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Abstract

Pre-Training Graph Neural Networks for Data-Efficient Brain Network Analysis
By Yi (Owen) Yang

The human brain is the central hub of the neurobiological system, controlling behavior
and cognition in complex ways. Recent advances in neuroscience and neuroimaging
analysis have shown a growing interest in the interactions between brain regions of
interest (ROIs) and their impact on neural development and disorder diagnosis. As a
powerful deep model for analyzing structural data, Graph Neural Networks (GNNs)
have been applied for brain network analysis. However, effective training of deep
models requires large amounts of labeled data, which is often scarce in brain network
datasets due to the complexities of data acquisition and sharing restrictions. To make
the most out of available training data, this work examines data- and label-efficient
training of GNN model. In particular, the goal is to pre-train GNN to capture intrinsic
brain network structures, regardless of clinical outcomes, and is easily adaptable to
various downstream tasks. To this end, the proposed framework comprises three
key components: (1) a meta-learning based multi-task pre-training platform with
dynamic task adaptive reweighing consideration that learns a generalizable model
initialization with efficient optimization schedule (2) an unsupervised pre-training
objective designed specifically for brain networks, which enables learning from large-
scale datasets without task-specific labels; (3) a data-driven atlas mapping pipeline
with variance-based ROI alignment mechanism that facilitates knowledge transfer
across datasets with different ROI systems. Extensive empirical evaluations using
various GNN backbones have demonstrated the robust and superior performance of
the proposed framework compared to baseline methods.
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Chapter 1

Introduction

1.1 Background and Motivation

It has long been an enticing pursuit for neuroscience researchers and mental disor-

der clinicians to understand the functions and structures of human brains, which are

known to be related to many complicated diseases, including bipolar disorder (BP),

immunodeficiency virus infection (HIV), and Parkinson’s disease (PPMI) [96] which

this study will mainly focus on. In the last decade, the development of neuroimaging

techniques, such as magnetic resonance imaging (MRI), functional MRI, diffusion ten-

sor imaging (DTI), etc., provides an important source of information that facilitates

the diagnosis of various brain diseases. Based on neuroimaging data, one can build

brain networks that encode brain anatomical regions as nodes and their connections

as edges. This kind of data representation characterizes the complex connections

among different regions of interest (ROI). Effective brain network analysis plays a

pivotal role in understanding the biological structures and functions of complex neu-

ral systems, which potentially helps the early diagnosis of neurological disorders and

facilitates neuroscience research [61, 88, 53].
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Graph Neural Networks (GNNs) have emerged as a powerful tool for analyzing graph-

structured data, delivering impressive results on a wide range of network datasets,

including social networks, recommender systems, knowledge graphs, protein and gene

networks, and molecules, among others [47, 28, 73, 79, 87, 92, 95, 54, 86]. These mod-

els have proven their ability to learn powerful representations and efficiently compute

complex graph structures, making them ill-suited for various downstream tasks. In

the field of neuroscience, GNN has been applied to brain network analysis, specifi-

cally for graph-level classification/regression [92, 87, 21] and important vertex/edge

identification [91, 57, 83], towards tasks such as connectome-based disease prediction

and multi-level neural pattern discovery. However, deep learning models, includ-

ing GNNs, require large amounts of labeled data to achieve optimal performance

[38, 93, 99]. While neuroimaging datasets are available from national neuroimaging

studies such as the ABCD [10], ADNI [32], and PPMI [2], these datasets are still rel-

atively small compared to graph datasets from other domains, such as datasets with

41K to 452K graphs on OGB [39] and datasets with thousands to millions of graphs

on NetRepo [71]). The limited amount of data can result in GNNs having difficulty

in learning informative knowledge and easily overfitting the data distribution.

Recently, to improve data efficiency, the framework of transfer learning has attracted

a lot of attention in many application domains, which allows a model pre-trained on

large-scale source datasets to be adapted to smaller target datasets while maintain-

ing robust performance. However, the success of transfer learning depends on the

availability of similar supervision labels on the source and target dataset. This is not

always feasible in large-scale public studies, particularly in the field of brain network

analysis. One other major challenge is the inconsistent ROI parcellation systems

in constructing different brain network datasets, which hinders the transferability of

pre-trained models across datasets. The process of parcellating raw imaging data into
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brain networks is highly complex and usually done ad hoc by domain experts for each

study, making it unrealistic to expect every institution to follow the same parcella-

tion system. Although some institutions may release preconstructed brain network

datasets [20], the requirement for universal adherence to a single parcellation system

is infeasible.

1.2 Overview of Proposed Solutions

To tackle these challenges, this work aims to explore meta-learning techniques and

self-supervised pre-training for GNNs. The framework of meta-learning, also known

as learning to learn, aims at learning over multiple, seemingly diverse tasks during the

pre-training phase, with the goal of deriving a generalized initialization of the model

such that it can be adapted to any arbitrary unseen tasks with efficient convergence.

One of the advantages of this approach is that the model can be trained by multi-

ple tasks simultaneously. Considering the multimodal nature of the brain network

datasets where multiple interrelated types of connections exist among ROIs (e.g.,

structural and functional connections), we propose to leverage every such modality

as one training task and meta-train the models using multiple training tasks. With

sufficient amount of meta-training, we have a pre-trained model that simultaneously

performs well on all these training tasks, which we believe to be generic and easily

transferable to new target tasks.

On the other hand, self-supervised pre-training has been shown to be effective in var-

ious domains, such as computer vision [29, 12], natural language processing [18, 69],

and graph mining [76]. This work also aims to explore a self-supervised pre-training

approach for GNNs on brain networks that is not restricted by task-specific super-

vision labels. Despite the promising potential, unique challenges still need to be
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addressed to achieve effective disease prediction. In particular, this work proposes

a novel two-level contrastive learning strategy based on the naturally aligned node

systems of brain networks across individuals.

Based on the meta-learning framework and the contrastive self-supervised training

strategy, this work further improves the model with brain-network-oriented designs.

At first, the datasets used for training and testing usually use different ROI atlas map-

pings for constructing the brain networks, resulting in different numbers and physical

regions of nodes, which hinders the transferability of GNNs. To mitigate this discrep-

ancy, this work proposes to leverage a linear autoencoder model that transforms the

original features into low-dimensional representations in a uniform embedding space

and aligns them using variance-based projection, which incorporates regularizations

that preserve spatial relationships, consider neural modules, and promote sparsity.

Secondly, in the meta-training phase, different training tasks may contribute dif-

ferently to the learning of generic and transferable knowledge which may limit the

generalization performance. This work motivates the design consideration by visual-

izing the relative contribution of the source tasks towards the learning on the target

task, where the data-driven observation corroborates with existing clinical research.

