 

which both members were HIV- or both were HIV+. This left dyads that were discordant with 

respect to HIV status, which was the set of potential partnerships over which infection may be 

transmitted at that time step. 

8.2 HIV Transmission Rates 

Within HIV-discordant dyads, transmission was simulated stochastically across separate sexual 

acts at each timestep. The per-act probabilities were a combined function of attributes of the 

HIV-negative and HIV-positive partner, these probabilities were calibrated to reach the empirical 

diagnosed HIV prevalence. The final per-partnership transmission rates per time step were then 

a function of these per-act transmission probabilities raised to the number of acts within the 

partnership during that time step. 
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8.2.1  Base Per-Act Transmission Probabilities 

Within disease-discordant dyads, HIV transmission was modeled based on a sexual act-by-act 

basis, in which multiple acts of varying infectiousness could occur within one partnership within 

a weekly time step. Determination of the number of acts within each discordant dyad for the 

time step, as well as condom use and role for each of those acts, was described in Section 4. 

Transmission by act was then modeled as a stochastic process for each discordant sex act 

following a binomial distribution with a probability parameter that is a multiplicative function of 

the following predictors of the HIV- and HIV+ partners within the dyad, as shown in 

Supplemental Table 13 below. 

Appendix Table C.13. Per-Act Transmission Probabilities and Modifiers 

For each act, the overall transmission probability was determined first with a base probability 

that was a function of whether the HIV- partner was in the receptive or insertive role, with the 

former at a 2.6-fold infection risk compared to the latter. The HIV+ partner’s viral load modifies 

this base probability in a non-linear formulation, upwards if the VL was above the VL set point 

during chronic stage infection in the absence of ART, and downwards if it was below the set 

point. Following others, we modeled an excess transmission risk in the acute stage of infection 

Predictor Partner Parameters References 

Sexual role (insertive 
or receptive) 

HIV- 

Receptive: 0.008938 base probability 
when HIV+ partner has 4.5 log10 viral 
load 

Vittinghoff186 

Insertive: 0.003379 base probability 
when HIV+ partner has 4.5 log10 viral 
load 

Vittinghoff186 

HIV viral load (VL) HIV+ Multiplier of 2.45(VL - 4.5) Wilson187 

Acute stage  HIV+ Multiplier of 9 Leynaert,176 Bellan188 

Condom use Both Multiplier of 0.05 plus 0.25 
Varghese,189 Weller,190 
Smith191 

Circumcision status HIV-, insertive Multiplier of 0.40 Gray172 

PrEP HIV- 
High adherence: Multiplier of 0.01 
Medium adherence: Multiplier of 0.19 
Low adherence: Multiplier of 0.69 

Grant192 
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above that predicted by the heightened VL during that period.188 Three covariates could reduce 

the risk of infection: condom use within the act by either the HIV- or HIV+ partner, circumcision 

status of the HIV- partner (only if the HIV- partner was insertive in that act), and PrEP use at the 

time of the act by the HIV- partner. 

For condom use, we updated our previous approach to explicitly represent condom failure that 

would result in a transmission event. Our previous models used estimates of HIV incidence 

comparing consistent condom users to occasional or non-condom users, resulting in a condom 

“efficacy” of 75–80%. However, this efficacy gap of 20–25% is the function of both the 

biological/physiological gaps in protection given perfect and consistent condom use during anal 

intercourse as well as the human error resulting in impact use. Such error could represent 

condom breakage, misapplication, incomplete use during sexual activity, and other related 

causes.191 For this model, we assumed a 95% efficacy for the former, and a 25% absolute 

reduction in that efficacy as a function of condom failure to arrive at the previous range of 75–

80% total effectiveness. Therefore, the condom failure rate was set to 25%, so the total 

multiplier was 0.30. 

