
 
 

 

Distribution Agreement 

 
In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive 
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all 
forms of media, now or hereafter known, including display on the world wide web. I understand 
that I may select some access restrictions as part of the online submission of this thesis or 
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain 
the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 

 
 
Signature: 

 
 

 

Name Date 

Docusign Envelope ID: F8B13976-345B-465C-9328-DEC647BBE0BC

Pranav Bhandari 8/7/2024 | 12:08 PM EDT



 
 

Title 
 
 
 
 

Author 

Degree 

 

Program 
 
 
 

 
Approved by the Committee 

 
 

Advisor 

 
 
 
 
 
 

 
Committee Member 

 
 

 
Committee Member 

 
 

 
Committee Member 

 
 

 

Committee Member 
 

Accepted by the Laney Graduate School: 
 

 

Kimberly Jacob Arriola, Ph.D, MPH 
                                                                Dean, James T. Laney Graduate School   

 
Date 

Docusign Envelope ID: F8B13976-345B-465C-9328-DEC647BBE0BC

Computer Science

Doctor of Philosophy

Committee Member

Title

Author

Optimizing Block Storage Servers Using Multi-tier Caches

Pranav Bhandari

Program

Degree

Avani Wildani

Advisor

Vasily Tarasov

Committee Member

Ymir Vigfusson

Committee Member

Michelangelo Grigni



Optimizing Block Storage Servers Using Multi-tier Caches

By

Pranav Bhandari
B.S., Trinity College, 2012

M.S., Emory University, 2021

Advisor: Avani Wildani, Ph.D

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2024



Abstract

Optimizing Block Storage Servers Using Multi-tier Caches

By Pranav Bhandari

Storage systems persist large volumes of data and provide fast
data access to applications that are ubiquitous in our soci-
ety, such as banking, social networks, machine learning, video
streaming, and ride hailing. The cheap, high-capacity, low-
bandwidth backing store provides persistence, whereas the ex-
pensive, low-capacity, high-bandwidth cache delivers perfor-
mance. Multiple storage nodes with backing store and cache
provide the required capacity and performance. Large storage
clusters with expensive hardware can be costly, both financially
and ecologically. In order to reduce the size and consequently the
cost of storage systems, we need to squeeze more performance
from a single server. An approach is to add a flash cache to sup-
port the DRAM cache, which increases the potential through-
put of a storage server. This can reduce the number of storage
servers that are required to meet the performance requirement.
However, it is challenging to determine when using a flash cache
can be beneficial.
This dissertation compares the performance of storage servers
with/without multi-tier caches using diverse servers and work-
loads, and develops techniques to determine when to use a multi-
tier cache. First, we evaluate the potential performance and cost
benefit of using multi-tier caches using simulation and analysis.
We developed an algorithm, Cydonia, to determine cost-effective
tier sizes given a workload and storage devices on the server.
Next, we use trace replay to validate the performance improve-
ment from multi-tier caches and demonstrate the importance of
request rate along with miss ratio in determining performance.
We train decision tree models that accurately predict whether
using a multi-tier cache will improve performance using the large
corpus of data collected using trace replay for a given server. We
follow it up with BlkSample, a technique to generate accurate
block trace samples that reduces the overhead of multi-tier cache
analysis and replay.



Optimizing Block Storage Servers Using Multi-tier Caches

By

Pranav Bhandari
B.S., Trinity College, 2012

M.S., Emory University, 2021

Advisor: Avani Wildani, Ph.D

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2024



Acknowledgement

Through the ups and downs of the PhD journey, growth has been a constant. I
am grateful for the unwavering support and encouragement of my family, mentors
and friends. First, I would like to thank my adviser, Avani Wildani, for her positivity
and encouragement, especially during challenging times. Thank you for always being
within reach and mentoring me through life.

I would like to extend my gratitude to my thesis committee: Ymir Vigfusson,
Michelangelo Grigni, and Vasily Tarasov, for their time and feedback. Each member
has significantly impacted my PhD journey. Ymir has been a source of learning and
inspiration throughout graduate school, and his pursuit of excellence is something
that I aspire to emulate in my life. Prof. Grigni has been an exceptional teacher,
whose passion for teaching and ability to break down complex information into sim-
pler problems have made learning a pleasure. Vasily has taught me a lot about the
industry. His insights gave me new perspectives that improved the quality of my
work.

I have had the opportunity to collaborate with amazing people in industry and
academia. Thanks to Vasily Tarasov, Lukas Rupprecht, Ali Anwar, Dimitrios Skour-
tis, Erez Zadok, Tyler Estro, Carl Waldspurger, Mário Antunes, Anshul Gandhi, and
Geoff Kuenning. The people of Emory University, especially the SimBioSys research
group, have been a source of joy. I am fortunate to know Reza Karimi, Derek Onken,
Vishwanath Seshagiri, Juncheng Yang, Harshita Sahijwani, Zelalen Gero, Sapoonjy-
oti DuttaDuwarah, Lei Zhang, Sergio Gramacho, Gary Vestal, Yazhou Zhang, Shrey
Gupta, and Si Chen.

Thank you to my family for prioritizing my education above everything. They
have sacrificed a lot for me to be where I am today. I am grateful to my partner
Keyuri Tatu. She has been part of the day to day grind on this journey. Her strength
and optimism have helped me get to the finish line. Lastly, a special thanks to my
cats, Mau and Coco, for their companionship.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.0.1 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Block Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Storage Architectures . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Optimizing Block Storage . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Peculiarities of Block Storage . . . . . . . . . . . . . . . . . . . 11

2.2 Multi-Tier Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Multi-Tier: CPU vs. Storage . . . . . . . . . . . . . . . . . . . 12
2.2.2 Multi-tier Architecture. . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Multi-tier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Turning the Storage Hierarchy On Its Head: The Strange
World of Heterogeneous Tiered Caches . . . . . . . . . . . 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Cache Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 MT Cache Configuration . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Hit-Miss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Cost-Efficient Cache Algorithm . . . . . . . . . . . . . . . . . . 26

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Cost-Optimal Tier Sizes . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Hit-Miss Ratio (HMR) Algorithm . . . . . . . . . . . . . . . . 31

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Large Scale Study of MT Caching Using Trace Replay 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Replay Application. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Block Storage System . . . . . . . . . . . . . . . . . . . . . . . 42



4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Physical Testbed Setup . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Multi-Tier Overhead . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.5 Pyramidal Multi-Tier Caches . . . . . . . . . . . . . . . . . . . 53
4.3.6 Lowering Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.7 Queue Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.8 Replay Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.9 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 BlkSample: Sampling for Block Storage Traces . . . . . 69
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Random Spatial Sampling . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 BlkSample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Random Spatial Sampling . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Sampling Granularity . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Post-processing Algorithm. . . . . . . . . . . . . . . . . . . . . 88
5.3.4 Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusion and Future Directions . . . . . . . . . . . . . . . 97
6.1 Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Figures

1.1 A single-tier cache (a) with a cache tier T1 and a backing store TS. A
pyramidal (b) and non-pyramidal (c) multi-tier caches with two tiers
T1 and T2 and a backing-store tier TS. . . . . . . . . . . . . . . . . 2

3.1 Multi-tier configurations (tier-1 size, tier-2 size) and mean latency for
a fixed capital of $500. We can see that there are various configuration
that are worse and better than single-tier DRAM. . . . . . . . . . . 17

3.2 The relative mean latency of different combinations of cache devices
can vary across cost limits for the same workload. . . . . . . . . . 18

3.3 Comparison of read/write Miss Rate Curve and Hit-Miss Ratio Curve
of the same workload. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Each plot shows the percentage split between optimal tier sizes at
various scaled cost value for an MT cache configuration. Scaled cost
represents the cost value as a percentage of the maximum cost. Max-
imum cost is the value at which the working set size fits in the most
expensive, fast cache device, which in this case is FastDRAM. . . . 28

3.5 Mean percent latency reduction from pyramidal (MT-P) and non-
pyramidal (MT-NP) MT caches, compared to an ST cache of the same
cost limit, across 17 MT cache configurations. The data is sorted
in ascending order of the mean percent latency reduction from non-
pyramidal MT caches. The upper and lower rows represent write-back
and write-through policies, respectively. . . . . . . . . . . . . . . . . 30

3.6 The mean percentage difference between the latency of the MT tier
sizes identified by Cydonia and the cost-optimal MT tier sizes. The
bars are sorted in ascending order of mean percent latency error of
write-back caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Block-trace replay framework design. . . . . . . . . . . . . . . . . . 40
4.2 The increase in find (left) and alloc (right) latency when adding a

tier-2 cache, for all machine classes. . . . . . . . . . . . . . . . . . . 49
4.3 The differences in read and write latencies of tier-2 caches and backing

store across three machine classes, c220g1 (left), c220g5 (middle), and
r6525 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Heatmap showing the means of average latency values of experiments
with different tier sizes. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Heatmap showing means of p99 latency values of experiments with
different tier sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



4.6 The best cache types for different tier sizes and minimum desired per-
formance improvements (10%, 20%, and 30%). ST means that not
having a second tier at all was best. When a second-tier cache im-
proved performance, we compared the sizes of the tiers and classified
them as pyramidal if the size of tier 2 was larger than that of tier 1,
and as non-pyramidal otherwise. . . . . . . . . . . . . . . . . . . . . 53

4.7 The CDF of cost ratios for machine c220g1. A low ratio means that the
MT cache was more cost-effective than the ST cache it was compared
to. The CDF shows the percentage of pyramidal and non-pyramidal
MT caches found to be more cost-effective than ST ones, for varying
relative tier-1 and tier-2 costs. For example, around 70% and 90% of
pyramidal and non-pyramidal configurations, respectively, were more
cost-effective when the tier-1 cache cost 6×more than the tier-2 cache. 55

4.8 Heatmap of mean cost ratio for multi-tier caches with different tier
sizes that improve performance when compared to a single-tier cache
with the same tier-1 size. . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 The influence of changes in the replay rate on the throughput of MT
caches and their throughput relative to ST caches. MT caches with
x > 0 are those whose throughput improved when the replay rate was
increased from 1× to 100×. MT caches with y > 0 saw a throughput
increase relative to an ST cache with the same tier-1 size. . . . . . 59

4.10 The change in relative throughput of 3 MT caches replaying workload
w82 in machine c220g1 when the replay rate was increased. For a given
workload and tier-1 size, increase in replay rate favors MT caches up
to a point and then starts to deteriorate. . . . . . . . . . . . . . . . 59

4.11 Lower percentiles (1, 5, 10, 15) of inter-arrival time of block requests
for each workload. Lower inter-arrival values impact MT cache perfor-
mance by increasing the stress on the storage system. . . . . . . . . 60

4.12 Example decision tree to predict whether or not to add a tier-2 cache,
with accuracy of 90%, in machine c220g5. . . . . . . . . . . . . . . 62

5.1 The design of BlkSample. . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Percent error of features in samples generated using random spatial

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Request ratios when ignoring 0 (top), 2 (middle) and 4 (bottom) lower-

order address bits under different sampling ratios. . . . . . . . . . . 85
5.4 A set of 4 box plots representing percent error values when ignoring

0, 1, 2 and 4 lower order address bits at different sampling rates (5%,
10%, 20%, 40%, 80%) for different workload features. . . . . . . . . 87

5.5 Distribution of error in mean (left) and P99 (right) error values in read,
write and overall hit rate when ignoring 0 and 4 bits. . . . . . . . . 88

5.6 Block-trace replay framework design. . . . . . . . . . . . . . . . . . 89
5.7 Block-trace replay framework design. . . . . . . . . . . . . . . . . . 90



5.8 The change in sample error after each iteration of the post-processing
algorithm across different features. Positive values indicate a reduction
in error while negative values indicate an increase. . . . . . . . . . . 91

5.9 The error in replay performance metrics of sample block traces of work-
load ’w96’ across 16 different tier-1 and tier-2 cache size tuples. . . 93

5.10 CDF of percent error in bandwidth when replaying different samples. 94



List of Tables

2.1 Workload Properties of 106 CloudPhysics traces. . . . . . . . . . . . 14

3.1 Device specifications and parameters. Prices are from amazon.com.
Benchmarked specifications were collected from storagereview.com [13]
and userbenchmark.com [88] in January 2022. . . . . . . . . . . . . 20

3.2 17 device combinations used for evaluation. Tier 1 and Tier 2 cache
devices are combined with multiple backing storage devices. . . . . 20

4.1 CloudLab machines and specifications used for our experiments, from
CloudLab’s Web site. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Workload features used to group workloads. . . . . . . . . . . . . . 48



1

Chapter 1 Introduction

Global digitization has replaced paper with storage devices such as hard disk drives

(HDDs) and solid-state drives (SSDs) as the primary repository of human informa-

tion. Storage systems utilize storage devices to store and retrieve information while

providing high performance, reliability, availability, and scalability. Storage systems

power digital assets such as social media applications, video streaming, payment pro-

cessing, and government services, which are integral to the smooth functioning of the

world. The pressure on storage systems continues to increase along with the volume

of data that we generate, the number of users, and the stringent performance require-

ments needed to sustain new technologies. International Data Corporation forecasts

that the amount of data created per year will continue to increase at a compound

annual growth rate of 21.2% and will reach 221,000 exabytes by 2026 [45].

Storage servers typically use memory, a single-tier (ST) cache, to cache data per-

sisted in the backing store. DRAM, being the fastest temporary storage device, is

the most obvious candidate for the cache device, but it is expensive and limited in

size. DRAM can be responsible for almost half the cost of a server in data centers,

even when a server does not use the maximum amount or the highest grade DRAM

[67, 5]. Servers that use GPU are the only servers where memory would not be the

majority of the cost; however, most servers in the world do not contain a GPU. The

limited size of DRAM means that to support large volumes of data, we have to scale

horizontally by adding more servers. When you add more servers, you pay not only

for more DRAM but also for all other components of the server. More servers also

means higher complexity due to data management across multiple servers and higher

operational cost due to increase in recurring costs for power, cooling, and teams re-

quired to support a complex storage infrastructure. Scaling vertically, while possible



2

only up to a limit, is more cost-effective. Beefing up the servers as much as pos-

sible reduces the complexity and cost of the storage infrastructure as performance

requirement can be met while using fewer servers. As there is only so much DRAM

we can add to a server, one way to increase the cache size and increase the potential

throughput of the server is to add a second tier of SSD cache to create a multi-tier

(MT) cache. Figure 1.1 displays the traditional ST cache along with different types

of MT caches. MT caches utilize a cheaper and larger SSD as an additional cache

tier, increasing the cache size and lowering the miss ratio. A side effect of lowering

the miss ratio is that we require fewer servers and less memory to access data at high

speed, which means lower cost. Any performance optimization that we make can be

viewed as a cost optimization problem.

T1

Ts
(a)

T1

Ts

T1

Ts

T2 T2

(b) (c)

Figure 1.1: A single-tier cache (a) with a cache tier T1 and a backing store TS. A
pyramidal (b) and non-pyramidal (c) multi-tier caches with two tiers T1 and T2 and
a backing-store tier TS.

We can try to reduce the cost of our cache by very carefully sizing it to meet the

performance requirement. This approach ignores workload phase shifts and assumes a

static workload. Caches are over-provisioned to ensure that, in the event of workload

shifts, the performance does not degrade rapidly. Smaller caches are more susceptible

to scans, as a small burst of new items which might never be reused again can clear

the cache of all the warm and hot data. MT caches provide large cache capacity

on a reasonable budget. However, there are many unknowns related to the effective

use of MT caches and when it should not be used at all. Although the use of MT

caches increases the effective cache size and the potential throughput of block storage



3

systems, there is no guarantee that the actual throughput will improve. This is

why we say potential throughput; it means that, for the correct workload and storage

devices, a block storage system can deliver higher throughput with an MT cache than

without it. It can be tempting to add a tier-2 cache in the hopes of improving the

throughput and cost-efficiency of block storage systems without careful evaluation of

the workload and storage devices already in a block storage server. If the additional

overhead introduced by the tier-2 cache outweighs the gain from additional cache

hits, the server throughput will be reduced even if the miss ratio is reduced. It is not

trivial to estimate the overhead and gain of adding a tier-2 cache. Instances where no

amounts of tier-2 cache can improve performance occur with non-negligible frequency.

A better understanding of how workload and device properties interact to influence

MT cache performance will help more storage system administrators safely deploy a

tier-2 cache. MT caches will become more ubiquitous as we generate more data in the

future, and optimizing the performance of the hardware and composing cost-efficient

MT caches are important for making the technology more accessible and green. Our

focus in this thesis is to find when adding a tier-2 cache can improve performance

and develop efficient techniques to make this determination. In this thesis, we focus

on block storage systems, but the findings of this thesis can be generalized to other

storage systems such as key-value and file storage.

1.0.1 Thesis Scope

We define the cache policies that are constant throughout the thesis. The first

is the replacement policy at each tier, which determines which requests are evicted

when the cache is full. The next policy is the admission policy, which determines how

blocks travel between caching tiers.

Storage System Storage systems apart from block storage like file and object

storage are also used extensively. We focus on block storage systems as both file and



4

object storage at the end of the day are stored as blocks at the low level. Our learning

from optimizing for fixed-sized cache blocks can be translated to all storage systems.

Replacement Policy This thesis focuses on the most common cache replacement

policy: Least Recently Used (LRU). LRU belongs to the family called stack algo-

rithms [60], which satisfies a convenient inclusion property : for the same input se-

quence and replacement policy, all elements kept in a cache of size n are also included

in caches with sizes greater than n.

Admission Policy The admission policy dictates actions on an eviction, miss, and

hit; these, in turn, determine the request latency at each tier in an MT cache. In a

two-tier exclusive admission policy, the most-recently-used blocks are admitted to the

tier-1 cache, and blocks evicted from tier 1 are moved down to tier 2. In a two-tier

inclusive admission policy, the blocks are admitted to both tiers, and thus the data

blocks evicted from tier 1 do not have to be admitted to tier 2. In this thesis, we

chose a two-tier exclusive admission policy for two reasons: (1) an inclusive admission

policy is more expensive as blocks are duplicated in all tiers, making the overall cache

less effective; and (2) we were interested in challenging conventional wisdom and

explore cache hierarchies where the tier-2 cache is smaller than the tier-1 cache (non-

pyramidal), but an inclusive admission policy makes this nearly impossible (i.e., the

tier-2 cache could never be smaller than tier 1, to ensure that all tier-1 items also

reside in tier 2). We admit every admission from tier-1 cache to tier-2 cache, which

can be ineffective and lead to flash write amplification [100].

1.1 Contributions

The thesis has two main goals. The first is to determine when MT caches are

effective and when not. The second is to develop efficient methods to determine



5

when adding a tier-2 cache can improve performance. We approach our first goal

using trace simulation and replay of production traces on servers with different set

of storage devices. We derive insights related to MT caching such as what kind of

workload characteristics, storage device combinations favor MT caching, and chal-

lenge commonly held beliefs that MT cache tiers have to be pyramidal in size where

fast, expensive but small tier-1 cache has to be backed up by a slow, cheap but large

tier-2 cache device. We approach our second goal by using random forest as a model

to predict the impact of adding a tier-2 cache on overall performance and by using

sampling to reduce the overhead of MT cache analysis. The challenge is to under-

stand the synergy between the workload and the storage devices on the server, which

will ultimately determine whether MT cache is a good fit.

Turning the Storage Hierarchy On Its Head: The Strange World of Het-

erogeneous Tiered Caches Continuous growth in worldwide data storage has

driven a commensurate increase in cache sizes and costs, creating the need for cost-

efficient and workload-aware cache configurations. It is often more cost-efficient to

employ multiple tiers of devices with varying cost-performance profiles than to rely

on a single cache level. Conventional multi-tier caches are arranged hierarchically

in a pyramidal organization, ranging from small, fast, expensive devices—to larger,

slower, cheaper ones. Figure 1.1 shows an example of pyramidal and non-pyramidal

MT caches. However, adding tiers is not always helpful; the benefit depends on both

the workload and the device properties.

Exploring a large space of possible sizes through simulations can be computation-

ally intractable. To facilitate efficient cache analysis, we introduce two novel metrics:

a workload-based Hit-Miss Ratio (HMR) and a device-based Overhead-Gain Ratio

(OGR). Together, they inform decisions on whether adding or resizing cache tiers

would improve performance for a given workload. We present Cydonia, an HMR-



6

based algorithm that finds cost-optimal tier sizes for a given workload, multi-tier

cache configuration, and a cost limit, with minimal overhead.

We evaluated Cydonia with 136,476 points using 106 real-world workloads and

device specifications for 17 diverse MT cache configurations and cost limits. On

average, across all evaluations, Cydonia generates tier sizes exhibiting latencies that

are higher than the cost-optimal ones identified with exhaustive search by 0.02–5.1%

with mean of 2.3% (write-through policy) and 0.2–30% with mean of 13.1% (write-

back policy)—while evaluating an average of only 0.2% (10 points) of the entire space

of tier sizes.

Surprisingly, we also found that traditional pyramidal hierarchies are not always

best; instead, a non-pyramidal configuration can have up to 33× lower latency com-

pared to a single-tier cache and 25× lower latency compared to a pyramidal configu-

ration of the same cost, highlighting the importance of proper tier sizing.

Large Scale Study of Multi-tier Caches Using Replay Cache simulations

have shown that adding a tier-2 cache to an ST DRAM cache is an effective way to

improve performance and cost-efficiency, but the improvement depends on workloads

and device types. Some combination of devices can show significant improvement in

performance, whereas others can harm performance even when the workload is con-

stant. Simulations have also given insights regarding how the miss ratio is inadequate

to size MT caches and that MT caches with non-pyramidal tier sizes—where a slower,

smaller tier-2 cache follows a larger, faster tier 1—can sometimes perform better and

at a lower cost compared to single-tier caches. However, simulations cannot model the

complexity of an MT cache exactly, but only approximate it. Different SSD devices

used as tier-2 cache react differently to different request rates, queue sizes, and access

patterns, all of which cannot be accurately simulated. Cache engines that implement

tier-2 caches are complex managing both performance and device lifetime [20]. The



7

theoretical findings on MT caching must be corroborated with physical experiments.

We developed a general framework to investigate single- and multi-tier caches of

varying sizes and properties. We built a tool to replay block traces and measure

storage system performance, used it to analyze over 100 production block traces, and

selected 13 representatives to replay on 3 different machine classes. In thousands of

experiments totaling over 7.3 compute years, we studied various cache configurations.

These extensive experiments show that adding a second tier helps or actually hurts

performance. We found that adding an undersized tier-2 cache can reduce through-

put by up to 35%. We also corroborated that non-pyramidal tier sizes can improve

throughput compared to a single-tier cache. We identified workload characteristics

and properties of devices in the storage system that favor MT caching over ST caching.

Although trace replay is accurate, it is also an expensive method of performance

analysis. Because the space of possible configurations is so vast, we developed a deci-

sion tree model that accurately predicts whether adding a tier-2 cache of a given size

would improve performance. Decision trees are transparent, which gives us insight

into the features that are influential in determining when to add a tier-2 cache. De-

cision trees, with an accuracy of ∼90%, validate that workload properties other than

miss ratio along with device properties influence the performance of systems with MT

caches.