Based on this findings, this work then proposes an adaptive task reweighing scheme

to dynamically adjust the learning rate and weight decay parameters according to the

contribution of each meta-training task. Extensive experiments and ablation stud-

ies conducted on real-world brain network datasets verify the effectiveness of these

proposed strategies.

1.3 Summary of Contribution

In summary, the contribution of this work is four-folded:
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• This work is the first to highlight the inherent challenge of limited training sam-

ples for learning with brain network data. This work formulates this problem

into a data-efficient learning objective with the goal of pre-training the model

to a generalizable initialization that can effectively adapt to unseen downstream

objectives.

• This work proposes to leverage meta-learning strategies to pre-train a given

model on available source tasks. In addition, the pre-training process is pow-

ered by a novel two-level contrastive sampling strategy that considers special

properties of brain network data.

• This work also addresses unique challenges in multi-dataset and cross-dataset

learning on brain networks by proposing brain-network-specific design compo-

nents featured by a linear autoencoder network with customized regulariza-

tions, a dynamic task reweighing mechanism for multi-task pre-training, and

a variance-based sorting algorithm to promote ROI alignment after dataset-

specific atlas tranformation.

• This work also conducts extensive experiments to benchmark the working ef-

fectiveness of the proposed framework against a multitude of state-of-the-art

methods adapted to our setting. In addition, the work also investigates the

contribution of each constituent parts of the framework through series of abla-

tion studies.
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Chapter 2

Related Work

2.1 GNNs for Brain Network Analysis.

In recent years, graph neural networks (GNNs) have attracted broad interest due

to their established power for analyzing graph-structured data [80, 87, 48]. Several

pioneering deep models have been devised to predict brain diseases by learning the

graph structures of brain networks. For example, BrainGNN [52] proposes ROI-aware

graph convolutional layers and ROI-selection pooling layers for predicting neurological

biomarkers. BrainNetCNN [44] designs a CNN that includes edge-to-edge, edge-to-

node, and node-to-graph convolutional filters, leveraging the topological locality of

brain connectome structures. BrainNetTF [43] introduces a transformer architecture

with an orthonormal clustering readout function that considers ROI similarity within

functional modules. Additionally, various studies [15, 42, 100, 14] have shown that,

when data is sufficient, GNNs can greatly improve performance in tasks such as

disease prediction. However, in reality, the lack of training data is a common issue

in neuroscience research, particularly for specific domains and clinical tasks. Despite

this, there has been little research into the ability of GNNs to effectively train for

brain network analysis when data is limited.
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2.2 Meta-Learning for Graph Classification

Recently, meta-learning has drawn significant attention in the machine learning com-

munity since it is able to address the problem of limited training data. There are also

several attempts of meta-learning for GNN-based graph classification. For example,

[11] recognize unseen classes with limited labeled graph samples using meta-training.

[7] attempt to develop a general framework that can adapt to three-level tasks —

graph classification, node classification, and link prediction with meta-learning, but

without considering the unique characteristics of brain networks. [59] use the shared

sub-structures between training classes and test classes to design a better meta-

learning framework. However, none of the shared sub-structures can be utilized since

brain networks are complete graphs. Meta-MGNN [27] proposes a self-supervised

learning objective that predicts atom types for molecular datasets. However, there is

no precise label for each node for prediction in brain networks.

2.3 Unsupervised Graph Representation Learning

and GNN Pre-training.

Unsupervised learning is a widely used technique for training complex models when

resources are limited. Recent advancements in contrastive learning [13, 29] have led

to various techniques for graphs. For instance, GBT [5] designs a Barlow Twins [94]

loss function based on the empirical cross-correlation of node representations learned

from two different views of the graph [97]. Similarly, GraphCL [93] involves a com-

parison of graph-level representations obtained from two different augmentations of

the same graph. DGI [82] contrasts graph and node representations learned from the

original graph and its corruption.
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To obtain strong models for particular downstream tasks, unsupervised training tech-

niques can be used to pre-train a model, which is then fined tuned on the downstream

tasks to reduce the dependence on labeled training data. The approach has proven

highly successful in computer vision [9, 24], natural language processing [19, 69, 68],

and multi-modality (e.g. text-image pair) learning [49, 90]. There are various strate-

gies for pre-training GNNs as well. GPT-GNN [40] proposes graph-oriented pretext

tasks, such as masked attribute and edge reconstruction. L2P-GNN [56] introduces

dual adaptation by simultaneously optimizing the encoder on a node-level link pre-

diction objective and a graph-level self-supervision task similar to DGI. Others, such

as GMPT [36] adopt an inter-graph message-passing approach to obtain context-

aware node embedding and optimize the model concurrently under supervision and

self-supervision. To the best of our knowledge, the effectiveness of both contrastive

learning and pre-training has not been investigated in the context of the unique prop-

erties of brain networks.
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Chapter 3

Problem Definition

This work considers the problem of disease prediction with multiple brain network

datasets. Formally, given a dataset for one specific disease D = {Gi}Ni=1 containing

N subjects, where Gi represents the ith brain network instance. Each brain network

object can be considered as an edge weighted graph Gi = (V , Ei,Ai), where V =

{vi}Mi=1 is the node set of size M describing the defined region of interests (ROIs),

Ei = V × V is the weighted edge set, and Ai ∈ RM×M is the weighted adjacency

matrix representing the connectivity among ROIs. Since each disease can be recorded

in multiple datasets and each dataset can have multiple views of brain networks, we

define a training task to be the prediction of one disease on a specific view of brain

networks (e.g., different types of functional networks and structural networks). In our

cross-dataset multitask learning setting, one aims to train a Θ parameterized model

f(·) on a set of source tasks S = {Sk}Kk=0 to obtain Θ0 such that the weights capture

generalized domain knowledge of brain structures that are useful and transferable to

an unseen target task T , where S and T do not necessarily concern the same type of

disease. One can then aim to fine-tune f(·) on T such that the model can efficiently

adapt to the target task optimal Θ∗ given that available training samples in T are

much fewer than those in S.
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Figure 3.1: Overview of the proposed framework. The initial features of the source
datasets are projected to a fixed dimension through atlas transformation followed by
variance-based feature alignment, which facilitates self-supervised GNN pre-training
on multiple datasets via the novel two-level contrastive learning objective. The
learned model can serve as the parameter initialization and be further fine-tuned
on target tasks.
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Chapter 4

Data-Efficient Training Strategies

Graph neural networks are powerful in learning representations of graph-structured

objects such as brain networks. However, under a direct train- and-test setting,

GNN needs a relatively large-sized dataset for proper training. With small-sized

datasets like brain networks, GNNs may suffer from overfitting and fail to generalize

the learned knowledge, which leads to a deterioriated performance in downstream

tasks. In this chapter, the paper studies the problem of data-efficient training using

multiple sources of datasets. Specifically, given one large-sized dataset and the other

smaller-sized datasets, the goal is to study how to pre-train the model on the larger

dataset (i.e., the source dataset) and use the learned knowledge to improve the per-

formance on smaller ones (i.e., the target datasets).

