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Abstract 

 

The Gut and Vaginal Microbial Communities during Pregnancy in Patients With and Without 

Urogenital Infections 

By Emily F. Wissel 

 

Background: The gut and vaginal microbiome both change over the course of a pregnancy and 

have been associated with many pregnancy complications. Pregnant individuals are more 

susceptible to urinary tract infections (UTIs), bacterial vaginosis (BV), and chlamydia infection. 

It is currently unclear if there are differences in the microbiome or the collection of antimicrobial 

resistance (AMR) genes for pregnant individuals who develop urogenital infections versus those 

who don’t.  

Purpose: The dissertation aims to examine (1) how bacterial species change during pregnancy 

for those with and without urogenital infections, and (2) how AMR genes change during 

pregnancy after antibiotic treatment for urogenital infections. 

Methods: A subset of the data from the Emory University African American Vaginal, Oral, and 

Gut Microbiome in Pregnancy Cohort Study were sent for metagenomic sequencing (238 

patients, rectal and vaginal swabs at 8-14 weeks & 24 - 30 weeks pregnancy). Taxonomic 

assignment was done with the metaphlan2 software tool, and AMR genes were detected with the 

AMR Finder Plus tool. 16S rRNA data from the same samples had taxonomic assignment with 

the PECAN and DADA2 tools. Associations between the microbiome and urogenital infections 

were analyzed with a linear decomposition model. Differences in the frequency of AMR genes 

was analyzed with a chi-squared test for independence. hAMRoaster, a new bioinformatics tool, 

was created to compare the performance of different AMR gene processing pipelines.  

Results: Collectively, this dissertation finds that the gut and vaginal microbial communities are 

not significantly impacted by urogenital infections or their treatment. Specific microbes and 

AMR genes tend to be increased in those who developed urogenital infections compared to those 

who did not, however, these differences do not persist for the entire pregnancy. These findings 

should reassure most patients that being diagnosed with a urogenital infection and receiving 

antibiotic therapy for that infection will not have a significant, detrimental impact on their 

microbiome overall during pregnancy. 
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Chapter 1 

Introduction 

Microbes have been a part of humans’ entire evolutionary history. People now rely on 

our microbes for normative, everyday functioning—immune system development, nutrient 

digestion, and even mental health. Of increasing interest is the role of the microbiome in 

pregnancy and birth outcomes. The body goes through many changes in order to support a 

developing fetus, and it is currently unclear to what extent the human microbiome is changing as 

a consequence of these broader, body wide changes, or helping to drive these changes. This 

dissertation explores this knowledge gap to try to understand how the gut and vaginal 

microbiome change during pregnancy, and how antibiotic administration in early pregnancy may 

shape this change. Further, I evaluate what type of clinically important information can come 

from different sequencing technologies with body site swabs and provide recommendations for 

healthcare providers interested in integrating the microbiome of their patients into patient care.  

What is a microbiome? 

The microbiome refers to the complete set of genes from microorganisms, bacteria, 

archaea, fungi, viruses, and other eukaryotic species, which live on and within a host (Shanahan, 

Ghosh, and O’Toole 2021). Importantly, microbes in the microbial community occupy 

ecological niches within their host and are sometimes referred to as “colonizers” or “persisters” 

because they occupy that niche over time (Tipton, Darcy, and Hynson 2019). This is in 

juxtaposition to a “tourist” in the microbiome–a microbe that passes through the body but does 

not occupy a niche within the host or persist once it travels through. An example of a persister 

would be Prevotella in the gut microbiome. It almost always colonizes the human 

gastrointestinal tract (Tett et al. 2021) and can persist in the face of challenge events like 
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psychosocial stress or antibiotic treatment (Raymond et al. 2016, Hantsoo and Zemel 2021). A 

tourist is more likely to be a passive environmental microbe, such as soil microbes that might 

momentarily occupy space on a hand that plants flowers in the garden (Vandegrift et al. 2019), or 

a probiotic species, as they often do not colonize in the gut (Sanders, Merenstein, Merrifield, and 

Hutkins 2018).  

Some host-microbe associations are quite simple and specific, meaning that there may 

only be a few microbes that colonize and persist within the particular host, and the taxa that do 

persist are the same microbes across different hosts. For example, Pantoa genus of bacteria 

almost always mono-colonize P. stali stink bugs, regardless of the geographic location of the 

stink bug (Hosokawa et al. 2016). Such simplicity and specificity are not the case for human and 

most mammalian microbiomes (Benson 2016). The lack of specificity in the human microbiome 

has proven to be a challenge in health sciences research, as it means there is no “core” human 

microbiome or clear microbial markers for health and/or disease status (Caporaso et al. 2011). 

Interestingly, the human microbiome has a large degree of functional redundancy, or conserved 

genomic content, across the microbes in the microbiome. While the taxonomic composition of 

the microbiome varies widely, this functional redundancy helps the microbiome to remain 

functional similar over time and in the face of disturbance in the human host (Tian et al. 2020).  

Lifestyle factors appear to play a much larger role in the composition of the human 

microbiome than host-specific microbes, making the human microbiome much more malleable 

than other hosts, such as the stink bug discussed above. Diet, medication (including 

antimicrobials), physical activity, and geographic location of residence can be some of the 

largest predictors of human microbiomes, but still explain only a small proportion of the 

observed taxonomic variance (Dixon et al. 2023), indicating that there is still much to be 
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discovered about how the human microbiome persists. These factors also predict a varying 

degree of variance across body sites. The gut microbiome, for example, is much more clearly 

linked to diet than the vaginal microbiome (Song et al. 2020, Graham et al. 2021, Dong and 

Gupta 2019). Research on the human microbiome tends to be broken up by body site, so these 

distinctions can be important. This dissertation focuses primarily on the gut and vaginal 

microbiome, though oral, skin, and many other organ-microbiome relationships are studied for 

their role in human health.  

Gut Microbiome Sampling 

The “gut microbiome” refers specifically to the microbes living within the small and 

large intestine of the gastrointestinal tract. It is primarily studied via DNA extracted from stool 

samples or from rectal swabs, though sometimes tissue biopsies or smart, consumable devices 

are available. Though stool samples are only a proxy for the gut microbiome, they are currently 

preferred due to the ease with which they can be collected, they are noninvasive (thereby posing 

less risk to the patient or participant), and there is lower concern for contamination compared to 

other methods. Rectal swabs are arguably easier or more convenient to collect as researchers do 

not need to wait for a bowel movement, however, they tend to have low biomass, be even more 

of a proxy than stool for community composition (Short et al. 2021) and have a higher risk of 

contamination from skin microbes than stool. More precise measures of the gut microbiome may 

include biopsies, though they are highly invasive, susceptible to contamination, often with low 

biomass, expensive, and not suitable when studying a healthy population. Recently, an ingestible 

sampling device has been developed for collecting fluid from the small intestines, but it is both 

expensive and poses its own set of challenges and potential patient or participant risks (Tang et 

al. 2020). These sampling methods and more have been discussed in depth elsewhere (Tang et al. 
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2018, Song et al. 2020, Short et al. 2021). For the sake of this dissertation, the differences 

between stool and rectal swabs will be considered.  

Collecting stool samples from patients recruited in a clinic is not always feasible. It 

requires patients to go home, wait for a bowel movement, collect the stool properly, and send it 

back to the lab or be picked up by lab personnel or for a patient to time their clinical visit with 

occurrence of a bowel movement. Further, whole stool samples provide logistic challenges for 

labs. Collecting, processing, and storing whole stool for participants in a study with one hundred 

participants can quickly become challenging. A second approach is to collect a partial specimen 

from a stool sample by poking several spots of a stool sample with a sampling tool, putting the 

sampling tool in a test tube with a DNA stabilizer, and mailing it to the lab or having a researcher 

retrieve the sample from the patient's home. For some studies, directly swabbing the area of 

interest while the patient is in the clinic is the most realistic approach, particularly when patient 

loss to follow up is highly likely. While rectal swabs will not yield the same depth of information 

(as they inherently only sample rectal bacteria), plenty of studies have effectively used rectal 

swabs to find meaningful results (Smid et al. 2018, Schlebush et al. 2022, Goltsman et al. 2018).  

Vaginal Microbiome Sampling 

The vaginal microbiome refers specifically to the microbes that live within the vagina. The 

vaginal microbiome is different from the microbiome at other body sites in that there is typically 

much lower diversity in healthy people’s vaginas (Ravel et al. 2010). It should be noted that a 

significant portion of people across race and ethnicities have healthy, diverse vaginal 

microbiomes at baseline though (Ravel et al. 2010). Further, cross-kingdom interactions are 

much more understood within the vagina compared to the gut (Bradford and Ravel 2017; Gupta, 

Kakkar, and Bhushan 2019). Fungi provide bacteria with alpha amylase, an enzyme that bacteria 
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need to digest glycogen in the vaginal wall (Miller et al. 2016; Fuochi, Volti, and Furneri 2017; 

Nunn and Forney 2016). It is thought that there are micro-environments within the vagina 

(Bartlett et al. 1978, Subramaniam et al. 2016), so researchers must be cautious when discussing 

how and where samples are collected from. However, samples collected from distinct locations 

of the vagina do not always differ significantly (Huang et al. 2015), so it is unlikely that this 

significantly contributes to study variance. Sampling instrument also plays a role in DNA yield 

from samples, sometimes more so than sample site within the vagina (Virtanen et al. 2017). 

While there is some discussion between physician collected versus self-collected vaginal swabs, 

either method is suitable for sampling the vaginal microbiome (Virtanen et al. 2017, Huang et al. 

2015). 

Bioinformatic Approaches to Microbiome Data 

In general, the human microbiome is studied via sequencing technologies, which have advanced 

the field dramatically as many human-associated microbes are difficult to culture. Short read 

Illumina sequencing technologies are currently the most common data type for human 

microbiome studies. Short read sequencing can refer to either 16S rRNA sequencing or shotgun 

metagenomic sequencing.  

16S rRNA Gene Sequencing 

16S rRNA gene sequencing, 16S for short, is a short amplicon method which specifically 

targets the 16S region of the bacterial genome, which is highly conserved across bacterial 

species. As such, only bacteria can be detected with 16S, typically at the genus level. There are 

nine hypervariable regions along the 16S segment of the genome, and researchers typically select 

one or two sections for sequencing, such as the V4 or V3V4 region. Historically, researchers 

define an operational taxonomic unit, or OTU, by somewhere between 97 and 99% sequence 
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similarity in 16S data. Cluster methods with tools such as mothur (Schloss 2009) or marker-gene 

matching in QIIME2 (Bolyen et al. 2019) are used for OTU assignment. As technology and 

bioinformatic methods have advanced, researchers examine amplicon sequence variants (ASVs), 

or exact sequences that occur within the 16S data, and count how often the ASV occurs with a 

correction for sequence errors. Denoising methods from tools such as DADA2 can detect ASVs 

(Callahan et al. 2016). ASVs are currently regarded as the current “state of the art” method for 

examining 16S data as it has intrinsic biological meaning, unlike the historical OTU clusters, and 

better controls for error (Callahan et al. 2017). 

Shotgun Metagenome Sequencing 

Shotgun metagenome data, often referred to as metagenomics, is an untargeted 

sequencing approach. All DNA in a sample is sequenced, including host, fungal, protozoal, viral, 

and bacterial. As such, filtering out host reads from human metagenomics becomes an important 

quality control step that is avoided with 16S. Host reads can account for anywhere between 1% 

and 99% of the sequenced reads, depending on the human body site sampled (Pereira-Marques et 

al. 2019). However, metagenomics allows researchers to examine which microbes are present 

down to the strain level, as sequencing all the DNA allows one to see all genes and single 

nucleotide polymorphisms (SNPs) between microbes, allowing for more precise taxonomic and 

functional analysis.  

After human reads are removed, metagenomic data can be processed by two different 

methods. Reads can be mapped to a reference database, such as with bioBakery (Beghini et al. 

2021) or kraken2 (Wood, Lu, and Langmead 2019), or sequences can be assembled into 

metagenome assembled genomes, or MAGs, such as with metaSPAdes (Nurk et al. 2017) or 

megaHIT (Li et al. 2015). Assembly-based methods are useful for discovering taxa present in a 
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sample that may not be described in current databases. This is particularly useful for studies 

examining environmental microbes, which are often undescribed. However, assembly-based 

methods can face challenges with uneven sequencing coverage, as is common with metagenomic 

data, and may be more readily applied to long-read sequencing methods such as PacBio (Bharti 

and Grimm 2021).  

Read mapping methods typically result in a shorter compute processing time as they have 

relatively smaller databases. These databases are typically sufficient for human microbiome 

studies, though they are biased towards bacteria and often exclude many fungi or other 

eukaryotic microbes (Jin et al. 2022, Weissman et al. 2021). Of note is that most of the variation 

between read mapping bioinformatic tools is due to differences in databases (Balvočiūtė and 

Huson 2017). However, processing metagenomic data still takes significantly more 

computational resources than 16S sequencing, as the data size per sample goes from megabytes 

with 16S to gigabytes with metagenomics. It also requires more bioinformatics training, as the 

metagenomic bioinformatic processes require knowledge of command line interfaces, whereas 

16S processing tools like QIIME2 have graphical user interfaces.  

In addition to examining the taxonomy of the microbiome (or examining “who's there?”), 

microbiome research is also expanding into functional analyses (or “what are they doing?”). 

There are arguments that favor a functional view of the microbiome, as it may provide a more 

accurate analytical lens by inherently viewing the microbiome as part of a holobiont and shifting 

away from trying to single out individual, significant taxa. A holobiont is the idea that the way 

an individual is conceptualized should be human plus microbes, that individuals are constituted 

by these multispecies interactions (Bordenstein and Theis 2015; Gilbert, Sapp, and Tauber 2012; 

Nagpal and Cryan 2021). A functional description of the microbiome may be processed with 
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tools like HUMAnN (Behini et al. 2021) or MG-RAST (Keegan, Glass, and Meyer 2016) and 

describes the metabolic potential of the microbes present in a sample based on their genes.  

The Microbiome in Health 

Both the gut and vaginal microbiome are key to health and development across the 

lifespan. Of particular importance is the microbiome during pregnancy and birth, as it will 

impact the health of both the pregnant person and the developing fetus. This section will very 

briefly overview what is known of the microbiome in human health broadly and specifically in 

the context of pregnancy.  

The Gut Microbiome 

The human gut microbiome is responsible for maintaining many aspects of health, 

including food digestion (Warren et al. 2018), immune system priming (Hitch et al. 2022, Renz 

et al. 2018), and neurometabolite production (Morris et al. 2017, Maqsood and Stone 2016). 

There is evidence that the gut microbiome is especially important for mental health and well-

being (Smith and Wissel 2019). Some literature describes the gut microbiome as a functional 

organ as the human body has evolved to delegate certain tasks to, such as those mentioned 

above.  

In pregnancy, these functions of the gut microbiome become especially important. The 

body goes through natural changes as it prepares to carry the developing fetus to term. There are 

predictable and necessary immunologic, metabolic, and hormonal changes that allow a pregnant 

individual to provide nutrients and space for the fetus without mounting an immune response 

against it (Edwards et al. 2017). The microbiome shifts during pregnancy alongside these 

changes (Prince et al. 2015, Neuman and Koren 2017), and potentially influences pregnancy 

complications. Gestational diabetes, hypertension, and gestational weight gain are associated 
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with distinct changes in the gut microbiome during pregnancy compared to pregnant individuals 

who carry to term without these complications (Vinturache et al. 2016, DiGuilio et al. 2015). 

However, there is not a consistently detected trend in how the microbiome changes during 

pregnancy and health status. It is likely that placing the microbiome in the context of an 

individual’s lifestyle is essential to understanding how and why it changes (e.g., dietary 

options/choices, daily stress, prenatal vitamins).  

The gut microbiome during pregnancy shifts to support the increased metabolic needs 

during this time. For example, there is a decrease in overall diversity of the gut microbiome and 

a shift towards carbohydrate digestion (Gosalbes et al. 2019), consistent with increased blood 

glucose levels in late pregnancy. Research from Pharye’s leaf monkeys suggests these shifts in 

the microbiome are due to reproductive hormones (Mallott et al. 2020). In a small study, 

pregnant people with a higher proportion of the bacterial phylum Bacteroidetes (compared to 

Bacillota, formerly known as Firmicutes) have higher weight gain (Aatsinki et al. 2018, Smid et 

al. 2018), which is on par with trends in nonpregnant people (Muscogiuri et al. 2019). However, 

there is much more nuance to weight gain and obesity, especially during pregnancy. The 

proportion of Bacteroidetes to Firmicutes, which was widely reported in early human 

microbiome studies such as the Human Microbiome Project (Huse et al. 2012), is not sufficient 

to understand health status. Similarly, while the presence of certain gut microbes during 

pregnancy are implicated in the development of allergy and asthma in an infant (Gao et al. 2021), 

this research is still developing and is not conclusive at this time. A major goal of this 

dissertation is to better understand how the microbiome is shifting during pregnancy, both for 

those with urogenital infection (UTI, BV, chlamydia) and those without these infections. 
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The Vaginal Microbiome 

The vaginal microbiome is particularly important for vaginal health. Unlike other body 

sites, the vaginal microbiome is typically characterized by its simplicity and has extremely low 

diversity. However, a significant proportion of healthy vaginal microbiomes are relatively 

diverse, and it is not currently clear what drives the difference between single-species dominant 

healthy communities and diverse healthy communities. Importantly, a diverse vaginal 

microbiome is not inherently an indicator of disease or health status, contrary to what others 

suggest (Gupta, Singh, and Goyal 2020). 

