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Abstract 

 
 

Design, Development and Application of a Novel In-Silico 
High-throughput Screening Approach 

 
 
 

By Qi Shi 
 
 
 
Computer-assisted molecular design is currently a routine component of medicinal 

chemistry and drug discovery. In this thesis, a novel in-silico high-throughput screening 

approach is developed and applied to two drug discovery projects. The approach, termed 

FRESH (Fragment-based Exploitation of modular Synthesis by vHTS), is designed to 

balance multiple factors in addition to potency, namely synthetic feasibility, octane-water 

partition coefficient, cell-permeability, blood-brain-barrier penetration, metabolism and 

toxicity. The method combines rapid vHTS (virtual High Throughput Screening), 

pharmacological property prioritizing and 3D QSAR (Quantitative Structure-activity 

Relationship) construction.  In the first applied project, the approach has provided an 

initial list of potentially selective NET/SERT (Norepinephrine Transporter/Serotonin 

Transporter) antagonists with different potency ratios based on existing homology models. 

In the second application project, the approach has provided a group of novel KCN1 

analogs with predicted improvements in both potency and pharmacological properties by 

employing a two-site binding model for the p300/HIF-1α interaction. The third project on 

curcumin analogs is still attempting to build a suitable QSAR model. However, once the 

latter is developed, FRESH can be applied to assist identifying novel curcumin analogs as 

well. 
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Chapter 1: Introduction 
 
    This thesis reports initial stages of the development of a computational procedure that 

is capable of predicting novel, potent and property/ADME-adjusted structures based on a 

synthetic scheme devised by the practicing chemist: FRESH (Fragment-based 

Exploitation of modular Synthesis by vHTS). Once implemented it is best applied by 

close collaboration between computational and synthetic chemists. The following 

introductory sections lay the groundwork for the construction of important features of the 

program that hopefully permit accurate and reasoned structure predictions. 

 

1.1. Requirements for a molecule to qualify as a drug 

1.1.1 Chemical space    

    Modern drug discovery projects often start with the identification of therapeutic targets. 

Most targets are cellular proteins either derived from the human genome or belong to 

pathogenic organisms like viruses, bacteria or fungi. Bio-assays are subsequently developed 

to assess the activity of chemicals against the therapeutic targets. Consequently, various 

chemicals, either natural products or synthetic analogs, are screened in the corresponding bio-

assays to identify active compounds, followed by further optimization on multiple 

pharmacological properties to provide clinical candidates. 

    With the development of high-throughput screening (HTS) technology, thousands of 

compounds can be screened against a biological target within modest time-frame. Although 

HTS has significantly accelerated the screening process compared to the past, the total 

chemical space remains vastly unexplored. According to the projection by Bohacek et al., the 

estimated number of possible molecules with a molecular weight (MW) limit of 500 is ~1060, 

which far exceeds the total number of atoms on the earth and unattainable for any available 
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screening method.1 Therefore, identifying and focusing on small and discrete compound 

islands with enriched potential drug candidates is a feasible and more efficient option rather 

than simply searching hopefully in the vast ocean of the entire chemical space. 

1.1.2. Drug likeness 

    Potency is definitely a crucial restriction on chemical space. However, for a potent 

compound to qualify as a drug, it also has to possess the desired pharmacological properties 

which insure delivery to the specific site and minimize side effects. Ideally, after 

administration, a drug molecule will be transferred from the site of administration to the 

specific target, then remain at an effective concentration within the therapeutic window for a 

period of time to achieve the desired efficacy and minimize potential side effects. 

    Various retrospective studies based on existing drugs or clinical candidates have revealed 

several physical/ADMET (Adsorption, Distribution, Metabolism, Elimination and Toxicity) 

factors contributing to the pharmacological space. The most widely accepted “Rule of Five” 

for assessing oral availability by Lipinski was derived from ~2,200 compounds that have at 

least entered phase II clinical trials.2 The study showed that 90% of the compounds had no 

more than 5 hydrogen-bond donors (defined by total numbers of N-H and O-H), 10 

hydrogen-bond acceptors (numbers of N and O), MW within 500 and logP (a measurement 

of lipophilicity) values of less than 5.  Jorgensen’s “Rule of Three” is based on calculation 

results of ~1,700 known neutral drugs and also addressed part of the ADME issue.3 The 

result revealed property predictions for 90% of the drugs: logS (S for solubility) no less than -

6, Caco-cell permeability greater than 30 nm/s and number of primary metabolites no more 

than 6. Morelli et al. has analyzed ~40 small molecule inhibitors of protein-protein 

interaction.4 His conclusion is somewhat in the opposite direction of the Lipinski “Rule of 

Five”: MW larger than 400, logP larger than 4, number of rings larger than 4 and more than 4 

H-bond acceptors.  
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    A recent review has summarized the trends of properties for the current medicinal 

chemistry literature. 5  It demonstrated increasing trends on MW and lipophilicity. For 

example, a list of 1,680 compounds from the recent literature has a mean cLogP of 4.0 and 

MW of 435.6 Another research has revealed that more than 50% of compounds with high 

potency have cLogP values > 4.25 and MW > 425.7 Enhanced skills and technologies in 

organic synthesis, development and drug formulation are likely the factors that contribute to 

the increased size of the molecules. Although it appears that compounds produced more 

recently tend to deviate from the chemical space occupied by historical drugs, it is 

nonetheless still reasonable to adopt the traditional rules, because MW and lipophilicity 

usually decline as the compounds progress through later stages, probably due to  

developmental selection pressures: Larger and more lipophilic molecules have augmented 

risks for bioavailability, solubility, toxicity, synthesis and formulation, which decreases  the 

chance of success as the project proceeds. 

    Of course, exceptions to these rules exist: Many natural products and their analogs often 

violate the Lipinski “Rules of Five”, but there are successful drugs like Taxol. Thus, rather 

than accurately defining the boundary between “drug” and “non-drug”, the rules mentioned 

previously should be used as “rules of thumb”. Within the vast chemical space, exploitation 

in these regions is more likely to result a drug. In other words, these rules assist the medicinal 

chemist to prioritize synthetic candidates and focus on particular areas rather than random 

probes in the whole chemical space, especially if the drug discovery project has originated 

from target-based HTS. 

1.1.3. CNS drug likeness 

    Compared to peripheral drugs, the ones acting on the central nerve system (CNS) generally 

have more stringent requirements. One major difference between an orally active CNS drug 

and a peripheral drug is that besides metabolic stability in the intestine and liver, the CNS 
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drug also has to penetrate the blood-brain-barrier (BBB) to reach the target. The BBB 

consists of endothelial cells that control the transfer of drugs and other materials from the 

blood stream into the cell and also the reverse direction. These epithelial cells form tight 

junctions, possess few pinocytotic vesicles and lack fenestration. Also, even if the molecule 

has crossed this layer of endothelial cells, it can be pumped back into the blood by an active 

transfer process, mainly through p-glycoprotein. Thus, it is more challenging for a molecule 

to penetrate the BBB than the gastric intestine (GI) membrane. Designing a CNS drug 

requires more attention to physical/ADMET properties. 

    From the broader perspective, CNS drugs tend to be smaller (in terms of MW), more 

lipophilic, have less flexibility (measured by the number of rotatable bonds) and polarity 

(measured by polar surface area). Levin has suggested a MW cutoff of 400 for CNS drugs in 

1980, 8  and in 2002, another study by van de Waterbeemd et al. suggested 450. 9  In a 

comparison study in 2004, Leeson and Davis analyzed ~330 drugs with ~70 acting on the 

CNS.10 The average percent of polar surface area (PSA) for CNS drugs is 16.3, while the 

value for all drugs is 21. The average number of rotational bond for CNS drugs is 4.7, 

compared to 6.4 for all drugs. Kelder et al. also discovered that CNS drugs have lower PSA 

(cutoff is 70 Å2) than non-CNS drugs (120 Å2). 11 Hansch and Leo’s quantitative analysis has 

revealed that cLogP correlates nicely with LogBB (log ratio of drug concentration in the 

brain to the one in the blood), however, as stated in the last section, more lipophilicity can 

reduce the chance of success as the project proceeds.12 The more stringent requirement for 

CNS drugs on physical and ADME properties definitely adds to the difficulties in the CNS 

drug discovery process. 

