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Abstract 

A Numerical Study on an Eigenvalue Conjecture 

 

By Junying He 

This paper provides a brief introduction about spectral problem in mathematical study, 

and presents several important results related to spectral problem. Starting from Kac’s question 

that whether we can use the full spectrum to determine the associated shape, the paper shows 

that the answer to Kac’s question is “no” in general, but “yes” in the class of Euclidean triangles 

according to some related study. In the class of triangles, the paper produces a nice formula to 

calculate Dirichlet eigenvalues for equilateral triangles. For general triangles, the paper 

introduces a numerical method called finite-element method, to approximate the true 

eigenvalues. Moreover, the paper provides a numerical evidence for the eigenvalue conjecture 

on isosceles triangles: Given that  is an isosceles triangle,  is the smallest eigenvalue 

associated with  and the next smallest, the ratio  on isosceles triangles is 

maximized if and only if  is equilateral. The paper examines the behavior of the ratio  

in isosceles triangles, with different parameters that measure the triangle’s “dissimilarity” to 

equilateral triangle. The numerical result suggests that  can only be optimized when the 

triangle is equilateral, and  decreases sharply as the triangle becomes dissimilar to 

equilateral triangle. 
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1. Introduction 

Spectral Problem 

In 1966, Marc Kac [9] raised a very interesting question that inspired many other 

mathematicians: ‘Can one hear the shape of a drum?’ In his paper, Kac explains his 

question more in details and leads us explore some related subjects leisurely. To explain 

more about this topic, let’s first imagine in our minds that the drum face is a thin 

membrane on a domain Ω ⊂ ℝ2. The membrane’s boundary, which is denoted as 𝜕Ω, is 

fixed, in consistency with the fact that a drum face is normally fixed in reality. If we hit 

on the membrane, it will vibrate and we can write the displacement of any point on the 

membrane as a function on Ω: 

𝐹(x, y; t) ≡ 𝐹(�⃗�; 𝑡) 

From Physics (see [9]), we know that the function 𝐹(�⃗�; 𝑡) should obey the wave 

equation: 

𝜕2𝐹

𝜕𝑡2
= 𝑐2∆𝐹 

where ∆ is the Laplace Operator: 
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2, and 𝑐 is a constant, depending on the 

physical properties of the membrane and also the tension the membrane is held. For 

simplicity, we just assume c = 1 for the rest of the paper. 

(1) 
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Given the partial differential equation (1), there is a universe of different kinds of 

functions that can be the solution. However, among all possible solutions for 𝐹, it is the 

solutions of the form  

𝐹(�⃗�; 𝑡) = 𝜙(�⃗�)𝑒𝑖𝜔𝑡 

that are of special interest to mathematicians and musicians, because the values of ω 

represent the pure tones that the membrane can produce.  

From now on, we should just focus on this special form of solutions 𝜙(�⃗�)𝑒𝑖𝜔𝑡, 

and explore more about its properties. If we put the solution form in (2) into the wave 

equation (1), we can have a very neat equation:  

∆𝜙 + 𝜔2𝜙 = 0 

with boundary condition 𝜙 = 0 on ∂Ω. 

If we let λ = 𝜔2, then the equation (3) can be written as 

-∆𝜙 = 𝜆𝜙 

with the same boundary condition 𝜙 = 0 on ∂Ω. The value of λ is what we call a 

Dirichlet eigenvalue of Ω, if given that there exists a corresponding solution 𝜙 ≢ 0. And 

𝜙 is the corresponding eigenfunction or mode. 

Using the techniques from PDE and functional analysis (see [5]), it is proven that 

there is an infinite sequence of positive eigenvalues0 < 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ⋯ → ∞  

associated with a given domain Ω.  

(2) 

(3) 

(4) 
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Based on the above set up, we can now translate Kac’s question to the following: 

If {𝜆𝑛} is the set of eigenvalues associated with Ω1 and {𝜇𝑛} is the set of eigenvalues 

associated with Ω2, and 𝜆𝑛 = 𝜇𝑛for all 𝑛 (or we can say Ω1and Ω2 are isospectral), are 

the regions Ω1and Ω2 congruent? 

Of course, Kac is not the first person who are interested in the relation between 

the domain and its associated Dirichlet eigenvalues. Many mathematicians have paid 

great efforts in studying how Dirichlet eigenvalues are dependent on its domain, much 

earlier than Kac’s paper published. In fact, such an investigation has become a 

mathematical discipline called spectral geometry. Nevertheless, the problem that Kac 

brings up is special, because it is actually an inverse spectral problem. We use the word 

“inverse” in the sense that it is starting from the eigenvalues to try to tell something 

about the shape of the domain.  

In recent decades, many exciting results were found from studies that are 

related to spectral problems. As for the answer to Kac’s specific question, it is “No”. 

Many counterexamples have been found to prove that two isospectral domains may not 

be congruent. The first planar counterexample [6] was given by C. Gordon, D. Webb and 

S. Wolpert in 1992. But still, there remains a lot of interesting questions related to the 

problem that are worth deeper explorations. For example, would that answer be 

different if we restrict the domain to be of some certain classes? Or can we calculate the 

exact eigenvalues for all kinds of domains? These questions will be addressed in the 

later parts of this paper.  
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The Class of Triangles 

Although the answer to Kac’s question is no in a general case, there are positive 

results that encourage further study. In 2009, it is shown by Zelditch [14] that if one 

restricts the universe of all possible domains to those having an analytical boundary and 

some symmetry, the full spectrum (full set of eigenvalues, in other words) will be 

sufficient to determine the domain uniquely. Therefore, the result suggests that there is 

still hope in the inverse spectral problem.  

It is quite natural that people then switch their attention to Euclidean triangles. 

As one of the simplest classes of domains, Euclidean triangles are likely to have some 

special properties that other domains do not have. Recently, Grieser and Maronna [7] 

A counter example for domains that 

are isospectral, but not congruent 
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examine the relation between the set of eigenvalues {𝜆𝑘} and the shape of triangle from 

a quite unusual aspect. We shall briefly go through their paper, as the current paper is 

partially derived from it.  

Grieser and Maronna start with the relation between heat trace and heat Kernel 

function. 

In general, the heat trace is a function defined as  

ℎ(𝑡) = ∑ 𝑒−𝜆𝑘𝑡

∞

𝑘=1

, 𝑡 > 0 

where 𝜆𝑘 is a Dirichlet eigenvalue as discussed before. Since 𝜆𝑘 → ∞ as 𝑘 → ∞, ℎ(𝑡) is a 

smooth function that converges for all 𝑡 > 0.  

 In order to see why the heat trace function is useful in the proof, let’s first look 

at the heat equation (see [4] for more reference):  

(𝜕𝑡 − ∆)𝑣(𝑡, 𝑥) = 0, 𝑡 > 0, 𝑥ϵΩ 

where 𝜕𝑡 ∶=
𝜕

𝜕𝑡
. 

 The heat equation (6) has a unique solution for any initial data 𝑣(0, 𝑥) = 𝑓(𝑥). 

Given the boundary condition that 𝑣(𝑡, 𝑥) = 0  for all 𝑡 > 0 and 𝑥 ∈ 𝜕Ω, and by 

separation of variables, we can solve for 𝑣(𝑡, 𝑥) and obtain  

𝑣(𝑡, 𝑥) = ∑ 𝑎𝑘𝑒
−𝜆𝑘𝑡𝜙𝑘(𝑥)

∞

𝑘=1

 

(5) 

(6) 

(7) 
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where 𝜙𝑘 forms an orthonormal basis of 𝐿2(Ω) of real valued eigenfunctions 

corresponding to 𝜆𝑘, and 𝑎𝑘 = ∫ 𝑓(𝑦)𝜙𝑘(𝑦) 𝑑𝑦
Ω

.   