The inter-kingdom interactions are also better understood in the vaginal microbiome 

compared to the gut microbiome. Fungi and bacteria rely on each other in this environment and 

can control the population of one another. The primary food source for bacteria in the vaginal 

microbiome is glycogen, however, most bacteria need an enzyme produced by fungi called 

alpha-amylase to be able to digest the glycogen (Miller et al. 2016). If the balance between these 

two kingdoms swings towards fungi, then yeast infections may develop. If it favors bacteria, then 

conditions such as bacterial vaginosis may develop. Psychological stress, which can impact 

glycogen and inflammation availability in the vaginal microbiome, can impact this balance 

(Witkin and Linhares 2016). What is most often observed is that groups who experience the most 

stress, either acute psychosocial stress or broader, chronic experiences of stress from structural 

racism and other forms of oppression, are more likely to have a vaginal microbiome that is 

diverse at baseline compared to other groups who are less likely to experience chronic 

oppression and stress (De Wolfe et al. 2021, Benezra 2020, Amato et al. 2021). This likely 

reflects a functional shift in the vaginal microbiome away from glycogen reliance (towards 

perhaps mucin degradation), as glycogen becomes depleted when stress is high, though 
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longitudinal studies will need to confirm this theory. While pregnancy is often considered a 

physiologic stress test, estrogen levels steadily rise during pregnancy. Higher estrogen levels are 

often associated with more glycogen in the vagina, so it is unclear if stress during pregnancy will 

have the same effect as stress when one is not pregnant. 

During pregnancy, the vaginal microbiome consistently becomes less diverse as a 

pregnancy progresses regardless of the presence of pregnancy complications (Freitas et al. 2017). 

Susceptibility to UTIs and BV is increased during pregnancy (Elkady, Sinha, and Hassan 2019). 

Changes in the vaginal microbiome that occur during pregnancy could play a role in this 

increased susceptibility. Specifically, decreased diversity could reflect decreased pathogens 

through competitive exclusion.  

The vaginal microbiome during pregnancy is also thought to be the vaginally born 

newborn’s first exposure to microbes (Singh and Mittal 2020, Kennedy et al. 2023). The 

microbes seed the newborn with the microbiome of the birthing parent, either vaginal or skin 

microbes depending on mode of delivery. Interactions between bacteria are important in early 

life microbiome development (Rao et al. 2020), and infants follow a particular trajectory for gut 

microbiome development (Moore and Townsend 2019; Enav, Bäckhed, and Ley 2022). Infant 

gut microbiomes reflect adult microbiomes as they grow up while still being socially considered 

children (Azad et al. 2013). The impact of birth mode (c-section or vaginal birth) on lifelong 

health outcomes, like allergy or obesity, is still an open question (Bokulich et al. 2017). 

Antibiotics in Pregnancy 

Antibiotics also influence the microbial communities during pregnancy. In the United 

States, approximately one in four individuals are prescribed antibiotics during their pregnancy 

(such as to treat STIs, UTIs, etc.) (Bookstaver et al. 2015) and individuals undergoing C-section 
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or who have Streptococcus agalactiae, or group b strep infection, receive a continual dose of 

antibiotics during delivery to reduce risk of infection (Seedat et al. 2017). Administering 

antibiotics is often an essential life-saving therapy, particularly when treating an infection. 

However, antibiotic administration increases the pool of antibiotic resistant pathogens (Ma, 

Forney, and Ravel 2012). In nonpregnant populations, antimicrobial therapies are known to 

increase the repertoire of AMR genes which increases the risk for drug resistant infections and 

increase the likelihood of subsequent obesity (Cox and Blaser 2015), though the percent variance 

explained from these studies is low. Research in rodents suggests that antibiotics either 

prenatally or right after birth will have a negative effect on long term health outcomes (Cox and 

Blaser 2015). Antibiotics given to agricultural animals play a role in human AMR genes, and 

may impact the microbiome as well (Smith 2020). Some work in humans has found that 

antibiotics in pregnancy can impact the progression of an infant’s microbiome (Lemas et al. 

2016), however, these trends do not typically persist across the lifespan. It is important to study 

how antimicrobial therapy impacts AMR genes during pregnancy because antimicrobials may 

negatively impact the changing microbiome in a manner which limits the microbiome’s ability to 

support a healthy pregnancy or play a role in a newborn’s microbiome progression or risk of a 

maternal or neonatal AMR infection. 

Outline of the Dissertation 

As described above, there are definite changes in the microbiome during pregnancy that 

seem to be important for maintaining typical, healthy pregnancies. There are typically 

differences in the microbiome of those who have healthy pregnancies and those who have 

pregnancy complications, however, the differences between these groups are not always 
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consistent. The first aim of this dissertation aims to dig deeper at this point in a large cohort of 

pregnant people. 

Methodology 

The Emory University African American Pregnancy Cohort was used for a secondary 

data analysis for this dissertation (Corwin et al. 2017). The Emory University African American 

Pregnancy Cohort followed a cohort of African American people throughout their pregnancy (T1 

= 8-14 weeks gestation; T2 = 24-30 weeks gestation). Pregnant people provided rectal and 

vaginal swabs and consent to a medical chart review. From a subset of 238 enrolled individuals, 

DNA extracted from vaginal and rectal swabs underwent both 16S and shotgun metagenomic 

sequencing, providing hundreds of metagenome samples for analysis and the unique chance to 

examine how many host medical factors, like antibiotics, shift alongside changes in the 

microbiome. Figure One depicts these methods.  

Aim 1: Examine how bacterial species change in the microbiome during pregnancy in African 

American patients with and without urogenital infections. 

H 1.1: The gut and vaginal microbiome will become less diverse as a pregnancy progresses. 

H 1.2: There will be taxonomic differences in the vaginal microbiome of those who are 

diagnosed with Chlamydia, BV, or a UTI during pregnancy 

H1.3: Replicating the LDM analysis in 16S rRNA data will return similar results. 

Approach To identify which microbes are present in the metagenomic samples, the 

bioBakery pipeline will be used to remove human reads, complete quality filtering (kneaddata), 

assign taxonomy (metaphlan2), and describe the functional capabilities of the microbiome 

(humann2). This pipeline is widely used by researchers in the field, allowing for comparison of 

these results to other comparable studies. bioBakery is actively maintained, allowing us to ensure 
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an accurate up-to-date pipeline will be used for this project. Additionally, the bioBakery pipeline 

allows for creation of taxonomic and functional profiles for each sample, identifying features 

detected and genes/metabolic pathways that are present. Data on urogenital infection is collected 

from medical chart abstraction and is defined as any chlamydia, UTI, or BV diagnosis during 

their pregnancy. 

Data Analysis To test both the global effect of urogenital infection on the microbiome 

and the association between individual taxa and urogenital infections, the R package LDM will 

be used to implement a linear decomposition model (Zhu et al. 2021). LDM is beneficial because 

it can test the global and individual associations in a unified approach while adjusting for the 

false discovery rate, controlling for continuous and discrete confounding variables, and it can 

handle samples which are not independent of each other (as is the case with multiple timepoints 

and body sites per patient included in the study). LDM can also account for multiple samples 

coming from a single individual with the parameter “cluster.id” corresponding to the subject ID. 

The LDM analysis will be replicated in the 16S rRNA gene samples that exist for the same data 

(without exploring the 16S rRNA gene data outside this scope) 

Potential Outcomes and Interpretations This analysis is expected to reveal a decrease in 

diversity as pregnancy progresses for both the gut and vaginal microbiome. Importantly, in the 

event of a change in diversity, this analysis will reveal the taxa that are changing over the course 

of pregnancy and in response to urogenital infection during pregnancy. The change in diversity 

may be impacted by the initial community, especially within the vaginal microbiome where 

Lactobacillus is typically either in high abundances or nearly absent. An analysis of the 

functional profiles can elucidate if differences in taxonomy are due to functional differences in 

the microbiome, which is expected as L. crispatus dominated vaginal communities produce more 
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lactic acid than L. iners dominated or diverse communities, which produce more acetic acid. The 

gut microbiome is expected to become less diverse as a pregnancy progresses. Further, in people 

who experience a urogenital infection during pregnancy, the vaginal microbiome may be more 

diverse than those without a urogenital infection during pregnancy due to inflammatory response 

to infections, disturbance to the baseline microbiome when infection is present, and antibiotics 

used to treat the infection. 

Possible Pitfalls and Alternative Approaches A potential limitation of this work is that 

the individuals who experience one of the three urogenital infections of interest (chlamydia, UTI, 

or BV) may be too heterogeneous to make inferences about changes in the gut and vaginal 

microbiome during pregnancy beyond broad generalizations. Heterogeneity in birth outcomes 

and pregnancy complications may make it difficult to draw conclusions about the shifting 

microbiome in pregnancy. If the group is too heterogeneous, more variables can be introduced as 

confounding variables to control for more of the variance in the data. Alternatively, broader 

grouping variables can be assigned (e.g., any antimicrobial exposure versus no exposure to 

antimicrobials).  

Aim 2: Examine how exposure to antimicrobial therapies change the microbiome over time. 

H 2.1: Those who receive antibiotics for urogenital infection (Chlamydia, UTI, and BV) will 

have a more diverse vaginal microbial community due to antibiotic exposure and less diverse gut 

microbial community. 

H 2.2: Those exposed to antibiotic therapy for these three urogenital infections will have more 

AMR genes in their gut and vaginal microbiome compared to those not exposed to antimicrobial 

therapy and those exposed to antimicrobial therapies for other reasons.  
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Approach Antimicrobials are commonly administered to treat bacterial vaginosis (BV), 

urinary tract infection (UTI), and Chlamydia infection in this sample (n = 57, 46, 30 

respectively). Understanding the influence of antimicrobials on AMR genes is important because 

antimicrobials are a common therapy during pregnancy and birth, and AMR genes can increase 

the risk for drug-resistant infection. Particular attention will be paid to antibiotics nitrofurantoin, 

metronidazole, and Zithromax administered to treat the three most common infections in this 

cohort - UTIs, BV, and Chlamydia infection. 

Data Analysis The repertoire of AMR genes will be assessed for all participants (those 

exposed to antimicrobial therapy and those not). First, a benchmarking analysis will compare 

computational tools for identifying AMR genes in metagenomic data - ShortBRED, fARGene, 

RGI, ResFinder, abricate, AMRFinder Plus, deepARG, sraX, and starAMR. Once these tools are 

systematically assessed, one will be selected that is the best fit for this data and resources. This 

tool will be used to characterize the AMR genes in the whole dataset. Then, the catalog of AMR 

genes will be compared between those who receive antibiotics for the urogenital infections of 

interest (chlamydia, UTI, and BV), those who receive antimicrobials for other infections, and 

those who report no antimicrobial exposure during their pregnancy. To test if there is a 

significant difference between the number and type of AMR genes present in those who do and 

do not experience each of the three urogenital infections and its treatment during pregnancy, a 

Chi squared test of independence will be used (Chi squared test for types of AMR genes). To test 

if there is a significant difference in the microbiome between groups, alpha diversity will be 

calculated with R package vegan (Dixon 2003) and an ANOVA will be used to test for 

significant differences between groups.  
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  Potential Outcomes and Interpretations Nitrofurantoin, Metronidazole, and zithromax 

are administered to treat urogenital infections (UTI, BV, and chlamydia) in this cohort. 

Nitrofurantoin is thought to only affect the urinary tract and therefore be “safer” to use in 

pregnant patients. It is expected that those exposed to only this antimicrobial therapy will not 

have significant changes in the AMR genes in their gut microbiome. However, orally 

administered metronidazole and zithromax are suspected to impact AMR genes in both the gut 

and vaginal microbiome, despite the pathogen only residing within the vaginal microbiome. It is 

expected that the gut microbiome of those who receive any antimicrobials will be less diverse 

and the vaginal microbiome will be more diverse compared to those who do not receive any 

antimicrobial therapies, as indicated by Shannon’s alpha diversity metric.  

  Possible Pitfalls and Alternative Approaches One potential pitfall is that there may not 

be enough individuals exposed to antibiotics to make statistically significant inferences about 

any antimicrobial therapy and its effect on the gut microbiome. Due to this limitation, special 

attention is paid to three clinically important urogenital infections and their treatment, which are 

common in this cohort and will hopefully ensure sufficient data for statistically significant 

results. It will be important to document what differences do exist - in AMR genes, community 

composition, and medical factors - for those exposed to any antimicrobial and for those in the 

targeted antibiotic analysis. It is also possible that the baseline microbiome of those requiring 

antimicrobials to treat UTIs, STIs, and BV is different from the baseline microbiome than those 

who do not develop infections as the pathogen may be present in the baseline community or 

make the baseline community more susceptible to pathogen invasion. To test for this, alpha 

diversity will be compared across groups at the first sampling time point.  
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Significance  

This study contains a large cohort of pregnant individuals who were followed 

longitudinally (n = 238) and are typically excluded in microbiome research. The resulting dataset 

contains over 1,000 metagenomic sequences for analysis, a full medical chart abstraction, and in-

depth data from psychometric questionnaires. Analysis of these data will expand our 

understanding of the healthy microbiome and how it changes during pregnancy. 

Further, as metagenomic sequencing is used for this data, it can be determined what 

strains of microbes are present and what they are doing (through metabolic pathway analysis). 

As these samples were also sequenced by 16S, information from 16S versus metagenome 

sequencing can be compared to determine which may be better suited for certain types of clinical 

use. 

As antibiotics are routinely administered during pregnancy and birth, it is critical to 

understand their role in longitudinal microbiome changes. Antibiotics are a lifesaving therapy, 

but it is currently unexplored how AMR genes shift during pregnancy in people, and whether this 

has broader health implications.  

Theoretical Model 

The conceptual framework for this dissertation is presented in Figure Two. Briefly, 

microbes interact with each other within the body site they occupy and across body sites (i.e., gut 

and vaginal microbiome). Aim 1 of this study will examine the microbial communities. 

Antimicrobials such as antibiotics impact these microbes across body sites, a phenomenon Aim 2 

will examine. 
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Summary 

The microbiome shifts during pregnancy alongside expected hormonal, immune, and 

metabolic changes, but the direction of causal relationships between microbial community 

structure and broader, body-wide changes in the host is unclear. Understanding of changes in 

microbial community structure during pregnancy in the absence of complications is necessary to 

understand causal relationships between microbial communities and complications and to design 

necessary interventions. 

To better understand how the microbiome changes during pregnancy, data from the 

Emory University African American Pregnancy Cohort were analyzed to examine (1) how 

microbial strains interact both within and across body sites over time to support healthy 

pregnancies, and (2) how antimicrobial therapy impacts these interactions during pregnancy. 

Results from this dissertation are expected to help further understanding how the microbiome 

supports healthy pregnancies and provide a pathway for future analysis of the microbiome in 

pregnancy complications.  
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Figure One  

A visual description of the data collection. Pregnant individuals in the Emory University African 

American Pregnancy Cohort were enrolled at 8-14 weeks gestation and provided rectal and 

vaginal swabs, along with medical chart abstraction that provided information from their 

pregnancy and delivery. There were 238 pregnancy individuals who provided the same swabs 

and surveys at a second time point in pregnancy (24 - 30 weeks gestation), then consented to a 

medical chart review to see birth outcomes.  
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Figure Two 

Conceptual Framework, or Theoretical Model, for the phenomenon this dissertation aims 

to explore. Aim One will explore how microbes interact both within and between body sites. 

Aim two will explore how antimicrobials for the three most common infections in this cohort, 

Bacterial Vaginosis (BV), Urinary Tract Infection (UTI), and Chlamydia infection, impact these 

relationships.  
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Chapter 2 

The Impact of Urogenital Infections on the Gut and Vaginal Microbiome in Pregnancy  

Abstract 

Background: During pregnancy, the gut and vaginal microbiome change as the pregnancy 

progresses. Differences in specific dynamics in the microbiome between those who develop 

urogenital infection during pregnancy and those who do not develop urogenital infections are 

unclear. 

Methods: A subset of the data from the Emory University African American Vaginal, Oral, and 

Gut Microbiome in Pregnancy Cohort Study were sent for metagenomic sequencing (238 

patients, rectal and vaginal swabs at 8-14 weeks & 24 - 30 weeks pregnancy). Taxonomic 

assignment was done with metaphlan2. To test for association between UTIs, BV, and 

Chlamydia infection and the microbiome, a linear decomposition model was used with R 

package LDM. Data was analyzed separately for rectal and vaginal samples. 

Results: There was no significant association between the overall gut and vaginal microbiome 

and chlamydia, urinary tract infection (UTI), or bacterial vaginosis (BV) in pregnant patients. 

However, specific taxa in the gut and vaginal microbiome were found to be significantly 

associated with each of the infections. Alpha papilloma virus was found to be significantly 

associated with bacterial vaginosis, and Lactobacillus jensenii, Lactobacillus phage Lv 1, and 

Megasphaera genomosp type 1 were all significantly associated with UTI. In addition, 

Mobiluncus mulieris in the vagina and Mycoplasma hominis in the gut were found to be 

significantly associated with chlamydia infection. The results of the LDM analysis were 

replicated using 16S rRNA gene sequencing data, though results of specific taxa associated with 

each urogenital infection differed between metagenome and 16S data. 
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Introduction  

Gut and vaginal microbial communities can be influenced by many factors, including 

diet, lifestyle, and hormonal changes. During pregnancy, the gut and vaginal microbiome are of 

heightened importance because they can influence the health of a pregnant person and 

developing fetus. Studies have shown that the gut microbiome of pregnant people generally 

becomes less diverse than that of non-pregnant people (Koren et al. 2012, Neuman and Koren 

2017). This is thought to be due to the hormonal, immunological, and metabolic changes that 

occur to help the body support a healthy pregnancy (Fuhler 2020). The change in the vaginal 

microbiome over the course of a pregnancy is not very well understood. However, the vaginal 

microbiome shifts towards Lactobacillus dominance for most individuals during pregnancy as 

estrogen levels stabilize (Fuhler 2020). Sometimes, a diverse microbiome is associated with 

pregnancy complications such as preterm birth (Mysorekar and Cao 2014), however, this 

research is not always replicated. 