In the following, this work proposes to study two data-efficient training strategies for

brain network analysis — single-task transfer learning and multi-task meta-learning,

both of which are representative techniques in dealing with the absence of sufficient

training data. In addition, the work presents two other baseline techniques, namely,

learning without pre-training and multi-task transfer learning (without the meta-

learning portion).
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4.1 Method 1: LearningWithout Pre-training (NPT)

As a baseline investigation, one directly applies and trains a randomly initialized

model on a given task. The model is optimized under a given objective function. The

discussion of the setup of objective functions for pre-training is deferred to the sub-

sequent chapter when introducing the self-supervised training strategies in Chapter

5. Specifically under this setting, the source dataset (i.e., the larger-sized dataset) is

not used. Instead, the model is directly evaluated on the smaller-sized target dataset,

which indeed have limited training samples. Since the downstream objective is to

perform binary classification on a specific disease (i.e., determine whether infected or

not), the binary cross-entropy loss used throughout. In particular, the loss is given

as:

Lbce = − 1

|D|
∑

(Gi,yi)∼D

yi log σ(fθ(Gi)) + (1− yi) log(1− σ(fθ(Gi))), (4.1)

where yi stands for the ground truth label, and σ(x) = 1
1+e−x is the sigmoid activation

function on the output logits. The testing performance is reported using k-fold cross-

validation and this work reports an averaged metric along with standard deviation.

4.2 Method 2: Single-task Transfer Learning (STT)

At first, this work follows the pre-training and fine-tuning scheme in transfer learning

[64] to distill knowledge from source task to target task in a sample-efficient way. This

framework consists of two consecutive phases: pre-training and fine-tuning. Specif-

ically, one first trains the encoder model on the source task and apply the model

weights to train another encoder on the target task.

In the first pre-training phase, one trains the model on the source tasks using the

objective described in Eq. (5.2). Then, in the fine-tuning phase, the trained weights
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Θ0 are used to initialize another encoder model. This model is then fine-tuned on

the target task with the same objective function as Eq. (4.1). Since the model has

already learned generic knowledge underneath the source task, one uses a smaller

learning rate to optimize the model in the fine-tuning phase. This method is sum-

marized in Algorithm 1. Note that although the source dataset may contain multiple

structural views, here this study defines only one view as the source task since in the

pre-training phase, the model is trained based on one unified objective function and

cannot distinguish between multiple tasks, if they are arbitrarily grouped together.

4.3 Method 3: Multi-task Transfer Learning (MTT)

Pre-training on a singular source task is vulnerable to the inherent risk of information

loss during transfer learning since the knowledge gaps among source and target do-

mains are not readily quantifiable. This motivates the investigation to train a model

that is initialized on some shared knowledge in multiple source tasks when they are

available, such that the fine-tuning performance is not conditioned upon any partic-

ular knowledge inconsistencies from a source and target pair.

As an immediate solution, this work extends STT into a multi-task setting by ex-

panding the pre-training phase into simultaneously co-learning over multiple source

objectives. That is, one can regard each modality from the dataset as an individual

task and the model now learns over multiple modalities. To this end, this work formu-

lates all tasks into a distribution, where during pre-training, the model is trained on

several objectives sampled from the task distribution, hence the name “multi-task”

for this method.

Specifically for each pre-training iteration, one can optimize the model parameters
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on a merged objective function which takes the sum over the pre-training objective

as given in Eq. (5.2) on all source tasks. For an efficient computation, each iteration

processes a mini-batch of data sampled from the source dataset. The learned weights

are then used in the fine-tuning phase on the target task following the conventional

downstream evaluation procedure, identical to NPT.

4.4 Method 4: Multi-task Meta-Learning (MML)

Meta-learning aims at learning a meta model that is capable of generalizing over

a variety of source objectives and can quickly adapt to an arbitrary unseen task.

Different from MTT, meta-learning aims at finding an optimal model initialization

that enables similarly good performance on multiple pre-training tasks rather than

directly combining individual models that are good for each pre-training task through

averaging the model weights. This means that meta-learning can achieve better gen-

eralization, allowing efficient adaptation to unseen objectives through minimizing the

risk of over-fitting the model to outperform on certain tasks while under-perform on

others, which is a typical underlying concern of MTT.

Based on such intuition, this work follows the widely adopted model-agnostic meta-

learning (MAML) [23] method in brain network learning framework. According to

[70], MAML is characterized by two iconic features: (1) rapid learning and (2) fea-

ture reuse, which also refers to the outer-loop update and inner-loop adaptation.

Specifically, the model is first separately trained on each objective using fast weights

during the inner loop function, then the meta parameters of the model are updated

by evaluating the loss against the adapted fast weights via the outer-loop module. In

other words, the model is optimized by updating on the second-order Hessian of the

parameters, which leads to quicker convergence since the optimizer incorporates the
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additional curvature information of the loss function that helps estimate the optimal

step-size along the optimization trajectory [77]. This effectively reduces the number of

training iterations required to achieve a generic model. In addition, the feature reuse

inner-loop performs task-specific adaptation, which results in the meta-initialization

to be an informative approximation to every task. Due to the fact that the meta-

trained model does not pertain to any particular task knowledge, such initialization

is therefore non-over-fitting and generically applicable to any unseen target tasks.

To be specific about pipeline design, in the first meta-training phase, one randomly

draws n training tasks with a support set (used in inner-loop) and a query set (used

in outer-loop) each containing k samples from the pool of training datasets. Then,

given the encoder model, the fast weights of the parameters is updated using the

objective given in Eq. (5.2) for every pre-training (i.e., source) task. After training

the model on all tasks, one updates the meta parameters, i.e., model initialization in

our case. Thereafter, in the meta-test phase, one performs the conventional classifi-

cation procedure on the target data identical to NPT. This method is summarized in

Algorithm 2.
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Algorithm 1 Single-task supervised transfer learning (STT)

1: Input: pre-train task S, fine-tune task T , encoder f(θ)
2: Require: α: learning rate hyperparameter
3: Randomly initialize θ
4: ▷ Pre-training phase
5: while not done do
6: Evaluate the gradient ∇θLSf(θ)
7: Update parameters with SGD: θ ← θ − α∇θLSf(θ)
8: end while
9: ▷ Fine-tuning phase
10: Split T into Ttrain and Teval into K folds
11: for split in K folds do
12: Get split-specific parameters θ̂ ← θ
13: while not done do
14: Evaluate the gradient ∇θ̂LTtrain

f(θ̂)

15: Update parameters with SGD θ̂ ← θ̂ − α∇θ̂LTtrain
f(θ̂)

