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Abstract

Development of Novel Analytic Methods for Improved Gene Mapping of
Complex Human Traits

by Kelsy Alaine Broadaway

Discovering the genetic contributors to complex human traits and diseases is a
central goal in genetic epidemiology. Although tremendous advancements in high-
throughput genotyping and sequencing technology have allowed genetic analyses
on a scale undreamt of just 15 years ago, most genetic contributors to complex trait
variation remain hidden. By using population genetics theory, we can create new
analytic approaches that make better use of the wealth of genetic data that are now
available to us. This dissertation investigates three such analytic approaches, with
each employing a powerful and flexible high-dimensional modeling kernel
framework for inference. This type of approach is valuable in genetic analyses
because it allows simultaneous consideration of multiple genetic variants and
multiple phenotypes within a single analysis. While there are already several kernel
approaches implemented for genetic studies of complex traits, this dissertation
introduces three new kernel methods with each method probing a different type of
hypothesis. Specifically, [ develop kernel methods in which gene-environment
interaction effects on complex traits are suspected, kernel methods for detecting
cross-phenotype effects when pleiotropy is suspected, and kernel methods for
analysis of multivariate questionnaire data that are being used as a proxy for an
underlying phenotype. In subsequent chapters we derive these three methods, and
then conduct in-depth simulations to illustrate the statistical validity and power of
the approaches compared with existing methods. For each method, we then used
our approaches to analyze real genetic data from existing complex-trait studies. We
found that each of our approaches offers more power than the corresponding
competing methods across a broad range of analyses. The power of our three
approaches indicates that they might be useful in elucidating the complicated
genetic underpinnings of human traits and disease.
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CHAPTER 1:
Introduction



Gene Mapping of Complex Traits

The etiology of nearly all diseases and disease-related quantitative traits
includes a substantial genetic component. One of the central goals of genetic
epidemiology is to map the location of genomic variation that influences these
complex traits. Gene mapping is impactful since it potentially could lead to
important medical advances . Treatment of many complex traits—particularly
psychiatric disorders—remains almost entirely symptomatic. Determination of
genetic variants involved in a particular disease should lead to more etiology-
driven, targeted medical care. Increasing our understanding of how complex traits
arise could lead to improved disease prevention through genetic screening as well
as development of new and more effective therapies and pharmaceutical targets.
And yet, although tremendous advancements in high-throughput genomic
technology have allowed genome-wide analysis of complex traits for tens to
hundreds of thousands of participants, most of genetic contributors to complex trait
variation remain hidden.

Current designs for genetic studies of complex traits are based on theoretical
expectations from population genetics models. For over thirty years, the
quantitative genetics community has debated the very underlying nature of genetic
variation that contributes to complex traits 2. Two popular models are the Neo-
Darwinian and infinitesimal models. The Neo-Darwinian hypothesis predicts that
trait-influencing variants will be at relatively high frequencies, few in number, and

have moderate effect sizes 3->. Diametrically opposed to the Neo-Darwinian view is



the infinitesimal model, which predicts that trait-influencing variants will mostly be
at very low frequencies, extremely numerous throughout the genome, and with
exceedingly small effect sizes ¢ 7. In subsequent sections, I will describe general
strategies for gene mapping under each theory, existing results, limitations, and

potential solutions to the limitations that form the work in this thesis.

Neo-Darwinian Model of Genetic Variation

The Neo-Darwinian hypothesis is that common alleles of large effect will explain
a substantial fraction of trait heritability °. This viewpoint predicts that common
causal alleles will be maintained through balancing selection, most likely in the form
of fluctuating selection in space and time 8. The Neo-Darwinian view suggests that
genome-wide association studies (GWAS) are valuable tools to detect genetic
associations that predict trait and disease outcome. GWAS genotype hundreds of
thousands to millions of common single nucleotide polymorphisms (SNPs) across
the genome, and then investigate each genotyped locus for correlation between
allele and trait. GWAS rely on the two interconnected assumptions that are
fundamental to the Neo-Darwinian view: first, individual causal polymorphisms
have sizeable effect, and second, those polymorphisms occur at moderate
frequencies %10, [f the genetic variation underlying a trait follows the Neo-
Darwinian view, a GWAS is well powered to detect genetic effects: causal variants
will be common enough to be either directly genotyped by the GWAS array or in
close linkage disequilibrium (LD) with a genotyped SNP, and effect sizes will also be

large enough to be detectible in sample sizes of a few thousand subjects 11.



Conversely, if causal variants are rare or have small effect sizes, GWAS are not
powered nor designed to detect a small effect variant. Therefore, GWAS

fundamentally test the Neo-Darwinian hypothesis 3;12: 13,

Exploring the Neo-Darwinian Hypothesis

Evidence suggests that common genetic variation does play an important role in
many complex traits and diseases. For example, common SNPs are estimated to
explain 21% of the heritability of depression!4, 14-17% of the heritability of body
mass index!5, and approximately 45% of the heritability of height 16. To date, nearly
two thousand GWAS have been documented by the National Human Genome
Research Institute (NHGRI) catalog, many of which reported compelling
associations between common genetic variants and a variety of diseases 17: 18,

However, even after GWAS involving tens to hundreds of thousands of study
subjects, identification of trait-influencing genetic variation is far from complete 1°-
21, The common variants that have been identified by GWAS tend to have modest
effect sizes and account for very little overall heritability. For example, a prodigious
meta-analysis of human height—analyzing over 250,000 individuals— recently
reported 697 common genetic variants associated with the trait. And yet, altogether,
the nearly 700 identified variants account for only 20% of the heritability of height
22 If we expect common variants to explain approximately 45% of height
heritability 16, we must conclude that the majority of common variants associated
with height remain unidentified. To remain undetected by a GWAS approach with

such a large sample size, the remaining causal common variants must have



vanishingly small effect sizes. Similar conclusions have been reached with other
phenotypes 23-25,

The fundamental conclusion to be drawn from the GWAS era is that common
alleles of large effect are exceedingly rare. However, common variants likely
influence trait etiology, albeit by imposing small effects. GWAS approaches show
value and should not be discarded. Rather, we should delineate barriers to detecting
additional common causal variants through GWAS, and in doing so direct

development of novel statistical techniques.

Effects of Gene-Environment Interactions

The inherent purpose of most genomic studies is to find evidence for additive
allelic effects; the much-discussed “missing heritability” problem plaguing human
genetics research refers to the additive or “narrow-sense” definition of heritability
26, Statistically, narrow-sense heritability is assessed via testing for a main genetic
effect. For the objective of explaining missing heritability, finding evidence of non-
additive effects, such as gene-environment interaction, is inconsequential. The
additive effect of an individual allele is defined as the average effect of substituting
one allele for another; variation due to environmental differences is taken into
account in this average 7. Therefore, in absence of main genetic effect, finding
evidence of gene-environment interaction will provide no information into
explaining narrow-sense heritability.

However, while gene-environment interaction cannot directly account for

missing heritability, the ability to detect main effects of causal variants might be



hindered by heterogeneity of genetic effect sizes due to environment. For example, if
a genetic variant influences a trait, but that effect is contingent on exposure to an
environmental factor, the main genetic effect of that variant will be reduced. Given
smaller main effect sizes, the causal SNP could be discarded as non-significant. The
differences in the distribution of the environmental factor between initial and
validation studies could also impede replication of the initial SNP finding. In both
cases, considering gene-environment interaction might be beneficial. However,
including interaction terms comes at a cost: researchers who choose to model gene-
environment interaction effects contend with a host of issues, including defining and
measuring relevant environmental exposures, increased testing burden, and
insufficient power to detect interactive effects 2829,

The challenges in gene-environment analyses are particularly daunting if we
anticipate main effect sizes that are too small to detect in large GWAS. The
interaction effect could be larger than the main effect, particularly in cases of
crossover interaction, in which the opposite effects are present for opposite alleles.
However, for many cases, interaction between gene and environment should be
expected to be even smaller than genetic main effects, resulting in limited statistical
power to detect the interaction. Unless the effect size of the interaction is much
larger than the main genetic effect, typical regression approaches will not gain any
statistical power through tests of interaction instead of main effect tests 28-30. When
there is interest in modeling the modifying effects of genotype on phenotype in the

presence of interaction with environment, an optimal statistical test would be one



that remains powerful even when interaction is much smaller than the main genetic
effect.

In Chapter 2, I introduce a gene-based approach for association mapping of
multiple SNPs to consider joint tests of gene- and gene-environment interaction. We
implement this approach using a popular machine-learning technique called kernel-
machine regression (KMR). At the core of KMR is a kernel function, which
transforms high-dimensional information for a pair of subjects into a scalar
quantitative measure representing their similarity. Using kernel functions, we can
compare phenotypic pairwise similarity to genotypic pairwise similarity in the
presence of environmental interactions. The approach incorporates LD information
from multiple SNPs simultaneously in analysis and permits flexible modeling of
interaction effects. Using simulated data, we show that our approach typically
outperforms the traditional joint test under strong gene-environment interaction
models and further outperforms the traditional main-effect association test under
models of weak or no gene-environment interaction effects. We illustrate our test
using genome-wide association data from the Grady Trauma Project, a cohort of
highly traumatized, at-risk individuals, which has previously been investigated for

interaction effects. This work was recently published in Genetic Epidemiology.

Imperfect Phenotyping
In population genetics, we tend to envision a phenotype as a quantifiable
entity, often approximately following a Gaussian distribution 6. While this model is

profoundly useful—and in theory such underlying phenotypes should exist—we are



frequently unable to directly measure the true phenotypes of interest. Instead, we
attempt to capture the latent phenotype of interest from multiple angles, via several
interrelated yet distinct measurements. Specifically, most psychiatric phenotypes
are measured via a multi-question survey or test, with each question aimed at
reflecting different aspects of International Statistical Classification of Diseases
(ICD) or the Diagnostic and Statistical Manual of Mental Disorders (DSM) definitions
of the disorder of interest 3132,

Modern definitions of psychiatric disorders explicitly acknowledge the high
degree of symptom heterogeneity found among patients with the same psychiatric
diagnosis. For example, for diagnosis of a major depressive episode, the DSM-IV-TR
queries on depressed mood, anhedonia, weight or appetite change, insomnia or
hypersomnia, agitation, fatigue, feelings of worthlessness or guilt, diminished ability
to concentrate, and recurrent thoughts of death 33. Diagnosis requires that the
patient have at least five of the symptoms (one of which must either be depressed
mood or anhedonia), for at least two weeks. The Beck Depression Inventory II (BDI)
queries severity of all these symptoms over a 21-item questionnaire 34 As aresult, a
completed BDI provides nuanced information on many depressive symptoms.
However, most analytic techniques only allow testing of a single outcome.
Neuropsychiatric researchers must therefore collapse a multifaceted set of
measures into a single composite score, which can serve as a proxy for the
phenotype of interest. For this reason, most psychiatric questionnaires used in
genetic studies (including the BDI) are designed to be collapsible, typically using a

simple cumulative score approach. The cumulative score can then be treated either



as a continuous outcome, or cutoffs can be applied to indicate presence/absence of
disease symptoms.

Reducing multivariate questionnaire information into a univariate outcome
is an often-lamented statistical necessity, as it nearly always comes at a cost. Coarse
phenotyping can result in a diluted association between gene and trait. For example,
a gene might be associated with only a certain subset of depressive symptoms, such
as somatic symptoms (e.g. fatigue), but not affective symptoms (e.g. self-dislike). In
this case, the effect size of the gene would be biased toward zero if individuals with
different types of depressive symptoms were classified as sharing the same
phenotype. Researchers are interested in incorporating multivariate questionnaire
data in a broader and more flexible manner than a simple cumulative score.
Unfortunately, to date, there remains a paucity of statistical genetic alternatives that
can handle the complicated ordinal data arising from questionnaires.

In Chapter 4, I introduce a genetic association test for analysis of
multivariate outcomes collected in questionnaires, surveys, and scores that provides
a more flexible and powerful strategy for gene mapping compared to using the
typical cumulative score. Our approach, which we call the Gene Association Method
for Broader Integration of Tests and Scores (GAMBITS), allows researchers to model
questionnaire data in a nonparametric manner. GAMBITS is designed to test
whether pairwise similarity in questionnaire responses is independent of pairwise
genotypic similarity in a gene or region of interest. GAMBITS relies on a novel class
of machine-learning methods, termed kernel distance-covariance (KDC) methods,

for inference. Like KMR methods, KDC methods rely on kernel functions to model
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data similarity among different pairs of samples. However, while KMR assumes only
univariate phenotype data for each subject, KDC allows each subject to possess
multivariate phenotype data (such as multivariate questionnaire data).

The GAMBITS framework allows for an arbitrary number of questions within
the questionnaire as well as an arbitrary number of genotypes, thereby permitting
gene-based testing of both rare and common variants. We show that GAMBITS is
robust to the ordinal outcomes frequently collected in questionnaires, and further
can correct for important covariates. We show that GAMBITS is markedly more
powerful than the traditional methods, particularly when not all questions in the
survey are associated with the causal variant. We demonstrate our approach using
GWAS data from the Grady Trauma Project.

Infinitesimal Model of Genetic Variation

Lande popularized an alternate hypothesis to the Neo-Darwinian view, which
has been termed the infinitesimal model® 7. Unlike the Neo-Darwinian model, which
predicts relatively few causal variants with moderate effect size, the infinitesimal
model predicts a very large number of causal loci for a given trait, each with a nearly
infinitesimal effect size ¢. The theoretical argument hinges on the idea that an allele
with a large effect on disease will likely be deleterious, and thus kept at low
frequency by purifying selection35 36, Only alleles of exceedingly small effect size
should drift to moderate frequency in the population. The infinitesimal model
indicates that to find genetic variants of large effect, we must query rare genetic
variants. However, since GWAS do not assay rare genetic variation, the tool is not

useful in testing for associations under the infinitesimal model.



11

Empirical evidence suggests that heritabilities of most traits are indeed
driven by hundreds to thousands of causal variants, with each variant having only a
minor effect on overall phenotypic variance 22:37-40. The advent of lower-cost next
generation sequencing platforms, as well as new genotyping arrays that include rare
alleles, have recently made rare-variant association studies a reality. Although
fewer rare variant association studies have been performed than GWAS, multiple
rare variants have been successfully linked to a variety of phenotypes and diseases
41,42 A particularly exciting success story in rare variant associations comes in from
the PCSK9 gene, the results of which prompted novel translational therapy for
hypercholesterolemia 43; 44, Unfortunately, despite promising initial results, many
rare variant analyses to date have either failed to uncover any associations, or

reveal associations with only modest effect sizes 1.

Ramifications of the Infinitesimal Model: Pleiotropy

The neo-Darwinian school stressed a pair of important observations that must
be true under the infinitesimal model, given the estimated mutation rate per
nucleotide to new alleles 4>-47, First, a very large number of genes are capable of
being mutated to rare, high-effect alleles for a very large number of traits; second,
nearly every rare allele of large effect must be contributing to a large number of
different traits . These make an uncomfortable set of criticisms. However, if we
embrace the infinitesimal model, we must also embrace its Neo-Darwinian critique:
pleiotropy, and particularly rare-variant pleiotropy, should be ubiquitous in the

human genome.
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Pleiotropy, the phenomenon of a single genetic variant affecting two or more
distinct traits, has profound implications in human genetics. Pleiotropy may
underlie many fundamental principles in biology, including senescence 48, evolution
49;50 and human health 5152, Strongly pleiotropic genes are expected to be under
strong stabilizing selection, since a gene with multiple biological functions is likely
to be more limited in its possible variations than a gene with a single function 5% 53,
Additionally, alleles that are advantageous to one trait might be deleterious to
another 4% 53, Perhaps the most extreme example was proposed by Williams in
1957: senescence might be a by-product of genetic variants that are advantageous
to development and reproduction 48.

Empirically, many genetic loci do appear to harbor variants that are associated
with multiple traits. A frequently cited Mendelian example is phenylketonuria
(PKU). PKU is an autosomal recessive disorder caused by deficiency of the
phenylalanine hydroxylase enzyme, which leads to excess levels of phenylalanine.
This in turn leads to a range of phenotypes, including severe intellectual disability,
reduced pigmentation, and eczema >*. Empirical evidence for pleiotropy among
complex traits is growing rapidly, although such evidence is sometimes labeled a
“cross-phenotype” (CP) association, to differentiate between observations arising
from statistical tests and the true causal relationships described by pleiotropy.
Evidence of common-variant CP associations has already been reported in
numerous human traits, including psychiatric disorders, autoimmune diseases, and

inflammatory bowel diseases 2 55-57,
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Also supporting the prediction of pervasive pleiotropy is the observation that
many phenotypes are highly comorbid. Neuropsychiatric disorders display high
comorbidity: in total, the National Institute of Mental Health (NIMH) estimates that
as much as 45% of individuals diagnosed with a mental disorder meet criteria for
two or more disorders, with severity strongly correlated with comorbidity 8.
Likewise, nearly 75% of adults with diabetes also have hypertension >%, and patients
with rheumatoid arthritis are about twice as likely to suffer from myocardial
infarction as individuals without arthritis 0. While some comorbidities are likely
artifacts of phenotypic measurements or selection bias, many are almost certainly
biological in nature.

When pleiotropy exists, considering each phenotype separately ignores
information provided by CP correlation 6162, which might result in decreased power
to detect the genetic effect. However, while there are several excellent statistical
methods appropriate for pleiotropic analysis of common genetic variants ©3-68, there
is a lack of analogous statistical approaches to assess CP associations of rare genetic
variants. Existing CP association methods are designed to assess the effect of a
single polymorphism at a time; however, in rare variant analysis, a test typically
requires aggregation of information from multiple rare variants within a gene
simultaneously. Although a few rare-variant pleiotropy approaches have been
proposed, they tend to be computationally intensive as the number of phenotypes
increases, and are limited to normally distributed outcomes 67; 6°.