BlkSample: Sampling for Block Storage Traces Cache analysis is essential

for cache optimization. Cache analysis techniques make a trade-off between overhead

and accuracy. Working set analysis has minimal overhead but reveals little about

the miss ratio. A workload with a smaller working set size does not necessarily have

a lower miss ratio for a given cache size. Trace replay has high overhead but can

accurately determine system throughput along with the miss ratio. Random spatial

sampling has been able to get the best of both worlds, incurring low overhead while



8

accurately approximating MRC of workloads. It can approximate the MRC with an

average error of less than 0.01 while sampling less than 1% of the requests [96].

The miss ratio is an inadequate metric for MT cache analysis. The miss ratio does

not translate linearly to performance metric such as throughput. Two workloads with

identical miss ratio can have drastically different throughput. Other workload features

such as request size, request rate, and write ratio along with performance of storage

devices in the system influence the throughput. This is why random spatial sampling,

which is oblivious to all workload features except for miss ratio, becomes inadequate

to analyze the performance. We present, BlkSample, a sampling framework that

combines the low overhead of random spatial sampling but also considers additional

workload features that are influential in determining in MT cache performance. We

find that random spatial sampling cannot represent features such as the request size

even at a sampling rate as large as 80%. Random spatial sampling works with fixed-

sized blocks, but block requests can be multiblock, accessing multiple blocks at once.

Furthermore, random spatial sampling cannot generate a sample block trace but only

generate an approximate MRC for a given workload. BlkSample supports multiblock

requests and can generate block trace samples with a format identical to that of the

source traces. We combine the reduced size of the sample and the accuracy of trace

replay to see if we can estimate the throughput of the full workload based on the

replay performance of the sample workload. The samples generated using BlkSample

have a mean feature error of ≤ 10% with a sampling rate of 10% compared to the

mean feature accuracy of 40% using random spatial sampling when estimating the

read/write request size, read/write interarrival time (IAT), read/write misalignment

rate, and the write ratio while having a minimal effect on read/write MRC.



9

1.2 Thesis Overview

The remainder of the thesis is structured as follows. Chapter 2 provides the

necessary background for the thesis. Chapter 3 establishes whether MT caches can

improve on ST caches using the analysis of the miss ratio and the characteristics of

various combination of storage devices that can be used to compose a block storage

system. Chapter 4 explains the design and implementation of the block trace replay

framework along with a large-scale study of replay experiments totaling ∼ 7 years of

runtime. The theoretical observations made in Chapter 3 are validated in Chapter 4

using physical experiments. Additionally, Chapter 4 takes the large corpus of replay

data and trains decision tree models that predict whether adding a tier-2 cache of a

given size improves performance given workload properties and the current tier-1 size.

Chapter 5 introduces a sampling framework that preserves not only the MRC, but

additional features that are integral to the performance of the MT cache, such as the

mean read/write request sizes, the mean read/write IAT, the read/write misalignment

rate, and the write ratio.



10

Chapter 2 Background

This chapter gives a background on block storage systems and MT caches. We

discuss what separates block storage from other types of storage system and describe

the peculiarities of block storage that have to be considered when evaluating them.

We explore how MT architecture has been utilized in caching and elaborate on the

multi-tier architecture that we use in this thesis.

2.1 Block Storage

2.1.1 Storage Architectures

The 3 primary types of storage systems are block storage, object storage, and file

storage. Object storage stores data as objects of varying size in a flat structure. It can

provide scalability and lower cost with limited complexity. However, objects cannot

be partially edited; they have to be overwritten [82]. Continuously changing data,

as in databases, is not suitable for object storage. It is useful to store static data

such as video, audio, and log files. Content Delivery Networks such as Cloudflare,

Akamai, and Binary Large Object Storage such as AWS S3, Azure Blob Storage are

examples where object storage is used. File storage stores data as files in a hierarchical

structure. File storage suffers from performance degradation as it scales. As more

files, folders, and directories are added, the performance of searching and accessing

information decreases. File storage is useful for sharing files and collaborating with

multiple users. Block storage systems store data in fixed-size blocks and provide

direct access to these blocks with low latency and high throughput. This makes block

storage systems a good fit for distributed databases and high-performance computing,

but its drawback is its high cost and complexity. In this thesis, we address the high



11

complexity and cost of block storage by optimizing block storage servers using MT

caches so that we need fewer block storage servers to meet performance demands.

2.1.2 Optimizing Block Storage

A large portion of the world’s data is stored in block storage systems which are

common in enterprise data centers and cloud computing [112] The Information Com-

munication Technologies ecosystem is responsible for almost 10% of the world’s energy

consumption [71]. Cloud storage, including block storage, is a non-negligible part of

the energy consumption. Lower costs and energy consumption are important to make

block storage more accessible and reduce its load on the planet. A block storage sys-

tem can span thousands of servers equipped with multiple storage devices. One way

to improve the cost efficiency of block storage systems is to increase the performance

of a single server. The throughput of a block storage server is largely dependent on

the efficiency of its cache. The more data is served from the cache, the higher the

throughput. MT caches increase the effective cache size and the potential throughput

of block storage servers. Higher throughput from a block storage server means that

fewer storage servers are required to meet performance requirements, which, in turn,

results in lower cost and energy consumption.

2.1.3 Peculiarities of Block Storage

Block storage uses a cache for temporary high-performance storage and a backing

store for persistence and capacity. The size of a block in the backing store can be

different from the size of a block in the cache. For instance, the size of a sector in hard

disk drives can be 512 bytes, whereas the size of a block in cache is typically 4KB.

The fixed size of the cache block helps to efficiently utilize memory to store data. On

the other hand, for object storage that handles a wide range of object sizes, special

consideration has to be made to efficiently cache object of different sizes [20, 61].

The block trace we use in this thesis uses a sector size of 512 bytes and a cache



12

block size of 4KB. Block requests are aligned with the sector size of the backing

store, but not with the cache. Block requests that are misaligned with the cache

require additional data to be loaded to the cache, as blocks in the cache are of fixed

size. Misaligned read and write requests require additional reads to ensure that data

are loaded into the cache at a fixed size. Misalignment can affect block storage

performance as the additional read IO per misaligned writes can influence the write

latency. Misalignment is specific to the block storage cache and not an issue in object

caching where the entire object is cached or not.

2.2 Multi-Tier Cache

2.2.1 Multi-Tier: CPU vs. Storage

Multi-tier caching is not a novel idea. The use of multiple cache tiers, such as L1,

L2, and L3 caches, in CPU architectures has been instrumental in reducing memory

access latency and improving overall system performance [108]. However, the storage

cache has traditionally been a single-tier DRAM. The use of multiple cache tiers in

storage has become possible due to the large performance gap between traditional

backing-store media, such as hard disk drives (HDDs) and modern solid-state drives

(SSDs) [49, 48, 39] While we can translate insights from cache hierarchies in CPU

caches, block storage caches face different constraints and challenges. The size of cache

tiers in CPU cache is static and designed to support general workloads, whereas the

size of cache tiers of block storage cache is dynamic and customized for each workload.

We think of cache hierarchies in a pyramidal way because of the design of the CPU

cache, where the lower tiers are slower and larger than the tiers above. We do not

know if such design choices are optimal when sizing MT cache in block storage systems

with a large space of possible tier sizes, including non-pyramidal where the second

tier cache is smaller than the first tier cache. Furthermore, adding a second-tier cache

can harm performance, and it is important to identify such scenarios.



13

2.2.2 Multi-tier Architecture

There are different types of MT cache architectures. One in which the RAM and

the tier-2 cache are managed together [20]. The other is where the tier-2 cache is

oblivious to the tier-1 cache and has no tuning control [15, 86]. We are looking at

unified MT caches where both tiers of caches are managed by a central system, which

in our case is CacheLib [20]. Numerous storage technologies (NetApp BlueXP [84],

Oracle Exadata Database [3], Ceph [2], Redis [1]) have the capability to use flash

as a cache device without clear workload and device guidelines. Research on using

flash cache has largely focused on the SSD cache in isolation, ignoring the problems

of sizing two tiers at once and identifying when not to add a second tier. The guides

for flash cache largely focus on the reduction in miss ratio which is obviously the

cache when we use flash to enlarge the cache but how much of an improvement in

performance did adding a tier-2 cache bring is missing.

2.2.3 Multi-tier Analysis

Analysis of MT cache policies like Adaptive Replacement Caching (ReDARC) [23],

Adaptive Level-Aware Caching Algorithm (ALACA) [23], and Adaptive Multi-level

Cache (AMC) [22] focus on performance metrics like miss ratio, latency, and through-

put, but ignore the cost-efficiency of MT cache. The miss ratios of tier-1 and tier-2

caches are translated to a single performance metric like IOPS based on the IOPS

of the tier-1 and tier-2 cache device [56]. However, block caching has its own pecu-

liarities, such as request types. Read and write misses have different effects on the

system and overall performance.

Tier-2 Cache Device SSDs have asymmetric read/write performance, making the

type of IO even more important [47]. The effect of device types on the effectiveness

of MT caching has not been studied. Furthermore, there exist SSDs with diverse



14

Table 2.1: Workload Properties of 106 CloudPhysics traces.
Property Mean Min Max σ

Net I/O Size (GB) 101.0 0.9 1052.5 209.0
Read Size (GB) 95.0 0.2 983.0 201.2
Write Size (GB) 31.5 0.3 576.3 77.8
R/W 6.5 0.002 108.0 13.4

cost-performance profiles. Both the performance improvement and the cost efficiency

of MT caching are dependent on the relative cost and performance of SSD to other

devices in the system. The read/write performance of the tier-2 cache device under

varying load determines the performance gain per read hit and the overhead from MT

caching. The write amplification of SSDs also has to be managed when implementing

a tier-2 cache [26].

Trace Replay Block I/O traces are a rich source of information on storage work-

loads. Workload features derived from traces can be used to infer the performance it

would yield in a system. Workloads with majority sequential access pattern perform

better than workloads with majority random access pattern. Workloads with low

miss ratio perform better as most requests are served from the cache. An accurate

measurement of performance cannot be made without details of the system. Even

with system details, it is hard to accurately estimate system performance for millions

of requests with different parameters.

Trace replay gives the most realistic estimate of how a system would perform for

a given trace [37]. Replay can account for things like variation in device performance

due to change in request rate and access patterns, which is very difficult to capture

from workload analysis and simulation. The performance of SSDs is especially hard to

estimate because the characteristics of SSDs can vary between types and vendors [66].

SSD can have drastically different read and write performance and is prone to latency

spikes under high load. We use trace replay to obtain an accurate estimate of the

performance of MT caches across various workloads and server types.



15

2.3 Workloads

For our evaluation, we selected the CloudPhysics traces [96]. There are 106 block

I/O traces, each approximately one week long, collected from the disks of production

VMware virtual machines in customer data centers running under the VMware ESXi

hypervisor [93]. A user-mode application, deployed on each ESXi host, coordinated

with the standard VMware vscsiStats utility [6] to collect complete block I/O traces

from the virtual disks. These real-world traces cover a diverse set of characteristics

showed in Table 2.1 that heavily influence caching behavior, making them suitable

for evaluating MT caching. Many of these traces’ properties have min-to-max ranges

spanning an order of magnitude or more. For example, the traces have mean inter-

arrival times ranging from 2.5ms to 250.0ms, total I/O request counts from 3.8M to

215.8M, mean I/O sizes from 4.0KB to 327.4KB, and write ratios from 0.033 to 0.996.



16

Chapter 3 Turning the Storage Hierarchy
On Its Head: The Strange World of Het-
erogeneous Tiered Caches

3.1 Introduction

Modern storage systems host an enormous volume of data and must satisfy ever-

increasing demands for faster response times. Caches are commonly placed in front

of persistent storage to enable low-latency access, often via multiple devices arranged

in tiers. Popular cache devices include NVMe SSDs, storage-class memory (SCM),

and DRAM. Often, DRAM is backed with an additional cache tier to lower average

storage latency or improve cost efficiency [32, 57, 75]. A storage administrator who

wishes to configure the best caching configuration faces a complex landscape with

diverse options for costs, capacities, and performance, even for a single device type.

The trivial performance-optimal configuration is always a large single tier with

enough capacity to store the workload’s entire working set. However, such config-

urations are usually cost-prohibitive, especially as working sets grow, so real-world

systems often employ multiple tiers [28]. But it is challenging to find the optimal tier

sizes for a multi-tier (MT) cache since available capital must be distributed across

disparate devices with different sizes, costs, and performance.

For a given cost limit, workload, and available cache devices, the number of pos-

sible tier sizes can be vast, and different cache devices can be combined to form

numerous MT cache configurations that must be evaluated. Figure 3.1 shows the

numerous configurations that are possible at fixed cost. There are various configura-

tions where the latency can be better or worse than the ST cache. MT cache analysis

is necessary to identify cache configurations that lower latency and avoid ones that



17

0K

12
7K

25
5K

38
3K

51
1K

63
8K

76
6K

89
4K

10
22

K

11
50

K

12
77

K

Total DRAM in the configuration (512 bytes)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
M

ea
n 

La
te

nc
y 

(m
s)

Possible cache configuration
Best cache configuration, mean latency: 1.2ms
Single-tier DRAM, mean latency: 3.3ms

Figure 3.1: Multi-tier configurations (tier-1 size, tier-2 size) and mean latency for a
fixed capital of $500. We can see that there are various configuration that are worse
and better than single-tier DRAM.

increase latency. In this work, our goal is to identify tier sizes that provide the best

performance for a given cost, and to do so systematically for a given workload, multi-

tier cache configuration, and cost limit, while evaluating a small portion of the space

of tier sizes. This allows us to also evaluate a large number of possible multi-tier

cache configurations given a device set.

A common approach to analyze single-tier cache performance is to compute miss

ratio curves (MRC), which characterize miss rates for a given workload as a func-

tion of cache size and cache replacement policy [97, 79]. To model multiple cache

tiers, eMRC [57] extended single-tier MRCs to associate cache misses with a tuple

reflecting the size of each tier. However, this technique treats every cache miss the

same, while the actual impact of cache misses varies in a MT configuration due to



18

60 80 100 120 140
Cost ($)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n 
La

te
nc

y 
(

s)

SlowDRAM-FastSSD
FastDRAM-FastSSD
FastDRAM

Figure 3.2: The relative mean latency of different combinations of cache devices can
vary across cost limits for the same workload.

performance differences between devices. Furthermore, classical MRC models do not

distinguish between read and write latency [109], despite the substantially asymmetric

performance for these operations on devices such as flash memory.

Even in a system with two tiers, workload characteristics and device specifications

need to be aligned to yield a cost-efficient cache. MT caching allows us to combine

different devices to best fit the workload: DRAM can service requests with high

locality, while an SSD reduces the number of requests that are served by slow back-end

storage [42]. However,for different cost limits, the same workload can have different

optimal multi-tier cache configurations. Figure 3.2 shows how the relative mean

latency of 3 different combinations of cache devices changes along with the cost limit

for the same workload.

We evaluated Cydonia using 17 different two-tier cache configurations on 106 real-

world block I/O traces obtained from CloudPhysics [96]. We generate cost-effective

tier sizes for each workload using two approaches: exhaustive search and Cydonia.

The cost-optimal tier sizes obtained from the exhaustive search are used to measure

the performance of the tier sizes generated by Cydonia. We analyzed the influence



19

of capital on the optimal multi-tier configuration of a workload. We also examined

these workloads to see if the traditional “pyramid scheme” of hierarchical caching—

i.e., that devices get slower and larger as they descend into tiers, holds true when

a cost constraint is applied. We identified and analyzed several counter-intuitive,

non-pyramidal configurations that, surprisingly, sometimes performed better than

the traditional pyramid design. We also studied how a range of different capital

constraints (i.e., the cost-performance profile of the devices) affect the optimal cache

configuration.

This chapter makes four key contributions:

1. We introduce two new metrics: a workload-based Hit-Miss Ratio and a device-

properties-based Overhead-Gain Ratio to measure and predict cache perfor-

mance.

2. We present Cydonia, a novel algorithm for determining low-latency and cost-

effective tier sizes.

3. We analyze and present insights on the impact of capital and device properties

on the optimal tier sizes.

4. We demonstrate that the conventional wisdom of using a pyramid scheme for

tiered caching is not always optimal in the cost-aware MT cache scenario.

3.2 Design

There is no universal caching solution for even a single-tier cache; an optimal con-

figuration for one workload can perform poorly for another. This workload-dependent

cache performance is a major source of complexity. However, we found that the rela-

tionship between a workload and its optimal tier sizes can be better discovered using

the HMR metric (Section 3.2.3). We leverage HMR to design Cydonia, an algorithm



20

Table 3.1: Device specifications and parameters. Prices are from amazon.com. Bench-
marked specifications were collected from storagereview.com [13] and userbench-
mark.com [88] in January 2022.

Label Device Type Price Capacity Benchmarked Latency

FastDRAM G.SKILL TridentZ Series DRAM $120 16GB 0.0619µs read/write
SlowDRAM G.Skill Ripjaws V DRAM $68 16GB 0.0774µs read/write
FastSSD Intel Optane SSD DC P4800X SSD $1120 375GB 1.82µs read, 2µs write
MediumSSD Intel DC S3700 SSD $454 800GB 13.33µs read, 27.77µs write
SlowSSD Seagate IronWolf 110 NAS SSD $132 480GB 18.18µs read, 33.33µs write
FastHDD Seagate IronWolf Pro HDD $644 20TB 120.8µs read, 974.6µs write
SlowHDD Toshiba N300 NAS HDD $289 8TB 1661.1µs read, 1037.3µs write

Table 3.2: 17 device combinations used for evaluation. Tier 1 and Tier 2 cache devices
are combined with multiple backing storage devices.

Tier 1 Tier 2 Storage

FastDRAM SlowDRAM FastHDD, SlowHDD, SlowSSD
FastDRAM FastSSD FastHDD, SlowHDD, SlowSSD
FastDRAM MediumSSD FastHDD, SlowHDD
FastDRAM SlowSSD FastHDD, SlowHDD
SlowDRAM FastSSD FastHDD, SlowHDD, SlowSSD
SlowDRAM MediumSSD FastHDD, SlowHDD
SlowDRAM SlowSSD FastHDD, SlowHDD

that determines cost-efficient tier sizes for a given workload, device performance in

terms of read/write latency, and cost limit—while evaluating significantly fewer points

compared to exhaustive search.

3.2.1 Cache Allocation

We consider cache configurations containing devices with three representative

types: DRAM, SSD, and HDD, using the detailed performance and cost specifications

listed in Table 3.1. We use a 4KiB page size, a 1MiB unit allocation size, and 31B of

metadata per page as in modern caching systems like CacheLib [21]. The metadata

stores details such as the data key, size, and creation timestamp. This implies that,

per unit of allocation, there are 1024KiB/4KiB=256 pages and the size of metadata

per unit allocation is thus 256× 31 = 7, 936B (roughly two pages).

We calculate the cost of a configuration by including the cost of both data and



21

metadata storage. Data can be stored in any tier, but we assume that the metadata

is always stored in the tier-1 cache (DRAM). For example, given an MT configuration

composed of FastDRAM ($120 for 16GB) in tier 1 and FastSSD ($1,120 for 375GB)

in tier 2, the cost of a unit allocation (1MiB) of tier 2 is equal to the sum of the cost

of cache space $1,120/(375 × 103) = $0.0023 and the cost of metadata ($120/(16 ×

109))× 7, 936 = $0.00005952, totaling $0.00235952.

We assume that backing store space is infinite and do not consider its cost in

our evaluations, since the size of the backing store is not relevant to cache design

(and insufficient backing store is generally fatal for applications). When we compare

the performance of multi-tier cache configurations, we evaluate a given workload and

cost limit with a fixed backing store device. This cost model is representative of

the flexibility available in a typical cloud configuration, where space can be allocated

between different cache devices with relatively fine granularity. Our model can be

readily modified to support other price points, device specifications, or allocation

granularities.

3.2.2 MT Cache Configuration

We evaluated caches with two tiers, represented as a tuple of the tier-1, tier-2,

and backing storage devices, such as (FastDRAM, FastSSD, SlowHDD). We consider

only the sizes of tiers 1 and 2, since we assume backing store size is infinite. Note

that even if a tier-2 cache is available, we allow its size to be 0 if including a tier-2

cache is not cost-optimal. Table 3.2 lists all the different tier-1, tier-2, and backing

storage device combinations that we evaluated.

The latency of a tier is dependent on the latency of upper tiers. We use the average

read and write latencies of cache devices in the tiers to compute the read and write

latencies for each tier. To obtain the number of requests at each tier, we use the size

of each tier to compute the sum of the corresponding reuse-distance histogram bins.



22

Once we have the latencies and the request counts for each tier, we can compute the

average latency of the cache configuration for a workload.

3.2.3 Hit-Miss Ratio

Consider deciding whether to add a second tier to a single-tier cache. Doing so is

not trivial—adding a tier is not free, and an additional tier does not always translate

to improved performance, despite having more aggregate cache space. In fact, an

undersized cache tier can harm performance.

If the total cost of a caching system is kept constant, adding a tier will reduce the

latency of some requests while increasing the latency of others. Whether the overall

performance improves is not determined by the workload or the device properties

alone. There is no workload that performs well on every cache, nor is there a caching

solution that does well for every workload. The performance is determined by the

interaction between the workload, the device, and the cache policies. The workload

and the policy determine the number of hits and misses; the device properties control

the latency reduction and overhead for hits and misses, respectively.

Consider two different caches, CST and CMT , where CST is single-tier and CMT is

multi-tier. CST and CMT use the same tier-1 device d1, with read and write latencies

(rd1 , wd1), and backing store device ds, with latencies (rds , wds). The read and write

latencies for tier i of cache C are (C(rti), C(wti)). The latencies of a miss in C are

(C(rts), C(wts)), since a full miss must go to the backing store.

The size of tier i of cache C is C(st1). Since CST and CMT use an identical tier-1

device, CST (st1) = CMT (st1), CST (rt1) = CMT (rt1), and CST (wt1) = CMT (wt1). The

difference is that CMT has a tier-2 device d2 with read and write latencies (rd2 , wd2)

and tier-2 latencies of (C1(rt2), C2(wt2)).

For a given workload W , we model the improvement from adding a second tier

by comparing CMT to CST . The read and write hit counts at tier i of cache C are



23

0 2000 4000 6000 8000 10000 12000 14000
Cache Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t R

at
e

Read
Write

(a) Read/Write Miss Rate Curve (MRC)

0 2000 4000 6000 8000 10000 12000 14000
Tier 1 Size (MB)

0

5

10

15

20

Hi
t-M

iss
 R

at
io

$5
$45
$84

(b) Hit-Miss Ratio Curve (HMRC) at different cost limits

Figure 3.3: Comparison of read/write Miss Rate Curve and Hit-Miss Ratio Curve of
the same workload.



24

(C(Wrti
), C(Wwti

)); and the count of requests that miss all cache tiers is (C(Wrts ),

C(Wwts
)), again because misses go directly to the backing store.

Latency reduction Adding a second tier of cache reduces misses. The tier-2 hits

in CMT would have been misses in CST , since the size of tier 1 is equal in both caches.

