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Abstract 

 Strong light-matter interactions are emerging as an innovative way to modify chemical 

reactions and promote changes in molecular systems. One function of strong light-matter 

interactions that is still not fully understood is their ability to facilitate efficient and effective 

intermolecular energy transfer beyond the Förster limit. This work aims to build computational 

models that represent quantum systems within Fabry-Perot cavities to gain insight into the 

mechanisms behind polariton-mediated energy transfer and the conditions that maximize its 

efficiency. Unlike previous works, stochastic fluctuations of the transition energies of molecules 

within the system were incorporated. Results show a greater than 50% decrease in effectiveness 

of energy transfer when the energy of the cavity is raised to higher than the molecular transition 

energies. Results also show a 10-fold increase in the effectiveness of energy transfer when 

energetic disorder is increased from a standard deviation of 0 eV to 0.13 eV in a Gaussian 

distribution. Conclusions from this work provide additional insight into some puzzling 

experimental results, but more complex models will likely be required to gain complete 

understanding of experimental observations.  
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1. Introduction 

 Light has been a tool in chemistry used to understand molecular processes and initiate 

chemical reactions. In most cases, however, light only has a weak interaction with molecules, 

known as weak coupling. This weak coupling allows for short-lived changes in quantum states, a 

necessary change for spectrometry and photochemical dynamics [1].  

Over the last decade, increasing amounts of interest has been grown regarding strong 

coupling regimes, in which the rate of the molecules exchanging energy in the form of light is 

faster than the rate at which the molecules exchange energy with their environment [2]. This 

phenomenon, known as strong light-matter coupling, occurs within Fabry-Perot cavities that use 

constructive interference to generate high powered light that can interact with the molecules 

inside [3]. Research in this field has led to new ways of controlling regioselectivity in chemical 

reactions and provides an easier pathway for reverse intersystem crossing [4] [5] [6]. 

1.1 Fabry-Perot Cavities 

 Fabry-Perot cavities are used to create strong coupling regimes. These cavities are made 

by two semi reflective mirrors placed in close proximity to each other, usually on the order of 

micrometers [7]. Because the mirrors are only semi reflective, if light is shone onto the cavity, 

some of the light can pass through the first mirror and enter the cavity. The light will then reflect 

off the second mirror and stay between the two mirrors inside the cavity until it passes through 

the second semi reflective mirror to be detected by instruments.  

 If light is shone directly onto the mirror with an incidence angle of 0 degrees, interesting 

results occur when the distance between the two mirrors is equal to an integer number times ½ of 

the wavelength of the light shone on it [8]. This happens because when 𝐿 = 𝑛 !
"
, L being the 

length of the cavity and n being a positive integer, the phase factor representing the change in 
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phase of the light after being reflected off the mirrors equals to 1 and can be removed from many 

equations. When this requirement is satisfied, the cavity and the light are said to be in phase, and 

the cavity is excited to a “cavity mode” [9] 

 Figure 1a shows an example of a cavity. As seen in the figure, light entering the mirrors 

creates a standing wave with quantized cavity modes.  

 

Figure 1. (a) Representation of a Fabry-Perot cavity. 𝜙 represents the incidence angle of the 

light shining on the cavity. Both transverse magnetic (TM) and transverse electric (TE) 

polarizations of light are shown. (b) Energy of the cavity as a function of the in-plane wave 

vector q, known as a dispersion plot (Adapted from Ref [10]). 

 Figure 1b represents the energy of the cavity as a function of in-plane wave vector 

(dispersion plot). Because this in-plane wave vector is directly related to the angle of incidence 

of the laser (𝜙 in Figure 1a), some papers show the dispersion plot by the energy of the cavity as 

a function of angle of incidence [11] [12]. Equation 1 governs the trend in the dispersion plot in 

an empty cavity. 

 

Equation 1 
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 In Equation 1, L represents the length of the cavity while m is the quantum number of the 

cavity mode.  

 1.2 Strong Light-Matter Coupling Within Cavities 

 Strong coupling of molecules with light occurs when the rate at which energy is 

transferred between light and molecules in the cavity is considerably larger than both the rate at 

which light leaves the cavity and the dephasing rate after the molecules are perturbed by the 

cavity photons [13]. When strong coupling occurs, the molecules and the cavity become 

quantumly entangled and generate quantum states that are linear combinations of both the 

molecules and the cavity photons. These hybrid light-matter states, known as polaritonic states, 

have energies and lifetimes that are significantly different from the energies and lifetimes 

measured when the molecules are excited outside of a cavity [14].  

 Measuring the absorption spectrum of a strongly coupled system shows that the 

absorption frequencies of these polaritonic states are very different from the absorption 

frequencies of the original molecules [15]. Figure 2a shows a pictorial representation of the 

generation of two new polaritonic states when a molecular emitter and a cavity photon are 

strongly coupled. These two new polaritonic states can be named Upper Polariton (UP) and 

Lower Polariton (LP), with the UP being higher in energy than the LP [16].  
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Figure 2. (a) Energies of the molecular emitter, a single photon within the cavity, and the UP 

and LP states. UP and LP states are created once the molecule and the photon are strongly 

coupled. They have both photonic and molecular contents, as shown by the yellow and blue 

colors combining to make up the UP and LP bands. (b) A new set of dark modes with N-1 states 

is shown when multiple molecular emitters are strongly coupled with a photon within the cavity. 

The dark states have no photonic content in this idealized model due to its weak interaction with 

the cavity. This is shown by the dark states being only blue. 𝛺R represents the strength of the 

light-matter interaction, known as the Rabi splitting (Adapted from Ref [10]). 

 When multiple molecular emitters are coupled to the cavity, a new set of dark modes are 

formed in addition to the UP and the LP states [17] [18]. This is seen in Figure 2b, where N is the 

number of emitters coupled to one cavity photon, yielding one UP, one LP, and N-1 dark states. 

The dark states retain the original emitter’s energy due to their lack of strong coupling with light 

and have only molecular characteristics in this idealized model [19]. They are important when 

considering the dynamics of the system. 

 The strength of the light-matter interaction is known as the Rabi splitting (𝛺R). In Figure 

2a, the energy gap between the UP and the LP represents the Rabi splitting, while in Figure 2b, 

the energy gap between the UP and the dark states (along with the dark states and the LP) 

represent half the Rabi splitting [20]. 
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 The dispersion plots for strongly coupled systems show the combination of the molecular 

excitons (excited states) with the cavity photons to make the UP and the LP (Figure 3b). The 

shortest energy gap at a fixed wave vector between the UP and the LP bands represents the Rabi 

splitting [2]. The Rabi splitting is proportional to the square root of the density of emitters 

multiplied by the average dipole moment of the emitters [21].  