8.2.2  Calibration of Transmission Probabilities 

In addition to the calibration of the HIV care continuum parameters described in Section 7, we 

also calibrated the per-act transmission probabilities so that the diagnosed HIV prevalence was 

consistent with empirical data on HIV burden in this target population. Our target statistic for this 

calibration step was diagnosed HIV prevalence by race/ethnicity, which was estimated in 

Rosenberg.193 The target statistics of diagnosed HIV prevalence for MSM in the Atlanta area 

were 33.3% for Black MSM, 12.7% for Hispanic MSM, and 8.4% for White MSM. The per-act 

transmission probabilities defined above were then multiplied by a factor unique to each 

race/ethnic group. The final factor levels were 2.65 for Black MSM, 0.424 for Hispanic MSM, 

and 0.247 for White MSM. These calibration factors represent the additional sources of potential 
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error in the transmission parameters that would generate the current HIV epidemic. These 

include co-factors not included in this model, such as untreated sexually transmitted 

infections.194 The upweighting of the transmission probabilities for Black MSM and down-

weighting for White and Hispanic MSM is due to the long-standing finding that race-stratified 

behavioral and network data do not, by themselves, explain the excess burden of HIV among 

Black MSM.55,56 We also increased the acute HIV RR to 9, in order to compensate for HIV 

serosorting among one-time partners. Prior models without HIV serosorting used a RR of 6. 

8.2.3  Final Per-Partnership-Week Transmission Rates 

The final transmission rate per partnership per weekly time step was a function of the per-act 

probability of transmission in each act and the number of acts per time step. The per-act 

transmission probability could be heterogeneous within a partnership due to various types of 

acts in each interval: for example, a HIV- man who is versatile in role may have both insertive 

and receptive intercourse within a single partnership; some acts within a partnership may be 

protected by condom use while others are condomless. Transmission was simulated for each 

act within each serodiscordant dyad, based on draws from a Bernouli distribution with the 

probability parameter equal to the per-act transmission probabilities detailed above. 

9 MODEL CALIBRATION 

This section describes the methods for executing the simulations and conducting the data 

analysis on the outcomes in further detail. 

9.1  Calibration Methods 

We used Bayesian approaches to define model parameters with uncertain values, construct 

prior distributions for those parameters, and fit the model to HIV/STI prevalence and incidence 

data to estimate the posterior distributions of those parameter values. 



185 

 

We used approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) 

methods188,195 to calibrate behavioral parameters in which there was measurement uncertainty 

in order to match the simulated HIV prevalence and STI incidence at the end of the burn-in 

simulations to the targeted HIV prevalence and STI incidence. The details of ABC depend on 

the specific algorithm used, but in this case, ABC-SMC proceeded as follows. 

For each candidate parameter, 𝜃, to be estimated, we: 

1. Sampled a candidate 𝜃 from a prior distribution 𝜋(𝜃) 

2. Simulated the epidemic model with candidate value, 𝜃.  

3. Tested if a distance statistic, 𝑑 (e.g., the difference between observed HIV prevalence 

and model simulated prevalence) was greater than a tolerance threshold, 𝜖. 

a. If 𝑑 >  𝜖 then discard 

b. If 𝑑 <  𝜖 then add the candidate 𝜃 to the posterior distribution of 𝜃.  

4. Sample the next sequential candidate, 𝜃ାଵ, either independently from 𝜋(𝜃) (if 3a) or 

from 𝜃 plus a perturbation kernel with a weight based on the current posterior 

distribution (if 3b). 

9.2  Calibration Steps 

We used a three-stage approach to implementing the model calibration. First, we calibrated the 

model to match target statistics for the diagnosed HIV prevalence (Stage 1). Stage 1 used the 

base network model parameters (i.e., without PrEP degree or sorting parameters) to establish a 

stable HIV epidemic prior to the introduction of PrEP. This involved simulating the model at least 

500 times for 60 years (the first burn-in period) and evaluating the distance between the 

selected target statistics and the simulations at the final year of the period. Once that calibration 

was complete, we simulated 500 replicates of the fitted model and selected the single simulation 

with the values of the target statistics closest to the targets (with total absolute deviance). We 

did not calibrate parameters pertaining to the HIV care continuum (screening, linkage, and HIV 
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viral load suppression) and instead used the model specification calibrated for a previously 

published study with similar model framework.15 

We then calibrated PrEP initiation and discontinuation parameters over a 5 year phase-in period 