The latency of a tier-2 read hit in CMT , CMT (rt2), is equal to the sum of read and

write latencies of both tiers. The writes originate due to promotion of data from tier

2 to tier 1 and the corresponding eviction of some data back to tier 2:

CMT (rt2) = rd1 + wd1 + rd2 + wd2

(Note that we assume that the reads and writes involving the two devices are executed

sequentially rather than in parallel.)

The latency of a read miss in CST , CST (rts), is equal to the latency of a read from

backing store and a write to the tier-1 cache:

CST (rts) = rds + wd1

We define the latency gain, G, per tier-2 read hit as the difference between CST (rts)

and CMT (rt2):

G = CST (rts)− CMT (rt2) = rds − rd1 − rd2 − wd2

Note that a tier-2 write hit does not yield any latency reduction but instead incurs

additional overhead. We discuss this case next.

Latency overhead Adding a second tier introduces latency to certain requests.

The latencies of a tier-2 write hit (CMT (wt2)) and write miss (CMT (wts)) in CMT are

the same and are equal to the sum of read and write latencies of tier 1, write latency

of tier 2, and backing store:

CMT (wts) = CMT (wt2) = wds + rd1 + wd1 + wd2



25

The tier-2 write hits and write misses in CMT would have been write misses in

CST . The latency of a write miss in CST , CST (rts), is equal to the latency of a write

to backing store and a write to tier 1:

CST (wts) = wds + wd1

We define the overhead, Ow, per tier-2 write hit and write miss (tier-1 write miss)

as the difference between CMT (wt2) and CST (wts):

Ow = CMT (wt2)− CST (wts) = rd1 + wd2

We now compare read misses in CST and CMT . The latency of a read miss in CST ,

CST (rts), is equal to the latency of a read from backing store and a write to tier 1:

CST (rts) = rds + wd1

The latency of a read miss in CMT , CMT (rts), is equal to the sum of the read and

write latencies of the tier-1 device, a write to tier 2, and a read from the backing

store:

CMT (rts) = rds + wd1 + rd1 + wd2

We define the overhead Or per read miss as the difference between CMT (rts) and

CST (rts):

Or = CMT (rts)− CST (rts) = rd1 + wd2

Observing that the overheads for a tier-2 write hit, write miss Ow, and read miss

Or are all equal, we denote it simply as overhead O:

O = Or = Ow



26

Hit-Miss Ratio The definition of a cache hit is understood to mean that a block

is found in the cache, but it does not differentiate between read and write requests.

For an MT cache, we define a cache hit as a request whose latency is decreased and

a cache miss as a request whose latency is increased. A cache hit H, when a tier-2

cache is added, refers to tier-2 read hits, and a cache miss M refers to tier-2 write

hits, write misses, and read misses. When computing HMRC based on a cost-limit

C, as shown in Figure 3.3b, for each tier-1 size of cost CT1, the corresponding tier-2

size and the tier-2 read/write hits are derived based on the remaining cost (C−CT1).

The total latency reduction is H×G and the total latency increase is M ×O. For

latency reduction to offset the latency increase, we have:

G×H > O ×M =⇒ H

M
>
O

G

In the above inequality, we have isolated the device and workload properties into

two separate metrics: the Hit-Miss Ratio (left) and the Overhead-Gain Ratio (right).

Together, they can be used to determine whether a given tier-2 cache can improve

performance for a storage system with a fixed backing storage device and a single

cache tier. If the Hit-Miss Ratio at a given tier-1 size is lower than the Overhead-

Gain Ratio, then an additional tier will not improve performance. This insight allows

us to reduce the analysis space to find cost-optimal tier sizes based on the device

properties. (Note that these values would be different for a cache using a different

admission policy (e.g., inclusive) and/or replacement policy (e.g., ARC), but a similar

trade-off analysis still holds.)

3.2.4 Cost-Efficient Cache Algorithm

Hit-Miss Ratio Curve (HMRC) is generated from a reuse distance and a cost limit

as discussed in Section 3.2.3. The hmrc function in Algorithm 1 refers to this process.

It is not represented in a separate algorithm for brevity. The HMRC is then used

in Algorithm 1 to generate cost-efficient tier sizes given a reuse-distance histogram,



27

cache devices at each tier, and a cost limit, evaluating fewer points than an exhaustive

search.

In Algorithm 1 we first establish a baseline by evaluating the mean latency of an

ST cache sized to meet a cost limit, as shown in Line 9. The eval function refers to

the evaluation of the mean latency of a cache, given the tier sizes, MT cache devices,

and reuse distance histogram. This can done by either simulation or analysis-based

evaluation. The remainder of Algorithm 1 searches for a combination of tier-1 and

tier-2 sizes that offer a mean latency lower than an ST cache of the same cost. In

Line 10 we create an array of indexes i into HMRC, sorted by the value of HMRC[i],

so that HMRCsort[0] will be the index of the entry in HMRC that has the highest hit-

miss ratio. Note that here, i also reflects that the size of the tier-1 cache and tier-1

cache sizes with hit-miss ratios lower than the OGratio are filtered out as discussed in

Section 3.2.3. We evaluate the tier-1 sizes in order of Hit-Miss Ratios (HMR), based

on the assumption that sizes with higher HMRs are more likely to outperform the ST

baseline. Thus, the tier-1 size with the maximum HMR and its corresponding tier-2

size, derived from the cost limit, is the first MT point evaluated in line 15; we store

that size in T1.

Based on the result of the first point evaluated, we pick the tier-1 sizes to evaluate.

If the first MT point performs better than the ST baseline, we search only smaller

tier-1 sizes, discarding the larger ones (Line 20). Similarly, if that first MT point

performs worse than the ST baseline, we choose to search only tier-1 sizes larger than

T1 (Line 25).

3.3 Evaluation

We used real-world workloads and device characteristics to analyze MT caches.

Our goal was to validate and rethink assumptions about cache configuration, and to

optimize as we move from ST to MT caches. We used exhaustive search to evaluate



28

5 15 25 35 45 55 65 75 85 95 105
(a)

0

25

50

75

100
FastDRAM-SlowDRAM-SlowHDD

5 15 25 35 45 55 65 75 85 95 105
(b)

0

25

50

75

100
FastDRAM-SlowDRAM-FastHDD

5 15 25 35 45 55 65 75 85 95 105
(c)

0

25

50

75

100
FastDRAM-SlowDRAM-SlowSSD

5 15 25 35 45 55 65 75 85 95 105
(d)

0

25

50

75

100
FastDRAM-FastSSD-SlowHDD

5 15 25 35 45 55 65 75 85 95 105
(e)

0

25

50

75

100
FastDRAM-FastSSD-FastHDD

5 15 25 35 45 55 65 75 85 95 105
(f)

0

25

50

75

100
FastDRAM-FastSSD-SlowSSD

5 15 25 35 45 55 65 75 85 95 105
(g)

0

25

50

75

100
FastDRAM-MediumSSD-SlowHDD

5 15 25 35 45 55 65 75 85 95 105
(h)

0

25

50

75

100
FastDRAM-MediumSSD-FastHDD

Percentage of Maximum Cost (%)

Cl
as

sif
ica

tio
n 

of
 C

os
t-O

pt
im

al
 T

ie
r S

ize
s (

%
)

Cost-Optimal Tier Sizes
Single Tier
Multi Tier-Pyramidal
Multi Tier-NonPyramidal

Figure 3.4: Each plot shows the percentage split between optimal tier sizes at various
scaled cost value for an MT cache configuration. Scaled cost represents the cost
value as a percentage of the maximum cost. Maximum cost is the value at which the
working set size fits in the most expensive, fast cache device, which in this case is
FastDRAM.

cost-optimal MT cache configurations from 106 workloads, 17 device combinations,

and cost values scaled based on the size of the working set size. We found counter-

intuitive non-pyramidal MT caches to be cost-optimal; we modeled the device com-

binations and cost constraints under which such configurations are preferable, as well

as traditional pyramidal MT caches and ST caches. We used the cost-optimal cache

identified from exhaustive search as a baseline to measure the accuracy of our HMR-

based algorithm, which generates cost-efficient cache configurations while evaluating

fewer points.

3.3.1 Cost-Optimal Tier Sizes

As shown in Table 3.1, we used two types of memory devices, FastDRAM and

SlowDRAM , as tier-1 cache, along with a variety of tier-2 and backing storage de-

vices. These resulted in diverse device combinations for MT caches, as illustrated in

Table 3.2. The cost-optimal tier sizes for all 106 workloads, 17 MT cache configu-

rations, and cost limits were generated through exhaustive search; the cost-optimal



29

types were determined by relative sizes of tier 1 and tier 2 in the cost-optimal tier

sizes. Figure 3.4 shows the classification of cost-optimal tier sizes—ST (single-tier),

MT-P (pyramidal), and MT-NP (non-pyramidal)—across different cost values, rep-

resented as a percentage of the maximum cost. In each subfigure row in Figure 3.4,

going from left to right, the tier-1 and tier-2 cache devices are constant while the

backing storage device gets faster. Going from top to bottom in each column of

subfigures, the tier-1 and backing-storage devices are constant while the tier-2 device

gets slower. MT tier sizes (pyramidal shaded as dots and non-pyramidal shaded as

squares) are cost-optimal in the majority of instances across cost limits and MT cache

configurations.

The consistent pattern in all plots is that non-pyramidal tier sizes are prevalent at

higher cost values. This is because at high costs we can use a cheap tier 2 to hold the

workload’s entire working set in the cache while still having a large tier-1 size. As the

backing storage gets faster while the tier-1 and tier-2 cache devices remain constant,

we see an increase in instances where single-tier and non-pyramidal configurations are

optimal, and a corresponding decrease in instances where pyramidal configurations

are optimal. When the storage device is slow, cache misses incur high latency. To

minimize cache misses and consequent access to slow backing store, tier sizes with a

large tier-2 cache size become cost-optimal. As the backing store gets faster, cache

misses incur less latency, favoring a smaller tier 2 or not having a tier 2 at all, which

in turn benefits single-tier and non-pyramidal configurations.

As the tier-2 device gets slower and cheaper while holding the tier-1 and back-

ing storage devices constant, we see a decrease in instances where ST and pyramidal

configurations are optimal and an increase in instances where non-pyramidal con-

figurations are optimal. Compared to Figure 3.4(d), Figure 3.4(g) shows that non-

pyramidal configurations become optimal at lower cost limits. This is because the

tier-2 device used in Figure 3.4(g) is cheaper and we can thus fit the entire working



30

0

20

40

60

80

100

FastDRAM
FastSSD
FastHDD

FastDRAM
MediumSSD

FastHDD

FastDRAM
SlowSSD
FastHDD

SlowDRAM
FastSSD
FastHDD

SlowDRAM
MediumSSD

FastHDD

SlowDRAM
SlowSSD
FastHDD

FastDRAM
FastSSD
SlowHDD

FastDRAM
MediumSSD

SlowHDD

FastDRAM
SlowSSD
SlowHDD

SlowDRAM
FastSSD
SlowHDD

SlowDRAM
MediumSSD

SlowHDD

SlowDRAM
SlowSSD
SlowHDD

FastDRAM
FastSSD
SlowSSD

SlowDRAM
FastSSD
SlowSSD

FastDRAM
SlowDRAM
SlowSSD

FastDRAM
SlowDRAM
FastHDD

FastDRAM
SlowDRAM
SlowHDD

0

20

40

60

80

100
Max MT-P Max MT-NP MT-P MT-NP

M
ea

n 
Pe

rc
en

t L
at

en
cy

 R
ed

uc
tio

n 
(%

)

Figure 3.5: Mean percent latency reduction from pyramidal (MT-P) and non-
pyramidal (MT-NP) MT caches, compared to an ST cache of the same cost limit,
across 17 MT cache configurations. The data is sorted in ascending order of the mean
percent latency reduction from non-pyramidal MT caches. The upper and lower rows
represent write-back and write-through policies, respectively.

set in the cache for a lower cost, giving rise to non-pyramidal configurations at lower

cost values.

Figure 3.4 shows the fraction of cost-optimal non-pyramidal tier sizes. Figure 3.5

shows the mean and maximum percentage improvement of pyramidal and non-pyramidal

configurations over an ST one, given the same cost limit across all workloads, for

write-back and write-through policies for each of the 17 MT cache configurations.

The error bars represent standard deviations. The latency improvement due to the

write-through policy is smaller than that for write-back. This is because write-through

caches write to the backing store on every write request, incurring high latency that

cannot be avoided by any cache. However, the potential for latency reduction from

tier-2 read hits is still the same for both write-back and write-through caches.

Figure 3.5 is sorted by ascending mean percent latency reduction from non-

pyramidal MT caches. We can see that the top five rightmost MT caches give two

key insights. The first is that the MT cache configurations using FastDRAM and

SlowDRAM as tier-1 and tier-2 caches have the top three highest-performing non-

pyramidal tier sizes on average, with mean percent latency reductions of 25%, 26%,

and 28%, respectively. A fast tier-2 cache device means high latency gain per tier-2



31

read hit and low overhead on a tier-2 write miss. This means that a smaller tier-2

cache with a lower hit ratio can be sufficient to improve performance over ST config-

urations.

The second insight is that the top five rightmost MT caches in Figure 3.5 contain

all three MT cache configurations using SlowSSD as the backing storage device, which

is the fastest storage device we evaluated. This further confirms the pattern we saw

in Figure 3.4, where improved performance of the backing storage device causes non-

pyramidal multi-tier caches to become more prominent.

3.3.2 Hit-Miss Ratio (HMR) Algorithm

Cydonia evaluates a selection of points, guided by the HMR, to come up with cost-

efficient MT tier sizes for a given workload, MT cache configuration, and cost limit.

We evaluated Cydonia on the same 106 workloads and 17 MT cache configurations,

again for both write-back and write-through policies. We compared the algorithm’s

performance across all types of MT cache configurations while evaluating the first ten

tier sizes identified by Cydonia. We chose the first ten sizes because the performance

improvement per additional evaluation after the first ten becomes small. We next

evaluated the following aspects of Cydonia:

• How often does Cydonia identify MT tier sizes that improve upon an ST tier

size of the same cost limit, even if the identified MT tier sizes are not the exact

cost-optimal sizes found through exhaustive search?

• What is the potential latency reduction in MT tier sizes that were successfully

identified by Cydonia—and in those that were not?

• What is the difference in latency between the MT tier sizes identified by Cydonia

and the cost-optimal sizes found using exhaustive search?

Figure 3.6 displays the percent difference between the latency of MT tiers whose



32

sizes were identified by Cydonia and the cost-optimal MT tier sizes identified by

exhaustive search. The bars are in ascending order of mean percent latency difference

of write-back caches; the error bars represent the standard deviations. The mean

percent latency difference ranges from 0.2% to 30.7% for write-back caches and 0.02%

to 5.3% for write-through caches. The top five MT cache configurations with the

highest mean percent latency difference fall into three categories. The first is where

the cost-performance profiles of tier-1 and tier-2 cache devices are close: FastDRAM

and SlowDRAM. The second is where the backing storage device is fast: SlowSSD.

The third is where the backing storage device is slow: SlowHDD. These categories

apply to both write-back and write-through MT cache configurations. The top five

MT cache configurations with the lowest write-back mean percent latency difference,

<5% for write-back and <0.35% for write-through, use the backing storage device

FastHDD.

Depending on the multi-tier cache configurations, in 21–85% of the time, Cydonia

fails to find any MT tier sizes that improve upon the ST size, when such tier sizes exist.

However, the mean latency reduction potentials when MT tier sizes are identified in

write-back and write-through caches are 46% and 21%, respectively. On the other

hand, the mean latency reduction potential when MT tier sizes are not identified in

write-back and write-through caches are 7% and 2%, respectively.

FastDRAM
FastSSD
FastHDD

FastDRAM
MediumSSD

FastHDD

FastDRAM
SlowSSD
FastHDD

SlowDRAM
FastSSD
FastHDD

SlowDRAM
MediumSSD

FastHDD

SlowDRAM
SlowSSD
FastHDD

FastDRAM
FastSSD
SlowHDD

FastDRAM
MediumSSD

SlowHDD

FastDRAM
SlowSSD
SlowHDD

SlowDRAM
FastSSD
SlowHDD

SlowDRAM
MediumSSD

SlowHDD

SlowDRAM
SlowSSD
SlowHDD

FastDRAM
FastSSD
SlowSSD

SlowDRAM
FastSSD
SlowSSD

FastDRAM
SlowDRAM
SlowSSD

FastDRAM
SlowDRAM
FastHDD

FastDRAM
SlowDRAM
SlowHDD

0

10

20

30

40

50

60

M
ea

n 
Pe

rc
en

t L
at

en
cy

 D
iff

er
en

ce
 (%

)

Write-Back
Write-Through

Figure 3.6: The mean percentage difference between the latency of the MT tier sizes
identified by Cydonia and the cost-optimal MT tier sizes. The bars are sorted in
ascending order of mean percent latency error of write-back caches.



33

3.4 Related Work

Performance metrics such as raw throughput, latency, and hit/miss ratio have been

used to evaluate multi-tier caching policies such as Adaptive Replacement Caching

(ReDARC) [23], Adaptive Level-Aware Caching Algorithm (ALACA) [23], and Adap-

tive Multi-level Cache (AMC) [22], but all of these disregard the capital expenditure

associated with engineering a multi-tier cache. Existing multi-tier point solutions for

virtual machines [107, 106, 62, 75], cloud storage [24], and optimized file systems [46]

lack generality and focus on limited configuration spaces or specific environments.

Our approach is general and can be applied to any MT cache configuration and

workload.

Miss-ratio curves (MRCs), equivalent to hit-ratio curves (HRCs), are an effective

way to approximate the working set size of a particular workload, and can be effi-

ciently constructed for caches with stack-based replacement policies by using reuse

distances [60]. UMONs [74], Fractals [38], CounterStacks [99], and PARDA [64] em-

ploy reuse distance access counters to keep track of stack distance in each cache size,

the total number of accesses and the unique number of accesses in a workload. Sam-

pling techniques have been developed to reduce the space complexity associated with

reuse distance analysis, such as AET [40] and SHARDS [96]. Recent work by Zhang

et al. [109] considered two-tier hierarchies with asymmetric read/write performance

and also extended the spatial sampling results on HRCs to enable fast simulations.

Fu et al. [35] have shown that traditional MRC analysis is often inadequate for cache

partitioning, since all requests are treated equally. However, these efforts do not

provide an alternative metric, such as the hit-miss ratio, that can aid in sizing tiers.



34

3.5 Conclusion

As workload working sets continue to increase and new cache devices are de-

veloped, experimentation with new cache architectures, with an eye toward cost, is

essential for provisioning modern storage systems. Hit-Miss ratios aid in MT analysis

by illustrating the potential of adding a new tier of cache, which miss-based or hit-

based metrics fail to do. Using Hit-Miss ratios, Cydonia finds low-latency tier sizes

based on workload, cost limit and MT cache configuration, while evaluating as little

as 0. 2% of the entire search space of tier sizes, with a mean percentage latency differ-

ence of 13.1% and 2.3% for write-back and write-through policies, respectively. Our

results highlight the viability of MT caches with quick reconfigurability and enable

storage administrators to quickly evaluate a large number of MT cache configurations

and choose the best fit for the workload.

Our analysis also reveals that the traditional hierarchical approach, where the

device gets larger as we go down the tiers, can be sub-optimal for some costs and

workloads. Especially when the budget is high, non-pyramidal tier sizes can be opti-

mal 85% of the time on average. As the tier-2 cache device and backing store get faster

and cost limits increase due to demanding performance requirements, the usefulness

of non-pyramidal tier sizes also increases. Therefore, multi-tier cache design should

consider the larger space of possible configurations, making hit-miss ratio curves and

an algorithm such as Cydonia critical to multi-tier cache design.



35

Result: Size array
// Inputs:

1 rdhist← the reuse distance histogram;
2 C← cost limit ;
3 MTcache← list of devices at each tier ;
4 step← step-size ;
5 evalmax ← maximum number of evaluations ;
// Initialization:

6 OGratio← overhead-gain ratio of MTcache ;
7 HMRC← hmrc (rdhist, C);
8 T1MAX ← size of tier 1 of MTcache costing C ;
9 LATST ← eval(T1MAX, 0, MTcache, rdhist);

10 HMRCsort ← array of indices into HMRC, sorted by corresponding HMRC value where
HMRC ¿ OGratio ;

11 T1← HMRCsort[0] ;
12 CT1 ← cost of T1 ;
13 CT2 ← cost of C− CT1 ;
14 T2← max T2 size of cost CT2 ;

// Evaluate highest hit/miss ratio

15 LAT← eval(T1, T2, MTcache, rdhist);
// Decide whether to search larger or smaller

// tier-1 sizes

16 if LAT < LATST then
17 OPTT1 ← T1 ;
18 OPTT2 ← T2 ;
19 LATMIN ← LAT ;
20 T1LIST ← HMRCsort where HMRCsort ¡ T1;

21 else
22 OPTT1 ← T1MAX ;
23 OPTT2 ← 0 ;
24 LATMIN ← LATST ;
25 T1LIST ← HMRCsort where HMRCsort ¿ T1;

// Evaluate sizes in order of hit/miss ratio

26 EVALCOUNT ← 1;
27 for T1index ← 0 to len(T1LIST), T1index+ = step do
28 T1← T1LIST[T1index] ;
29 CT1 ← cost of T1 ;
30 CT2 ← C - CT1 ;
31 T2← size of tier 2 of MTcache costing CT2;
32 LAT← eval(T1, T2, MTcache, rdhist);
33 if LAT < LATMIN then
34 OPTT1 ← T1 ;
35 OPTT2 ← T2 ;
36 LATMIN ← LAT ;

37 EVALCOUNT ← EVALCOUNT + 1;
38 if EVALCOUNT == EVALMAX then
39 break ;

40 return OPTT1, OPTT2, LATMIN ;
41

42

Algorithm 1: Algorithm to generate cost-efficient tier sizes given a work-
load, MT cache configuration, and cost limit based on user-defined step
size and evaluation limit.



36

Chapter 4 Large Scale Study of MT Caching
Using Trace Replay

4.1 Introduction

To support fast response times for workloads with large working set sizes, block

storage systems require large caches. The maximum throughput for a given workload

and a storage server is obtained when the DRAM fits all the blocks accessed in the

workload [29]. DRAM is limited in size and expensive, using a DRAM large enough to

fit the working set size is rarely possible and is likely wasteful. A DRAM cache, which

we will call single-tier (ST), can potentially be extended with an additional SSD tier

to form a multi-tier (MT) cache to increase throughput while reducing performance

per dollar cost, the DRAM footprint [33, 56, 76] and potentially the energy footprint.

A plethora of storage devices with varying performance and cost characteristics

can be used as tier-2 caches and backing stores. The choice of tier-2 and backing

store devices influences how throughput is impacted when a tier-2 cache is added.

But the tier-2 cache must be appropriately sized; in fact, we have found that adding

an undersized tier-2 cache can lead to a hierarchy that has lower throughput compared

to not having a tier-2 cache at all.

A common approach to analyzing single-tier cache performance is to construct

Miss Ratio Curves (MRCs), which characterize miss ratios for a given workload as a

function of cache size and replacement policy [97, 79]. To model multiple cache tiers,

eMRC [57] extended single-tier MRCs to calculate miss-ratio surfaces, and employed

simple models of cache throughput that assume performance improves linearly with

hit ratio.