 

Figure 3. (a) Pictorial representation of a cavity with molecules strongly coupled within. (b) 

Dispersion plot (energy as a function of in-plane wave vector) of the energies of the new 

polaritonic states generated when the exciton strongly couples with the photon (Adapted from 

Ref [10]). 

 Just as in Figure 1b, the dispersion graph can also be shown as the energy as a function of 

incidence angle of the laser. 

1.3. Energy Transfer within Strong Coupling Regime 

 Cavities can also be strongly coupled to two different types of molecular excitons with 

different excitation energies. When this occurs, energy can be transferred between the two 

different types of molecules at further distances and at much quicker rates. In fact, experiments 

have seen a distance independent relationship between the two different types of molecules when 

they transfer energy under a strong coupling regime [22].  
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This result is notable because energy transfer generally occurs via short-range Förster 

resonance energy transfer (FRET) [23]. In FRET, the rate of energy transfer between molecules 

is proportional to 1 𝑅#$%
( , where RDA is the average distance between the donor and the acceptor 

molecules [24]. With this relationship, any energy transfer between molecules becomes highly 

unlikely at distances greater than 10 nm. Furthermore, the energy emitted by the donor must be 

relatively equal to the excitation energy of the acceptor [25]. Experiments using strong coupling 

regimes have obtained results that support the regime’s ability to facilitate efficient energy 

transfer beyond the Förster limit [22] [26].  

This phenomenon of efficient energy transfer is reasonably understood and can be 

ascribed to the thermal bias towards lower-energy excitations that can be accessed by polaritons 

[10] [27]. However, more recent work has established intermolecular energy transfer in 

situations with minimal thermal bias, such as vibrational transitions as opposed to electronic 

exciton transitions [28] [29]. Thus, the mechanism discussed in Ref [27] may be irrelevant. This 

suggests that another mechanism is operative under conditions of vibrational strong coupling. 

Estimates of intermolecular energy transfer between off-resonant vibrational modes using 

idealized models (as in Ref [30]) in fact give much slower transport than observed 

experimentally (by orders of magnitude). This poses a major challenge to our understanding of 

these processes. 

1.4. Statement of Purpose 

The present work focuses on examining computational models that represent strong 

coupling systems and gain insight into the mechanism at which energy is transferred from donor 

to acceptor molecules within strong coupling regimes. Additionally, the present work 



 7 

investigates how considering disorder within strong coupling regimes can help create models that 

help elucidate recent puzzling experimental observations in the field. 

2. Computational Model 

  This work modeled a cavity that is strongly coupled to two different types of molecules: 

a donor and an acceptor molecule. The molecules were assumed to only have one ground state 

and one excited state, and thus only have one excitation energy. The model utilized a simplified 

version of a cavity. Instead of treating the molecules within the cavity to be freely moving within 

a three-dimensional space, this model treated the molecules to be distributed on a one-

dimensional line. This type of cavity can be thought of as a photonic wire, as shown in Figure 4.  

 

Figure 4. Model of photonic wire used to represent cavity system. Adapted from Ref [31]. 

 This photonic wire model places molecules in a one-dimensional uniform lattice, thus 

simplifying the Hamiltonian calculations. Similar photonic wires have also been achieved 

experimentally [32]. 

The geometry of the wire was made into the shape of a ring, where the first molecule and 

the last molecule in the lattice are neighboring each other. This removed complications relating 

to dynamics of molecules at the end of the lattice. Having this configuration was justified in 

models with many molecules. This is because in experiments investigating exciton coupling 

within photonic wires, a large number of molecules is generally involved (106 or higher) [33]. 

Thus, edge or surface effects become irrelevant, as the number of molecules at the “ends” are 

small compared to the number of molecules within the bulk. 
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Some disorder was introduced to make the photonic wire model more realistic. When 

placing the molecules into the photonic wire, the positions of the molecules could have been 

simplified by either alternating between donor and acceptor molecules or placing all donor 

molecules on one half of the wire and all acceptor molecules on the other. However, this would 

have been too idealistic; thus, the positions of the donor and acceptor molecules within the wire 

were randomized.  

The excitation energies of the molecules were set to assimilate organic electronic 

transitions. The donor molecule had an excitation energy of 2.4 eV while the acceptor molecule 

had an excitation energy of 2.1 eV. The choice of electronic excitations over vibrational 

excitations was due to the larger number of molecules generally involved in vibrational strong 

coupling (See Supplementary Materials Section S1 for further explanation).  

 Equation 2 shows an example Hamiltonian matrix for a system with two cavity modes, 

two donor (D) molecules, and two acceptor (A) molecules [31].  

 

Equation 2 

As shown in Equation 2, Ei represents either the energy of a donor molecule, acceptor 

molecule, or a cavity photon. I(i,k) represents the interaction of light and matter between cavity 

photon i and molecule k, with I*(i,k) representing the complex conjugate.  

Equation 3 gives the light-matter interaction – I(i,k) [31].  
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Equation 3 

As shown in Equation 3, 𝛺D,A represents the Rabi splitting for each molecule (D or A), 

ED,A represents the excited state energy of the molecule (D or A), ECi represents the energy of the 

cavity photon i, Nmol represents the number of molecules within the system, qi represents the 

magnitude of the cavity photon in-plane wave vector in the x direction (see Fig. 4), and xk 

represents the position of molecule k in the cavity. With the model cavity being in a ring 

geometry, qci contains photonic momentum for both clockwise and counterclockwise motion 

(positive and negative respectively), along with a photon with 0 in-plane momentum.  

 The energy of the cavity photons was calculated based on the size of the photonic wire 

cavity system. Equation 4 represents how the energy of the cavity photons were calculated from 

the in-plane momentum of the photons in the system [31]. 

 

Equation 4 

 In equation 4, ℏ is in units of eV•s, the speed of light is in m/s, and the square root of 3 

represents the refractive index of the medium within the cavity. The terms qz and qy represent the 

quantized wave vectors in the z and y direction respectively, with both assumed to be in the 

ground state. 

Using both equations 2 and 3, model Hamiltonians can be generated for many systems, 

and the diagonalization of the Hamiltonians can lead to observables that can be compared to 

experimental results. 
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2.1. Closed System Quantum Dynamics 

 Infinite-Time dynamics represent observables that occur within fully quantum-

mechanical closed systems. With no exchange of energy between the cavity system and the 

environment, all the energy stays within the system, thus constituting closed system dynamics. 

The transfer of energy between molecules can be quantified as the probability that the energy 

found in a donor molecule will end up in an acceptor molecule after a very long time. This 

probability, denoted as PDA, can be calculated by multiplying the absolute value squared of the 

probability amplitudes of the donor and acceptor basis states, then summing over all possible 

eigenstates (Eq. 5) [31].  