Antibiotics are prescribed during 1 in 4 pregnancies in the United States. During 

pregnancy, susceptibility to urogenital infections such as chlamydia, UTIs, and BV increases 

compared to nonpregnant individuals (Elkady, Sinha, and Hassan 2019). Immunological changes 

occur so that there is not an immune response against the developing fetus, and this change, in 

addition to changes in hormones and physiology during pregnancy, could play a role in this 

increased susceptibility. It is not well understood how the gut and vaginal microbiome recover 

after urogenital infections during pregnancy and whether these urogenital infections or their 

treatment have any broader impact on the microbiome during pregnancy. However, evidence 

suggests that certain infections, like high-risk human papilloma viruses (HPV) and bacterial 

vaginosis (BV), are associated with a more complex, diverse vaginal microbiome (Chen et al. 
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2019, Severgnini et al. 2022). A blinded study found that some vaginal microbes in pregnant 

people were associated with BV, and that this was independent of race and birth timing (full vs. 

preterm; Subramaniam 2016). 

Despite the progress that has been made in our understanding of the gut and vaginal microbiome 

during pregnancy, there is still much that remains unknown. The aim of this study is to examine 

how bacterial species change in the gut and vaginal microbiome during pregnancy with and 

without urogenital infections, and whether potential mechanisms can be hypothesized from these 

associations. 

Methods 

Rectal and vaginal swabs were self-collected at two time points during pregnancy as 

previously described (Corwin et al. 2017). Participants consented to a medical chart review so 

that medications, complications, and birth outcomes could be known. 980 swabs from 238 

patients were included in this study.  

Swabs were sent to Omega Bioservices Inc. for metagenome sequencing with NextSeq. 

The resulting FASTQ files were processed using the bioBakery pipeline. FASTQC was used for 

quality filtering the FASTQ files (Babraham Bioinformatics, n.d.). Trimmaomatic (Bolger, 

Lohse, and Usadel 2014) was used to remove adaptor sequences. Briefly, human reads were 

removed with kneaddata v0.7.4 (Huttenhower Lab, n.d.) and taxonomy was assigned with 

metaphlan v2.6.0 (Truong et al. 2015). After quality control, rectal samples had a median of 

16.12 million reads, and vaginal samples had a median of 4.46 million reads. Bray-Curtis 

dissimilarity (Faith, Minchin, and Belbin 1987) was used to compare the relative abundance of 

taxa detected in our positive controls to known relative abundance from Zymo (Zymo Research, 

n.d.) and ensured these numbers were within accepted thresholds (<30% dissimilarity). Batch 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269590


36 

 

effect by sequencing plate was observed and controlled for within the LDM package in R as a 

confounder (Yi-Juan and Satten 2020). Decontam [c] in R was used to detect contaminants from 

the negative control samples. Of 27 taxa detected in the negative control samples, only 4 were 

plausible gut or vaginal microbes, and only 3 were indicated to be contaminants from decontam. 

Read counts in the contaminated negative control samples indicated that contamination was 

minimal and not distributed across all sequencing plates. As such, the sequencing plate was 

controlled for in all subsequent analyses. Taxa which were detected at less than 1% relative 

abundance were excluded from further analysis. This 1% threshold was selected based on results 

from positive control samples, in which many false positives were detected under 1% by 

metaphlan2. Of note, metaphlan2 could correctly identify some taxa below 1% relative 

abundance, however there are proportionally many more false positives than true positives 

between 1% and 0.01%.  

Since relatively few taxa were identified at the species level within each sample (Figure 

One), a small subset of samples were processed with metaphlan2 (Truong et al. 2015), 

metaphlan3 (Beghini et al. 2021, and kraken2 (Wood, Lu, and Langmead 2019) to compare the 

number of taxa identified per sample. Three samples with high DNA concentration and 3 

samples with low DNA concentration and few taxa identified by metaphlan2 were selected per 

body site for this subsample. High DNA concentration samples were E0594-2- VagM1, G0040-

1-VagM1, E0502-1-VagM1, E0632-2-RecM1, E0588-2-RecM1, and G0139-1- RecM1. Low 

DNA concentration samples with few identified species were G0296-1-Vag,  E0683-1-Vag, 

E0627-2-Vag,  G0050-1-Rec,  G0148-2-Rec, and E0671-2-Rec. Four samples from an external 

study (Goltsman et al. 2018) with a similar self-collection protocol for pregnant participants were 

also included (rectal sample SRR6747978 & SRR6748112; vaginal swabs SRR6747938 & 

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0605-2
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0605-2
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SRR6747978). FASTQ files from the external study were subsampled so that the total number of 

reads was the same as the median number of reads from the FASTQ files per body site from this 

study.  

The 16S rRNA gene sequence data were analyzed as previously described (Wright et al. 

2022, Dunlop et al. 2021). Briefly, the V3-V4 region was sequenced using Illumina HiSeq at the 

University of Maryland. QIIME (Bolyen et al. 2019) and DADA2 (Callahan et al. 2016) were 

used for quality control and data processing. Closed-reference operational taxonomic units 

(OTUs) were assigned using PECAN (Wright 2018). The purpose of the 16S data in this study 

was to see if LDM analysis in metagenomic data could be replicated. 

A data matrix of the relative abundance, with samples as rows and taxa as columns, was 

used for further analysis with the R package LDM (Zhu et al. 2021). LDM is a preferable 

analysis approach as it can handle compositional data, can test for a global effect of the 

microbiome and effect of any individual taxa while controlling for the false discovery rate, and 

handle multiple covariates at once (numerical and categorical). Only taxa at the same hierarchy 

level were included as input per LDM analysis (e.g., only species included as columns for the 

species analysis, only genera for the genus-level analysis). Confounders were selected based on 

prior literature and significant variables from the parent study with the full 16S dataset. 

Confounders were body site, parity, BMI, age, tobacco use, alcohol consumption, marijuana use, 

and income (categorical). Covariates of interest were timepoint (matched LDM), chlamydia 

infection, UTI, and BV diagnosed during pregnancy (cluster LDM). All code is available on 

GitHub (Wissel 2023). A separate LDM analysis was done per body site and was replicated for 

species and genera from the metagenomic data, and at the species level from the 16S data for the 

same samples. 
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Results 

Pregnant patients had a mean age of 24.9 years old (sd = 4.73; range 18 - 40) in this 

study. On average, patients had given birth once before (parity median = 1; sd = 1.05; range 0 - 

4). Few patients report tobacco (17.6%), alcohol (8.8%), or marijuana (37%) consumption during 

their pregnancy. For the urogenital infections of interest, 57 patients (31.5%) received a BV 

diagnosis during their pregnancy, 46 (24%) received a UTI diagnosis, and 30 (14.4%) received a 

Chlamydia diagnosis (Figure Two).  

After quality control and filtering out human reads, there were a median of 16.12 million 

reads per rectal sample and a median of 4.46 million reads per vaginal sample. A median of 11 

species were identified in the rectal swabs, with a median of 2 species in the vaginal swabs 

(Figure One). Since there are relatively few species identified per sample, a small subset of 

samples was processed with metaphlan2, metaphlan3, and kraken2 to compare the number of 

species taxa identified per sample. Overall, any particular species was not found in more than 

three samples; most species were only found in two samples. Differences in the total number of 

taxa identified could be mostly explained by difference in the database used by each 

bioinformatic tool (e.g., kraken2 identified more species in vaginal samples, but the kraken2 

database also reflects the latest taxonomy changes which splits Lactobacillus into many genera; 

Table 1). While this subsample was too small to test for significant differences between 

bioinformatic methods, the comparable results show that low taxonomic yield is likely due to the 

samples themselves and not a bioinformatic artifact. Overall, the few species per sample is 

attributed to the relative abundance threshold (1%), and subsequent analyses can include a lower 

threshold (0.01%) when the number of false positives is more permissible. Lowering the 0.01% 

threshold could improve the number of species detected, but also provide different kinds of 
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insight into the dynamics of microbes in the gut and vagina, as low abundance microbes are 

often important in infection contexts (Costello et al. 2012; Hajishengallis et al. 2011; Lloyd-

Price, Abu-Ali, and Huttenhower 2016). 

LDM analysis of the shotgun metagenome data revealed no significant associations 

between the gut or vaginal microbiome and time point at the species or genus level (p > 0.05, 

Table 1). No individual taxa were significantly associated with time point, indicating that the 

microbiome as a whole and no individual microbe was significantly associated with early or late 

pregnancy at either body site. This finding was replicated in the 16S rRNA gene sequence ASV 

LDM analysis. The cluster LDM analysis revealed no significant associations between the 

microbiome and a diagnosis of chlamydia, UTI, or BV during pregnancy at the species and 

genus level with either body site (p > 0.05 Table 1). Individual species and genera from both the 

gut and vaginal microbiome were associated with these urogenital infections (Table 2). 

Significant species which were present in fewer than 5 samples are not reported. Notably, 

Mycoplasma hominis from the gut, an opportunistic pathogen in humans (Taylor-Robinson 1996; 

Haggerty and Taylor 2011), and Mobiluncus mulieris in the vagina, a microbe associated with 

urogenital infections (Mastromarino, Vitali, and Mosca 2013), were significantly associated with 

chlamydia infection during pregnancy. Lactobacillus jensenii, Lactobacillus phage Lv 1, and 

Megasphaera genomosp type 1 were all significantly associated with UTI during pregnancy, 

while Alpha Papillomavirus 14 was significantly associated with BV.  

Analysis with genera revealed that genus Haemophilus in the gut and Begomovirus and 

Badnavirus in the vagina were significantly associated with UTI. These are two likely novel 

viruses that are placed in this taxa group due to a lack of other information. Megasphaera, 
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Alphapapillomavirus, Begomovirus, and Campylobacter in the vagina were associated with BV. 

No genera were significantly associated with chlamydia at either body site.  

The LDM analysis was replicated with the ASVs from the 16S data. As with 

metagenome data, there were no global associations between the microbiome and any of the 

three urogenital infections for any body site. However, the vaginal microbiome from 16SrRNA 

gene sequence data was significantly associated with time point, indicating there is a difference 

in the vaginal microbiome as a whole as a pregnancy progresses. There was no association 

between the gut microbiome and time point. A UTI diagnosis was associated with 

g__Klebsiella.s__Kosakonia_  in the gut microbiome (note that this taxa has undergone recent 

taxonomy changes; Kosakonia is now its own genus, but the species identified by DADA2 is 

given in this manuscript). Many individual taxa from the 16S rRNA gene sequence data were 

significantly associated with the three urogenital infections, however, none of these taxa were 

significant in the metagenome data. This is likely due to differences in what can be detected by 

different sequencing approaches and differences in the database used by the bioinformatic tools 

used for taxonomic assignment.  

Discussion 

Overall, there was no significant association between the microbiome as a whole and 

chlamydia, UTI, or BV, a good finding for pregnant patients, as it indicates that these common 

infections are not significantly changing the entire microbiome over the course of pregnancy. 

These results should be replicated in a broader population with more sampling timepoints before 

being assumed to be broadly true, as some research has found associations between the diversity 

of the microbiome and these infections at various timepoints in pregnancy (Severgnini et al. 

2022). Some individual taxa were associated with diagnosis of specific urogenital infections 
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(Table 3), discussed below. While few taxa per sample were detected after the 1% quality 

control, we have confidence in the few taxa that were significant as they are replicated from prior 

research studies and have biologic plausibility in the context of infection. Results from the 

matched LDM analyses examining timepoint and the microbiome are not shown because those 

results were not significant. 

There was also no significant change in the microbiome detected as a pregnancy 

progresses, while much of the literature does detect a decrease of diversity in the vaginal 

microbiome as a pregnancy progresses (Nuriel-Ohayon, Neuman, and Koren 2016; Aagaard et 

al. 2012) (though the microbiome in late pregnancy looks more like the microbiome of 

nonpregnant individuals (MacIntyre et al. 2015, Romero et al. 2014). It is unclear if the lack of 

detection of a difference over time in this study is an artifact such as from sampling method, due 

differences in sampling time point during pregnancy between this and other studies, or some 

other unknown cause. Further, the LDM analysis of 16S rRNA gene sequences revealed an 

association between the vaginal microbiome and time point, indicating that there is likely a 

significant change in the microbiome as a whole over time during pregnancy, in line with prior 

literature, but not detected in the shotgun metagenome data due to low resolution data.   

Bacterial Vaginosis 

While there was no significant association between any of the three infections and the 

microbiome, specific taxa in both the gut and vaginal microbiome were significantly associated 

with each of the three infections. Alphapapillomma viruses are a type of human papillomavirus 

that can cause genital warts and cervical cancer. In this study, the presence of Alpha Papilloma 

virus was significantly associated with BV at the genus and species level in the vagina. This is in 

line with prior literature which detected Alpha Papilloma in pooled samples from pregnant 
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people with BV (Zhang et al. 2021). At the genus level, Megasphaera in the vagina was 

significantly associated with BV, which is not surprising as Megasphaera is a genus of BV-

associated bacteria. A common rectal genus and common cause of diarrhea, Campylobacter, 

when found in the vaginal environment was significantly associated with BV diagnosis as well. 

One likely misclassified virus genus in the vagina was associated with BV, Begomovirus. This 

suggests that the role of viruses in this polymicrobial infection is underappreciated and likely 

plays a role in the development of BV symptoms. Of note, these taxa were not significantly 

associated with BV in the 16S analysis. However, 16S data lacks the ability to detect viruses. 

Further, the bacteria taxa were detected in the genus-level analysis of the metagenome data, 

while the 16S data was only analyzed at the OTU level to try and replicate findings in the species 

level analysis.  

Urinary Tract Infection  

UTIs are the most common bacterial infections in pregnancy (Foxman 2002) and can 

increase risk for complications like preeclampsia and low birth weight if left untreated (Kalinderi 

et al. 2018). In this study, Lactobacillus jensenii, Lactobacillus phage Lv 1, and Megasphaera 

genomosp type 1 were all significantly associated with UTI during pregnancy. Megasphaera is 

typically associated with BV in pregnant and nonpregnant populations (Zozaya-Hinchliffe, 

Martin, and Ferris 2008; Glascock et al. 2021) (and was associated with BV at the genus level in 

this study), but it and other BV associated bacteria have been found to be associated with risk for 

UTI in pregnancy before (Yoo et al. 2022). While it is typically E. coli that causes UTI, 

Megasphaera species may make the urinary tract more susceptible to infection. Two likely 

misclassified viral genera in the vagina, Begomovirus and Badnavirus, were significantly 

associated with UTI. These are likely misclassified because they are plant pathogens, and 
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databases do not describe viruses as well as they describe bacteria. Haemophilus in the gut 

microbiome was significantly associated with UTI, though this taxa is only present in 5 samples 

in this cohort. Pathogenic species like H. influenzae and H. parainfluenzae belong to this genus, 

and this genus typically colonizes the nasopharynx and requires metabolites from broken down 

blood cells to grow (Musher 1996). As it is an opportunistic pathogen which can be a part of the 

commensal microbiome, it is likely that the immune response to UTI causes changes to the gut 

microbiome that allows Haemophilus to proliferate in the gut without causing other illness. 

Chlamydia Infection 

Chlamydia species are obligate intracellular species that grow inside other mammalian 

cells. Chlamydia infection during pregnancy confers high risk for multiple measures of preterm 

birth, low birth weight babies, and babies small for their gestational age (He et al. 2020). As 

such, pregnant patients are routinely screened for chlamydia at pregnancy onset and in the third 

trimester so they can be treated quickly to avoid the development of these complications 

(Majeroni and Ukkadam 2007). In this study, Mobiluncus mulieris in the vagina was 

significantly associated with chlamydia infection during pregnancy and was previously found to 

be associated with chlamydia infections (Bommana et al. 2022) and BV (Bautista et al. 2016). 

Mycoplasma hominis in the gut microbiome was significantly associated with chlamydia 

infection. M. hominis is often associated with urogenital infections, especially in 

immunocompromised patients (McMahon et al. 1990). While M. hominis was detected in rectal 

samples and not vaginal samples in this study, these body sites are very close to one another and 

it is feasible that M. hominis originating from the rectum can exist in the extragenital area, 

especially in the context of another infection. Further, this microbe is unlikely to be a 
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contaminant as it was not detected in any of the negative control samples or in the contaminant 

analysis with decontam in R.  

16S versus shotgun metagenome LDM analysis 

The purpose of the 16S rRNA gene sequencing data in this study was to see if results 

from the shotgun metagenome data could be replicated with the same analysis with the 16S data. 

Comparison between the 16S rRNA gene sequencing data and metagenome data revealed each 

type of sequencing data is better suited for detecting different microbes. For example, viruses can 

be detected in metagenome data but not 16S data, while the 16S data has no sequences lost to 

human DNA reads, and a larger portion of the total reads can be classified.  

While overall, there were no significant differences between the microbiome over time 

and body site for any of the analyses, analysis of the 16S rRNA gene sequence data did find a 

significant association between the vaginal microbiome at the ASV level and time point. Many 

ASVs from the vaginal microbiome and a single ASV from the gut microbiome were significant 

in the LDM analysis, however, there was no overlap between the individual taxa detected with 

the 16S analysis and the metagenome analysis. All significantly associated taxa from the LDM 

analyses have biological plausibility and relevance, indicating that all these taxa are likely 

playing a role in the dynamics of the microbiome during infection in pregnancy. Overall, using 

different sequencing technologies will provide different advantages, answer different kinds of 

questions, and require different resources to process. Clinicians will need to consider patients' 

needs and restraints (i.e., cost and time) when considering which approach to use as microbiome 

data becomes integrated into healthcare practice.  
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Conclusion 

Overall, the specific taxa that were associated with urogenital infections were taxa that 

prior literature also found to be associated with these infections. We did not find any associations 

between the any of these urogenital infections and the microbiome, indicating that these 

infections are not causing widespread, global changes in the microbiome during pregnancy and 

suggesting that pregnant individuals are not at severe risk of microbiome disruption as a result of 

these infections and their treatment. 16S rRNA gene sequencing and metagenome sequencing 

can provide different information on the microbiome, and clinicians will have to consider the 

cost and resource requirement for each when deciding to integrate microbiome profiling into 

patient care.  
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Figure 1: Number of Species Identified per Sample by MetaPhlAn2 
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Figure 2: Prevalence of BV, UTI, and Chlamydia Diagnosis in this sample 

(I’m planning to have three plots to show the prevalence of BV, UTI, and Chlamydia diagnosis 

in the study. My undergrad is working on it currently but here is an example of one of the 

figures. Final plot will have the same Y axis. Also playing with stacked bar charts.)