16: end while
17: Evaluate ACC, AUC from fθ̂(Teval)
18: end for

Algorithm 2 Multi-task meta-learning (MML)

1: Input: meta-train task pool Sτ , meta-test task T , encoder f(θ)
2: Require: α, β: learning rate hyperparameters
3: Randomly initialize θ
4: ▷ Meta-training phase
5: while not done do
6: for each task τi in Sτ do
7: Sample k datapoints Di from τi
8: Evaluate the gradient ∇θLDi

f(θ)
9: Compute the adapted parameters θ′i ← θ − β∇θLDi

f(θ)
10: Sample another set of datapoints D′

i from τi
11: end for
12: Update parameters θ ← θ − α∇θ

∑
D′

i,θ
′
i∼Sτ
LD′

i
f(θ′i)

13: end while
14: ▷ Meta-test phase
15: Perform k-fold evaluation on target tasks
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Chapter 5

Unsupervised Brain Network

Pre-training

Given the high cost of acquiring labeled training data for brain network analysis, the

pre-training pipeline of this work adopts to the effective label-free learning strategy of

contrastive learning (CL). CL aims to maximize the mutual information (MI) between

an anchor point of investigation X from a data distributionH and its positive samples

X+, while minimizing MI with its negative samples X−. The contrastive objective

function is formulated as follows:

Jcon = arg min
[(
−I(X;X+) + I(X;X−)

)]
. (5.1)

In the context of graph CL, given an anchor node representation zα, a set of positive

samples S+, and a set of negative samples S−, the training objective is based on the

Jensen-Shannon divergence [34],

JJSD(zα) = arg min
[(
−I(zα;S+) + I(zα;S−)

)]
, (5.2)
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where

I(zα;S+) =
1

|S+|
∑

zs+∈S+

sp

(
z⊤α zs+

∥zα∥∥zs+∥

)
, (5.3)

I(zα;S−) =
1

|S−|
∑

zs−∈S−

sp

(
z⊤α zs−

∥zα∥∥zs−∥

)
, (5.4)

and sp(·) = log(1 + e·) is softplus nonlinearity.

The ultimate goal of our framework is to localize effective GNN CL learning [102]

for brain networks. Given a dataset D and an anchor node i from graph Gp ∈ D with

the learned representation zi,p, this work proposes to categorize the possible sample

selections into three fundamental types (a visualization is shown in Figure 5.1):

• S1: {zj,p : j ∈ Nk(i, p)} refers to the node representation set within the the

k-hop neighborhood of the anchor in graph Gp.

• S2: {zj,p : j /∈ Nk(i, p)} refers to the remaining node representation set in

graph Gp that are not in the the k-hop neighborhood of the anchor.

• S3: {zj,q : Gq ∈ D, j ∈ Gq, q ̸= p} refers to the node representation set of nodes

in all the other graphs of dataset D.

Notice that this framework leverages the k-hop substructure around the anchor

node to further differentiate S1 and S2 for contrastive optimization. This design is

driven by two considerations: (1) Regarding GNN learning. Given that node

representations are learned from the information aggregation of its k-hop neighbor-

hood, maximizing the MI of an anchor to its k-hop neighbors naturally enhances

lossless message passing of GNN convolutions. (2) Regarding the uniqueness of

brain networks. Brain networks can be anatomically segmented into smaller neural
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Figure 5.1: Visual demonstration of the sample types where Xi,p is the anchor and
S1/S4 are sampled as 1-hop neighbors.

system modules [16], thus capturing subgraph-level knowledge can provide valuable

signals for brain-related analysis.

Building on these three fundamental types of samples, one can take advantage of

the property of brain networks that ROI identities and orders are fixed across sam-

ples to introduce an additional sample type. This encourages the GNN to extract

shared substructure knowledge by evaluating the MI of an anchor against its presence

in other graphs. Given an anchor representation zi,p of node i from graph Gp ∈ D,

the novel inter-graph sample type is defined as:

• S4:{zj,q : j ∈ Nk(i, q) ∩ Nk(i, p), Gq ∈ D, q ̸= p}, refers to the node represen-

tation set within the k-hop neighborhood of node i in all other graphs in D.

Conceptually, S4 is a special subset of S3.

It is important to note that for an anchor node i, its k-hop neighborhood structures

might not be identical among different graphs. As a result, one can only consider

shared neighborhoods when evaluating the mutual information across multiple graphs.

To encourage the learning of unique neighborhood knowledge within a single brain

network instance and shared substructure knowledge across the entire dataset, the

proposed pipeline configures S1 and S4 as positive samples while S2 and the set S3−S4
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Figure 5.2: The sampling configuration of the proposed framework. S1 and S4 are
positive samples, S2 and the set S3 − S4 are negative samples.

as negative samples, as illustrated in Figure 5.2. Furthermore, the proposed sampling

Table 5.1: The sampling configuration of existing graph contrastive learning methods.

S1 S2 S3 S4

DGI + + / /

InfoG + + – /

GCC + – – /

EGI + – – /

Proposed + – – +

categorization can also help understand the objective formulations in various state-

of-the-art graph CL frameworks [82, 67, 85, 75, 99]. The findings are summarized in

Table 5.1. Specifically, “+” denotes positive sampling; “-” denotes negative sampling;

and “/” means that the sample type is not considered. It can be observed that DGI

and InfoGraph (InfoG) use graph representation pooled from node representations

as a special sample, which is essentially equivalent to jointly considering S1 and S2

without explicit differentiation. On the other hand, GCC and EGI, which are more

closely related to the proposed framework, leverage neighborhood mutual information

maximization on a single graph, but fail to extend this to a multi-graph setting.
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Chapter 6

Brain Network Oriented Design

Considerations

Unlike conventional graph-structured datasets, brain networks have some unique

properties. In this section, this paper first identifies two challenges concerning learn-

ing with brain networked data. Accordingly, two design considerations are presented

to address these two challenges.

6.1 Data-driven Brain Atlas Mapping

6.1.1 Challenges

For brain network data, ROI templates describe the mapping relationship between

nodes and brain atlas. Once the template is chosen, all graphs in a dataset share

the same amount of nodes and their physical meanings. In our cross-dataset setting,

considering that the source and target datasets are based on different templates, it

is difficult to directly transfer the learned knowledge from source to target datasets

due to the misalignment of nodes and dimensions in the graphs. Although GNNs

are capable of handling input graphs of varied sizes, the model is essentially learning
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predictive signals regarding the structures of local subgraphs [50], and thus simply

transferring the model parameters without manipulating data-level correspondence

may lead to a significant loss of information. Note that we may directly convert

different atlas to a unified one through manual mapping. However, finding all such

mappings exhaustively is costly and demands tremendous expert efforts because the

mapping varies across different pairs of atlas and there is often a lack of ground truth.