 In other words, 𝑣(𝑡, 𝑥) can be represented as 

𝑣(𝑡, 𝑥) = ∫ ∑ 𝑓(𝑦)𝜙𝑘(𝑦)𝑒−𝜆𝑘𝑡𝜙𝑘(𝑥) 𝑑𝑦

∞

𝑘=1Ω

 

 If we define  

𝐻(𝑡, 𝑥, 𝑦) = ∑ 𝜙𝑘(𝑦)𝑒−𝜆𝑘𝑡𝜙𝑘(𝑥)

∞

𝑘=1

 

where the function 𝐻 is called the heat kernel of Ω,  

then we can obtain  

∫ 𝐻(𝑡, 𝑦, 𝑦) 𝑑𝑦
Ω

= ∫ ∑ 𝜙𝑘(𝑦)𝑒−𝜆𝑘𝑡𝜙𝑘(𝑦)

∞

𝑘=1

𝑑𝑦
Ω

= ∑ 𝑒−𝜆𝑘𝑡 ∫ 𝜙𝑘
2(𝑦) 𝑑𝑦

Ω

∞

𝑘=1

 

Since each of the 𝜙𝑘 is normalized in 𝐿2, ∫ 𝜙𝑘
2(𝑦) 𝑑𝑦

Ω
= 1. Therefore,  

∫ 𝐻(𝑡, 𝑦, 𝑦) 𝑑𝑦
Ω

= ∑ 𝑒−𝜆𝑘𝑡

∞

𝑘=1

= ℎ(𝑡) 

Grieser and Maronna then state that for a Riemannian surface Ω without 

boundary 

𝐻(𝑡, 𝑦, 𝑦)~𝑡−1 ∑𝑎𝑗(𝑦)𝑡𝑗

∞

𝑗=0

   as 𝑡 → 0 

(8) 

(9) 

(10) 

(11) 

(12) 
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where each 𝑎𝑗(𝑦) is a universal polynomial in derivatives of the Gauss curvature 𝐾(𝑦) of 

Ω at y. If Ω has a boundary, then its influence is felt only when the distance of y to the 

boundary is of order at most √𝑡, which contributes extra terms involving the curvature 

of the boundary and terms involving the powers 𝑡−
1

2
+𝑗. In the case of planar domains 

with polygonal boundary, there is no curvature, but the corners will give contribution to 

ℎ(𝑡). Therefore, due to the influence caused by the boundary, the formula of ℎ(𝑡) 

becomes 

ℎ(𝑡) = 𝑎0𝑡
−1 + 𝑎1/2𝑡

−
1
2 + 𝑎1 + 𝑂 (𝑒−

𝑐
𝑡)    as 𝑡 → 0 

for some constant c > 0. And the coefficients are  

𝑎0 =
𝐴

4𝜋
, 𝑎1/2 = −

𝑃

8√𝜋
, 𝑎1 =

1

24
∑(

𝜋

𝛼𝑖
−

𝛼𝑖

𝜋
𝑖

) 

where 𝐴 is the area, 𝑃 is the perimeter and 𝛼𝑖 are the interior angles of the polygon. 

In the case of triangle, since we have ∑ 𝛼𝑖 = 𝜋𝑖 , 

𝑎1 =
𝜋

24
∑

1

𝛼𝑖
𝑖

−
1

24
 

Therefore, if we know all the 𝜆𝑘 of a triangle, we know what ℎ(𝑡) is exactly, and 

hence the coefficients 𝑎0, 𝑎1/2 and 𝑎1. According to the definitions of those coefficients, 

we then have the area 𝐴, perimeter 𝑃, and the sum of the reciprocals of the interior 

angles 𝑅. In other words, we can “hear” all these quantities of a triangle. 

(13) 
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 Grieser and Maronna use the rest of their paper to prove that a triangle is 

determined uniquely up to congruence by its area 𝐴, perimeter 𝑃, and the sum of the 

reciprocals of the interior angles 𝑅. For more detail about the proof, one can refer to 

the original paper. As for now, we will skip the proof and take the result as granted. 

 So at last, we achieve the final result: given the full spectrum of a triangle, one 

can determine up to its unique shape. 

 

2. The Eigenvalue Problems on Triangles 

Eigenvalues for Equilateral Triangles 

 One may notice that the above theorem about triangles will be meaningless, if 

we can’t obtain the full spectrum of a triangle. Actually, it has been a very challenging 

task for a long time to calculate the values of 𝜆𝑘. So far, we can do that in only very few 

cases (rectangles, disks, and certain triangles). For the purpose of the current paper, we 

will show how to calculate the eigenvalues for equilateral triangles. The following proof 

refers to Brian J. McCartin’s paper [11].  

First of all, let’s have some preliminaries. 

An equilateral triangle of side ℎ has the following properties: 

 

Perimeter (𝑝) 3ℎ 
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Altitude(𝑎) √3

2
ℎ 

Area(𝐴) √3

4
ℎ2 

Inradius(𝑟) √3

6
ℎ 

Circumradius(𝑅) √3

3
ℎ 

Incircle Area(𝐴𝑟) 𝜋

12
ℎ2 

Circumcircle Area(𝐴𝑅) 𝜋

3
ℎ2 

 

 Consider the equilateral triangle of side ℎ is positioned in the Cartesian 

coordinates system with vertices (0,0), (0, ℎ), (
ℎ

2
,
√3

2
ℎ) as Figure 1. 

 

 

  

 

 

 

 

 

(0,0) (0, ℎ) 

(
ℎ

2
,
√3

2
ℎ) 

𝑥 

𝑦 

Figure 1. Equilateral Triangles in the Cartesian 

Coordinates System 
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 For convenience of further calculation, we introduce Lamé’s triangular 

coordinates system, where each point is denoted as (𝑢, 𝑣, 𝑤). The coordinates 

𝑢, 𝑣 and 𝑤 describe the distances of the triangle center to the projections of the point 

onto the altitudes respectively, and we define the direction from center to the 

corresponding vertex to be negative. (see Figure 2 for illustration). According to the 

above definition, a point 𝑃 with Cartesian coordinates (𝑥, 𝑦) can be transformed into 

triangular coordinates (𝑢, 𝑣, 𝑤) in the following way: 

𝑢 = 𝑟 − 𝑦 

𝑣 =
√3

2
(𝑥 −

ℎ

2
) +

1

2
(𝑦 − 𝑟) 

𝑤 =
√3

2
(
ℎ

2
− 𝑥) +

1

2
(𝑦 − 𝑟) 

where 𝑟 =
√3

6
ℎ is the inradius of the triangle. 

 

 

   

 

 

 

 

𝑣 = 𝑟 𝑤 = 𝑟 

𝑢 = 𝑟 

𝑃 

(−2𝑟, 𝑟, 𝑟) 

(𝑟,−2𝑟, 𝑟) (𝑟, 𝑟, −2𝑟) 

(0,0,0) 

Figure 2. Equilateral Triangle in Triangular Coordinates System 
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 Thanks to the triangular coordinates, the three sides of the triangle now can be 

nicely represented as 𝑢 = 𝑟, 𝑣 = 𝑟,𝑤 = 𝑟 respectively, which simplifies the application 

of boundary condition at a later stage. Moreover, one may notice that for any point 

𝑃(𝑢, 𝑣, 𝑤), the following equation is satisfied:  

𝑢 + 𝑣 + 𝑤 = 0. 