 

1.2. Computer assisted drug discovery 
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1.2.1. In-silico estimation of the ligand-protein interaction 

    The development of computational strategies has allowed the screening of large virtual 

libraries of molecules for the activity against certain protein receptors. Approaches like 

molecular mechanics (MM), quantum mechanics (QM), hybrid QM/MM and molecular 

dynamics (MD) are employed to assess the ligand-protein interaction. QM and MD can 

provide more accurate results and dynamic information, while MM, usually less 

computationally expensive, can provide excellent molecular geometries and reliable 

conformational energies. The hybrid QM/MM, which applies QM approach to protein 

regions around the binding pocket and MM to the rest, can be regarded as a balanced 

approach between accuracy and computational cost.  

    Various programs, like Glide, FlexX, GOLD, ICM and DOCK, provide quantitative and 

semi-quantitative estimation of the ligand-protein interaction. To evaluate the accuracy of 

such methods, several comparison studies have been carried out. Ligands were obtained 

from the already available cocrystallized PDB complexes, and the evaluations were based 

on reproducing the co-crystallized structures. These comparison studies have revealed that 

the Glide program, which was developed by Schrodinger Inc., remains the most accurate 

method. 13,14,15,16 In terms of overall performance, Glide had the highest portion of top-

ranking poses within 2Ả of the original crystal structures. In the more detailed analysis, 

Glide also showed the best enrichment factors, the minimum decrease on accuracy with 

increased ligand flexibility and less sensitivity to hydrogen bonding degree (HBD) and 

binding pocket burial degree (BPBD).13,15 

   Glide adopts a hierarchical protocol for predicting possible poses of ligands. To 

perform a docking, the protein receptors are first prepared by removing water and 

assigning amino-acid residues with appropriate protonation state. A docking grid which 
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specifies the docking site of the ligand is subsequently selected by users. On the ligand 

side, Glide initially completes a moderately extensive conformational search based on 

force-fields like OPLS2005. With a thorough exploration of possible positions and 

orientations over the designated binding site of the receptor, the ligand is placed, 

followed by the energy minimization on pre-computed OPLS Vander Waals and 

electrostatic grids. Poses with recognized hydrophobic, hydrogen bond or metal-ligation 

interactions are favored and the ones with unfavorable steric clashes are penalized. The 

best poses are selected by the Glidescore, an energy based scoring function. 

    Several features are attributed to the better performance of Glide. To accommodate the 

flexibility of protein side-chains and possible induced-fit, Glide can adopt reduced vdW 

scaling parameters, which softens the penalty for steric repulsive interactions and 

consequently increases the likelihood of discovering active ligands. In addition, the 

higher conformational space coverage implemented in Glide as mentioned above may 

also attribute to the better performance. The post-refinements by OPLS-based energy-

minimization also benefit the performance of Glide relative to ICM and GOLD as Perola 

et al. has revealed.13  

   While the Glide docking program and its scoring function are able to reproduce poses 

of X-ray crystal structures and valuable information in the docking of novel ligands, the 

package still needs improvement when it comes to predicting binding affinities. The 

rescoring by physics-based methods like MM-GBSA (Generalized Born/Surface Area, 

included in the Prime program in Maestro package) can assist circumventing limitations 

of the Glide scoring functions, especially the ones associated with desolvation, and 

entropy penalties for the ligands upon binding. The comparison study by Guimaraes and 
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Cardozo on several types of protein receptors has revealed that MM-GBSA can produce 

remarkable correlations between calculated results and experimental data and perform 

better than Glidescore.17 In the following sections, Glide was chosen to generate the pose 

of ligands docked in the receptors, and Prime MM-GBSA was applied to estimate the 

non-covalent interactions between ligands and receptors. 

1.2.2. In-silico estimation of physical/ADMET properties 

    As stated in the previous section, favorable physical/ADMET properties are also crucial 

components for a successful drug. In the early 90s, poor bioavailability problems led to 40% 

clinical failure. 18 Since then, assessments of ADMET have gradually become routine, and the 

failure rate dropped to 11%, with the major causes now shifted to lack of efficacy and 

toxicity. 19  Various computer programs are designed to prioritize molecules based on 

predicted physical/ADMET properties. 

    Schrodinger Inc. also provides a program named “Qikprop” for estimation of some 

physical/ADMET properties in the Maestro package. The input molecule requires a 3D 

structure with explicit hydrogens. Some properties like MW, number of H-bond 

donors/acceptors, number of primary metabolites and number of rotatable bonds can be 

obtained directly from the structure. Others are estimated based on correlations of various 2D 

or 3D descriptors, like the predicted octanol/water partition coefficient (LogP), solubility 

(LogS), blood-brain-barrier penetration (logBB), Cell permeability (Pcaco, MDCK), hERG 

blockage and serum protein binding. QikProp also provides property ranges for any test 

molecule based on those for 95% of known drugs, which is useful reference for evaluation 

with a new molecule. It also flags about 30 reactive functional groups which may trigger 

false positive results in screening tests. Two calculation modes, normal and fast mode are 

available, with a speed difference of about 30 fold. Fast mode skips the PM3 calculation 
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which produces the dipole moment, ionization potential and electron affinity. As a result, 

some predictions may use different sets of descriptors and, thus, results may be different from 

the normal mode.20 

    Similar physical/ADMET prediction programs are also available from other companies. In 

the Pipeline Pilot software package developed by Accelrys, besides simple properties like 

MW and the number of H-bond donors/acceptors, components for estimating octanol/water 

partition coefficient, blood-brain-barrier penetration, cytochrome P450 2D6 inhibition, 

hepatotoxicity and plasma protein binding are also available.21 It also allows users to supply 

additional data to parameterize for increased accuracy. ACD lab also provides software 

packages for estimation of the octanol/water partition coefficient, pKa, solubility, blood-

brain-barrier penetration, cytochrome P450 inhibition and hERG inhibition.22 User-added 

training set data is also a feature. Some other online programs are listed at 

http://www.vcclab.org/online.html. The latter software programs provide the FRESH 

approach with additional physical/ADMET parameters for compound target optimization. 

 

1.3. Challenges in the lead optimization step 

1.3.1. Multi-target/site therapies 

    Many drugs are designed selectively for a single target. Nevertheless, many diseases 

remain ineffectively treated by the single target drug. Since modulating multiple targets 

simultaneously can potentially enhance the efficacy compared to single target drugs, it is 

currently attracting increasing attention of medicinal chemists. The curcumin analogs to be 

discussed in Chapter 5 are such examples in which multiple kinases are likely to be targeted. 

    In the current pharmaceutical industry, several approaches are available for developing 

multi-target drugs. The “cocktail therapy”, which combines various therapeutic mechanisms 
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and involves two or more individual tablets, are widely accepted in a number of diseases, 

such as the AIDS. While it is effective, the method can suffer from poor patient compliance, 

particularly if the drug is used for life-improvement or treatment of asymptomatic diseases 

like hypertension. The fixed dose combination (FDC) approach is thus introduced in which 

two or more agents are formulated in a single tablet to improve patient compliance. Vytorin, 

which combines ezetimibe (cholesterol absorption inhibitor) and simvastatin (a type of statin, 

HMG-CoA reductase inhibitors), belongs to the successful FDC drug category. An additional 

benefit for the cocktail therapy and FDC drug approaches is that patent life of old drugs can 

be prolonged. However, for both the cocktail therapy and the FDC applications, variations in 

the pharmacokinetics/pharmacodynamics (PK/PD) profiles of multiple components requires 

more extensive clinical studies, let alone the discrepancies of relative rates of metabolism 

between patients which increase complexity of  PK/PD relationships. Furthermore, drug-drug 

interaction is always a concern when more than one component is administered 

simultaneously. For the FDC approach, there’s also commercial uncertainty that clinicians 

might still prefer the “cocktail therapy” which offers greater dose flexibility and lower cost in 

the case of generic drugs.23  

    The advantage of using a single compound against multiple targets is obvious. Like the 