To address this issue, this study aims to provide a data-driven atlas mapping solution

that is easily accessible and eliminates the strong dependency on network construc-

tion. The data-driven atlas mapping solution, which transforms the original node

features into lower-dimensional representations that preserve the original connectiv-

ity information and align features across datasets, is learned independently on each

dataset prior to GNN pre-training.

6.1.2 Autoencoder with Customized Regularizers

The proposed framework adopts a one-layer linear autoencoder (AE) as the base

structure that transforms source data into a target dimension with fixed representa-

tion in an unsupervised fashion. The AE consists of a linear projection encoder W

and a transposed decoder W⊤, with the goal of learning a low-dimensional projection

that can easily reconstruct the original presentation. The loss function is defined as

minimizing the reconstruction error

Lrec = (1/M)∥X−XWW⊤∥22, (6.1)

where X ∈ RM×M is the input and W ∈ RM×D is the learnable projection [33]. To

further enhance the feature compression and to guide the overall AE optimization, this

work proposes to incorporate several regularizers that take into account the unique
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characteristics of brain networks.:

Locality-Preserving Regularizer (LR)

We aim to ensure that the compressed features preserve the spatial relationships of the

original brain surface. To achieve this, we incorporate a locality preserving regularizer

[30] to the AE objective. The regularizer is formulated as Lloc = (1/M)∥Y −TY∥2,

where Y ∈ RM×D represents the projected features from the AE and T ∈ RM×M is

a transition matrix constructed from the k-NN graph of the 3D coordinates of ROIs.

Modularity-Aware Regularizer (CR)

Brain networks can be segmented into various neural system modules that character-

ize functional subsets of ROIs. In graph terminology, they are community structures.

The projected feature should also capture information about neural system member-

ship. However, obtaining ground-truth segmentations is a difficult task that requires

expert knowledge. To overcome this challenge, we resort to community detection

methods on graphs, specifically based on modularity maximization. The regularizer

[72] is defined as minimizing

Lcom = − 1

2D

M∑
i,j=1

[
Aij −

kikj
2D

]
exp(−∥yi − yj∥22), (6.2)

where A ∈ RM×M is the graph adjacency matrix, ki denotes degree of node i, and yi

is the AE projected features. Essentially, this optimization minimizes the L2 distance

between representations of nodes within the same communities, as measured by the

modularity score, and maximizes the distance between representations of nodes in

different communities.
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Sparsity-Oriented Regularizer (SC)

Sparse networks have proven to be effective in learning robust representations from

noisy data [41, 74, 60]. In brain connectome analysis, sparsity has also been shown to

improve the interpretation of task-specific ROI connections in generation and classi-

fication tasks [42]. To this end, we implement the popular KL-divergence smoothing

to enforce sparsity in the parameters of the linear projection encoder, W). This is

formulated as:

LKL =
M∑
i=1

D∑
j=1

ρ log

(
ρ

ρ̂ij

)
+ (1− ρ) log

(
1− ρ

1− ρ̂ij

) , (6.3)

where ρ is a small positive float set as the target sparsity value, and ρ̂ij represents

the element-wise activation of the encoder projection matrix W ∈ RM×D.

6.1.3 Variance-based Dimension Sorting

In addition to transforming dataset-specific features, cross-dataset alignment of fea-

ture signals is also crucial for improving model adaptation. The one-layer AE trans-

forms the original feature vectors into weighted combinations of multiple dimensions,

creating new feature dimensions which this work names as virtual ROIs. In the con-

text of brain networks, this process helps to group ROIs and their signals. This

idea is inspired by the well-studied functional brain modules [66, 3, 31, 6, 98], which

provide a higher-level and generic organization of the brain surface, as opposed to fine-

grained ROI systems. Since the variations in ROI parcellations are due to differences

in clinical conventions, it is reasonable to assume that there exists a shared virtual

ROI system underlying different parcellation systems, similar to the discretization of

functional brain modules. The community learning and neighborhood preserving reg-

ularizers, introduced in Section 6.1.2, allow one to capture these shared virtual ROIs

in a data-driven manner. Our ultimate goal is to align the discovered virtual ROIs



25

across datasets, so that each virtual ROI characterizes the same functional module in

the human brain, regardless of its origin. This cross-dataset alignment of virtual ROIs

ensures that the model can effectively adapt to new datasets and provide meaningful

insights into the different downstream analyses.

The objective of the one-layer linear AE is similar to PCA, as discussed in more

detail in Appendix A.1, with the added benefit of incorporating additional regulariz-

ers. PCA orders dimensions based on decreasing levels of sample variance [35]. The

proposed framework leverages this approach by utilizing the learned parameters of

the AE projection to estimate the variance of each virtual ROI (i.e., projected feature

dimension). The sample variance of each virtual ROI indicates its representativeness

of the original data variations. Given the shared patterns across different parcellation

systems, one can expect that similar virtual ROIs in datasets with different atlas tem-

plates will have similar variance scores, especially in terms of their order. By sorting

the same number of virtual ROIs based on their sample variance in each dataset, the

proposed framework aims to align virtual ROI cross datasets, so that each virtual ROI

represents the same functional unit in the human brain. The procedure is explained

in detail in Algorithm 4 in Appendix A.2.

6.2 Source Task Reweighing

6.2.1 Challenges

Another challenge of cross-dataset brain network analysis is that the previous base

meta-learning pipeline fails to consider relative difficulty of different individual tasks.

It is possible that varying the choice of source task does not lead to uniform im-

provements on the target performance. This means that one can suspect that this is

because some tasks are easier to learn than others, which will converge faster during
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the meta training phase. In other words, the base meta-learning pipeline fails to

equally capture the latent knowledge of all source datasets, which potentially hinders

the ability of generalization.

6.2.2 Dynamic Task Reweighing

The first step is to investigate the data-level task correlations. In particular, this work

analyzes the task similarity between the HIV and BP modalities (i.e., target datasets)

with respect to the PPMI modalities (i.e., source dataset). A detailed introduction

of the datasets including the variety of data modalities and their pre-processing in-

formation are deferred to Chapter 7. Inspired by task2vec [1], for each task, one

calculates a respective task embedding that stores information regarding its learn-

ing difficulty and latent knowledge. In particular, the embedding is derived from the

Fisher information estimation of the positive semidefinite upper bound of the Hessian

matrix, on which the model is trained on an encoder model using the same objective

in Eq. (5.2). This work visualizes the task correlation in cosine similarity among

the embeddings on HIV and BP in 6.2.2 respectively. It can be seen that there is an

inherent correlation among source (i.e., PPMI) and target (i.e., HIV, BP) datasets

which indicates that there exists shared properties and latent information among the

three categories of brain network data. This observation can be corroborated with

existing clinical research presented in earlier studies [62, 17, 63, 22], where detailed

analyses on the coexistence and co-influence among BP, HIV, and PPMI disease are

discussed. This validates the working effectiveness of the cross-dataset learning set-

ting since useful and transferable inter-domain knowledge and shared features can be

discovered by learning on a source data. In addition, the visualization also shows a

non-uniform task correlation, which suggests that the source tasks are prescribed to

varying level of learning and adaptation difficulty relative to the given target task.