 Now we may borrow the symmetric-antisymmetric decomposition of a function 

from signal processing. For any function 𝑓 on a domain of an equilateral triangle, we 

decompose it into a symmetric part and an antisymmetric part about the altitude 𝑣 =

𝑤. 

 

 

 

 

 

 

 

To be more precise, the function 𝑓 can be written as 

𝑓(𝑢, 𝑣, 𝑤) = 𝑓𝑠(𝑢, 𝑣, 𝑤) + 𝑓𝑎(𝑢, 𝑣, 𝑤) 

where 

𝑣 = 𝑤 

Figure 3. Line of Symmetry v=w 

(14) 

(15) 
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𝑓𝑠(𝑢, 𝑣, 𝑤) =
𝑓(𝑢, 𝑣, 𝑤) + 𝑓(𝑢, 𝑤, 𝑣)

2
 

and  

𝑓𝑎(𝑢, 𝑣, 𝑤) =
𝑓(𝑢, 𝑣, 𝑤) − 𝑓(𝑢,𝑤, 𝑣)

2
 

 Now let’s go back and look at our original problem 

−∆𝜙(𝑥, 𝑦) = 𝜆𝜙(𝑥, 𝑦) 

with boundary condition 𝜙(𝑥, 𝑦) = 0, for (𝑥, 𝑦) ∈ 𝜕𝑇. 

 If we define the orthogonal coordinates 

𝜉 = 𝑢 = 𝑟 − 𝑦 

and 

𝜇 = 𝑣 − 𝑤 = √3(𝑥 −
ℎ

2
), 

then the original problem (16) is transformed to 

𝜕2𝜙

𝜕𝜉2
+ 3

𝜕2𝜙

𝜕𝜇2
+ 𝜆𝜙(𝜉, 𝜇) = 0 

 Considering separation of variables in solving partial differential equation, we 

seek a solution of the above equation in the form of 

𝜙(𝜉, 𝜇) = 𝑓(𝜉)𝑔(𝜇) 

and substituting 𝑓 ∙ 𝑔 for 𝜙 in the equation (17), we obtain  

𝑓′′𝑔 + 3𝑓𝑔′′ + 𝜆𝑓𝑔 = 0 

(16) 

(17) 

(18) 
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After dividing both sides of (18) by 𝑓 ∙ 𝑔 (for 𝑓 ∙ 𝑔 ≠ 0) ,  

𝑓′′

𝑓
+ 3

𝑔′′

𝑔
+ 𝜆 = 0 

Since 𝑓 and 𝑔 are independent, we have that 

𝑓′′

𝑓
= 𝐴; 

𝑔′′

𝑔
= 𝐵 

for some constant 𝐴 and 𝐵. Moreover, we can have the following relation, according to 

(18) and (19):  

𝐴 + 3𝐵 = −𝜆 

So far, the solution 𝜙 in a separable form seems to be promising, and therefore, 

it is worth more exploration.  

In order to get more clues for eigenfunction 𝜙 and the corresponding 

eigenvalue 𝜆, we may first look at Lamé’s Fundamental Theorem: 

Suppose that 𝜓(𝑥, 𝑦) can be represented by the trigonometric series 

𝜓(𝑥, 𝑦) = ∑𝐴𝑖sin (𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝛼𝑖

𝑛

𝑖=1

) + 𝐵𝑖 cos(𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝛽𝑖) , for 𝑛 ∈ ℕ+ 

with 𝑐𝑖
2 + 𝑑𝑖

2 = 𝜆, 

 then 

1. 𝜓(𝑥, 𝑦) is antisymmetric about any line along which it vanishes. 

2. 𝜓(𝑥, 𝑦) is symmetric about any line along which its normal derivative 
𝜕𝜓

𝜕𝜈
 

(19) 

(20) 

(21) 
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vanishes. 

Lamé’s theorem somehow suggests that one possible solution 𝜙 on an 

equilateral triangle might have trigonometric functions, because the theorem provides 

necessary but not sufficient conditions of 𝜙 (see [11] for more reference).  

To better see the symmetric/antisymmetric behavior of 𝜙, we decompose 𝜙 into 

symmetric and antisymmetric parts as (15). That is, define  

𝜙(𝑢, 𝑣, 𝑤) = 𝜙𝑠(𝑢, 𝑣, 𝑤) + 𝜙𝑎(𝑢, 𝑣, 𝑤) 

where 

𝜙𝑠(𝑢, 𝑣, 𝑤) =
𝜙(𝑢, 𝑣, 𝑤) + 𝜙(𝑢, 𝑤, 𝑣)

2
 

and  

𝜙𝑎(𝑢, 𝑣, 𝑤) =
𝜙(𝑢, 𝑣, 𝑤) − 𝜙(𝑢,𝑤, 𝑣)

2
 

We will focus on solving the symmetric mode 𝜙𝑠 first. With the hope of finding a 

solution that is separable into 𝑓(𝜉)𝑔(𝜇) and is consisted of trigonometric functions, we 

consider the form 

sin (𝛽0𝜉)cos (𝛽1𝜇) 

 

And based on the fact that 𝜙𝑠 must vanish at 𝑢 = 𝑟 and at 𝑢 = −2𝑟, and it must 

be an even function of 𝜂 (or 𝑣 − 𝑤), we look for a solution of the form 

(22) 
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sin [
𝜋𝑙

3𝑟
(𝑢 + 2𝑟)] cos [𝛽1(𝑣 − 𝑤)] 

where 𝑙 ≠ 0 is an integer and (
𝜋𝑙

3𝑟
)2 + 3𝛽1

2 = 𝜆 (according to (21)). 

 Along 𝑣 = 𝑟, and according to (14), we have 

𝑣 − 𝑤 = 𝑣 − (−𝑣 − 𝑢) = 𝑢 + 2𝑣 = 𝑢 + 2𝑟 

Substituting 𝑣 − 𝑤 into 𝑢 + 2𝑟 in (23), we then have a form of solution as 

sin [
𝜋𝑙

3𝑟
(𝑢 + 2𝑟)] cos [𝛽1(𝑢 + 2𝑟)] 

along 𝑣 = 𝑟.  

But since the solution above is not identically equal to zero, for all 𝑢 ∈ [−2𝑟, 𝑟], 

it shows that just one single term does not suffice. Therefore, we try the form that is a 

sum of two such terms:  

sin [
𝜋𝑙

3𝑟
(𝑢 + 2𝑟)] cos[𝛽1(𝑣 − 𝑤)] + sin [

𝜋𝑚

3𝑟
(𝑢 + 2𝑟)] cos [𝛽2(𝑣 − 𝑤)] 

where 𝑚 ≠ 0 is an integer and (
𝜋𝑙

3𝑟
)2 + 3𝛽1

2 = (
𝜋𝑚

3𝑟
)2 + 3𝛽2

2 = 𝜆 

 And along 𝑣 = 𝑟, the solution (24) becomes 

sin [
𝜋𝑙

3𝑟
(𝑢 + 2𝑟)] cos[𝛽1(𝑢 + 2𝑟)] + sin [

𝜋𝑚

3𝑟
(𝑢 + 2𝑟)] cos [𝛽2(𝑢 + 2𝑟)] 

By using the trigonometric identity: sin(𝜃1) cos(𝜃2) =
1

2
[sin(𝜃1 + 𝜃2) +

sin(𝜃1 − 𝜃2)], the solution (25) can be rewritten as  

(23) 

(24) 

(25) 
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1

2
{sin [(

𝜋𝑙

3𝑟
+ 𝛽1)(𝑢 + 2𝑟)] + sin [(

𝜋𝑙

3𝑟
− 𝛽1)(𝑢 + 2𝑟)] + sin [(

𝜋𝑚

3𝑟
+

𝛽2)(𝑢 + 2𝑟)] + sin [(
𝜋𝑚

3𝑟
− 𝛽2)(𝑢 + 2𝑟)]} 

In order to make (26) identically equal to zero for all 𝑢 ∈ [−2𝑟, 𝑟], we must have 

either 

(
𝜋𝑙

3𝑟
+ 𝛽1) = −(

𝜋𝑚

3𝑟
+ 𝛽2) ; (

𝜋𝑙

3𝑟
− 𝛽1) = −(

𝜋𝑚

3𝑟
− 𝛽2) 

or 

(
𝜋𝑙

3𝑟
+ 𝛽1) = −(

𝜋𝑚

3𝑟
− 𝛽2) ; (

𝜋𝑙

3𝑟
− 𝛽1) = −(

𝜋𝑚

3𝑟
+ 𝛽2) 

 However, both of the above conditions lead to 𝑙 + 𝑚 = 0 and 𝛽1 + 𝛽2 = 0，

which means that the solution vanishes everywhere and therefore, it is not valid. 