 

Equation 5 

 As shown in equation 5, 𝑐#& represents the coefficients that come from the linear 

combination of donor states D for each eigenstate 𝛼. This probability (known as transition 

probability) can be calculated for many different systems and used as a source for comparison 

between systems with different conditions. 

2.2. Open Quantum System Dynamics via Pauli Master Equation 

 While the closed system model is useful to obtain a sense of difference between idealized 

models and disordered models, it is ultimately unrealistic, because energy must leak from the 

cavity system for spectroscopic instruments to detect signatures [34]. Thus, open quantum 

system dynamics consider the leakage of photons through the cavity mirrors and the possibility 

of excited polaritons or molecules to decay to the ground state and release energy in the form of 

heat to the surroundings [35] [36]. The system is thus considered to be in contact with a thermal 

bath that collects the heat released by the decaying molecules and that acts as a medium for 
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energy transfer between molecules [37]. The thermal bath plays a role when any higher energy 

state decays into a lower energy state, since any excess energy is transferred directly to the 

thermal bath. Additionally, any energy required to move to a higher energy state could be taken 

from the thermal bath. 

These transfer processes are incorporated into the model using rate constants derived 

from the eigenstates of the closed-system Hamiltonian. The transition rates between two states 

𝛼	and	𝛽 are obtained through perturbation theory and Fermi’s Golden Rule (Eq. 6) [38].  

 

Equation 6 

In equation 6, 𝑃'& represents the probability of molecule m to be detected in the excited 

state when the system is in eigenstate 𝛼. 𝑊(𝐸( − 𝐸&) is a rate factor extracted from the 

absorption spectrum of the molecules outside of a cavity [39] [40].  

As stated in Section 1.3, experimental results occurring under conditions of minimal 

thermal bias are still not understood. Thus, to investigate these conditions, thermal bias was 

removed by keeping W constant for all transitions. This meant that transitioning from state 

𝛼	to	state	𝛽 would have the same rate constant as transitioning from state 𝛽 to state 𝛼.  

Absence of thermal bias is equivalent to assuming that the difference in excitation 

energies between the molecules is much smaller than kBT. With excitation energies of donor and 

acceptor molecules assimilating electronic transitions, the temperature of such an experiment 

would be high for entropy to dominate over the kinetics of the system [41]. 

Photon leakage and molecular excited-state population relaxation kinetics were 

incorporated through equation 7. 
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Equation 7 

In equation 7, 𝜅 represents the lifetimes for a photon to leak through the mirrors of the 

cavity, while 𝛤D and 𝛤A represent the lifetimes for donor and acceptor molecules to decay and 

release heat into the thermal bath respectively; q represents the specific photonic mode, mD 

represents the donor molecular mode, and mA represents the acceptor molecular mode. The 

photonic leakage rate (𝜅) was set at 3𝑥10)* 1/s, while the molecular thermal relaxation rates (ΓD 

and ΓA) were set at 1𝑥10+ 1/s [42]. 

Using all these rate equations, a set of coupled differential equation can be used that 

governs the evolution of the open quantum system through time (Eq. 8) [43].  

𝑑𝑷
𝑑𝑡 = Κ𝑷(𝒕) 

Equation 8 

In equation 8, the vector P contains the probability that an excitation is found in a 

specific eigenstate. The differential equation thus provides the model with the evolution of this 

vector P as a function of time. K is the transition matrix containing all the rate constants 

calculated in equations 6 and 7. This transition matrix is generated by equations 9 and 10.  

𝐾,, = −G𝑘,→.
./,

− 𝑘,→0  

Equation 9 

𝐾,. = 𝑘.→,, β ≠ α 

Equation 10 
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 As shown in equations 9 and 10, the diagonal matrix elements of the K matrix represent 

the decay rates for each eigenstate, while the off-diagonal matrix elements represent the 

transition rates between two states. Thus, all diagonal elements of the matrix were negative while 

all off-diagonal matrix elements were positive, leading to only negative eigenvalues that enforce 

an exponential decay trend for all probabilities [44].   

Once the rate calculations are set up, an initial vector P can be chosen, and the 

differential equation can be solved. The solution can then be used to show the evolution of the 

system over time. 

3. Closed System Quantum Dynamics 

3.1. Ideal Model 

 Using the equations outlined in section 2, a Hamiltonian can be generated to model an 

ideal case of the photonic wire cavity. The ideal system contained 250 donor molecules and 250 

acceptor molecules. This number of molecules was chosen to fit the photonic wire model. The 

transition probabilities scaled in an approximately 1/N fashion (See Supplementary Section S2). 

However, this particular number of molecules was chosen since they gave rise to large length 

scales at around 5 to 20 micrometers on the x direction (see Figure 4). This allowed the cavity to 

fully confine all molecules on a line to follow a photonic wire geometry while keeping 

computational costs low [45].  

The ideal system contained 251 photonic modes that were split up into 125 modes 

traveling clockwise in the ring geometry with a positive wave vector, 125 modes traveling 

counterclockwise with a negative wave vector, and one mode with a 0-momentum wave vector. 

Only near resonant photonic modes are relevant since higher energy photon modes do not 

strongly couple with the molecules to form polaritons [46]. This number of photon modes was 
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chosen to ensure that all conditions contained enough near resonant photon modes to ensure 

proper dynamics.  

With this case being the ideal model, there were no deviations in excitation energy, thus 

all donor molecules had an excitation energy of 2.4 and all acceptor molecules had an excitation 

energy of 2.1. The Rabi splitting was set at 0.3 eV.  

 The lowest energy photon mode was set to be under the excitation energies of both the 

donor and acceptor molecules. Thus, the cavity was made to be 200 nm in the z direction and 

400 nm in the y direction, making the lowest energy photon mode to be approximately 2.0 eV 

with both z and y quantum numbers being 1. The distance between the molecules was set at 20 

nm, making this 500-molecule system having a length of 10 µm in the x direction. 

 Figure 5 shows the dispersion plot along with the energies of the photons and the 

molecules of this ideal cavity system.  

 

Figure 5. Dispersion plot of eigenstates derived from Hamiltonian of an ideal cavity system. The 

blue lines represent the excitation energies of the donor and acceptor molecules, and the yellow 

line represents the photonic energies. The photonic contents of the eigenstates are colored 

according to the legend on the right. 
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 As shown in Figure 5, there are three bands that the eigenstates belong to. This contrasts 

with Figure 3, where there were only the UP and LP bands. The middle band that has energies 

between the donor and acceptor excitation energies can be denoted as the Middle Polariton, or 

MP. The MP arises when there are two different molecules that are strongly coupled with the 

cavity photons.  