In Chapter 3, we evaluated 106 block storage workloads with 16 combinations



37

of tier-1 cache, tier-2 cache, and backing store to evaluate the effectiveness of MT

caching. The miss ratio at each tier, the vendor reported performance of each de-

vice along with its retail cost was used to determine that MT caches can improve

performance and cost efficiency of block storage servers. We identified that a large

performance gap between cache tiers and backing store along with workloads with

high tier-1 miss ratio favored MT caching. We found that non-pyramidal tier sizes,

where a fast, expensive tier-1 cache can be followed by a smaller, slow, but cheap

tier-2 cache can improve performance and cost efficiency of the storage server. How-

ever, these findings are based on simulation and analysis, which are fast but make

some assumptions that make them more prone to error than physical experiments.

We assume that device performance is static and largely ignore the role request rate

plays in latency of cache tiers and backing store.

To better understand the effect of the request rate on the performance of MT

caches and validate our finding from Chapter 3, we implemented a block-trace replay

framework that measures the performance of the various components of the block stor-

age system. We ran thousands of experiments on physical hardware, which amounts

to several years of compute time, while varying the cache configurations, machines,

and workloads. In this chapter, we present the results of those experiments, including

analyses of the overhead of adding a tier-2 cache, the effect of request rate on MT

cache performance, the size of tier-2 cache required to improve performance, and of

the cost implications of such configurations. It is not trivial to predict whether adding

a tier will help, because it depends on the interaction of multiple devices that have

their own parameters and complexities. Therefore, we used data from block-replay

experiments to train a decision tree (DT) machine learning model to make this pre-

diction (see Section 4.3.9 for details). Given block workload features and proposed

sizes for both tiers, the model predicts whether the configuration with these sizes

would outperform a single-tier cache with the same tier-1 size.



38

When evaluated under varying performance improvement thresholds, the decision

trees for machines c220g1 and c220g5 achieved mean accuracies of 88% and 90%,

precisions of 88% and 89%, and recalls of 88% and 87%, respectively. Decision trees

support quick inference using simple features generated from the trace; they are

also explainable and interpretable, which helps a storage designer understand the

conditions under which adding a given tier-2 cache will improve performance.

We explored the following questions to understand when to use a tier-2 cache:

(1) What combination of devices favors multi-tier caching? What tier sizes are

performance-efficient? (2) Are multi-tier caches dollar-cost efficient? (3) How do

we pick tier sizes? How do those sizes influence the performance and cost of a multi-

tier cache? (4) Do tier sizes need to be pyramidal, where larger and slower cache tiers

follow a smaller and faster tier? Our results reveal the ways in which the performance

differences between storage devices in a given machine and the selection of tier sizes

influence the cost and performance of multi-tier caches.

This chapter makes three key research contributions:

1. We implemented a framework that measures the performance of different com-

ponents for both single-tier and multi-tier caches. We replayed 13 represen-

tative production block traces on three classes of bare-metal cloud machines,

consuming a total of 7.3 compute years. We have derived insights from the data

collected regarding the types of machines and tier sizes to use to maximize the

benefits from MT caching and avoid poor configurations, such as when adding

a second tier hurts performance.

2. Our experiments validated that the conventional wisdom of using a pyramidal

scheme for tiered caching is not always the best way to trade off performance

and cost; for example, if the cost of DRAM is 6× that of tier 2 cache, then over

90% of MT caches with non-pyramidal configurations were more cost-effective



39

than ST caches with larger tier-1 sizes.

3. We have trained decision-tree models for machine c220g1 and c220g5 that can

infer whether adding a tier-2 cache to an ST cache will improve performance,

for a given workload and tier-1 size, with average weighted precision of 88%

and 89%, recall of 88% and 87% across different performance improvement

thresholds.

4.2 Design and Implementation

To study multi-tier cache performance, we designed and built a trace replay and

measurement framework to study the influence of workload, machine, and cache con-

figurations on cache performance. Trace replay is the most accurate method to assess

the performance of a block storage system for a given workload. We implement

a replay framework for block traces that tracks live statistics during trace replay

and aggregate statistics once the replay is completed. We replayed 13 representa-

tive production workloads on 3 classes of bare-metal cloud machines while varying

the cache configurations. Statistics collected during replay include measurements

of performance of memory allocation, find function, tier-2 read/write, backing store

read/write, and more. The recorded performance along with the workload properties

will help us better understand the impact of adding a tier-2 cache on the performance

of a block storage system. Using workload features and performance metrics collected

during replay, we trained a decision tree that predicts whether adding a cache tier

will improve performance. In this section, we will start with a brief overview of the

design followed by a description of each component of the replay framework.

4.2.1 Overview

Figure 4.1 shows that the replay framework is made up of three main compo-

nents: replay application, cache, and storage. The replay application is responsible



40

Replay Application

block trace, replay rate, queue size

Cache Storage

Block Storage System

T1 & T2 cache size asynchronous, direct I/O

CacheLib libaio

Figure 4.1: Block-trace replay framework design.

for tracking a block request from its creation, when its read from the block trace, to

its conclusion, when all the required bytes are processed and the statistics updated.

To successfully process all bytes requested in a block request, the replay application

communicates with the cache and storage as required. It uses CacheLib, an open-

source cache engine, and libaio to communicate with the two main components of

a block storage system, cache and storage, respectively. The block cache can be

DRAM-only (ST) or DRAM and SSD (MT) and the backing store can be HDD or

SSD. The following sections will describe each component of the replay framework in

detail.

4.2.2 Replay Application

The goal of the replay application is to stress the block storage system according

to the block trace and to track the necessary statistics. To track temporal statistics

such as latency, we used the total cycle count of the CPU during the lifetime of the

block request. On modern CPUs, the instructions ”rdtsc” and ”rdtscp” can be used

to track the cycle count between two points in the code [4]. The cycle count recorded

from the CPU will have a higher resolution than the traditional method of getting



41

time from the OS. The cache operates in block-sized units; for our experiments, we

used 4KB cache blocks. A pending request queue tracks all the block requests being

processed in the system. Each block request is processed asynchronously, and the

number of requests that can be processed at the same time is equal to the size of

the pending queue. To fulfill its function, it relies on three different types of threads:

replay, block request processor, and backing request processor.

Replay A single replay thread is used to read block requests from the trace and

add them to the queue of pending requests. Using a single thread ensures that the

order of submission of requests to the block storage system is the same as the block

trace. Once the block request is read from the trace, there is a waiting time equal

to the inter arrival time (IAT) before adding the block request to the pending queue.

Replaying block requests with a low IAT can be impossible if the IAT value is less

than the time it takes to read a block request from the trace. To avoid this, we read

block requests in batches if the requests have a low IAT. The framework also supports

stressing the system by replaying traces faster than their IAT. There are two ways to

accelerate trace replay and not follow the IAT of the trace for all block requests. The

first is that if the application queue is empty, we ignore the IAT and issue the next

request immediately; doing so allows us to skip idle times in the trace. The second

method is to use a user-defined replay rate, which divides all IATs of block requests

by this value. Thus, a replay rate of 1×, used for most of our experiments, means

that the trace will be replayed with its original IATs, while a rate of 2× doubles the

replay speed by halving the IATs. If the queue of pending block requests is full, the

application waits for an empty slot before issuing the next request; no requests are

dropped.

Block Request Processor Processor threads read requests from the pending block

request queue and fetch the necessary data from the system. The I/O requests in



42

the block traces were recorded using a 512-byte sector size, and the size of a cache

block is 4KB, so a single request can span an arbitrary number of blocks. Thus,

the replay application first converts the request into a list of all blocks it affects.

For writes, since we are evaluating a write-through cache, we invalidate all cached

blocks accessed by the write request until data are persisted to the backing store and

then inserted into the tier-1 cache. If the write is not page-aligned, we also read

the misaligned page from the cache or backing store into the tier-1 cache. The write

is then asynchronously submitted to the backing store. For reads, the application

checks whether all the pages required to satisfy the request are in the cache and

fetches any missing ones from the backing store, using a single request if the pages

are consecutive. If one or many blocks belonging to a block request require access to

the backing store, requests to the backing store are made, and the request is added

to the list of pending requests. A block request is considered complete when all pages

related to the request are read from the cache and/or backing store, after which it is

removed from the list of pending requests.

Backing Store Processor The backing store processor threads check for the com-

pletion of any asynchronous IO that was submitted to backing store. The backing

store request contains metadata like the timestamp of submission and the ID of block

request to which it belongs. The thread tracks the latency of the request to the

backing store and updates the status of the block in the corresponding block request.

If all the blocks related to the block request have been completed, the thread tracks

the latency of the request and removes the request from the list of pending block

requests.

4.2.3 Block Storage System

The block storage system consists of a cache and backing store.



43

Cache design We used CacheLib [21], an open-source caching engine, to implement

the cache, which can be single-tier (memory-only) or two-tier (memory and SSD). The

performance of a caching system depends on its configuration; in our work we focus

on the following parameters: page size, replacement policy, cache admission policy,

write policy, number of tiers, and tier sizes. We chose 4KB pages because that is the

most common I/O size for modern storage devices and file systems [70, 111].

In all experiments, we used an LRU replacement policy, since it is widely used and

has a convenient inclusion property : given the same input sequence and replacement

policy, elements in a cache of size n would also be present in a cache of size n + 1.

We used LRU in both cache tiers (however, see Cache admission policies below).

Tier sizes govern the sizes of tiers 1 and 2. Traditionally, both CPU and storage

caches have been configured in a pyramidal arrangement where each successive (lower)

tier is slower and larger than the one above [68]. Although pyramidal caches have

convenient mathematical properties, we found that the conventional configuration is

not always the best choice; for some workload and device combinations, it may be

better to violate that arrangement and instead create a non-pyramidal hierarchy (see

Section 4.3.5).

Cache admission policies control the actions after a miss or hit in each tier; they

indirectly determine the overall latency for each tier in the multi-tier cache. Admission

policies can be broadly classified as (i) inclusive, where any object admitted to tier 1

is also admitted to tier 2, and (ii) exclusive, where an object is admitted to tier 2

only when it is evicted from tier 1. In exclusive caches the object can be admitted

to tier 1 either when there is a miss on both tiers, or when it is found in tier 2.

In all our experiments, we focused on an exclusive admission policy to reduce the

overhead of duplicated cache entries and to explore non-pyramidal configurations;

an inclusive policy makes non-pyramidal caches impossible because by definition an

inclusive second tier must be at least as large as the first. Thus, in our two-tier



44

experiments every eviction from tier 1 is admitted to tier 2.

Because we used CacheLib to implement our caches, our admission and eviction

policies are controlled by that package. CacheLib maintains a 4KB page size in tier 1,

but tries to preserve SSD lifetime by using 16MB regions in tier 2. One tier-2 region

is active at any given time and is used to collect 4KB pages as they are evicted

from tier 1; those pages are written sequentially into the active region regardless of

their placement in the address space, so that each 16MB region contains a mix of

(relatively) recently referenced pages that may not share spatial locality. When the

active region is full, it is moved to the head of the tier-2 LRU list, and the region at

the end of the list is discarded and becomes the new active region.

A page hit in tier 2 causes the relevant page to be removed from its 16MB region

and brought back into tier 1; this does not require any tier-2 writes because the

metadata is kept in main memory. At the same time, that region is returned to the

head of the tier-2 LRU list. This means that all of the other 4KB pages that were

clustered with the newly promoted page will effectively be marked as having been

referenced recently; this effect is reasonable because those other pages necessarily

have similar last-reference times and thus have roughly similar temporal (though not

spatial) locality. However, it does mean that the tier-2 cache only approximates true

LRU behavior.

The write policy of a cache dictates how data is stored and moved between the

various cache tiers and the backing store after a write. In our experiments, we used a

write-through policy, which writes the data to tier 1 and asynchronously flushes them

to the backing store (bypassing tier 2, in the multi-tier case); a request is marked

complete when the asynchronous write has persisted. This ensures durability, which

is critical in storage systems; in our case, it also maintains exclusivity. We use direct

I/O to write to the backing store, thus bypassing the file system page cache.



45

Storage system We use Ubuntu 20.04 and Ext4 for all our experiments. The

storage system uses libaio to submit asynchronous I/O requests directly to backing

storage, avoiding the file system and OS page caches. Asynchronous requests do

not block the program while the request is processed, allowing threads to process

additional block requests while other I/Os are pending. We use dd to sequentially

create a large file in the backing store to act as a disk; we submit I/Os directly to this

file at the correct block offset. The size of the file might be insufficient for a workload

where a large range of offsets are accessed; in that case we use the offset modulo the

file size. However, as discussed in Section 4.3.2, this design limitation had a negligible

effect on our analysis and conclusions.

4.3 Evaluation

We focus our evaluation on insights derived from trace replay and on the accuracy

of our decision-tree model under varying constraints. We begin by presenting details

of our test bed, workloads, and experiments. Then we describe the insights we de-

rived from those experiments. To help system administrators maximize the benefits

and avoid the pitfalls of MT caching, our investigation considers the following ques-

tions: (1) [Section 4.3.4] What is the overhead of adding a cache tier? What factors

influence the overhead when a second-tier cache is added? (2) [Section 4.3.5] What

combinations of tier devices and tier sizes improve throughput? Does the tier-2 cache

have to be larger than the tier-1 cache to improve throughput compared to an ST

cache? (3) [Section 4.3.6] How many of the evaluated MT caches were cost-effective,

and for what relative cost of tier-1 and tier-2 caches? How does the relative cost of

tier-1 and tier-2 caches affect the fraction of multi-tier caches we found to be cost

effective? (4) [Section 4.3.7] How does an application parameter like queue size

influence MT cache performance (measured by throughput)? Do insights regarding

tier sizes and device combinations hold when the queue size is changed? (5) [Sec-



46

Name CPU Memory T2 Device Disk

c220g1 2 Intel E5-2630 v3 8-core CPUs 128GB ECC DDR4 1866MHz Intel DC S3500 480 GB SSD Seagate 10K RPM 1.2 TB HDDs
c220g5 2 Intel Xeon Silver 4114 10-core CPUs 192GB ECC DDR4 2666MHz Intel DC S3500 480 GB SSD Seagate 7.5K RPM 1 TB HDDs
r6525 2 32-core AMD 7543 256GB ECC DDR4 3200MHz 1.6TB NVMe SSD Intel DC S3500 480 GB SSD

Table 4.1: CloudLab machines and specifications used for our experiments, from
CloudLab’s Web site.

tion 4.3.8] How does the request rate influence the throughput of an MT cache relative

to an ST cache with the same tier-1 size? Do insights regarding tier sizes and device

combinations hold when the request rate of a workload is changed?

Finally, in Section 4.3.9 we present the results of our evaluation of the decision-

tree model and the criteria that the tree uses to predict, with high accuracy, whether

or not to add a cache tier.

4.3.1 Physical Testbed Setup

We performed our evaluation on three different classes of bare metal servers in

CloudLab; see Table 4.1 for details of their configurations. Machines c220g1 and

c220g5 used the same SATA SSD tier-2 device, but differed in (i) the backing-storage

device, Seagate 10K RPM HDD vs. a 7.5K RPM HDD, and (ii) the memory speed,

1866MHz vs. 2466MHz. The machine r6525 used a SATA SSD as its backing store, an

NVMe SSD as tier-2 cache, and 3200MHz DDR4 memory. The SATA SSD used as a

backing store by machine r6525 is identical to the SATA SSD used as a tier-2 cache by

c220g1 and c220g5. The performance difference between the tier-2 cache device and

the backing-store device is highest on machine c220g5, followed by machines c220g1

and r6525, respectively. We found that this difference has a significant impact on the

performance of MT caches relative to ST caches.

4.3.2 Workloads

For our evaluation, we used the CloudPhysics traces as described in Section 2.3.

Ideally, we would have liked to evaluate all 106 of those traces. However, replay-

ing them all under various replay-rate and queue-depth settings for both single-tier



47

(ST) and multi-tier (MT) caches would have been prohibitively expensive (about

10× longer than the 7.3 compute years we have already consumed); more impor-

tantly, processing traces with similar features would not have necessarily revealed

new insights. Therefore, we opted to select a subset of traces that were representative

of the statistical distribution of the complete set.

To choose that subset, we used clustering to find similar groups of traces based

on 184 predefined features summarized in Table 4.2. One machine-learning rule of

thumb for handling the so-called “curse of dimensionality” is that, for each feature in

a dataset, there should be at least 10 samples [10, 90]. However, we have 106 work-

loads and 184 features, so we used an autoencoder [52] to reduce the 184 features

to 10 features. An auto-encoder is a deep-learning model that learns to recreate the

data points from a fixed-size latent space. Formally, a latent space refers to an ab-

stract multi-dimensional space containing features that we cannot interpret directly,

but which encodes a meaningful internal representation of externally observed data

points. Hence, learning a latent space is akin to dimensionality reduction and aims

to capture the most important patterns required to learn and reconstruct the original

data points. In short, the autoencoder maps the latent space in a continuous manifold

(mathematical object that in each point appears to be flat [30]), ensuring that data

points of the same cluster are mapped together. We used those 10 features to cluster

the 106 traces using hierarchical clustering. The ideal number of clusters was identi-

fied using the elbow method [81], which selects the inflection point in the distortion

curve and uses that as an indication that the underlying model fits the data points.

Distortion measures the quality of the clustering process, low distortion means that

the data points tend to be placed near the centre of the cluster. A distortion curve

represents the distortion values per number of clusters considered. After applying the

elbow methods, we got 14 clusters. For each cluster, we selected the trace closest to

the cluster’s center to represent that cluster.



48

Feature Description

Request Count Read/write block request count

Total I/O Requested Total read/write I/O in bytes requested

I/O Range
Difference between the maximum and minimum offset ac-
cessed

Sequential Count Number of sequential block requests

Total I/O Misalignment Total bytes that are not page aligned

Working Set Size Read/write working set size

Block Request Size Rd/Wr block request sizes (percentiles)

Jump Distance
Percentiles of difference in end offset and start offset of con-
secutive requests

Scan Length Percentiles of length of consecutive writes or cold read miss

Inter-arrival Time Percentiles of inter-arrival time between block requests

Page popularity Read/write page popularity (percentiles)

Table 4.2: Workload features used to group workloads.

Using this procedure, we selected the following 14 traces from the CloudPhysics

set: w11, w14, w18, w20, w32, w36, w46, w47, w53, w54, w68, w81, w82, and w98.

Table 4.2 displays a few characteristics relevant to this work for an illustrative subset

of these traces. In the end we had to drop workload w54 from our evaluation because

it had block requests to offsets much larger than 1TB, which were out of range for

the HDDs available in the CloudLab machines we were able to use. Therefore, our

final list includes 13 representative traces.

To handle out-of-range block offsets, we had three choices: we could wrap the

offsets using modulo arithmetic, ignore the requests with the large offsets, or eliminate

the offending traces entirely. We chose to eliminate trace w54, because it had offsets

of up to 36TB and more than 98% of them were greater than 1TB. However, we kept

trace w53 but wrapped its offsets for all experiments involving this workload; it was

the only other trace with offsets over 1TB: it had offsets up to 1.6TB but only 8% of

them exceeded 1TB. We do not feel that using this wrapping policy for a single trace

substantially affects our analysis or conclusions.



49

c220g1
0.00

0.05

0.10

0.15

La
te

nc
y 

(m
s)

c220g5
Find

r6525 c220g1 c220g5
Alloc

r6525

Figure 4.2: The increase in find (left) and alloc (right) latency when adding a
tier-2 cache, for all machine classes.

4.3.3 Experimental Methodology

We run 18,594 experiments on three different classes of machines, using the 13 rep-

resentative workloads, and various cache configurations, totaling 7.3 years of compute

time. We ran three iterations of each experiment, resulting in 6,198 experimental sets.

We use the mean of each metric in our evaluations. The results were fairly stable;

the mean percentage difference in throughput in the iterations was merely 0.1%.

4.3.4 Multi-Tier Overhead

In our experiments, we tracked the latency of each find and alloc CacheLib

API call and computed the latency percentiles. alloc allocates space in the cache

when a new item has to be inserted; find checks whether an item is in the cache

and returns it if found. The latency of find and alloc inherently increases when

we add a second cache tier: find because both tiers must be searched, and alloc

because data evicted from tier 1 must be moved to tier 2 rather than simply being

discarded. Figure 4.2 shows the increase in latency that we observed when we added

a tier-2 cache, in 434 experiments with identical parameters across three machine

classes listed in Table 4.1. The first three plots show the distribution of increases in

find latency when a tier-2 cache was added, and the last three show the distribution



50

of increases in alloc latency. The width of the violin plot at each Y coordinate

represents the number of data points at that value. We can see that the difference

in find latency across machine classes was smaller than that for alloc latency, and

that the latency of alloc is more sensitive to the machine class. Machine r6525,

which has the fastest DDR4 memory, had much smaller alloc overhead because the

internal data structures maintained in DRAM can be updated much more quickly.

Machine c220g1 had higher find and alloc overheads because it has the slowest

DDR4 memory of the three. This shows that a machine with faster memory will have

lower overhead when a tier-2 cache is added. However, machine r6525 had the worst

find latency because it processes block requests at a much higher rate than machines

c220g1 and c220g5, since machine r6525 has the fastest memory (3200MHz) and

backing store (SATA SSD). A workload that puts pressure on the application queue,

which leads to high queuing time when it is replayed on machines c220g1 and c220g5,

might not stress machine r6525 as much because cache hits and misses are processed

much faster on that platform. Processing requests faster leads to serving more find

and alloc requests in a shorter time, which increased the mean latency of find on

machine r6525 even though it has the fastest memory. However, we can see that the

low overhead of alloc on machine r6525 made up for the high overhead in find,

and overall, machine r6525 has the lowest overhead compared to c220g1 and c220g5.

For a tier-2 cache to improve performance, the overhead introduced by adding

it must be offset by the latency gain from tier-2 cache hits. To highlight that fact,

Figure 4.3 shows the latency differences between the tier-2 cache and the backing

storage, for both reads and writes. The largest read-latency difference appeared in

c220g5 because it had the slowest backing store (a 7.5K RPM HDD). The larger

latency gain from tier-2 read hits and the lower overhead from adding a tier-2 cache

made c220g5 a better fit for improving performance by adding a tier-2 cache than

either machine c220g1 or r6525. Machine r6525 uses a SATA SSD as its backing store



51

Read
0

100

200

300

400

500

La
te

nc
y 

(m
s)

c220g1
Write Read

c220g5
Write Read

4

3

2

1

0

1

La
te

nc
y 

(m
s)

Write
r6525

Figure 4.3: The differences in read and write latencies of tier-2 caches and backing
store across three machine classes, c220g1 (left), c220g5 (middle), and r6525 (right).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T2 Size (GB)

7
6
5
4
3
2
1

T1
 S

ize
 (G

B)

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Latency (ms)

Figure 4.4: Heatmap showing the means of average latency values of experiments
with different tier sizes.

and an NVMe SSD for the tier-2 cache, so its tier-2 hits result in the smallest gain in

read latency, making it poorly suited to multi-tier caching. That conclusion is further

reinforced by the fact that the write performance of the NVMe SSD suffers from high

load when it is used as a tier-2 cache, to the point where it performs worse than the

SATA SSD backing store as shown in Figure 4.3.