In Chapter 3, I introduce a new statistical method for CP analysis of rare

variants. As with the previously mentioned GAMBITS approach, this new method
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relies on the KDC framework to create a nonparametric test of independence
between high-dimensional rare-variant genotype data and high-dimensional
phenotype data. This approach, which we refer to as the Gene Association with
Multiple Traits (GAMuT) test, can accommodate both binary and continuous
phenotypes and can adjust for covariates. We use simulated data to demonstrate
that GAMuT provides increased power over standard univariate methods of rare-
variant testing for individual traits when pleiotropy exists. We also illustrate our
approach using exome-chip data from the Genetic Epidemiology Network of
Arteriopathy.
Scope of the Thesis

In this dissertation, [ use KMR and KDC techniques to address important
problems in gene-mapping studies of complex disease and disease-related
quantitative traits. In the subsequent three chapters, [ will explore a KMR method to
model gene-environment interaction, a KDC method to test for pleiotropic effects,
and a KDC method to allow for a broader genetic association testing of
questionnaires, tests, and scores. Finally, in Chapter 5, I will discuss the conclusions
drawn from the kernel approaches introduced here, limitations of the approaches

outlined in this thesis, and provide recommendations for future research.
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ABSTRACT
The etiology of complex traits likely involves the effects of genetic and
environmental factors, along with complicated interaction effects between them.
Consequently, there has been interest in applying genetic association tests of
complex traits that account for potential modification of the genetic effect in the
presence of an environmental factor. One can perform such an analysis using a joint
test of gene and gene-environment interaction. An optimal joint test would be one
that remains powerful under a variety of models ranging from those of strong gene-
environment interaction effect to those of little or no gene-environment interaction
effect. To fill this demand, we have extended a kernel-machine based approach for
association mapping of multiple SNPs to consider joint tests of gene and gene-
environment interaction. The kernel-based approach for joint testing is promising,
since it incorporates linkage disequilibrium information from multiple SNPs
simultaneously in analysis and permits flexible modeling of interaction effects.
Using simulated data, we show that our kernel-machine approach typically
outperforms the traditional joint test under strong gene-environment interaction
models and further outperforms the traditional main-effect association test under
models of weak or no gene-environment interaction effects. We illustrate our test
using genome-wide association data from the Grady Trauma Project, a cohort of
highly traumatized, at-risk individuals, which has previously been investigated for

interaction effects.
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INTRODUCTION

In recent years, many genetic studies of complex human traits have
employed genome-wide association studies (GWAS) to enable near-comprehensive
assessment of common genetic variation across the genome. Empirical evidence
suggests that common genetic variation plays an important role in many complex
traits and diseases, with common variants estimated to explain 25-33% of risk to
schizophrenia 7% 71, 40% of risk for bipolar disorder 72, and 50% of risk for autism
spectrum disorder 73, among other traits. However, even in studies involving tens of
thousands of study subjects, the identification of specific common trait-influencing
variation remains elusive. One potential reason for the lack of replicable GWAS hits
is that a single-nucleotide polymorphism (SNP) may influence a trait but the effect is
modified by an interaction with an environmental factor 74 such as age 7>-77. If one
ignores the gene-environment interaction effect and considers only the marginal
effect of the SNP, the causal SNPs might regrettably be disregarded. Additionally, the
differences in the distribution of the environmental factor between the initial and
validation studies could impede replication of the initial SNP finding. This
possibility, along with the observation of gene-environment interactions in various
genetic studies 78-8> has spurred interest in performing genome-wide association
studies of complex traits that accounts for possible genetic modification of effect by
environment 86-88,

To account for possible modification of genetic effects by environment in
candidate-gene and GWAS projects, one can apply a joint test of SNP main effect and

SNP-environment interaction effect on phenotype. Such a joint test can be more
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powerful than a test of SNP main effect alone if an interaction exists 3% 89, A typical
joint test involves fitting a regression model that accounts for the main effect of a
single SNP, main effect of the environment, and a two-way interaction between the
SNP and environment. One then constructs from the fitted regression model a two
degree-of-freedom test of the joint null hypothesis that there is no SNP and no SNP-
environment interaction effect, typically using a Wald or likelihood-ratio statistic 3%
90,

While some recent interaction findings using methods like the joint test as
well as other procedures have been reported (e.g. 85 86:88;91-93) 'hy and large the field
has not matured in a way to match its propitious beginnings 8% %4. A possible
explanation lies with an inherent motivation behind interaction studies: one reason
to include a modifying effect of environment within a genetic analysis is to find
subgroups of individuals where the genetic effects are of larger magnitude than the
overall group as a whole, and thus gain power over genetic studies that fail to
account for the environmental modifier. This gain in power occurs when the
interaction effect is much larger than the main effect, such as when a genotype has
an effect on phenotype in the presence of environmental effect but no effect in the
absence of the exposure (termed “complete” interaction: see model M1 in Figure 1).
However, when the interaction effect is of equal magnitude or smaller than the main
SNP effect (see models M3-M5 in Figure 1), a main effect test (which has 1 degree of
the freedom less than the joint test) might perform similarly or even better than the

joint test 28; 30,
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When there is interest in considering the modifying effects of genotype on
phenotype in the presence of interaction with environment, an optimal joint
association test would then be one that remains powerful under a variety of
interaction models, ranging from those of strong interaction effect to little or no
interaction effect 289596, To fill this demand, we present an approach to performing
a joint test of gene and gene-environment interaction for common SNPs that builds
upon the kernel-based methods introduced by Kwee et al. °7 and Wu et al. 98 to test
for genetic main effects. Our kernel-based approach for joint analysis begins by
grouping SNPs into SNP sets based on prior biological knowledge. We then apply a
kernel function that quantifies the pairwise similarity between subjects based on
the genotypes of the SNPs falling within the set, as well as environmental exposure.
By introducing a garrote parameter into the kernel function (as considered in Maity
and Lin ?° for microarray analysis), we can then construct a score statistic to assess
whether pairwise genetic similarity in the presence of possibly modifying effects of
environment correlates with phenotypic similarity.

The kernel-based approach to joint gene and gene-environment interaction
testing is promising for three reasons. First, examining sets of SNPs rather than
each SNP independently (as done in the methods of Kraft et al. 30 and Wang et al. °9)
will greatly reduce multiple-testing burden. For example, in a GWAS, while the
traditional single-SNP regression approach could result in millions of tests 100,
grouping all typed SNPs into genes and then implementing the kernel-based
approach will result in ~20,000 tests 1°1. Second, since multiple typed markers are

likely to be in linkage disequilibrium (LD) with the causal variant, joint
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consideration of these markers will capture the effect of a true causal variant more
effectively than independent marker testing. Third, the kernel approach readily
allows for inclusion of prior information (such as biological plausibility or
association signals from prior association studies) in the form of weights to assist in
the formation of the kernel matrix. SNP set methods have proved to be more
powerful than univariate testing of main genetic effects °7: 98:102 and we anticipate
similar trends when considering joint tests of gene and gene-environment effects.
The remainder of this manuscript is organized as follows. We first describe
our joint SNP set analysis framework, including how to form SNP sets and how to
test SNP sets for association using a kernel framework that allows for potential
modifying effects by an environmental factor. Next, we present simulation results
comparing our joint approach both to traditional joint tests of gene and gene-
environment interaction as well as to traditional tests of main genetic effects only.
We then illustrate the kernel-machine approach using quantitative measures of
post-traumatic stress disorder and depression collected as part of the Grady Trauma
Project. We finish with concluding remarks and discuss potential extensions of our

approach.

MATERIALS AND METHODS

Assumptions and Notation:

Assume a population-based study that samples N unrelated subjects. For
each subjectj = 1,..,N, we let Yj denote the continuous phenotype and Xj be a vector

of covariates. We further define Ej to be a continuous or categorical environmental
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exposure of interest. Assume also that each subject has been genotyped at a
collection of M common SNPs in a genetic region of interest. Define Gj = (G;1, G;2 ...,
G;m ) as the genotypes at the M SNPs for subject j, where G is coded as the number
of copies of the minor allele that subject j possesses at variant m. The SNPs included
in G will be referred to as the “SNP set.” Wu et al. 98 suggest several ways for
constructing SNP sets. A natural strategy is to group together all genetic variants
that are located on or near a gene. However, we note that this strategy is reliant on
the quality of the database used to define the SNPs that fall within the gene and may
also result in the set harboring SNPs that are not necessarily in LD. Consequently, it
may be advantageous to consider other SNP sets such as haplotype blocks or sliding
windows. For illustration purposes in this manuscript, we will form SNP sets based
on genes and consider all genotyped SNPs between the start and end of
transcription, as well as variants within 2kb up- and down-stream from the gene to

capture nearby regulatory regions.

Traditional Single-SNP Tests

We first describe two traditional tests that consider the analyses on the level
of an individual SNP. First, if we believe a SNP has modest-to-no interaction with
environment to influence outcome (see Models M4-M5 in Figure 1), we would
typically apply a main-effects only model that implements a linear regression of the

form

Y=Xy+p G +B E+e

SNP ~m ENV

(1)
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where Y is an N x 1 vector of phenotypes, X is an N x ¢ vector of ¢ covariates
(including an intercept) with regression parameter vector y, E denotesan N x 1

vector of the environmental exposure (considered a covariate and not an effect

modifier) with regression coefficient ﬂENV ,and Gm denotes an Nx1 vector of SNP
genotypes at SNP m with regression parameter ﬂSNP . Finally, the residual error e

follows a MVN distribution, e ~ MVN(0,5°I), where I denotes the NxN identity

matrix. We then implement a likelihood ratio test to assess the null hypothesis of
H : ﬁsw = 0 for each SNP m. To adjust for multiple testing of M correlated SNPs, we

could apply procedures like Pacr 193 or use a permutation procedure that randomly
shuffles the M genotypes of each subject as a unit (preserving the LD structure).

If we instead suspect sizable SNP-environment interaction (see models M1-
M2 in Figure 1), we might then apply a joint test of SNP and SNP-environment

interaction using the following modified model from (1)

Y=Xy+ﬁSNPGm+ﬁENVE+ﬁSN GEte

P*ENV — m
where the notation is the same as defined in equation (1). The difference between

model (2) and model (1) is the inclusion of a two-way interaction between Gm and E

with regression parameter . Using a likelihood ratio test, we can assess the

ﬁSNP*ENV

null hypothesis H, : B, .= B, =0.We repeat model (2) and obtain likelihood-

*ENV
ratio tests for each of the M genotyped SNPs. To adjust for multiple testing we

require permutations, since Pacr is only applicable to studies of main SNP effect. In

(2)
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performing permutations under the null hypothesis, one must take care to preserve
the relationship between phenotype Y with the covariates X and the environmental
predictor E; failure to preserve this relationship can lead to invalid inference 194, We
preserve this relationship while also maintaining LD structure among SNPs by
randomly permuting the M genotypes of each subject as a unit, acknowledging that
such permutation assumes that the genotypes are uncorrelated with the
environmental predictors in the population.

Two-way Interaction Kernels

Using kernel regression, Kwee et al. 7 and Wu et al. °8 implemented mixed
models for testing the effect of variant sets on complex human phenotypes. These
approaches use a kernel function K(Gj,Gk) to quantify the genetic similarity between
subjects j and k across the M SNPs in the SNP set. We modify the methods described
by Kwee et al. 7 and Wu et al. ?8 to permit joint gene and gene-environment
interaction testing as follows. First, we select a kernel that appropriately models
interactions. While many kernels are available 105, we explore the use of the joint
weighted 2-way interaction kernel (W2WK) in this work. We define Z; = (Gj, E;) as
the combined genetic and environmental information on each subject. We then

define the weighted 2-way interaction kernel for subjects j and k as
KZ,2)=(1+3Z4,w,G,G, 1+EE)

Under this kernel, weight for the mt variant, wn, reflects the relative
contribution of that variant to our estimate of local genetic similarity between
subjects j and k. Ideally, causal variants would receive a large weight, and noncausal

SNPs would receive a weight close to zero, making the weight of these SNPs

(3)



25

negligible. Although by nature we do not know which SNPs are causal, a careful
weighting scheme can result in more power. Wu et al. 28 and Schifano et al 106
provide nice discussions on relevant weighting approaches for common SNP
analyses. For all simulations and analyses reported here, we implement a weighting
scheme based on the minor-allele frequency (MAF) of each assayed SNP that

weights rarer variants over more common ones; the particular weight we apply for

the m™ variantis w = 1/ MAFm .

Based on the chosen kernel function, we can then define the kernel matrix K as
the NxN matrix, where the (j, k)t element is equal to K(Zj, Zx). The resulting K matrix
represents genomic and environmental likeness, as well as interaction between
genotype and environment, between all pairs of individuals across the M variants in
the SNP set. Once we construct K, we incorporate this kernel matrix within a mixed
model that, for each pair of subjects, compares the genetic and environmental
similarity to phenotypic similarity, adjusting for covariates. For continuous
phenotypes, we can fit the mixed model as

Y=Xy+U+e

As with the traditional models described above, y denotes a vector of regression
parameters for fixed-effect covariates X and e is a vector of independent random
errors that follows a normal distribution. U denotes a random effect affiliated with
the variant set that follows the multivariate normal (MVN) distribution with a mean
0 and covariance matrix TK. Within this random effect, T denotes the component of

variance due to the effects of the environment, variants within the variant set, and

(4)
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the interactions between these factors.

When an interaction kernel is applied to the linear mixed model in equation (4)
the environmental risk factors are a component of the random effects portion (U) of
the model. Therefore, a null hypothesis of T = 0 would correspond to testing if none
of the genetic, environmental, or interaction factors within the kernel influences the
trait. This null is not particularly interesting in genetic studies, since the test would
be significant if only the environmental factors, and no genetic or gene-environment
interaction factors, were associated with the phenotype of interest. We therefore
modify the kernel such that a significant finding is due only to a genetic effect in the
presence of a potential interaction with the modeled environmental factors. To do
so, we use a strategy employed by Maity and Lin °° for microarray analysis and
attach an extra “garrote” parameter, 9, to the genetic effects in the kernel function

such that the weighted two-way interaction kernel becomes
KZ,2)=(0+8%,wG, G YI+EE).
With this reparameterization, we can then test for the effect of the gene in the
presence of potential interactions with the environmental factors by considering the

null hypothesis Ho: 6=0 197. Maity and Lin °? demonstrate that the appropriate score

testis
S=2(Y-X3) V' [dK/ds IV (Y-Xj,) /2

whereV = 61 + f’éK( 5.0, and dK/ d8o denotes the derivative of K with respect to

under the null hypothesis. (ﬁA , ‘30 ,and 6‘3) are estimators of (8, 7,0%) under the

null hypothesis, which can be estimated by applying restricted maximum likelihood

(5)

(6)
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(REML) procedures to the reduced form of the linear mixed model 1°8. The
asymptotic distribution of the test S follows a complicated mixture of y°

distributions. We approximate the distribution using Welch-Satterthwaite’s method
109 although we could also use Davies’ method 110.
Simulations

To validate our method in terms of appropriate type I error and to assess its
power compared to traditional joint and main-effect tests, we carry out simulation
studies under a range of configurations. We perform simulations based on SNPs and
LD patterns found 2 kb up- and down-stream from signal transducer and activator of
transcription 3 (STAT3), a gene on chromosome 17g21.31. We show the pairwise LD
structure of SNPs in STAT3 in Supplementary Figure 1. To incorporate observed LD
patterns from HapMap samples, we used the HAPGEN package 111 to generate
simulated SNP data. HAPGEN generates simulated genotype information for all
SNPs identified in HapMap within the STAT3 gene; however, to better replicate real
GWAS conditions, we applied the testing approaches only to those SNPs that would
be typed on standard genotyping arrays. Although 27 common SNPs fall within the
STAT3 gene, only 14 of the 27 are genotyped on the [llumina HumanOmnil-Quad
genotyping platform. Thus, the 14 typed SNPs form the SNP set for the kernel
approach, and only the 14 typed SNPs are tested for association using the traditional
main and joint tests. Under simulations where the causal SNP is not genotyped,

power to detect an association relies on LD between the causal SNP and typed SNPs.

Size and Statistical Power
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We conducted simulations under four types of null linear models to verify

that the joint W2WK approach properly controls the type I error rate. We assumed a

model of Y, = B

ENVEJ_ + e where the error term, e;, follows a standard normal

distribution. Ej models an environmental exposure under a Bernoulli(0.5)

distribution. We let 8 the main effect size of the environment, be set to 0, 0.33,

ENV’
0.67, and 1 (corresponding to R? values of approximately 0, 0.03, 0.11, and 0.25
respectively). For null simulations, we set sample size to N=250, 500, and 1000. For
each of the four null models, we evaluated size using 5000 replicates of the data.

We next performed power calculations to compare the kernel approach to
the traditional joint and main-effect tests under different levels of SNP-environment

interaction. We simulate data for subject j under the model
Y, =033E + CGJ, _+£(0.2- C)Gj .E te (7)

where Ej again models the environmental exposure under a Bernoulli(0.5)
distribution, e; follows a standard normal distribution, and Gj,m is the allele count of
the causal SNP in subject j. We set the values of { to the 5 different values (0.00, 0.05,
0.10, 0.15, and 0.20), which corresponds to simulation Models M1-M5, respectively
(see Table 1). As ¢ (and the model number) increases, the interaction effect

decreases while the main effect increases. For instance, in Model 1, where { =0, we

assume ‘complete’ interaction: the causal SNP affects phenotype exclusively through
gene-environment interaction. Model 3 assumes that the genotypic effect is twice as
large in exposed individuals compared with unexposed individuals. Model 5

assumes that the subgroups have the same mean genotypic effect; that is, there is no
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gene-environment interaction. For each of the 5 models, we allowed each of the 27
common SNPs in STAT3 to be causal in turn. We model genotypic effect acting first
in an additive then in a dominant manner. For power simulations, we set sample
size to N=500. As with the size simulations, we assumed only genotype information
for the 14 SNPs on the Illumina HumanOmnil-Quad platform was available, and
used only these SNPs to compute the test statistics. Power was estimated as the
proportion of P-values <0.05 and was evaluated based on 500 replicates of the data

per model.

RESULTS

Table II shows the empirical size for common variant analyses at a=0.05.
Our simulations confirm that our 2-way interaction kernel approach maintains
appropriate type-I error, regardless of main effect size of environment. The type-I
error of the traditional main effect and traditional joint test were also appropriate.