 Using equation 4, the probability that an excited donor molecule will transition to the 

acceptor molecule after a near-infinite time has passed was calculated to be approximately 

5.492𝑥1012. This transition probability is notably small; however, it must be noted that the 

transition probability would be much smaller if the cavity were to be removed. This is because of 

the large excitation energy gap between the donor and acceptor molecules and the large distances 

between neighboring molecules within the system. Furthermore, in this study’s model, the donor 

and acceptor molecule are non-interacting, as shown by the lack of off-diagonal elements 

between the molecules in Equation 2. Thus, if the cavity were to be removed, the transition 

probability would be zero. 

 The ideal model thereby serves as a control to which future coherent calculations can be 

compared to. The fact that some transition probability is noted in the ideal model supports the 

idea that the cavity is crucial to mediating intermolecular energy transfer. However, further 

investigation can be conducted to determine which parameters can maximize the efficiency of 

intermolecular energy transfer. 

3.2. Energetic Disorder Effects 

One of these parameters that potentially improves the efficiency of coherent energy 

transfer within the cavity is the disorder in excitation energy for both the donor and acceptor 

molecules. In the ideal model, all donor molecules had excitation energies of 2.4 eV and all 
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acceptor molecules had excitation energies of 2.1 eV. This assumption does not fall in line with 

experimental measurements, since not all molecules will have the same ground state and excited 

state energies.  

A Gaussian distribution with a specified standard deviation was incorporated into the 

model to determine the excitation energies for each molecule in the system. Transition 

probabilities were then calculated for each model generated. Figure 6 shows the change in 

transition probability as the disorder is increased.  

 

Figure 6. Change in donor to acceptor energy transition probability as a function of energetic 

disorder shown in blue. The energetic disorder is shown as a ratio of the Rabi splitting and the 

transition probability is shown as a ratio of the transition probability in the ideal system. The 

Rabi splitting was set at 0.3 eV and the transition probability at 0 disorder was calculated to be 

approximately 5.492𝑥1012. Absolute and relative transition probabilities at each energetic 

disorder are shown in Table S1. Each point was calculated as an average of 2,500 transition 

probabilities that came from 10 different realizations of the Hamiltonian. Overlap of Gaussian 

distributions between donor and acceptor molecules is shown in red.  
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 As shown in Figure 6, the transition probability increases in a sigmoidal manner as the 

energetic disorder is increased. Furthermore, when the energetic disorder is increased to equal 

the value of the Rabi splitting, the transition probability increases by a factor of 18. This supports 

the idea that adding energetic disorder increases the efficiency of intermolecular energy transfer 

in the coherent case.  

3.3. Comparison to Coulomb Model 

 Figure 6 also shows the overlap between the donor and acceptor Gaussian distributions. 

This overlap seems to follow the same trend as the transition probability trend. This raises the 

question whether the increase in transition probability is due to an increase in efficiency of 

intermolecular energy transfer via the cavity or due to the increased overlap in excitation 

energies due to the Gaussian distribution.  

 In answering this question, a comparison can be made between the case inside the cavity 

and the case outside the cavity. A model can be generated where the two types of molecules 

outside the cavity can transfer energy via a Coulomb interaction. The magnitude of Coulomb 

interaction needed to reach the same transition probability as inside the cavity can be calculated 

at different energetic disorder values. 

 Equation 10 shows the Hamiltonian of such a Coulomb interaction model. The magnitude 

of the Coulomb interaction is represented by J. 

 

Equation 10 
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 As shown in equation 10, only molecules that are neighbors to each other in free space 

can interact via the Coulomb interaction. This “Nearest Neighbor” Hamiltonian can then be 

diagonalized, and transition probabilities can be calculated and compared to the cavity 

Hamiltonian.  

 Table 1 shows the magnitude of J necessary at different energetic disorder values to 

match the transition probability within a cavity. 

Table 1. Magnitude of J in “Nearest Neighbor” Hamiltonian that is needed to generate a 

transition probability that matches the transition probability in the cavity Hamiltonian. Rabi 

splitting is set at 0.3 eV. 

Energetic Disorder as a ratio of Rabi Splitting J (eV) 

0.0 

0.1 

0.5 

1.0 

0.04 

0.04 

0.09 

0.16 

 

 As shown in Table 1, the Coulomb interaction needed for the “Nearest Neighbor” 

transition probability to match that of the cavity transition probability is unrealistically high. 

Even at the lowest J value, the dipole moment calculated using Coulomb’s law would be 2979.96 

D, a dipole moment that is 2 orders of magnitude larger than typical dipole moments [47]. This 

supports the idea that the overlap in Gaussian distributions of the energies between the two 

molecules is not the only factor causing the increase in transition probability within the cavity. 
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3.4. Distance Dependence 

 Previous research has shown how energy transfer within the cavity still occurs efficiently 

even when the donor and acceptor molecule are separated by large distances [22]. This distance 

independent relationship is what separates energy transfer dynamics within a cavity to the 

dynamics shown by FRET. This study’s coherent calculations can support this distance 

independent relationship by generating Hamiltonians with different intermolecular distances and 

investigating the effects on transition probability. 

 Figure 7 shows the change in transition probability as energetic disorder changes for 

three different values of intermolecular distance “a”.  

 

Figure 7. Absolute transition probability as a function of energetic disorder for different values 

of intermolecular distance. Rabi splitting is set at 0.3 eV. Each point was calculated as an 

average of 2,500 transition probabilities that came from 10 different realizations of the 

Hamiltonian. Figure 7 is reproduced with standard deviations in Figure S2. Absolute transition 

probabilities at the ideal case are 2.696𝑥1012, 5.489𝑥1012, and 1.129𝑥1013 for intermolecular 

distances of 10 nm, 20 nm, and 40 nm respectively. Absolute transition probabilities at the case 
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with highest energetic disorder are 1.034𝑥101*, 9.912𝑥1013, and 8.915𝑥1013 for 

intermolecular distances of 10 nm, 20 nm, and 40 nm respectively. 

 As shown in Figure 7, the transition probabilities at each energetic disorder value are 

relatively similar and follow the same trend as energetic disorder increases. The standard 

deviations for each point (shown in Figure S2) overlap for all points past an energetic disorder of 

0.1 times the Rabi splitting. This supports the idea that intermolecular energy transfer is distance 

independent inside the cavity. 

 Another trend can be seen from Figure 7. The transition probability at low energetic 

disorder is higher for larger intermolecular distances, but the transition probability at high 

energetic disorder switches to being lower for larger intermolecular distances. Even though the 

standard deviations overlap generously, the averages still show this interesting trend. This trend 

is not solely due to fluctuations in incorporating disorder into the system, since the trend is still 

seen with a greater number of trials incorporated. 