FDC drugs, patient compliance will be improved relative to cocktail therapies. Additionally, 

at the research & development stage, the single chemical component is free of complications 

such as complex PK/PD correlations or drug-drug interactions. Some knowledge-based 

method, like framework combination (either by a linker or completely merged together; see 

below), has offered interesting drug leads. As illustrated in Figure 1, the neuro-protective 

agent Ladostigil, which combines the framework of Rivastigmine (acetylcholinesterase 

inhibitor) and Rasagiline (monoamine oxidase inhibitor), demonstrates dual inhibition against 

acetylcholinesterase and monoamine oxidase.24  
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Figure 1. Ladostigil is derived from the framework combination of Rivastigmine and Rasagiline 

 

1.3.2. Balancing multiple factors for multi-target drugs 

    The major drawback for developing multi-target ligand (MTL) drugs is that it is 

considerably more complicated to gain acceptable activity simultaneously at two or more 

targets/sites. Besides, there’s always the question of whether an optimal potency ratio exists, 

and adjusting the ratio is even more difficult. Meanwhile, as stated in the sections above, 

other factors like variable lipophilicity, solubility, metabolic stability and BBB permeability 

(for CNS drugs) also have to be considered. Some of these factors may act against each other 

so the drug has to stay in an “operating window” in which the “conflicting” factors are all 

satisfied. At this stage, synthetic feasibility may be a concern as well, as synthetic processes 

generally consume considerable time and resources.  Thus, synthetic chemists may be 

reluctant to invest large amounts of time and money pursuing just one compound that may 

eventually fail. Although the increased complexity in the design and optimization of MTL 

occurs at an earlier and less expensive stage, balancing multiple factors is nonetheless a 

challenging task. In this thesis, the author has developed a novel approach which combines 

knowledge-based rational design and high-throughput screening intended to address the 

multi-dimensional optimization issue of MTL.   
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Chapter 2: Design and development of a novel high-
throughput virtual screening approach for MTL 
 

2.1. Overall design strategy 

    The knowledge-based rational design approach can provide some interesting candidates, 

but the limitations are obvious. As it’s named, it requires information from previous studies. 

In addition, the knowledge-based approach alone generally addresses only one aspect of the 

requirement, like biological activity, metabolic stability or MW. When attempting to balance 

multiple factors, it will hardly work. During the lead optimization step, synthetic chemists 

will usually investigate the chemical space around the lead molecule and hopefully come up 

with at least one clinical candidate with both improved activity and ADMET properties. 

However, due to the relatively slow rate of organic synthesis, the coverage of chemical space 

by actual organic synthesis is very limited. On one side, a molecule has to meet various 

requirements to become a drug. On the other side, medicinal chemists face numerous choices. 

The chemical space around a drug lead, which is just a tiny portion of the total space, still 

represents possible synthetic candidates of astronomical numbers. The basic idea for the 

methodology presented here is thus generated: First, construct a diverse and tailored virtual 

compound library. Second, apply a set of prioritizing criteria to identify molecules with 

improvements in potency and physical/ADMET properties. 

 
2.2. Screening software program selection 

    The initial combinatorial library will contain numerous compounds requiring virtual high 

throughput screening (vHTS). All the software programs involved should support batch 

calculations. For constructing the initial library, Pipeline Pilot and CombiGlide are able to 

perform combinatorial library enumeration. The advantage for Pipeline Pilot is huge and it 
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was selected to construct the initial virtual library: First, it is a visualized programming 

software which provides great user flexibility. Second, the working protocol of Pipeline Pilot 

shows “real-time” numbers reflecting the process of the job, which provides crucial 

information like calculation speed and the size of the library. In fact, these numbers are 

critical parameters for making protocol refinement decisions and optimizing the algorithm. 

The overall speed is much faster than the CombiGlide, which probably results from the 

optimized algorithm for internal-memory monitoring. Since results from other computational 

packages can be easily incorporated into the FRESH approach, Pipeline Pilot has been 

employed to construct the main protocol and several junctions are reserved for capturing 

output from such packages. 

    As discussed in the previous chapter, Glide performs best when generating ligand-receptor 

poses, while Prime MM-GBSA is better at estimating the energy of ligand-protein interaction. 

In addition, both Glide and Prime MM-GBSA support batch processing, so these methods 

were chosen to evaluate ligand-protein interactions.  For physical and ADMET property 

estimations, both Pipeline Pilot and Qikprop are designed to do batch-mode calculations. 

Thus, they were employed in the approach. In addition, since all of these programs support 

the .sdf file format, this common file format serves as the “communication language” 

between Pipeline Pilot and other involved software programs throughout the entire procedure. 

 
2.3. Algorithm design and optimization 

    The chemical space around a drug lead, though not as large as 1060, can still reach an 

astronomical scale, mainly due to combinatorial explosion. Hence, the construction of the 

initial screening library still requires informed selection. During lead-optimization, synthetic 

chemistry is frequently the rate-limiting step. Therefore, the approach was based on the 

existing synthetic route which is familiar to the chemists and primarily focused on the 
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exploitation of early synthetic analogs. The process of building the initial screening library 

can be treated as a virtual mimic of the actual organic synthesis. First, large commercial 

libraries are screened for synthetic building blocks to construct focused libraries. Each 

building block is consequently marked at the connection point representing the corresponding 

fragment. The fragments are then pieced together according to the synthetic reaction scheme. 

After exploitation of all possible combinations of the fragments, the initial screening 

combinatorial library is constructed and subjected to various selection criteria. The library is 

then subject to various selection criteria. As final output, the molecules are predicted to show 

either equal or improved activity, together with favorable physical/ADMET properties 

required for a drug-like substance. Figure 2 illustrates the basic principles discussed herein. 

The list of molecules that passes all the selections is submitted for actual synthesis, 

bioactivity evaluation and various extra tests. 

    

Figure 2. A simple demo protocol for the FRESH approach 
      

    The starting commercial library used in the following projects is the Chem-Navigator 

library which contains ~7 million compounds. For frequently-used building blocks like 

aldehydes, amines and halogens, the number can exceed 10,000. Assuming that the molecule 

is composed of three building fragments, and each fragment is represented by 10,000 
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intermediates, the total number of possible combinations will then reach 1 trillion. For a 

modest-sized computer, the time it consumes to process them can be unacceptably long, i.e. 

~1,000 days. The possible threat of a size effect originating from the “combinatorial 

explosion” requires a significant effort to optimize the processing algorithm. 

    Several strategies were utilized to ensure that the entire screening cascade can handle 

extremely large libraries. First, reducing the numbers of intermediate fragments can 

effectively lower the burden of enumerating the initial library and the following screening 

process, so efficient selection of favorable fragments remains a major task for algorithm 

optimization. Identification of a list of functional groups and substructures that are reactive, 

unstable in plasma, prone to cause false-positives in screening assays or induce toxicity 

constitutes the first checklist for the fragments.25 Second, the “Rule of Three” for fragments 

was also employed, which can require a MW threshold lower than 300 depending on the 

specific project requirement.26 The third round of fragment selection is based on synthetic 

route. Functional groups or substructures that are capable of creating region/steric selectivity 

issues are assigned a lower priority.  

   The speed of the programs involved in the entire approach varies. Pipeline Pilot can process 

~ 1 billion structures per day, while the speed for Qikprop is around several million, Glide 

docking followed by Prime MM-GBSA rescoring can only handle several thousand daily. 

Therefore, in the screening scheme, Pipeline Pilot is placed first, followed by Qikprop and 

subsequently Glide + Prime. The number of potential structures is so large that actions must 

be taken to ensure the computer can easily identify each individual molecule and possible 

conformers. Several numerical identification systems are employed along the processing 

pathway, and filters for removal of duplicate structures are applied at various points to avoid 

unnecessary repeated calculations. 
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    The advantages of this novel approach are obvious. Compared to traditional lead-

optimization strategies, this method can cover a much larger chemical space within an 

acceptable time period and at lower cost due to the enhanced speed. With months of effort 

spent combating technical difficulties, bugs, defects and optimization of the prioritizing 

scheme, the approach can now process up to several billion structures in a single run. Instead 

of producing only a single molecule, a complementary set of structures is generated 

simultaneously, each of which can potentially serve as backup to the others. The approach is 

also synthesis friendly, as the library construction originates from the chemists’ synthetic 

routes, and building blocks are obtained directly from a commercial database. The problem 

of multi-dimensional optimization mentioned in the last chapter is also addressed, since 

bioactivity and drug-like physical/ADMET properties are incorporated into the output 

structures. 