Figures 2-4 show the power results for models M1, M3, and M5, the effect of
the SNP on outcome originated under either an additive genetic model (left) or a
dominant model (right). Similar power results for models M2 and M4 are shown in
Supplemental Figures 2 and 3, respectively. Power is plotted as a function of causal
SNP, where the causal SNPs are ordered by genomic location. The genotyped SNPs
(denoted by the ‘x’ on the bottom of the plots) were used to compute the test
statistics, but each HapMap SNP (regardless of whether it is typed) is treated as
causal in turn. Thus, in situations where the causal SNP is not typed, we rely on the

correlation of the causal SNP with observed typed SNPs in the set to gain statistical
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power. The MAF of the SNPs is plotted below the power plot in the grey line. For
example, SNP 9 (rs9909659) has a MAF 0.21 and is not genotyped on the [llumina
array. However, as shown in Supplementary Figure 1, it is in strong LD with several
SNPs that are typed (R?>0.9 for SNP 3 (rs3198502), SNP 4 (rs1053005), and SNP 6
(rs3744483)). Power to detect an effect of SNP 9 relies on LD among these
genotyped SNPs.

In our simulations, the traditional joint test did not always outperform the
main-effect test, even when a significant interaction effect was present.
Implementation of the traditional joint test resulted in considerable increases in
power relative to the traditional main test only under models of complete
interaction (model M1, Figure 2). Under the M2 model shown in Table I, despite the
fact that the interaction effect is 4-fold larger than the genetic main effect in this
model, the traditional joint test provides only a modest power gain over the
traditional main effect test (Supplementary Figure 2). When the interaction effect is
equal to or smaller than the genetic main effect (model M3-M5, Figures 3 & 4 and
Supplementary Figure 3), the traditional main effect tests are consistently more
powerful than the traditional joint tests.

Across all five models, for both additive and dominant assumptions, the joint
W2WK approximately matches or outperforms the optimal traditional test. Under
the complete and strong interaction models (models M1 and M2, Figure 2 and
Supplementary Figure 2), the joint W2WK kernel matches or outperforms the
traditional joint test across all SNPs. In models M3 and M4, although the main effect

test outperforms the traditional joint test, the joint W2WK outperforms the main
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effect test (Figures 3 and Supplementary Figure 3). Even under the assumption of no
gene-environment interaction occurring (M5, Figure 4), our joint W2WK approach
remains somewhat more powerful or of approximately equal power when
compared with the traditional main-effect test for the large majority of SNPs.

The power of our joint W2WK approach relies on LD existing between the
causal SNP and genotyped SNPs in the sample. To examine the relationship
between LD and power in our simulated datasets, we calculated the median squared
correlation (median R?) of the causal SNP with genotyped SNPs in our SNP set
across simulated datasets for a specific model. As shown in Supplementary Figure
4, our joint W2WK approach is least powerful compared with the traditional
approaches when median R? between causal SNP and genotyped SNPs is close to 0
but becomes increasingly more powerful than these other approaches as the median
R? increases. Our findings regarding the relationship between median R and power
for our joint W2WK test yield similar conclusions to those reported by Wu et al. %8
and Schifano et al. 196 for SNP set analysis of main effects on phenotype.

The joint W2WK approach offers more power than the optimal traditional
approach across a considerable range of causal SNP minor allele frequencies.
Although all approaches are more powerful as the causal SNP’s MAF increases, there
is no clear relationship between MAF and relative strength of our approach
(Supplementary Figure 5). The weighting scheme we selected for the bulk of our
simulations is an inverse relationship with MAF; this weighting scheme is most
beneficial when the MAF of the causal SNP is rarer relative to the genotyped SNPs in

the set. To examine if power of the joint W2WK approach is affected by the choice
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of MAF weight, we also performed an unweighted analysis that assumes equal
contribution from all genotyped SNPs in the SNP set. We present these results in
Supplementary Figure 5. Overall, power using the unweighted version of our
approach was somewhat lower than from using the joint W2WK approach, except
for causal SNPs that were quite common (MAF > 0.35). For these SNPs, the
unweighted approach offered slightly more power to detect an effect than the joint

W2WK.

Application to Grady Trauma Project Data

Depression is a moderately heritable disorder (h?x0.30), yet, despite
substantial interest in identifying genetic causes of the disorder, its genetic
underpinnings remain largely unidentified 112. Research indicates a potential
association between depression and genes in the cannabinoid receptor 1 (CB1)
pathway 113-116_ The relationship between depression and CB1 may be modified,
however, by gender 117: 118,

We applied our joint W2WK approach to a GWAS study of depression to
assess the relationship between CB1 genes and outcome, allowing for interaction
with gender, and contrasted our results with those found under the traditional
single-SNP tests. Data used in our analysis were collected as part of a larger study,
called the Grady Trauma Project (GTP), which investigates the role of genetic risk
factors for psychiatric disorders such as post-traumatic stress disorder and
depression 119120, Participants in the GTP are served by the Grady Hospital in

Atlanta, Georgia, and are predominantly urban, African American, and of low
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socioeconomic status. GTP staff approach subjects in the waiting rooms of Grady
Primary Care and Obstetrics and Gynecology and obtain their written consent to
participate. GTP staff conduct an extensive verbal interview, which includes
demographic information, a history of stressful life events, and several psychological
surveys. The GTP queries participants on the Beck Depression Inventory (BDI), a
21-item multiple-choice questionnaire that assesses symptoms of depression 34.
Summing the responses yields a score ranging from 0-63, with scores higher than 28
being indicative of moderate to severe depression. We selected this score as a

continuous outcome variable, transforming each individual’s BDI scores to
y. = In(BDI +1), where In is the natural log, to uphold the normality assumption

required for the traditional tests.

The GTP genotyped participants on the [llumina HumanOmnil-Quad array to
permit GWAS analyses. For this work, we studied the Cannabinoid Receptor 1 gene
(CNR1), on chromosome 6q14-q15, which encodes for the CB1 receptor, and the
Fatty Acid Amide Hydrolase gene (FAAH), on chromosome 1p35-p34, which breaks
down the primary endocannabinoid in humans, as genes of interest based on prior
reports of the cannabinoid pathway involvement in depression and negative affect.
The HumanOmnil-Quad array genotypes 11 common SNPs within 2kb up- and
downstream from CNR1, and 7 common polymorphisms in and near the FAAH gene.
Additionally, we obtained the top 10 principal components (PCs) from the GWAS
data, which we included as covariates in all models to account for population
stratification. We obtained BDI scores, genotype, PCs, and gender information on

3475 subjects.
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We applied our joint W2WK test, along with traditional joint and traditional
main-effect tests, to the dataset. We observed that both the traditional main-effect
and traditional joint tests indicated a nominal association between CNR1 and BDI
scores, whether gender was included only as a covariate or as an effect modifier (P-
values 0.007 and 0.024 respectively). The P-value testing this association using the
joint W2WK approach yielded similar trends as the two other tests but yielded a p-
value that was at least 4-fold smaller than either traditional approach (P-value
0.0016). Evidence suggests that the association between CNR1 and BDI scores
might be due to a blend of genetic main effect and interaction between CNR1 and
gender, but is unlikely to be an example of complete or very strong interaction, since
the P-values of the traditional main effect test is smaller than that of the traditional
joint test). None of the three tests found a significant association between variants

in the FAAH gene and BDI scores (Table III).

DISCUSSION

We have presented a kernel machine based framework for SNP set analysis
for continuous outcomes when an interaction between genotype and an
environmental insult is suspected. The proposed test is a variance component score
test, which relies on fitting the null linear regression model to compute the test
statistic. Since the P-values are computed analytically, our method allows faster
analyses on a genomewide scale than the traditional regression approaches, which
might rely on permutation procedures to establish significance. Analysis of

simulated STAT3 data for 500 and 1000 subjects takes 30 seconds and 3.5 minutes,
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respectively, on a MacBook Pro possessing a 2.2 GHz processor and 8 GB of memory.
If one were to parallelize the approach across 50 CPUs, one could complete a GWAS
analysis of 20,000 gene sets with a sample size of 1000 in approximately one day.
We provide R software implementing the approach on our website (see Web
Resources) which can be run through PLINK, if desired.

In general, our joint W2WK approach has more power than the either the
joint or main-effect traditional approaches. Since the magnitude and prevalence of
interactions is largely unknown, we considered several models of gene and gene-
environment interaction effects. When the underlying model is one of complete
interaction, the joint W2WK outperforms the traditional joint test across a range of
minor allele frequencies and LD patterns. Our approach performs particularly well
relative to either traditional test when the underlying causal model involves a blend
of both interaction and main genetic effects. We consider the power gains under
these models to be especially noteworthy, since they are considered to be more
biologically plausible than a model of complete interaction 28. We lastly considered
the scenario that no gene-environment interaction is occurring; that is, all the
genotypic effect occurs through genetic main effect. Using traditional joint testing
under this model would result in costly loss of power relative to the traditional
main-effect test. However, across all modeled causal SNPs, the joint W2WK
approach maintains power that rivals or even modestly outperforms the traditional
main-effect test. We have also demonstrated that the joint W2WK approach has

more power relative to the traditional approaches across all interaction models
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when the genetic effects are acting in a dominant fashion, but tested assuming an
additive effect.

Our joint W2WK is explicitly designed to test for a joint effect of genetic main
effect and interaction between gene and environment. If instead one is interested in
testing exclusively for a gene-environment interaction effect using SNP sets, one can
apply a related kernel procedure created by Lin et al. called GESAT. 121, Like W2WK,
GESAT is a variance-component score test that utilizes a kernel function for analysis.
However, while our joint W2WK procedure models genetic, environment, and gene-
environment interaction effects as random effects via a kernel function in the
mixed-model framework, GESAT only models the gene-environment interaction
term as random and models the main genetic and environmental effects
parametrically as fixed effects (estimated under the null using ridge regression).
GESAT is useful when an interaction-only test is more desirable than a joint test,
such as for detecting a crossover interaction (i.e. when the genetic effects change as
a function of environment, such that the genotype conferring lowest risk in one
environment confers highest risk in another environment).

Although the results presented here are focused on interaction between
environment and common SNPs, the approach is readily extendible to rare variant
gene-environment interaction analysis. The approach can also be used to
simultaneously model multiple environmental exposures, which would be useful in
cases where several environmental measurements might be expected to correlate
with a true latent exposure that is interacting with genotype to influence outcome.

We will explore these ideas more in future work.
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Table I: Models of gene-environment interaction

Total Genetic Effect
Model| ¢ |Exposed Subgroup|Unexposed Subgroup
M1| 0.00 0.20 0.00
M2| 0.05 0.20 0.05
M3| 0.10 0.20 0.10
M4{ 0.15 0.20 0.15
M5| 0.20 0.20 0.20

The five models of interaction considered in our simulations. Under M1, we assume
that unexposed individuals have no genotypic effect. In M2, the genotypic effect in
unexposed individuals is % that of exposed individuals. In M3, unexposed
individuals have on average half the genotypic effect of exposed individuals. In M4,
unexposed individuals have % the mean genotypic effect as the exposed subgroup.
Finally, in M5, mean genotypic effect is equal across subgroups; no interaction effect
is occurring.
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Table II: Controlling for Type I Error Rate: Empirical Size

Sample Size

Environmental Effect

250
0.00 0.33 0.67 1.00

500
0.00 0.33 0.67 1.00

1000
0.00 0.33 0.67 1.00

W2WK
Traditional Joint
Traditional Main

.043 .045 .050 .049
.051 .052 .056 .053
.055 .053 .058 .053

.050 .050 .051 .047
.051 .048 .052 .049
.051 .050 .048 .053

.049 .046 .051 .052
.052 .051 .050 .047
.049 .051 .049 .049

Empirical sizes for the W2WK, traditional joint, and traditional main-effect tests at
the a=0.05 level. Sample sizes were set to N=250, 500, and 1000. Environmental
main effect was allowed to vary from 0, 0.33, 0.67, and 1 (corresponding to R values

of approximately 0, 0.03, 0.11, and 0.25 respectively).



Table III: Analysis of the Grady Trauma Project Data
Gene
CNR1 FAAH

W2WK 0.002 0.406
Traditional Joint 0.024 0.407
Traditional Main 0.007 0.603

P-values using the joint W2WK, traditional joint, and traditional main-effect only
tests on the Grady Trauma Project dataset. The joint W2WK and traditional joint
analyses considered interactions with gender.
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FIGURE LEGENDS

Figure 1: A range of possible gene and gene-environment models, from M1
(complete interaction) to M5 (no interaction). The red line represents genotypic
effect among individuals who have been exposed to the environmental insult. The 5
blue lines represent possible genotypic effects for individuals who were not exposed
to the environmental insult, resulting in models that range from complete
interaction (M1) to no interaction (M5).

Figure 2: Power for the W2WK (red), traditional joint (blue), and traditional main
effect (green) approaches by causal SNP under the M1 model. An “x” marks the 14
SNPs that were modeled as genotyped in our simulations. The MAF of each SNP
(grey line) is along the right Y-axis. Plot on the left assumes an additive model; the
plot on the right assumes the underlying model is dominant, but was tested as
additive. Inset plot shows the underlying model (M1): solid black line represents
genotypic effect among individuals who have been exposed to the environmental
insult. Dotted black line shows genotypic effect of individuals who were not exposed
to the environmental insult under the M1 model. Dotted grey lines indicate

alternate models that are considered elsewhere in this manuscript.

Figure 3: Power for the W2WK (red), traditional joint (blue), and traditional main
effect (green) approaches by causal SNP under the M3 model. An “x” marks the 14
SNPs that were modeled as genotyped in our simulations. The MAF of each SNP
(grey line) is along the right Y-axis. Plot on the left assumes an additive model; the
plot on the right assumes the underlying model is dominant, but was tested as
additive. Inset plot shows the underlying model (M3): solid black line represents
genotypic effect among individuals who have been exposed to the environmental
insult. Dotted black line shows genotypic effect of individuals who were not exposed
to the environmental insult under the M3 model. Dotted grey lines indicate
alternate models that are considered elsewhere in this manuscript.

Figure 4: Power for the W2WK (red), traditional joint (blue), and traditional main
effect (green) approaches by causal SNP under the M5 model. An “x” marks the 14
SNPs that were modeled as genotyped in our simulations. The MAF of each SNP
(grey line) is along the right Y-axis. Plot on the left assumes an additive model; the
plot on the right assumes the underlying model is dominant, but was tested as
additive. Inset plot shows the underlying model (M5): solid black line represents
genotypic effect among individuals who have been exposed to the environmental
insult. Dotted black line shows genotypic effect of individuals who were not exposed
to the environmental insult under the M5 model. Dotted grey lines indicate
alternate models that are considered elsewhere in this manuscript.



Figure 1: Models of Gene and Gene-Environment Interaction on Phenotype.
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Figure 2: Power under M1 Model
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Figure 3: Power under M3 Model
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Figure 4: Power M5 Model
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Supplementary Figure Legends:

Supplementary Figure 1: Pairwise LD (R?) heatmap for all SNPs reported in
HapMap +2kb of the STAT3 gene.

Supplementary Figure 2: Power for the W2WK (red), traditional joint (blue), and
traditional main effect (green) approaches by causal SNP under the M2 model. An
“x” marks the 14 SNPs that were modeled as genotyped in our simulations. The MAF
of each SNP (grey line) is along the right Y-axis. Plot on the left assumes an additive
model; the plot on the right assumes the underlying model is dominant, but was
tested as additive. Inset plot shows the underlying model (M2): solid black line
represents genotypic effect among individuals who have been exposed to the
environmental insult. Dotted black line shows genotypic effect of individuals who
were not exposed to the environmental insult under the M2 model. Dotted grey

lines indicate alternate models that are considered elsewhere in this manuscript.

Supplementary Figure 3: Power for the W2WK (red), traditional joint (blue), and
traditional main effect (green) approaches by causal SNP under the M4 model. An
“x” marks the 14 SNPs that were modeled as genotyped in our simulations. The MAF
of each SNP (grey line) is along the right Y-axis. Plot on the left assumes an additive
model; the plot on the right assumes the underlying model is dominant, but was
tested as additive. Inset plot shows the underlying model (M4): solid black line
represents genotypic effect among individuals who have been exposed to the
environmental insult. Dotted black line shows genotypic effect of individuals who
were not exposed to the environmental insult under the M4 model. Dotted grey

lines indicate alternate models that are considered elsewhere in this manuscript.

Supplementary Figure 4: Power is plotted as a function of median R?, assuming
additive effects. We define median R? as the median squared correlation of the
causal SNP with the genotyped SNPs in our SNP set. Our W2WK is shown in red,
traditional joint test is shown in blue, and the traditional main effect test is shown in
green.

Supplementary Figure 5: Power for the W2WK (red), traditional joint (blue), and
traditional main effect (green) approaches by causal SNP under the M1-M5 additive
models. In addition, we show the power to detect an effect using an unweighted
two-way interaction kernel (cyan). When MAF of the causal SNP is greater than
~0.35, an unweighted kernel approach is slightly more powerful than the weighting
scheme we selected for our W2WK approach.
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Supplementary Figure 1: Pairwise LD of STAT3
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Supplementary Figure 2: Power under M2 Model

Power

Additive Dominant
— W2WK —_— Env?ronment1
- —- Traditional Joint g |77 Envionmentd
-—-- Traditional Main § | —TLezziiiiiiiosiil
0.8 - — T T
AA Aa aa
0.6
04 7 ,\,\ Ir\ /: :?_i:\
) /‘\,'\‘\ I.I‘\'I/l - ‘\\
I \\‘/ A -{
0.2 1
0.0
HXXXXXK XXX X
T T T T T T T T T T

25 0 5 10 15 20 25
Causal SNP

48



Supplementary Figure 3: Power under M4 Model
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Supplementary Figure 4: Power as a Function of Median R?
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Supplementary Figure 5: Power as a function of causal SNP MAF
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CHAPTER 3:
A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants
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ABSTRACT

Increasing empirical evidence suggests that many genetic variants influence
multiple distinct phenotypes. When cross-phenotype effects exist, multivariate
association methods that model pleiotropy are often more powerful than univariate
methods that model each phenotype separately. While several statistical approaches
exist for testing pleiotropy for common variants, there is a lack of cross-phenotype
tests for gene-based analysis of rare variants. In order to fill this important gap, we
introduce a new statistical method for cross-phenotype analysis of rare variants
using a nonparametric distance-covariance approach that compares similarity in
multivariate phenotypes to similarity in rare-variant genotypes across a gene. The
approach can accommodate both binary and continuous phenotypes and further can
adjust for covariates. Our approach yields a closed-form test whose significance can
be evaluated analytically, thereby improving computational efficiency and
permitting application on a genome-wide scale. We use simulated data to
demonstrate that our method, which we refer to as the Gene Association with
Multiple Traits (GAMuT) test, provides increased power over competing
approaches. We also illustrate our approach using exome-chip data from the Genetic

Epidemiology Network of Arteriopathy.
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INTRODUCTION

The 1980s were an era of debate in the theoretical quantitative genetics
community between two competing schools of thought 2. The question of interest
was “What is the nature of genetic variation contributing to complex traits?” On one
hand there was the infinitesimal school 7, which argued that complex traits were the
result of mutation/selection balance under stabilizing selection. The variants that
contributed to traits were a combination of very rare alleles of potentially large
effect combined with many common alleles of exceedingly small effect. The
opposing camp, sometimes called Neo-Darwinian >, argued that a substantial
fraction of genetic variation was contributed by high frequency alleles of large
effect, whose frequency was maintained through balancing selection 8. The neo-
Darwinian’s school leveled two interrelated and potentially fatal criticisms at the
infinitesimal camp: believing in the infinitesimal model requires one to
simultaneously accept that 1) much of the standing genetic variation is due to
extremely rare alleles of large effect, and 2) a large fraction of the genome of an
organism is contributing to nearly every phenotype >. That means that nearly every
rare, large-effect allele must simultaneously be contributing to a large number of
different traits. The neo-Darwinian school argued the only alternative to believing in
this worldview was to suppose that a substantial fraction of the variation in complex
traits was contributed to by common alleles of large effect.