 Then we come to consider the sum of three terms 

sin [
𝜋𝑙

3𝑟
(𝑢 + 2𝑟)] cos[𝛽1(𝑣 − 𝑤)] + sin [

𝜋𝑚

3𝑟
(𝑢 + 2𝑟)] cos[𝛽2(𝑣 − 𝑤)]

+ sin [
𝜋𝑛

3𝑟
(𝑢 + 2𝑟)] cos [𝛽3(𝑣 − 𝑤)] 

where 𝑛 ≠ 0 is an integer and (
𝜋𝑙

3𝑟
)2 + 3𝛽1

2 = (
𝜋𝑚

3𝑟
)2 + 3𝛽2

2 = (
𝜋𝑛

3𝑟
)2 + 3𝛽3

2 = 𝜆. 

 After we did the same procedure on (27) as on the sum of two terms, we have 

the form 

(26) 

(27) 
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1

2
{sin [(

𝜋𝑙

3𝑟
+ 𝛽1)(𝑢 + 2𝑟)] + sin [(

𝜋𝑙

3𝑟
− 𝛽1)(𝑢 + 2𝑟)]

+ sin [(
𝜋𝑚

3𝑟
+ 𝛽2)(𝑢 + 2𝑟)]

+ sin [(
𝜋𝑚

3𝑟
− 𝛽2)(𝑢 + 2𝑟)] + sin [(

𝜋𝑛

3𝑟
+ 𝛽3)(𝑢 + 2𝑟)]

+ sin [(
𝜋𝑛

3𝑟
− 𝛽3)(𝑢 + 2𝑟)]} 

along 𝑣 = 𝑟.  

 Now there are eight possible ways to make (28) fit the boundary condition. But 

in fact, all of the cases will lead to one essential conclusion. For here, we will just look at 

one possible case and skip the other:  

(
𝜋𝑙

3𝑟
+ 𝛽1) = −(

𝜋𝑚

3𝑟
+ 𝛽2) ; (

𝜋𝑙

3𝑟
− 𝛽1) = −(

𝜋𝑛

3𝑟
− 𝛽3) ; 

(
𝑛𝑚

3𝑟
− 𝛽2) = −(

𝜋𝑛

3𝑟
+ 𝛽3) 

 By adding up all the three equations, we reach the important equation 

𝑙 + 𝑚 + 𝑛 = 0 

and based on (29) and (30), we can further calculate 

𝛽1 =
𝜋(𝑚 − 𝑛)

9𝑟
; 𝛽2 =

𝜋(𝑛 − 𝑙)

9𝑟
; 𝛽3 =

𝜋(𝑙 − 𝑚)

9𝑟
 

Finally, putting (31) into (27), the symmetric mode is  

(28) 

(29) 

(30) 

(31) 
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𝜙𝑠
𝑚,𝑛 = −sin [

𝜋(𝑚 + 𝑛)

3𝑟
(𝑢 + 2𝑟)] cos [

𝜋(𝑚 − 𝑛)

9𝑟
(𝑣 − 𝑤)]

+ sin [
𝜋𝑚

3𝑟
(𝑢 + 2𝑟)] cos [

𝜋(2𝑛 + 𝑚)

9𝑟
(𝑣 − 𝑤)]

+ sin [
𝜋𝑛

3𝑟
(𝑢 + 2𝑟)] cos [

𝜋(2𝑚 + 𝑛)

9𝑟
(𝑣 − 𝑤)] 

and the corresponding eigenvalue is  

𝜆 = (
𝜋𝑙

3𝑟
)2 + 3𝛽1

2 = [
𝜋(𝑚 + 𝑛)

3𝑟
]2 + 3 [

𝜋(𝑚 − 𝑛)

9𝑟
]

2

=
4𝜋2

27𝑟2
(𝑚2 + 𝑚𝑛 + 𝑛2) 

 An analogous way can be applied in looking for the antisymmetric mode, as one 

sees that 𝜙𝑎 is an odd function about 𝑣 − 𝑤, and tries a similar development as 𝜙𝑠. We 

will just directly give the result here: 

𝜙𝑎
𝑚,𝑛 = −sin [

𝜋(𝑚 + 𝑛)

3𝑟
(𝑢 + 2𝑟)] sin [

𝜋(𝑚 − 𝑛)

9𝑟
(𝑣 − 𝑤)]

+ sin [
𝜋𝑚

3𝑟
(𝑢 + 2𝑟)] sin [

𝜋(2𝑛 + 𝑚)

9𝑟
(𝑣 − 𝑤)]

− sin [
𝜋𝑛

3𝑟
(𝑢 + 2𝑟)] sin [

𝜋(2𝑚 + 𝑛)

9𝑟
(𝑣 − 𝑤)] 

and still, with corresponding eigenvalue 

𝜆 =
4𝜋2

27𝑟2
(𝑚2 + 𝑚𝑛 + 𝑛2) 

 After such great effort in looking for the eigenvalues on an equilateral triangle, 

we are now able to get as many eigenvalues as we want, based on (32). For example, 

the smallest eigenvalue is 

(32) 
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𝜆1 =
4𝜋2

27𝑟2
(12 + 1 + 12) =

4𝜋2

9𝑟2
 

and the next smallest eigenvalue is 

𝜆2 =
4𝜋2

27𝑟2
(12 + 2 + 22) =

28𝜋2

27𝑟2
 

Therefore, 

𝜆2

𝜆1
=

7

3
 

for any equilateral triangle domain. 

    

 

Numerical Approach  

 Except for equilateral triangles, eigenvalues on other triangles are hard to find. 

So we need a numerical approach to help the investigation. In this paper, we adopt the 

finite element method, or FEM in short. Broadly used in practical problems in 

engineering and scientific analysis, the finite element method is essentially a numerical 

method that produces a solution that approximates the true solution. The finite element 

method divides the domain of the problem into smaller subregions or elements. Usually, 

these elements are line segments in one dimension, triangles in two dimension, and 

prisms in three dimensions. Following the subdivision, the change in the unknown 

function with position is approximated by some simple functions. Then the original 
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problem can be replaced by an equivalent integral formulation. There are two popular 

methods for constructing the integral formulation- one is called Galerkin’s method, 

which is based on weighted residual methods, and the other one is the variational 

formulation, which is based on variational principles. For here, we use Galerkin’s 

method. For more introduction about FEM, see [10].  

The best way to understand the finite element method might be looking at an 

example. Let’s say we have an equilateral triangular domain 𝑇 as shown in Figure 4. And 

we are now trying to solve for a trial solution �̃� on 𝑇, which is a numerical 

approximation of the true solution 𝜙 on 𝑇 that satisfies 

∆𝜙 + 𝜆𝜙 = 0  

with boundary condition 𝜙 = 0 on ∂𝑇. 