(Stages 2 and 3), Stage 2 introduced PrEP to the population for 1 year, so that ~10% of PrEP-

eligible MSM were using PrEP at the end of the year. This was necessary to generate >0% 

PrEP use in the population, prior to substituting the network model parameters for the scenarios 

with and without PrEP sorting. The PrEP initiation parameters in Stage 2 were calibrated to 

generate 20% PrEP coverage among PrEP-eligible MSM after 5 years, based on the degree 

and one-time partner distributions observed in ARTnet, so that PrEP allocation during Stage 2 

would be similar to the Stage 3 model without PrEP sorting. Similar to Stage 1, this involved 

simulating the model at least 500 times for 5 years and evaluating the distance between the 

selected target statistics (20% PrEP coverage and degree distributions) and the simulations 

during year 5. Once the parameters were calibrated, we then simulated the model 500 times for 

1 year only and selected the single simulation with values of the HIV prevalence target statistics 

closest to the targets used in Stage 1. We based the model selection on HIV prevalence, so that 

Stage 3 begins with a stable HIV epidemic (i.e., HIV incidence is not increasing or decreasing 

substantially due to stochasticity in one simulation). 

Stage 3 completed the 5 year phase-in of PrEP. We completed the Stage 3 calibration twice: 

once for the scenario without PrEP sorting and once for the scenario with PrEP sorting. At the 

beginning of Stage 3, the network model parameters were substituted to include PrEP degree 

parameters, and assortative mixing among persistent partners using PrEP in the model with 

PrEP sorting. Beginning with the model without PrEP sorting, we calibrated the PrEP initiation 

parameters to generate 20% PrEP use at the end of the 5 year PrEP phase-in. The calibrated 

parameters were similar to the parameters used in Stage 2. We simulated the model 500 times 

for 4 years and evaluated the distance between the selected target statistics (20% PrEP 
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coverage and degree distributions) and the simulations during year 5. Similarly, we repeated the 

calibration for the scenario with PrEP sorting. Once the PrEP parameters were calibrated for 

both scenarios, we simulated each model 500 times for 14 years. The first 4 years completed 

the 5 year phase-in of PrEP, so that both model scenarios begin with the same simulation 

selected in Stage 2. The simulations then continue for an additional 10 years. We retained the 

final 10 years of each simulation for analysis of network and HIV outcomes.
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10 SUPPLEMENTAL RESULTS 

Appendix Table C.14. Mixing statistics, average over year 10 

 
 Main Casual One-time 

 Without 

PrEP sorting 

With 

PrEP sorting 

Without 

PrEP sorting 

With 

PrEP sorting 

Without 

PrEP sorting 

With 

PrEP sorting 

       
       

No PrEP, N1 3840 

(3721, 3957) 

3837 

(3723, 3945) 

2684 

(2543, 2816) 

2663 

(2545, 2806) 

339 

(316, 363) 

341 

(316, 365) 

No PrEP (%) 75.6% 

(74.3, 76.8) 

80.1% 

(78.8, 81.2) 

51.6% 

(49.6, 53.3) 

57.3% 

(55.5, 59.2) 

52.1% 

(49.9, 54.5) 

52.5% 

(50.0, 54.5) 

PrEP (%) 11.1% 

(10.3, 11.9) 

6.3% 

(5.7, 7.0) 

22.1% 

(20.7, 23.6) 

15.0% 

(13.7, 16.2) 

31.6% 

(29.3, 34.1) 

31.5% 

(29.2, 33.8) 

With HIV (%) 13.4% 

(12.4, 14.4) 

13.6% 

(12.6, 14.7) 

26.4% 

(24.6, 28.2) 

27.6% 

(25.8, 29.7) 

16.2% 

(14.6, 18.0) 

16.0% 

(14.4, 17.8) 

       
       
PrEP, N1 526 

(487, 564) 

531 

(487, 575) 

1060 

(980, 1147) 

1064 

(973, 1140) 

201 

(177, 228) 