52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T2 Size (GB)

7
6
5
4
3
2
1

T1
 S

ize
 (G

B)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Latency (ms)

Figure 4.5: Heatmap showing means of p99 latency values of experiments with dif-
ferent tier sizes.

Figures 4.4 and 4.5 show, respectively, heatmaps of the means of (i) mean and (ii)

the p99 latency of the sum of find and alloc calls across different tier sizes. For

example, in Figure 4.4 we can see that small tier-2 sizes such as 1GB and 2GB see the

largest sum of find and alloc latency (dark box = high latency), while large tier-2

sizes see comparatively lower latency (light box = low latency). Unsurprisingly, we

can see that when both cache sizes are small, latencies tended to be high—especially

the p99 values. Overall, we found that specific device parameters (for memory, tier 1,

tier 2, and backing store) and tier sizes all influenced the overhead and hence any

performance gain when a tier-2 cache was added. We can also see that a fast tier-1

cache and a slow backing store were both favorable for MT caching; this is because a

fast tier-1 cache ensures that the additional internal metadata structures needed to

support an added tier-2 cache can be accessed more quickly, and a slow backing store

implies that there will be a large latency benefit from tier-2 cache hits. In summary,

the larger the performance gap between the tier-1 cache and the backing store, the

likelier it was that adding a tier-2 cache would improve performance.



53

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
T1 Size (GB)

0

20

40

60

80

100

120

T2
 S

ize
 (G

B)

ST Pyramidal MT Non-pyramidal MT

(a) Improvement ≥ 10%

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
T1 Size (GB)

0

20

40

60

80

100

120

T2
 S

ize
 (G

B)

ST Pyramidal MT Non-pyramidal MT

(b) Improvement ≥ 20%

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
T1 Size (GB)

0

20

40

60

80

100

120

T2
 S

ize
 (G

B)

ST Pyramidal MT Non-pyramidal MT

(c) Improvement ≥ 30%
Figure 4.6: The best cache types for different tier sizes and minimum desired perfor-
mance improvements (10%, 20%, and 30%). ST means that not having a second tier
at all was best. When a second-tier cache improved performance, we compared the
sizes of the tiers and classified them as pyramidal if the size of tier 2 was larger than
that of tier 1, and as non-pyramidal otherwise.

4.3.5 Pyramidal Multi-Tier Caches

As shown in Figure 1.1, a pyramidal cache follows the convention that each suc-

cessive tier is larger and slower than the preceding one, while a non-pyramidal cache

does not strictly follow that arrangement. In this work, we examined non-pyramidal

configurations in which lower tiers could be smaller than higher ones; we did not

investigate violations of the speed hierarchy.

We evaluated a total of 6,198 caches, of which 1191 were ST caches, 3946 were

pyramidal MT caches, and 1061 were non-pyramidal MT caches; we evaluated them

across 3 machine classes, using a diverse set of tier sizes and application parameters.

We evaluated 1,859 caches on machine c220g1, 564 on c220g5, and 3,775 caches on

r6525. The difference in the number of evaluated points between machine classes

is largely based on the number of machines of each machine class type available in

CloudLab, its availability over time, and the speed at which the machine can replay

the workload. The figures referred to in this section use data from machine c220g1

because it completed the most experimental points; c220g5 has fewer points because of

the smaller number of evaluations conducted. Machine r6525 had only a few instances

where MT caches improved performance even though the evaluation set was large.

The splits of percentages in MT-vs.-ST comparisons that favored ST, pyramidal



54

MT, and non-pyramidal MT for the three machine classes are shown below:

Machine: c220g1 c220g5 r6525

# Comparisons 1,351 402 3,017
Favored ST 38% 45% 97%
Favored Pyramidal MT 53% 31% 2%
Favored Non-Pyramidal MT 9% 24% 1%

The number of comparisons is lower than the number of caches evaluated for

each machine because some of the caches evaluated were ST caches, we needed to

compare to MT caches. We see that favorable non-pyramidal configurations exist even

for machine r6525, which generally did not favor adding a tier-2 cache. The mean

increases in throughput when pyramidal and non-pyramidal MT caches improved

performance over an ST cache were 81% and 90%, respectively, for machine c220g1,

68% and 176% for machine c220g5, and 33% and 23% for machine r6525.

Thus far, we considered the smallest increase in throughput as an improvement.

However, real world users would consider workload variation and cache-tuning costs,

thus preferring a minimum performance-improvement threshold. Figure 4.6 shows,

for machine c220g1, whether a multi-tier cache with given tier-1 and tier-2 sizes

improved performance by more than a given percentage threshold compared to its

single-tier counterpart. We see that the number of multi-tier configurations shrank

as the performance threshold increased. Interestingly, the tier sizes change from

performing better in MT configurations to performing better with just a single tier as

we go from left to right in Figure 4.6; these changes appear at both low and high tier-1

sizes. Configurations in the region with tier-1 sizes of 9–15GB and tier-2 sizes greater

than 20GB stayed pyramidal MT even at high performance thresholds in Figure 4.6.

This aligns with our observation in Section 4.3.4 that MT caches with small tier-1

sizes have higher overhead and are less likely to outperform MT caches with medium

and large tier-1 sizes. However, MT caches with large tier-1 sizes absorb most of the

cache hits in tier 1, limiting the number of tier-2 cache hits and thus reducing the

performance improvement available from adding a tier-2 cache; thus, multi-tier caches



55

2 4 6 8 10
Cost Ratio

0.0

0.5

1.0

CD
F

pyramidal
non-pyramidal

Figure 4.7: The CDF of cost ratios for machine c220g1. A low ratio means that the
MT cache was more cost-effective than the ST cache it was compared to. The CDF
shows the percentage of pyramidal and non-pyramidal MT caches found to be more
cost-effective than ST ones, for varying relative tier-1 and tier-2 costs. For example,
around 70% and 90% of pyramidal and non-pyramidal configurations, respectively,
were more cost-effective when the tier-1 cache cost 6× more than the tier-2 cache.

with large tier-1 sizes become less preferred as the required improvement increases.

4.3.6 Lowering Costs

Even if adding a second-tier cache improves performance, that does not mean

that it also reduces costs. For example, it could be cheaper to increase the size of the

single-tier cache than to add a second tier. For example, consider an MT cache, M ,

with a 5GB first tier and a 20GB second tier, that outperforms a 5GB ST cache, S1.

Now we compare M with a 10GB ST cache S2. If M also outperforms S2, it means

that it may be cheaper to add a 20GB tier-2 cache than to increase the first tier from

5GB to 10GB. Thus, if the cost of 20GB of tier 2 equals the cost of adding 5 GB to

tier 1, then it is better to purchase the second tier than to expand the first; we thus

call the ratio of the two sizes the cost ratio, which in this example would be 4. As

long as the tier-1 cache costs 4× the tier-2 cache (or more), adding the tier-2 cache

and using configuration M would be cheaper than increasing the tier-1 size and using

configuration S2.

We considered scenarios where a storage operator has to choose between increasing

the size of the tier-1 cache or adding a tier-2 cache. To evaluate such scenarios, we

compared each MT cache that outperformed its ST counterpart to an ST cache with



56

a larger tier-1 size. If the MT cache outperforms an ST cache with a larger tier-1 size,

then adding a tier-2 cache is cost-effective for some values of the ratio of cost between

tier-1 and tier-2 devices. We collected the cost ratios for all such comparisons and

computed a CDF; Figure 4.7 shows that CDF for both pyramidal and non-pyramidal

multi-tier caches on machine c220g1. Machines c220g1 and c220g5 had similar CDFs

when we compared experiments using identical parameters (queue size, tier-1 size,

tier-2 size, and replay rate) but we report results only for machine c220g1 because we

have twice as many data points for it than we have for c220g5. We excluded machine

r6525 because in most cases it did not offer improved MT performance compared to

single-tier caches. The current market cost of the tier-2 cache device used in c220g1

and c220g5 is approximately 6× cheaper than RAM [14, 11, 12]. We see that for

c220g1, non-pyramidal configurations are more likely to be cost-efficient; we observed

similar results for c220g5. Assuming that the cost ratio is indeed 6×, around 30% of

pyramidal MT caches had cost ratios of 6 or above, thus at current prices, around

30% of the pyramidal MT caches would be less costly than ST versions. Similarly,

we found that around 10% of non-pyramidal MT caches would be cheaper at current

market rates.

Finally, we address cost reduction with respect to tier sizes, as shown in Figure 4.8.

The lower the MT cache’s cost ratio, the more cost-effective it is. Thus, we see that

a small tier-1 cache backed up by a large tier-2 cache (i.e., pyramidal configurations)

was the most cost-efficient choice for MT caches. Using a large tier-1 cache with

a fairly small tier-2 size performed poorly and was not cost effective. While non-

pyramidal configurations could also perform well, as shown in Figure 4.7, Figure 4.8

shows that they were not as cost effective as pyramidal MT caches. And although

small tier-2 sizes could improve performance, they were not cost-effective. Instead of

adding a small tier-2 cache, we found that it was better to stick with an ST cache and

slightly increase its tier-1 size. We found that either a pyramidal or a non-pyramidal



57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T2 Size (GB)

7

6

5

4

3

2

1

T1
 S

ize
 (G

B)

2 3 4 5
log(Max Cost Ratio)

Figure 4.8: Heatmap of mean cost ratio for multi-tier caches with different tier sizes
that improve performance when compared to a single-tier cache with the same tier-1
size.

cache could be the least expensive option; but we also found more instances where

pyramidal caches were less costly, especially those with a small first tier and a large

second tier.

4.3.7 Queue Depth

The queue depth, which is the maximum number of pending block requests that

can exist in the application at any given time, impacts the load on the system while

replaying the trace. If the application queue is full, the application pauses further

block requests until queue space is available. The queue depth thus represents the

maximum pressure placed on the block-storage subsystem when replaying a workload.

The ideal queue depth is determined by the characteristics of the machine and

the workload. We changed the queue depth from 128 to 256 for machines c220g1

and c220g5 and from 64 to 128, 256 to 512, and 512 to 1024 for machine r6525. We

prioritized evaluating larger queue depths for machine r6525 because it uses faster

devices than c220g1 and c220g5 for both tier 2 and the backing store (Table 4.1)

and hence could handle more pressure. Our goal was to validate that the insights



58

in Sections 4.3.5 were not limited to the particular application parameters that we

used, but rather were applicable across a diverse set of parameters. We also wanted

to evaluate the queue depth’s influence on the performance of MT caches and its

relative performance to ST caches.

We evaluated 45 MT caches for machine c220g1, of which 11 under-performed ST;

among the 34 that performed better, 11 were non-pyramidal and 23 were pyramidal.

We used both read-heavy workloads (w82 and w77) and write-heavy ones (w47 and

w97). When the queue depth was increased from 128 to 256, 6 MT caches that

improved performance over an ST cache with queue depth of 128 no longer did so

at a queue depth of 256. This shows that queue depth can impact whether or not a

tier-2 cache improved performance.

MT caches running read-heavy workloads saw a greater increase in throughput:

3.3% compared to 0.3% for write-heavy workloads. The relative throughput of MT

and ST caches also saw a larger improvement of 2.8% for read-heavy workloads,

compared to 0.13% for write-heavy workloads. This was because increasing the queue

depth for write-heavy workloads increased the pressure on the backing store and the

tier-2 cache, since more write requests caused more tier-1 evictions and write requests

to the backing store. Conversely, increasing the queue depth of read-heavy workloads

also increased pressure on the tier-2 cache and backing store, but the pressure on

backing store was minimized by read hits from tier-2 cache.

We observed similar behavior with machine c220g5 when we changed the queue

depth from 128 to 256. We evaluated 21 MT caches, of which 9 did not improve

performance over an ST cache at queue depth 128; the 12 that did were evenly split

between pyramidal and non-pyramidal. When the queue depth was increased from

128 to 256, the throughput of write-heavy workload decreased by 0.8% but it increased

by 15.2% for read-heavy workloads, and the relative throughput of MT and ST caches

decreased by 0.6% for write-heavy workloads but increased by 2.23% for read-heavy



59

20 0 20 40 60 80 100
Percent Change in Relative Throughput (MT - ST)  

50

0

50

Pe
rc

en
t C

ha
ng

e 
in

 T
hr

ou
gh

pu
t

w82
w105
w11
w47

w68
w77
w97

Figure 4.9: The influence of changes in the replay rate on the throughput of MT
caches and their throughput relative to ST caches. MT caches with x > 0 are those
whose throughput improved when the replay rate was increased from 1× to 100×.
MT caches with y > 0 saw a throughput increase relative to an ST cache with the
same tier-1 size.

[1 - 10] [10 - 100] [100 - 1000] [1000 - 5000]
Change in Replay Rate

20

10

0

10

 R
el

at
iv

e 
Th

ro
ug

hp
ut

 
 (M

T 
- S

T)

400MB-1GB
400MB-3GB
400MB-6GB

Figure 4.10: The change in relative throughput of 3 MT caches replaying workload
w82 in machine c220g1 when the replay rate was increased. For a given workload and
tier-1 size, increase in replay rate favors MT caches up to a point and then starts to
deteriorate.

workloads. For machine r6525, however, a change in queue depth did not have an

effect on whether an MT cache improved performance over ST, nor did it cause a

significant change in throughput.

4.3.8 Replay Rate

We tuned the replay rate to evaluate performance under different request rates

while preserving the spatial properties of a workload. This allowed us to do a “what-



60

101 102

log(Inter-arrival Time ( s))

0.05

0.10

0.15

CD
F

w47 w11 w68 w77 w82 w97 w105

Figure 4.11: Lower percentiles (1, 5, 10, 15) of inter-arrival time of block requests for
each workload. Lower inter-arrival values impact MT cache performance by increasing
the stress on the storage system.

if” analysis of the effect of request rate and increased stress on MT cache performance.

We used replay rates ranging from 1× to 100×. Although we evaluated intermediate

values, for brevity we report only on the two extremes.

We replayed 68 MT caches on machine c220g1, 17 of which under-performed ST;

among the 51 that performed better, 37 were pyramidal and 14 were non-pyramidal at

a 1× replay rate. We used five read-heavy workloads (w82, w105, w11, w77, w68) and

two write-heavy workloads (w97, w47) to illustrate these findings. The workloads also

varied in their inter-arrival times between block requests (see Figure 4.11). Workloads

w11 and w105 stand out as having larger inter-arrival time values at lower percentiles

values of 1% and 5%. This means that there are fewer request-rate spikes and the

pressure is lower on the system.

We found that non-pyramidal MT caches could improve their performance com-

pared to ST caches at both 1× and 100× replay rates. Compared to their respective

ST caches, 10 MT caches switched from under-performing to improving performance,

and 10 MT caches switched from improving over ST caches to under-performing. This

shows that the request rate is important in determining whether or not to add a tier-2

cache—that decision changed in a total of 20 out of 76 (26%) MT caches evaluated.

All the MT caches evaluated on machine r6525 under-performed ST caches; that did

not change when the replay rate was increased to 100×.



61

Next, we evaluated whether increasing the replay rate improved the throughput

of MT caches and their relative throughput compared to ST caches. Figure 4.9 shows

the change in throughput of MT caches on the Y axis and, on the X axis, how the

difference in throughput between MT and ST caches changed when the replay rate

was changed from 1× to 100×. The upper-right quadrant, for example, represents

the MT caches where both throughput and relative throughput improved when the

replay rate was increased. The lower-right quadrant represents those caches where the

throughput decreased but the relative throughput rose. Overall, we see that different

workloads reacted differently to increases in replay rate. However, workloads w11 and

w105 stood out: even their smallest inter-arrival times were much larger than those

in other workloads as shown in Figure 4.11. Consequently, they showed the largest

improvements in throughput and relative throughput difference. The two MT caches

evaluated for w11 already outperformed an ST cache by 70% and 90%; when the

replay rate was increased to 100×, those MT caches outperformed the ST versions

by 152% and 190%, respectively. However, the 4 MT caches for which we replayed

workload w105 had 18.5% lower throughput than ST caches at a 1× replay rate, but

at 100× they had 5% higher throughput than ST.

These experiments showed that increasing the replay rate favored MT caches

over ST caches if the inter-arrival time of the workload was large enough; but if the

workload’s inter-arrival time is already small, then a further increase in replay rate

favored ST caches. However, it does not mean that if the replay rate continues to

increase, the relative performance difference between ST and MT caches continues

to improve. Figure 4.10 shows that relative throughput between MT and ST caches

increased when the replay rate increased from 100× to 1,000× but reduced when

replay rate was further increased to 5,000× for machine c220g1. We find that MT

caches do not favor low request rate, as the backing store is underutilized; the gain

from tier-2 read hit is minimal. As the request rate increases, the backing store gets



62

backing_store_iat_p99

miss_ratio t1_hr
<=467565.5 >467565.5

add_tier don’t_add_tier

<=0.05 >0.05

add_tier don’t_add_tier

<=
0.0

1 >0.01

Figure 4.12: Example decision tree to predict whether or not to add a tier-2 cache,
with accuracy of 90%, in machine c220g5.

busier and the performance gain per tier-2 cache hit increases. However, if the request

rate continues to grow, it now starts to hurt the performance of the tier-2 cache, and

the performance gain per tier-2 cache hit reduces. Thus, low request rates do not

favor MT caching, nor do very high request rates. There is a sweet spot where the

backing store is stressed enough, while the tier-2 cache is not, similar to that seen in

Figure 4.10. This sweet spot can differ according to the devices used in the machine.

4.3.9 Decision Trees

We evaluate the machine learning model for two types of machine: c220g1 and

c220g5. Our goal is to achieve high accuracy with decision trees, to reveal the impor-

tant features that influence whether adding a tier-2 cache improves performance. We

evaluate decision trees under different minimum performance improvement thresholds

to show that they work for different requirements. A change in this threshold alters

the binary values that represent whether or not to add a cache tier. For instance,

an MT cache might yield a performance improvement of 2%; when we increase the

improvement threshold from 0% to 3%, the binary target variable for this MT cache

will change from 1 (add a tier) to 0 (do not add a tier).



63

Model Performance On average across performance thresholds of 0%, 3%, and

5%, we achieved 88% accuracy, 87% weighted f1 score, 88% weighted precision, 88%

weighted recall for machine c220g1; and 90% accuracy, 88% weighted f1 score, 89%

weighted precision and 87% weighted recall for c220g5. We describe one such decision

tree in Figure 4.12 for the improvement threshold of 0%. It uses the 99% percentile

of IAT of requests to backing store as the first splitting feature. If the value of inter-

arrival time to backing store is lower than 467,565.5µs then it decided to add a cache

tier if the miss ratio is very low (0.005). So, the decision tree implies not to use a

tier-2 cache if the request rate of workload is high and there are a lot of misses. If

the IAT is higher than 467,565.5µs which implies a low request rate, then we add a

cache only if tier-1 hit rate is low. This implies that workloads with low request rate

require larger tier-2 hit rate to gain performance and make up for the overhead of

adding a tier-2 cache.

We generated many decision trees that use different set of features that gain

high accuracy; however, all decision trees consistently used both hit rate and some

temporal feature—validating our findings of these two features’ importance.

4.4 Discussion

Replacement Policy In this work, we focus on the LRU replacement policy. Al-

though LRU is one of the most widely used replacement policies, other replacement

policies along with variants of LRU provide different benefits. Replacement policies

cannot be simply discarded on the basis of hit rate analysis, as some replacement poli-

cies have lower overhead, which could outperform replacement policies with higher hit

rate and overhead [105, 110]. Alternative replacement policies need to be evaluated

separately for tier-1 and tier-2 cache, as the former is designed to work with DRAM

whereas the latter is designed around flash devices.



64

Tier-2 Optimization The tier-2 cache is designed and implemented to support

flash devices. It contains numerous configuration parameters that are set to reduce

write amplification. Our current evaluation also admits all tier-1 evictions to tier-2.

There may be scenarios in which selectively admitting items to the tier-2 cache could

reduce pressure on the tier-2 device, improving performance even if it causes a slight

dent in the hit rate. The potential for MT caching is higher than what we have even

seen if we start tuning the tier-2 cache parameters. The optimal tier-2 parameters

will depend on the type of device and the workload. Some example parameters of

tier-2 cache parameters are as follows:

Admission rate Tier-2 cache can be configured to randomly admit a limited per-

centage of tier-1 cache evictions. Depending on the potential tier-2 cache hits and the

rate of tier-1 evictions, tuning the admission rate of the tier-2 cache can help improve

overall performance.

Number of clean regions To avoid frequent small writes to flash that degrades

the lifetime of the device. Cachelib batches blocks that are evicted from tier-1 cache

and arranges them into regions sized 16MB by default before flushing them to the

tier-2 flash cache. It maintains a number of clean regions in memory to admit tier-

1 evictions before flushing them to tier-2 cache. If the rate of tier-1 evictions is

high, it could benefit to have more clean regions available to absorb tier-1 evictions

while regions are being flushed to the tier-2 flash device. The size of the region is

also another parameter that can be adjusted. A larger region size would reduce the

frequency of writes, but each flush would take longer to finish.



65

4.5 Related Work

Our work builds upon prior research in several different areas, including hierar-

chical storage systems, MRC construction, workload characterization, and machine-

learning techniques.

Hierarchical storage systems Research on hierarchical storage systems with mul-

tiple caching levels or tiers has primarily focused on solutions tailored to specific do-

mains, such as virtual machines [107, 106, 62, 75], cloud storage [24], and file systems

optimized for multiple tiers [46]. Recent work on non-hierarchical caching [101] has

also found that with some modern storage devices, it is possible to improve aggre-

gate performance by shifting excess load from a performance device (e.g., an Optane

SSD) to a capacity device (e.g., a flash-based SSD). In contrast, we analyze a broad

range of cache properties and sizes, including non-pyramidal configurations, that are

generally applicable to many environments.

Miss-ratio curves Reuse-distance analysis is a powerful technique for character-

izing the temporal locality of workloads, often summarized using miss ratio curves

(MRCs) [60]. Modern spatial sampling techniques, including SHARDS [96], miniature

simulation [97], and AET [40] have dramatically reduced the time and space complex-

ity of MRC construction, enabling practical applications in online systems. Zhang

et al. [109] considered two-tier hierarchies with asymmetric read/write performance

and extended sampling results for MRCs to accelerate simulations.

To model multiple cache tiers, eMRC [57] extended single-tier MRCs to multi-

dimensional miss-ratio surfaces. However, the eMRC algorithm requires convexity,

which limits its applicability to modeling multi-tier cache systems that employ cliff

removal, which is not performed by any production systems. To model multi-tier

throughput, eMRC also assumed that performance improves linearly with hit ratio. In



66

contrast, we demonstrate that real-world performance is significantly more complex,

depending on factors such as request rate and device-specific characteristics that are

not reflected in hit ratios.