 



48 

 

 

  



49 

 

Table 1: Comparison of Total Number of Species Identified by different bioinformatic tools 

This table shows how many species were identified in ten metagenome samples (5 per body site) 

using the default settings of the taxonomic assignment tool. Overall, no taxa were found in more 

than three samples; most species were only found in two samples. Differences in the taxa 

identified could be mostly explained by difference in the database used (e.g., kraken2 identified 

more species in vaginal samples, but the kraken2 database also reflects the latest taxonomy 

changes which splits Lactobacillus into many genera).  

 

 Species Identified 

body site metaphlan2 metaphlan3 kraken2 

rectal 47 93 66 

vaginal 24 19 45 
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Table 2 Significant p values 

The results from the LDM analysis are presented below. The table shows the p-values for testing 

an association between the microbiome as a whole and the covariate of interest. Significant p-

values are in bold. In the LDM analysis, confounding variables controlled for were sequencing 

plate, maternal age, income, parity, tobacco use, alcohol use, and marijuana use. Chlamydia 

infection, UTI infection, and BV were tested in a cluster LDM while timepoint was tested in a 

matched LDM while controlling for the other covariates of interest.  

body site data type preg_chlam preg_uti preg_BV timepoint 

rectal species, metagenomic 0.6880 0.9910 0.2960 0.8560 

vaginal species, metagenomic 0.7760 0.4250 0.9430 0.9560 

rectal genus, metagenomic 0.8820 0.9760 0.4980 0.2120 

vaginal genus, metagenomic 0.1660 0.7090 0.2410 0.4960 

rectal 16S, OTU 0.4230 0.7070 0.5780 0.5020 

vaginal 16S, OTU 0.1720 0.3410 0.5980 0.0036 
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Table 3 Significant taxa from aim 1 analysis 

This table displays significant results from LDM analysis in R. Each body site and data type 

were run in its own LDM model (e.g., rectal species from metagenome, rectal 16S ASVs, and 

rectal genus from metagenome). Note that only significant results came from the cluster LDM 

analyses with covariates Chlamydia, UTI, and BV. Results from the matched LDM analyses 

examining timepoint and the microbiome are not shown because those results were not 

significant. Taxa from the metagenomic data was assigned with metaphlan2. OTUs from 16S 

data are assigned with DADA2 for rectal samples and PECAN for vaginal samples. 

body site Data Type  

covariate 

 

species 

 

Raw p 

value 

 

Adj p 

value 

 

Number 

samples 

it is in 

rectal 

Metagenom

e species 

Chlamydi

a Mycoplasma_hominis 0.000128 0.00362 25 

rectal 

Metagenom

e genus UTI Haemophilus 0.00027 0.00901 5 

rectal 16S, OTU UTI 

.g__Klebsiella.s__Kosako

nia_sp. 0.000256 0.0104 17 

 

vaginal 

Metagenom

e species UTI Lactobacillus_jensenii 0.007 0.0461 51 

vaginal 

Metagenom

e species UTI 

Megasphaera_genomosp_t

ype_1 0.00197 0.0245 42 
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vaginal 

Metagenom

e species 

Chlamydi

a Mobiluncus_mulieris 0.000405 0.0454 11 

vaginal 

Metagenom

e species UTI 

Lactobacillus_phage_Lv_

1 0.000282 0.00631 9 

vaginal 

Metagenom

e species BV Alphapapillomavirus_14 0.005 0.0149 5 

Vaginal  

Metagenom

e genus BV Megasphaera 0.00075 0.0046 95 

Vaginal  

Metagenom

e genus BV Alphapapillomavirus 0.00647 0.0291 19 

Vaginal  

Metagenom

e genus UTI Begomovirus 0.000975 0.0346 11 

Vaginal  

Metagenom

e genus BV Begomovirus 0.0015 0.00779 11 

Vaginal  

Metagenom

e genus UTI Badnavirus 0.00171 0.0404 5 

Vaginal  

Metagenom

e genus BV Campylobacter 0.00175 0.00844 5 

vaginal 16S, OTU UTI Streptococcus_infantis 0.000333 0.0067 394 

vaginal 16S, OTU BV Phascolarctobacterium_fa 0.000322 0.00312 250 
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ecium 

vaginal 16S, OTU 

Chlamydi

a 

Phascolarctobacterium_fa

ecium 0.000333 0.00332 250 

vaginal 16S, OTU UTI 

Phascolarctobacterium_fa

ecium 0.000333 0.0067 250 

vaginal 16S, OTU Chlam Prevotellaceae_bacterium 0.000333 0.00332 155 

vaginal 16S, OTU UTI Prevotellaceae_bacterium 0.000333 0.0067 155 

vaginal 16S, OTU UTI Fusobacterium_equinum 0.000333 0.0067 142 

vaginal 16S, OTU Chlam 

Bifidobacterium_adolesce

ntis 0.00467 0.0416 139 

vaginal 16S, OTU UTI 

Bifidobacterium_adolesce

ntis 0.000666 0.0119 139 

vaginal 16S, OTU 

Chlamydi

a Prevotella_copri 0.000333 0.00332 138 

vaginal 16S, OTU UTI Prevotella_copri 0.000333 0.0067 138 

vaginal 16S, OTU BV Enterococcus_faecalis 0.000322 0.00312 94 
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vaginal 16S, OTU 

Chlamydi

a 

Aggregatibacter_segnis_A

ggregatibacter_actinomyc

etemcomitans 0.000333 0.00332 79 

vaginal 16S, OTU BV Parabacteroides_merdae 0.000322 0.00312 78 

vaginal 16S, OTU BV Prevotella_stercorea 0.000322 0.00312 74 

vaginal 16S, OTU 

Chlamydi

a Prevotella_stercorea 0.000333 0.00332 74 

vaginal 16S, OTU UTI Prevotella_stercorea 0.000333 0.0067 74 

vaginal 16S, OTU BV 

Bacillus_subtilis_Bacillus

_vallismortis_Bacillus_m

ojavensis_Baci 0.000322 0.00312 56 

vaginal 16S, OTU BV Lactobacillus_fermentum 0.000322 0.00312 51 

vaginal 16S, OTU BV Listeria_monocytogenes 0.000322 0.00312 42 

vaginal 16S, OTU BV Staphylococcus_aureus 0.000322 0.00312 42 

vaginal 16S, OTU BV 

Corynebacterium_amycol

atum 0.000645 0.00476 41 

vaginal 16S, OTU Chlamydi Corynebacterium_amycol 0.000333 0.00332 41 
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a atum 

vaginal 16S, OTU BV Erwinia_billingiae 0.000322 0.00312 37 

vaginal 16S, OTU 

Chlamydi

a Erwinia_billingiae 0.000333 0.00332 37 

vaginal 16S, OTU UTI Erwinia_billingiae 0.000333 0.0067 37 

vaginal 16S, OTU BV Pseudomonas_aeruginosa 0.000322 0.00312 35 

vaginal 16S, OTU BV Neisseria_cinerea_3 0.000322 0.00312 34 

vaginal 16S, OTU BV Alistipes_finegoldii 0.000322 0.00312 27 

vaginal 16S, OTU 

Chlamydi

a Alistipes_finegoldii 0.000333 0.00332 27 

vaginal 16S, OTU BV 

Lactobacillus_ultunensis_

1 0.000322 0.00312 13 

vaginal 16S, OTU 

Chlamydi

a 

Lactobacillus_ultunensis_

1 0.004 0.0376 13 

vaginal 16S, OTU BV 

Eubacterium_coprostanoli

genes 0.000322 0.00312 12 
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vaginal 16S, OTU 

Chlamydi

a 

Eubacterium_coprostanoli

genes 0.000333 0.00332 12 

vaginal 16S, OTU BV 

Bifidobacterium_ruminant

ium 0.000322 0.00312 11 

vaginal 16S, OTU 

Chlamydi

a 

Bifidobacterium_ruminant

ium 0.000333 0.00332 11 

vaginal 16S, OTU BV Corynebacterium_imitans 0.000645 0.00476 7 

vaginal 16S, OTU BV 

Corynebacterium_appendi

cis 0.000645 0.00476 7 

vaginal 16S, OTU 

Chlamydi

a Arthrobacter_cumminsii 0.000333 0.00332 7 

vaginal 16S, OTU 

Chlamydi

a Corynebacterium_imitans 0.000333 0.00332 7 

vaginal 16S, OTU 

Chlamydi

a 

Corynebacterium_appendi

cis 0.000333 0.00332 7 

vaginal 16S, OTU BV 

Brevibacterium_ravenspur

gense 0.000645 0.00476 5 

vaginal 16S, OTU 

Chlamydi

a Oligella_urethralis 0.000333 0.00332 5 

vaginal 16S, OTU Chlamydi Brevibacterium_ravenspur 0.000333 0.00332 5 
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Chapter 3 

hAMRoaster: a tool for comparing performance of AMR gene detection software 

Abstract 

Background. The use of shotgun metagenomics for AMR detection is appealing because data 

can be generated from clinical samples with minimal processing. Detecting antimicrobial 

resistance (AMR) in clinical genomic data is an important epidemiological task, yet a complex 

bioinformatic process. Many software tools exist to detect AMR genes, but they have mostly 

been tested in their detection of genotypic resistance in individual bacterial strains. Further, these 

tools use different databases, or even different versions of the same databases. Understanding the 

comparative performance of these bioinformatics tools for AMR gene detection in shotgun 

metagenomic data is important because this data type is increasingly used in public health and 

clinical settings. 

Methods. We developed a software pipeline, hAMRoaster (Harmonized AMR Output 

compAriSon Tool ER; Wissel 2022), for assessing accuracy of prediction of antibiotic resistance 

phenotypes. For evaluation purposes, we simulated a highly resistant mock community and 

several low resistance metagenomic short read (Illumina) samples based on sequenced strains 

with known phenotypes. We benchmarked nine open-source bioinformatics tools for detecting 

AMR genes that 1) were conda or Docker installable, 2) had been actively maintained, 3) had an 

open-source license, and 4) took FASTA or FASTQ files as input. hAMRoaster calculated 

sensitivity, specificity, precision, and accuracy for each tool, comparing detected AMR genes to 

susceptibility testing. 

Conclusion. Overall, all tools were precise and accurate at all genome coverage levels tested 

(5x, 50x, 100x sequenced bases / genome length) in the highly resistant mock community with 
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more variability in the low resistance community (1x coverage). This study demonstrated that 

different bioinformatic tools and pipelines yield differences in AMR gene identification across 

drug classes, and that these differences become important if researchers are interested in 

resistance to specific drug classes. 

Significance. Software selection for metagenomic AMR prediction should be driven by the 

context of the clinical/research questions and tolerance for true and false negative results. The 

ability to assess which bioinformatics tool best fits a particular dataset prior to beginning a large-

scale project allows for more efficient processing and analysis using optimal tools for a particular 

research question. As prediction software and databases are in a state of constant refinement, the 

approach used here—creating synthetic communities containing taxa and phenotypes of interest 

along with using hAMRoaster to assess performance of candidate software—offers a template to 

aid researchers in selecting the most appropriate strategy at the time of analysis.  
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Introduction 

Antibiotic resistant infections pose a serious threat not only to public health but to the 

agricultural, veterinary, and food safety industries. The misuse of antibiotics in healthcare and 

livestock production has led to widespread antimicrobial resistance in diverse environments and 

has emerged as a threat to global health (Shao et al. 2021, Poole and Sheffield 2013). The burden 

of multi-drug resistant pathogens is increasing globally, creating complex clinical scenarios in 

which there are limited (if any) therapeutic options, resulting in increased mortality and 

healthcare costs for common medical procedures (Teillant et al. 2015). Genes that confer 

antimicrobial resistance (AMR) are increasingly present in commensal members of the human 

microbiome and are recognized as an important reservoir for conferring pathogen resistance 

through horizontal gene transfer (Nji et al. 2021, Brinkac et al. 2017).  

Two key approaches to mitigating AMR infections are antibiotic stewardship and AMR 

surveillance. While antibiotic stewardship focuses on using antibiotics appropriately, AMR 

surveillance focuses on describing AMR genes already present in a community. Currently, AMR 

surveillance typically relies on phenotypic characterization through culture or genotypic 

characterization through molecular diagnostics based on PCR and hybridization techniques 

(Anjum, Zankari, and Hasman 2017). However, there is a move toward genome-based methods 

with the Illumina short-read platform being the dominant platform for data generation at the 

present time (Porter and Hajibabaei 2018).  

Sequencing technology has revolutionized research across many disciplines, with more 

applications found every year as both the technologies and analysis methods advance. This is 

particularly evident in the use of metagenomic data for the microbial surveillance of 

antimicrobial resistance (AMR), as microbial communities can be characterized without the need 
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to first isolate and culture the specimen prior to analysis (Kraemer, Ramachandran, and Perron 

2019; Hendriksen et al. 2019; Kumar, Pornsukarom, and Thakur 2019). As the cost and time of 

sequencing has dramatically decreased, petabytes of data are quickly generated, with Illumina 

short reads becoming more prevalent (Porter and Hajibabaei 2018; Robinson, Harkin, and Shukla 

2021; GenBank, n.d.). Detecting AMR genes potential through non-culture based, high 

throughput DNA sequencing and bioinformatic approaches is of growing relevance and 

importance.  

There are many bioinformatic tools available to process large amounts of data while 

following open-science principles (de Abreu, Perdigão, and Almeida 2021). Open science is a 

term used to describe data that is Findable, Accessible, Interoperable, and Reusable or (FAIR) 

and that are open-source (Wilkinson et al. 2016). With so many options available, investigators 

need to determine the open-source tool best suited for their research question. One way to 

address issues with replicability and variance across studies is to establish standardized 

bioinformatics pipelines and best practices, as has been done, for example, by the National 

Microbiome Data Collaborative (NMDC) (Eloe-Fadrosh et al. 2022). However, for many 

researchers, a standardized bioinformatics pipeline may not the best suited for their data or 

research question (de Abreu, Perdigão, and Almeida 2021).  

As shotgun metagenomic sequencing is emerging as a powerful tool for detecting AMR 

(Oniciuc et al. 2018), it is essential to evaluate how well different tools perform. In addition to 

testing AMR gene prediction tools against widely available metagenome samples, they should be 

compared in samples with extensive phenotypic resistance (acquired and mutational AMR 

genes). Here, we describe a software pipeline, hAMRoaster, that provides metrics on tool 

performance in detecting AMR genes from known resistant phenotypes and can therefore help in 
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decision-making about which tools will be adequate for detecting resistance to the drug classes 

being studied. 

Methods  

For a schematic overview of the methods, see Figure One.  

Development of a software pipeline, hAMRoaster, to assess results of antibiotic resistance 

prediction 

hAMRoaster was written as a conda installable command line tool in a Python script and 

requires three inputs: a) the text output of AMR tool on a FASTQ or FASTA test file, such as a 

text file processed through hAMRonization (Public Health Alliance for Genomic Epidemiology 

2022), b) a list of known phenotypes associated with the test file or samples names, and c) 

(optional) a tab formatted table which matches antibiotic drugs with their drug class. If option c) 

is not specified a default table is used. The output of the program is a set of performance metrics 

that include sensitivity and specificity. A conda installable version of the software was deposited 

in the Bioconda (Grüning et al. 2018) database. The GitHub site for the software is 

https://github.com/ewissel/hAMRoaster.  

hAMRoaster requires, as input, a formatted results table of runs by AMR detection tools. 

This table is identical to that produced by the hAMRonization (Public Health Alliance for 

Genomic Epidemiology 2022) software. hAMRonization is conda installable and can compile 

the output of many AMR tools into a unified format. shortBRED (Kaminski et al. 2015) and 

fARGene (fannyhb 2019) are not included in hAMRonization at the time of analysis, so 

hAMRoaster can take the path to the raw output for these tools and partially match it to the 

hAMRonization output.  

https://github.com/ewissel/hAMRoaster
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hAMRoaster requires an input to the “known” phenotypic resistance in the mock 

community (--AMR_key flag of hAMRoaster), such susceptibility testing tables that are 

available from NCBI Biosamples. Antibiotics in the table of known phenotypic resistances are 

matched to their respective drug classes. Results classified as “susceptible” in susceptibility 

testing are considered “susceptible”, and “intermediate” results are ignored. In cases where 

susceptibility testing occurred with two or more agents, each agent is considered independently 

(e.g., resistance to “amoxicillin-tetracycline” is treated as resistance to “amoxicillin” and 

“tetracycline” independently). Each identified AMR gene is labeled with its corresponding drug 

class for comparison. In instances where a gene confers resistance to multiple drug classes, the 

detected gene is split into multiple rows so that each conferred resistance can be independently 

compared to the susceptibility testing. Gene to drug class linkage is verified using the CARD 

database (Alcock et al. 2020) when applicable by accession ID. Any genes corresponding to 

‘unknown’ or ‘other’ drug classes (including hypothetical resistance genes) are excluded from 

further analysis. Genes that confer resistance to an antibiotic that is only administered and 

effective in combination with another drug (e.g., clavulanic acid in amoxicillin-clavulanic acid) 

are classified as ‘Other’ and excluded from analysis. 