In pursuit of an explanation for the trend, the molecular content within the MP was 

investigated for different energetic disorders at different intermolecular distances. The MP is 

thought to be an important intermediate in facilitating energy transfer between donor and 

acceptor molecules within the cavity [11], thus it could provide insight to the trend seen in 

Figure 7. Figure 8 shows the total molecular content within the MP states as a function of 

energetic disorder at different intermolecular distances. The MP states were designated as the 

middle third eigenstates from the Hamiltonian. The total molecular content was calculated by 

summing the product of the probability of an eigenstate to be a donor molecule and the 

probability of an eigenstate to be an acceptor molecule over all MP eigenstates. 
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Figure 8. Change in molecular content (summation of donor and acceptor content over all MP 

states) within the MP as a function of energetic disorder for different intermolecular distances. 

Rabi splitting was set at 0.3 eV. Each trend was calculated by averaging MP molecular contents 

from 10 different realizations of the Hamiltonian. 

 As shown in Figure 8, the molecular content within the MP seems to follow the same 

trends at different intermolecular distances as in Figure 7. This would explain the trend seen in 

Figure 7, however the reasons why the molecular content changes in such a way are still 

unknown. 

 It is possible to explain the initial difference between the three curves in Figure 7. In the 

figure, the calculations with further intermolecular distances had greater transition probability at 

smaller energetic disorders. This could be due to the change in molecular dipole moment as the 

density of molecules within the cavity decreases. The Rabi splitting is proportional to the single 

molecule molecular dipole moment multiplied by the square root of the density within the cavity. 

Thus, if the Rabi splitting stays constant, the single molecule molecular dipole moment would 

need to increase if the density decreased. This would strengthen the interaction between each 
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molecule and the cavity and aid in the transfer of energy from donor to acceptor molecules. 

However, this explanation falls apart at higher energetic disorders, since Figure 7 shows the 

transition probabilities being flipped at the end of the trend. 

3.5. Relevance of Cavity Detuning 

 The dependence of the transition probability on the energy distribution of the cavity was 

also investigated. In most calculations, the lowest energy cavity photon was set at 2.0 eV, lower 

than both the donor and acceptor molecular transition energies. This would allow the span of 

cavity photons to interact with both the donor and acceptor molecules. Raising or lowering the 

energy of the lowest energy cavity photon could potentially affect the number of polaritonic 

states generated in the cavity.  

 Figure 9 shows the effects of the energy of the cavity on transition probability. The cavity 

was detuned by changing the energy of the lowest energy cavity photon. 

 

Figure 9. Absolute transition probability as a function of the energy of the lowest energy cavity 

photon at different energetic disorder (𝜎). Rabi splitting (𝛺R) is set at 0.3 eV. Each point was 
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calculated as an average of 2,500 transition probabilities that came from 10 different realizations 

of the Hamiltonian. 

 As seen in Figure 9, the transition probability decreases once the cavity becomes too high 

energy to reliably interact with both the donor and acceptor molecules. However, there does 

seem to be a maximum of transition probability when the lowest energy cavity photon has an 

energy in between the transition energies of the donor and acceptor molecules. This maximum 

may be due to the maximization in the number of cavity photons which are simultaneously near-

resonant with both the donor and acceptor molecules. 

4. Open Quantum System Dynamics 

 Open quantum system dynamics use the Hamiltonian generated previously to look at the 

evolution of the system as a function of time. Unlike the infinite-time dynamics in the previous 

section, open system dynamics look at smaller time scales to gain insight into the mechanism in 

which the energy is being transferred.  

4.1. Classification of Eigenstates 

 The open quantum system dynamic calculations also aim to investigate the effects of 

disorder on the rates of energy transfer between donor and acceptor molecules. However, unlike 

the coherent energy transfer calculations, where categorization of eigenstates follows the 

schematic shown in Figure 2a, the open quantum system energy transfer calculations take dark 

states into account – eigenstates that are weakly coupled to the cavity. Thus, a new classification 

scheme is needed to separate dark states from polaritonic states.  

 The model incorporated this new classification scheme by considering photonic content 

within each state. Figure 10 shows the photonic and molecular probabilities within each 

eigenstate from a Hamiltonian with zero energetic disorder. 
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Figure 10. Probability of an eigenstate to be a cavity photon, a donor molecule, or an acceptor 

molecule in an ideal system. 

 Based on the classification scheme used for the closed system calculations, the first 250 

eigenstates would be considered LP, the second 250 would be MP, and the last 250 would be UP. 

For the open quantum system calculations, any state with lower than 0.1 probability of being a 

cavity photon would be considered a dark state (either a dark donor or a dark acceptor depending 

on its energy). Additionally, any state with greater than 0.9 probability of being a cavity photon 

would be considered a photonic state and would be disregarded from the calculations.  

 It can be seen from Figure 10 that there would potentially be a greater number of dark 

states than polaritonic states. This observation is confirmed by the code classifying 

approximately 35% of the states as dark donor states and approximately 35% of states as dark 

acceptor, forcing the three different polaritonic states to share the last 30% of states between 

each other. Because the number of dark states is greater than number of polaritonic states, there 

would be an inherent bias for the energy to move to the dark states. Additionally, with the 

molecular thermal relaxation rate being four orders of magnitude smaller than the photonic 

relaxation rate, the bias becomes even greater in favor of the dark states. This aids in transferring 

energy to the dark states from the polaritonic states. 
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 We apply the classification scheme described above only to samples with small energetic 

disorder, as ambiguity arises when the excited-state energy fluctuations are sufficiently large. 

Figure 11 shows the probabilities of each eigenstate when the energetic disorder was increased to 

equal the Rabi splitting at 0.3 eV.  

 

Figure 11. Probability of an eigenstate to be a cavity photon, a donor molecule, or an acceptor 

molecule with energetic disorder equal to Rabi splitting (0.3 eV). 

As seen in Figure 11, the higher energetic disorder led to a chaotic energy distribution for 

polaritonic and dark states that imposed challenges to the classification scheme. However, this 

scheme was functional at weak energetic disorder below 10% of the Rabi splitting, thus only 

those cases were explored in the open quantum system dynamic calculations. 

4.2. Time Evolution of Energy Transfer 

 Once all eigenstates were classified into one of five states (LP, dark acceptor, MP, dark 

donor, UP), the evolution of energy transfer could be investigated. A range of eigenstates within 

a specified energy window in the UP were excited, and the probability of an excitation to be 

found within each state was plotted as a function of time to gain insight into the time dynamics 

of the system. Figure 12a shows the evolution of an ideal system as a function of time.  
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Figure 12. Kinetic observables of an ideal system (disorder is 0, intermolecular distance is 

20nm). Calculations were done using one realization of the Hamiltonian. (a) Time dependent 

evolution of probabilities within each state. Dark D represents dark donor and Dark A represents 

dark acceptor. Ground represents the probability that the excitation has decayed via photonic 

leakage through the cavity or via thermal relaxation through the molecules. (b) Dispersion plot of 

system. Dotted black rectangular box represents states that were excited. Excitation window was 

kept between 2.51 and 2.61 eV. (c) (d) (e) Photonic and molecular content of each eigenstate 

within LP, MP, and UP respectively. 