This demonstrates that the optimizer tends to distribute unequal attention within



27

PICOHOUGH FSL

fMRI

DTI

.96 .90 .77

.76 .81 .80 .80

.90

(a) PPMI and BP Task Correlation

PICOHOUGH FSL

fMRI

DTI

.91 .83 .93

.92 .96 .91 .85

.90

.95

(b) PPMI and HIV Task Correlation

Figure 6.1: Task correlations among different data modalities from source and target
datasets. The Fisher information estimation is first computed to derived from the
Hessian matrix by training each task using the same architecture as in Section 4.4.
The task embedding is then composed of layer-wise concatenation of the flattened
Fisher information matrix.

the source set during meta-training and that the learned initialization will eventu-

ally skew towards the optimal of “easier” tasks and fails to generalize over “harder”

tasks. This motivates us to develop dynamic inner-loop optimization rules during

meta-training towards an unbiased generalization ability.

Following the mechanism proposed by ALFA [4], during the task-specific inner-loop

update, the proposed framework implements a trainable hyperparameter generator

that guides the rate of convergence for the gradient-descent update. The generator

processes the learning state as input, which is consisted of a stacked layer-wise value

of model parameter and gradient estimate. The generator then outputs a layer-wise

learning rate and weight decay coefficient conditioned on the current learning state.

Then, its parameters are updated by the query loss objective as in Eq. (5.2). Differ-

ent from the original ALFA, where the encoder parameters are frozen from updating

at the outer-loop phase, we allow the encoder to be trainable on the query set for

quicker adaptation. This variant is summarized (dubbed AR) in Algorithm 3.
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Algorithm 3 Multi-task meta-learning with adaptive task reweighing (AR)

1: Input: meta-train tasks Sτ , meta-test task T , encoder f(θ), hyperparameter
generator g(ϕ)

2: Require: η: outer-loop learning rate
3: Randomly initialize θ, ϕ
4: ▷ Meta-training phase
5: while not done do
6: for each task τi in Sτ do
7: Sample n datapoints Di from τi
8: Evaluate the gradient ∇θLDi

f(θ)
9: Obtain the task-specific learning state ρi = [∇θLDi

f(θ), θ]
10: Generate hyperparameters α, β = gϕ(ρi)
11: Compute the adapted parameters θ′i ← β ⊙ θ − α⊙∇θLDi

f(θ)
12: Sample another set of datapoints D′

i from τi
13: end for
14: Update parameters θ ← θ − η∇θ

∑
D′

i,θ
′
i∼Sτ
LD′

i
f(θ′i)

15: Update parameters ϕ← ϕ− η∇ϕ

∑
D′

i,θ
′
i∼Sτ
LD′

i
f(θ′i)

16: end while
17: Perform k-fold evaluation on target tasks
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Chapter 7

Dataset and Experimental

Configuration

7.1 Dataset Details

The empirical study in this work uses three real-world brain network datasets: 1)

the Bipolar Disorder (BP) dataset, 2) the Human Immunodeficiency Virus Infection

(HIV) dataset, and 3) the Parkinson’s Progression Markers Initiative (PPMI) dataset.

The BP and HIV are private datasets, while the large-scale PPMI dataset1 is publicly

available for authorized users. The study has been approved by an Institutional

Review Board (IRB) to ensure the ethical and responsible use of human subjects in

research. The IRB reviewed and approved the study protocols and consent forms,

ensuring that the rights and welfare of the participants are protected. The study

strictly adheres to the Good Clinical Practice guidelines and U.S. 21 CFR Part 50

(Protection of Human Subjects) to ensure the safety and privacy of the participants.

All the data used in this work is processed anonymously to protect the privacy of

participants, and no personally identifiable information is used or disclosed.

1https://www.ppmi-info.org/

https://www.ppmi-info.org/
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7.1.1 Parkinson’s Progression Markers Initiative (PPMI)

This is a restrictively public available dataset2 to speed breakthroughs and support

validation on Parkinson’s Progression research. This dataset contains 718 subjects,

where 569 subjects are Parkinson’s Disease (PD) patients and the rest 149 are Healthy

Control (HC). The raw imaging signals are pre-processed by Eddy-current and head

motion correction using FSL3 and the brain networks are extracted using the same

tool. The EPI-induced susceptibility artifacts correction is handled using Advanced

Normalization Tools (ANT)4. In the meantime, 84 ROIs are parcellated from T1-

weighted structural MRI using Freesurfer5. The brain networks are constructed using

three whole brain tractography algorithms namely the Probabilistic Index of Con-

nectivity (PICo), Hough voting (Hough), and FSL. Each resulted network for each

subject is 84 × 84. Each brain network is normalized by the maximum value to

avoid computation bias for the later feature extraction and evaluation, since matrices

derived from different tractography algorithms differ in scales and ranges. The final

brain networks were parcellated according to the Desikan-Killiany 84 template.

7.1.2 Bipolar Disorders (BP)

This local dataset is composed of the resting-state fMRI and DTI image data of 52

Bipolar I subjects who are in euthymia and 45 Healthy Controls (HCs) with matched

age and gender [8, 58]. The fMRI data was acquired on a 3T Siemens Trio scanner

using a T2∗ echo planar imaging (EPI) gradient-echo pulse sequence with integrated

parallel acquisition technique (IPAT) and DTI data were acquired on a Siemens 3T

Trio scanner. The brain networks are constructed using the CONN6 toolbox and are

parcellated using the Brodmann 82 template. A normalization and smoothing after

2https://www.ppmi-info.org/
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
4http://stnava.github.io/ANTs/
5https://surfer.nmr.mgh.harvard.edu/
6http://www.nitrc.org/projects/conn/

https://www.ppmi-info.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://stnava.github.io/ANTs/
https://surfer.nmr.mgh.harvard.edu/
http://www.nitrc.org/projects/conn/
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first realigning and co-registering were performed on the raw EPI pictures. After that,

the signal was regressed to remove the confounding effects of the motion artifact, white

matter, and CSF. The 82 defined ROIs, also identified as cortical and subcortical gray

matter regions were produced by Freesurfer, and pairwise signal correlations were used

to build the brain networks.

7.1.3 Human Immunodeficiency Virus Infection (HIV)

This local dataset involves fMRI and DTI brain networks for 70 subjects, with 35 of

them early HIV patients and the other 35 Healthy Controls (HCs). These two groups

of subjects do not differ in demographic distributions such as age and biological sex.