Perhaps without explicitly acknowledging it 3: 12 13, the genome-wide
association study (GWAS) era was fundamentally testing the predictions of the neo-

Darwinian school. We now know that, by and large, common alleles of large effect
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do not exist. When considered collectively, common variants can explain a sizable
proportion of the heritability for many complex traits like height, body-mass index,
and cardiovascular disease 1% 16: 37, However, common trait-influencing variants
identified and replicated by GWAS tend to have very modest effect sizes. Much of the
genetic contributors to complex traits still remain undiscovered, and are
presumably due to very rare variation. Thus, while it may be time to reject the neo-
Darwinian worldview in favor of the infinitesimal model, we cannot logically do so
without simultaneously embracing the central Neo-Darwinian critique of the
infinitesimal school: most traits should be affected by a large fraction of the
genome, and rare alleles of large effect should be generally highly pleiotropic for
seemingly unrelated phenotypes. Moreover, if we adopt this worldview whole-
heartedly, it suggests a paradigm shift in how we should approach genetic
association studies.

If rare alleles of large effect are both ubiquitous and generally highly
pleiotropic, we can leverage this to discover genes involved in complex traits. When
pleiotropy exists, an analysis that models multiple phenotypes simultaneously in a
multivariate or “cross-phenotype” framework will provide greater statistical power
than a standard univariate method that considers each phenotype separately 6% 62,
Because underlying genetic pleiotropy will induce phenotypic correlation, a genetic
association that exists with multiple traits will be more readily detectible through
cross-phenotype analyses due to the extra information provided by cross-
phenotype correlation. This information is ignored in univariate analyses.

Additionally, when pleiotropy is suspected, allowing for cross-phenotype
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associations may yield a more biologically plausible statistical model, and
potentially help to explain shared pathogenesis®® 122,

Cross-phenotype association tests for common variants using single-nucleotide
polymorphisms (SNPs) have demonstrated considerable success 52 123, For example,
common-variant cross-phenotype association has been reported among Crohn’s
disease and ulcerative colitis 124, different facial morphology measures 125, and
among bipolar disorder, autism spectrum disorder, ADHD, major depressive
disorder, and schizophrenia®>. However, while there are several excellent statistical
methods appropriate for pleiotropic analysis of common genetic variants 63-68,
theory tells us that rare alleles cannot be ignored, and pleiotropy due to rare alleles
should be more pronounced. Unfortunately, there is a shortage of analogous
statistical approaches to assess cross-phenotype associations of rare genetic
variants.

Currently, most cross-phenotype association methods are designed to assess the
effect of a single polymorphism at a time; however, in rare variant analysis, a test
typically requires aggregation of information from multiple rare variants within a
gene simultaneously. One possible rare-variant pleiotropic test is a modification of
the common-variant method of Maity et al. ¢7. While the Maity approach was
developed to study the relationship between multiple SNPs in a gene and multiple
correlated phenotypes using mixed models, it could be adapted to consider rare
variants rather than common SNPs. Additionally, Wang et al. proposed an
alternative gene-level test of pleiotropy that uses multivariate functional linear

models (MFLM) ¢°. However, we note that the approaches of Maity and Wang only
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allow for continuous phenotypes and thus cannot be applied to important
categorical phenotypes like presence or absence of a disease. Ideally, a pleiotropic
test of rare variation should be able to handle both continuous and categorical
phenotypes and be able to scale efficiently to handle an arbitrary number of
phenotypes. Here, we present a method that meets both these criteria.

We propose a method called Gene Association with Multiple Traits (GAMuT) for
association testing of high-dimensional phenotype data with high-dimensional
genotype data. GAMuT relies on a machine-learning framework called kernel
distance-covariance (KDC) 126-130 to provide a nonparametric test of independence
between a set of phenotypes and a set of genetic variants. The KDC framework used
by GAMuT assesses whether pairwise phenotypic similarity in a sample is
independent of pairwise rare-variant genotypic similarity in a gene or region of
interest. The framework allows for an arbitrary number of phenotypes that can be
both continuous and/or categorical in nature, and similarly allows for an arbitrary
number of genotypes, thereby permitting gene-based testing of rare variants.
GAMuUT can correct for important covariates, such as measures of ancestry to
account for population stratification. Furthermore, GAMuT is a closed form test that
yields analytic P-values, thus scaling easily to genome-wide analysis.

This manuscript is organized as follows. First, we develop GAMuT using the KDC
framework and show how we derive analytic P-values for this test. We also describe
how we can adjust for covariates in GAMuT. Additionally, we describe an efficient
resampling strategy that can be used if one wishes to construct a GAMuT test

multiple times using different similarity measures for phenotypes and/or
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genotypes. This resampling strategy appropriately corrects for multiple testing but
is far less computationally intensive than standard permutations. Next, we present
simulation work comparing GAMuT to MFLM and univariate SKAT 131 analysis of
rare variants under various trait-influencing models and demonstrate that our
analytic strategy can be considerably more powerful than these competing
approaches; both when pleiotropy truly exists but also when variants influence only
one of the phenotypes under consideration. Finally, we apply GAMuT to perform
exome-chip analysis of multivariate phenotypic measures of cardiovascular health

using data from the Genetic Epidemiology Network of Arteriopathy (GENOA) 132,

MATERIALS AND METHODS

Assumptions and Notation: We assume a sample of N subjects who have been

measured for multiple phenotypes of interest and possess sequencing or exome-
chip data in a target gene or region. For subjectj (j=1,...,N), we define Pj = (P;1, Pj2,
.., Pj1 ) as the L phenotypes of the subject and allow such phenotypes to be

continuous and/or categorical in nature. We then define a matrix of phenotypes for
the entire sample P=(P,P/,..,P;)", which is of dimension N x L. Similarly, we
define Gj = (G;1, Gz, ..., Gjv) to be the genotypes of subject j at V rare-variant sites in

the gene of interest, where Gy is coded as the number of copies of the minor allele

that the subject possesses at variant v. We then construct the matrix of rare-variant

genotypes for the sample as G =(G/,G, ,..,G, )" which is of dimension Nx V.

GAMuT Test of Cross-Phenotype Associations: We create GAMuT to examine

the relationship between phenotypes P and rare-variant genotypes G. GAMuT is
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based on a KDC machine-learning technique 126-130, which allows nonparametric
tests of independence between two distinct sets of multivariate variables. For each
set of multivariate variables, KDC constructs an N x N matrix with individual
elements of the matrix corresponding to similarity (or dissimilarity) in the variables
among different pairs of subjects. KDC then evaluates whether the pairwise
elements in the similarity matrix of one set of multivariate variables is independent
of the pairwise elements in the similarity matrix for the other set of multivariate
variables.

Leveraging the KDC framework, we create a rare-variant test of pleiotropy to
test for independence between P (N x L matrix of multivariate phenotypes) and G (N
x V matrix of multivariate rare-variant genotypes). To do this, we first develop an N
x N phenotypic-similarity matrix ¥ (based on P) and an N x N genotypic-similarity
matrix X (based on G). The choice of how to model pairwise similarity or
dissimilarity for a set of multivariate outcomes is quite flexible. For example, for

phenotypes P, we can model the matrix ¥ using a projection matrix 33134, such that
Y =P(P"P)"'P”.We can also construct the model ¥ using user-selected kernel
functions 97:98; 105,131 Denote the kernel function y(P; P;) as the measure of

similarity between subjects i and j across the L phenotypes. We can model y(Pi,Pj)
using kernel similarity functions like the linear kernel, y(P 'Pj)=21L=1P“P“ ;a
quadratic kernel, y(Pi,Pj) =(1+ ZILZIPI, P, ,)?; or a Gaussian kernel,

y(P,P)= exp(-X, (P P \)?/8), where § is a tuning parameter.



61

For genotypes G, we model the corresponding matrix X using kernel

functions X(G,-'G,-) that can take the same form (e.g. linear, quadratic, or Gaussian)
used to construct y(R,Pj). A few genetic-specific kernel functions also exist, like the

identity-by-state (IBS) kernel, X(GirGj)=Z¥:11BS(GLVGLV)/2V' where IBS(G, G )

oV

denotes the number of alleles (0,1, or 2) shared IBS by subjects i and j at variant v.

Also, we may wish to further augment X(G,-'G,-) to preferentially upweight the

contributions of particular rare variants in G over others in the gene. For example,
we may wish to give more weight to variants that are more rare in the population or
to variants that are predicted to be deleterious in nature!3>-137. We can do this by
creating a diagonal weight matrix W= diag(w, wy, ..., wy ), where wy, reflects the
relative weight for the vt" variant in the gene. Using W, we can then create a
weighted linear kernel function as X=GWGT. Derivation of other weighted kernel
functions is straightforward.

Once we construct the similarity matrixes ¥ and X, we derive our GAMuT

approach as a test of independence between the elements of these two matrices. We
first center each matrix as Yc=HYH and X.=HXH. Here, H = (I - 1N1; / N) isa

centering matrix with property HH=H, I is an identity matrix of dimension N, and 1n
is an Nx1 vector with each element equal to 1. Using ¥ and X, we construct our

GAMuUT test of independence of the two matrices as

1
=—trace(Y X
N (YX)

TGAM uT

(1)
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Under the null hypothesis where the two matrices are independent, T¢amur follows

the same asymptotic distribution as

1 2

Wzi,j X,i Y,izij
where 4 isthe i ordered non-zero eigenvalue of X, 1, s the jt" ordered non-

zero eigenvalue of Y, and zfj are independent and identically-distributed )512

variables 130, Given L phenotypes and V rare-variant sites, and further assuming
sample size N is larger than both L and V, the maximum number of elements in the
summation will be L*V.

Based on the KDC literature, we could derive the P-value of the GAMuT test
approximately using a gamma distribution 126, or instead using permutation
techniques 128130 n our experience, the gamma approximation is accurate for P-
values as small as 0.01 but becomes less accurate in the more extreme tails of the
distribution (results not shown). Given large-scale genetic studies require P-values
much smaller than 0.01 to declare significance in the presence of multiple testing,
the gamma approximation is not suitable in this setting. The derivation of P-values
using permutations is a valid alternative, but computationally demanding and
difficult to scale to genome wide analyses. Consequently, we instead derive P-values
for GAMuT using Davies’ exact method 119, which is a computationally efficient
method to provide accurate P-values in the extreme tails of tests that follow
mixtures of chi-square variables 131. An implementation of Davies’ method is

available in the R package CompQuadForm 138,

(2)
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Relationship of GAMuT to Other Multivariate Association Tests: While the form

of the GAMuT test is quite general, we note that specific choices of Y and X can lead
to test statistics that have similar forms to other multivariate association tests
previously published in the literature. If we assume a projection matrix ¥ for the
phenotypes (with each phenotype mean centered prior to analysis) and assume X is
the Gower distance (or some other measure of genetic dissimilarity as opposed to
similarity), the GAMuT test has a form similar to the numerator of existing
multivariate distance matrix regression (MDMR) tests 133: 134139, We note however
that MDMR procedures typically require permutations for inference whereas we can
derive analytic p-values of GAMuT directly using Davies’ method.

In addition to MDMR, we also note that applying GAMuT using a linear kernel
to model the phenotype similarity matrix ¥ and to further model the genotype
similarity matrix X results in a test that becomes a rare-variant version of the
multivariate kernel-machine test of Maity et al. 67127 created for the analysis of
common variants. The approach of Maity, however, required perturbations to
calculate p-values of individual tests where again GAMuT can derive p-values
analytically using Davies’ method.

GAMuT Testing Assuming Multiple Candidate Matrices: The GAMuT test in the

previous section requires a priori selection of the functions used to construct the
phenotypic similarity matrix ¥ and genotypic similarity matrix X. In practice though,
it is often unclear what the optimal choices for ¥ and X should be. For example, an
investigator may want to model phenotypes P in the matrix ¥ using both the

projection matrix and the linear kernel function. Also, an investigator may want to
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construct the genotype-similarity matrix X under different kernel functions (e.g.
linear and IBS) and assuming different weight functions (e.g. minor allele frequency
(MAF) weights, functionality weights). If we construct GAMuT tests under multiple
different phenotypic and genotypic similarity matrices, we then need to adjust for
the additional tests that were performed. To adjust for additional tests, one could
use a Bonferroni correction or apply permutations. However, a Bonferroni
correction likely will lead to conservative inference as these tests are correlated,
while permutations are computationally demanding and unappealing on a genome-
wide level.

Rather than use Bonferroni or permutations, we follow the ideas of Zhang et
al. 130 and Wu et al.149 to develop a perturbation (resampling) approach to correct
for testing of multiple candidate matrices in GAMuT that is more computationally

efficient than standard permutations. Assume we test M different combinations of ¥

and X. For combination m (m=1,...,M), we let p(m) denote the uncorrected GAMuT P-

value and further let lﬁm) and l)((m) denote the vectors of all non-zero eigenvalues for

Yc and X,, respectively, for that combination. We then implement the following
perturbation procedure to obtain a P-value that accounts for the testing of all M

combinations.

(m)

1) Calculate the minimum observed p-value as p’=min ___ p"".

2) For perturbation [ (I=1,...L), generate a set of independent )(12 variables z" of

length equal to L*V.
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1 .
3) For each combination m, calculate the test Tl(m) = FZU /1)((";)/1}(,"1‘,]20, ,and obtain

(m)

anew P-value p,

using Davies’ method.

(m)

4) Evaluate the minimum P-value for perturbation /as p, =min__ . p,

5) Repeat Steps 2-4 a total of L times and obtain p_,p,,...p,

L
6) Derive the final P-value as p= L‘lzll:p; < p°:|

=1

Adjusting for Covariates: Pleiotropic tests must adjust for important

covariates, such as principal components of ancestry, to avoid potential confounding
of results. We can control for confounders before applying GAMuT by regressing
each phenotype separately on covariates of interest and then using the residuals to
form the phenotypic similarity matrix Y. Although residualizing binary phenotypes
is not standard, studies have suggested that this procedure does not affect the
validity of genetic association tests in case-control studies 141142, As we describe in
the Results section, the residualizing procedure provides an effective correction for
confounders in the analysis of binary outcomes within our simulated datasets.
Simulations: We conducted simulations to verify that GAMuT properly
preserves type I error and to assess power of GAMuT relative to competing
approaches for genetic analysis of multiple phenotypes. To create genetic data for
these simulations, we generated 20,000 haplotypes of 30 kb in size using COSI, a
coalescent model that mimics LD pattern, local recombination rate, and population

history for individuals of European descent 143. To create multivariate phenotype
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data, we assume either six or ten phenotypes for each subject generated from a
multivariate normal distribution with mean vector 0 and LxL residual correlation
matrix X. To model the residual correlation matrix, we considered scenarios of low
residual correlation among phenotypes (pairwise correlation among phenotypes
selected from a uniform (0,0.3) distribution), moderate residual correlation
(pairwise correlation selected from a uniform (0.3,0.5) distribution), and high
residual correlation (pairwise correlation selected from a uniform (0.5, 0.7)
distribution). To generate binary traits, we defined phenotype measurements for
the top quartile as affected (P;=1), and defined 1-3rd quartile measurements as
controls (P;;=0). We considered sample size N of either 1000 or 2500 subjects.

To investigate the performance of GAMuT under confounding and to assess
whether the approach can successfully adjust for relevant covariates in this setting,
we also simulated phenotypes under a confounding model where phenotypes were
independent of genotypes, but both phenotypes and genotypes are associated with a
normally-distributed covariate Z. We simulated phenotypes correlated with the
covariate Z under the model P~ MVN(0.2Z,%), where Z denotes the N x 1 sample
vector of covariates. To simulate correlation between rare-variant genotypes and

covariate, we let 5% of the rare variants in our haplotypes be causal. We set effect
size, [z, of each causal genetic variant r on Z, as ﬂZr =(0.3+N(0,0.1)*|log, (MAF ),
where MAF; is the minor allele frequency of causal variant r. Evaluating type [ error

under this model allows us to verify that our approach to controlling for

confounders is valid.
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We also performed type I error calculations to examine the validity of our
resampling approach to adjust for multiple similarity matrices when applying
GAMUT. For a given null dataset, we applied GAMuT using three combinations of
phenotype similarity matrices ¥ and genotype similarity matrices X:

1) Model phenotypes using a projection matrix, model genotypes using a

weighted linear kernel

2) Model phenotypes using a linear kernel, model genotypes using a

weighted linear kernel

3) Model phenotypes using a projection matrix, model genotypes using an

unweighted linear kernel
We then implement the perturbation procedure described above to obtain a P-value
accounting for testing the three combinations of similarity matrices. For both
continuous and binary null simulations, we applied GAMuT to 10,000 simulated
datasets.