Workload characterization Understanding the characteristics of workloads is

critical for evaluating, designing, or optimizing any storage solution. Researchers

often analyze individual traces in an attempt to extract some distinguishing set of

features (e.g., the read-to-write ratio) [51, 59, 80, 17, 102, 25, 94]. Machine-learning

techniques are popular for identifying new features or evaluating the importance of a

pre-determined feature set [73, 72, 65, 83, 87, 59, 17]. These features can then be used

for workload classification [31, 73, 65, 83, 80, 98, 17] and detecting workload phases or

access patterns [72, 83, 69, 16, 73]. Li et al. developed Metis, a framework that uses

customized Bayesian optimization to auto-tune cloud configurations and reduce tail

latencies [51]. Salkhordeh et al. used online workload characterization to classify a

workload as one of five classes, and then determined the optimal cache configuration

based on that class [80].

Machine Learning in Systems Various statistical and ML algorithms showed

that they can make beneficial tuning decisions [8, 7, 9]. Several applications to

caching, including LRB [85], Parrot [53], and Hawkeye [44], have reduced the gap

with Belady’s optimal MIN algorithm [18]. Although MIN relies on knowledge of

future references and is therefore unrealizable, these approaches train predictors to

approximate it using techniques such as gradient boosting machines [34] and imitation

learning [78]. However, as we have demonstrated, hit rates alone are not a reliable

metric for multi-tiered caches, since device characteristics impact the overall request

latency [36, 50].

Other research has developed new ML-based cache-replacement policies. Cacheus [77,

91] switches dynamically between various “expert” replacement policies using re-



67

inforcement learning. GL-Cache [104] demonstrated that fine-grained learning ap-

proaches often incur significant overhead that can result in lower overall throughput,

and developed an algorithm that operates on larger groups of references to amortize

these costs.

4.6 Conclusion

Multi-tier caching provides opportunities to optimize the cost and performance

of some storage systems, but designing them is a complicated problem with a vast

configuration space. We developed a framework that replays block traces and collects

many performance metrics for both single- and multi-tier caches. We used our frame-

work to analyze over 100 production traces, and conducted thousands of experiments

on a representative subset of 13 traces, consuming 7.3 compute years. We trained a

decision-tree model to determine whether adding a tier-2 cache to a single-tier system

can improve performance, and achieved 84% accuracy for machine c220g1 and 90%

for c220g5, showing that these tools can be effective for this predictive task.

Our experiments provided valuable insights. Surprisingly, non-pyramidal two-

tier cache configurations can be more cost- and performance-efficient than single-tier

caches. We discovered that multi-tier caching is typically useful for moderately-

sized caches: adding a tier is often not beneficial when tier 1 is large, as the tier-2

cache is unable to provide enough hits to offset its additional overhead. Conversely,

small cache sizes in both tiers introduce similar overhead but little performance gain.

In addition, the temporal properties of a workload, such as the request rate, can

significantly affect performance in ST and MT caches, and the choice between whether

an ST or MT cache would be be preferable.

Finally, we found that it was not sufficient to characterize multi-tier cache per-

formance using simple approaches such as miss ratios. In real-world experiments,

complexities such as the non-sequential behavior of device queues, flash translation



68

layers, and HDD performance variations led to a disconnect between those metrics

and the observed behavior of a multi-tier cache.



69

Chapter 5 BlkSample: Sampling for Block
Storage Traces

In this chapter, we present the design and implementation of BlkSample, a frame-

work for sampling block requests that create sample traces that are representative of

the full workload. Tracing is used by system administrators to tune systems, identify

performance bottlenecks, and analyze workloads. Although tracing is very helpful,

the overhead, both in time and space, can be substantial enough for system adminis-

trators to avoid it. Modern block storage workloads are intensive with a high request

rate. Tracing such workload, even for a short period of time, can generate a block

trace which consumes a large space and is computationally expensive to analyze.

Sampling is a useful technique to alleviate the overhead of tracing. If we sam-

ple block requests received by a block storage system instead of tracing every block

request, we reduce the size of the resulting trace, which reduces the storage and com-

putational requirements of the analysis. An example where sampling has been used

successfully is in the generation of Miss Ratio Curves (MRC) [96]. Accurate MRCs

were generated using sampling rates as low as 1%. Although the miss ratio has been

used as a proxy for performance, we showed in Chapter 4 that it can be misleading

when used in isolation. Block workloads with identical MRCs can have substantially

different performance if they differ drastically in other features. Features such as

the mean read/write request size, the mean read/write IAT, the mean read/write

misalignment, and the write ratio are integral along with the MRC of the workload.

BlkSample is a framework to create sample block traces from a stream of block re-

quests such that the resulting samples are representative of a diverse set of features,

not just MRC. The small size of the sample coupled with the low error in samples

generated by BlkSample reduces the computation and storage overhead of block trace



70

analysis.

We evaluated BlkSample with a diverse set of workloads. Compared to random

spatial sampling [96], BlkSample generates accurate block trace samples that also

show better replay performance. BlkSample samples regions instead of individual

blocks and processes sample traces using workload features collected during sampling.

The following are the main contributions of this chapter.

1. We show that sampling with larger granularity leads to a significant improve-

ment in sample quality compared to random spatial sampling.

2. We introduce a post-processing algorithm that further reduces the sampling

error by using features generated from eight counters updated during sampling.

3. We show that trace replays of samples generated using BlkSample are more rep-

resentative of the performance of the full trace compared to samples generated

using random spatial sampling.

5.1 Motivation

Tracing in Block Storage Systems. Tracing is used to track different activities in

a system, such as system calls, event logs, network traffic, and block I/O requests. In

block storage systems, block I/O requests are traced for a variety of purposes, such as

workload characterization [92], performance analysis [103], error diagnosis, and threat

identification [43]. The contents of a block trace depend on the purpose for which the

trace is collected. We use block traces for the performance analysis of block storage

systems for which we need the timestamp, the logical block address (LBA), the oper-

ation type (read/write) and the size of each block request. Additional features, such

as response times, may also be included. Most block storage systems come equipped

with tracing tools, and third-party tracing tools have also been developed, but trac-

ing modern block workloads with high request rates consume substantial amounts



71

of storage, network, CPU and memory resources [89]. The resource requirements of

tracing can be so severe that system administrators completely avoid it in favor of

throwing more hardware to meet the performance requirement by increasing the size

of the cache, adding a second tier of cache, or upgrading the storage devices.

Sampling One way of reducing the size of the trace and consequently the resource

requirement of workload analysis is to sample block requests instead of tracing ev-

ery request. Although samples reduce the storage and computation requirements of

workload analysis, if samples are not representative of the workload from which it

is generated, they can give a wrong idea about the workload and can lead to poor

system configuration and design decisions. Random spatial sampling is capable of

producing accurate MRCs while sampling as little as 1% of the total workload, sig-

nificantly reducing the storage and computational overhead of workload analysis [96].

However, block storage system performance, while highly dependent on the miss rate,

is dependent on other workload features such as request sizes, IAT and write ratio.

Random spatial sampling takes a series of block accesses and generates an accurate

MRC. Miss rate alone is insufficient for performance analysis in different scenarios.

As we saw in Chapter 4, the reduction in the miss rate does not translate linearly

into the increase in bandwidth. Temporal features like IAT influence how the system

performance changes due to change in miss rate, so miss rate alone is insufficient in

determining whether or not to add a tier-2 cache. So, can we generate block trace

samples that do not just translate to accurate MRC but additional features such as

read/write request sizes, read/write IATs, read/write misalignment, and write ratio?

Such traces would allow us to perform a temporal analysis of the workload, replay

traces for better performance analysis, and enable a more long-term analysis of the

workload.



72

Replay Replay is accurate in determining the performance of a given system for a

given workload. Replay has been used for a variety of purposes, such as measuring

energy efficiency [58], debugging [63], intrusion analysis [27], VM migration [54, 55]

and more. Depending on the selectivity and the activity being traced, the resource

requirement to collect the trace and replay it can be very high. We replay IO requests

from the block to determine the performance of a storage server. IO workloads can

be very intensive; hence, traces can be large and can take a long time to replay.

Reducing the resource requirement of tracing with minimal sacrifice in accuracy can

make tracing a viable approach for many systems.

5.2 Design

We introduce BlkSample, a block trace sampling framework that produces trace

samples with accurate workload features such as read/write size, read/write IAT,

read/write misalignment, read/write miss ratio and write ratio. The state of the art

sampling technique, random spatial sampling, takes a series of block addresses as

input and outputs the list of sampled block addresses. However, a block trace has

several components such as time, type, and size, and features associated with those

components to which random spatial sampling is oblivious. We augment random

spatial sampling to output not only a list of sampled block addresses but also a list

of block requests. BlkSample outputs a block trace sample with a format identical

to and features similar to the sampled request stream. We want to achieve a mean

feature error of ≤ 10% while using a sampling rate of ≤ 10%. In this section, we begin

by describing the shortcomings of our baseline, random spatial sampling, followed by

a description of how BlkSample addresses those shortcomings.



73

Request
Stream

Feature 
Counters

Sample?
Temp Sample 

Trace
YES

1.SAMPLE

2.POST-PROCESS

Feature MapAlgorithm
READ

UPDATE

3.Filter

Final Sample 
Trace 

Figure 5.1: The design of BlkSample.

5.2.1 Random Spatial Sampling

Random spatial sampling is used to produce accurate MRCs given a list of block

addresses with low sampling rates. It uses a hash value to pick or discard a block ad-

dress. All accesses to a block address are either sampled or discarded. The addresses

used for sampling represent blocks of a fixed size; therefore, a multi-block request

has to be broken into individual blocks for sampling. It is oblivious to features such

as IAT, size, and type of block requests, which are influential in determining system

performance.

The type of block request (read or write) can have a drastically different effect on

performance. Writes are slower and reduce the device lifetime of SSDs, whereas reads

are cheaper and do not impact device lifetime. The request rate of the workload

determines the performance improvement from a cache hit. A cache hit during a

period of high request rate is more valuable than a cache hit during a period with

relatively low request rate. A workload with large request sizes issues sequential

accesses to backing store with different performance compared to a workload with

small request sizes, which can issue more random requests to backing store.

One way to generate an identical sample block trace using random spatial sampling

is to track the timestamp, request type, and index of the block request for each

sampled block. There cannot be a separate block request for each sampled block.



74

Sampled blocks that are adjacent and belong to the same original block request can

be merged to create a new sample block request. Note that a single block request in

the request stream can lead to multiple sample block requests because multiple sets

of contiguous blocks belonging to the request were sampled. For example, consider a

block request that accesses blocks 0 to 10. Using a sampling rate of 50%, we can have

0,1,3,5,6 as sampled blocks. This would lead to 3 sample block requests with blocks

(0,1), (3) and (5,6). This can bloat the size of the trace to be stored and distort the

features of the sample relative to the original request stream. Next, we discuss the

approach we took to avoid such scenarios.

5.2.2 BlkSample

Figure 5.1 illustrates the design of BlkSample. BlkSample generates an accu-

rate block trace sample in 3 steps: sample, post-process, and filter. The sample step

creates a temporary trace sample using random spatial sampling with user-specified

granularity. The post-process utilizes the feature counters to determine which blocks

to remove from the temporary trace sample so that the sample error is reduced. Fi-

nally, the filter step will create the final sample trace by removing the block identified

in the post-process step from the temporary sample trace generated in the sample

step.

Sample The first step of BlkSample is to update the feature counters and sample

the request stream. We track workload features using six feature counters: total

read/write requests, total read/write size, and total read/write IAT. These counters

can be used later to calculate the mean read/write size, the mean read/write IAT,

and the write ratio of the workload. Once the feature counter are updated based on

the attributes of the block request, the start and end byte offset of the block request is

used to generate a list of region addresses accessed by the block request. Each region

address is evaluated for sampling, generating a list of sampled regions from the block



75

request. The set of adjacent sampled regions forms a new sample block request. Note

that a single block request can have multiple sets of adjacent sample regions leading

to multiple sample block requests.

The size of a region is determined by the number of lower-order address of a cache

block that is ignored. The start and end byte offsets of a block request maps to a set

of cache blocks of size 4KB. When we do not ignore any lower-order address bits, the

size of the region being sampled is equal to the size of a cache block which is 4KB.

Ignoring 1 lower-order address bit is equal to sampling 8KB regions as now cache

blocks 0 and 1 would map to the same region address of 0. Ignoring 2 lower-order

address bits is equal to sampling 16KB regions as cache blocks 0, 1, 2 and 3 map to

the sample region address of 0. Using larger regions reduces the instances where a

single block request splits into multiple sample requests, the phenomenon discussed

in Section 5.2.1. Minimizing the split of a single block request into multiple sample

block requests will lead to a smaller sample with more representative request sizes.

Post-Process The second phase of post-processing attempts to improve the quality

of the temporary sample by further removing accesses to addresses from the sample

such that the sample error is reduced. Identifying and removing the accesses to an

address that reduces sample error the most is done algorithmically. Filtering all re-

quests to an address and evaluating the resulting sample error would be too expensive,

especially to do it for all addresses in the sample. The first step to algorithmically

determine the result of removing access to an address in the sample is to compute

a hash table of the access characteristics of each address in the sample using Algo-

rithm 2. The hash table maps each address in the temporary sample to a set of 12

features that describe the accesses to the address. The number and total bytes of

misaligned read and write requests are 4 out of the 12 features. The rest of the 8

features are the count and total IAT of read and write requests for 4 different types



76

of access: solo, mid, left, and right. A solo access is when an address is the only

address accessed in a block request. A mid access is when a lower and higher address

is accessed in a block request. Block requests where an address is the most left and

the most right in a block request represent left and right access, respectively. The

total space required per block is 48 bytes of data and a 4 byte key. If the working set

size of the sample trace is 100GB, we would require approximately 1.3GB of memory

to store the features of its addresses representing regions of size 4KB. The memory

requirement for storing features can be managed by adjusting the size of region rep-

resented by each address. We can reduce the memory required to store the feature

from 1.3GB to 0.65GB by using 8KB regions instead of 4KB.

Our post-processing algorithm uses the feature map along with the counter of

the full workload to further improve the sample. The algorithm uses the workload

counters as a reference to iteratively remove blocks from the sample so that the

feature error is reduced. After removing a block, the algorithm makes the necessary

adjustments to the feature map. The algorithm terminates once the iteration count is

met or if there is no block that can be removed to reduce the feature error. Finally, in

the filter phase, all requests in the temporary sample to addresses not in the feature

map are filtered out to create the final sample which is smaller but more accurate

than the temporary sample.

5.2.3 Algorithm

Ignoring lower-order address bits to increase sampling granularity reduces the

mean sample error. But there can be potential to further reduce the error in the

sample. During sampling, we used eight counters to track the total read/write byte,

the read/write count, the total read/write IAT, and the total read/write misalign-

ment. The features of the full trace, such as the mean read/write request size, the

mean read/write IAT, and the write ratio, are derived from these counters. These



77

Result: Hash Table of Access Features
// Inputs:

1 blksize← size of a backing store block in bytes ;
2 cblksize← size of a cache block in bytes;
3 sample← sample block trace;
4 for each block request in sample do
5 size← size of block request ;
6 op← the read/write operation of block request ;
7 iat← inter-arrival time of block request ;
8 lba← logical block address of block request ;
9 startbyte← lba * blksize;

10 endbyte← startbyte + size;
11 startblk← startbyte//cblksize ;
12 endblk← (endbyte-1)//cblksize ;
13 for blk in range(startblk, endblk + 1) do
14 frontmisalign← startbyte%cblksize ;
15 endmisalign← (cblksize− (endbyte%cblksize) ;
16 if startblk == endblk then
17 table[blk][op].solo+ + ;
18 table[blk][op].soloiat+ = iat ;
19 if (frontmisalign > 0) or (endmisalign > 0) then
20 table[blk][op].misalign+ + ;
21 table[blk][op].misalignbyte+ = frontmisalign ;
22 table[blk][op].misalignbyte+ = endmisalign ;

23 else if blk == startblk then
24 table[blk][op].left+ + ;
25 table[blk][op].leftiat+ = iat ;
26 if frontmisalign > 0 then
27 table[blk][op].misalign+ + ;
28 table[blk][op].misalignbyte+ = frontmisalign ;

29 else if blk == endblk then
30 table[blk][op].right+ + ;
31 table[blk][op].rightiat+ = iat ;
32 if ENDMISALIGN > 0 then
33 table[blk][op].misalign+ + ;
34 table[blk][op].misalignbyte+ = endmisalign

35 else
36 table[blk][op].mid+ + ;
37 table[blk][op].midiat+ = iat ;

38 return table ;
39

40

Algorithm 2: Algorithm to compute the features of accesses to a sam-
pled address.

features are used to post-process the sample to reduce the sample error. The algo-

rithm iteratively removes blocks from the sample that reduce the sample error the

most.

To remove the block that reduces the sample error the most, we need to evaluate



78

how the workload features would change if the block were to be removed from the

sample. A naive approach to evaluate how the workload features of the sample change

when a block is removed from the sample is to filter all requests to the block from the

sample and recompute the workload features. This approach will be computationally

intractable, especially for large samples that can contain millions of requests. We

need a faster way to evaluate the change in the features of the sample if a given block

was to be removed from the sample. We track the features per block in the sample

that enable us to quickly compute new workload features if the block is removed from

the sample. These features enable us to algorithmically compute the net change in

workload features when a cache block is removed from the block trace. Consequently,

we can compute the net change in workload features for all blocks in the sample and

remove the block that reduces the mean sample error the most.

Algorithm 2 creates a feature map from a stream of requests in the sample. The

features are collected per region, which is set by the user in Algorithm 2 shown on

line X. For example, for a block group of size 4KB, the features of 8 512 byte blocks

will be aggregated. The size of the group determines the memory and computation

requirements of the algorithm. The larger the block group, the lesser the memory

and compute requirements, but this comes at the cost of performance. Evaluating

and removing smaller groups of blocks will always lead to equal or lower mean sample

error compared to evaluating and removing large groups of blocks, but at the cost of

more memory and compute resources. A group of size 4KB will have a larger map

of features in memory and will require more iterations to determine the best block

to remove, but it will be more accurate than using a group size of 16KB. Apart from

region size, the other input parameters are the size of a block (also referred to as LBA

(Logical Block Address)) in backing store, and the sample block trace. The first step

is to loop over each block request in the sample block trace on line 4. We extract the

IAT, LBA (Logical Block Address), size, and operation type from the sample block



79

Result: New workload features if all accesses to an address is removed.
// Inputs:

1 rcount← number of read requests ;
2 wcount← number of write requests ;
3 rbyte← total read request bytes ;
4 wbyte← total write request bytes ;
5 riat← total read IAT ;
6 wiat← total write IAT ;
7 rmisalign← total read misalignment byte ;
8 wmisalign← total write misalignment byte ;
9 cblksize← size of a cache block in bytes;

10 features← features of the block to be removed ;
11 rcount← rcount− features[r].solo+ features[r].mid ;
12 wcount← wcount− features[w].solo+ features[w].mid ;
13 delta rbyte← ((features[r].solo+ features[r].mid+ features[r].left+

features[r].right) ∗ cblksize)− features[r].misalignbyte ;
14 delta wbyte← ((features[w].solo+ features[w].mid+ features[w].left+

features[w].right) ∗ cblksize)− features[w].misalignbyte ;
15 rbyte← rbyte− delta rbyte ;
16 wbyte← wbyte− delta wbyte ;
17 riat← riat− features[r].soloiat+ features[r].midiat) ;
18 wiat← wiat− features[w].soloiat+ features[w].midiat) ;
19 rmisalign← rmisalign− features[r].misalignbyte ;
20 wmisalign← wmisalign− features[w].misalignbyte ;
21 return rcount, wcount, rbyte, wbyte, riat, wiat, rmisalign, wmisalign

Algorithm 3: Compute new workload features if all accesses to a given
address is removed.



80

request. We use the LBA, size of an LBA in bytes, and the size of the region in bytes

to compute the start and end block groups accessed by the current block request.

Now, we iterate over each region accessed in the block request to track its features.

In each iteration, we find whether the block group index is the only (solo) block group

being accessed, the left most (first), the right most (last) or the middle block (mid).

Once we have the map of features, we can now iterate over each block group

index to find which block group, if removed, reduces the mean sample error the most.

We can select the block group index to be removed using different combinations of

features or different weights for each feature. This is done until we run out of group

block indexes to remove such that the mean sample error is reduced or if we hit a

target sampling rate defined by the user.

5.2.4 Replay

We use a custom block trace replay tool that uses the CacheLib cache engine for

cache data and libaio to communicate with the backing storage device. To accelerate

trace replay, we do not wait for the entire duration of IAT if there are no pending

block requests in the system. We use the LRU cache replacement policy in both

cache tiers. We compare the replay performance of the full trace with the samples

to evaluate if we can infer the performance of the full trace by only replaying the

sample.

5.3 Evaluation

In this section, we analyze samples generated with and without using BlkSample

to answer the following questions:

• Does random spatial sampling generate block traces that have accurate block

features along with accurate hit rates?

• Does sampling groups of blocks instead of individual blocks improve the accu-



81

Result: Features of the given block address removed and the map updated.
1 table← hash table storing features per cache block ;
2 blk← block to remove ;
3 if blk− 1 in table then
4 table[blk− 1][r].right+ = table[blk− 1][r].mid;
5 table[blk− 1][w].right+ = table[blk− 1][w].mid;
6 table[blk− 1][r].mid, table[blk− 1][w].mid← 0, 0;
7 table[blk− 1][r].rightiat+ = table[blk− 1][r].midiat;
8 table[blk− 1][w].rightiat+ = table[blk− 1][w].midiat;
9 table[blk− 1][r].midiat, table[blk− 1][w].midiat← 0, 0;

10 table[blk− 1][r].solo+ = table[blk− 1][r].left;
11 table[blk− 1][w].solo+ = table[blk− 1][w].left;
12 table[blk− 1][r].left, table[blk− 1][w].left← 0, 0;
13 table[blk− 1][r].soloiat+ = table[blk− 1][r].leftiat;
14 table[blk− 1][w].soloiat+ = table[blk− 1][w].leftiat;
15 table[blk− 1][r].leftiat, table[blk− 1][w].leftiat← 0, 0;

16 else if blk + 1 in table then
17 table[blk + 1][r].left+ = table[blk + 1][r].mid;
18 table[blk + 1][w].left+ = table[blk + 1][w].mid;
19 table[blk + 1][r].mid, table[blk + 1][w].mid← 0, 0;
20 table[blk + 1][r].leftiat+ = table[blk + 1][r].midiat;
21 table[blk + 1][w].leftiat+ = table[blk + 1][w].midiat;
22 table[blk + 1][r].midiat, table[blk + 1][w].midiat← 0, 0;
23 table[blk + 1][r].solo+ = table[blk + 1][R].right;
24 table[blk + 1][w].solo+ = table[blk + 1][w].right;
25 table[blk + 1][r].right, table[blk + 1][w].right← 0, 0;
26 table[blk + 1][r].soloiat+ = table[blk + 1][r].rightiat;
27 table[blk + 1][w].soloiat+ = table[blk + 1][w].rightiat;
28 table[blk + 1][r].rightiat, table[blk + 1][w].rightiat← 0, 0;

29 DELETE table[blk] ;

Algorithm 4: Delete a block from the feature map and make the neces-
sary adjustments.



82

racy of block features of the sample without hurting the accuracy of hit rates?

• Does the selective removal of blocks from the sample improve the accuracy of

block features without significantly hurting the accuracy of hit rates?

• Is there a similarity in the replay performance between the sample and the full

block trace?