A detected AMR gene is labeled as a true positive by hAMRoaster if the drug class 

matched to an AMR gene corresponds to a drug class that tests “resistant” in the susceptibility 

testing for the mock community. Similarly, a false positive is coded as a drug class that is called 

by the software, but tested as susceptible in the mock community (--AMR key parameter). 

Observed AMR genes are labeled “unknown” if the corresponding drug class is not tested in the 

mock community and is not included in the AMR key file. Once true/false positives and 
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true/false negatives are determined per tool, hAMRoaster calculates sensitivity, specificity, 

precision, accuracy, and percent unknown. 

Creation of multiple synthetic mock communities of antibiotic resistance bacteria 

Simple synthetic community with high resistance 

Bacterial members of the base mock community were chosen from NCBI’s BioSample 

Database (Barrett et al. 2012) and met the following criteria: (1) the strain had extensive 

antibiotic susceptibility testing data using CLSI or EUCAST testing standards as part of the 

public NCBI BioSample record; (2) the strain was isolated from human tissue; (3) the strain was 

the cause of a clinical infection; (4) the FASTA was available to download from NCBI 

BioSample Database (Barrett et al. 2012). Eight bacteria, each representing a different species, 

with overlapping resistance to 43 antibiotics across 18 drug classes, were selected for the mock 

community (Table 1). The included taxa were Acinetobacter baumannii MRSN489669, 

Citrobacter freundii MRSN12115, Enterobacter cloacae 174, Escherichia coli 222, Klebsiella 

pneumoniae CCUG 70742, Pseudomonas aeruginosa CCUG 70744, Neisseria gonorrhoeae 

SW0011, and Staphylococcus aureus LAC (Table 1). 

Paired-end FASTQs were simulated by NCBI’s ART (Huang et al. 2012) using default 

parameters for HiSeq 2500 at three levels of average sequence coverage (5x, 50x, and 100x 

sequenced bases / genome length) and are available on FigShare 

(https://figshare.com/account/home#/projects/125974). Simulated FASTQs were subsequently 

concatenated to resemble shotgun metagenomics reads, and metaSPAdes (Nurk et al. 2017) was 

used to create assembled contigs. The FASTQs were simulated with approximately equal 

numbers of reads of each genome. 

https://figshare.com/account/home#/projects/125974
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Complex synthetic clinical mock community with low resistance 

We created a community profile with previously simulated human metagenomes (Fritz et 

al. 2019) and added a single AMR isolate collected from a human infection at 1x coverage to 

simulate a human metagenome with restrictive phenotypic resistance. We included samples 0 

through 5 from CAMISIM (Fritz et al. 2019), a set of previously simulated human metagenomes, 

and combined these with simulated fastqs from one of two isolates from human infections, 

SRR17789825 (Biggs et al. 2022) for even sample numbers and SRR16683675 (Sequence Read 

Archive, n.d.) for odd sample numbers. 

Running antibiotic prediction software on mock communities 

All tools for AMR prediction were run on the mock community and restrictive samples at 

all coverage levels using default settings for either simulated FASTQ or assembled contigs. 

Default settings were used as it is what most users use and understand to be the developer 

recommendations. When both options were available, assembled contigs were run. 

Statistical Analysis 

Data were analyzed in Python v3.7.7 and plotted in R v4.0.4. hAMRoaster calculated all 

performance metrics reported in Table 3. Unweighted Cohen’s kappa was calculated using R 

package IRR (Gamer et al. 2022) for each pairwise combination of tools to test agreement 

between tools.  

Data Availability  

All data and code is available on the hAMRoaster GitHub repository 

(https://github.com/ewissel/hAMRoaster ) and figshare (for large files; 

https://figshare.com/account/home#/projects/125974 ) 

https://github.com/ewissel/hAMRoaster
https://figshare.com/account/home#/projects/125974
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Results  

Selection of nine open-source, conda-installable tools for detection of antibiotic resistance 

phenotypes 

To identify tools for antibiotic resistance prediction, we used a multi-headed search 

strategy. We searched PubMed using terms “AMR”, “antibiotic resistance genes”, 

“bioinformatics”, and “antimicrobial resistance”. We also searched GitHub using the same set of 

terms. Once an initial list of tools was compiled, we performed a second PubMed literature 

review including the search terms from above plus the names of the tools (“tool 1” OR “tool 2”). 

We also used Twitter to ask the research community what bioinformatic tools they use to 

identify AMR ( supplementary text 1). These searches identified 16 potential tools to identify 

AMR genes (Table 2). The search for tools concluded on March 1, 2021. 

For an identified tool to be considered eligible for comparison, it had to meet the 

following criteria: (1) be conda or Docker installable; (2) have source code publicly available in 

a data repository and be actively maintained (defined as tool updates or GitHub responses within 

the last year); (3) have an open-source license; and (4) take FASTQs or FASTAs as input files. 

Nine tools met the criteria to be included in this analysis: ABRIcate (Seeman 2020), fARGene 

(Berglund et al. 2019), ResFinder (Bortolaia et al. 2020), shortBRED (Kaminski et al. 2015), 

RGI (Alcock et al. 2020), AMRFinderPlus (National Center for Biotechnology Information 

2023), starAMR (National Microbiology Laboratory 2022) , sraX (Panunzi 2020), and deepARG 

(Arango-Argoty 2018). PointFinder also qualified (Zankari et al. 2017) but was a subtool of 

ResFinder and only identified mutational resistance for some organisms, so it was excluded from 

analysis. The code used to install and run all tools is available on the hAMRoaster GitHub.  
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ABRIcate 

ABRIcate v.1.0.1 took contig FASTA files as inputs and compared reads against NCBI 

AMRFinder Plus (National Center for Biotechnology Information 2023) by default, though there 

are options to compare against CARD (Alcock et al. 2020), ResFinder (Bortolaia et al. 2020), 

ARG-ANNOT (Gupta et al. 2014), MEGARES (Doster et al. 2020), EcOH (Ingle et al. 2016), 

PlasmidFinder (Carattoli and Hasman 2020), VFDB (Chen et al. 2016), and Ecoli_VF (National 

Microbiology Laboratory 2017), which are also pre-downloaded. ABRIcate reported on acquired 

AMR genes and not mutational resistance. 

shortBRED 

shortBRED (Kaminski et al. 2015) v0.9.3 used a set of marker genes to search 

metagenomic data for protein families of interest. The bioBakery (McIver et al. 2018) team 

published an AMR gene marker database built from 849 AR protein families derived from the 

ARDB (Liu and Pop 2009) v1.1 and independent curation alongside shortBRED, which is used 

in this study. 

fARGene 

fARGene (fannyhb 2019, Berglund et al. 2019) v.0.1 used Hidden Markov Models to 

detect AMR genes from short metagenomic data or long read data. This was a different approach 

from most other tools which compare the reads directly. fARGene has three pre-built models for 

detecting resistance to quinolone, tetracycline, and beta lactamases, which were tested in this 

study. fARGene can predict unknown ARGs using its gene models. 
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RGI 

RGI (Alcock et al. 2020) v5.1.1 used protein homology and SNP models to predict 

‘resistomes’. It used CARD’s protein homolog models as a database. RGI predicts open reading 

frames (ORFs) using Prodigal (Hyatt 2010), detects homologs with BLAST (McGinnis and 

Madden 2004), and matches to CARD’s database and model cut off values.  

ResFinder 

ResFinder (Bortolaia et al. 2020) v4.0 was available both as a web-based application or 

the command line. We used ResFinder 4 in this study, which was specifically designed for 

detecting genotypic resistance in phenotypically resistant samples. ResFinder aligned reads 

directly to its own curated database without need for assembly.  

deepARG 

 deepARG (Arango-Argoty et al. 2018) v.2.0 used a supervised deep learning based 

approach for antibiotic resistance gene annotation of metagenomic sequences. It combines three 

databases—CARD, ARDB, and UNIPROT—and categorizes them into resistance categories.  

sraX 

 sraX (Panunzi 2020) v.1.5 was built as a one-step tool; in a single command, sraX 

downloaded a database and aligned contigs to this database with DIAMOND (Buchfink, Reuter, 

and Drost 2021). By default, sraX used CARD, though other options can be specified. As we use 

default settings for all tools, only CARD was used in this study for sraX. It should be noted that 

the one step aspect is convenient but can become lengthy if there are multiple runs and databases 

need to be downloaded multiple times.  
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starAMR 

starAMR (National Microbiology Laboratory 2022, Zankari et al. 2012) v.0.7.2 used 

BLAST+ (Camacho et al. 2009) to compare contigs against a combined database with data from 

ResFinder, PointFinder, and PlasmidFinder.  

AMR Finder Plus 

AMR Finder Plus (National Center for Biotechnology Information 2023) v.3.9.3 used 

BLASTX (McGinnis and Madden 2004) translated searches and hierarchical tree of gene 

families to detect AMR genes. The database was derived from the Pathogen Detection Reference 

Gene Catalog (National Center for Biotechnology Information 2023) and was compiled as part 

of the National Database of Antibiotic Resistant Organisms (NDARO). 

Performance of software on synthetic metagenomes with high- and -low-prevalence of 

AMR phenotypes 

Each software tool was run against a synthetic mock community of 8 bacteria at three 

coverage levels that expressed 43 antibiotic resistance phenotypes. Overall, the number of AMR 

genes detected across all tools ranged from 13 to over 700 at 100x coverage (Table 3). For some 

tools, genes detected did not correspond to a tested phenotype in the mock community, so the 

prediction fell into the “unknown” category. Among the tools tested, AMR Finder Plus had the 

highest degree of unclassifiable/unknown results (observed AMR gene not tested in the mock 

community; Figure 3). An overview of these results are available in Figure 2A. 

After filtering out the AMR genes detected in the simulated human metagenomes (for 

which AMR phenotypes were unknown), detected AMR genes were examined per sample. None 

of the tools detected true or false positives for one of the AMR isolates in the low resistance 

samples (Figure 2b). Fewer genes were detected overall compared to the highly resistant 
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sample, as expected for samples with a limited resistance phenotype (Table 3), though many of 

these corresponded to unknown AMR phenotypes and not those included in susceptibility 

testing.  

Sensitivity and Specificity  

 Sensitivity tests what portion of AMR genes are correctly identified by a tool when 

phenotypic resistance to the drug class that gene confers resistance to is present in the mock 

community. Specificity tests what portion of known negatives (i.e., susceptible drugs from 

phenotypic testing) do not have AMR genes detected for that drug class. Sensitivity for 

phenotype detection ranged from >0.99 (RGI) to 0.23 (sraX) at the lowest coverage levels for the 

highly resistant, antibiotic resistance gene (ARG)-rich dataset sample (Fig. 2a). In general, 

genome coverage did not greatly affect sensitivity, except for that of sraX, which increased to 

0.53 at the highest level. fARGene and deepARG had a high sensitivity value (>0.90) at all 

coverage levels. RGI, deepARG, and fARGene are all tools that compare reads to a model of 

AMR instead of aligning reads directly to a database, indicating that this method may be 

appropriate when high sensitivity values are preferred. As a note, in this ARG-rich dataset, there 

were only 2 possible true negatives because only two drug classes were always susceptible to 

antibiotics in those two drug classes when tested (nitrofuran and polypeptide).  

  In samples with lower numbers of resistance genes, sensitivity and specificity were 

variable within- and across-tools for samples, with sensitivity much lower than the high 

resistance community ((0 - <0.45; Fig. 1b) Specificity was much higher overall, though variable 

across samples depending on whether any true positives were detected by the tools (Table 3). 

Precision was highly variable across tools with no consistent trend across tools (range 0 - 1), 

while accuracy was less variable, with most tools having an accuracy between .50 and 0.75  
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Concordance between tools 

An analysis of the agreement between tools of detected resistance to drug classes 

revealed that overall, agreement was highly variable across tools (0.02 - 0.72 at 5x coverage, Fig. 

5A) between tools at all coverage levels for the ARG-rich dataset (Figure 5A, 5B, 5C). Low 

agreement was found between most tools in the low AMR samples except for AMR Finder Plus, 

abricate, and ResFinder4, which had kappa values > 0.80 (Figure 5D).  

Discussion 

Development of a framework for assessing AMR prediction software performance using 

synthetic data  

There is a considerable research effort to develop new software for predicting AMR 

using DNA sequence alone. In this dynamic environment, there is a need for researchers and 

epidemiologists to understand the relative performance of open-source software tools. While 

some tools currently exist for compiling the results of several AMR tools together (hAMRonizer 

and chARMedDb [Underwood 2021]), this study was motivated by the lack of an open-source 

pipeline for comparing the results once compiled. 

The central challenge in developing this software was to compare detected AMR genes to 

resistance phenotypes. Detected AMR genes needed to be classified by their corresponding drug 

class(es) so they could be matched to the known phenotypically resistant drug classes. One 

hurdle in this translation is that tools use different databases, and some databases classify genes 

differently. For example, shortBRED classifies gene families, while CARD classifies specific 

genes. While this analysis checked the drug classification via the DNA/Protein Accession value 

in CARD, only around 300 of the >1,000 genes detected could directly map to genes in CARD 

by accession value. The hAMRonization tool overcomes this challenge by providing a drug class 
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column and filling in the values from ChEBI ontology (Hastings et al. 2016) when possible. The 

hAMRoaster strategy is to assign a CARD drug class value to every detected AMR gene first by 

accession number, then by gene name. If neither of these methods assign a drug class for an 

AMR gene, then the drug class provided by hAMRonization is used. Another challenge in 

converting detected AMR genes to drug classes is that some drugs are only administered in 

combination, such as clavulanic acid with amoxicillin. For these instances, resistance to the drug 

only used in combination (e.g., clavulanic acid) is treated as an “other” drug class and excluded 

from analysis in hAMRoaster. In these cases, we incorporated the experience of practicing 

clinicians to identify combination antibiotics into the hAMRoaster antibiotic key.  

The analysis presented here used synthetic data to compare tool performance. Synthetic 

data has the benefit of allowing controlled input with known ground truth. Therefore users can 

focus on the types of organisms and phenotypes they need to detect in their own datasets, 

perform experiments with real samples, and manipulate a range of factors such as relative 

abundance and sequencing error. The NCBI BioSample repository (used in this study) is an 

invaluable resource for creating such datasets as it contains many samples with AMR phenotypes 

determined by international standards. Researchers could also sequence and phenotype 

culturable organisms in their own laboratories to provide testing standards to evaluate software. 

Here, we exclusively examined synthetic short read Illumina data, but this analysis strategy 

could be adapted to understand the effect of using data generated on long read technologies such 

as the Pacific Bioscience and Oxford Nanopore platforms. 

Overall trends in performance and reasons for variability between tools 

We found the sensitivity of almost all tools to be very good in a highly resistant sample 

(>0.80), except for that of sraX, which had a proportionally high number of false negatives 
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compared to true positives. However, sensitivity was lower in low-resistance samples (0 - 

<0.45), indicating that tool selection plays an important role in results for targeted AMR studies. 

All tools except shortBRED and starAMR detected many genes that were not associated with a 

lab-determined phenotype in our highly resistant mock community, while this was true for all 

tools except starAMR in the low-resistance sample. In practice, researchers and epidemiologists 

may be only interested in a narrow range of AMR phenotypes. Overall, these results indicate 

when researchers are interested in resistance to a particular drug class as opposed to resistance to 

a broad range of drug classes, tool selection becomes very important.  

We calculated Cohen’s kappa to capture the agreement at the drug class level between 

AMR tools to see if all AMR tools detected resistance to the same drug classes across samples. 

We found that agreement at the drug class level was surprisingly low across all tools in the high 

and low resistance data, though some pairs of tools have higher agreement than others (e.g., 

AMR Finder Plus, abricate, and ResFinder4 in the low resistance samples; Figure 5), indicating 

that some tools may be better suited for detecting different types of resistance. As such, 

hAMRoaster provided a table with the number of genes detected per drug class for each tool that 

may help researchers in selecting an AMR gene detection tool that is best suited for their 

research question.  

This research underscores the need for the further development of software tools for the 

detection of AMR genes in the human microbiome. It is increasingly recognized that the 

confined location and genetic diversity of this microbial population provides ideal conditions for 

genetic exchange among residential microbes and between residential and transient microbes, 

including pathogenic microbes. Notably, rates of horizontal gene transfer among bacteria in the 

human microbiome (especially the gastrointestinal tract) are estimated to be many times higher 
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than among bacteria in other diverse ecosystems, such as soil (Human Microbiome Project 

Consortium 2012). Refined tools appropriate for use in shotgun metagenomic data will be 

important for tracking the spread of AMR genes from diverse environmental sources to the 

human microbiome and across sites in the human body and understanding whether AMR genes 

are derived from vertical inheritance or via horizontal gene transfer.  

 In conclusion, this study compared bioinformatics tools for detecting AMR genes in a 

simulated short read metagenomic sample at three coverage levels at one time point. While tools 

use slightly different methods and databases, these tools overall had high sensitivity for detection 

of AMR genes, indicating all of these tools perform well for a broad-resistance approach. 