200 

(177, 225) 

No PrEP (%) 80.7% 

(77.3, 83.4) 

45.9% 

(42.6, 49.5) 

55.9% 

(53.3, 58.5) 

37.8% 

(35.5, 39.8) 

53.2% 

(50.3, 56.5) 

53.5% 

(50.7, 56.7) 

PrEP (%) 12.1% 

(9.6, 15.1) 

46.9% 

(43.3, 50.3) 

24.1% 

(21.6, 26.5) 

43.7% 

(41.2, 46.1) 

30.9% 

(27.7, 34.7) 

30.9% 

(27.2, 34.2) 

With HIV (%) 7.2% 7.3% 20.0% 18.6% 15.8% 15.6% 
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(5.4, 9.4) (5.5, 9.3) (18.0, 22.2) (16.6%, 20.7%) (13.6, 17.8) (13.6, 17.9) 

       
       
With HIV, N1 1035 

(979, 1095) 

1065 

(997, 1129) 

1402 

(1307, 1493) 

1456 

(1352, 1565) 

195 

(167, 226) 

207 

(182, 240) 

No PrEP (%) 49.6% 

(46.3, 53.1) 

49.1% 

(45.8, 52.4) 

50.5% 

(47.8, 53.1) 

50.6% 

(48.1, 53.5) 

28.2% 

(25.2, 31.2) 

26.1% 

(23.6, 29.2) 

PrEP (%) 3.6% 

(2.8, 4.8) 

3.6% 

(2.8, 4.7) 

15.2% 

(13.6, 16.8) 

13.6% 

(12.1, 15.1) 

16.3% 

(13.7, 18.8) 

15.0% 

(12.8, 17.5) 

With HIV (%) 46.8% 

(43.1, 50.0) 

47.2% 

(43.8, 50.6) 

34.3% 

(31.3, 37.5) 

35.7% 

(33.0, 38.7) 

55.6% 

(50.9, 59.8) 

58.8% 

(54.4, 63.0) 
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Appendix Table C.15. Proportion of partnership types in the network, average over year 10 

 Main Casual One-time 
 Without 

PrEP sorting 
With 

PrEP sorting 
Without 

PrEP sorting 
With 

PrEP sorting 
Without 

PrEP sorting 
With 

PrEP sorting 
Partnerships (N) 2701 

(2638, 2769) 
2715 

(2650, 2782) 
2577 

(2456, 2703) 
2591 

(2477, 2708) 
369 

(340, 395) 
374 

(348, 404) 
       
HIV mixing (%)       
Concordant       

Without diag. HIV 
70.6% 

(69.0, 72.0) 
70.1% 

(68.4, 71.7) 
54.8% 

(52.8, 57.1) 
53.9% 

(51.6, 56.1) 
61.7% 

(58.1, 65.4) 
60.8% 

(57.3, 64.0) 

With diag. HIV 
9.0% 

(8.1, 10.0) 
9.2% 

(8.3, 10.3) 
9.4% 

(8.3, 10.6) 
10.1% 

(8.9, 11.4) 
14.7% 

(12.0, 17.6) 
16.4% 

(13.7, 19.4) 

Discordant HIV statuses 
20.4% 

(19.1, 21.8) 
20.7% 

(19.2, 22.2) 
35.7% 

(33.7, 37.7) 
36.1% 

(34.3, 38.1) 
23.6% 

(21.7, 25.2) 
22.8% 

(21.1, 24.6) 
       
HIV & PrEP mixing (%)       
Concordant       

Not using PrEP 
53.7% 

(52.1, 55.2) 
56.5% 

(54.8, 58.1) 
26.9% 

(25.4, 28.6) 
29.5% 

(27.9, 31.2) 
24.0% 

(22.1, 26.3) 
23.9% 

(21.8, 26.0) 

Using PrEP 
1.2% 

(0.9, 1.5) 
4.6% 

(4.1, 5.1) 
5.0% 

(4.2, 5.7) 
9.0% 

(8.0, 9.9) 
8.5% 

(7.1, 10.2) 
8.3% 

(6.9, 9.7) 