5.3.1 Random Spatial Sampling

We start by evaluating our baseline, which is random spatial sampling with minor

adjustments to track timestamps and request types. Random spatial sampling gener-

ates accurate hit rates from a list of addresses that represent blocks of uniform size.

However, block requests have variable sizes and can access multiple fixed-size blocks

in a single request. A simple fix to avoid this problem is to break up a block request

that requests multiple blocks into individual blocks of uniform sizes. However, when

multiple sets of adjacent blocks belonging to the same block request are sampled,

multiple sample block requests can originate from a single block request. The first

row of Figure 5.3 shows the distribution of the request ratios when using different

sampling ratios. The request ratio represents the ratio between the request count

in the sample and the entire trace. A request ratio greater than 1 means that the

number of requests in the sample was greater than in the entire trace. The first row

of Figure 5.3 shows that the request ratio not only goes beyond 1 regularly, but can

go up to 12. If the request ratio is too high, then it defeats the purpose of sampling,

as the storage requirement of the sample will be similar to that of the entire trace.

Even if large request ratios mean that samples consume spaces almost equal to the

full traces, the reduced working set size could still be helpful in reducing the memory

and temporal requirements of workload analysis. We create a sample block request

for every set of contiguous blocks. We determine the offset and size of the block

request based on the addresses of the blocks in the set. The timestamp and request



83

type of the sample block request are derived from the original block request. We

now assess whether block trace samples created using random spatial sampling have

accurate workload characteristics such as read/write size, read/write IAT, read/write

misalignment, write ratio, and hit rates. An accurate set of features with a smaller

working set size could also be useful to accelerate workload analysis.

Figure 5.2 shows the error in the mean value of different features in the samples

generated using random spatial sampling with different sampling rates. We see, as

expected, that the accuracy of the mean read, write, and overall hit rate is low even

when using a sampling rate as low as 5% in Figure 5.2a. On the other hand, we see

that features not related to the hit rate, such as size, IAT, and misalignment, have

higher error values even when using a sampling rate as high as 80% in Figure 5.2c.

The read / write request sizes have the highest error in Figures 5.2a, 5.2b, and

5.2c. Even when using an unreasonably high sampling rate of 80% in Figure 5.2c the

minimum error in the size of the read/write request is at least approximately 20%.

We see that random spatial sampling, while useful for generating accurate hit rates,

is insufficient to generate block trace with accurate read/write size, read/write IAT,

read/write misalignment, and write ratio.

5.3.2 Sampling Granularity

We evaluate the effect of increasing the granularity of random spatial sampling

on the accuracy of workload features of the sample block trace. We sample groups

of blocks instead of individual blocks by ignoring one or a few lower-order bits of

block addresses during sampling. For instance, if we ignore 1 lower-order address bit,

blocks 0 and 1 map to the same scaled address of 0. Ignoring 0 bits is our baseline

random spatial sampling and ignoring 1, 2 and 4 lower-order bits is using random

spatial sampling with increased granularity.

First, we evaluated the sample size of samples with different numbers of lower-



84

Read 
Size

Write 
Size

Read 
IAT

Write 
IAT

Read 
Misalign

Write 
Misalign

Write 
Ratio

Read 
Hit Rate

Write 
Hit Rate

Overall 
Hit Rate

100

50

0

50

100
Pe

rc
en

t E
rro

r (
%

)

(a) Sampling Rate 5%

Read 
Size

Write 
Size

Read 
IAT

Write 
IAT

Read 
Misalign

Write 
Misalign

Write 
Ratio

Read 
Hit Rate

Write 
Hit Rate

Overall 
Hit Rate

20

0

20

40

60

80

100

Pe
rc

en
t E

rro
r (

%
)

(b) Sampling Rate 20%

Read 
Size

Write 
Size

Read 
IAT

Write 
IAT

Read 
Misalign

Write 
Misalign

Write 
Ratio

Read 
Hit Rate

Write 
Hit Rate

Overall 
Hit Rate

20

0

20

40

60

80

Pe
rc

en
t E

rro
r (

%
)

(c) Sampling Rate 80%

Figure 5.2: Percent error of features in samples generated using random spatial sam-
pling.



85

0

5

10
x=y

0

1

2

3

Re
qu

es
t R

at
io

0.01 0.05 0.1 0.2 0.4 0.8
Sampling Ratio

0.0

0.5

1.0

Figure 5.3: Request ratios when ignoring 0 (top), 2 (middle) and 4 (bottom) lower-
order address bits under different sampling ratios.

order bits ignored. We have seen the problem of a single block request from the

original trace generating multiple sample block requests when we use random spatial

sampling. We define the request ratio as the ratio of the number of block requests

in the sample to the number of block requests in the full trace. The request ratio of

a sample, although not exact, should be close to the sampling ratio. A request ratio

close to 1 means that the size of the sample trace is close to that of the full trace.

A request ratio of greater than 1 means that the size of the sample is larger than

that of the full trace, which defeats the purpose of sampling from a storage space

optimization point of view.

Figure 5.3 shows the distribution of the request ratios for samples at different

sampling ratios for different numbers of lower-order bits ignored. The red dot repre-



86

sents the point where the request ratio is equal to the sampling ratio. We can see that

the size of the y-axis decreases and the red dot moves closer to the dense area of the

violin plot as we go from the top (0 bits ignored) to the middle (2 bits ignored) to the

bottom (4 bits ignored). Increasing the number of lower-order address bits ignored

brought the request ratios closer to the sampling ratios. We can see that for all 3

rows, the length of the violin plot increases to 0.2, after which it starts decreasing.

This is because at low sampling rates, the chances that multiple groups of blocks that

are not adjacent to each other are sampled are low. At high sampling rates, most of

the blocks in the block request might be sampled, so there are less chances that there

are multiple groups of sampled blocks, leading to multiple sample block requests. The

problem is most prevalent in sampling ratio like 0.2 where it is likely that multiple

blocks in a block request are sampled and they are also not adjacent to each other.

The first row of Figure 5.3 shows that the request ratio can be as high as 12 when we

use a sampling ratio of 0.2. This means that the sample trace had 12x more requests

compared to the full trace. The problem is worse in workloads with a large number

of blocks accessed per request.

Next, we evaluated the effect of sampling granularity on the features of the sam-

ple trace. Figure 5.4 shows the distribution of sample error across different sampling

rates while varying sampling granularity by ignoring 0, 1, 2 and 4 lower-order bits

of addresses. We see that the error is reduced when we increase the granularity of

the sampling. Each sampled block request has its own features such as size and in-

terarrival time, which is better reflected when we use a larger sampling granularity,

which reduces the instance of multiple sample requests being generated from a single

source block request. Multiple sample requests generated from the same source block

requests introduce noise in the overall sample feature, increasing error. We can see

that random spatial sampling, which corresponds to 0 lower-order bits ignored, pro-

duces a large error value across features even when using a sampling rate as high as



87

0

50

100
Read Size

0

50

100
Write Size

0

25

50

75
Read IAT

0

50

100

Er
ro

r (
%

)

Write IAT

0

20

40

Read Misalignment

0

20

40

Write Misalignment

5 10 20 40 80
0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

Sampling Rate (%)

0

50

100

Write Ratio

Figure 5.4: A set of 4 box plots representing percent error values when ignoring 0,
1, 2 and 4 lower order address bits at different sampling rates (5%, 10%, 20%, 40%,
80%) for different workload features.



88

Read Write Overall Read Write Overall
0 4 0 4 0 4 0 4 0 4 0 4

0

5

10

15

20

Er
ro

r (
%

)

Figure 5.5: Distribution of error in mean (left) and P99 (right) error values in read,
write and overall hit rate when ignoring 0 and 4 bits.

80%. This shows that random spatial sampling is not suitable for creating accurate

samples. Now, we evaluate whether the improvement in workload features comes at

the cost of the accuracy in hit rate that random spatial sampling is very good at.

Figure 5.5 shows the error in the hit rate when we use the default random spatial

sampling (0 bits ignored) and when we increase the granularity of the sampling (4

bits ignored). We can see that there is minimal increase in the hit rate error when

we increase the sampling granularity. The error in the hit rate is magnified when it

is divided into read hit rate and write hit rate. Random spatial sampling does not

differentiate between a read and a write hit rate. The proven performance of random

spatial sampling can be seen in the low error in the overall hit rate. However, when

we divide the hit rate between read and write, the error increases but we can see that

the sampling granularity does not have a significant error.

5.3.3 Post-processing Algorithm

Increasing the sampling granularity significantly reduces the sample error. We

evaluate whether we can further reduce the sample error by removing blocks so that



89

6810

10

5

0

5
Read
Size IAT Misalignment Ratio

6810
80

60

40

20

0
Write

68100

20

40

60

Hit Rate Error
Read Write Overall Overall Mean Error

68100

5

10

Mean Error

Pe
rc

en
t E

rro
r (

%
)

Sampling Rate (%)

Figure 5.6: Block-trace replay framework design.

the sample error is reduced. We tracked the features of the full workload using

counters, which are used as reference when removing blocks. We use Algorithm 2 to

generate a mapping of block addresses to a set of access features. We iterate over each

block to evaluate the resulting effect of removing the block from the trace using the

Algorithm 3. We remove the block that reduces the most sample error and update

the feature map using Algorithm 4. We keep doing these 3 steps until we hit a target

rate or until we cannot improve the features of the trace anymore.

Figure 5.8 shows the change in percent error values for different features and

workloads at each iteration of the post-processing algorithm. We can see that the

mean sample error can be reduced by using post-processing. The largest gain occurs

in the early iteration, and the gain flattens as we continue to remove blocks. We

see that removing blocks brings the most disruption to hit-rate values, which is also



90

6810

50

0

Read
Size IAT Misalignment Ratio

6810

0

10

20
Write

68100

20

40

Hit Rate Error
Read Write Overall Overall Mean Error

68100

5

10

15

20

Mean Error

Pe
rc

en
t E

rro
r (

%
)

Sampling Rate (%)

Figure 5.7: Block-trace replay framework design.

indicative that only a few blocks should be removed if there is a large gain in mean

error. The post-processing algorithm does not consider the impact of removing a

block on the hit rate values because it is very expensive to evaluate. Doing it for

all the blocks would take a long time for a single iteration. However, we can see in

the last row of Figure 5.8 that even though the post-processing algorithm does not

consider hit rate values, the overall mean error is improved even when taking into

account the impact on hit rate.

Figures 5.6 and 5.7 show the percentage error in different feature values as we

reduce a sample generated with a sampling rate of 10% and ignore four lower-order

address bits for workloads w96 and w104, respectively. We can see the U-shaped

curve by looking at the mean error graph in the bottom right of both figures. This

shows that there is a drop in mean error in the early iterations, and eventually the



91

0

20

40
Size

Read
Write

50

0

Interarrival Time

Read
Write

0

20

40
Misalignment

Read
Write

10

0

Hit Rate

Read
Write

20

0

Write Ratio

0 10000 20000 30000 40000
Iteration

0

10

Mean

De
lta

 E
rro

r (
%

)

Figure 5.8: The change in sample error after each iteration of the post-processing
algorithm across different features. Positive values indicate a reduction in error while
negative values indicate an increase.



92

error value starts increasing. We can see that the improvement in mean error can

come from a large reduction in error in one feature, while sacrificing a slight increase

in error in other features. We see that the hit rate is the most sensitive to continuous

reduction of the sample.

5.3.4 Replay

We replay a full block trace and its sample block traces using different tier-1 and

tier-2 cache sizes. Our goal is to evaluate whether the performance metrics of the

sample trace replay can be representative of the full trace replay. We chose w96 as

the representative workload because the samples are accurate, the working set sizes

are large, and the number of requests to be replayed is relatively small. The large

working set size is essential so that the samples also have a large enough working

set size that meets the minimum tier-1 and tier-2 size requirements of our replay

tool. Accurate samples are more likely to perform similarly to the full trace, the large

working set size allows us to evaluate a large range of cache sizes with varying hit

rates, and the small trace size reduces the time required to replay. Note that the

cache size of the sample replay is adjusted on the basis of the sampling rate from

which it was generated. For each set of samples we ran 16 trace replays with tier-1

and tier-2 cache sizes scaled based on 25%, 50%, 75% and 100% of the working set

size.

We saw in Section 5.3.2 that increasing the sampling granularity reduced the sam-

ple error. We evaluated whether the reduced sample error from increasing sampling

granularity by ignoring 4 bits translated into more representative replay performance

as well. We compare the replay performance of the samples with the sampling rates

of 10% and 20% with 0 and 4 lower order bits of block addresses ignored. Figure 5.9

shows the mean error in the performance metrics when we compare the performance

of the entire trace with the samples. There is a large discrepancy in the mean and



93

Bandwidth BlockReadLatency
avg

BlockWriteLatency
avg

BlockReadLatency
p99

BlockWriteLatency
p99

Performance Metric

0

50

100

150

200

250

300

M
ea

n 
Er

ro
r (

%
)

66

10

333

259

51 35

79
113

38 45

0
4

Bandwidth BlockReadLatency
avg

BlockWriteLatency
avg

BlockReadLatency
p99

BlockWriteLatency
p99

Performance Metric

0

100

200

300

400

M
ea

n 
Er

ro
r (

%
)

61
12

260

395

61 46
72

135

43 54

0
4

Figure 5.9: The error in replay performance metrics of sample block traces of workload
’w96’ across 16 different tier-1 and tier-2 cache size tuples.

p99 latency of the full and sample replays. However, we see that samples generated

with large sampling granularity (4 lower-order bits ignored) and sampling rates 10%

and 20% have a bandwidth similar to their full trace. This means that we can infer

the bandwidth of the full trace replay while only replaying the sample trace with an

accuracy of approximately 10% for this workload.

Next, we evaluated additional traces that were generated using large sampling

granularity. With sampling granularity set by ignoring 4 lower-order bits of block

addresses, we replay samples with sampling rate 10%, 20%, and 40% along with a

sample that was generated after post-processing a 10% samples. Figure 5.10 shows

the CDF of the percent difference in bandwidth in the replay of 4 samples compared

to the replay of the full trace. The tier sizes used for the 16 experiments that we used

are identical for all samples. The median bandwidth error for all samples is around



94

0.0 0.2 0.4 0.6 0.8 1.0
CDF

0

5

10

15

20

25

30

Pe
rc

en
t B

an
dw

id
th

 E
rro

r (
%

)

20%
10%
10% + PP
40%

Figure 5.10: CDF of percent error in bandwidth when replaying different samples.

10%. We see that the performance of the sample with the sampling rate 40% is the

most accurate, which is what we would expect. However, the sample with a sampling

rate 20% performed worse than the sample with 10%. We can also see that post-

processing improves feature accuracy of the sample, but that does not necessarily

translate to replay performance.

5.4 Discussion

We have presented the design and evaluation of BlkSample. We would like to

discuss what we can improve upon, the limitation, and the benefits of sample block

traces.

Representative Features We post-processed the samples to bring the mean values

of the sample and the full trace as close as possible. It is simpler to determine the

chance is mean feature values algorithmically than tracking the quantiles of feature

values. However, the quantiles can be highly relevant for specific features such as

inter-arrival time and size, and not so much for a feature like misalignment. The

spike in request rate can be better replicated if the lower quantiles of interarrival

times of the sample and the full trace align. The percentage of workload requests

with small sizes can make a big difference in how a workload interacts with storage

devices, especially with SSD writes.



95

Limitation This work focuses on LRU caches. However, modern replacement poli-

cies, such as SIEVE, have outperformed LRU [110]. It is important to evaluate how

well sampling performs when determining the performance of such modern replace-

ment policies. This work assumes that every output is admitted to the tier-2 cache.

This is not an optimal policy for hit rate or performance [109]. Different cache ad-

mission policies and their effect on replay performance are an important part that

has not yet been explored.

Other Benefits of Sample Block Traces We, especially in academia, are familiar

with the situation in which traces of research cannot be released for proprietary rea-

sons. Furthermore, the size of the traces is also a barrier in sharing them. BlkSample

can generate multiple traces with representative features and identical format which

are smaller in size. Multiple samples generated per workload and identical format

can allow researchers to work on workloads without privacy breaches.

5.5 Related Work

The most basic way to model a cache is to run simulations for each cache size.

The paper by Mattson introduced an algorithm that uses the concept of inclusion

property to generate reuse distances, modeling all cache sizes in a single analysis [60].

Attempts to further improve the space and time requirements for the generation of

reuse distances using the inclusion property have included the use of more efficient

data structures [19] and parallel processing [64]. Although this drastically reduced the

time and resource requirement of cache modeling, the working set size of workloads

continued to bloat, and collecting the entirety of the workload became a bottleneck

itself. Sampling was used as a possible alternative to generate accurate hit rate

estimates for a given workload [96, 41]. Note that given a block trace, random spatial

sampling can only generate a list of block accesses. Our technique, on the other



96

hand, generates a sample block trace in an identical format from a source block trace.

We introduce sampling regions by ignoring lower-order bits of block addresses and

tracking the operation type and IAT of the sampled block request. We do this with

minimal compute overhead and without any additional storage required. Trace replay

has been a method of analyzing the performance of a server for various workloads[37,

58]. Miniature simulations [95] of workloads has been used to successfully generate

hit rates, but we perform the initial evaluation of the performance of a sample when

replayed on a server and its comparison to the replay of the full workload.

5.6 Conclusion

The advent of MT caches increases the capacity of a server. The cost and over-

head of sampling and analysis increase as the volume of request served by a server

increases. MT caching is complex, and efficiently utilizing a tier-2 cache requires the

analysis of workload the server serves. This makes sampling a necessity to reduce

the size and resource requirement for trace storage and analysis. BlkSample provides

a low overhead technique for generating representative trace samples. It builds on

random spatial sampling that successfully models the hit rates of the workload. With

additional information on the features of the full workload, we are able to adjust the

sample to better represent the full workload.



97

Chapter 6 Conclusion and Future Direc-
tions

In this thesis, we investigate how to use MT caches efficiently. We suggest princi-

ples for MT cache sizing, train a model to predict the effect of tier sizing, and develop

a low-overhead technique to estimate block storage system performance. We summa-

rize what we learned from our attempt to better understand and measure the impact

of a second-tier cache on system performance.

MT cache performance depends on synergy between storage devices, tier sizes, and

workload. It is not trivial to predict the effect of adding a tier-2 cache on performance.

It is important to be able to determine the impact of tier-2 cache on performance, as

adding a tier-2 cache can harm performance. The traditional metric, such as hit rate,

which is used as a proxy for performance, is adequate to determine whether adding

a tier-2 cache would improve performance. A unified hit rate for the tier-1 and tier-2

caches hides how many cache hits occur in each tier. Those tier-1 and tier-2 cache

hits have drastically different impacts on performance. Even with separate hit rates

for tier-1 and tier-2 caches, we cannot determine whether adding a tier-2 cache would

improve throughput. Workload features, such as request rate, size, and write ratio,

will influence how performance changes when a tier-2 cache is added. Furthermore,

the characteristics of storage devices in block storage systems also determine the tier

size and workload characteristics that favor the addition of a tier-2 cache.

Although general guidelines such as tier-2 cache favor workloads with high tier-1

miss rate and low IAT, can help make design choices, we need something more quan-

tifiable. Transparent machine learning models, such as decision trees, can generate

clear guidelines that determine whether to add a tier-2 cache. It is complex to derive

a model that works on all servers and workloads. However, models per server can



98

be trained by recording the performance of the server by replaying diverse workloads

with different tier sizes. The creation of such models requires expensive trace replays,

but once trained, the model can quickly determine the effect of adding a tier-2 cache.

The main source of overhead is tracing every block request and replaying the collected

trace under numerous tier sizes. Sampling can be used to generate trace samples that

are more representative of a diverse set of features and share the same trace format.

Sampling has been used to efficiently model the hit rates for a given workload but

ignores other workload features. A sample block trace with representative request

size, inter-arrival time, write ratio, and an identical format drastically reduces the

resource requirement of analysis needed to determine how a storage system would

perform for a given workload.

6.1 Future Directions

Modeling the effect of MT caches on overall performance is challenging. Although

this thesis uncovers the workload and device characteristics that favor MT caching

along with tools to estimate the benefit of MT caching, it is only the groundwork

required to utilize tier-2 caches efficiently. The following directions grouped by chapter

can extend the research presented in the thesis.

Turning the Storage Hierarchy On Its Head: The Strange World of Het-

erogeneous Tiered Caches We plan to extend our approach to inclusive caching,

which keeps duplicate copies in several tiers, as well. Furthermore, we plan to expand

our analysis to include modern replacement algorithms such as SIEVE [110]. We

want to explore MT caches with a mix of write-back and write-through policies. As

part of selecting the right cache size, we would like to use simulation to derive the

percentage of successful write-back requests for varying sizes.



99

Large Scale Study of MT Caching Using Trace Replay The size of the tier-1

and tier-2 caches is just one of many configuration parameters that can be tuned to

improve the performance of the tier-2 cache. Since SSDs are used as tier-2 cache,

cache engines make adjustments and configurable parameters to manage asymmetric

read / write performance and device lifetime [20]. The admission rate, which can be

dynamically adjusted based on the request rate, can influence overall performance by

avoiding admission to tier-2 cache when it can cause latency spikes in the SSD. Data

replacement in the tier-2 cache cannot be done at a block granularity to avoid small

writes to SSD, which reduces the device lifetime. Instead, a larger granularity called

region size, such as 16MB is used to admit and evict data. Analyzing performance at

different region sizes and tier-2 optimized replacement policies can help squeeze more

performance from the tier-2 cache.

Modeling per server can be effective in determining how a server will perform with

a given workload. The ultimate goal is to develop a universal model that can predict

any combination of device characteristics and workload. One of the biggest barriers

to developing the model is collecting enough replay data. Large number of replays

has to be run across a diverse set of servers, workloads, and configurations to train

such models. These models will give us insights into specific device characteristics,

workload features, and combination that support or not support a tier-2 cache.

BlkSample: Sampling for Block Storage Traces BlkSample has optimized the

trace samples to have representative mean read/write size, read/write IAT, read/write

misalignment ratio, and write ratio. We want to expand the features of the sample

that we iteratively improve through post-processing. We want to include lower per-

centiles of size and IAT, which can be as important if not more than the mean values.

Furthermore, we want to evaluate our samples on specific storage devices to see if

samples can be used for device performance profiling instead of full traces.



100

Bibliography

[1] Auto Tiering - Redis — redis.io. https://redis.io/auto-tiering/. [Accessed 23-

04-2024].

[2] Cache Tiering &x2014; Ceph Documentation — docs.ceph.com.

https://docs.ceph.com/en/latest/rados/operations/cache-tiering/. [Accessed

23-04-2024].

[3] Exadata Smart Flash Cache Features and the Oracle Exadata Database

Machine. https://www.oracle.com/us/solutions/exadata-smart-flash-cache-

366203.pdf. [Accessed 23-04-2024].

[4] Intel® 64 and ia-32 architectures software developer’s manual volume 3 (3a,

3b, 3c 3d): System programming guide. 2016.

[5] Industry Perspectives — Nov 12. Don’t forget about memory: Dram’s surprising

role in the high cost of data centers, Nov 2015.