Moreover, agreement between tools was sometimes low, indicating the importance of careful 

tool selection when investigating AMR to specific drug classes. We advocate that researchers 

should test these software tools using pipelines such as hAMRoaster with a synthetic community 

that highlights the resistance profiles and sample of interest.  
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Figure 1: Schematic l Methods 
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Figure 2: Antimicrobial Resistance (AMR) Genes Detected By Software Tools by Drug 

Class  

AMR Genes detected by each tool across coverage levels, grouped into drug class to which the 

genes confer resistance with the color coding indicating whether the detection was true positive 

(green), false positive (purple) or unknown (yellow). Clear spaces in the plot indicate that AMR 

genes were not detected for the drug class on the x-axis by the tool on the y-axis. Plot A contains 

the high AMR Data, while plot B contains the low AMR data.  
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Figure 3: Sensitivity of Software Tools for Detection of Antimicrobial Resistance (AMR) 

Genes Across Coverage Levels 
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Sensitivity was calculated as (true positives) / (true positives + false negatives). Most tools were 

highly sensitive (greater than 0.80). All genes corresponding to “Other” or “Unknown” drug 

classes were not included in these calculations. Similarly, AMR genes corresponding to 

phenotypic resistance that was not tested in the mock community was considered “Unknown” 

and not included in the sensitivity analysis. 
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Figure 4: Percent Detection of Unknown Antimicrobial (AMR) Resistance Genes Across 

Coverage  

The percent detection of AMR genes that could not be classified because the drug class 

the gene confers resistance to was not tested for the high AMR (A) and low AMR (b) data. A 

black dashed line is placed at 20%, indicating where at least 20% of the detected AMR genes 

could not be classified. 
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Figure 5: Agreement (Cohen’s Kappa) values between tools across coverage levels 

calculated in R using the kappa2 function 

Agreement between tools in detecting resistance to drug classes is shaded across all plots 

while kappa values are bolded when the p-value is less than 0.05. A, B, and C display the 

agreement between tools for the 5x, 50x, and 100x coverage high AMR datasets, respectively. D 

displays the agreement between tools for the low AMR samples.  
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Table 1A: Clinical isolates included in the high resistance simulated community.  

Strain 

Testing Standard 

(CLSI or EUCAST) BioSample ID Link 

Neisseria gonorrhoeae 

SW0011 CLSI SAMN15960549 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN15960549  

Klebsiella pneumoniae 

CCUG 70742 EUCAST SAMN07602587 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN07602587  

Pseudomonas 

aeruginosa CCUG 

70744 EUCAST SAMN07602569 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN07602569 / 

Acinetobacter 

baumannii 

MRSN489669 CLSI SAMN12087686 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN12087686  

Enterobacter cloacae 

174 CLSI SAMN04456586 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN04456586  

Citrobacter freundii 

MRSN12115 CLSI SAMN13412315 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN13412315  

https://www.ncbi.nlm.nih.gov/biosample/SAMN15960549
https://www.ncbi.nlm.nih.gov/biosample/SAMN15960549
https://www.ncbi.nlm.nih.gov/biosample/SAMN15960549
https://www.ncbi.nlm.nih.gov/biosample/SAMN07602587
https://www.ncbi.nlm.nih.gov/biosample/SAMN07602587
https://www.ncbi.nlm.nih.gov/biosample/SAMN07602587
https://www.ncbi.nlm.nih.gov/biosample/SAMN07602569
https://www.ncbi.nlm.nih.gov/biosample/SAMN07602569
https://www.ncbi.nlm.nih.gov/biosample/SAMN07602569
https://www-ncbi-nlm-nih-gov.proxy.library.emory.edu/biosample/SAMN07602569/
https://www.ncbi.nlm.nih.gov/biosample/SAMN12087686
https://www.ncbi.nlm.nih.gov/biosample/SAMN12087686
https://www.ncbi.nlm.nih.gov/biosample/SAMN12087686
https://www.ncbi.nlm.nih.gov/biosample/SAMN04456586
https://www.ncbi.nlm.nih.gov/biosample/SAMN04456586
https://www.ncbi.nlm.nih.gov/biosample/SAMN04456586
https://www.ncbi.nlm.nih.gov/biosample/SAMN13412315
https://www.ncbi.nlm.nih.gov/biosample/SAMN13412315
https://www.ncbi.nlm.nih.gov/biosample/SAMN13412315
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Staphylococcus aureus 

LAC CLSI SAMN08391108 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN08391108  

Escherichia coli 222 CLSI SAMN05194390 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN05194390  

 

Table 1B: Clinical isolates included in the low resistance simulated community.  

Strain 

Testing Standard 

(CLSI or EUCAST) BioSample ID Link 

Staphylococcus aureus EUCAST SAMN25295985 

https://www.ncbi.nlm.

nih.gov/biosample/252

95985 

Neisseria gonorrhoeae CLSI SAMN22824038 

https://www.ncbi.nlm.

nih.gov/biosample/228

24038 

 

 

  

https://www.ncbi.nlm.nih.gov/biosample/SAMN08391108
https://www.ncbi.nlm.nih.gov/biosample/SAMN08391108
https://www.ncbi.nlm.nih.gov/biosample/SAMN08391108
https://www.ncbi.nlm.nih.gov/biosample/SAMN05194390
https://www.ncbi.nlm.nih.gov/biosample/SAMN05194390
https://www.ncbi.nlm.nih.gov/biosample/SAMN05194390
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Table 2: Tools identified from search methods with the selection criteria and whether they 

subsequently worked or not. 

Tool 

Conda / 

Docker 

Installable? 

Actively 

Maintaine

d? 

Input 

format? 

Included in 

Analysis? 

Implement

ation 

Method Database 

ABRIcate Yes - conda Yes FASTA  Yes 

Align reads 

to specified 

database 

NCBI (default), 

AMRFinder Plus, 

CARD, ResFinder, 

ARG-ANNOT, 

MEGARES, EcOH, 

PlasmidFinder, 

VFDB, and 

Ecoli_VF 

shortBRED 

Yes - 

docker & 

conda Yes FASTA  Yes 

Align reads 

to database 

AMR gene marker 

database from 849 

AR protein families 

from the ARDB19 

and independent 

curation 
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fARGene Yes - conda Yes FASTQ Yes 

Compare to 

AMR model 

Hidden markov 

models for 

quinolone, 

tetracycline, and beta 

lactamases 

RGI 

Yes -docker 

(conda 

outdated) Yes FASTQ Yes 

Compare to 

AMR model 

Prodigal predicts 

ORF and compared 

to CARD and 

WildCARD 

ResFinder 4 

Yes - 

docker 

(conda 

broken) Yes FASTA Yes 

Align reads 

to database 

ResFinder 4 

database 

DeepARG 

Yes - 

docker Unclear FASTA Yes 

Compare to 

AMR model 

Supervised deep 

learning compares 

reads to antibiotic 

resistance categories 

created from CARD, 

ARDB, and 

UNIPROT 

sraX 

Yes - 

docker & Yes FASTA Yes 

Align reads 

to database CARD by default 
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conda 

starAMR Yes - conda Yes FASTA Yes 

Align reads 

to database 

ResFinder, 

PointFinder, and 

PlasmidFinder 

AMR 

Finder Plus Yes - conda Yes FASTA Yes 

Align reads 

to database 

Pathogen Detection 

Reference Gene 

Database 

ResPipe No  Yes 

FASTQ 

or BAM No   

PointFinder Yes - docker Yes FASTA No   

PCM: 

Pairwise 

Comparativ

e Modelling No Yes 

FASTA 

- protein No   

SRST2 No No FASTQ No   

Arg_Ranke

r Yes - conda Yes 

Require

s special 

metadata 

input No   

MetaCherc

hant Yes - conda No 

FASTA 

- No   
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genomic 

ARIBA Yes - docker No 

Paired 

end 

FASTQ No   

ARG-

ANNOT No No Unclear  No   

kmerresista

nce No No - No   

c-sstar No No 

Unkno

wn 

No - could 

not track 

down 

github   
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Table 3A: Summary Statistics for the high resistance data from hAMRoaster: These are the 

counts and metrics as calculated by the hAMRoaster pipeline. Formulas for all metrics are as 

follows: 

Specificity = TN / (TN + FP) 

Sensitivity = TP / (TP + FN) 

Precision = TP / (TP + FP) 

Accuracy = (TP + TN) / (TP + FP + TN + FN) 

Proportion Unknown = unknown / (TP + FP + unknowns) 
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High Resistance Data, 100x Coverage 

tool 

False 

positive 

True 

positiv

e 

unknow

n 

False 

negativ

e 

True 

negativ

e 

sensitivit

y 

specificit

y precision accuracy 

Proportio

n 

Unknown 

abricate 0 66 22 9 2 0.8800 1.0000 1.0000 0.8831 0.2500 

amrfinder

plus 2 62 71 9 1 0.8732 0.3333 0.9688 0.8514 0.5259 

deeparg 0 98 23 8 2 0.9245 1.0000 1.0000 0.9259 0.1901 

fARGene 0 713 0 13 2 0.9821 1.0000 1.0000 0.9821 0.0000 

resfinder 

4 1 43 15 9 1 0.8269 0.5000 0.9773 0.8148 0.2542 

rgi 4 559 255 6 1 0.9894 0.2000 0.9929 0.9825 0.3117 

shortbred 0 29 0 11 2 0.7250 1.0000 1.0000 0.7381 0.0000 

srax 0 10 3 11 2 0.4762 1.0000 1.0000 0.5217 0.2308 

staramr 1 52  

1

1 9 1 0.8525 0.5000 0.9811 0.8413 0.1719 

High Resistance Data, 50x Coverage    
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tool 

False 

positive 

True 

positiv

e 

unknow

n 

False 

negativ

e 

True 

negativ

e 

sensitivit

y 

specificit

y precision accuracy 

Proportio

n 

Unknown 

abricate 0 66 21 9 2 0.8800 1.0000 1.0000 0.8831 0.2414 

amrfinde

rplus 2 62 67 9 1 0.8732 0.3333 0.9688 0.8514 0.5115 

deeparg 0 99 23 8 2 0.9252 1.0000 1.0000 0.9266 0.1885 

fARGene 0 702 0 13 2 0.9818 1.0000 1.0000 0.9819 0.0000 

resfinder 

4 1 43 15 9 1 0.8269 0.5000 0.9773 0.8148 0.2542 

rgi 4 557 254 6 1 0.9893 0.2000 0.9929 0.9824 0.3117 

shortbre

d 0 30 0 11 2 0.7317 1.0000 1.0000 0.7442 0.0000 

srax 0 13 3 10 2 0.5652 1.0000 1.0000 0.6000 0.1875 

staramr 1 52 11 9 1 0.8525 0.5000 0.9811 0.8413 0.1719 
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High Resistance Data, 5x Coverage    

tool 

False 

positive 

True 

positiv

e 

unknow

n 

False 

negativ

e 

True 

negativ

e 

sensitivit

y 

specificit

y precision accuracy 

Proportio

n 

Unknown 

abricate 0 9 39 19 2 0.8125 1.0000 1.0000 0.8200 0.3276 

amrfinder

plus 1 9 60 58 1 0.8696 0.5000 0.9836 0.8592 0.4874 

deeparg 0 8 267 86 2 0.9709 1.0000 1.0000 0.9711 0.2436 

fARGene 0 13 470 0 2 0.9731 1.0000 1.0000 0.9732 0.0000 

resfinder 

4 0 9 43 10 2 0.8269 1.0000 1.0000 0.8333 0.1887 

rgi 12 6 1015 418 1 0.9941 0.0769 0.9883 0.9826 0.2893 

shortbred 0 11 29 0 2 0.7250 1.0000 1.0000 0.7381 0.0000 

srax 0 12 4 3 2 0.2500 1.0000 1.0000 0.3333 0.4286 

staramr 0 9 44 11 2 0.8302 1.0000 1.0000 0.8364 0.2000 
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Table 3B: Summary Statistics for the low resistance data from hAMRoaster: These are the counts and metrics as calculated by the 

hAMRoaster pipeline.  

input_file_n

ame 

AMR 

Isolate toool 

True  

Positi

ve 

False  

Positi

ve 

Unkno

wn  

True 

Negati

ve 

False 

Negati

ve 

Sensi

tivity 

Speci

ficity 

Prec

ision 

Accu

racy 

Propor

tion 

Unkno

wn 

samp0_srr17

789825 

SRR1778

9825 

amrfinder

plus 0 0 4 5 4 

1.000

0 

0.000

0 

0.00

00 

0.55

56 1.0000 

samp0_srr17

789825 

SRR1778

9826 deeparg 0 0 7 5 4 

1.000

0 

0.000

0 

0.00

00 

0.55

56 1.0000 

samp0_srr17

789825 

SRR1778

9827 

resfinder 

4 0 0 1 5 4 

1.000

0 

0.000

0 

0.00

00 

0.55

56 1.0000 

samp0_srr17

789825 

SRR1778

9828 rgi 0 0 22 5 4 

1.000

0 

0.000

0 

0.00

00 

0.55

56 1.0000 

samp0_srr17 SRR1778 shortbred 0 0 8 5 4 1.000 0.000 0.00 0.55 1.0000 



100 

 

789825 9829 0 0 00 56 

samp0_srr17

789825 

SRR1778

9830 srax 0 0 6 5 4 

1.000

0 

0.000

0 

0.00

00 

0.55

56 1.0000 

samp1_srr16

683675 

SRR1668

3675 

amrfinder

plus 1 0 2 4 4 

1.000

0 

0.200

0 

1.00

00 

0.55

56 0.6667 

samp1_srr16

683675 

SRR1668

3676 deeparg 3 1 2 4 4 

0.800

0 

0.428

6 

0.75

00 

0.58

33 0.3333 

samp1_srr16

683675 

SRR1668

3677 

resfinder 

4 1 0 2 4 4 

1.000

0 

0.200

0 

1.00

00 

0.55

56 0.6667 

samp1_srr16

683675 

SRR1668

3678 rgi 1 6 7 4 4 

0.400

0 

0.200

0 

0.14

29 

0.33

33 0.5000 

samp1_srr16

683675 

SRR1668

3679 shortbred 0 0 4 4 4 

1.000

0 

0.000

0 

0.00

00 

0.50

00 1.0000 

samp1_srr16

683675 

SRR1668

3680 srax 0 1 5 4 4 

0.800

0 

0.000

0 

0.00

00 

0.44

44 0.8333 
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samp1_srr16

683675 

SRR1668

3681 staramr 2 0 0 4 4 

1.000

0 

0.333

3 

1.00

00 

0.60

00 0.0000 

samp2_srr17

789825 

SRR1778

9830 

amrfinder

plus 0 0 4 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp2_srr17

789825 

SRR1778

9831 deeparg 0 0 6 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp2_srr17

789825 

SRR1778

9832 

resfinder 

4 0 0 1 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp2_srr17

789825 

SRR1778

9833 rgi 0 0 22 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp2_srr17

789825 

SRR1778

9834 shortbred 0 0 4 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp2_srr17

789825 

SRR1778

9835 srax 0 0 3 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp3_srr16 SRR1668 amrfinder 1 0 2 4 4 1.000 0.200 1.00 0.55 0.6667 
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683675 3675 plus 0 0 00 56 

samp3_srr16

683675 

SRR1668

3676 deeparg 3 0 3 4 4 

1.000

0 

0.428

6 

1.00

00 

0.63

64 0.5000 

samp3_srr16

683675 

SRR1668

3677 

resfinder 

4 1 0 2 4 4 

1.000

0 

0.200

0 

1.00

00 

0.55

56 0.6667 

samp3_srr16

683675 

SRR1668

3678 rgi 1 0 13 4 4 

1.000

0 

0.200

0 

1.00

00 

0.55

56 0.9286 

samp3_srr16

683675 

SRR1668

3679 shortbred 2 0 9 4 4 

1.000

0 

0.333

3 

1.00

00 

0.60

00 0.8182 

samp3_srr16

683675 

SRR1668

3680 srax 0 0 5 4 4 

1.000

0 

0.000

0 

0.00

00 

0.50

00 1.0000 

samp3_srr16

683675 

SRR1668

3681 staramr 2 0 0 4 4 

1.000

0 

0.333

3 

1.00

00 

0.60

00 0.0000 

samp4_srr17

789825 

SRR1778

9830 

amrfinder

plus 0 0 4 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 



103 

 

samp4_srr17

789825 

SRR1778

9831 deeparg 0 0 6 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp4_srr17

789825 

SRR1778

9832 

resfinder 

4 0 0 1 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp4_srr17

789825 

SRR1778

9833 rgi 0 0 22 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp4_srr17

789825 

SRR1778

9834 shortbred 0 0 7 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp4_srr17

789825 

SRR1778

9835 srax 0 0 6 12 4 

1.000

0 

0.000

0 

0.00

00 

0.75

00 1.0000 

samp5_srr16

683675 

SRR1668

3675 

amrfinder

plus 1 0 2 4 4 

1.000

0 

0.200

0 

1.00

00 

0.55

56 0.6667 

samp5_srr16

683675 

SRR1668

3676 deeparg 3 1 2 4 4 

0.800

0 

0.428

6 

0.75

00 

0.58

33 0.3333 

samp5_srr16 SRR1668 resfinder 1 0 2 4 4 1.000 0.200 1.00 0.55 0.6667 
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683675 3677 4 0 0 00 56 

samp5_srr16

683675 

SRR1668

3678 rgi 1 6 7 4 4 

0.400

0 

0.200

0 

0.14

29 

0.33

33 0.5000 

samp5_srr16

683675 

SRR1668

3679 shortbred 0 1 5 4 4 

0.800

0 

0.000

0 

0.00

00 

0.44

44 0.8333 

samp5_srr16

683675 

SRR1668

3680 srax 1 1 3 4 4 

0.800

0 

0.200

0 

0.50

00 

0.50

00 0.6000 

samp5_srr16

683675 

SRR1668

3681 staramr 2 0 0 4 4 

1.000

0 

0.333

3 

1.00

00 

0.60

00 0.0000 
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Supplementary text 1: URL link to tweet 

https://twitter.com/emily_wissel/status/1336013892116488195  

  

https://twitter.com/emily_wissel/status/1336013892116488195
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Supplementary table 1: access link to tidy table of data 

https://docs.google.com/spreadsheets/d/1bfACqEh0nkS65vCUj5DfMg4PvW0fHxbtrv0P

gKt1gT4/edit#gid=53644837  

 

 

  

https://docs.google.com/spreadsheets/d/1bfACqEh0nkS65vCUj5DfMg4PvW0fHxbtrv0PgKt1gT4/edit#gid=53644837
https://docs.google.com/spreadsheets/d/1bfACqEh0nkS65vCUj5DfMg4PvW0fHxbtrv0PgKt1gT4/edit#gid=53644837
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Chapter 4 

Frequency of Antimicrobial Resistance Genes in a Pregnancy Cohort for People with and 

without Urogenital Infections during Pregnancy 

Abstract  

Background: Understanding how the collection of AMR genes during pregnancy changes over 

time is important because antimicrobials are commonly administered during pregnancy for 

infections such as UTIs, BV, and chlamydia.  