 As shown in Figure 12a, the energy begins in the UP (purple line) and gets transferred 

within a short amount of time to dark donor (red line). Some probability from the excitations 
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within UP can be seen in dark acceptor and MP (orange and green line respectively) only after a 

short timescale of approximately 0.1ps.  

 The ground line represents the rate at which the excitation decays from the cavity. With 

the excitation beginning in the UP, if no energy transfer occurs, then the system should decay to 

1/e within approximately 0.06 picoseconds. However, it seems as if the system takes over 0.1 

picoseconds to do so, supporting the idea that the energy has transferred over to the dark states, 

since the molecular decay rate is much slower. Thus, the time evolution of this cavity model 

supports an intermolecular transfer mechanism that is faster than the decay rate of the photons 

within the system. 

 The same graphs were produced for models with energetic disorder incorporated into 

them. Models with energetic disorder of 0.015 eV and 0.03 eV (0.05 and 0.1 times the Rabi 

splitting of 0.3 eV respectively) were generated and their kinetics are shown in Figures S4 and 

S5 (Figure 12 is duplicated on Figure S3 for comparison). Figure 13 compares the “Ground” line 

for each of these three energetic disorder cases, along with a case where the energetic disorder is 

equal to the Rabi splitting of 0.3 eV. 
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Figure 13. Probability that excitation within cavity has leaked (Ground) at different energetic 

disorder (𝜎) values. Rabi splitting (ΩR) is set at 0.3 eV. 

 As shown in Figure 13, the rate at which the excitation leaks from the cavity seems to be 

slower at higher energetic disorder values before converging at higher time scales. Additionally, 

the slower leakage rate saturates at higher energetic disorder values, as shown by the case when 

energetic disorder is equal to the Rabi splitting. However, when comparing Figure 12a with 

Figures S4a and S5a, the probability of the dark donor or dark acceptor does not increase as 

energetic disorder increases. In fact, the probability of both dark donor and dark acceptor seems 

to decrease as energetic disorder increases at time 0.6 ps. Thus, the slower decay rate shown in 

Figure 13 does not definitively show the increased energy transfer with greater energetic disorder 

in the open quantum system case. The trend could be due to the greater localization in dark states 

at higher disorder values, causing some states to have a much higher molecular content than 

expected. 

 



 29 

4.3. Energy Transfer Efficiency 

 One way to quantitatively compare the efficiency of energy transfer for different 

energetic disorder cases would be to investigate the ratio of the probability in the dark donor 

state to the probability in the dark acceptor state at a time when the system is in a quasi-

equilibrium state. A UP state that is excited at the beginning of each calculation has a specific 

donor molecular content and acceptor molecular content and therefore has a specific donor to 

acceptor ratio. If energy were to be transferred from the UP state directly to the dark donor or 

dark acceptor state, the donor to acceptor ratio of the initial excited state would equal the ratio of 

the probability in the dark donor state to the probability in the dark acceptor state at quasi-

equilibrium. However, if the initial ratio is larger than the ratio at quasi-equilibrium, substantial 

energy transfer would have occurred through other means (a similar comparison was made in the 

experiments reported at Ref [18]).  

 Figure 14 shows the comparison of the initial donor to acceptor ratio (PD/PA) compared to 

the equilibrium donor to acceptor ratio with zero energetic disorder. A quasi-equilibrium was 

established as the time at which both the first and second derivatives of the dark donor curve 

were small enough after the dark acceptor curve had hit its maximum in the time evolution 

graph. 
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Figure 14. Comparison of PD/PA ratio at the initial excited state and the PD/PA ratio at quasi-

equilibrium for the ideal model. Each point represents one state within the energetic window 

shown in Figure 12b that was excited. Only one realization of the Hamiltonian was used. 

Diagonal line is for reference. Exact PD/PA ratios for all points on graph are shown in Table S2. 

 As shown in Figure 14, all points are under the diagonal line, supporting the notion that 

there was more than just direct energy transfer from the UP to both dark donor and dark acceptor 

molecules. Data points shown in Table S2 are also comparable to experimental data collected by 

Ref [18]. 

 This PD/PA ratio comparison can be extended to models with energetic disorder. Figure 

15 shows the PD/PA ratio comparisons for three different energetic disorder cases. 
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Figure 15. (a) PD/PA ratio at initial excited state and PD/PA ratio at quasi-equilibrium for three 

different energetic disorder (𝜎) values. Trend lines for each energetic disorder value are shown. 

Rabi splitting (𝛺R) is set at 0.3 eV. Diagonal line is removed since plot is disproportionally 

zoomed in to enhance figure visibility. Full figure with diagonal line is shown in Figure S9. 

Figure S7 and S8 show the PD/PA ratio comparisons for models with 0.05	𝛺R and 0.10 𝛺R 

energetic disorder respectively. All points are generated using one realization of the Hamiltonian. 

(b) (c) Dispersion plots for systems with 0.05	𝛺R and 0.10 𝛺R energetic disorder respectively. 

The black box shows the states excited within the window of 2.51 and 2.61 eV. A greater 

number of states are included within the excitation energetic window as the energetic disorder 

increases. 

 As shown in Figure 15, the PD/PA ratios undergo a much greater decrease relative to the 

initial state when the energetic disorder of the system is increased. This observation supports the 

idea that greater indirect energy transfer is occurring in the cases where energetic disorder is 

incorporated into the model. Furthermore, the PD/PA ratios at quasi-equilibrium for each 

energetic disorder case seem to converge at a specific PD/PA ratio (as shown by the trendline 
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nearing a horizontal line). Thus, the system seems to have a lack of memory of the initial state, 

since the initial PD/PA ratios are much broader than the PD/PA ratios at quasi-equilibrium.  

 It can be noted that there is a greater spread in the PD/PA ratio at equilibrium for the case 

where energetic disorder is 10% of the Rabi splitting. Thus, there could be more memory in the 

higher energetic disorder cases. However, because the calculations were done with only one 

realization of the Hamiltonian, this observation could be solely due to the fluctuations in 

disorder. More realizations of the Hamiltonian and an averaging procedure would be needed to 

probe in more detail for whether the PD/PA distribution at quasi-equilibrium shows significant 

memory effects which become more relevant with increasing energetic disorder. 

 This convergence of the PD/PA ratio does not seem to converge to an expected 

equilibrium. The PD/PA ratio at equilibrium converges to a ratio above 1. This would suggest a 

bias towards the dark donor molecules. Because the system was set with no thermal bias, total 

equilibrium would consist of a PD/PA ratio of approximately 1 at equilibrium. This is not seen in 

Figure 15. This could potentially be because the UP was excited in this case. If the LP was 

excited, the PD/PA ratio at equilibrium would likely be lower than 1. This lack of thermalization 

and initial state dependence is a byproduct of the transient and leaky nature of the excited-state 

dynamics. In the absence of cavity leakage, in fact, we observe an equilibrium constant of 

approximately one. 