The preprocessings for fMRI including brain extraction, slice timing correction and

realignment are managed with the DPARSF7 toolbox, while the preprocessings for

DTI such as distortion correction are finished with the help of FSL3 toolbox. Finally,

brain networks with 90 regions of interest are parcellated based on the automated

anatomical labeling (AAL 90) atlas template [78].

7.2 Experimental Setup

7.2.1 Backbone Selection and Evaluation Metric

The proposed framework employs GCN as the backbone for the GNN [47] encoder.

The experiment also benchmarks using GAT [81] and GIN [87], and the results are

provided in Appendix B.1. The hyperparameter tuning follows the standard designs

in related studies such as in [89, 84, 37]. The downstream evaluation is binary graph

classification for disease prediction. To assess the performance, this experiment uses

the two widely used metrics in the medical field [51, 14]: accuracy score (ACC) and

the area under the receiver operating characteristic curve (AUC).

7http://rfmri.org/DPARSF/

http://rfmri.org/DPARSF/
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7.2.2 GNN Setup

The GCN encoder is composed of 4 graph convolution layers with hidden dimensions

of 32, 16, 16, and 8. Similarly, the GAT encoder is built from 4 graph attention

layers with hidden dimensions of 32, 16, 16, and 8. Regarding GIN, which is slightly

different, the encoder consists of 4 MLP layers with each MLP containing 2 linear

layers with a unifying hidden dimension of 8.

7.2.3 Pre-training Pipeline Setup

For two-level node contrastive sampling, we set k = 2 as the radius regarding k-hop

neighborhood sampling for S1 and S4. To enable efficient computation on multi-

graph MI evaluation, we resort to mini-batching and we set a default batch size of

32. In addition, we leverage the popular Adam [45] optimizer with the learning rate

set to 0.002 as well as the cosine annealing scheduler [55] to facilitate GNN training.

In general, a complete pre-training cycle takes 400 epochs with an active deployment

of early stopping.

7.2.4 Atlas Mapping Regularizer Setup

Following the discussion in section 6.1.2, the total running loss of the AE projection

is given as:

L = Lrec + αLloc + βLcom + γLKL, (7.1)

in particular, we set α, β = 0.8 and γ = 0.01. The one-layer AE encoder transforms

the feature signals from all given datasets into a universally projected dimension of

32. For the details of locality-preserving regularizer (i.e., Lloc), the transition matrix

T is built from the 5-nearest-neighbor graph from the 3D coordinates of each atlas

templates. For the sparsity-oriented regularizer (i.e., LKL), the target sparsity value ρ

is set to 1e−5. The overall optimization process, which is similar to model pre-training,
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takes a total of 100 epochs with a learning rate of 0.02.

7.2.5 Downstream Evaluation Setup

For each target evaluation, the fine-tuning process features a 5-fold cross-validation,

which approximately splits the dataset into 70% training, 10% validation, and 20%

testing. To prevent model over-fitting, we implement a L2 penalty with a coefficient

of 1e−4. Overall, the model fine-tuning process, which is nearly identical to the other

two training procedures, takes a total of 200 epochs with a learning rate of 0.001 and

a cosine annealing scheduler.
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Chapter 8

Experiments and Analysis

The effectiveness of the proposed framework is evaluated through extensive experi-

ments on real brain network datasets, with a focus on the following research questions:

• RQ1: How does the proposed framework compare with other unsupervised

GNN pre-training frameworks adapted to the scenario of brain networks?

• RQ2: What is the contribution of each major component in the proposed

framework to the overall performance?

• RQ3: How does the choice of sampling method affect model convergence during

pre-training and performance in downstream adapting?

• RQ4: How effective is the variance-based sorting in aligning virtual ROIs among

different parcellation systems?

8.1 Overall Performance Comparison (RQ1)

A comprehensive comparison of the target performance between the proposed frame-

work and popular unsupervised learning strategies is presented in Table 8.1. To fairly

compare the methods, the atlas mapping pre-processing, the multi-task meta-learning
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Table 8.1: Disease prediction performance comparison. All results are averaged from
5-fold cross-validation along with standard deviations. The best result is highlighted
in bold and runner-up (excluding the w/o AR variant) is underlined.

Type Method
BP-fMRI BP-DTI HIV-fMRI HIV-DTI

ACC AUC ACC AUC ACC AUC ACC AUC

NPT GCN 50.07±13.70 50.11±15.48 49.51±14.68 51.83±13.98 56.27±15.84 57.16±15.14 51.30±16.42 53.82±14.94

TFL
STT 53.92±12.82 54.61±11.76 55.51±15.74 56.73±16.23 61.18±14.57 62.88±15.58 55.29±13.28 57.31±14.72

MTT 60.37±12.42 61.64±14.83 59.41±11.62 59.92±13.73 67.65±12.26 68.38±12.94 60.54±13.83 59.46±12.33

NCL

Node2Vec 48.51±10.39 49.68±7.23 50.83±8.14 46.70±10.33 52.61±10.38 50.75±10.94 49.65±10.30 51.22±10.79

DeepWalk 50.28±9.33 51.59±9.06 52.17±9.74 48.36±9.37 54.81±11.26 55.55±11.93 52.67±11.42 50.88±10.53

VGAE 56.71±9.68 55.24±11.48 54.63±12.09 54.21±11.94 62.76±9.47 61.25±11.61 56.90±9.72 55.35±9.04

SCL

GBT 57.21±10.68 57.32±10.48 56.29±9.35 55.27±10.54 65.73±10.93 66.08±10.43 59.80±9.76 57.37±9.49

GraphCL 59.79±9.36 59.10±10.78 57.57±10.63 57.35±9.67 67.08±9.70 69.17±10.68 60.43±8.39 60.03±10.48

ProGCL 62.36±8.90 62.61±9.34 61.26±8.37 62.67±8.46 71.52±9.19 72.16±9.85 62.48±10.38 61.94±10.57

MCL
DGI 62.44±10.12 60.75±10.97 58.15±9.63 58.95±9.60 70.22±11.43 70.12±12.46 60.83±10.84 62.06±10.16

InfoG 62.87±9.52 62.37±9.67 60.88±9.97 60.44±9.61 72.46±8.71 72.94±8.68 61.75±9.76 61.37±9.85

EGS
GCC 63.45±9.82 62.39±9.08 60.44±9.54 60.29±10.33 70.97±10.31 72.48±11.36 61.27±9.66 61.38±10.72

EGI 63.38±8.93 63.58±8.02 61.82±8.53 61.57±8.27 73.46±8.49 73.28±8.68 60.89±9.87 62.41±8.50

Ours
w/o AR 64.15±9.03 64.24±8.31 62.41±8.52 65.84±8.74 74.93±9.04 75.74±7.80 64.39±9.41 64.38±9.35

Full 68.84±8.26 68.45±8.96 66.57±7.67 68.31±9.39 77.80±9.76 77.22±8.74 67.51±8.67 67.74±8.59

learning backbone, and the task adaptive reweighing algorithm discussed in section

4.4 are applied to all benchmarked methods, with only few exceptions including STT,

MTT, and Ours w/o AR (i.e., without task adaptive reweighing). The purpose of

this comparison is to effectively highlight the impact of the proposed two-level con-

trastive pre-training and there will be further analysis on the effect of atlas mapping

in subsequent sections. In addition, for a clearer presentation, this experiment groups

the selected baselines according to their optimization strategies:

• No pre-training (NPT): the backbone with randomly initialized parameters for

target evaluation.