[6] I. Ahmad. Easy and efficient disk I/O workload characterization in VMware

ESX server. In Proceedings of IEEE International Symposium on Workload

Characterization (IISWC), 2007.

[7] Ibrahim “Umit” Akgun, Ali Selman Aydin, Andrew Burford, Michael McNeill,

Michael Arkhangelskiy, and Erez Zadok. Improving storage systems using ma-

chine learning. ACM Transactions on Storage (TOS), 1(1):1–30, November

2022.

[8] Ibrahim “Umit” Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and

Erez Zadok. A machine learning framework to improve storage system per-



101

formance. In HotStorage ’21: Proceedings of the 13th ACM Workshop on Hot

Topics in Storage, Virtual, July 2021. ACM.

[9] Ibrahim “Umit” Akgun, Santiago Vargas, Michael Arkhangelskiy, Andrew Bur-

ford, Michael McNeill, Aruna Balasubramanian, Anshul Gandhi, and Erez

Zadok. Predicting network buffer capacity for BBR fairness. In NeurIPS MLSys

Workshop, December 2022.

[10] Ahmad Alwosheel, Sander van Cranenburgh, and Caspar G. Chorus. Is your

dataset big enough? sample size requirements when using artificial neural net-

works for discrete choice analysis. Journal of Choice Modelling, 28:167–182,

September 2018.

[11] Amazon. A-tech 128gb kit (8x16gb). https://www.amazon.com/Tech-128GB-

8x16GB-Memory-PowerEdge/dp/B09YBDRLN3/, January 2023.

[12] Amazon. A-tech 192gb ram. https://www.amazon.com/Tech-ThinkStation-

PC4-21300-Registered-288-Pin/dp/B09L5CP767/, January 2023.

[13] Anandtech: Hardware news and tech reviews since 1997, 2022.

www.anandtech.com.

[14] Anand Lal Shimpi (Anandtech). Intel ssd dc s3500 review (480gb): Part

1. https://www.anandtech.com/show/7065/intel-ssd-dc-s3500-review-480gb-

part-1, June 2013.

[15] Dulcardo Arteaga and Ming Zhao. Client-side flash caching for cloud systems.

In Proceedings of International Conference on Systems and Storage, pages 1–11,

2014.

[16] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In Proceedings of the



102

12th ACM SIGMETRICS/PERFORMANCE Joint International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pages

53–64, New York, NY, USA, 2012. ACM.

[17] Jayanta Basak, Kushal Wadhwani, and Kaladhar Voruganti. Storage workload

identification. ACM Transactions on Storage, 12(3):14:1–14:30, May 2016.

[18] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.

IBM Systems Journal, 5(2):78–101, 1966.

[19] B. T. Bennett and V. J. Kruskal. Lru stack processing. IBM J. Res. Dev.,

19(4):353–357, jul 1975.

[20] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gu-

nasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor

Harchol-Balter, and Gregory R. Ganger. The cachelib caching engine: design

and experiences at scale. In Proceedings of the 14th USENIX Symposium on

Operating Systems Design and Implementation, pages 769–786. USENIX Asso-

ciation, 2020.

[21] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gu-

nasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor

Harchol-Balter, and Gregory R. Ganger. The CacheLib caching engine: Design

and experiences at scale. In Proceedings of the 14th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 2020), Virtual, November

2020. USENIX Association.

[22] Yuxia Cheng, Wenzhi Chen, Zonghui Wang, Xinjie Yu, and Yang Xiang. AMC:

an adaptive multi-level cache algorithm in hybrid storage systems. Concurrency

and Computation: Practice and Experience, 27(16):4230–4246, 2015.



103

[23] Yuxia Cheng, Yang Xiang, Wenzhi Chen, Houcine Hassan, and Abdulhameed

Alelaiwi. Efficient cache resource aggregation using adaptive multi-level ex-

clusive caching policies. Future Generation Computer Systems, 86:964 – 974,

2018.

[24] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Dy-

nacache: Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015. USENIX Asso-

ciation.

[25] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis.

Accurate modeling and generation of storage i/o for datacenter work-

loads. In Proceedings of the 2nd Workshop on Exascale Evaluation and

Research Techniques, Newport Beach, CA, USA, March 2011. EXERT.

https://github.com/Microsoft/diskspd.

[26] Peter Desnoyers. Analytic models of ssd write performance. ACM Transactions

on Storage (TOS), 10(2):1–25, 2014.

[27] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and

Peter M. Chen. ReVirt: Enabling intrusion analysis through Virtual-Machine

logging and replay. In 5th Symposium on Operating Systems Design and Imple-

mentation (OSDI 02), Boston, MA, December 2002. USENIX Association.

[28] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying

Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing

dram footprint with nvm in facebook. In Proceedings of the Thirteenth EuroSys

Conference, New York, NY, USA, 2018. Association for Computing Machinery.

[29] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying

Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing



104

dram footprint with nvm in facebook. In Proceedings of the Thirteenth EuroSys

Conference, EuroSys ’18, New York, NY, USA, 2018. Association for Computing

Machinery.

[30] Ehsan Elhamifar and René Vidal. Sparse manifold clustering and embedding.

In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems, volume 24. Curran

Associates, Inc., 2011.

[31] Said Elnaffar, Pat Martin, and Randy Horman. Automatically classifying

database workloads. In Proceedings of the eleventh international conference

on Information and knowledge management, pages 622–624. ACM, 2002.

[32] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok. Desperately

seeking ... optimal multi-tier cache configurations. In 12th USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage 20). USENIX Associa-

tion, July 2020.

[33] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok. Desperately

seeking ... optimal multi-tier cache configurations. In 12th USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage 20). USENIX Associa-

tion, July 2020.

[34] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139, 1997.

[35] Jianyu Fu, Dulcardo Arteaga, and Ming Zhao. Locality-driven MRC construc-

tion and cache allocation. In Proceedings of the 27th International Symposium

on High-Performance Parallel and Distributed Computing, HPDC ’18, pages

19–20, New York, NY, USA, 2018. ACM.



105

[36] B. Gill. On multi-level exclusive caching: Offline optimality and why promotions

are better than demotions. In FAST, 2008.

[37] Alireza Haghdoost, Weiping He, Jerry Fredin, and David H.C. Du. On the

accuracy and scalability of intensive I/O workload replay. In 15th USENIX

Conference on File and Storage Technologies (FAST ’17), pages 315–328, 2017.

[38] Lulu He, Zhibin Yu, and Hai Jin. FractalMRC: Online cache miss rate curve

prediction on commodity systems. In IEEE 26th International Parallel and

Distributed Processing Symposium, pages 1341–1351, 2012.

[39] Xubin He, Martha J Kosa, Stephen L Scott, and Christian Engelmann. A

unified multiple-level cache for high performance storage systems. International

Journal of High Performance Computing and Networking, 5(1-2):97–109, 2007.

[40] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen

Ding, and Chencheng Ye. Fast miss ratio curve modeling for storage cache.

ACM Transactions on Storage (TOS), 14:12:1–12:34, 2018.

[41] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen

Ding, and Chencheng Ye. Fast miss ratio curve modeling for storage cache.

ACM Transactions on Storage (TOS), 14(2):1–34, 2018.

[42] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar,

and Harry C. Li. An analysis of facebook photo caching. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13),

pages 167–181, New York, NY, USA, 2013. ACM.

[43] Hassaan Irshad, Gabriela F. Ciocarlie, Ashish Gehani, Vinod Yegneswaran,

Kyu Hyoung Lee, Jignesh M. Patel, Somesh Jha, Yonghwi Kwon, Dongyan Xu,

and Xiangyu Zhang. Trace: Enterprise-wide provenance tracking for real-time

apt detection. Jan 2021.



106

[44] Akanksha Jain and Calvin Lin. Hawkeye: Leveraging Belady’s algorithm for im-

proved cache replacement. In 2nd Cache Replacement Championship, Toronto,

Ontario, Canada, June 2017.

[45] Eric Burgener John Rydning. High data growth and modern applications drive

new storage requirements in digitally transformed enterprises, 2022.

[46] K.R. Krish, Ali Anwar, and Ali Raza Butt. hatS: A heterogeneity-aware tiered

storage for Hadoop. In 14th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 502–511, 2014.

[47] Shan Li and H Howie Huang. Black-box performance modeling for solid-state

drives. In 2010 IEEE International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems, pages 391–393. IEEE,

2010.

[48] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri Narasimhan, Tony Zhang,

and Ming Zhao. CacheDedup: In-line deduplication for flash caching. In 14th

USENIX Conference on File and Storage Technologies (FAST 16), pages 301–

314, Santa Clara, CA, February 2016. USENIX Association.

[49] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo

Gao. Second-Tier cache management using write hints. In 4th USENIX Confer-

ence on File and Storage Technologies (FAST 05), San Francisco, CA, December

2005. USENIX Association.

[50] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo

Gao. Second-tier cache management using write hints. In Proceedings of the 4th

Conference on USENIX Conference on File and Storage Technologies - Volume

4, FAST’05, page 9, USA, 2005. USENIX Association.



107

[51] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai,

Jin Jiang, and Guangzhong Sun. Metis: Robustly tuning tail latencies of cloud

systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),

pages 981–992, Boston, MA, 2018. USENIX Association.

[52] Kart-Leong Lim, Xudong Jiang, and Chenyu Yi. Deep clustering with varia-

tional autoencoder. IEEE Signal Processing Letters, 27:231–235, 2020.

[53] Evan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan,

and Junwhan Ahn. An imitation learning approach for cache replacement.

In Proceedings of the 37th International Conference on Machine Learning,

ICML’20. JMLR.org, 2020.

[54] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of

virtual machine based on full system trace and replay. In Proceedings of the

18th ACM International Symposium on High Performance Distributed Com-

puting, HPDC ’09, page 101–110, New York, NY, USA, 2009. Association for

Computing Machinery.

[55] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of

virtual machine based on full system trace and replay. In Proceedings of the

18th ACM International Symposium on High Performance Distributed Com-

puting, HPDC ’09, page 101–110, New York, NY, USA, 2009. Association for

Computing Machinery.

[56] Zhang Liu, Hee Won Lee, Yu Xiang, Dirk Grunwald, and Sangtae Ha. emrc:

Efficient miss ratio approximation for multi-tier caching. In 19th USENIX Con-

ference on File and Storage Technologies (FAST 21), pages 293–306. USENIX

Association, February 2021.



108

[57] Zhang Liu, Hee Won Lee, Yu Xiang, Dirk Grunwald, and Sangtae Ha. emrc:

Efficient miss ratio approximation for multi-tier caching. In 19th USENIX Con-

ference on File and Storage Technologies (FAST 21), pages 293–306. USENIX

Association, February 2021.

[58] Zhuo Liu, Fei Wu, Xiao Qin, Changsheng Xie, Jian Zhou, and Jianzong Wang.

Tracer: A trace replay tool to evaluate energy-efficiency of mass storage systems.

In 2010 IEEE International Conference on Cluster Computing, pages 68–77.

IEEE, 2010.

[59] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,

and Geoffrey J. Gordon. Query-based workload forecasting for self-driving

database management systems. In Proceedings of the 2018 International Con-

ference on Management of Data, SIGMOD ’18, pages 631–645, New York, NY,

USA, 2018. ACM.

[60] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques

for storage hierarchies. IBM Syst. J., 9(2):78–117, jun 1970.

[61] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang,

Sathya Gunasekar, Jimmy Lu, Daniel S Berger, Nathan Beckmann, and Gre-

gory R Ganger. Kangaroo: Caching billions of tiny objects on flash. In Pro-

ceedings of the ACM SIGOPS 28th symposium on operating systems principles,

pages 243–262, 2021.

[62] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng Liu.

vcacheshare: Automated server flash cache space management in a virtualiza-

tion environment. In USENIX Annual Technical Conference, Philadelphia, PA,

June 2014.



109

[63] Robert HB Netzer and Barton P Miller. Optimal tracing and replay for de-

bugging message-passing parallel programs. The Journal of Supercomputing,

8(4):371–388, 1995.

[64] Qingpeng Niu, James Dinan, Qingda Lu, and P. Sadayappan. Parda: A fast

parallel reuse distance analysis algorithm. In IEEE 26th International Parallel

and Distributed Processing Symposium, pages 1284–1294, 2012.

[65] Jeong S. Oh, Kyung S. Choi, Jeong R. Kwon, and Sang H. Lee. Finding the

near workload type between tpc-c and tpc-w environments. In International

Conference on Convergence and Hybrid Information Technology, pages 334–

337. IEEE, 2008.

[66] Stan Park and Kai Shen. A performance evaluation of scientific i/o workloads on

flash-based ssds. In 2009 IEEE International Conference on Cluster Computing

and Workshops, pages 1–5. IEEE, 2009.

[67] Dylan Patel and Gerald Wong. Ai server cost analysis – memory is the biggest

loser, May 2023.

[68] David A Patterson and John L Hennessy. Computer organization and design

ARM edition: the hardware software interface. Morgan Kaufmann, 2016.

[69] Pankaj Pipada, Achintya Kundu, K. Gopinath, Chiranjib Bhattacharyya, Sai

Susarla, and P.C. Nagesh. Loadiq: Learning to identify workload phases from a

live storage trace. In Proceedings of the 4th USENIX Workshop on Hot Topics

in Storage and File Systems, HotStorage’12, Berkeley, CA, USA, 2012. USENIX

Association.

[70] David Plonka, Archit Gupta, and Dale W. Carder. Application buffer-cache

management for performance: Running the world’s largest mrtg. In LISA,

2007.



110

[71] Lorenzo Posani, Alessio Paccoia, and Marco Moschettini. The carbon footprint

of distributed cloud storage. arXiv preprint arXiv:1803.06973, 2018.

[72] Anna Povzner, Kimberly Keeton, Arif Merchant, Charles B. Morrey, III,

Mustafa Uysal, and Marcos K. Aguilera. Autograph: Automatically extracting

workflow file signatures. SIGOPS Oper. Syst. Rev., 43(1):76–83, January 2009.

[73] D. B. Prats, J. L. Berral, and D. Carrera. Automatic generation of workload

profiles using unsupervised learning pipelines. IEEE Transactions on Network

and Service Management, 15(1):142–155, March 2018.

[74] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared caches.

In 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’06), pages 423–432, 2006.

[75] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang, and Timothy Wood.

Multi-cache: Dynamic, efficient partitioning for multi-tier caches in consoli-

dated VM environments. In IEEE International Conference on Cloud Engi-

neering (IC2E), pages 182–191. IEEE, April 2016.

[76] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang, and Timothy Wood.

Multi-cache: Dynamic, efficient partitioning for multi-tier caches in consoli-

dated VM environments. In IEEE International Conference on Cloud Engi-

neering (IC2E), pages 182–191. IEEE, April 2016.

[77] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Ran-

gaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. Learning cache replace-

ment with cacheus. In Proceedings of the 19th USENIX Conference on File

and Storage Technologies, FAST 2021, Proceedings of the 19th USENIX Con-



111

ference on File and Storage Technologies, FAST 2021, pages 341–354. USENIX

Association, 2021.

[78] Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning

via interactive no-regret learning. CoRR, abs/1406.5979, 2014.

[79] Trausti Saemundsson, Hjortur Bjornsson, Gregory Chockler, and Ymir Vig-

fusson. Dynamic performance profiling of cloud caches. In Proceedings of the

ACM Symposium on Cloud Computing (SOCC ’14), pages 28:1–28:14, New

York, NY, USA, 2014. ACM.

[80] R. Salkhordeh, S. Ebrahimi, and H. Asadi. Reca: An efficient reconfigurable

cache architecture for storage systems with online workload characterization.

IEEE Transactions on Parallel and Distributed Systems, 29(7):1605–1620, July

2018.

[81] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding

a ”kneedle” in a haystack: Detecting knee points in system behavior. In 2011

31st International Conference on Distributed Computing Systems Workshops,

pages 166–171, 2011.

[82] Russell Sears, Catharine Van Ingen, and Jim Gray. To blob or not to blob:

Large object storage in a database or a filesystem? arXiv preprint cs/0701168,

2007.

[83] Bumjoon Seo, Sooyong Kang, Jongmoo Choi, Jaehyuk Cha, Youjip Won, and

Sungroh Yoon. IO workload characterization revisited: A data-mining ap-

proach. IEEE Transactions on Computers, 63(12):3026–3038, 2014.

[84] Skip Sharipo. Flash Cache Best Practice Guide.

https://www.netapp.com/media/19754-tr-3832.pdf. [Accessed 23-04-2024].



112

[85] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd. Learning relaxed be-

lady for content distribution network caching. In Proceedings of the 17th Usenix

Conference on Networked Systems Design and Implementation, NSDI’20, page

529–544, USA, 2020. USENIX Association.

[86] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder, Hitesh Ballani,

Thomas Karagiannis, Antony Rowstron, and Tom Talpey. Software-defined

caching: Managing caches in multi-tenant data centers. In Proceedings of the

Sixth ACM Symposium on Cloud Computing, pages 174–181, 2015.

[87] Rukma Talwadker and Kaladhar Voruganti. Paragone: What’s next in block

I/O trace modeling. In Proceedings of the 29th International IEEE Symposium

on Mass Storage Systems and Technologies (MSST ’13), Long Beach, California,

May 2013. IEEE.

[88] UserBenchmark, 2022. www.userbenchmark.com.

[89] Marc-André Vef, Vasily Tarasov, Dean Hildebrand, and André Brinkmann.

Challenges and solutions for tracing storage systems. Apr 2018.

[90] Michel Verleysen and Damien François. The curse of dimensionality in data

mining and time series prediction. In Computational Intelligence and Bioin-

spired Systems, pages 758–770. Springer Berlin Heidelberg, 2005.

[91] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason

Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. Driving cache re-

placement with ml-based lecar. In Proceedings of the 10th USENIX Conference

on Hot Topics in Storage and File Systems, HotStorage’18, page 3, USA, 2018.

USENIX Association.

[92] K. Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. Scalable

i/o tracing and analysis. Nov 2009.



113

[93] VMware. Consolidate applications with less hardware with vsphere hypervisor,

Feb 2020.

[94] Muhammad Wajahat, Aditya Yele, Tyler Estro, Anshul Gandhi, and Erez

Zadok. Analyzing the distribution fit for storage workload and internet traffic

traces. Performance Evaluation, pages 102–121, 2020.

[95] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park.

Cache modeling and optimization using miniature simulations. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17), pages 487–498, Santa Clara,

CA, July 2017. USENIX Association.

[96] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad.

Efficient MRC construction with SHARDS. In 13th USENIX Conference on File

and Storage Technologies (FAST 15), pages 95–110, Santa Clara, CA, February

2015. USENIX Association.

[97] Carl A. Waldspurger, Trausti Saemundson, Irfan Ahmad, and Nohhyun Park.

Cache modeling and optimization using miniature simulations. In Proceedings

of the 2017 USENIX Annual Technical Conference (ATC ’17), pages 487–498,

Berkeley, CA, USA, 2017. USENIX Association.

[98] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos

Faloutsos, and Gregory R. Ganger. Storage device performance prediction with

CART models. In Proceedings of the Joint International Conference on Mea-

surement and Modeling of Computer Systems, SIGMETRICS ’04/Performance

’04, pages 412–413, New York, NY, USA, 2004. ACM.

[99] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and An-

drew Warfield. Characterizing storage workloads with counter stacks. In Pro-

ceedings of the 11th USENIX Symposium on Operating Systems Design and



114

Implementation (OSDI 2014), Broomfield, CO, October 2014. USENIX Asso-

ciation.

[100] Daniel Lin-Kit Wong, Hao Wu, Carson Molder, Sathya Gunasekar, Jimmy Lu,

Snehal Khandkar, Abhinav Sharma, Daniel S. Berger, Nathan Beckmann, and

Gregory R. Ganger. Baleen: Ml admission & prefetching for flash caches. In

Proceedings of the 22nd USENIX Conference on File and Storage Technologies,

FAST ’24, USA, 2024. USENIX Association.

[101] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan,

Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. The storage hierarchy is not a hierarchy: Optimizing caching

on modern storage devices with orthus. In 19th USENIX Conference on File and

Storage Technologies (FAST 21), pages 307–323. USENIX Association, Febru-

ary 2021.

[102] N. Yadwadkar, C. Bhattacharyya, and K. Gopinath. Discovery of application

workloads from network file traces. In Proceedings of the USENIX Confer-

ence on File and Storage Technologies (FAST ’10), pages 1–14, San Jose, CA,

February 2010. USENIX Association.

[103] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa. Trace system of iscsi storage

access. In The 2005 Symposium on Applications and the Internet, pages 392–

398, 2005.

[104] Juncheng Yang, Ziming Map, Yue Yao, and K. V. Rashmi. GL-Cache: Group-

level learning for efficient and high-performance caching. In 21st USENIX Con-

ference on File and Storage Technologies (FAST 23), Santa Clara, CA, February

2023. USENIX Association.



115

[105] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi Vinayak.

Fifo queues are all you need for cache eviction. In Proceedings of the 29th

Symposium on Operating Systems Principles, SOSP ’23, page 130–149, New

York, NY, USA, 2023. Association for Computing Machinery.

[106] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers, David

Evans, Rory Bolt, Janki Bhimani, Ningfang Mi, and Steven Swanson. AutoTier-

ing: Automatic data placement manager in multi-tier all-flash datacenter. In

2017 IEEE 36th International Performance Computing and Communications

Conference (IPCCC), pages 1–8, December 2017.

[107] Zhengyu Yang, Morteza Hoseinzadeh, Ping Wong, John Artoux, Clay Mayers,

David Thomas Evans, Rory Thomas Bolt, Janki Bhimani, Ningfang Mi, and

Steven Swanson. H-NVMe: A hybrid framework of NVMe-based storage system

in cloud computing environment. In IEEE 36th International Performance

Computing and Communications Conference (IPCCC), pages 1–8, 2017.

[108] Mohamed Zahran and Sally A. McKee. Global management of cache hierar-

chies. In Proceedings of the 7th ACM International Conference on Computing

Frontiers, CF ’10, page 131–140, New York, NY, USA, 2010. Association for

Computing Machinery.

[109] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Optimal data

placement for heterogeneous cache, memory, and storage systems. In Proceed-

ings of the ACM SIGMETRICS/International Conference on Measurement and

Modeling of Computer Systems, SIGMETRICS ’20, 2020.

[110] Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and KV Rashmi.

Sieve is simpler than lru: an efficient turn-key eviction algorithm for web caches.



116

In 21st USENIX Symposium on Networked Systems Design and Implementation

(NSDI 24). USENIX Association, 2024.

[111] Yiying Zhang, Gokul Soundararajan, Mark W. Storer, Lakshmi N. Bairava-

sundaram, Sethuraman Subbiah, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Warming up storage-level caches with bonfire. In Proceedings

of the 11th USENIX Conference on File and Storage Technologies, FAST’13,

page 59–72, USA, 2013. USENIX Association.

[112] Yu Zhang, Ping Huang, Ke Zhou, and Hua Wang. Osca: An online-model

based cache allocation scheme in cloud block storage systems. In 2020 USENIX

Annual Technical Conference (ATC), pages 1–13. USENIX Association, 2020.


		2024-08-08T08:03:16-0700
	Digitally verifiable PDF exported from www.docusign.com