 

 

 

 

 

 

 

 

𝑥 

𝑦 

(0,0) (0,2) 

(1, √3) 

Figure 4. The Triangle Domain in Example 

(33) 
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In general, the trial solution �̃� should satisfy that (i) it is simple in form and (ii) 

the boundary conditions of the problem is fulfilled. In particular, �̃� is assumed to take 

the form: 

�̃�(𝑥, 𝑦) = 𝜃0(𝑥, 𝑦) + ∑𝛼𝑖𝜃𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 

In that particular form, the function 𝜃0(𝑥, 𝑦) is chosen to satisfy all the boundary 

conditions of the problem, and the functions 𝜃𝑖(𝑥, 𝑦), which are also called coordinate 

functions, are chosen to satisfy the corresponding homogeneous form of the boundary 

conditions. For example, if we have boundary conditions 

�̃�(𝑥, 𝑦) = 𝑘  and   
𝜕�̃�(𝑥, 𝑦)

𝜕𝑥
= 𝑘′   on a boundary Γ 

then 𝜃0(𝑥, 𝑦) is chosen to satisfy 

𝜃0(𝑥, 𝑦) = k   and   
𝜕𝜃0(𝑥, 𝑦)

𝜕𝑥
= 𝑘′    on Γ 

and each 𝜃𝑖(𝑥, 𝑦) is chosen to satisfy 

𝜃𝑖(𝑥, 𝑦) = 0   and   
𝜕𝜃𝑖(𝑥, 𝑦)

𝜕𝑥
= 0      on Γ 

In our case, since the boundary condition is already in a homogeneous form, we don’t 

need the function 𝜃0(𝑥, 𝑦). Therefore, we simply have 

𝜃0(𝑥, 𝑦) ≡ 0  

and  

(34) 
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𝜃𝑖(𝑥, 𝑦) = 0 on 𝜕𝑇      𝑖 = 1,2, … , 𝑛  

It follows that �̃�(𝑥, 𝑦) satisfies all the boundary conditions of the problem 

regardless of the parameters 𝛼𝑖. The functions 𝜃0(𝑥, 𝑦) and 𝜃𝑖(𝑥, 𝑦), 𝑖 = 1,2, … , 𝑛 are 

determined by the individual user so that �̃�(𝑥, 𝑦) will be completed, once the 

parameters 𝛼𝑖 are determined. We will discuss how to choose 𝜃0(𝑥, 𝑦) and 𝜃𝑖(𝑥, 𝑦) in a 

later part. 

Since �̃� is just an approximation of the true function 𝜙, �̃� will not satisfy the 

partial differential equation (33). Instead, we have 

∆�̃� + 𝜆�̃� = 𝜀(𝑥, 𝑦) 

where 𝜀(𝑥, 𝑦) is called the residual function. 

 The equation (35) is so called the “strong” form of Helholtz equation. To make it 

adaptable for a numerical solution, we need to convert it into the “weak” form, which 

means the integral form.  One way we can do it is to multiply both sides with a testing 

function 𝑇𝑠 and integrate it over the surface of 𝑇, and then set it equal zero:  

∬(∆�̃� + 𝜆�̃�

𝑇

)𝑇𝑠𝑑𝑥𝑑𝑦 = 0 

According to Galerkin’s method, the testing function 𝑇𝑠 has the following 

definition: 

𝑇𝑠 = 𝜃𝑖(𝑥, 𝑦)        𝑖 = 1,2, … , 𝑛 

We can write the integral in (36) as a sum of two integrals:  

(35) 

(36) 
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∬∆�̃�

𝑇

𝑇𝑠𝑑𝑥𝑑𝑦 + 𝜆 ∬�̃�𝑇𝑠𝑑𝑥𝑑𝑦

𝑇

= 0 

In order to reduce the order of the partial derivative terms in the integrand, we 

need to incorporate Green’s Theorem in the Plane: 

If 𝐴 is a region in the xy plane bounded by a closed curve 𝛤 and if 𝐹(𝑥, 𝑦) and 

𝐺(𝑥, 𝑦) are suitably ‘smooth’ functions then 

∬{
𝜕𝐺

𝜕𝑥
𝐴

−
𝜕𝐹

𝜕𝑦
}𝑑𝑥𝑑𝑦 = ∮(𝐹𝑑𝑥 + 𝐺𝑑𝑦)

Γ

 

In our case, we need to choose 

𝐹 = −
𝜕�̃�

𝜕𝑦
𝑇𝑠; 𝐺 =

𝜕�̃�

𝜕𝑥
𝑇𝑠 

so that, by (38) 

∬{
𝜕2�̃�

𝜕𝑥2
𝑇𝑠 +

𝜕𝑇𝑠

𝜕𝑥
𝑇

𝜕�̃�

𝜕𝑥
+

𝜕2�̃�

𝜕𝑦2
𝑇𝑠 +

𝜕𝑇𝑠

𝜕𝑦

𝜕�̃�

𝜕𝑦
}𝑑𝑥𝑑𝑦 = ∮ 𝑇𝑠(−

𝜕�̃�

𝜕𝑦
𝑑𝑥 +

𝜕�̃�

𝜕𝑥
𝜕𝑇

𝑑𝑦) 

After some transformations, we have 

∬{
𝜕2�̃�

𝜕𝑥2

𝑇

+
𝜕2�̃�

𝜕𝑦2
}𝑇𝑠𝑑𝑥𝑑𝑦 = −∬{

𝜕𝑇𝑠

𝜕𝑥

𝜕�̃�

𝜕𝑥
+

𝜕𝑇𝑠

𝜕𝑦

𝜕�̃�

𝜕𝑦
𝑇

}𝑑𝑥𝑑𝑦 + ∮ 𝑇𝑠(−
𝜕�̃�

𝜕𝑦
𝑑𝑥 +

𝜕�̃�

𝜕𝑥
𝜕𝑇

𝑑𝑦) 

  

The second integral on the right of (39) vanishes as 𝑇𝑠 vanishes on the boundary 𝜕𝑇. 

Hence,   

(38) 

(37) 

(39) 
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∬{
𝜕2�̃�

𝜕𝑥2

𝑇

+
𝜕2�̃�

𝜕𝑦2
}𝑇𝑠𝑑𝑥𝑑𝑦 = −∬{

𝜕𝑇𝑠

𝜕𝑥

𝜕�̃�

𝜕𝑥
+

𝜕𝑇𝑠

𝜕𝑦

𝜕�̃�

𝜕𝑦
𝑇

}𝑑𝑥𝑑𝑦 

Putting this result back into (37), we have 

𝜆 ∬�̃�𝑇𝑠𝑑𝑥𝑑𝑦

𝑇

= ∬{
𝜕𝑇𝑠

𝜕𝑥

𝜕�̃�

𝜕𝑥
+

𝜕𝑇𝑠

𝜕𝑦

𝜕�̃�

𝜕𝑦
𝑇

}𝑑𝑥𝑑𝑦 

Now if we substituting 𝜃𝑖(𝑥, 𝑦) for 𝑇𝑠, then we have 

𝜆 ∬�̃�𝜃𝑖𝑑𝑥𝑑𝑦

𝑇

= ∬{
𝜕𝜃𝑖

𝜕𝑥

𝜕�̃�

𝜕𝑥
+

𝜕𝜃𝑖

𝜕𝑦

𝜕�̃�

𝜕𝑦
𝑇

}𝑑𝑥𝑑𝑦       𝑖 = 1,2, … , 𝑛 

 In setting up the finite element equations that are suitable for treatment on a 

computer, we need to proceed in a different manner from the above equations, which 

are used in hand calculations.  