4.4. Intraband Dynamics 

 Investigating the dynamics within a specific category of states, or band, could be key to 

gain insight into the dynamics governing the transfer of energy between donor and acceptor 

molecules within the open quantum system calculations. Thus, a category could be broken up 

into five different energetic groups, and time evolution plots can be generated to show the 
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probability within those five groups. Figure 16 compares the intra-band dynamics for the MP 

band at different energetic disorder values. 

 

 

Figure 16. MP intra-band time evolution dynamics for models with (a) 0 eV, (b) 0.015 eV, (c) 

and 0.03 eV energetic disorder — 0, 0.05, and 0.1 times the Rabi splitting of 0.3 eV respectively. 

The MP band was divided into five categories with MP1 being the lowest energy category and 

MP5 being the highest energy category. Each category had the same number of MP states. 

 As shown in Figure 16, all portions of the MP band become excited all at once before 

transferring energy to other bands in the system. This mechanism is different from the 

mechanism that the energy transfers to the higher energy band first, since it is closest in energy 

to the UP or the dark donor, before trickling down the energetic sections within the MP to 

eventually being transferred to the dark acceptor once arriving at the lowest energy portion of the 
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band. Instead, the energy is transferred to all portions of the MP, with the higher energy portions 

receiving greater preference due to its proximity in energy to the UP or the dark donor.  

 There is another trend in Figure 16. As energetic disorder increases, the lowest energy 

portion of the MP band increases in maximum probability. This could be a potential explanation 

for the trend in Figure 15. With the lower energy portion of the MP band having a higher 

probability, more energy can be transferred efficiently to the dark acceptor molecules, since the 

lower energy portions are the polaritons closer in energy to the dark acceptor molecules. Thus, 

there would be more efficient energy transfer in the higher energetic disorder cases due to the 

trend in Figure 16. 

4.5. Coarse Grained Approach 

 All calculations analyzed in sections 4.2, 4.3, and 4.4 used the method described in 

section 2.2, where rate kinetics were calculated for the transfer of energy from each eigenstate to 

the next (referred to as full matrix calculations). With only 751 eigenstates, the computational 

cost was not too high (calculations took approximately five minutes for each model generated). 

However, if models with a greater number of eigenstates were to be created, the computational 

cost could potentially become overwhelming. Thus, a coarse-grained matrix can be generated to 

average the kinetics of the states within each category before diagonalization to minimize 

computational cost.  

 The coarse-grained matrix is a 5 by 5 matrix that contains kinetic rates for the transition 

from one category to the next. Thus, all eigenstates that were categorized to be an LP state had 

the same kinetic dynamics. Even in this study where the Hamiltonian generated contained a 

relatively small number of eigenstates (751), the computations using the coarse-grained matrix 

decreased the computational time to approximately 5 seconds.  
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 The coarse-grained calculations were consistently similar to the full matrix calculations 

when considering the time evolution dynamics of the system. Figure 17 compares the time 

evolution dynamics from the coarse-grained matrix to the full matrix calculations for an ideal 

model. 

 

Figure 17. Time evolution of probabilities of each state using (a) coarse-grained and (b) full 

matrix calculations. 

 As shown in Figure 17, the coarse-grained calculations led to greater probabilities for 

most categories, causing the ground state to grow slower than the full matrix calculations. 

However, the dynamics were still similar. Thus, the trade-off between the computational cost of 

the full matrix calculations and the difference in results from the coarse-grained calculations can 

be weighed.  

5. Conclusion and Future Directions 

 The purpose of this work was to investigate computational models representing 

polaritonic systems to determine optimal conditions for intermolecular energy transfer and 

understand time evolved dynamics governing the system.  

 The models generated allowed calculation of transition probabilities and time evolved 

dynamics. Using these calculations, experimental results concerning distance-independent 

energy transfer were supported, since transition probabilities were approximately the same at 
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different intermolecular distances. Furthermore, the calculations supported an indirect 

mechanism of energy transfer from the UP to the dark donor and acceptor states, shown by the 

change in PD/PA ratio from the initial state to the equilibrium state.  

Regarding energetic disorder, section 3 showed how incorporating energetic disorder into 

the models can improve transition probabilities by factors of 18. These transition probabilities 

are much larger in comparison to transition probabilities outside a strong coupling regime. The 

importance of energetic disorder is also shown in section 4, where the time evolution dynamics 

were impacted. The change in PD/PA ratio from the initial state to the equilibrium state was much 

greater in the models with energetic disorder, supporting the notion that more energy transfer 

was facilitated by the cavity in cases with disorder. Energy decayed from the system at a slower 

rate initially in cases with energetic disorder, possibly allowing more energy transfer to occur 

before quasi-equilibrium is reached.  

Future research would focus on expanding the models to further explain experimental 

results. 2-dimensional or 3-dimensional models could be applied, and the system dynamics could 

be compared. Future research would also focus on additional investigations of time evolved 

dynamics to provide insight into the mechanism in which energy is being transferred from donor 

to acceptor molecules. An averaging procedure could be added to see the dynamics after 

realizing multiple Hamiltonians at higher energetic disorder, providing insight into the average 

dynamics of the open quantum system. The combined effects of energetic disorder and thermal 

bias could also be studied as both can be relevant in experimentally studied organic exciton-

polariton systems. 
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Supplemental Material 

S1. Choosing Electronic Transitions over Vibrational Transitions. 

 The choice between electronic transitions and vibrational transitions for the molecules 

was based on many factors. However, one of the main factors was the computational cost of 

working with vibrational transitions. When comparing electronic transitions in larger organic 

compounds (like organic dyes in Ref [7]) with vibrational transitions in smaller molecules (like 

W(CO)6 in Ref [17]), electronic transitions have both greater single molecule dipole moments 

and greater intermolecular distances. Within a photonic wire configuration, the length in the x 

direction of the cavity would need to be large enough to maintain the assumptions of the 

photonic wire. However, with small vibrational molecules having smaller intermolecular 

distances, the number of molecules needed to reach this length are greater than the number of 

molecules needed in electronic cases. Thus, to save computational cost, electronic transitions 

were chosen over vibrational transitions. Future research could incorporate vibrational transitions 

to compare results with electronic cases. 
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S2. Infinite-Time Transition Probabilities as a Function of Number of Molecules 

 In the models generated in this study, there was a simple 1/N scaling of the infinite-time 

transition probabilities as a function of the number of molecules. This feature is shown in Figure 

S1 below. 

 

Figure S1. Absolute Infinite-Time Transition Probabilities as a Function of Number of 

Molecules. 