    To avoid the drawback of missing possible interesting fragments not found in commercial 

databases, the package has been constructed to permit user selection of additional fragments 

deemed important for the project team to explore. In addition, self-designed sub-protocols for 

incorporation of fragments obtained from shape and electro-similarity match by the isosteric 

replacement BROOD software and from a phenyl-ring scanning approach are also available.  
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Chapter 3: Application I: Composing novel SNRIs  
 

3.1. Project background 

    Chronic pain originated from disease or injured nerves remains a problem in the US. A 

statistical study based on ~30,000 adults revealed that the prevalence of chronic pain is more 

than 30%.27 Among these, half experienced daily pain with up to 30% reported severe 

pain intensity. The most common chronic main is the lower back pain, followed by 

osteoarthritis pain. The pain obviously reduces life quality and sometimes even leads to a 

debilitating life-style and loss of ability to work. In the US, lost productivity from chronic 

pain costs an estimated $61.2 billion per year, and the additional annual cost for treating 

patients with chronic pain is ~$6,000.28,29 Therefore, chronic pain remains a large health, 

social and economic burden on the US. Effective therapies will have an enormous impact 

on the whole society.  

    The damaged nerve itself continues to be a challenging condition. There is currently no 

definite clinical treatment to repair the damaged tissue.30 Alternative medications block the 

corresponding pain signaling pathway and alleviate severe pain. For example, opioids, which 

inhibit the release of neurotransmitters, have been adopted and remain an effective therapy 

against pain. Nonetheless, the major problem for opioids is addiction and drug abuse. There’s 

also the potential threat of obtaining prescription opioids from medical prescription for illegal 

drug use. Therefore, devising alternative chronic and severe pain therapies besides 

opioids apart from opioids remains an attractive goal. 

    Monoamine reuptake inhibitors, which pump the monoamine neurotransmitters in the 

synaptic clefts back to the presynaptic neurons, are potential therapeutic targets. By blocking 

the reuptake inhibitors, the amount of neurotransmitters in the synaptic clefts increases and 
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stronger signals are transmitted to the postsynaptic neurons and subsequently suppress the 

pain pathways. 31  Previous studies have revealed that norepinephrine transporter (NET) 

inhibitors are effective against neuro-pain. While the SSRIs (selective serotonin reuptake 

inhibitor) are not effective against pain, the inhibition of the serotonin transporter (SERT) 

along with NET by SNRI (serotonin norepinephrine reuptake inhibitor) appears to enhance 

the efficacy.32 Administering separate drugs for NET and SERT, as discussed under cocktail 

therapy in Chapter 1, can be problematic due to different PK/PD properties of each 

component and the potential threat from drug-drug interactions. Therefore, an MTL (multi-

target ligand) drug, which targets both NET and SERT, would be more favorable. Several 

dual NET/SERT inhibitors have demonstrated efficacy against chronic pain, one of which 

is milnacipran (Figure 3).33 However, whether an optimal ratio of NET to SERT potencies 

exists has not been determined yet. In this project, a series of arylcyclopropylamine 

compounds (Table 1), analogs of milnacipran, has demonstrated significant potency for both 

NET and SERT, and we intend to use them as guides to synthesis of additional analogs to 

fine-tune the therapeutic ratio of dual NET/SERT inhibitors. My task is to provide synthetic 

collaborators with specific suggestions for arylcyclopropylamines analogs with suitable 

variations of the potency ratio of NET/SERT while retaining overall potency. 

 

Figure 3. Milnacipran and arylcyclopropylamine compounds 
 

3.2. Challenges in the lead optimization step 
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    The arylcyclopropylamine analogs listed in Table 1 stay well within the threshold of 

“drug-likeness”. For example, Compound 1 has a MW of 298 and logP value of 2.2. 

Therefore, lack of possible modification options is less a concern. However, the main focus 

of this project at the moment is the potency ratio, which means a quantitative evaluation; the 

model has to be accurate for estimating the potency. Since a knowledge-based method is 

unlikely to be capable of providing quantitative estimates, systematic and focused screening 

suggests itself as a useful strategy to obtain new analogs. The FRESH approach implements 

vHTS, implying it is a candidate for addressing the goals of this project.  

 

 

Table 1. Six arylcyclopropylamine compounds with ClogP and IC50 values 
 

   Another concern lies in the bioavailability of the compounds. Although intrathecal 

administration (IT, injection into the spaces surrounding the spinal cord or brain) remains the 

current administration route for these compounds, it would certainly be advantageous to have 

the drug administered orally. However, two moieties in the current lead candidates probably 

need further modification before the compounds qualify as potential oral drugs. The ester 
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bond can be hydrolyzed, and the resulting carboxylic acid with a low capacity to cross the 

BBB can result in reduced efficacy and increased threat of toxicity. The amine moiety, which 

is basic, also poses a threat for the BBB penetration. Both the ester and amine have to be 

replaced or shielded (example: isosteric replacement or pro-drug approach, respectively) for 

enhanced bio-availability to the brain. The BROOD isosteric replacement software 

incorporated in the FRESH approach is able to perform shape and electrostatic tanimoto 

matching, which can possibly help to alleviate the problems. 

 

3.3. Homology models of NET and SERT 

    Since the project requires assessment of ligand activity against protein, to apply the 

FRESH approach, an in-silico QSAR model needs to be constructed. Thus, suitable receptor 

structures (SERT and NET) combined with Glide docking followed by Prime MM-GBSA 

rescoring are required.  However, no crystal structure of NET or SERT is currently available. 

An alternative strategy is to employ homology models. Fortunately, a previous study by 

Ravna et al. has established such models for both NET and SERT based on a Leucine 

transporter.34 The sequence similarity between NET and the Leucine transporter is 39% and 

for SERT 35%. These two homology models, together with the preliminary results listed in 

Table 1, provide a good starting point for the modeling work. Preliminary efforts along these 

lines were made by Dr. Spandan Chennamadhavuni in the spring of 2011 as he brought his 

Ph.D. studies to an end.  However, the modeling work did not proceed to the development of 

QSAR models.35 

    According to the study by Ravna et al, two possible binding sites (Site 1 and Site 2) exist 

on both the NET and SERT homology models. Site 1 can accommodate small molecules like 

cocaine, while larger tricyclic compounds tend to populate Site 2.  Thus, Site 1 was chosen to 
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initiate the work.34 However, a protein pocket prediction check by the online program Castp 

(http://sts.bioengr.uic.edu/castp/calculation.php) revealed a problem: the pockets on both 

NET and SERT are too crowded (volume ~360 Å3 by Castp estimation) to fit the ligands 

(volume ~900 Å3 by Qikprop), and attempts to dock the ligands within the frozen receptor 

failed to yield any docking pose. Induced-fit docking was then considered to provide the 

protein receptor side chains with some flexibility. However, induced-fit docking is a 

computationally expensive method, which is not suitable for vHTS and thus less than ideal 

for incorporating into the FRESH method. An additional technical problem also exists in that 

that the induced-fit docking output pose file contains only one receptor and one ligand, 

making it impossible for MM-GBSA to perform batch calculations required in the FRESH 

vHTS module. A decision was made that induced-fit docking would only be used to generate 

docking receptors followed by subsequent performance of standard Glide docking.  This two-

part strategy captures a degree of protein flexibility while not sacrificing library processing 

speed. Among the ligands in Table 1, the two largest ones, Compounds 5 and 6 were chosen 

for induced-fit docking, and for each compound, only one pose was requested. The receptors 

derived from the resulting pose were extracted and subsequently used as the receptor for the 

normal Glide docking. 