 So the next step is to mesh up the region with elements of our choice. For 

convenience of illustration, we divide the region into three triangular elements and 

make a mark for each node and each element (see Figure 5). 

The finite element approximation should always be of the form  

�̃�(𝑥, 𝑦) = ∑�̃�𝑖𝑅𝑖(𝑥, 𝑦)

4

𝑖=1

 

where �̃�𝑖  are the nodal values of the unknown function �̃�(𝑥, 𝑦) and 𝑅𝑖(𝑥, 𝑦) are roof 

functions. A nodal value �̃�𝑖 simply means the value of the function �̃� at node 𝑖. A roof 

(40) 

(41) 
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function 𝑅𝑖(𝑥, 𝑦) has value equal to 1 at node 𝑖, is zero at other nodes, and varies 

linearly with 𝑥 and 𝑦. We take 𝑅4(𝑥, 𝑦) for example and it is shown in Figure 6.  

 

 

 

 

 

 

 

 

 

  

 

 

 

  

Although the two expressions of �̃� are similar, they are not identical, because 

they are consisted of components that have different meanings. We should also note 

𝑥 

𝑦 

[2] 

[1] 

[3] 

1 2 

3 

5 

Figure 5. Discretization of the Domain 

1 

2 

3 

5 

Figure 6. Roof function 𝑅4(𝑥, 𝑦) 

[4] 

[5] 

4 

4 
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that, some of the nodal values might not been unknown, since they might be fixed by 

the boundary conditions. Take our case for example, since we have �̃�1 = �̃�2 = �̃�5 =

0 from the boundary condition, and by (41) 

�̃�(𝑥, 𝑦) = 0 ∙ 𝑅1(𝑥, 𝑦) + 0 ∙ 𝑅2(𝑥, 𝑦) + �̃�3𝑅3(𝑥, 𝑦) + �̃�4𝑅4(𝑥, 𝑦) + 0 ∙ 𝑅5(𝑥, 𝑦)

= 0 ∙ [𝑅1(𝑥, 𝑦) + 𝑅2(𝑥, 𝑦) + 𝑅5(𝑥, 𝑦)] + �̃�3𝑅3(𝑥, 𝑦) + �̃�4𝑅4(𝑥, 𝑦) 

According to the requirements (see equation (34)) for 𝜃0(𝑥, 𝑦) and 𝜃𝑖(𝑥, 𝑦),  

𝜃0(𝑥, 𝑦) = 0 ∙ [𝑅1(𝑥, 𝑦) + 𝑅2(𝑥, 𝑦) + 𝑅5(𝑥, 𝑦)] = 0 

and we only need two coordinate functions 

𝜃1(𝑥, 𝑦) = 𝑅3(𝑥, 𝑦) 

𝜃2(𝑥, 𝑦) = 𝑅4(𝑥, 𝑦) 

However, we will always formulate the finite element equations by taking 𝜃𝑖 ≡

𝑅𝑖, because we want to make the structure works for more general cases, where the �̃�𝑖 

may all be unknown. We note that, the roof functions 𝑅𝑖 do not really satisfy equation 

(40), because they are not differentiable over the edges between elements. Therefore, 

taking 𝜃𝑖 ≡ 𝑅𝑖  produces error in the approximation of 𝜆. But as the domain is 

subdivided into more and more elements, we shall see that the roof functions become 

smoother and the approximated value of 𝜆 should converge to its true value. We will be 

discuss more about the error in a later part. And since 𝑅𝑖 are not always zero on 𝜕𝑇, we 

must rectify any inconsistencies due to the boundary conditions in the matrices 

formulation. The specific way to rectify inconsistencies will be shown in our example. 
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So now, let’s continue our example. Since 

𝜕�̃�

𝜕𝑥
= ∑�̃�𝑗

𝜕𝑅𝑗

𝜕𝑥

5

𝑗=1

 

𝜕�̃�

𝜕𝑦
= ∑�̃�𝑗

𝜕𝑅𝑗

𝜕𝑦

5

𝑗=1

 

Putting (42) into (40),  

𝜆 ∑�̃�𝑗 ∬𝑅𝑖𝑅𝑗𝑑𝑥𝑑𝑦

𝑇

5

𝑗=1

= ∑�̃�𝑗 ∬{
𝜕𝑅𝑖

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅𝑖

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
𝑇

}𝑑𝑥𝑑𝑦

5

𝑗=1

       𝑖 = 1,2,3,4,5 

The system of equations (43) can be represented in a matrix form as following:  

𝜆[𝐓][�̃�] = [𝐊][�̃�] 

The entries of [𝐊] (5 × 5 matrix) are:  

𝐾𝑖𝑗 = ∬{
𝜕𝑅𝑖

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅𝑖

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
}

𝑇

𝑑𝑥𝑑𝑦 

The entries of [𝐓] (5 × 5 matrix) are: 

𝑇𝑖𝑗 = ∬𝑅𝑖𝑅𝑗𝑑𝑥𝑑𝑦

𝑇

 

And [�̃�] (5 × 1 matrix) is 

[
 
 
 
 
 
�̃�1

�̃�2

�̃�3

�̃�4

�̃�5]
 
 
 
 
 

 

(42) 

(43) 

(44) 

(45) 
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 After the system (44) is set up, the next step is the construction of [𝐊] and [𝐓] 

based on elements. For here, we just pick up one triangular element (shown in Figure 6) 

to show how it works.  

 

 

 

 

 

 

 

 

We may now clarify the meanings of global node numbers and local node 

numbers.  Each node on the domain has a unique global node number. So in our 

example, global node numbers can be denoted by 1, 2, 3, 4, 5 since there are five nodes 

in total. In one single element, each node has a local node number, which is denoted as 

<1>, <2>, <3>. Local node numbers then repeat in another element. The relation 

between global node numbers and local node numbers in the same order, denoted by 

<1>, <2>, <3> is shown in Table 2. In a different element, such a relation may vary. 

𝑥 

𝑦 

[1] 
1 2 

3 

<1> <2> 

<3> 

Figure 6. Element [1] for Example 
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Element [1] 

global local 

1 <1> 

2 <2> 

3 <3> 

 

Let’s first consider node 1. 

By its definition from (45), 

𝐾1𝑗 = ∬{
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[1]

+ ∬{
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[2]

+ ∬{
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[3]

+ ∬{
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[4]

+ ∬{
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[5]

 

Since 𝑅1 is zero in element [2], [3] and [4], by properties of roof functions, the 

only non-zero contributions to 𝐾1𝑗 are ∬ {
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[1]
 and ∬ {

𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

[5]

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦 

Table 2. Relation of Global and Local 

Nodes in Element [1] 
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Furthermore, note that when 𝑗 = 4, and 5  

∬{
𝜕𝑅1

𝜕𝑥

𝜕𝑅𝑗

𝜕𝑥
+

𝜕𝑅1

𝜕𝑦

𝜕𝑅𝑗

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[1]

= 0 

because 𝑅4 and 𝑅5 are zero in element [1]. 

Similar considerations can apply to the other two nodes 2 and 3, which are 

attached to element [1]. And after that, we can come up with a summary of 𝐾𝑖𝑗 terms to 

which element [1] makes non-zero distribution: 

𝐾11, 𝐾12, 𝐾13, 𝐾21, 𝐾22, 𝐾23, 𝐾31, 𝐾32, 𝐾33 

Based on the summary, we can construct a local element matrix [K][1] (3 × 3), 

of which the entries are: 

𝐾𝑎𝑏
[1]

= ∬{
𝜕𝑅<𝑎>

𝜕𝑥

𝜕𝑅<𝑏>

𝜕𝑥
+

𝜕𝑅<𝑎>

𝜕𝑦

𝜕𝑅<𝑏>

𝜕𝑦
} 𝑑𝑥𝑑𝑦

[1]

 

Note that we switch from global notation to local notation in the roof functions. 