Methods: A subset of the data from the Emory University African American Vaginal, Oral, and 

Gut Microbiome in Pregnancy Cohort Study were sent for metagenomic sequencing (238 

patients, rectal and vaginal swabs at 8-14 weeks & 24 - 30 weeks pregnancy). The taxonomic 

assignment was done with metaphlan2, and AMR genes were detected with AMR Finder Plus. 

An ANOVA was used to detected significant differences in alpha diversity while a chi squared 

test was used to detect differences in the frequencies of AMR genes in those with urogenital 

infections (BV, UTI, chlamydia), those exposed to antimicrobials for other reasons, and those 

not exposed to any antimicrobials during their pregnancy.  

Results: Individuals who had urogenital infections tend to have more antimicrobial resistance 

(AMR) genes compared to those without exposure to antimicrobials, although there was no 

significant difference in alpha diversity of the gut and vaginal microbiome across groups. The 

gut microbiome in early pregnancy had significantly more copper and copper/silver resistance 

genes in those with urogenital infections, though there was no difference in the AMR from the 

gut microbiome across groups in later pregnancy. The vaginal microbiome had significantly 

more virulence genes in those with urogenital infections in later pregnancy but not in early 
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pregnancy. Overall, this study helps understand the dynamics in AMR genes across pregnancies 

for those with and without urogenital infections and antimicrobial exposure.  

 

Keywords: antimicrobial resistance genes, pregnancy, UTI, BV, chlamydia, metagenome, 

microbiome  
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Introduction 

Antimicrobial resistance (AMR) is a global health issue in which previously treatable 

pathogens become resistant to drugs, which can lead to death in the case of multiple-drug 

resistance infections and increase the cost on healthcare systems. In the United States, 

approximately one in four individuals are prescribed antibiotics during their pregnancy (such as 

to treat STIs, UTIs, etc.) (Bookstaver et al. 2015), and individuals undergoing C-section or who 

have group B streptococcus often receive a continual dose of antibiotics during delivery to 

reduce risk of infection (Seedat et al. 2017). Administering antibiotics is often an essential life-

saving therapy, particularly when treating an infection. In nonpregnant populations, 

antimicrobial therapies are known to increase AMR genes which increases the risk for drug 

resistant infections (DeLong et al. 2021; Ma, Forney, and Ravel 2012). It is important to study 

how antimicrobial therapy impacts microbial composition and AMR genes during pregnancy 

because antimicrobials may negatively impact the changing microbiome in a manner which 

limits the microbiome’s ability to support a healthy pregnancy. These AMR genes could also be 

passed to the newborn during birth, creating a generational risk for drug-resistant infections. 

Understanding the distribution of antibiotic resistant genes (AMR) during pregnancy is 

important for several reasons. First, pregnant people are at increased risk of developing certain 

infections, or certain infections may pose higher risk and timely treatment becomes more 

important. For example, urinary tract infections (UTIs) become more common during pregnancy 

as hormones and the immune system change alongside pregnancy development. Bacterial 

vaginosis (BV) during pregnancy can increase the risk for multiple adverse outcomes, such as 

preterm birth and amniotic fluid infection (McGregor and French, 2000). Chlamydia infections 

are also routinely screened at pregnancy onset and in the third trimester because of the wide 
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array of adverse outcomes it can lead to, including preterm birth and stillbirth (He et al. 2020, 

Majeroni and Ukkadam 2007). If the bacteria causing the infection are antibiotic resistant, 

treatment may be more difficult, less effective, and there is a greater probability that the infection 

can have a negative effect on the pregnant person or fetus. Secondly, the transmission of 

antibiotic resistant genes from parent to baby during birth can lead to the development of 

antibiotic resistant infections in the newborn. While the presence of AMR genes does not 

automatically mean there will be AMR phenotypes, AMR genes can give rise to antibiotic 

resistant infections under the right conditions, which poses undue risk for newborns. Notably, 

some other classes of genes such as genes which increase pathogen virulence, called virulence 

genes, and stress genes, which decide resistance genes to non-antimicrobials such as metal or 

heat, can be elevated and important for understanding gene dynamics during urogenital infection. 

Understanding AMR gene frequency during pregnancy for those with urogenital 

infections compared to those with no antibiotic exposure during pregnancy can inform what type 

of AMR genes tend to be present in “typical” healthy pregnancies, and how urogenital infection 

and treatment impacts the collection of AMR genes. To this aim, we described the AMR genes 

present in the subset of data from the Emory University African American Pregnancy Cohort that 

had metagenomic data available (Corwin et al. 2017). Antimicrobials are commonly 

administered to treat Bacterial Vaginosis (BV), Urinary Tract Infection (UTI), and chlamydia 

infection in this cohort (n = 57, 46, 30 respectively). Particular attention will be paid to 

antibiotics nitrofurantoin, metronidazole, and zithromax administered to treat the three most 

common infections in this cohort - UTIs, BV, and chlamydia infection. We hypothesized that 

those who had one of these three urogenital infections would have a higher total number and 

higher diversity of AMR genes in their gut and vaginal microbiome than those with no reported 
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antibiotic/antifungal exposure and those with antibiotic/antifungal exposure but none of these 

infections during their pregnancy. 

Methods 

The study is part of the Emory University African American Vaginal, Oral, and Gut 

Microbiome in Pregnancy Cohort Study (Corwin et al. 2017). Briefly, rectal, and vaginal swabs 

were self-collected at two time points during pregnancy (8-14 weeks & 24 - 30 weeks). A total of 

814 samples from 238 pregnant individuals who provided swabs at both time points were sent 

for metagenomic sequencing. Patients self-reported whether they took any antibiotics, 

antifungals, or antivirals within one month prior to the first sample time point and anytime 

between the two sampling timepoints. Patients also consented to a medical chart review. Swabs 

were sent to Omega Bioservices Inc. for metagenome sequencing with NextSeq. FASTQ files 

were downloaded using BASESPACE and assembled into contigs with megahit (Li et al. 2015). 

Quality filtering on the FASTQ files was done with FASTQC (Babraham Bioinformatics, n.d.), 

and Trimmaomatic (Bolger, Lohse, and Usadel 2014) was used to remove adaptor sequences. 

Human contaminant reads were removed with kneaddata (Huttenhower Lab, n.d.), and taxonomy 

was assigned from FASTQs using metaphlan2 (Truong et al. 2015). Alpha diversity was 

calculated in R using the vegan package (Dixon 2003). 

A preliminary study comparing the performance of nine bioinformatics tools for 

detecting AMR genes was conducted. Specifically, we tested the ability of these tools to detect 

resistance to metronidazole, azithromycin, and nitrofurantoin. Antibiotics from these drug 

classes are commonly used to treat bacterial vaginosis (BV), urinary tract infections (UTI), and 

chlamydia infections during pregnancy, which are common in this cohort (Table 1). Specifically, 

a simulated dataset from clinical isolates with phenotypic resistance to these three drug classes 
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was used to compare the performance of ShortBRED, fARGene, RGI, ResFinder, abricate, 

AMRFinder Plus, deepARG, sraX, and starAMR. The clinical isolates used for the simulated 

data are in Supplementary Table 1. Results from all tools were compiled with hamronization 

(Public Health Alliance for Genomic Epidemiology 2022) and analyzed with hAMRoaster 

(Wissel et al. 2023) (Supplementary Table 2). Overall, only RGI, AMR Finder Plus, and 

deepARG detected any resistance genes at all. AMR Finder Plus was selected for this analysis as 

it returned the most realistic results for the drug classes of interest (Supplementary Table 3), 

and it performed well in a general resistance approach (Chapter 3).  

Assembled contigs were analyzed for AMR genes with AMR Finder Plus using default 

settings. Detected genes with less than 80% coverage of the reference sequence and less than 

90% identity of the reference sequence were filtered out and excluded from analysis. Drug 

classes with AMR genes detected in fewer than 10 samples were not included in subsequent 

analysis to ensure sufficient observations for chi squared analysis.  

An ANOVA was used to test for a significant difference in alpha diversity across groups 

while controlling for sampling time point. To test if there is a significant difference between the 

frequencies of AMR genes across all drug classes for those who have one of the urogenital 

infections of interest (chlamydia, UTI, BV; n = 111), those who receive an antibiotic or 

antifungal for any other reason between timepoints (n = 23), and those who report no antibiotics 

or antifungals (n = 103), a chi squared test was used. A separate chi squared test was run for each 

body site and time point. All statistical tests were run, and all figures were created in R version 

4.0.4. All code is available on github (https://github.com/ewissel/dissertation_analysis_code).  

https://github.com/pha4ge/hAMRonization
https://github.com/pha4ge/hAMRonization
https://github.com/ewissel/dissertation_analysis_code
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Results 

Mean Shannon alpha diversity was 1.9 (sd = 0.66) for rectal samples and 0.78 (sd = 0.54) 

for vaginal samples. An ANOVA showed no significant difference in Shannon alpha diversity 

across antimicrobial exposure groups for both body sites. The distribution of Shannon alpha 

diversity scores per sample across timepoints is displayed in Figure One.  

There were a median of 4 AMR genes detected per sample for rectal samples and 3 AMR 

genes for the vaginal samples, though there was a large degree of variance (range = 1 -166 for 

rectal samples; 1-30 for vaginal samples). The total number of AMR genes detected per drug 

class by body site is shown in Figure Two (9,417 total AMR genes for rectal samples and 1,831 

total AMR genes in vaginal samples). After excluding drug classes which had resistance genes 

detected in fewer than 10 samples, only the drug classes beta-lactam, macrolide, tetracycline, and 

virulence remained for analysis in the vaginal samples. Note that virulence is an element type 

label given by AMR Finder Plus which is substituted for “drug class” when the detected gene 

codes a virulence factor and not an antimicrobial resistance gene. Virulence factors are those 

which can help an infection spread more rapidly and cause more damage to the host. As such, it 

is not surprising that virulence factors are elevated in those with a recent infection. Macrolide, 

tetracycline, beta-lactam, lincosamide, efflux, arsenic, aminoglycoside, phenicol, mercury, 

trimethoprim, quaternary ammonium, streptothricin, sulfonamide, copper/silver, copper, 

glycopeptide, macrolide/lincosamide/streptogramin, virulence, and stress are drug classes 

included in analysis from the rectal samples. While stress and virulence is an element type label 

given by AMR Finder Plus when a detected gene does not confer resistance to antibiotics, these 

element types provide insight into the genetic landscape of the microbiome during these 

infections and are included in analysis. Two of the antibiotics commonly used to treat urogenital 
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infections in this cohort, nitrofurantoin and metronidazole, have no observed resistance genes to 

their drug class after quality filtering. 

A chi-squared test was conducted for each time point comparing the infection status 

(urogenital infection; antibiotics or antifungals for other reasons; no antibiotic/antifungal 

exposure) to the frequency of AMR genes across drug classes. Note there is not data on when the 

infection occurred during pregnancy, only that a patient received these diagnoses during 

pregnancy. For the rectal samples, there was a significant difference in the AMR genes detected 

across infection status in early pregnancy (p < 0.01) but not at the second time point (p = 0.106). 

Specifically, resistance genes for copper and copper/silver drug classes were more frequently 

detected at the first timepoint in samples from those with one of the three urogenital infections 

compared to those exposed to antibiotics for other reasons and those not exposed to antibiotics 

(based on standardized residual values greater than |2|, Table 3). Other drug classes with 

standardized residuals less than |2| are also reported in Table 3, though standard practice 

assumes that a standardized residual less than |2| is not significant (Sharpe 2023). 

In the vaginal samples, there was no significant difference in the AMR genes detected 

across infection status in early pregnancy (p = 0.547), but there was a significant difference at the 

second time point (p < 0.01). Specifically, virulence genes were much more frequent in samples 

from those with urogenital infections than from samples of those exposed to 

antibiotics/antifungals for other reasons and those not exposed to antibiotics in pregnancy. The 

other three drug classes had residuals less than |2| across all cells, indicating that the observed 

frequency of AMR genes in these drug classes was not significantly different across groups 

(Table 3).  
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Discussion 

Overall, we found AMR genes in all samples from both body sites in this cohort. In line 

with prior literature on nonpregnant populations, even healthy individuals with no recent 

reported exposure to antimicrobial medicines carry AMR genes in their microbiome (Pereira-

Dias et al. 2021; Afridi, Ali, and Chang 2021). While we expected that the diversity of the 

microbiome would be different between antimicrobial exposure groups, presumably due to 

effects of broad-spectrum antibiotics and infections on the microbiome, there are no significant 

differences in alpha diversity across groups at either body sites in this cohort. This could be 

because the antimicrobial exposure is not necessarily right before the sampling timepoints, so the 

microbiome has time to recover and stabilize after antimicrobial perturbation. This also implies 

that there is not a lasting significant difference of the microbiome when infections are present 

during pregnancy. This is in line with the results from Aim 1 of this dissertation, which found no 

significant difference in the microbiome for each of the three urogenital conditions at either body 

site using a linear decomposition model. Overall, this is a reassuring finding as it indicates that 

both an infection and its subsequent treatment do not significantly impact the gut or vaginal 

microbiome, so pregnant patients can be reassured that treating these infections with 

conventional antimicrobial therapy is effective and low risk, particularly when compared to the 

risk of not receiving timely treatment for an infection. 

We found that, while the microbiome was not significantly different, individuals who had 

urogenital infections tended to have significantly more AMR genes compared to those with no 

antimicrobial exposure and those who receive antimicrobials for other infections, though only a 

few drug classes were significantly different at each body site. Interestingly, AMR genes in drug 

classes with the antibiotics used to treat urogenital infections did not differ significantly across 
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groups. Most notably, only virulence genes, which increase the ability of a pathogen to infect a 

host, in the vaginal microbiome were significantly elevated in those with urogenital infections, 

while conventional AMR genes to other drug classes had no significant difference across groups 

in the vaginal microbiome. It makes sense that there would be higher virulence genes in the 

vaginal environment for those who had urogenital infections, as virulence factors tend to be 

elevated in those with BV and other urogenital infections (Africa, Nel, and Stemmet 2014; 

Vornhagen, Waldorf, and Rajagopal 2017). Perhaps, as mentioned previously, the microbiome 

has time to recover after antibiotic exposure and thus the collection of AMR genes also returns to 

baseline. There is a fitness cost for bacteria associated with holding on to AMR genes (Newbury 

et al. 2022, Buckner et al. 2018), and though the cost varies across organisms and the specific 

AMR gene, microbes may not hold on to AMR genes when there is not a selective pressure for 

those genes. Further, it is presumed that the urogenital infections in this cohort were not drug 

resistant (i.e., no AMR phenotypes) as the antibiotics administered according to the medical 

chart data were antibiotics for the associated infection. As such, it is possible that there would 

not be AMR genes to the drug classes that were administered to treat infections. 

The gut microbiome in early pregnancy had no significant differences in frequency of 

AMR genes across groups, while copper and copper/silver resistance genes were more common 

in later pregnancy for those with urogenital infections. While the link between copper and silver 

resistance to urogenital infections is not necessarily obvious, copper resistance genes have been 

associated with drug-resistance UTIs previously (Saenkham-Huntsinger et al. 2021). Copper is 

an essential micronutrient for prokaryotes and eukaryotes, and plays a role in mammalian 

immune systems (Focarelli, Giachino, and Waldron 2022). Specifically, copper will increase in 

the microenvironment where a pathogen is detected, leading to an increase in copper-resistant 
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pathogens. Due to the immune response increasing copper in response to urogenital infections, 

there may be an increased selective pressure for copper resistance genes in the gut microbiome 

so that commensal microbes do not get impacted by the increased copper levels. Of note is that 

gut microbiome data is collected from rectal swabs, and the rectum is physiologically close to the 

urogenital infections.  

Future Directions 

While this study does not examine the microbiome of newborns, it is known that AMR 

genes can transfer to newborns from the mother via several routes, including during labor, from 

breast milk, and via salivary exchange when parents kiss their babies (Patangia et al. 2022). In 

this study, birthing parents with urogenital infections during pregnancy tend to have more AMR 

genes in their microbiome (albeit only significantly different at different timepoints), indicating 

that the newborns of these parents could be at increased risk for harboring AMR genes in their 

microbiome compared to the newborns of parents not exposed to antimicrobial therapies during 

pregnancy. However, this is not to imply that antimicrobial treatment is harmful during 

pregnancy; antimicrobials like antibiotics are administered to treat infections which would 

otherwise pose an elevated risk to the parents and/or newborn, including preterm birth and death. 

Further the presence of AMR genes does not translate directly to AMR phenotypes. Rather, 

understanding the transmission and distribution of AMR genes in newborns’ microbiome is the 

first step in understanding disease landscape and the role of parent-baby AMR transmission in 

subsequent health outcomes for the infant. Future studies interested in studying AMR gene 

transmission from parents to newborns should select sampling timepoints that are closer to when 

transmission would occur (e.g., right before birth, during the breastfeeding period).  
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Limitations 

Vaginal samples are typically considered low biomass samples, as it is difficult to get a 

high concentration of DNA from vaginal swabs. Self-collected swabs from pregnant individuals 

were used for this study. Many individuals are uncomfortable with self-collecting these swabs as 

this is a new experience for many individuals. Additionally, as the body changes and grows 

during pregnancy, it may be increasingly difficult for pregnant individuals to collect these swabs. 