    After the Glide docking followed by Prime MM-GBSA rescoring, the top pose for each 

ligand was submitted to QSAR analysis. A linear regression was attempted based on the 

equation ΔG = -RTlnK. For this particular project, the MM-GBSA value (E) was employed 

to estimate the free energy change, and the experimental Ki value was used for K (which will 

result in a positive slope).  

    Figures 4 to 7 illustrate the Compound 5 and 6 correlations for NET and SERT with all 

six ligands to define the best protein template. By comparing Figure 4 with 5, and Figure 6 
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with 7, the conclusion can be drawn that docking receptors generated by Compound 6 deliver 

better correlations. It is worth mentioning that these correlations were based on preliminary 

results in which only six ligands are involved. Nevertheless, they provide a good starting 

point for generating prospective compounds for further synthesis. 
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Figure 4. Correlations of estimated binding NET affinity with experimental Ki for six ligands. Docking 
receptor was generated from Compound 5 induced fitting. 
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Figure 5. Correlations of estimated binding NET affinity with experimental Ki for six ligands. Docking 
receptor was generated from Compound 6 induced fitting. 
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Figure 6. Correlations of estimated binding SERT affinity with experimental Ki for six ligands. Docking 
receptor was generated from Compound 5 induced fitting. 
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Figure 7. Correlations of estimated binding SERT affinity with experimental Ki for six ligands. Docking 
receptor was generated from Compound 6 induced fitting. 
 

3.4. Application of the FRESH approach 

3.4.1. Protocol design for the FRESH approach 

    The protocol for the FRESH approach was constructed in accordance with the synthetic 

route in Figure 8. The R1 and R2 groups originate from a carbene precursor which contains 

an aromatic ring (R1) and an ester group (R2), while the R3 group is from the amine building 
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block. Because the six ligands in Table 1 have the same R1 and R3 groups (both are methyls), 

any informative SAR, R2 (only substituted phenyl and pyridine ring are allowed) was chosen 

to be the moiety screened by the commercial library. From Table 3, the RR ligands show 

better activity.  Thus, these analogs were assigned a higher priority and investigated first. 

 

Figure 8. Synthetic route for the arylcyclopropylamine analogs 
 

   The FRESH protocol for R2 evaluation was thus designed as shown in Figure 9. Starting 

from the ChemNavigator commercial library, the corresponding building block was 

identified, and the R2 fragment, extracted. A sub-protocol was employed which prioritizes 

fragments by identifying unfavorable functional groups or structures that are known “trouble 

makers” for a drug molecule or pose synthetic issues.25 The Ki values for potential NET and 

SERT antagonists were predicted using the correlations in Figure 5 and 7. Other 

property/potency selection criteria incorporated into the protocol are the following: 2,3,20 

1. Pipeline Pilot: MW < 501, Number of O and N ≤ 10, Number of H-donors ≤ 5, LogP ≤ 5, 

PSA ≤ 90, LogS ≥ -6.0, Percent of sp3 carbon ≥ 40 

2. Qikprop: LogBB ≥ 0, Number of Primary Metabolites ≤ 3, Pcaco ≥ 500,  

PMDCK ≥ 500, oral absportion ≥ 0.8 
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3. Docking (potency): Predicted NET Ki ≤ 50 nM, Predicted SERT Ki ≤ 50 nM 

 

Figure 9. The FRESH protocol (main interface) for prioritizing arylcyclopropylamine analogs. Some sub-
protocol components are not shown. 
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3.4.2. Resulting structures 

    The FRESH approach has identified ~30 structures with the corresponding predicted ratios. 

Table 2 depicts the ones selected for synthesis according to the SERT/NET ratio. The 

experimental Ki values for NET were obtained and are also included. From the table, we can 

conclude that the experimental Ki values for two compounds are within 10 fold of the 

experimental values, with one (Compound 69) essentially identical. The other four are clearly 

false positives. Additional work is required to eliminate them. 

 

Table 2. Result of the FRESH approach for arylcyclopropylamine analogs 

 



 

 

26

Chapter 4: Application II: Identification of novel KCN1 
analogs to block the p300/KCN1 interaction 
 

4.1. Project background 

    Hypoxia is a condition in which tissues suffer from insufficient oxygen supply. In solid 

tumor tissues, hypoxia is prevalent, due to inadequate development of a vascular blood 

supply.36  The hypoxia inducible factor (HIF) pathway is found to be crucial for tumor cell 

growth under hypoxic conditions, one consequence of which is that hypoxic tumors are more 

resistant to chemo- and radio-therapies.37,38 Along the pathway, the HIF-1α subunit associates 

with the CH1 domain of cofactors p300 or CBP to form a functional transcription factor. 

Thus, the p300/HIF-1α complex has become an attractive target for cancer therapy. Reid-

Mooring et al. have synthesized a series of arylsulfonamides and analogs and they’ve 

demonstrated sub-micromolar potency against the p300/HIF-1α interaction, with KCN1 

(Figure 3) as the lead compound. 39  My task in this project is to use computational 

methodology to perform lead optimization and provide a list of molecules with predicted 

improvements in potency against the p300/HIF-1α interaction. Since one of the targeted 

cancers is glioblastoma, the molecules also have to demonstrate favorable and 

physical/ADMET properties required for CNS drugs.  

 

Figure 10. Structure of KCN1 with three highlighted substituent groups 
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4.2. Challenge in the lead optimization step 

    Although KCN1 is the lead molecule in the project, if evaluated by the “Rules of lead-

likeness”, it is clearly a violator. The MW (465) is already close to the threshold of 500 

defined by the Lipinsky Rule of 5, which is significantly larger than the suggested MW cutoff 

of 350 for lead-likeness, let alone the general trend for CNS drugs to possess a smaller 

MW.40 Therefore, in terms of ligand efficiency, KCN1 is not a lead with high efficiency. The 

experimental IC50 value for KCN1 is ~650 nM.39 If the intended IC50 value is 5 nM or less 

after optimization, it requires an improvement of ~100 fold. Considering the 500 MW 

threshold, there are few options for additional heavy atoms. Although for certain small 

molecules the ligands efficiency can reach ~1.5 kcal/mol, as the ligand size increases, the 

likelihood of encountering one “magic methyl” decreases rapidly.41 Thus, it is a remote 

possibility that by adding extra groups, an analog can be found with ~100 fold improvement 

while still within the 500 MW threshold. In addition, cLogP value also tends to increase 

during the lead optimization process.40 A desired cLogP cutoff is therefore suggested at 3 to 

ensure the final clinical candidate can still stay within the threshold of 5.40 Since the cLogP 

value for KCN1 is already close to 5, this parameter also requires attention in the lead 

optimization process. In fact, my previous attempts in this project by using structure-based 

methods alone to provide molecules with predicted improvements in both potency and 

physical properties while still employing the same synthetic route were not successful. In 

response to this situation, a revised FRESH approach has been devised. 

 

4.3. Two-site modeling of KCN1 for the p300 transcription factor 

4.3.1. Binding receptor selection 
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    In this project, the potency of the lead compound along with its physical properties needs 

improvement. To apply the FRESH approach, a quantitative estimation of the ligand binding 

energy is desirable. Conceptually, KCN1 can interrupt the p300/HIF-1α interaction by 

binding separately to p300 or HIF-1α, or by associating with the complex to attenuate its 

function. An NMR study by De Guzman et al. has revealed that while p300 is able to 

maintain its 3D-architecture even in the absence of HIF-1α, the C terminal transactivation 

domain (CAD) of the latter is disordered when uncomplexed with p300.42  Therefore, a 

reasonable hypothesis is that KCN1 binds to p300 and thereby blocks induced fit by HIF-1α.  

    A series of experiments by collaborators at the Winship Cancer Institute (WCI) at Emory 

and Georgia State University (GSU) have been conducted to test the hypothesis.43 Figure 11 

demonstrates the results from affinity pull-down analysis (Dr. Erwin van Meir and 

colleagues; WCI). The input lane and the – lane were control groups: The former used a 

fraction of the cell extract before pull down to verify protein expression, and the latter 

employed  uncoupled beads for non-specific binding (- lanes). The figure illustrates that 

while KCN1 can pull down a fraction of p300, no detectable interaction between KCN1 

and HIF-1α is observed.  A radio labeling experiment has also been performed. 