And then, we need to look up the relation between global and local node numbers, and 

then make substitutions. That is, we put 𝑅<1> = 𝑅1, 𝑅<2> = 𝑅2, 𝑅<3> = 𝑅3, in element 

[1]. The reason we are doing this is to avoid confusion while constructing other element 

matrices. 

Using the same method, we can also construct an element matrix [𝐓][1] (3 × 3), 

of which the entries are: 
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𝑇𝑎𝑏
[1]

= ∬𝑅<𝑎>𝑅<𝑏>𝑑𝑥𝑑𝑦

[1]

 

 Finishing constructing all the element matrices[K][1], [K][2], [K][3]and 

[𝐓][1], [𝐓][2], [𝐓][3], we are now able to assemble the element matrices to construct the 

global matrix [𝐊] and [𝐓]. Of course, the word “assemble” does not mean simply adding 

up. For example, 

𝐾11 = 𝐾11
[1]

+ 𝐾11
[5]

 

if in element [5], the global number 1 is related to local number <1>. 

 After construction of [𝐊] and [𝐓], we now need to address the inconsistencies 

caused by the boundary conditions. The system of equations we have is  

𝜆 [
T11 ⋯ T15

⋮ ⋱ ⋮
T51 … T55

] 

[
 
 
 
 
 
�̃�1

�̃�2

�̃�3

�̃�4

�̃�5]
 
 
 
 
 

= [
K11 ⋯ K15

⋮ ⋱ ⋮
K51 … K55

] 

[
 
 
 
 
 
�̃�1

�̃�2

�̃�3

�̃�4

�̃�5]
 
 
 
 
 

 

Among all these five equations, only two are valid (equation 3 and 4). The other 

equations are invalid, because they don’t satisfy equation (40) at the beginning. These 

equations are carried through the process just to maintain the structure of the system.  

 Selecting only the valid equations and imposing the boundary conditions:  

�̃�1 = �̃�2 = �̃�5 = 0 
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We then have, 

𝜆(𝑇33�̃�3 + 𝑇34�̃�4) = 𝐾33�̃�3 + 𝐾34�̃�4 

𝜆(𝑇43�̃�3 + 𝑇44�̃�4) = 𝐾43�̃�3 + 𝐾44�̃�4 

 The rest of the work is left to the computer to compute 𝜆. Note that since we 

have only two valid equations, we can only solve for two eigenvalues. However, as the 

number of nodes within the domain increases, there will be more valid equations so 

that we can compute more eigenvalues. Our example is an extreme and simple case 

that is only for illustration on how FEM works in solving for 𝜆.   

As a summary, we refer to a list of basic steps for how to use FEM to solve a two-

dimensional boundary condition problem in the book [10]: 

1. Reformulate the original boundary value problem by using the modified 

Galerkin’s method. 

2. Mesh the domain of the problem using appropriately chosen elements, 

numbering the nodes, the interior elements and the boundary elements. 

3. Approximate the unknown function (or surface function) according to the 

chosen elements. 

4. For each element note the relation between global node numbers and local 

node numbers on the standard element. 

5. Note the relation between roof functions and shape functions.  

6. Formulate the approximation over the complete domain in terms of roof 

functions 
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7. Form the overall matrix components and define corresponding element 

matrix components. 

8. Evaluate each integral. In practical problems this is normally done 

numerically. 

9. Impose boundary conditions. 

10. Solve the resulting system of equations for the unknown nodal values.  

 

Now, let’s discuss the convergence of the approximation of 𝜆. Since we already 

know the exact value of the smallest eigenvalue on equilateral triangle with its side ℎ =

2: 

𝜆1 =
4𝜋2

3
≈ 13.1595 

 We calculate 𝜆1 using the FEM method with 2, 4, 6, …,32 elements on each side, 

to see how the approximated value converges to the true value. The result is shown in 

Figure 6. From the result, we see that the approximated value of 𝜆1 converges fast to its 

true value. Therefore, we think the approximation of 𝜆 using FEM method is valid.   
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3. A Numerical Study on 
𝝀𝟐

𝝀𝟏
 on Isosceles Triangles 

In 1991, Ashbaugh and Benguria [3] provided a proof of Payne-Pólya-Weinberger 

conjecture, suggesting that the ratio of the second smallest eigenvalue 𝜆2 over the 

smallest one 𝜆1 is optimized where the domain is a disk, the most regular shape in ℝ2. 

And in 2010, Siudeja [13] that in the class of triangles, the ratio 
𝜆2

𝜆1
 is optimized on an 

equilateral triangle, which is the regular case among triangles. In this session, we will 

perform a numerical study on a conjecture about eigenvalues on triangles:  

Figure 6. First Eigenvalue Approximation 
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Given that 𝑇 is an isosceles triangle, 𝜆1 is the smallest eigenvalue associated with 

𝑇 and 𝜆2 the next smallest, the ratio ξ2,1(𝑇) =
𝜆2

𝜆1
 on isosceles triangles is maximized if 

and only if 𝑇 is equilateral.  

As we have seen in the previous section, on equilateral triangles 𝑇𝑒, 

ξ2,1(𝑇𝑒) =
7

3
 

according to the exact calculation for eigenvalues on equilateral triangles. 

 From a numerical point of view, we get a similar result from the finite-element 

method. For example, for an equilateral triangle of side ℎ = 2, we use FreeFem, a 

computer software that uses finite-element method for calculation,  and it gives the  

result of first two eigenvalues as following:  

 

 

Figure 7 First Eigenvalue and Eigenfunction 
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Therefore, the ratio is  

ξ2,1 =
𝜆2

𝜆1
=

30.7081

13.1597
≈ 2.333 ≈

7

3
 

which is consistent with the result from exact calculation. 

 In order to see how ξ2,1 is dependent on the shape of a triangle, we define the 

region 𝑅 as 

𝑅 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥 ≥ 1, 𝑦 > 0, 𝑥2 + 𝑦2 ≤ 4} 

 

 

Figure 8. Second Eigenvalue and Eigenfunction 
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The boundary of 𝑅 consists of three parts, 𝛤1, 𝛤2 and 𝛤3, where  

𝛤1 = {(𝑥, 𝑦) ∈ ℝ2: 1 ≤ 𝑥 ≤ 2, 𝑦 = 0} 

𝛤2 = {(𝑥, 𝑦) ∈ ℝ2: 1 ≤ 𝑥 ≤ 2, 𝑦 = √4 − 𝑥2} 

𝛤3 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥 = 0, 0 < 𝑦 ≤ √3} 

 If we pick an arbitrary point (𝑥, 𝑦) ∈ 𝑅, we can have a triangle, which is defined 

by vertices (0,0), (2,0) and (𝑥, 𝑦). We let 𝑆 to be the set that contains all such triangles.  

Figure 9. The Region R 
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 It is easy to see that for any arbitrary triangle 𝑇, there is a unique triangle �̂� ∈ 𝑆, 

such that  𝑇 is similar to �̂�. For our purpose, the set of triangles 𝑆 is enough for 

investigation, since ξ2,1(𝑇) = ξ2,1(�̂�) if 𝑇and �̂� are similar. To see why the equation is 

true, suppose we have a domain 𝑇 and we find an eigenvalue 𝜆 and corresponding 

eigenfunction 𝜙 such that 

𝜕2𝜙(𝑥1, 𝑦1)

𝜕𝑥1
2 +

𝜕2𝜙(𝑥1, 𝑦1)

𝜕𝑦1
2 = −𝜆𝜙(𝑥1, 𝑦1) 

with 𝜙(𝑥1, 𝑦1) = 0 on ∂𝑇. 