With diag. HIV 
9.0% 

(8.1, 10.0) 
9.2% 

(8.3, 10.3) 
9.4% 

(8.3, 10.6) 
10.1% 

(8.9, 11.4) 
14.7% 

(12.0, 17.6) 
16.4% 

(13.7, 19.4) 
Discordant       

Not using PrEP –
Using PrEP 

15.7% 
(14.6, 16.8) 

9.0% 
(8.1, 9.9) 

23.0% 
(21.6, 24.6) 

15.4% 
(14.2, 16.5) 

29.1% 
(26.9, 31.3) 

28.6% 
(26.5, 30.7) 

Not using PrEP –
With diag. HIV 

19.0% 
(17.7, 20.4) 

19.2% 
(17.9, 20.7) 

27.5% 
(25.8, 29.2) 

28.4% 
(26.7, 30.2) 

15.0% 
(13.5, 16.3) 

14.5% 
(13.2, 15.9) 

Using PrEP –  
With diag. HIV 

1.4% 
(1.1, 1.9) 

1.4% 
(1.1, 1.8) 

8.3% 
(7.4, 9.1) 

7.6% 
(6.8, 8.4) 

8.6% 
(7.5, 9.7) 

8.3% 
(7.3, 9.4) 
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Appendix Table C.16. Mean partnership degree, stratified by HIV diagnosis status 

and PrEP use status, in scenarios with and without PrEP sorting 

       
  Without PrEP 

Sorting 

  With PrEP 

Sorting 

 

       
  Median (95% SI)1   Median (95% SI)1  

Main Partners2       

Without diagnosed HIV3  0.44 (0.43, 0.45)   0.44 (0.43, 0.45)  

Not using PrEP  0.44 (0.43, 0.45)   0.44 (0.43, 0.45)  

Using PrEP  0.43 (0.41, 0.46)   0.44 (0.41, 0.46)  

With diagnosed HIV  0.48 (0.45, 0.50)   0.48 (0.46, 0.51)  

       

Casual Partners2       

Without diagnosed HIV  0.38 (0.36, 0.39)   0.37 (0.36, 0.39)  

Not using PrEP  0.31 (0.29, 0.32)   0.30 (0.29, 0.32)  

Using PrEP  0.87 (0.83, 0.92)   0.88 (0.83, 0.92)  

With diagnosed HIV  0.64 (0.60, 0.68)   0.66 (0.62, 0.70)  

       

One-time Partners4       

Without diagnosed HIV  0.05 (0.05, 0.06)   0.05 (0.05, 0.06)  

Not using PrEP  0.04 (0.04, 0.04)   0.04 (0.04, 0.04)  

Using PrEP  0.17 (0.15, 0.19)   0.16 (0.15, 0.18)  

With diagnosed HIV  0.09 (0.08, 0.10)   0.09 (0.08, 0.11)  

       1Median and 95% simulation interval for all 500 simulations in each scenario 
2Mean momentary degree, averaged over the final year in each simulation 
3MSM without diagnosed HIV include those with undiagnosed HIV infection 
4Mean weekly rate of one-time partners, averaged over the final year in each 

simulation 
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Appendix Table C.17. Risk ratios of per-act probabilities of HIV transmission, in the 

scenario with PrEP sorting compared to the scenario without PrEP sorting, overall 

and stratified by PrEP use of the susceptible partner and diagnosed HIV status of the 

partner with HIV. 

         
  All susceptible   Not using PrEP  Using PrEP  

  RR1   RR1  RR1  

All partners with HIV  1.00 (0.79, 1.24)   0.99 (0.79, 1.23)  0.98 (0.36, 2.19)  

Diagnosed  1.01 (0.83, 1.25)   1.00 (0.82, 1.23)  1.02 (0.41, 2.21)  

Undiagnosed  1.06 (0.63, 1.86)   0.99 (0.58, 1.80)  1.08 (0.16, 6.44)  

         1Risk ratio per-act in partnerships with different HIV statuses; median and 95% simulation 
intervals 

 