Recombinant fusion peptides, which contain Glutathione S-transferase (GST) and the CH1 

domain of p300 (GST-p300-CH1) were incubated with 14C-KCN1. The size of GST-p300-

CH1 was verified by Coomassie stained gel as shown in Figure 12 (right). In Figure 12 (left), 

the bound activity for GST-p300-CH1 is shown to be significantly greater than that obtained 

with GST-only peptides.  Another experiment based on surface plasmon resonance 

measurements was also performed by the GSU leg of the team under the guidance of Dr. 

Binghe Wang. KCN1 was attached covalently to a gold surface (Figure 13).  The p300-CH1 

peptides were streamed over the surface in a series of concentrations as illustrated by 



 

 

29

Figure 14. SPR signals show response to the p300-CH1 peptides and changes with 

variations of concentration. Analysis of the curve shapes and concentration dependence 

results in a Kd value of ~345 nM for KCN1 binding to p300-CH1 which is comparable to 

the bio-assay value.39 Altogether, these findings have supported the hypothesis that KCN1 

can bind to p300-CH1. Based on these results, a binding model of the p300-CH1/KCN1 

complex was initiated. The model will be applied for estimating potency and incorporated 

into the FRESH approach for generation of new analogs for synthesis and bio-activity 

testing.  

 

Figure 11. Affinity pull down analysis of p300 and HIF-1α proteins using KCN1-coupled agarose beads. 
 
 

 
Figure 12. 14C-KCN1 binding experiment result. 
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Figure 13. KCN1 attached to the gold surface. 
  

 

 

Figure 14. SPR sensorgrams for KCN1 binding to p300 
 

4.3.2. Binding site selection 

    The above-mentioned experiments do not provide information on the exact binding site for 

KCN1 on the CH1 domain of p300. In addition, no crystal structure of a small molecule 

complexed with p300 is available. Therefore, binding site information was obtained from the 

structure of p300/ HIF-1α complex (PDB code: 1L3E) and a previously reported mutagenesis 

study.44,45  
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    Figure 15 illustrates the structure of the p300-CH1 domain extracted from the p300/HIF-

1α complex. As shown, the p300-CH1 structure consists of three major helices nearly 

perpendicular to each other. According to a random mutagenesis study, four residues on p300 

(Leu344, Leu345, Cys388 and Cys393) were determined to be crucial for complexation with 

HIF-1α.45 Cys388 and Cys393 coordinate to a zinc ion, explaining that disruption of the p300 

zinc finger interrupts the p300 structure and consequently the p300/HIF-1α interaction. 

Leu344 and Leu345 are located in the region where the three helices are adjacent to one 

another (Figure 16). Four possible clefts, at which KCN1 can interact with at least 2 helices, 

were investigated (Figure 17, left). Each was subjected to KCN1 Glide docking followed by 

Prime MM-GBSA rescoring. Figure 17 (right) depicts the top two sites with high predicted 

binding energy values. 

 

Figure 15. p300-CH1 extracted from the complex. 
 



 

 

32

 

Figure 16. Crucial residues Leu344, Leu345, Cys388 and Cys393 on p300 CH1. Leu344 is hidden under 
the helix behind Leu345. 
 

 
Figure 17. Four clefts chosen for the docking sites(left)  The top two sites with docked KCN1 (right) 
     

    Remarkably, the top two best-scoring sites (Sites 1 and 2) are coincident with the binding 

locus of the two HIF-1α helices (Figure 18). Furthermore, the mutagenesis study revealed 

four residues on HIF-1α to be crucial for the p300/HIF-1α interaction, namely Leu795, 

Cys800, Leu818 and Leu822.45 Coincidently, Leu795 and Cys800 are located on helix B, 

while Leu818 and Leu822 are found on helix A (Figure 19). This outcome provides further 
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confidence that KCN1 is likely to bind to p300-CH1 at these two sites. Accordingly, these 

two centers have been employed in the following docking study for developing preliminary 

first-pass QSARs for the KCN1 analogs. 

 

Figure 18. Two helices on HIF-1α (purple) superimpose with docked KCN1 at Site 1 and Site 2 
 

 

Figure 19. Crucial residues on HIF-1α, namely Leu795, Cys800, Leu818 and Leu822 
 

4.3.3. Linear regression attempts for KCN1 analogs 
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    Reid-Mooring has synthesized ~30 KCN1 analogs, and the corresponding IC50 values 

(structures and IC50 values are included in the Appendix I) were measured.39 Although in 

general the structure-activity relationship of these compounds appears “flat”, nevertheless 

they may provide preliminary guidance for development of analogs with more significant 

enhancement.  Thus, attempts were made to construct a useful QSAR. Each analog were 

subjected to Glide docking at each of the two favored binding sites (Figure 17, Site 1 and 

Site 2) followed by energy rescoring with Prime MM-GBSA to obtain estimates of binding 

free energy (ΔE).46,47 Most of the experimental IC50 values are from a single run and no 

average value is available. To minimize possible biological variability from measurements 

made over time, an IC50 value for each analog scaled to the corresponding KCN1 IC50 

reference determined in the same experiment was employed for the correlations. Thus, the 

ratio of the IC50 value of the analog and the corresponding IC50 value of KCN1 was used as a 

measurement of activity (ΔIC50 ~ K) and applied to the similar QSAR analysis as described 

in the previous chapter. 

    Initially, all 30 compounds were employed to generate a single correlation line. However, 

no satisfactory correlation was obtained. Since all the compounds with IC50 values lower than 

KCN1 (Table 3) carry the same R1 group as KCN1 (Group II compounds in Appendix I), 

these were selected to see if they would provide acceptable correlations. Figures 20 and 21 

illustrate the results at Site 1 and Site 2. The points on Figure 21 appear more “clustered” 

than those on Figure 20. However, even for Site 2, several outliers exist. Simply 

removing the outliers and applying the corresponding correlation will generate skepticism. 

Alternative approaches are required to support the hypothesis that the predicted binding 

energy values can be used to prioritize the structures in the FRESH protocol. 
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Table 3. KCN1 and active analogs with multiple repeats. 
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Figure 20. Linear regression attempt at Site 1. 
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Figure 21. Linear regression attempt at Site 2. 
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4.3.4. Evaluation of calculated energy values by ROC 

    While a quantitative regression model with a high correlation r2 value would definitely be 

highly valuable in this project, a model with a poor r2 value can still be useful, if it can enrich 

the true positives from the false positives.  Since the FRESH protocol incorporates a vHTS 

component, a more stringent selection scheme is allowed which trades false negatives 

(sensitivity) for better selectivity against false positives. In addition, at the lead-optimization 

stage, the synthetic step is rate-limiting.  As a result, avoiding false positives is considered 

more valuable than losing possible false negatives. Therefore, the ROC (receiver operating 

curve) was employed to assess whether the estimated binding energy values at the two sites 

can be useful for modeling enrichment of the active compounds. The compounds listed in 

Table 3 defined as active with true positive rates (sensitivity) were plotted against false 

positive rates (selectivity) with the thresholds of estimated binding energy values decreasing. 

Figures 22 and 23 illustrate the ROCs at Sites 1 and 2.   

 

Figure 22. ROC at Site 1. AUC = 0.68 
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Figure 23. ROC at Site 2. AUC = 0.70 
 

    The AUCs (area under curve) for both sites are around 0.7, indicating that both the 

estimated energy values at Sites 1 and 2 can differentiate active compounds from inactive 

analogs to some extent. Therefore, the intended plan is to incorporate the energy values at 

both sites (E1 and E2) for prioritizing. There will be two lists of prioritized structures after 

this round of selection, and the structures that appear on both lists will be assigned a higher 

priority. A test for this plan was carried out on the existing 30 compounds, with the MM-

GBSA cutoffs for E1 and E2 at -26.5 kcal/mol and -27.5 kcal/mol. Only 3 compounds 

remained: KCN1, 1601 and 2609, all of which are true positives and included in Table 3. It is 

noteworthy that 1601 and 2609 are the two most potent analogs among all the test molecules. 