Let �̂� be a similar triangle to 𝑇 and 
area of 𝑇

area of �̂� 
= 𝑞2, then for any point (𝑥1, 𝑦1) on 

𝑇, there is a point (𝑥2, 𝑦2) on 𝑇 such that (𝑥1, 𝑦1) is equivalent to (𝑞𝑥2, 𝑞𝑦2), and vice 

versa. Hence, the relation is one-to-one.  

 Substituting new coordinates (𝑞𝑥2, 𝑞𝑦2) for (𝑥1, 𝑦1), 

𝜕2𝜙(𝑞𝑥2, 𝑞𝑦2)

𝑞2𝜕𝑥2
2 +

𝜕2𝜙(𝑞𝑥2, 𝑞𝑦2)

𝑞2𝜕𝑦1
2 = −𝜆𝜙(𝑞𝑥2, 𝑞𝑦2) 

Then multiplying both sides by 𝑞2, we get 𝑞2𝜆 as an eigenvalue and 𝜙(𝑞𝑥2, 𝑞𝑦2) the 

corresponding eigenfunction, associated with domain �̂�.  

 As a result,  

ξ2,1(𝑇) =
𝜆2(𝑇)

𝜆1(𝑇)
=

𝑞2𝜆2(𝑇)

𝑞2𝜆1(𝑇)
=

𝜆2(�̂�)

𝜆1(�̂�)
= ξ2,1(�̂�) 

 Also, we note that a triangle 𝑇 ∈ 𝑆 is isosceles, if and only if its vertex is on the 

boundaries 𝛤2 and 𝛤3. 
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 Let’s first look at 𝛤2 and see how ξ2,1 is dependent on the shape of triangle. We 

start from altitude 𝑎 = √3, calculate ξ2,1, subtract it by 0.02 and repeat. Table 3 shows 

the result. 

Plotting the result on a graph, we see a nice relation between altitute 𝑎 and 

ξ2,1(see Figure 10).  

 The result suggests that for 0 < 𝑎 ≤ √3, ξ2,1 is monotonically increasing. And 

ξ2,1 reaches its maximum value 
7

3
 if and only if 𝑎 = √3, which is equivalent with 𝑇 is 

equilateral. 

Next, we look at boundary 𝛤2. We start with base side 𝑏 = 2 and subtract it by 

0.02 for each step. Table 4 shows the result. 

 The same as what we do for boundary 𝛤3, we plot the result on a graph shown in 

Figure 11. 

Figure 10. Graph of ξ_2,1 v.s. a 
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 As one can see, the result on 𝛤2 is quite similar to the result on 𝛤3. Again, ξ2,1 is 

monotonically increasing, as its base b increases, 𝑏 ∈ (0,2]. ξ2,1 reaches its maximum 

value 
7

3
 if and only if 𝑇 is equilateral.  

Summarizing the result of triangles on boundaries 𝛤2 and 𝛤3, we can see that 

among all isosceles triangles, ξ2,1 is optimized when the triangle is equilateral. And the 

result seems to suggest that as the triangle gets less similar to an equilateral triangle, 

ξ2,1 is getting smaller. We use the phrase “less similar” in the sense that the vertex on 

boundaries 𝛤2 or 𝛤3 moves in the direction that is not towards the point of equilateral 

triangle. 

To better see the behavior of ξ2,1, dependent on the triangle’s “dissimilarity” to 

equilateral triangle, we consider a parameter  

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

ξ_
2

,1

base b

Figure 11. Graph of ξ_2,1 v.s. b 
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𝑞 =
𝑎

𝑏
 

where 𝑏 is the base of the isosceles triangle, and 𝑎 is the altitude perpendicular to the 

base. And the result is shown in Figure 12. 

 

  

We see that the graph changes rapidly. It climbs up fast to the peak and declines 

fast after the peak. The sharp peak occurs at 𝑞 =
√3

2
, which represent the point of 

equilateral triangle. One can infer from the graph that the optimization of ξ2,1 is very 

unstable with respect to 𝑞 =
𝑎

𝑏
, in the sense that a small deviation from 𝑞 =

√3

2
 will lead 

to a large decline of ξ2,1. 

Figure 12. Graph of ξ_2,1 v.s. q 
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However, the result shows that using a single parameter 𝑞 =
𝑎

𝑏
 may not be a 

good choice to see the behavior of ξ2,1, since the change of ξ2,1 is too rapid, especially in 

the part before the peak.  

We then think of using parameter 𝑞1 = (
𝑏

𝑎
)/(

2

√3
) for subequilateral triangles 

(isosceles with aperture less than 
𝜋

3
) and 𝑞2 = (

𝑎

𝑏
)/(

√3

2
) for superequilateral triangles 

(isosceles with aperture greater than 
𝜋

3
). One may easily see that all subequilateral 

triangles are on the boundary 𝛤2, and all superequilateral triangles are on the boundary 

𝛤3. 

It is quite reasonable to set up parameters like this, because both 𝑞1 and 

𝑞2 measure the “dissimilarity” between the isosceles triangle and equilateral triangle. 

According to the definitions of parameters 𝑞1 and 𝑞2, a subequilateral (superequilateral) 

triangle is most similar to equilateral (or say, it is actually equilateral) when 𝑞1(𝑞2) is 

equal to one, and is less similar to equilateral as 𝑞1 (𝑞2) increases.  

The result, shown in Figure 13, is quite interesting, because the two curves 

almost overlap each other. From the graph, we see that ξ2,1 is monotonically decreasing 

as 𝑞1or 𝑞2 increases. The optimization of ξ2,1 occurs if and only if 𝑞1 or 𝑞2 is equal to 

one. 
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Since the two curves are so closed to identical, we may ignore the difference 

between subequilateral triangles and superequilateral triangles, and generally state 

that: for all isosceles triangles, ξ2,1 is dependent on the triangle’s “dissimilarity”, which is 

measured by 𝑞1or 𝑞2, and ξ2,1 is optimized when “dissimilarity” is minimized, and ξ2,1 

decreases as “dissimilarity” becomes larger. 
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Figure 13. Graph of ξ_2,1 v.s. 𝑞_1  (𝑞_2) 
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4. Conclusion  

Spectral problem has been a hot research topic in Mathematics and Physics in 

recent decades. Despite the fact that the answer to Kac’s question is “no” in general, 

there are still a lot of mysteries related to this problem remains unconcealed. In the 

class of triangles, so far, we can have a very nice formula to calculate Dirichlet 

eigenvalues for equilateral triangles. However, for general triangles, we need to use 

some numerical method, like FEM, to approximate the true eigenvalues. Moreover, we 

examine the behavior of the ratio ξ2,1 =
𝜆2

𝜆1
 in isosceles triangles. The numerical result 

suggests that ξ2,1 can only be optimized when the triangle is equilateral, and ξ2,1 

decreases sharply as the triangle becomes dissimilar to equilateral triangle. 

For open questions, what is the exact function ξ2,1 in terms of the “dissimilarity” 

we defined in previous section? Instead of ξ2,1, what is the behavior of other ratios, like 

ξ3,1 =
𝜆3

𝜆1
 ? And what is the error in approximation, when using the FEM method? The 

current paper doesn’t address these questions and more work should be done for 

answers. 
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