 As shown in Figure S1, as the number of molecules increases, the infinite-time transition 

probability decreases by a factor of approximately 1/N. This can be attributed to the decrease in 

single molecule dipole moment as the number of molecules is increased. In all models, the Rabi 

splitting was kept constant at 0.3 eV. Because the Rabi splitting is proportional to the average 

single molecule dipole moment multiplied by the number of molecules, as the number of 

molecules increases, the average single molecule dipole moment must decrease to keep the Rabi 

splitting constant. This would lower the strength of each molecule’s interaction with the cavity. 
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S3. Transition Probabilities at Different Energetic Disorder Values. 

Table S1. Absolute and relative transition probabilities for Figure 6. Relative transition 

probabilities are relative to the transition probability in the ideal system. Rabi splitting is set at 

0.3 eV. 

Energetic Disorder as a 
percent of Rabi Splitting 

Absolute Transition 
Probability 

Relative Transition 
Probability 

0.000 
0.033 
0.066 
0.100 
0.133 

5.49166445e-05 
5.63039123e-05 
6.06311504e-05 
6.77771943e-05 
7.80815686e-05 

1.00000000 
1.02526134 
1.10405781 
1.23418310 
1.42181973 

0.166 
0.200 
0.233 
0.266 
0.300 

9.71048427e-05 
1.20476818e-04 
1.62393399e-04 
2.22086711e-04 
3.22948209e-04 

1.76822243 
2.19381244 
2.95708889 
4.04406921 
5.88069813 

0.333 
0.366 
0.400 
0.433 
0.466 

3.69896091e-04 
4.33467427e-04 
4.97563276e-04 
5.89726191e-04 
6.52203405e-04 

6.73559163 
7.89318851 
9.06033644 
10.73856926 
11.87624281 

0.500 
0.533 
0.566 
0.600 
0.633 

6.56747604e-04 
7.36590463e-04 
7.82953980e-04 
7.88330363e-04 
8.51202338e-04 

11.95899004 
13.41288183  
14.25713437 
14.35503517 
15.49989708 

0.666 
0.700 
0.733 
0.766 
0.800 

8.92579519e-04 
9.20926468e-04 
9.30223256e-04 
9.44854616e-04 
9.80124447e-04 

16.25335138 
16.76953274 
16.93882182 
17.20525033 
17.84749335 

0.833 
0.866 
0.900 
0.933 
0.966 

9.61464356e-04 
9.97131348e-04 
9.85878404e-04 
9.88671610e-04 
9.98383820e-04 

17.50770400 
18.15717907 
17.95226953 
18.00313219 
18.17998585 
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Figure S2. Transition probability as a function of energetic disorder at different intermolecular 

distances (a). Averages and standard deviations are calculated from 2,500 transition probabilities 

from 10 different realizations of the Hamiltonian. 
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S4. Open Quantum System Time Evolution Dynamics 

 

Figure S3. Reproduction of Figure 12. Kinetic observables of an ideal system. Calculations were 

done using one realization of the Hamiltonian. (a) Time dependent evolution of probabilities 

within each state. Dark D represents dark donor and Dark A represents dark acceptor. Ground 

represents the probability that the excitation has decayed via photonic leakage through the cavity 

or via thermal relaxation through the molecules. (b) Dispersion plot of system. Dotted black 

rectangular box represents states that were excited. Excitation window was kept between 2.51 

and 2.61 eV. (c) (d) (e) Photonic and molecular content of each eigenstate within LP, MP, and 

UP respectively. 
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Figure S4. Kinetic observables of a system with 0.015 eV deviation (0.05 times the Rabi 

splitting) in donor and acceptor excitation energies. Calculations were done using one realization 

of the Hamiltonian. (a) Time dependent evolution of probabilities within each state. Dark D 

represents dark donor and Dark A represents dark acceptor. Ground represents the probability 

that the excitation has decayed via photonic leakage through the cavity or via thermal relaxation 

through the molecules. (b) Dispersion plot of system. Dotted black rectangular box represents 

states that were excited. Excitation window was kept between 2.51 and 2.61 eV. (c) (d) (e) 

Photonic and molecular content of each eigenstate within LP, MP, and UP respectively. 
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Figure S5. Kinetic observables of a system with 0.03 eV deviation (0.1 times the Rabi splitting) 

in donor and acceptor excitation energies. Calculations were done using one realization of the 

Hamiltonian. (a) Time dependent evolution of probabilities within each state. Dark D represents 

dark donor and Dark A represents dark acceptor. Ground represents the probability that the 

excitation has decayed via photonic leakage through the cavity or via thermal relaxation through 

the molecules. (b) Dispersion plot of system. Dotted black rectangular box represents states that 

were excited. Excitation window was kept between 2.51 and 2.61 eV. (c) (d) (e) Photonic and 

molecular content of each eigenstate within LP, MP, and UP respectively. 
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S5. Changes in PD/PA Ratio for Different Energetic Disorder 

Table S2. PD/PA Ratios at initial state and at quasi-equilibrium for an ideal system. 

PD/PA Ratio at Initial State PD/PA Ratio at Quasi-Equilibrium 

17.2297 

12.3519 

12.8735 

8.6666 

11.4611 

7.3944 

3.1943 

3.3274 

3.3643 

3.4824 

3.6463 

4.8652 

*Ratios calculated in Ref [18] were 14 at initial to 2.5 at equilibrium and 25 to 2.6. 

 

 

Figure S6. Reproduction of Figure 14. Comparison of PD/PA ratio at the initial excited state and 

the PD/PA ratio at quasi-equilibrium for the ideal model. Each point represents one state within 

the energetic window shown in Figure S2b that was excited. Only one realization of the 

Hamiltonian was used. Diagonal line is for reference. 
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Figure S7. Comparison of PD/PA ratio at the initial excited state and the PD/PA ratio at quasi-

equilibrium for the model with 0.015 eV energetic disorder (0.05 times the Rabi splitting). Each 

point represents one state within the energetic window shown in Figure S3b that was excited. 

Only one realization of the Hamiltonian was used. Diagonal line is for reference. 

 

Figure S8. Comparison of PD/PA ratio at the initial excited state and the PD/PA ratio at quasi-

equilibrium for the model with 0.03 eV energetic disorder (0.1 times the Rabi splitting). Each 

point represents one state within the energetic window shown in Figure S4b that was excited. 

Only one realization of the Hamiltonian was used. Diagonal line is for reference. 
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Figure S9. Replication of Figure 15 with diagonal line. Comparison of PD/PA ratio at initial 

excited state and PD/PA ratio at quasi-equilibrium for three different energetic disorder (𝜎) 

values. Rabi splitting (𝛺R) is set at 0.3 eV. All points are generated using one realization of the 

Hamiltonian. Diagonal line is for reference. 