For power models, we simulated data sets in which 5% of the rare variants in

our haplotypes were modeled as causal. We set effect size of each causal variant, r,

for phenotype [, Bri, as B, =(0.4+ /N (0,0.1))*

log,,(MAF )‘ . This formulation sets

mean effect size of causal variant r as inversely proportional to its MAF, such that
very rare variants have on average a larger effect size than less rare variants.
Allowing £ to vary around a normal distribution maintains the relationship
between MAF and effect size, while allowing the variant to have a slightly different

effect size for each phenotype.
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We performed power simulations both in situations where there was no
pleiotropy (i.e. only 1 of the 6 or 10 phenotypes were associated with the rare causal
variants) and also when there was pleiotropy. Under pleiotropy, we varied the
number of phenotypes associated with the rare variants, such that not all of the
tested phenotypes will be dependent on the gene of interest. Under models
assessing ten phenotypes, we consider situations where one, two, four, six, or eight
phenotypes are actually associated with the gene. Under models assessing six
phenotypes, we consider situations where only one, three, or five phenotypes are
associated. We control correlation among phenotypes through consideration of the

relative variance of phenotype explained by the R causal variants. We define this

relative variance for phenotype [ as h, = Zfﬂﬁf/ *2MAF (1-MAF ). As in Galesloot et

al. ¢1, we define the overall correlation between phenotypes [ and I’ as

£, =y1-1%1-4,*Z,  whereZiris (LI) element of the LxL residual phenotypic

correlation matrix. This allows the residual correlation structure among
phenotypes to stay at the defined values.

For demonstration purposes, we also estimated power for limited
simulations where we considered multiple combinations of phenotypic/genotypic
similarity matrices for analyses. For such simulations, we considered a weighted
linear kernel to form X, and either the projection matrix or linear kernel to form Y.
We then implement the perturbation procedure described above to obtain a P-value

accounting for the testing of the two similarity matrices.
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For all simulations and analyses reported here, unless specified otherwise,
we implement a weighting scheme based on the MAF of each variant that weights
very rare variants more heavily than less rare variants. We selected the weighting
scheme recommended by Wu et al. 131, setting wy, = Beta(MAF,, 1, 25)/Beta(0, 1,25).

We evaluate GAMuT using the simulated data, and compare our approach to
competing strategies. For the analysis of continuous phenotypes, we compared
GAMuUT to the MFLM approach of Wang et al. ¢°. Our implementation of MFLM used
the B-spline basis based on Pillai-Bartlett trace, selecting the default parameters
suggested by the authors for data analysis. Additionally, we compared GAMuT to a
standard rare-variant association approach that ignored pleiotropy. Here, we
consider the standard approach to be application of the popular SKAT 131 test, a
powerful, kernel-based univariate test for sequencing data. We applied SKAT to
each of the simulated phenotypes and then based inference on the minimum SKAT
P-value across phenotypes analyzed. Since we perform SKAT testing on each of our
L phenotypes, we must correct for multiple hypothesis testing. Although a
permutation-based procedure is the gold standard for multiple test correction, it is
computationally intensive and unlikely to scale to genome-wide analysis. Instead,

we perform multiple testing correction using two approaches. First, we implement

a simple Bonferroni correction of o =oze/L, where « is the experimental-

BONFERRONI
wise error rate. Unfortunately, this approach can be conservative, especially for
tightly correlated phenotypes. We therefore also consider a more liberal threshold
by estimating the effective number of independent tests, L. where Legis the

number of principal components necessary to explain either 98% or 90% of
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phenotypic variance in L phenotypes 144. We can then calculate a more liberal

correction of o While thresholds of 90-98% of phenotypic

EFFECTIVE ae / Leﬁf '
variance are more liberal than 99.5% threshold recommended by Gao et al.144, we
wanted to estimate the upper bounds of power to detect an effect using SKAT.
Correction using the permutation approach should therefore fall somewhere
between the conservative Bonferroni approach and the liberal principal component
approaches.

For the analysis of binary phenotypes, we are unaware of existing methods
for testing cross-phenotype effects of rare variants. Hence, we only compared
GAMuUT to univariate SKAT testing as described in the previous paragraph.

Analysis of GENOA Study: High body mass index (BMI), low high-density

lipoprotein (HDL), and high blood pressure are interrelated conditions that increase
risk of developing cardiovascular disease, stroke, kidney disease, and Type 2
diabetes. These conditions are moderately heritable. The heritability of BMI has
been estimated to be between 17%?1> and 34%?14> depending on methods used for
the estimation. Similarly, heritability of HDL is estimated at 40-48%145 146, while the
estimates of heritability of blood pressure range from 30%145 to 48-67%?147.
Understanding genetic factors underlying these conditions is of considerable clinical
importance. Several GWAS, including pleiotropic analyses of common variants, have
been performed on one or more of the conditions 148-154, These studies have been
tremendously successful in identification of common genetic variants; however,

much of the genetic underpinnings of the conditions remains unexplained>>.
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The GENOA study?3Z 156 seeks to identify genetic variants that influence risk
for hypertension and arteriosclerotic complications of hypertension. The GENOA
resources include a cohort of African American sibships from Jackson, Mississippi.
In the initial phase of the GENOA study, all members of sibships containing =2
individuals diagnosed with hypertension prior to age 60 were invited to participate,
including both hypertensive and normotensive siblings. GENOA investigators
collected extensive phenotypic information on each participant, including BMI, HDL,
systolic blood pressure (SBP) and diastolic blood pressure (DBP). We selected these
continuous measures for analysis. Additionally, GENOA investigators genotyped
1,429 subjects on the [llumina HumanExome Beadchip. We used the HumanExome-
12 support files provided by [llumina to identify 48,712 non-singleton, rare or less-
common autosomal genetic variants (MAF<3%; hereafter referred to as “rare-
variant”) that fell within known genes. We further excluded genes with fewer than
5 rare-variant sites within the GENOA dataset, leaving 3,277 genes in our analysis.
Although GENOA collects data on sibs, GAMuT assumes study subjects are
unrelated. Therefore, we randomly selected one sibling from each family for
inclusion in our analysis.

We performed standard data cleaning, removed subjects who did not fast for
at least 10 hours prior to phenotype collection, and removed related subjects that
were identified as relatives either via pedigree information or identified as first-
degree cryptic relatives identified using the program RELPAIR 157. The final sample
for analysis consisted of 539 unrelated subjects with measures of all four

phenotypes. For each of the study participants, we also obtained gender, age, and
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smoking status (ever smoked at least 100 cigarettes), use of anti-hypertension or
lipid-lowering medication, and calculated the top ten genetic principal components
using ancestry informative markers included on the Illumina array. We applied
GAMuUT using both a projection matrix and a linear kernel to measure pairwise
phenotypic similarity. We also ran univariate SKAT on each of the four phenotypes
and adjusted for multiple testing. For all GAMuT and SKAT tests, we used a weighted
linear kernel (selecting the weighting scheme recommended by Wu et al. 131,
described above, as we used in our simulation work) to measure pairwise genotypic

similarity. Additionally, we applied MFLM to the GENOA dataset.

RESULTS

Type-I Error Simulations: Figure 1 shows the quantile-quantile (QQ) plots

based on application of GAMuT to null datasets consisting of 1000 subjects assayed
for ten phenotypes. We present QQ plots both for binary and continuous
phenotypes assuming low, moderate, or high residual phenotypic correlation. We
provide additional QQ plots of the GAMuT test for other combinations of phenotypes
considered and sample size in Supplementary Figures S1-S3. For all models tested,
GAMuUT properly controls for type I error, even at the extreme tails of the test. We
further investigated the type I error of GAMuT in the presence of confounding due to
a continuous covariate (see Methods section) where we adjusted for confounding by
residualizing the phenotypes on the covariate prior to analysis. Our QQ plots in

Supplementary Figure S4 show that this residualization effectively controls for the
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confounding for both binary and continuous phenotypes that, unadjusted, would
yield inflated results.

Table 1 shows type I error at a 2 0.001 of GAMuT, MFLM, and univariate
SKAT analyses of ten phenotypes for N=1000 and N=2500, while Supplementary
Table 1 shows similar results when analyzing six phenotypes. As expected based on
the QQ plots in Figure 1 and Supplementary Figures S1-S3, the GAMuT approach
maintains appropriate type I error across a range of assumptions and significance
thresholds. Meanwhile, we observed appropriate type I error rates of the MFLM as
well as SKAT tests after multiple-testing correction. The difference in type I error
between the three SKAT approaches was minor, particularly at smaller significance
thresholds. This finding is consistent with previous publications44 158, particularly
given the small number of tests performed (either six or ten phenotypes).

Figure 2 shows GAMuT QQ plots for binary and continuous phenotypes
where we adjusted for multiple candidate matrices (see Methods section). The
perturbation procedure properly accounts for testing three combinations of ¥ and X,
and properly controls for false positive rate for a range of assumptions. By contrast,
as we show in Supplementary Figures S5 (binary outcomes) and S6 (continuous
outcomes), using the minimum P-value of GAMuT across matrices tested (i.e.
without multiple-testing correction) yields inflated results, while the Bonferroni
correction yields deflated results.

Power Simulations: Next we compared the power of GAMuT with MFLM for

continuous traits and univariate SKAT analysis (using three different multiple-

testing corrections) for both continuous traits and binary traits. For these power
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simulations, we set sample size to 1000. Power was estimated as the proportion of
P-values < 2.5x10-¢ (reflecting a genome-wide correction for 20,000 genes) and was
evaluated based on 500 replicates of the data per model. Figure 3 shows the power
results when we analyze continuous phenotypes. We plot power as a function of the
number of phenotypes associated with the causal variants. The figure clearly shows
that GAMuT outperforms both MFLM and the standard univariate SKAT approach
for all models considered. The difference in power between the three SKAT
approaches was negligible; therefore, we show only 90% cutoff to determine the
effective number of independent tests, since it is the most anti-conservative
correction method. As expected, GAMuT performs particularly well against SKAT
and MFLM as the ratio of associated to unassociated phenotypes increases (i.e. as
the gene is increasingly pleiotropic). In addition, under models of no pleiotropy
where rare causal variants were only associated with 1 of the phenotypes under
consideration, we observed the power of GAMuT to be approximately equal or
better than SKAT.

MFLM performs poorly in all of our assumptions. We therefore simulated
data that mimics the assumptions presented in the top row of Wang et al.’s Figure 4
69, The differing assumptions are detailed in the Supplementary Figure S7; briefly,
the differences in our assumptions compared with the Wang et al. manuscript are
that the latter assume smaller number of phenotypes, smaller genes, larger effect
sizes, a more lenient significance threshold, and a larger percentage of causal
variants. When we implement the simulation strategy of Wang et al., we observe

increases in power for MLFM versus SKAT that are similar to those in their paper.



75

GAMuT performance is approximately equivalent to MLFM under the simulation
assumptions of Wang et al.

Figure 4 shows similar results when binary phenotypes are modeled. Since
MFLM is only valid for continuous outcomes, for binary outcomes we compare
GAMuUT only to univariate SKAT. We observed similar improvements of power for
GAMuUT compared to SKAT in our binary simulations as we did for our continuous
simulations. Under pleiotropic models, the improvement in power of GAMuT over
SKAT grows more noticeable as the number of phenotypes associated with the gene
increases. At the same time, even under power models where there is no pleiotropy
(only one phenotype associated with the rare variants), our results indicate GAMuT
is at least as powerful compared with the univariate SKAT approaches under models
assuming low correlation, and in fact is more powerful than the univariate approach
under moderate and high correlation structure.

We also implemented the perturbation approach to model phenotypic
similarity using both the projection matrix and the linear kernel. For both cases, we
used the weighted linear kernel to model genotypic similarity. In Figure 5 we
compare power of GAMuT using the projection matrix against power when two
candidate matrices are considered (projection and linear kernel), implementing the
perturbation procedure to account for testing two combinations of ¥. Power in
Figure 5 is defined as the proportion of P-values less than 1.5x10-5, to reflect the
study-wide significance threshold we will use for the GENOA data. We also show
power using the linear kernel to model phenotypic similarity. While the linear

kernel was not as powerful as the projection matrix on our simulated data,
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simulations indicate that the perturbation procedure retains much of the power of
the optimal kernel approach.

Application to GENOA Dataset: We use the GENOA dataset to test for

associations between BMI, HDL, SBP, and DBP, and rare variants in 3277 genes.
Prior to analysis using GAMuT, we controlled for gender, age, smoking status, use of
anti-hypertension medication, use of lipid lowering medication, and ancestry on the
539 unrelated subjects. After adjusting for covariates, correlation of the four
phenotypes was low to moderate with the largest pairwise correlation (0.67,
Pearson’s product-moment correlation P-value < 2.2x10-1¢) between SBP and DBP
(see Table 2). We applied GAMuT using both a projection matrix and a linear kernel
to measure pairwise phenotypic similarity. For comparison, we ran MFLM as well as
univariate SKAT on each of the four phenotypes and adjusted for multiple testing.
For all GAMuT and SKAT tests, we used a weighted linear kernel to measure
pairwise genotypic similarity. We set a stringent study-wise significance threshold

of 1.5x10-°, which corresponds to a Bonferroni correction based on the number of

genes tested (3277): o =0.05/3277. We considered P-values less than

BONFERRONI
P<1x10-3 as suggestive.

Figure 6 provides genome-wide results using GAMuT and univariate SKAT
analyses with top findings highlighted in Table 3. None of the methods identified
any genes associated at the study-wide significance threshold. Using the linear
kernel, GAMuT identified five genes of suggestive significance. Of note, the Selectin P
(SELP) gene, which was identified as suggestive significance by GAMuT (P=1.9x104),

has previously been associated with traits related to the four GENOA phenotypes.
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Haplotypes or common polymorphisms in SELP have been associated with
myocardial infarction 15% 160 and thromboembolic stroke 161. Expression levels of P-
selectin, the protein encoded by the SELP gene, is increased in hypercholesterolemic
patients 162 and patients with unstable angina 163. P-selectin expression was
significantly associated with carotid artery stiffness and wall thickness among
Japanese individuals with type Il diabetes, hypertension, or hyperlipidemial®4. The
same study found that percentage of P-selectin-positive platelets was positively
associated with BMI, SBP, DBP, and inversely associated with HDL.

The projection matrix form of GAMuT identified four genes of suggestive
significance. P-values from the two forms of GAMuT were strongly correlated
(Pearson correlation = 0.90). After accounting for confounders, GAMuT did not
demonstrate any systematic inflation across the genome (see QQ plots in Figure 6).

In order to correct for using two phenotypic similarity matrices for GAMuT,
we performed the perturbation approach described in the methods section on the
eight genes with P-values of less 1x10-3 for either GAMuT or SKAT. The P-values
obtained through combined perturbation method are also shown in Table 3. Of the
eight genes identified as suggestive by either or both of the GAMuT approaches, five
remained suggestive after correcting for use of two GAMuT similarity matrices.

The SKAT P-values using the three multiple testing correction methods were
identical across all genes tested. SKAT did not identify any genes at genome-wide
significance. It identified four genes at the suggestive significance threshold, all of
which were identified by one or both of the GAMuT tests. When we applied MFLM to

the GENOA data, we observed sizeable inflation of the P-values. The P-value inflation
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was not resolved by inverse-normal transforming the phenotypes, as performed in
the Wang et al. 9. See Supplementary Figure S8 for QQ plots of the untransformed
and transformed analyses.

Running the GAMuT analyses on a single-threaded R script on an Intel i7-
2720QM CPU took 22.3 minutes using either the linear kernel or the projection
matrix to model phenotypic similarity. Implementing the perturbation approach
(1x10¢6replicates per gene) required approximately 44.5 minutes of computing time

per gene analyzed.

DISCUSSION

Some patterns in the genetic basis of complex traits have emerged in prior
studies. First, common variants of relatively small individual effect located
throughout the genome collectively explain a large fraction of the total genetic
variance 14 15 22;24;40;71;165-169 Second, for some disorders such as autism 170; 171,
more than a thousand genes appear capable of harboring exceedingly rare, large
effect mutations. While it is still unclear whether these two patterns are ubiquitous,
they are central predictions of the infinitesimal model of allele effects. Moreover,
we know from detailed theoretical analysis ° that if the infinitesimal model is true
for most phenotypes, then most rare large-effect mutations should be highly
pleiotropic.

We have presented GAMuT, a framework for cross-phenotype analysis of
rare variants using a nonparametric distance-covariance approach 126:127:130 Thijg

approach can accommodate both binary and continuous phenotypes, and can adjust
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for covariates. The GAMuT test derives analytic P-values based on Davies’ exact
method, thereby improving computational efficiency and permitting application on
a genome-wide scale. Like the popular SKAT framework for univariate rare variant
analysis, our approach allows for inclusion of prior information, such as biological
plausibility of the variants under study, and further remains powerful when a gene
harbors a mixture of rare causal variants that act in different directions on
phenotype. Our approach demonstrates greater power than SKAT and MFLM when
pleiotropy exists. Further, simulations indicate that even if only one phenotype is
associated with the gene of interest (i.e. no pleiotropy is occurring), GAMuT is at
least as powerful as univariate SKAT analyses after multiple-testing adjustment.
These results hold for both continuous and binary outcomes.

GAMuT analysis of simulated datasets comprised of 1000 subjects and 10
phenotypes takes 4.5 seconds per gene for either continuous or binary phenotypes
using a R script running single-threaded on an Intel i7-2720QM CPU processor. This
run-time includes the formation of both the phenotype and genotype similarity
matrices, as well as testing for independence. However, the phenotype similarity
matrix only needs to be calculated once, even if multiple genes are being tested. We
find that determining the phenotype similarity information requires 2.1 seconds for
N=1000; completing the test for each gene requires 2.4 seconds. Increasing the
number of phenotypes or rare-variants tested does not substantially increase
GAMuT’s run-time. However, increasing sample size does increase run time. For
sample sizes of N=2500, 5000, and 10,000, GAMuT takes 33 seconds, 4.4 minutes,

and 31.0 minutes per gene for both continuous and binary phenotypes. Thus, to
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effectively scale rare-variant association testing of cross-phenotype analyses across
the genome with larger sample sizes, analysis of each gene could be distributed to
individual threads on a high-performance cluster. We provide R software
implementing GAMuT on our website (see Web Resources) which can be run
through software packages like PLINK, PLINK-SEQ, or EPACTS if desired.