This result further supports the plan to incorporate both E1 and E2. 

     

4.4. Application of the FRESH approach 
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4.4.1. Protocol design for the FRESH approach 

    The FRESH screening approach was applied according to the synthetic route in Figure 24. 

The R1 group originates from a sulfonyl chloride building block, the R2 group from an amine 

and the R3 group from an aldehyde. The protocol is able to handle variations on all three R 

groups and enumeration of structures in the billions. However, since the most potent ones are 

from the Group II analogs, the R1 group was kept constant and R3 only varied a little, while 

only R2 were screened from the commercial library.  

 

Figure 24. Synthetic route for KCN1 and its analogs 
 

    Within the context describe above, the FRESH protocol for additional Group II KCN1 

analogs was thus designed as shown in Figure 25. Starting from the ChemNavigator 

commercial library, the corresponding building blocks for R2 (amine) were collected. 

Additional modules were incorporated in the Pipeline Pilot flow to selecting amide and 

duplicated structures. Like the FRESH protocol employed in the previous chapter, fragments 

were prioritized by filtering the ones with functional groups or structures that are known to 

be reactive, toxic, unstable in serum/plasma, prone to hydrolysis, cause false positives in 

screening or introduce a region-selectivity issue.25 Other property/potency selection criteria 

incorporate in the protocol are the following: 2,3,20 

1. Pipeline Pilot: MW < 501, Number of O and N ≤ 10, Number of H-donors ≤ 5, LogP ≤ 5, 

PSA ≤ 90, LogS ≥ -6.0 

2. Qikprop: LogBB ≥ -0.5, Number of Primary Metabolites ≤ 6, Pcaco ≥ 500,  

PMDCK ≥ 500 
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3. Docking: Site 2 MM-GBSA value ≤ -27.5 kcal/mol, Site 1 MM-GBSA value ≤ -26.5 

kcal/mol 

 

Figure 25. The FRESH protocol (main interface) for prioritizing KCN1 analogs. Some sub-protocol 
components are not shown. 
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4.4.2. Resulting structures 

    Table 4 illustrates the final list of FRESH-generated structures. All six compounds are 

chiral except Compound 270. Upon further investigation on the Internet for the building 

block information, suitable intermediates for Compounds 95 and 98 are available both as 

racemates and optically-pure enantiomers. Based on cost, the decision was made to work 

with racemic mixtures first. Figure 26 shows the initial bio-test results for Compound 95, the 

single predicted structure so far tested. Compared to a smooth curve of 2609, the compound 

demonstrates an abnormal wave-shaped curve. This compound is likely to be a false positive. 

Further work on modeling of ligand-protein interaction is still required.  
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Table 4. Result of the FRESH approach for KCN1 analogs 
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Figure 26. The initial bio-test results for Compound 95 (blue). 2609 (red) was used as a reference. 
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Chapter 5: Curcumin analogs as Pleiotropic Kinase Blockers 
 

5.1. Project background 

    Curcumin is the principle component of the root powder of Curcuma longa. It is consumed 

by a vast population in India as a spicy flavor ingredient. In addition, its yellow to curry color 

also makes it a candidate for food coloring. Curcumin plays a crucial role in traditional 

medicine for its therapeutic effects against rheumatoid arthritis, indigestion, liver disease like 

jaundice and insect bites. 48  Curcumin has attracted the attention of medicinal chemists 

recently due to its anti-tumor activity and relative low toxicity. However, low potency, poor 

bioavailability and fast metabolism have restricted its clinical application.  

    Attempts have been made to improve the potency and ADME properties of curcumin. 

Various analogs have been synthesized at Dr. Liotta’s lab, with EF24 as the lead compound.48 

The analog has demonstrated enhanced anti-tumor activity relative to curcumin while 

remains tolerated to the cell. Nevertheless, the detailed mechanism of action remains 

unexplored. In the project, a list of curcumin analogs are evaluated against a series of kinases 

that appears crucial for various tumor cell signaling pathways. My task in this project is using 

molecular modeling to rationalize the activity data. Since EF24 and other analogs still 

demonstrate bioavailability issues, improvements on the ADME properties are still needed. 

The FRESH approach has incorporated ADME selection scheme, so it will be applied for 

screening alternative analogs. 

 
5.2. Modeling of curcumin analog against several kinases 

    A series of curcumin analogs were synthesized by Dr. Terry Moore (Emory University) 

and screened against a variety of kinases by Andrew Brown (WCI Ph.D. candidate).  Table 5 

displays the experimental IC50 values, with structures shown in Figure 27.  AKT-1, AKT-2, 
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ERK2, NEK1 and VEGFR2 demonstrate some of the most potent IC50 values as reflections of 

binding.  Since crystal structures are available for AKT-1, AKT-2 and VEGFR2, the 

corresponding ligand-protein complexes were investigated first.  

 

Table 5. IC50 values (unit: μM) of a series of EF24 analogs against various kinases. 
 

 

Figure 27. Structures of curcumin analogs: EF24, EF31, UBS109 and SEF31 
 

5.2.1. Modeling of AKT-1 and AKT-2 
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    The sequences around the ATP pockets of AKT-1 and AKT-2 were compared by BLAST. 

The result demonstrates that the kinase domains of the two proteins possess 82% identity and 

93% similarity. Figure 28 also reveals that the residues surrounding the ATP pockets 

(squared in black) are identical. It is therefore not surprising that the IC50 values of AKT-1 

and AKT-2 are likewise identical.  

 

Figure 28. Sequences of aligned AKT-1(lower row) and AKT-2 (upper row with residue numbers). The 
residues around the ATP pocket are squared in black 
 

    To rationalize the IC50 values of the ligands, the curcumin analog ligands were modeled 

within the ATP binding sites. The choice of the binding site was made based upon kinetic 

experiments being conducted by Andrew Brown that a strong component of ligand action 

derives from ATP competition. Since AKT-1 and AKT-2 are biologically and structurally 

coincident, AKT-2 was selected for ligand comparison. First, we investigated whether a 

competitive mechanism alone can rationalize the IC50 data. The docking procedure is similar 

to those described in Chapters 3 and 4. The protein receptor was extracted from the crystal 

structure (PDB code: 3E88) and processed by Maestro Protein Preparation Wizard.49 The 

Docking grids were generated around the ATP binding pocket, and ligand-docking was 
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accomplished with Glide.  The top 20 poses for each ligand were subsequently submitted to 

Prime MM-GBSA rescoring.46,47 Figure 29 illustrates the top pose re-ranked by MM-GBSA 

for EF31 in AKT-2. One of the pyridine nitrogen atoms forms a nice hydrogen bond with 

Thr292. The nitrogen atom on the central six-membered-ring is positioned close to Glu236 

and Glu279 which is capable of forming favorable electrostatic interactions with the NH 

groups. The carbonyl group is directed toward Lys181 which can also contribute to 

coulombic association. EF24’s top pose is very similar to that of EF31. The only structural 

difference between EF31 and EF24 is the replacement of ortho-N on the pyridine rings with 

C-F. As Figure 30 illustrates, the fluorine atom can also form a hydrogen bond with Thr292, 

but the interaction is weaker and the angle is less favorable than that for EF31. In addition, 

the distance between the fluorine on EF24 and the oxygen on Thr292 is shorter than the 

corresponding sum of Van der Waals radii indicating an unfavorable steric clash. The weaker 

H-bond interaction and steric clashes of EF24 with AKT-2 probably contribute to the higher 

IC50 values of EF24 compared to EF31.  

 

Figure 29. Top pose of EF31 on AKT-2. 
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Figure 30. Top pose of EF31 and EF24 on AKT-2. 
 