It is possible that this insufficient swabbing at the sampling site impacted our ability to detect 

AMR genes in this population. However, it is also plausible that AMR genes wouldn’t differ 

significantly between drug classes in this cohort as timing of antibiotic administration related to 

sample collection was variable, impacting the perturbations that could be observed. A limit of the 

current study is that it does not control the number of AMR genes detected by the read count per 

sample. Such a correction will be key to future research studies. Some AMR tools, such as 

shortBRED, include the number of gene copies for an AMR gene in a particular sample. Tools 

like AMRFinderPlus will need to correct for this by seeing which contig the AMR gene is 

detected on, then going into the FASTA file to see how many times that contig was observed. 

Then, it is possible to normalize the detected genes by read counts, such as by taking the read 

count of a gene in a sample and dividing by the total read count of that sample 

An additional limit of this study is that there is limited data on the timing of the 

urogenital infection diagnoses that are being examined. For example, a patient may have 

contracted a UTI after the initial timepoint but still weeks prior to the second sampling time 

point. Future studies examining the effect of urogenital infections on the microbiome during 

pregnancy should aim to recruit patients at the visit where the infection is diagnosed and aim to 

follow up after treatment of the infection.  
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Conclusion 

 Overall, there was no significant difference in the gut and vaginal microbiome for those 

who contracted urogenital infections during pregnancy or were exposed to antimicrobials for 

other reasons compared to pregnant patients who were not exposed to any antimicrobials or have 

any urogenital infections. There were significantly more virulence genes in the vaginal 

microbiome in later pregnancy in those who developed urogenital infections. There were more 

resistance genes to copper and silver in the gut microbiome in early pregnancy in those who 

developed urogenital infections, though this difference disappears in later pregnancy. 
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Figure One: Alpha Diversity of Vaginal and Rectal Samples for all Groups 

 

Shannon alpha diversity as calculated using R package vegan. Samples from patients with 

chlamydia, UTI, or BV diagnosis during pregnancy are shown in light blue, samples from 

patients with exposure to antimicrobials for other reasons are in light purple, and samples from 

patients with no reported antimicrobial exposure are in grey. There was no significant difference 

in alpha diversity across these groups while controlling for sampling time point.   
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Figure Two: Total Number of AMR Genes per drug class across body sites 

This figure shows the total number of AMR genes detected by AMR Finder Plus (or AMR Class 

if not an AMR gene, e.g., virulence and stress) in (A), while showing the distribution of AMR 

genes detected per sample in (B). On the Y axis is “vag_infxn” for those who had either a UTI, 

BV, and Chlamydia infection; “other_abx_infxn” for those who receive antibiotics or antifungals 

for other conditions during pregnancy, and “no_infxn” for those who don’t have any of the three 

conditions or any antimicrobial exposure in their pregnancy. Both (A) and (B) have the same x 

axis, drug class.  

A: 
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B: 
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Table 1: Vaginal Infection Rates in this cohort 

This table shows how many patients received a diagnosis of BV, UTI, and/or Chlamydia 

infection during pregnancy, the percentage of the cohort with that diagnosis in parenthesis.  

 No Diagnosis Yes, diagnosis 

BV 181  57 (31.5 %) 

UTI 192  46 (24 %) 

Chlamydia  208  30 (14.4 %) 

BV + UTI - 11 

UTI + Chlamydia - 9 

BV + Chlamydia - 3 

BV + UTI + 

Chlamydia  

- 1 
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Table 2: Standardized residual Values from Chi Squared  

https://docs.google.com/spreadsheets/d/1JWC3N-pEOMAWLbFr6pGfYhML5DibIaSHVh4P8-

7Lsbg/edit#gid=694029774  

 

 

  

https://docs.google.com/spreadsheets/d/1JWC3N-pEOMAWLbFr6pGfYhML5DibIaSHVh4P8-7Lsbg/edit#gid=694029774
https://docs.google.com/spreadsheets/d/1JWC3N-pEOMAWLbFr6pGfYhML5DibIaSHVh4P8-7Lsbg/edit#gid=694029774
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Supplementary Table 1: Clinical Isolates used for simulated data 

 

Strain Abx classification 

B513: gardnerella  Metrodiazole resistant 

B482 gardnerella 

 Metrodiazole resistant 

B483 gardnerella 

 Metrodiazole resistant 

Gonorrhea 

GCGS096 Azithromycin resistant 

Gonorrhea GCGS 

142 (weird alleles Azithromycin resistant 

Gonorrhea GCGS 

226 Azithromycin resistant 

INF299 klebsiella Nitrofurantoin resistant 

INF158 klebsiella Nitrofurantoin resistant 

INF157 klebsiella Nitrofurantoin resistant 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/nZ_ADET00000000
https://www.ncbi.nlm.nih.gov/nuccore/NZ_ADEU00000000
https://www.ncbi.nlm.nih.gov/nuccore/NZ_ADEV00000000
https://www.ncbi.nlm.nih.gov/assembly/GCF_001354675.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_001354675.1
https://www.ncbi.nlm.nih.gov/biosample/?term=GCGS142
https://www.ncbi.nlm.nih.gov/biosample/?term=GCGS142
https://www.ncbi.nlm.nih.gov/assembly/GCF_001130585.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_001130585.1
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Supplementary Table 2: Preliminary Data Results from hAMRonization to Compare AMR Tool 

Performance  

https://docs.google.com/spreadsheets/d/1wTYBZue3VZjTnVXZg7fNJZRpXoxsKljQWIsB5UeDK

oE/edit#gid=0  

https://docs.google.com/spreadsheets/d/1wTYBZue3VZjTnVXZg7fNJZRpXoxsKljQWIsB5UeDKoE/edit#gid=0
https://docs.google.com/spreadsheets/d/1wTYBZue3VZjTnVXZg7fNJZRpXoxsKljQWIsB5UeDKoE/edit#gid=0


133 

 

Supplementary Table 3: hAMRoaster Output for preliminary data analysis 

 

tool 

true_p

os 

false-

neg 

unkno

wn 

true-

neg 

false_po

s 

sensitivit

y precision specificity accuracy 

percent_un

classified 

abricate 0.000 2.000 2.000 0.000 0.000 0.000 NA 0.000 0.000 1.000 

amrfinde

rplus 2.000 1.000 2.000 0.000 0.000 0.667 1.000 0.000 0.667 0.500 

deeparg 0.000 2.000 4.000 0.000 0.000 0.000 NA 0.000 0.000 1.000 

rgi 6.000 1.000 8.000 0.000 0.000 0.857 1.000 0.000 0.857 0.571 
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Chapter 5  

Closing Remarks 

Introduction 

 The purpose of this dissertation was to (1) understand how bacterial species change in the 

microbiome during pregnancy with and without urogenital infections, and (2) quantify the AMR 

genes in the gut and vaginal microbiome over time in pregnancy in those with and without 

urogenital infections and antimicrobial exposure. Chapter two presents the results from an 

analysis of the species in the gut and microbiome from metagenome data and replicates the 

analysis in 16S rRNA data for the same samples. Chapter 3 describes a novel bioinformatics tool 

called hAMRoaster which allows researchers to compare the results across different analytical 

pipelines for detecting AMR genes in metagenomic data and presents results from two simulated 

metagenomic datasets. Chapter 4 analyzes the distribution of AMR genes in those with 

urogenital infections, those given antimicrobial medications for other infections, and those 

without any antimicrobial exposure during their pregnancy. A summary of each chapter follows. 

Chapter 2: The Impact of Urogenital Infections on the Gut and Vaginal Microbiome in 

Pregnancy 

 This manuscript explores how urogenital infections may impact the microbiome during 

pregnancy. It implements a linear decomposition model is beneficial because it can test the 

global and individual associations in a unified approach while adjusting for the false discovery 

rate, controlling for continuous and discrete confounding variables, and it can handle samples 

which are not independent of each other (as is the case with multiple timepoints and body sites 

per patient included in the study). This study hypothesized that the gut and vaginal microbiome 

would become less diverse as a pregnancy progresses (H1.1) and that any significant differences 
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in the microbiome detected could be explained by urogenital infection status (H1.2; UTIs, BV, 

and Chlamydia). Since 16S sequencing data was available for the sample samples, this study also 

hypothesized that findings from the metagenome data would be replicated by repeating the same 

analysis in the 16S data (H1.3).  

 This study found no significant difference in the microbiome at either body site over time 

in the metagenome data, though the vaginal microbiome was significantly different over time in 

the 16S data. Some specific species were associated with urogenital infections, and these species 

were in line with previous literature on the effect of urogenital infections on the microbiome. 

There were taxa found to be significantly associated with the urogenital infections from the 

metagenome data and the 16S data, likely due to differences in how each of these sequencing 

methods work. Clinicians will need to weigh which microbes are important to detect when 

deciding whether to use 16S rRNA or shotgun metagenome sequencing for their patients as 

microbiome information becomes integrated into healthcare systems.  

Chapter 3: hAMRoaster: a tool for comparing performance of AMR gene detection 

software 

 The second study in this paper presents a newly developed, open-source bioinformatics 

tool called hAMRoaster (Harmonized AMR Output compAriSon Tool ER). In this study, two 

datasets were simulated–highly resistant mock community and several low resistance 

metagenomic short read (Illumina) samples based on sequenced strains with known phenotypes. 

This data was then processed through nine open-source bioinformatics tools for detecting AMR 

genes that 1) were conda or Docker installable, 2) had been actively maintained, 3) had an open-

source license, and 4) took FASTA or FASTQ files as input. hAMRoaster calculated sensitivity, 



139 

 

specificity, precision, and accuracy for each tool, comparing detected AMR genes to AMR 

phenotypes from susceptibility testing. 

Overall, all tools were precise and accurate at all genome coverage levels tested (5x, 50x, 

100x sequenced bases / genome length) in the highly resistant mock community with more 

variability in the low resistance community (1x coverage). This study demonstrated that different 

bioinformatic tools yield differences in AMR gene identification across drug classes, and that 

these differences become important if researchers are interested in resistance to specific drug 

classes. hAMRoaster is open-source and conda installable so that researchers can easily analyze 

results across different bioinformatic tools in their own pretesting.  

Chapter 4: Frequency of Antimicrobial Resistance Genes in a Pregnancy Cohort for those 

with and without Urogenital Infections during Pregnancy 

 The third study of this dissertation aimed to quantify the distribution of AMR genes 

across different drug classes from the gut and vaginal microbiome over time during pregnancy. 

This study hypothesized that those who receive antibiotics for urogenital infections (chlamydia, 

UTI, and BV) would have a more diverse vaginal microbiome and less diverse gut microbiome 

than those who did not have any exposure to antimicrobials during their pregnancy (H2.1). It 

also hypothesized that those exposed to antibiotic therapy for these three urogenital infections 

would have more AMR genes overall in their gut and vaginal microbiome.  

 An ANOVA revealed that there was no significant difference in alpha diversity over time 

between groups at either body site, indicating that antibiotics did not significantly impact 

microbiome diversity during pregnancy. A chi-squared test revealed that there were significantly 

more AMR genes in the gut microbiome in early pregnancy, specifically copper and silver 

resistance genes, and significantly more virulence genes in the vaginal microbiome during later 
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pregnancy in those with urogenital infections compared to those exposed to antimicrobials for 

other infections and those with no antimicrobial exposure during pregnancy. These results 

indicate that urogenital infections impact the frequency of AMR genes across drug classes during 

pregnancy, but the microbiome may stabilize back to a baseline AMR frequency after selective 

pressure for AMR genes is no longer present. 

Discussion 

 This study helps fill in several knowledge gaps. First, there is not a clear understanding of 

how the microbiome may be different for those who develop a urogenital infection during 

pregnancy versus those who do not. Again, this study finds that urogenital infection does not 

have a significant impact on the microbiome. As pregnant individuals are more susceptible to 

urogenital infections, and the risks of those infections are greater during pregnancy, it is 

encouraging to find that contracting one of these infections will not significantly impact 

microbial health overall. While specific taxa were significantly associated with different 

urogenital infections, these significant taxa are in line with literature on these infections in 

nonpregnant populations, so it is not surprising that these same taxa would be significant for the 

same infections in pregnant patients.  

 This study also helps to better understand the reservoir of AMR genes in pregnant 

individuals with and without urogenital infections, and with and without AMR exposure. While 

those with urogenital infections were significantly more likely to have more AMR genes in their 

microbiome, the significant effect could be explained by one or two drug classes per body site, 

and the effects did not last throughout the full pregnancy. While copper and copper/silver 

resistance genes were significantly elevated in the gut microbiome of those with a urogenital 

infection in early pregnancy, this effect was no longer observed later in pregnancy. Similarly, 
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there was no significant difference in the vaginal microbiome in early pregnancy, though later in 

pregnancy, virulence genes were significantly elevated in those with urogenital infections. These 

significant findings are biologically plausible as discussed in chapter 4.  

 Additionally, this dissertation developed a new bioinformatic tool for assessing the 

performance of different software for detecting AMR genes in metagenomic data. This tool, 

called hAMRoaster, found that all tools were very sensitive and accurate, and that tool selection 

will depend on which drug classes researchers are interested in detecting, as opposed to a broad 

approach in detecting AMR genes, in which all tools performed comparably. hAMRoaster is 

open-source and conda installable, and these features ensure that the tool will be easily usable by 

other research groups and will remain stable over time. A common problem with bioinformatic 

tool developed in academic labs is that they must be compiled from source or don’t specify 

which version of the dependent software they use; these problems are overcome by making the 

tool conda installable, while being open-source means that others can easily access the source 

code for hAMRoaster and make adjustments or add additional features for their own use as they 

see fit.  

Collectively, this dissertation finds that the gut and vaginal microbiome are not 

significantly impacted by urogenital infections or their treatment. Specific microbes and AMR 

genes tend to be increased in those who developed urogenital infections compared to those who 

did not, however, these differences do not persist for the entire pregnancy. These findings should 

reassure most patients that being diagnosed with a urogenital infection and receiving antibiotic 

therapy for that infection will not have a significant, detrimental impact on their microbiome 

overall during pregnancy. 
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Limitations 

 While this cohort contains a lot of information from their medical chart during their 

pregnancy, there is not information on when certain diagnoses were received. For example, the 

urogenital infections explored in chapter 2 and 4 were diagnosed at any time point during their 

pregnancy, not necessarily when the microbiome was sampled. Additionally, while this dataset is 

large, it is not large enough to model the effect on all information from the medical charts into 

the linear decomposition model. As such, targeting hypotheses were explored for this dissertation 

as opposed to more exploratory analysis.  

 Another limitation of this data is that relatively few taxa were identified at the species 

level per sample. This limitation was explored at length in chapter 2, but briefly, an analysis on a 

small subset of the data comparing three different read-mapping based bioinformatic approaches 

for identifying taxonomy and showed comparable results across the three methods. This implies 

that the few taxa identified are not an artifact of the bioinformatic method used in this study, but 

rather, likely due to the relative abundance threshold (1%). that vaginal samples tend to yield low 

DNA concentration, and that participants were likely uncomfortable when self-swabbing.  

Implications for future research and practice  

 Overall, this dissertation reassures that urogenital infections and their treatment in 

pregnancy do not have a significant impact on the microbiome. This evidence should help 

clinicians communicate the safety of antibiotic treatment (in reference to the microbiome and 

collection of AMR genes) for their pregnant patients. Microbiome sequencing is not currently 

integrated into healthcare systems, in large part due to the cost associated with sequencing. 

However, costs are going down as more sequencing platforms are available (targeted 16S rRNA 

sequencing, short read metagenomic sequencing, long read nanopore sequencing), and there are 
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many biotech companies that offer products centered around helping customer better understand 

the state of their microbiome (e.g., Tiny Health [Tiny Health, n.d.]). In the future, patients may 

ask medical providers to help them understand their microbiome or what types of products to 

buy. Many studies have compared results from different sequencing technologies from the same 

samples (Wei et al. 2020, Gehrig et al. 2022, and Tamburini et al. 2022), though not always with 

specific clinical questions. This research is still in its infancy, especially as long read sequencing 

platforms are relatively new to the market. Overall, clinicians will want to consider the cost and 

what clinical questions can be answered from each different sequencing technology (e.g., no 

viral reads from 16S rRNA gene sequencing data).  

Future research may include more timepoints in the studies, or specifically sample the 

microbiome at prenatal visits where urogenital infections are diagnosed if they want to better 

understand the dynamics of the microbiome during active infection and after a defined recovery 

period. Further, sampling time points during pregnancy vary between research studies which 

makes it difficult to understand how the microbiome is changing during pregnancy. For example, 

it is generally understood that the microbiome becomes less diverse and stabilizes over the 

course of a pregnancy but becomes more diverse again closer to childbirth. Ideally, samples from 

each trimester could be collected for a more nuanced understanding of microbiome dynamics. 

Further, having more time points and metagenomic sequencing can help future studies develop a 

more refined understanding of the reserve of AMR genes during pregnancy.  
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Key Findings 

   The gut and vaginal microbiome does not differ significantly between those who have UTIs 

BV, or Chlamydia infections during their pregnancy. However, specific taxa from each body 

site are significantly associated with each of these three infections. Different sequencing 

technology can help understand the role of different taxa and will be relevant to different 

clinical contexts.  

   Those who have any of these three urogenital infections during pregnancy have significantly 

more AMR genes in the gut and vaginal microbiome than those exposed to antimicrobials for 

other reasons and those not exposed to antimicrobials during their pregnancy. Specifically, 

copper and copper/silver resistance genes are elevated in the gut microbiome in early 

pregnancy, and virulence genes are elevated in late pregnancy, for those who develop a 

urogenital infection in pregnancy. 

  Most bioinformatic tools for detecting AMR genes are sensitive and accurate, though 

differences arise when examining results across different drug classes. A novel bioinformatic 

tool called hAMRoaster can help researchers analyze the results from different tools to 

compare performance and select the best processing pipeline for their research questions.  
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