We applied GAMuT to exome-chip data from the GENOA study to identify
genes harboring rare variants with pleiotropic effects on four phenotypes: BMI, HDL
levels, SBP, and DBP. Using the linear kernel to model phenotypic similarity and the
weighted linear kernel to model genotypic similarity, we detected eight genes that
were suggestively associated with our phenotypes. Of note, common variants and
gene product levels of one such gene, SELP, have previously been associated with
BM]I, SBP, DBP, and HDL162; 164,

GAMuT’s KDC framework is amenable to several promising extensions that we
will explore in future work. Since GAMuT is an omnibus test, an association of the
gene with just one of the tested phenotypes (i.e. no pleiotropy) could result in a
significant finding. While the result is valid, researchers will often wish to identify
which underlying phenotype of those considered are directly associated with the
gene of interest. Additionally if we identify a cross-phenotype association, a follow-
up analysis could be to assess whether the cross-phenotype effect is due to
biological pleiotropy (a causal locus directly affecting more than one trait) or
mediation pleiotropy (a causal locus affecting only one trait, which in turn affects
another trait). Existing mediation analyses are not intended to handle high-

dimensional traits; we propose the creation of KDC procedures to identify whether
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an observed cross-phenotype association is mediated by a different set of
phenotypes. Additionally, we could also perform post-hoc GAMuT of different
subgroupings of the phenotypes to identify the true phenotypes associated with the
gene and adjust for multiple testing using perturbations. We will pursue these ideas
in future work.

GAMUT currently assumes unrelated subjects; however, it should be reasonably
straightforward to extend GAMuT to allow for case-parent trio studies. The work by
Jiang et al. 172 provides a framework for transforming genotypic data for trios into
data that is amenable to a kernel-based framework. Specifically, the Jiang method
uses the quantitative transmission disequilibrium test introduced by Abecasis et al.
173 to decompose observed genotypes into between-family and within-family
components, and then integrates within-family genetic components into a kernel-
machine regression framework. While the Jiang method uses a KMR approach and is
therefore only appropriate for univariate phenotype analyses, an analogous
approach, using GAMuT, should allow for high-dimensional phenotype data. Finally,
one might be interested in combining cross-phenotype association results from
multiple studies through a meta-analysis. GAMuT is designed to test for rare variant
cross-phenotype associations in a single dataset. However, the meta-analysis
approach in Lee et al. 174, which is designed to combine results of multiple KMR-
based studies, should be readily extendible to KDC results, such as those obtained
via GAMuT.

That pleiotropy might be ubiquitous should come as no surprise. The central

organismal level result of pleiotropy will be the frequent occurrence of co-morbid
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diagnoses. Neuropsychiatric disorders, for instance, are particularly laden with
comorbid diagnoses. The National Institute of Mental Health (NIMH) estimates that
as many as 45% of individuals diagnosed with a mental disorder meet criteria for
two or more disorders 8. Likewise, nearly 75% of adults with diabetes also have
hypertension >°, and patients with rheumatoid arthritis are about twice as likely to
suffer from myocardial infarction as individuals without arthritis 0. While some of
these overlapping phenotypes are ultimately due to environmental risk factors,
some comorbidities are almost certainly explained by common genetic pathways.
Ignoring comorbidity, or worse, setting inclusion criteria that exclude individuals
suffering a comorbid diagnosis, will limit biological understanding of complex traits,

and may limit our ability to detect missing heritability.
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Table 1: Empirical Type-I Error Rates Assuming Ten Phenotypes
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o =0.05 o =0.001
SKAT SKAT
Sas'?z‘;le Ph?;l%i;;es g(l)‘:r“e‘;zlpo'; GAMuT | MFLM | Bonf. | PC: 98% 912)(3;0 GAMuT |MFLM | Bonf. 912;3);0 PC: 90%
Low 0453 | 0503 | .0455 | 0455 | .0545 | .0007 | .0009 | .0010 | .0010 | .0011
Continuous | Moderate | 0504 | .0481 | .0423 | .0423 | 0503 | .0013 | .0007 | .0012 | .0012 | .0013
1000 High 0517 | 0484 | .0462 | 0498 | .0509 | .0009 | .0013 | .0010 | .0011 | .0011
Low 0488 : 0447 | 0447 | 0481 | .0006 - | 0023 | 0023 | .0023
Binary Moderate | .0537 : 0429 | 0429 | 0461 | .0013 - | 0028 | 0028 | .0029
High 0439 : 0474 | 0487 | 0509 | .0003 - | 0013 | 0013 | .0014
Low 0512 | 0493 | 0447 | 0474 | 0567 | .0014 | .0012 | .0007 | .0007 | .0007
Continuous | Moderate | 0538 | .0506 | .0402 | .0416 | .0547 | .0012 | .0008 | .0010 | .0010 | .0012
High 0457 | 0496 | .0496 | .0502 | .0510 | .0009 | .0018 | .0012 | .0012 | .0012
2500 Low 0491 : 0360 | .0480 | .0529 | .0015 - | 0017 | 0017 | 0017
Binary Moderate | .0524 : 0384 | .0450 | 0491 | .0018 - | 0015 | 0015 | .0015
High 0450 : 0455 | 0457 | 0503 | .001 - | 0012 | 0014 | .0014

Empirical size for GAMuT, MFLM, and SKAT analyses at significance thresholds of 0.05 and 0.001. Empirical size

calculated from 10,000 null simulations. Simulations assume analysis of 10 phenotypes. Sample size was set at either
1000 or 2500. Phenotypes were either continuous or dichotomous. Phenotypic correlation was low (correlation <0.3),

moderate (correlation 0.3-0.5), or high (correlation 0.5-0.7).
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Table 2: Correlation of GENOA Phenotypes

BMI HDL SBP DBP
BMI| 1 -0.17 0.09 0.02

HDL| - 1 -0.01 -0.03
SBP| - - 1 0.67
DBP| - - - 1

Correlation among the four GENOA phenotypes: body mass index (BMI), high-
density lipoprotein (HDL), systolic blood pressure (SBP) and diastolic blood
pressure (DBP). Bolded correlations are nominally significant (Pearson’s product-
moment correlation P-value < 0.05).



Table 3: Top GENOA Results
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GAMuT
Number L A . .
Gene Name Chromosome . Projection Matrix Linear Kernel Combined (Perturbation)| SKAT: 90% PC
Rare Variants

SELP 1 8 4.8E-03 1.9E-04 2.8E-04 4.9E-04
DISP1 1 8 1.0E-04 8.1E-03 1.4E-04 7.3E-03
ARHGEF10 8 14 2.8E-02 7.9E-04 1.0E-03 6.6E-04
COL17A1 10 11 6.3E-04 1.1E-03 9.2E-04 9.0E-03
STRA6 15 7 1.1E-03 9.9E-04 1.5E-03 3.4E-03
ZNF222 19 5 8.8E-04 3.6E-03 1.4E-03 4.5E-04
COL9A3 20 5 5.6E-05 2.2E-05 2.3E-05 6.7E-04
FAM83F 22 5 3.8E-03 4.4E-04 6.6E-04 9.3E-03

We identified eight genes in the GENOA dataset with P-values of at least suggestive significance (P<1x10-3) using either
GAMuT or SKAT, using a 90% cutoff to determine the effective number of independent tests. For the eight genes we provide
gene name, chromosomal location of gene, number of rare variants (MAF < 3%) found in each gene in the GENOA dataset, and
P-values for the four approaches.
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FIGURE LEGENDS

Figure 1: The QQ plots applying GAMuT to 10,000 simulated null data sets
assuming a sample size of 1000. In each simulation, 10 phenotypes are tested. Top
row assumes binary phenotypes; bottom row assumes continuous phenotypes. Left
column shows low residual phenotypic correlation (correlation 0-0.3), middle
column shows moderate residual correlation (correlation 0.3-0.5), and right column
shows high residual correlation (correlation 0.5-0.7).

Figure 2: The QQ plots applying GAMuT to 10,000 simulated null data sets
assuming a sample size of 1000. P-values using three candidate matrices
combinations were obtained for each simulation. We then implement a
perturbation procedure to obtain a P-value accounting for testing the three
combinations of similarity matrices. In each simulation, 10 phenotypes are tested.
Top row assumes binary phenotypes; bottom row assumes continuous phenotypes.
Left column shows low residual phenotypic correlation (correlation 0-0.3), middle
column shows moderate residual correlation (correlation 0.3-0.5), and right column
shows high residual correlation (correlation 0.5-0.7).

Figure 3: Power for GAMuT (red), univariate SKAT using a 90% cutoff to determine
effective number of independent tests (blue), and MFLM (green) is plotted as a
function of number of continuous phenotypes associated with the gene of interest.
Top row assumes six continuous phenotypes are tested in each simulation, and
bottom row assumes 10 continuous phenotypes are tested. Left column shows low
residual phenotypic correlation (correlation 0-0.3), middle column shows moderate
residual correlation (correlation 0.3-0.5), and right column shows high residual
correlation (correlation 0.5-0.7).

Figure 4: Power for GAMuT (red) and univariate SKAT using a 90% cutoff to
determine effective number of independent tests (blue) is plotted as a function of
number of binary phenotypes associated with the gene of interest. Top row assumes
six binary phenotypes are tested in each simulation, and bottom row assumes 10
binary phenotypes are tested. Left column shows low residual phenotypic
correlation (correlation 0-0.3), middle column shows moderate residual correlation
(correlation 0.3-0.5), and right column shows high residual correlation (correlation
0.5-0.7).

Figure 5: Power for GAMuT assuming a projection matrix (red), GAMuT assuming a
linear kernel (yellow), GAMuT assuming testing of both projection matrix and linear
kernel (orange), univariate SKAT using a 90% cutoff to determine effective number
of independent tests (blue), and MFLM (green). In each simulation, 10 continuous
phenotypes are tested. Left column shows low residual phenotypic correlation
(correlation 0-0.3), while right column shows moderate residual correlation
(correlation 0.3-0.5).
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Figure 6: Results of the GENOA analysis. Left column shows Manhattan and QQ
plots for GAMuT using a projection matrix for phenotypes. Middle column shows
Manhattan and QQ plots for GAMuT using a linear kernel for phenotypes. Right
column shows Manhattan and QQ plots for SKAT, using a 90% cutoff to determine
the effective number of independent tests. Horizontal blue line indicates suggestive
significance threshold. Horizontal red line indicates study-wide significance.



Figure 1: GAMuT QQ plots

Binary Low Comrelation Binary Moderate Comelation Binary High Comrelation

Observed P-value (-log10 scale)
Observed P-value (-log10 scale)
Observed P-value (-log10 scale)
n
1

0 T ] T 1
0 1 2 3 4

Expected P-value (-log10 scale) Expected P-value (-log 10 scale) Expected P-value (-log10 scale)
Continuous Low Cormrelation Continuous Moderate Comelation Continuous High Comrelation

Observed P-value (-log10 scale)
Observed P-value (-log10 scale)
Observed P-value (-log10 scale)

Expected P-value (-log10 scale) Expected P-value (-log10 scale) Expected P-value (-log10 scale)



Figure 2: QQ Plots for GAMuT Assuming Multiple Matrices Tested
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Figure 3: Power to Detect Cross-Phenotype Effects: Continuous Phenotypes
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Figure 4: Power to Detect Cross-Phenotype Effects: Binary Phenotypes
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Figure 5: Power to Detect Pleiotropic Effect using Multiple Similarity Matrices
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Figure 6: Results of GENOA Analyses
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Supplementary Figure Legends

Supplementary Figure 1: The QQ plots applying GAMuT to 10,000 simulated null
data sets assuming a sample size of 1000. In each simulation, 6 phenotypes are
tested. Top row assumes binary phenotypes; bottom row assumes continuous
phenotypes. Left column shows low residual phenotypic correlation (correlation 0-
0.3), middle column shows moderate residual correlation (correlation 0.3-0.5), and
right column shows high residual correlation (correlation 0.5-0.7).

Supplementary Figure 2: The QQ plots applying GAMuT to 10,000 simulated null
data sets assuming a sample size of 2500. In each simulation, 6 phenotypes are
tested. Top row assumes binary phenotypes; bottom row assumes continuous
phenotypes. Left column shows low residual phenotypic correlation (correlation 0-
0.3), middle column shows moderate residual correlation (correlation 0.3-0.5), and
right column shows high residual correlation (correlation 0.5-0.7).

Supplementary Figure 3: The QQ plots applying GAMuT to 10,000 simulated null
data sets assuming a sample size of 2500. In each simulation, 10 phenotypes are
tested. Top row assumes binary phenotypes; bottom row assumes continuous
phenotypes. Left column shows low residual phenotypic correlation (correlation 0-
0.3), middle column shows moderate residual correlation (correlation 0.3-0.5), and
right column shows high residual correlation (correlation 0.5-0.7).

Supplementary Figure 4: The QQ plots of 10,000 simulated null datasets assuming
a sample size of 1000 with a confounding variable. Phenotypes are independent of
genotypes, but both phenotypes and genotypes are associated with a continuous
covariate. Top row shows moderately correlated binary phenotypes; bottom row
shows moderately correlated continuous phenotypes. Left column shows QQ plots
without adjustment for confounding; while right column shows QQ plots after
adjustment for confounding by residualization.

Supplementary Figure 5: The QQ plots of 10,000 simulated null datasets assuming
a sample size of 1000 and 10 binary phenotypes tested. P-values using three
candidate matrices combinations were obtained for each simulation. Top row
assumes low residual phenotypic correlation; bottom row assumes moderate
correlation. We compare the perturbation procedure to account for multiple testing
(left column) with GAMuT testing of multiple kernels assuming no correction, i.e. the
minimum P-value across the three approaches (middle column), and correction
using Bonferroni (right column).

Supplementary Figure 6: The QQ plots of 10,000 simulated null datasets assuming
a sample size of 1000 and 10 continuous phenotypes tested. P-values using three
candidate matrices combinations were obtained for each simulation. Top row
assumes low residual phenotypic correlation; bottom row assumes moderate
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correlation. We compare the perturbation procedure to account for multiple testing
(left column) with GAMuT testing of multiple kernels assuming no correction, i.e. the
minimum P-value across the three approaches (middle column), and correction
using Bonferroni (right column).

Supplementary Figure 7: Power under the assumptions similar to those presented
by Wang et al (2015). Power is shown for GAMuT assuming a projection matrix
(red), univariate SKAT using a 90% cutoff to determine effective number of
independent tests (blue), univariate SKAT testing only the first phenotype (purple),
and MFLM (green). Assumptions that were altered to replicate the Wang et al.
simulations are as follows: we reduced the size of the simulated gene from 30 kb to
3 kb; we increased the genetic effect size to the parameters presented in Wang et al.;
we increased the percent causal variants from 5% to 10%; we modeled only 3
continuous phenotypes with the correlation structure presented in Wang et al.
(which includes negatively correlated traits); and we allowed causal variants to be
protective or deleterious within the gene. Sample size varies from 500, 1000, and
1500. For all plots, causal variants had a 20%/80% positive/negative effects on trait
one and 0%/100% positive/negative effects on trait 2. Left column shows results
when causal variants had a 0%/100% positive/negative effects on trait three.
Middle column shows results when causal variants had a 20%/80%
positive/negative effects on trait three. Right column shows results when causal
variants had a 50%/50% positive/negative effects on trait three.

Supplementary Figure 8: QQ plots of the GENOA analysis using MLFM. Left shows
QQ plot prior to phenotype transformation. Right shows QQ plot after inverse-
normal transformation of the phenotypes.



Supplementary Figure 1: GAMuT QQ plots
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Supplementary Figure 2: GAMuT QQ plots
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Supplementary Figure 3: GAMuT QQ plots
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Supplementary Figure 4: QQ Plots with Confounder
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Supplementary Figure 5: QQ Plots Assuming Multiple Matrices Tested, Binary
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Supplementary Figure 6: QQ Plots Assuming Multiple Matrices Tested, Continuous

Outcomes
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Supplementary Figure 7: Power to Detect Cross-Phenotype Effects
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Supplementary Figure 8: QQ Plots of GENOA Analysis using MLFM
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Supplementary Table 1: Empirical Size Assuming Six Phenotypes

104

a=0.05 a=0.001
SKAT SKAT
Sample | Typeof | Phenotypic | c\\i 1 | MFLM | Bonf. | PC:98% | PC: 90% | GAMuT [MFLM |Bonf. | PC:98% | PC: 90%
Size Phenotypes | Correlation
Low 0486 | 0509 | .0464 | .0464 | .0516 | .0003 |.0014 |.0013 | .0013 | .0018
Continuous | Moderate 0466 | 0434 | 0426 | .0426 | .0509 | .0010 |.0000 | .0013 | .0013 | .0014
1000 High 0466 | 0496 | .0426 | .0447 | .0506 | .0007 |.0010 |.0011 | .0011 | .0014
Low 0462 - 0413 | .0413 | .0473 | .0014 - |.0013| .0013 | .0013
Binary Moderate 0520 - 0464 | 0464 | .0516 | .0014 - |.0013| .0013 | .0018
High 0500 - 0488 | .0492 | .0509 | .0004 - l.o012| 0012 | 0014
Low 0500 | .0492 | 0516 | .0516 | .0568 | .0015 |.0004 |.0009 | .0009 | .0010
Continuous | Moderate 0485 | 0494 | 0462 | 0462 | .0547 | .0008 |.0009 |.0008 | .0008 | .0009
High 0471 | 0518 | .0493 | .0500 | .0501 | .0009 |.0008 |.0011| .0011 | .0012
2500 Low 0511 - 0488 | .0488 | .0488 | .0006 - |.0010| .0010 | .0010
Binary Moderate 0518 - 0485 | .0485 | .0489 | .0008 - |.0010| .0010 | .0010
High 0508 - 0493 | .0496 | .0510 | .0010 - |.0013| .0014 | .0015

Empirical size for GAMuT, MFLM, and SKAT analyses at significance thresholds of 0.05, 0.01, and 0.001. Empirical size
calculated from 10,000 null simulations. Simulations assumed analysis of 6 phenotypes. Sample size was set at either

1000 or 2500. Phenotypes were either continuous or binary. Phenotypic correlation was low (correlation <0.3),

moderate (correlation 0.3-0.5), or high (correlation 0.5-0.7).
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CHAPTER 4:
A Statistical Approach for Genetic Association Testing of Symptom and
Questionnaire Data
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ABSTRACT

Many phenotypes are not directly measurable; instead, researchers rely on
multivariate symptom data from questionnaires and surveys to indirectly assess a
latent phenotype of interest. Researchers subsequently then collapse such
questionnaire data into a univariate outcome to represent a surrogate for the latent
phenotype. However, phenotypic heterogeneity can dilute any association between
the causal gene and the univariate surrogate outcome. When a causal variant is only
associated with a subset of symptoms representing the outcome, the effect will be
challenging to detect using standard analytical approaches. In order to offer a more
flexible method to account for multivariate ordinal data like symptom scales
commonly observed in questionnaire data, we introduce a new statistical method
that we refer to as the Gene Association Method for Broader Integration of Tests and
Scores (GAMBITS). GAMBITS uses a nonparametric distance-covariance approach
that compares similarity in multivariate symptom-scale data from questionnaires to
similarity in common genetic variants across a gene. We use simulated data to
demonstrate that our method provides increased power over standard approaches
that collapse questionnaire data into a single surrogate outcome. We also illustrate

our approach using GWAS data from the Grady Trauma Project.
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INTRODUCTION

Evidence indicates that common genetic variants should explain a sizeable
role of the variation in many psychiatric disorders. For example common variants
are estimated to explain 40% of the heritability for bipolar disorder 72, 21% of the
heritability of depression’4, and 50% of the heritability of autism spectrum disorder
73. However, even in studies involving thousands of subjects, identification of
specific common trait-influencing polymorphisms remains a challenge. To discover
new associations, much attention has been spent on improving genotyping
technologies to tag more variation; however, comparatively less attention has been
afforded to thorough characterization of the underlying phenotypes that are
considered for genetic analysis.