     For UBS109 and SEF31, the bulky N-methyl group and sulfur atom, respectively, have 

forced the molecules into different poses as illustrated in Figures 31 and 32, in which the 

ligands lose favorable H-bond and electrostatic interactions. Since these curcumin analogs 

have pka values around 6.5, it is possible that some protonated forms exist. Figures 33 and 

34 demonstrate the top docking poses for protonated UBS109 with N-Me groups in axial and 

equatorial conformations.  The axial conformer adopts a pose similar to EF31, which forms 

favorable electrostatic interactions with the two glutamic acids, but it exists in an 

energetically unfavorable conformer. The force-field-based energy calculations reveal that 

for charged UBS109, the energy difference between the axial and equatorial conformers is 

5.0 kcal/mol.  Since the predicted MM-GBSA binding energy for the axial conformer is -48.5 

kcal/mol, 6.7 kcal/mol more stable in complex than  the equatorial conformer, the net 

stability for the axial form is 1.7 kcal/mole (6.7 – 5.0 kcal/mol). The calculation demonstrates 

that under protonation conditions, the N-Me group can adopt the axial conformation upon 

binding to AKT-2. However, compared to the corresponding -51.5 kcal/mol binding energy 
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for EF31, it is considerably less tightly bound. Thus, the reduced activities of UBS-109 

relative to EF31 and EF24 can be rationalized.   

 

Figure 31. Top pose of UBS109 (unprotonated) on AKT-2 
 

 

Figure 32. Top pose of SEF31 on AKT-2 
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Figure 33. The top docking pose for protonated UBS109 with the N-Me group in the axial conformation 
 

 

Figure 34. The top docking pose for protonated UBS109 with N-Me groups in the equatorial conformation 
 

       Overall, the docking results can provide a qualitative explanation of the variation of IC50 

values in AKT-2. However, a linear regression of predicted MM-GBSA binding free energies 

and experimental lnIC50 values provided no QSAR correlation. Since all the curcumin 

analogs investigated herein carry the α,β-unsaturated ketone substructures, it is possible that 
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free cysteines on the AKT kinases form a covalent-bond with the analogs by Michael 

addition. In this way the mixed-inhibition observed by collaborator Andrew Brown can be 

understood. For both AKT-1 and AKT-2, a cysteine (Cys310 for AKT-1 and Cys311 for 

AKT-2, Figure 35) is located near the substrate binding site. The principle of the assay used 

in this project can be described as follows: A FRET (fluorescence resonance energy transfer) 

pair is placed on the substrate of the kinases. In addition to the kinase, another enzyme that is 

capable of cleaving the substrate and breaking the FRET pairs apart is also added to the 

solution. If only ATP exists in the buffer solution, the kinase will phosphorylate the substrate 

and protect it from the cleavage of the other enzyme. But if a competitive inhibitor occupies 

the ATP pocket, the substrate won’t be phosphorylated and the other enzyme will cleave it, 

breaking the FRET pairs apart and generating a fluorescence signal.  Thus, it is reasonable to 

speculate that the formation of covalent bond with the cysteine will interrupt substrate 

binding, preventing the cleavage of the substrate and consequently the separation of the 

FRET pairs. This can also lead to an apparent high IC50 value, but, unfortunately, it hinders 

quantification of the non-covalent binding affinity of the ATP competitive inhibitor.  

 

Figure 35. Cys311 in the cleft where the subtrate binds 
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    It is worth mentioning that UBS109 routinely demonstrates more potency in the cell-based 

assays compared to EF24 and EF31. However, the IC50 values of EF24 and EF31 in Table 5 

are generally lower than that of UBS109. One possible explanation is that other proteins are 

also involved in the cellular environment, and UBS109 is a more potent inhibitor for them. 

Antagonizing AKT-1 and AKT-2 may not play a major role in the anti-tumor effect of the 

curcumin analogs. Such defining experiments have not yet been carried out on cells treated 

with the analogs. 

 

5.2.2. Modeling of VEGFR2 

    It is noteworthy that the IC50 values for the four ligands on VEGFR2 are much more 

similar than observed for the AKT kinases. The four structures were docked into VEGFR2 

(PDB code: 2XIR) as described above for AKT-2.50 The attempt to devise a QSAR 

correlation between estimated binding affinity by MM-GBSA and experimental IC50 values 

failed again. A close examination of the docking pose of EF24 on VEGFR2 reveals two 

cysteines inside the ATP pocket. One of these, Cys1045, adopts an orientation that favors 

covalent Michael addition to the α,β-unsaturated ketone moiety in all the compounds (Figure 

36). It is highly possible that covalent binding dominates the binding affinities of the ligands 

for this kinase and thereby rationalizes and can probably rationalize the relatively close IC50 

values of the analogs.  
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Figure 36. Top pose of EF24 on VEGFR2 
 

 
5.3. Anticipated FRESH analysis  

    Although the developing of QSAR model is still in progress, the design for other 

components in the FRESH approach has already been considered. The synthetic route for the 

curcumin analogs is shown in Figure 37. The R1 group comes from an aldehyde. In addition 

to fragments from building blocks in the commercial library, the phenyl ring scan method can 

also product fragments compatible with the route. The central core (ketone) can also be 

varied. The protocol for exploring additional analogs is illustrated in Figure 38. 

 

Figure 37. The synthetic route for additional curcumin analogs 
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Figure 38. The FRESH protocol (main interface) for prioritizing curcumin analogs. Some sub-protocol 
components are not shown. 
 
 



 

 

54

Chapter 6: Conclusions and Future Work 
 
    Chapter 3 and Chapter 4 describe how the FRESH approach is able to provide a list of 

structures within a given project framework which satisfy multiple requirements including 

potency, physical properties and ADME aspects. The method appears to be valuable for 

multi-dimensional optimization during the drug discovery process. It can balance various 

factors contributing to the pharmacological properties of the molecule, while remaining 

synthesis-friendly for the synthetic chemists.     

    For the NET/SERT dual inhibitor project in Chapter 3, additional work on the potency 

prioritizing scheme is needed to better eliminate false positives. In addition to the structure-

based methods described in this chapter, some ligand-based approaches using various 2D/3D 

descriptors and statistical methods (example: decision trees) can be useful for developing a 

QSAR as an alternative to linear regression. 2D ligand-based methods, like those involving 

Hammett sigma constants, are worth investigating, especially given the fact that the Ki values 

are sensitive to the substitution patterns on the phenyl ring. The FRESH approach employs a 

vHTS component which permits low sensitivity analysis.  As a result, a scheme combining 

the QSARs of structure and ligand-based methods, which may have reduced sensitivity for 

true positives, can also be applicable if better selectivity against false negatives is achieved. 

Further modifications are also required to avoid potential problems in the context of oral 

administration, mainly substituting the ester with alternative groups which are less prone to 

hydrolysis, but capable of passing the BBB. The BROOD program will be applied to identify 

alternatives. The amine moiety will also be explored for better BBB penetration possibly by 

examining pro-drugs. Since the Ki values are sensitive to the substitution pattern on the 

phenyl ring, the “phenyl ring scan” approach can also be adopted for additional R2 fragments. 

The predicted hERG binding affinity was not included in the selection scheme. However, as 
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the potential drug is not used against an acute and life-threatening condition, the toxicity 

issue raised hERG binding is definitely a concern, and the predicted hERG binding affinity 

will be incorporated in future.       

    For the KCN1 analog project in Chapter 4, further optimization of the prioritizing scheme 

is still in progress. Like stated in the last paragraph, various 2D/3D ligand-based methods, 

with possible combinations to the current method, are also alternatives. Since the lead 

compound KCN1 originated from a focused-library screening, this can serve as additional 

data for developing the prioritizing scheme. Besides, the target ranges for MW are MW< 450 

and LogBB >0, which is yet to achieve. The BROOD isosteric replacement approach will be 

used to find shape and electrostatic alternatives to the benzopyran group, the 

dimethoxylphenyl ring and the sulfonyl amide. The predicted hERG binding affinity was not 

included in the selection scheme. However, if the project requires this, the predicted hERG 

affinity will be incorporated to avoid the “danger zone” (IC50 > 10 μM).  

    The model in Chapter 5 is able provide a qualitative rationale for the variations of IC50 

values of curcumin analogs, but further investigation is required to obtain a QSAR before 

application of the FRESH approach.  
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Appendix I: A series of KCN1 analog with experimental IC50 
values and predicted MM-GBSA values 
 

Unit for MMGBSA: kcal/mol, IC50: μ M   KCN1 is Compound 1. 
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