In genetic analyses of a trait or disease, we often envision our outcome of
interest as a single, measurable entity. In practice, we are rarely able to measure the
outcome of interest directly and instead attempt to capture the true, latent
phenotype via several connected but discrete measurements. As an example,
psychiatric genetic studies attempt to account for the heterogeneity of symptoms
found in a single psychiatric disorder (e.g. major depressive disorder) by measuring
the symptoms from several angles via a questionnaire or exam. In studies of
depressive symptoms, many studies attempt to measure the phenotype using
multiple symptom measurements from the Beck Depression Inventory-II (BDI). The
BDI is a 21-item questionnaire with each question developed to correspond to DSM-

[V diagnostic criteria for major depressive disorder. The answers to each question
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are scored from 0 to 3, with higher scores indicating more severe depressive
symptoms 34.

At the data collection state, the data captured by the BDI or other
questionnaires can actually be considered a collection of interrelated multivariate
phenotypes that, in the case of symptom scales, are usually ordinal in nature.
However, most statistical techniques for genetic analysis are univariate and are
designed to handle a single outcome at a time. To improve analytical utility, the BDI,
like many questionnaires, was designed so that the multivariate symptoms are then
collapsed into a univariate phenotype. The most simple and most common
collapsing method is unweighted summation of each question’s score 34. The
cumulative score can then be treated either as a continuous outcome, or cutoffs can
be applied to indicate presence/absence of disease symptoms. However, reducing
multivariate information to univariate data nearly always comes at a cost. Carefully
defining a phenotype is as vital in a GWAS as reliable genotyping; any association
between gene and trait may be diluted by phenotyping heterogeneity. For example,
if a gene were associated with a subset of the BDI questionnaire outcomes (e.g. a
somatic symptom of depression like changes in sleep patterns) but not other
subsets (e.g. affective symptoms like mood or attitude), the magnitude of the overall
effect size of the gene would be attenuated if the two subsets were combined into a
univariate outcome measure.

A few key assumptions must be met in order for a univariate cumulative
score to sufficiently summarize multivariate ordinal data. Interested readers are

directed to Van der Sluis et al., who have provided thorough mathematical
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definitions of these assumptions as well as thorough simulations to assess the
assumptions, in a series of manuscripts 175-177, Briefly, the three primary
assumptions that must be met are: (1) the correlation between all questions in the
questionnaire must be explained by a single (latent) phenotype; (2) the genetic
effect must be on the latent phenotype; (3) the genetic effect—acting through the
latent phenotype—must have identical effects on all of the questions in the
questionnaire. For applied psychiatric phenotypes, it is more plausible that the
assumptions are violated than maintained. Depressive symptoms identified by the
BDI might come from multiple sources (e.g. major depressive disorder,
bereavement, post-traumatic stress disorder), violating the first assumption. The
causal genetic effect might directly increase somatic symptoms of depression such
as changes in appetite and sleep, but not impact mood, violating the second
assumption. Alternatively, a variant might in fact affect each trait identified by every
question, but have slightly different effect sizes on different questions. If any of
these assumptions are not met, association analysis using the cumulative score will
result in a substantial loss of power 175 177-179,

A few alternatives have been presented to model the complex multivariate data
captured within questionnaires. A popular type of approach is a data reduction
method like principal component analysis (PCA), which relies on identifying a linear
combination of the set of questionnaire responses that maximize response variance
across questions. Once the top few principal components are identified (i.e. those
principal components that explain most of the questionnaire variance), association

testing is performed between those top principal components and genotype 180 181,
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However, PCA-based strategies that consider only high-variance principal
components were recently shown to be generally suboptimal 182.

Van der Sluis et al. 177 presented a multivariate gene-based association test by
extended Simes procedure (MGAS). MGAS combines the P-values obtained from
standard, single-SNP association test for each outcome, to produce a single
multivariate gene-based P-value. However, MGAS relies on permutations to
establish significance, which make genome-wide analyses cumbersome.
Alternatively, Basu et al. 183 introduced a rapid multivariate multiple linear
regression method (RMMLR), which operates on a MANOVA-based platform.
However, while RMMLR establishes significance analytically, it cannot incorporate
the important ordinal outcomes commonly measured in questionnaires and
surveys.

With this motivation, we propose a Gene Association Method for Broader
Integration of Tests and Scores (GAMBITS). GAMBITS is built on the framework of
GAMuUT, a test of rare variant pleiotropy 84. Like GAMuT, GAMBITS allows for
modeling high-dimensional phenotype data and high-dimensional genotype data via
a machine-learning framework called kernel distance-covariance (KDC) 126-130 to
provide a nonparametric test of independence between a set of phenotypes and a
set of genetic variants. GAMBITS is designed to test whether pairwise similarity in
questionnaire responses is independent of pairwise genotypic similarity in a gene or
region of interest. The framework allows for an arbitrary number of questions
within the questionnaire as well as an arbitrary number of genotypes, thereby

permitting gene-based testing of common variants. We show that GAMBITS is
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robust to the categorical outcomes frequently obtained by questionnaires, and
further can correct for important covariates. In addition, GAMBITS is a closed form
test that yields analytic P-values, thus scaling easily to genome-wide analysis.

The remainder of this manuscript is organized as follows. First, we derive the
GAMBITS test using the KDC framework, and describe how to derive analytic P-
values for this test as well as how to adjust for covariates in GAMBITS. We then
present simulation work comparing GAMBITS to univariate kernel machine
regression (KMR) 9798 and univariate linear regression, to demonstrate that
GAMBITS can be considerably more powerful than a univariate test based on a
cumulative score. We then illustrate the approach using Beck Depression Inventory
scores collected as part of the Grady Trauma Project. We finish with concluding

remarks and discuss potential extensions to our approach.

MATERIALS AND METHODS

Assumptions and Notation: We assume an inventory, test, or questionnaire

with Q questions. The response to each question q (g=1,...,Q) is an ordinal response
ranging from O to F, where F is the maximum score possible. We assume a
population-based sample of N subjects have responded to the questionnaire and
possess common-variant data in a target gene or region. For subjectj (j=1,...N), we
define Pj = (P;1, P2 ..., Pjo) as subjectj’s responses to the Q questions. We then

define a matrix of questionnaire responses for the entire sample
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P= (PIT,PZT,...,P: )T , Which is of dimension NxQ. We further define the cumulative

score Sj as S]. = ZgzlP], ,» which we be used in univariate analyses.

Similarly, we define Gj = (G;1, G2, ..., Gjv ) to be the genotypes of subjectjat VV
SNPs, where Gjy is coded as the number of copies of the minor allele that the subject

possesses at SNP v. The SNPs included in Gj will be referred to as the “SNP set.” We
T
then construct the matrix of genotypes for the sample as G = (GIT,G;,...,G;) , which

is of dimension N x V. Several approaches to constructing a SNP set have previously
been described 98106, For demonstration purposes in this manuscript, we will
define a SNP set as common variants (minor-allele frequency [MAF] > 5%) that fall
within 2kb of a gene of interest.

GAMBITS Test: We create GAMBITS to examine the relationship between

questions P and genotypes G. GAMBITS is based on a KDC machine-learning
technique 126-130 which allows nonparametric tests of independence between two
distinct sets of multivariate variables. For each set of multivariate variables, KDC
constructs an NxN matrix with individual elements of the matrix corresponding to
similarity (or dissimilarity) in the outcomes among different pairs of subjects. KDC
then evaluates whether the pairwise elements in the similarity matrix of one set of
multivariate variables is independent of the pairwise elements in the similarity
matrix for the other set of multivariate variables.

Leveraging the KDC framework previously described in Chapter 3 184, we
create a SNP-set test to test for independence between P (NxL matrix of multivariate

responses to a questionnaire) and & (NxV matrix of multivariate genotypes). To do
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this, we first develop an NxN questionnaire-similarity matrix ¥ (based on P) and a N
x N genotypic-similarity matrix X (based on G). The choice of how to model pairwise
similarity or dissimilarity for a set of multivariate outcomes is quite flexible. For

example, for P, we can model the matrix ¥ using a projection matrix, as suggested by
Zapala and Schork!33, such that Y = P(P”P )" P” . We can also construct the model ¥

using user-selected kernel functions 97 98; 105131 gych as the linear kernel,
y(P :Pj)=21L=1Pi,1Pj,1 or a quadratic kernel, y(Pi,Pj) =(1+ Z,LzlPtu'[)2 . For genotypes G,

we model its corresponding matrix X using kernel functions x(G, G;) that can take
the same form (e.g. linear, quadratic, Gaussian, Euclidean distance) used to

construct y(P; P;). A few genetic-specific kernel functions also exist, like the identity-
by-state (IBS) kernel, X(G,G,)= YV IBS( GG . )/2V, where IBS(G G )

denotes the number of alleles (0,1, or 2) shared IBS by subjects i and j at SNP v. Also,
we may wish to further augment x(G; G;) to preferentially upweight the
contributions of particular SNPs in G over others in the gene. Wu et al. °8 and
Schifano et al 196 provide nice discussions on relevant weighting approaches for
common SNP analyses. For all simulations and analyses reported here, we
implement a weighting scheme based on the minor-allele frequency (MAF) of each

assayed SNP that weights rarer variants over more common ones; the particular
weight we apply for the vth variantis w =1/,/MAF, . We can do this by creating a

diagonal weight matrix W= diag(ws, wy, ..., wy ), where wy, reflects the relative
weight for the vt variant in the gene. Using W, we can then create a weighted linear

kernel function as X=GWGT. Derivation of other weighted kernel functions is
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straightforward. For all results in this manuscript, we construct ¥ using the
projection matrix, and X using the weighted linear kernel.

Once we construct the similarity matrixes ¥ and X, we derive our GAMBITS
approach as a test of independence between the elements of these two matrices.

The approach is equivalent to the test presented in detail in Chapter 3 184, Briefly,
we center each matrix as Yc=HYH and X.=HXH. Here, H = (I - 1N1; / N)isa

centering matrix with property HH=H, I is an identity matrix of dimension N, and 1n
is an Nx1 vector with each element equal to 1. Using Y and X, , we construct our test

of independence of the two matrices as

1
=—trace(Y X )
N c cC

GAMBITS

Under the null hypothesis of independence of the two matrices, Teampirs follows the

same asymptotic distribution as

1 N 2

Eziﬁl X,i Y,izij

where /IX . isthe i ordered eigenvalue of Xc, A, . isthe jt ordered eigenvalue of

v
Y, and z’.zj are independent and identically-distributed )(12 variables 130, As

presented in Chapter 3 184 we derive P-values for our GAMuT test using Davies’
exact method 119, which is a computationally efficient method to provide accurate P-
values in the extreme tails of tests that follow mixtures of chi-square variables 131.

An implementation of Davies’ method is available in the R library CompQuadForm.

Adjusting for Covariates: Genetic association tests must adjust for important

covariates, such as principal components of ancestry, to avoid potential confounding

(1)

(2)
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of results. We can control for confounders before applying GAMBITS by regressing
each phenotype separately on covariates of interest and then using the residuals to
form the phenotypic similarity matrix Y. Although residualizing categorical
phenotypes is not standard, studies have suggested that this procedure does not
affect the validity of genetic association tests in case-control studies 141: 142, As we
describe in the Results section, such residualization provides an effective correction
for confounders within our simulated ordinal datasets.

Simulations: We conducted simulations to verify that GAMBITS properly
preserves type I error (i.e. empirical size) and to assess power of GAMBITS relative
to standard association tests that treat questionnaire responses as a scalar outcome
variable resulting from summing the responses into a continuous score. We
perform simulations based on SNPs and LD patterns located within 2 kb up- and
down-stream from signal transducer and activator of transcription 3 (STAT3), a gene
on chromosome 17g21.31. We show the MAF and pairwise LD structure of SNPs in
STAT3 in Figure 2. To incorporate observed LD patterns from HapMap samples, we
used the HAPGEN package 111 to generate simulated SNP data. HAPGEN generates
simulated genotype information for all SNPs identified in HapMap within the STAT3
gene; however, to better replicate real GWAS conditions, we applied the testing
approaches only to those SNPs that would be typed on standard genotyping arrays.
Although 27 common SNPs fall within the STAT3 gene, only 14 of the 27 are
genotyped on the [llumina HumanOmnil-Quad genotyping platform. Thus, the 14
typed SNPs form the SNP set for the kernel approach, and only the 14 typed SNPs

are tested for association. Under simulations where the causal SNP is not
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genotyped, power to detect an association relies on LD between the causal SNP and
typed SNPs.

We simulate multivariate questionnaire data to mimic the BDI questionnaire
results obtained from GTP participants. The BDI consists of 21 groups of statements
that reflect various symptoms and attitudes associated with depression. Each group
includes 4 statements, which correspond to a scale of 0 to 3 in terms of intensity.
The 21 groups are sadness, pessimism, past failure, loss of pleasure, guilty feelings,
punishment feelings, self-dislike, self-criticalness, suicidal thoughts or wishes,
crying, agitation, loss of interest, indecisiveness, worthlessness, loss of energy,
changes in sleep patterns, irritability, changes in appetite, concentration difficulty,
fatigue, and loss of libido. The BDI is generally self-administered or self-reported,
and is scored by summing the ratings given to each of the 21 items. Summing the
responses yields a score ranging from 0-63, with scores higher than 28 being
indicative of moderate to severe depression.

To simulate data, we first generated 21 outcomes for each subject using a
multivariate normal distribution with mean vector 0 and QxQ correlation matrix X.
We calculated X based on observed Spearman rank correlation calculations from the
GTP BDI questionnaire responses shown in Figure 1. The observed correlations
between questions ranged from 0.22 to 0.57. Next, we generated ordinal responses
from the normally distributed variables to match the ordinal responses observed in
GTP data. Frequency of scores by each of the 21 BDI questions is shown in Figure 3.
We found the percent of GTP participants who answered 0, 1, 2, and 3 for each

question. We then matched the percentages of each BDI question for each of the 21
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normally distributed variables. For example, in BDI Question 1 (“Sadness”), 56% of
participants answered 0 (“I do not feel sad”), 34% answered 1 (“I feel sad much of
the time”), 6% answered 2 (“I feel sad all of the time”), and 4% answered 3 (“I am so
sad or unhappy that I can’t stand it.”). To simulate ordinal responses to question 1,
the lowest 56% of the continuous outcomes were assigned a score of 0, values
falling in the 57-90 percentile were assigned a score of 1, 91-96 percentiles were
assigned a score of 2, and values in the 97t percentile and above were assigned a
score of 3. We set sample size N of either 1000 or 2500 subjects. We applied
GAMBITS to 10,000 null simulated datasets to estimate empirical size.

To investigate the performance of GAMBITS under confounding and to assess
whether the approach can successfully adjust for relevant covariates in this setting,
we also simulated questions under a confounding model where question responses
were independent of genotype, but both questions and genotype are associated with
a continuous covariate Z. We simulated questions correlated with the covariate Z
under the model P~ MVN(0.2Z,%), where Z denotes the N x 1 sample vector of
covariates. We arbitrarily selected SNP 9 (rs9909659) as causal for the confounder.
We simulated correlation between SNP 9 and the covariate by generating the effect
size of SNP on confounder as 7=0.2. Testing empirical size under this model allows
us to verify that our approach to control for confounders is valid.

For power models, we simulated data sets in which each of the 27 SNPs were

modeled causal in turn. We model effect size of the causal SNP on each question, 3,

as ﬁq =N(0.1,0.03). This formulation sets mean effect sizes with modest effect on

the overall cumulative score; for causal SNP with MAF=0.3, this formulation
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corresponds to an R?=0.009 when the SNP is associated with all questions in the
questionnaire. Allowing S, to vary around a normal distribution allows the variant
to have a slightly different effect size for each question. We also vary the number of
questions that are associated with the causal SNP, such that not all of questions will
be dependent on the gene of interest. We consider situations where 18/21, 9/21,
and 6/21 questions are actually associated with the causal SNP. We control residual
correlation among questions through consideration of trait-specific heritability (i.e.

the relative variance of P4 explained by the causal SNP). We define trait-specific

heritability for question q as hq = B2 . *2MAF_ (1-MA

SNP, SNP

), where MAFsyp is the

FSNP

MAF of the causal SNP. The correlation between questions g and q’is defined as
E, .= /1—hq \ ll—hq. * X . where X is the LxL residual correlation matrix shown in

Figure 1. This allows the residual correlation structure among phenotypes to stay at
the defined values.

We evaluate GAMBITS using the simulated data, and compare our approach
to two standard approaches that use the scalar cumulative questionnaire score.

First, we consider a linear regression model that follows the form
S=7Zy+p,,G_+e

where S is the Nx1 vector of cumulative scores, Z is an N x ¢ vector of ¢ covariates

(including an intercept) with regression parameter vector y, Gm denotes an Nx1

vector of SNP genotypes at SNP m with regression parameter ﬂSNP , and the residual

error e follows a MVN distribution, e ~ MVN(0,5°I), where I denotes the NxN
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identity matrix. We then implement a likelihood ratio test to assess the null
hypothesis of H : ﬁsw = 0 for each SNP m. To adjust for multiple testing of M

correlated SNPs, we apply Pacr 193 to the smallest observed P-value. However,
GAMBITS differs from the univariate linear regression model in two main ways:
first, it treats the outcome as a multivariate score, but second, it tests at the gene,
rather than SNP, level. While both differences should increase power of our
approach, we were interested in teasing apart the relative importance of those two
differences. We therefore also contrast our approach to a popular KMR 97 test. While
the KMR approach assesses the effect of all genotyped SNPs within a gene
simultaneously, it is a univariate test that requires a collapsed univariate score.
Therefore, comparison of GAMBITS against the univariate KMR test should help
highlight the benefit of considering a multivariate questionnaire phenotype over the
benefit of a gene-based analysis.

Analysis of the Grady Trauma Project:

Depression is a moderately heritable disorder (h?x0.30), yet, despite
substantial interest in identifying genetic causes of the disorder, its genetic
underpinnings remain largely unidentified 112. Data used in our analysis were
collected as part of a larger study, called the Grady Trauma Project (GTP), which
investigates the role for psychiatric disorders such as post-traumatic stress disorder
and depression 119120, Participants in the GTP are served by the Grady Hospital in
Atlanta, Georgia, and are predominantly urban, African American, and of low
socioeconomic status. GTP staff approach subjects in the waiting rooms of Grady

Primary Care and Obstetrics and Gynecology and obtain their written consent to
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participate. GTP staff conduct an extensive verbal interview, which includes
demographic information, a history of stressful life events, and several psychological
surveys. The GTP queries participants on the BDI, a 21-item multiple-choice
questionnaire that assesses symptoms of depression 34.

The GTP genotyped 4,607 participants on the [llumina HumanOmnil-Quad
array to permit GWAS analyses. Upon removing subjects who did not report at least
one past trauma, subjects with missing BDI scores, or subjects whose genetic data
failed quality control, 3,627 subjects remained. We used the support files provided
by Illumina to identify 736,462 common genetic variants (MAF > 5%) that fell
within 18,280 known genes. We further excluded genes with fewer than 5 or more
than 1000 common SNPs, leaving 15,175 genes containing 725,558 SNPs. For each
of the study participants, we also obtained age, gender, and the top ten principal
components to account for ancestry. We applied GAMBITS using both a projection
matrix and a linear kernel to measure pairwise phenotypic similarity. We also ran
univariate KMR and linear regression on the cumulative BDI scores. For all GAMuT
and KMR tests, we used a weighted linear kernel (selecting the weighting scheme
recommended by Wu et al. 131, described above, as we used in our simulation work)
to measure pairwise genotypic similarity. For linear regression, we adjusted for
multiple testing using Pacr 103.

RESULTS

Type-I Error Simulations: Figure 4 shows the quantile-quantile (QQ) plots

based on application of GAMBITS, KMR, and linear regression to null datasets

consisting of 1000 or 2500 subjects assayed for 21 BDI questions. For both sample
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sizes tested, GAMBITS properly controls for type I error, even at the extreme tails of
the test. KMR and linear regression, using the cumulative score approach, also
demonstrated appropriate empirical size. Figure 5 shows that this residualization of
questionnaire data prior GAMBITS analysis effectively controls for confounding that,
unadjusted, would yield inflated results.

Power Simulations: Next we compared the power of GAMBITS with univariate

KMR and linear regression analyses in a series of simulation studies. For these
power simulations, we set sample size to 1000. Power was estimated as the
proportion of P-values < 2.5x10-¢ (reflecting a genome-wide correction for 20,000
genes) and was evaluated based on 500 replicates of the data per model. Figure 6
shows the power results. We plot power as a function of the causal SNP, where the
causal SNPs are ordered by genomic location. The 14 genotyped SNPs (denoted by
‘x’ on the bottom of the plots) were used to calculate test statistics, but all 27 SNPs
were treated as causal in turn. Therefore, in situations where the causal SNP is not
typed, we rely on correlation of the causal SNP with observed typed SNPs in STAT3
to gain statistical power. GAMBITS offers considerable more power than the two
competing univariate methods for each of the three assumptions tested. When
approximately half of the questions (12/21) are associated with the causal SNP,
both KMR and linear regression observe nearly zero power to detect the effect; by
comparison, GAMBITS maintains power greater than 50% for 23 of the 27 causal
SNPs. We observe a drop in power using GAMBITS when nearly all of the questions
(left column Figure 6) are associated with the causal variant compared with a more

modest number of questions are associated (middle column Figure 6). This pattern
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has been observed in other multivariate approaches, including multivariate analysis
of variance (MANOVA) 185,

Application to GTP: We use the GTP dataset to test for associations between

the BDI questionnaire and common variants in 15,175 genes. Prior to analysis using
GAMBITS, we controlled for gender, age, and ancestry on the 3,627 unrelated
subjects. We applied GAMBITS using both a projection matrix and a linear kernel to
measure pairwise phenotypic similarity. For comparison, we ran univariate KMR
and univariate linear regression on the cumulative BDI score. We adjusted for
multiple testing of SNPs in each gene in the linear regression approach using Pacr
103,

For all GAMBITS and KMR tests, we used a weighted linear kernel to measure
pairwise genotypic similarity. We set a stringent study-wise significance threshold

of 3.3x10-%, which corresponds to a Bonferroni correction based on the number of

genes tested (15,175): o =0.05/15175. We considered P-values less than

BONFERRONI
P<1x10-* as suggestive. Figure 7 provides genome-wide results using GAMBITS,
KMR, and linear regression, with top findings highlighted in Table 1. No method
identified a gene that met genome-wide significance. The projection matrix form of
GAMBITS failed to identify any genes suggestive significance, while the linear kernel
form of GAMBITS identified one gene of suggestive significance. Genome-wide the
correlation between the two forms of GAMBITS P-values was 0.49 (Pearson’s
product-moment correlation P-value < 1x10-1%). Results using KMR were very
similar to the linear kernel form of GAMBITS: correlation among P-values was 0.91

(Pearson’s product-moment correlation P-value < 1x10-1%). Linear regression
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identified two genes of suggestive significance, and results were most strongly
correlated with KMR (correlation = 0.61, Pearson’s product-moment correlation P-
value < 1x10-15). None of the 4 genes has previously been associated with

depressive symptoms.

DISCUSSION

We have presented GAMBITS, a KDC framework for SNP set analysis for
multivariate ordinal outcomes collected for a questionnaire or survey 126; 127;130,
GAMBITS offers an alternative to the standard analytic approach, which requires
collapsing multivariate questionnaire data into a single cumulative outcome. The
approach allows for modeling phenotypic heterogeneity, in which a genetic risk
factor only affects a subcategory within the questionnaire. An example of this is if a
gene increased risk of sleep issues in patients with depression, but did not impact
feelings of self-dislike or feeling guilty. In standard cumulative approaches,
including KMR and linear regression, phenotypic heterogeneity can dilute the
association between gene and trait, making the association extremely difficult to
detect. For example, in our simulations, we found that the cumulative approaches
had almost no power to detect an effect when over half of the questions were
associated with the causal SNP. In contrast, GAMBITS maintains considerable power
under these assumptions. We did observe a drop in power using GAMBITS when all
(or nearly all) of the questions were associated the causal gene. While further
investigation into this phenomenon is warranted, it has been observed in other

multivariate approaches, including multivariate analysis of variance (MANOVA) 185,
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We applied GAMBITS to the GTP dataset to test for associations between the BDI
questionnaire and 15,175 genes. While no genetic association met genome-wide
significance, the applied results demonstrate appropriate statistical size after
accounting for important covariates, including ancestry, gender, and age.

GAMBITS derives analytic P-values based on Davies’ exact method, thereby
improving computational efficiency and permitting application on a genome-wide
scale. Like the popular KMR framework for univariate analysis, our approach allows
for inclusion of prior information, such as biological plausibility of the SNPs under
study. We provide R software implementing the approach on our website (see Web
Resources) which can be run through PLINK, if desired.

The framework used by GAMBITS is amenable to several promising
extensions that we will explore in future work. First, although the results presented
here are focused on analysis of common SNPs, the approach is readily extendible to
rare variant analysis. Second, mediation analysis would allow investigators to tease
apart which underlying factors are directly associated with the gene of interest.
Although existing mediation analyses are not intended to handle high-dimensional
traits, we intend to develop a KDC-based procedure that will be appropriate for
multivariate questionnaire data. Third, GAMBITS framework should allow for
inclusion of non-ordinal measures, as well as ordinal measures, within the same
test. This would allow important disease status and continuous measures to be

included with ordinal questionnaire responses.



126

ACKNOWLEDGEMENTS
This work was supported by NIH grants HG007508, HL086694, HL119443,

MHO071537, and AR060893. For purposes of disclosing duality of interest, Michael
Epstein is a consultant for Amnion Laboratories.

WEB RESOURCES

Epstein Software: http://www.genetics.emory.edu/labs/epstein/software

OMIM: http://www.omim.org




Table 1: Top GTP Results

Gene Number Projection

Name Chromosome ofSNPs Matrix
DUSP5P 1 13 5.5E-02
C5orf45 5 6 5.9E-01
NUP214 9 9 1.6E-01
SLC6A13 12 47 8.8E-02

Linear
Kernel

5.4E-05
1.4E-04
5.0E-03
3.8E-02

127

Linear

KMR Regression

4.1E-05
5.8E-05
4.0E-03
5.3E-02

1.9E-04
3.7E-02
7.9E-05
8.8E-05

We identified 4 genes in the GTP dataset with P-values of suggestive significance
(P<1x10-%) using GAMBITS, KMR, or linear regression using Pacr to adjust for
multiple testing of SNPs within each gene. For the genes we provide gene name,
chromosomal location of gene, number of SNPs (MAF > 5%) found in each gene in
the GTP dataset, and P-values for the four approaches.
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FIGURE LEGENDS

Figure 1: Correlation among the 21 BDI question responses in the GTP dataset, after
adjusting for covariates. Dark green indicates correlation of 0.6 while white
indicates correlation of 0.2. Correlation among all questions was positive. All
correlations are significant (Pearson’s product-moment correlation P-value < 1x10-

15),

Figure 2: Pairwise LD (R?) heatmap and MAF for all SNPs reported in HapMap *2kb
of the STAT3 gene. MAF is plotted below, with genotyped SNPs denoted by the x’ on
the bottom of the MAF plot.

Figure 3: Frequency of scores for each of the 21 BDI questions in the GTP dataset.
The answers to each question are scored from 0 (no symptoms) to 3 (severe
symptoms).

Figure 4: The QQ plots applying GAMBITS, KMR, and linear regression to 10,000
simulated null data sets assuming a sample size of 1000 (top row) and 2500
(bottom row). For each simulation, 21 ordinal questionnaires were generated. For
KMR and linear regression, the 21 questions were summed together to yield a single
cumulative score.

Figure 5: The QQ plots of 10,000 simulated null datasets assuming a sample size of
1000 with a confounding variable. Questionnaire responses are independent of
genotypes, but both responses and genotypes are associated with a continuous
covariate. Left shows QQ plots without adjustment for confounding, while right
shows QQ plots after adjustment for confounding by residualization.

Figure 6: Power for GAMBITS (red), KMR (blue), and linear regression (green) is
plotted as a function of causal SNP. Left plot assumes the causal SNP is associated
with 18 of the 21 BDI questions. Middle plot assumes 12 of 21 questions are
associated with causal SNP. Right plot assumes only 6 of 21 questions are associated
with the causal SNP.

Figure 7: Results of the GTP analysis. First column shows Manhattan and QQ plots
for GAMBITS using a projection matrix for phenotypes. Second column shows
Manhattan and QQ plots for GAMBITS using a linear kernel for phenotypes. Third
column shows Manhattan and QQ plots for KMR, and fourth column shows
Manhattan and QQ plots for linear regression, using Pacr to correct for multiple
testing. Horizontal blue line indicates suggestive significance threshold. Horizontal
red line indicates study-wide significance.
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Figure 1: Correlation of GTP BDI Scores by Question
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Figure 2: Pairwise LD and MAF of STAT3
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Figure 3: Frequency of BDI Scores

Frequency of Scores by Question
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Figure 4: QQ Plots for GAMBITS, KMR, and Linear Regression
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Figure 5: QQ Plots with Confounder
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Figure 6: Power to Detect Genetic Effects
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Figure 7: Results of GTP Analyses
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CHAPTER 5:
Discussion
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DISCUSSION

The challenges in detecting genetic variants associated with human diseases
and traits are daunting. However, we can improve our ability to detect such
variants by creating novel methods calibrated to detect the types of causal variation
predicted by population-genetics theory. For example, the infinitesimal model
predicts that causal alleles with large effect sizes will be kept at low frequency in the
population, while causal variants of intermediate frequencies will have very small
effect sizes 23-25, Empirical evidence supports this expectation 1921, In order to find
genetic associations with complex traits, we must then develop analytic approaches
designed to find rare variants of potentially large effect and/or common variants of
small effect size. Advancements in sequencing and genotyping technologies are now
allowing researchers to generate array or sequence data for sample sizes that will
be sufficient to detect these types of causal variants. However, novel statistical tests
are necessary to better query these emerging data types.

Evidence and theory indicate that any one causal variant will explain very
little of trait heritability. Under this model of genetic architecture, attempting to test
for an effect of a single variant is inadvisable. If we instead analyze the effects of
multiple genetic variants simultaneously, such as testing for an effect across all
variants within a gene or pathway, we potentially increase power °7:98;106; 131 Thjs
method of aggregated testing is already the norm for rare variant analyses, since
ability to detect any effect of a single rare genetic variant would require either
prohibitively large sample sizes or an implausibly large effect size 131:186-188 The

assumption behind the gene-level approach is that while causal sequence variation
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may be individually rare, as a class, affected individuals may harbor rare genetic
variants that are at the same gene. While gene-level analysis is less frequently
implemented in GWAS, common SNP analysis has also been shown to benefit from
such an approach °7:98:189 Examining sets of SNPs rather than each variant
independently will greatly reduce the need for multiple hypothesis testing. In
addition, since multiple typed markers are likely to be in linkage disequilibrium
(LD) with the causal SNP, joint consideration of those variants will capture the effect
of a true causal variant more effectively than independent SNP testing. Moreover,
both common and rare variant analyses will benefit from the implicit consideration
of within-gene epistatic interactions in the association tests.

In this dissertation, we make use of kernel approaches (both kernel-machine
regression and kernel distance-covariance techniques) to develop powerful gene-
based statistical tests. Kernel machine techniques allow researchers embrace the
infinitesimal view of complex traits. Testing for a combined effect of multiple
genetic variants simultaneously implicitly acknowledges the assumption that any
single variant is unlikely to have substantial effect. In addition, KMR and KDC allow
explicit inclusion of a priori expectations of genetic effect size for each variant. For
example, one can preferentially up-weight contributions of very rare variants in the
kernel function. KMR has been shown to be a powerful framework for testing main
genetic effects of both common and rare variants 97-99; 105;106; 131,

In Chapter 2, I introduced a gene-based approach for association mapping of
common trait variation using multiple SNPs to consider joint tests of gene- and

gene-environment interaction. [ contrasted the approach to traditional linear
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regression approaches that model either main genetic effects or joint effects of gene
and gene-environment interaction. Our approach performed particularly well
relative to the traditional tests when the underlying causal model involved a blend
of both interaction and main genetic effects. In Chapter 3, I introduced GAMuT, a
new statistical method that tests for association of multiple rare variants with
multiple phenotypes. Under simulation models, GAMuT provides markedly greater
power over univariate SKAT and multivariate MFLM statistical approaches. In
Chapter 4, I introduced GAMBITS, a gene-based association test to be used in
analyses of multivariate ordinal outcomes collected in questionnaires and surveys.
Typically, this type of data is collapsed into a single cumulative score; [ therefore
compared the power of GAMBITS against the power of traditional cumulative
approaches across a range of simulation models.

Although kernel-based approaches are powerful, there are two drawbacks to
using this framework for genetic analysis. First, there is a loss of information by
using a gene-level test rather than variant-level test. Researchers using a gene-level
test cannot identify which variants within the gene are associated with the
phenotype(s), and which are neutral with respect to the outcome(s). However, true
findings are more likely to be replicable, since genic function is highly consistent
while individual variants may differ in frequency and LD structure across different
populations 177:190, Second, because the effects of multiple variants are modeled
simultaneously, kernel machine tests cannot measure size of effect. Since the
framework only allows testing and not estimation, results from KDC and KMR tests

cannot be used in risk prediction.



140

There is also need for future work. Each of the previous Chapters focused on
either common or rare variants, not both. However, each of the methods is readily
extendible to both rare and common variant analysis. In addition, KMR and KDC
approaches have shown some promise in other high-dimensional data such as
neuroimaging 1°1, gene expression ¢7, and microbiome 192, Extending the approaches
introduced in this dissertation to other fields driven by high-dimensional data might
prove useful in elucidating etiology of human traits. The GXE method could be
extended to simultaneously model multiple environmental exposures, which would
be useful in cases where several environmental measurements might be expected to
correlate with a true latent exposure that is interacting with genotype to influence
outcome. The GAMuT and GAMBITS methods would benefit from mediation
analysis. A mediation analysis could be performed after GAMuT or GAMBITS, to
determine if the associations discovered by either test were biological (a causal
locus directly affecting more than one trait or question in a questionnaire) or
mediation (a causal locus affecting only one trait, which in turn affects another
trait). By performing a mediation analysis, researchers could determine which
underlying phenotypes or questions within a questionnaire were directly associated
with a gene of interest. Existing mediation analyses are not intended to handle high-
dimensional traits; we propose the creation of KDC procedures to identify whether
an observed association is mediated by a different set of phenotypes or questions.
Additionally, GAMuT and GAMBITS currently assume unrelated subjects; however,
the work by Jiang et al. 172 provides a framework to extend our KDC approaches to

allow for case-parent trio studies. While the Jiang method uses a KMR approach and
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is therefore only appropriate for univariate phenotype analyses, an analogous
approach, using GAMuT, should allow for high-dimensional phenotype data. Finally,
a meta-analysis approach introduced by Lee et al. 174, which is designed to combine
results of multiple KMR-based studies, should be readily extendible to KDC results,
such as those obtained via GAMuT or GAMBITS. Such an extension would allow
combining association results from multiple KDC studies through a meta-analysis.

We will explore all these ideas in future work.
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