• Transfer learning (TFL): methods that are formed based on transfer learning

paradigm discused in Sections 4.2 4.3 on STT and MTT. Specifically, for STT,

the pre-training dataset is defined as the PICo modality of PPMI.

• Non-CL-based (NCL): methods with cost functions regularized by co-occurrence

agreement or link reconstruction, including Node2Vec [25], DeepWalk [65], and

VGAE [46].
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• Single-scale CL (SCL): methods utilizing either node- or graph-level represen-

tations in the CL optimization, including GBT [5], ProGCL [85], and GraphCL

[93].

• Multi-scale CL (MCL): methods whose CL optimization utilizes both nodes-

and graph-level representations, including DGI [82] and InfoG [75].

• Ego-graph sampling (EGS): methods whose contrastive samplings consider k-

hop ego-networks as discriminative instances, which are the most similar to the

proposed framework, including GCC [67] and EGI [99].

The experiments reveal the following insights:

• The proposed framework of ours consistently outperforms all the baselines,

achieving a relative improvement of 7.34%-13.30% over the best-performing

baselines and 31.80%-38.26% over the NPT setting. The reported results of the

selected baselines are also statistically compared against that of the proposed

framework under the paired t-test. With the significance level set to 0.05, the

largest two-tailed p value is reported at 0.042, which means that the proposed

framework demonstrates statistically significant performance increase over other

selected methods.

• The transfer learning based pipeline, including STT and MTT improve over the

NPT baseline with a relative gain 8.27% and 16.67% respectively across both

metrics, suggesting the relative benefit of model pre-training and knowledge

transfer. However, the transfer learning setting still suffers high variance in

performance results and inferior overall performance compared to the proposed

full framework.

• Compared with the transductive methods of Node2Vec and DeepWalk, the GNN

pre-trained by VGAE learns structure-preserving representations and achieves
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the best results in the NCL-type methods. This indicates the potential benefit

of the locality-preserving regularizer design in the proposed framework.

• Maximizing mutual information between augmented instances may hinder GNNs

from learning a shared understanding of the entire dataset. For baselines belong-

ing to the categories of SCL, MCL, and EGS, pre-training with non-augmented

CL (InfoG, EGI) generally results in a 4.36% relative improvement across both

metrics and a 7.63% relative decrease in performance variance compared to their

augmentation-based counterparts (GBT, GraphCL, ProGCL, DGI, GCC). This

explains why the proposed framework does not employ data augmentation.

• Multi-scale MI promotes the capture of effective local (i.e., node-level) repre-

sentations that can summarize the global (i.e., graph-level) information of the

entire network. The MCL-type methods typically outperform the SCL-type

ones by a relative gain of 2.68% in ACC and 3.27% in AUC.

• The group of baselines considering k-hop neighborhoods (EGS) presents the

strongest performance, indicating the importance of local neighborhoods in

brain network analysis. The proposed the proposed framework, which cap-

tures this aspect through both node- and graph-level CL, is the only one that

comprehensively captures the local neighborhoods of nodes.

• The added component of task adaptive reweighing demonstrates a promising

working effectiveness by bringing over the non reweighed training with a relative

improvement of 4.29% in accuracy score and 5.80% in AUC metric. This shows

that the issue of task-biased convergence during multi-task pre-training exists

and can be mitigated by additional handling through reweighing mechanisms.
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Table 8.2: The four variants of sampling strategies.

S1 S2 S3 S4

Var. 1 – – / /

Var. 2 + – / /

Var. 3 + – – /

Var. 4 + + – /

8.2 Ablation Studies (RQ2)

This ablation studies examine two key components of the proposed framework - (1)

the two-level contrastive sampling and (2) the atlas mapping regularizers. The best

contrastive sampling configuration is fixed when examining the atlas regularizers, and

all regularizers are equipped when examining the contrastive samplings. The results,

shown in Figure 8.1 (with additional DTI version in Appendix B.2), are analyzed

based on the four possible variants of contrastive sampling listed in Table 8.2. The

analyses yield the following observations:

• leveraging k-hop neighborhood (i.e., positive S2) MI maximization brings visible

performance gain, confirming its benefit in brain structure learning.

• The extension to multi-graph CL (i.e., consideration of S3) facilitates the ex-

traction of unique ROI knowledge, leading to improved results in Var. 3/4.

• Var. 4 outperforms Var. 3 as it effectively summarizes of global (i.e., graph-level)

information in local node representations.

• The full implementation of the proposed framework brings a relative gain of

4.27% in both metrics on top of Var. 4, highlighting the significance of consid-

ering shared substructure knowledge across multiple graphs (i.e., through the

inclusion of S4).
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Figure 8.1: Ablation comparisons on contrastive sampling choices (top two) and
atlas mapping regularizers (bottom two). The y-axis refers to the numeric values of
evaluated metrics (in %).
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The bottom two sub-figures examine the impact of the atlas mapping regularizers by

comparing the results of the full framework to those without the sparsity regularizer

(w/o SR), the locality regularizer (w/o LR), and the community regularizer (w/o

CR). Two key observations are made:

• The removal of SR leads to the greatest performance drop, emphasizing its

crucial role in learning robust projections that can effectively handle noise and

prevent over-fitting.

• The inferior results when LR and CR are absent emphasize the importance of

spatial sensitivity and blockwise feature information in brain network analysis.

This supports our intuition to consider the relative positioning of ROIs in the 3D

coordinate as well as knowledge on community belongings based on modularity

measures.

8.3 Analysis of Two-level Contrastive Sampling (RQ3)

Figure 8.2 offers insight into the pre-training convergence, target adaptation progres-

sion, and pre-training runtime consumption of the four sampling variants and the full

framework. Key observations include:

• As seen in Figure 8.2(a), all variants demonstrate efficient pre-training conver-

gence due to the multi-dataset joint optimization inspired by MAML. The full

model demonstrates the most optimal convergence, highlighting the advantage

of learning shared neighborhood information in brain network data through

two-level node contrastive sampling.

• Figure 8.2(b) shows the superiority of our design in terms of downstream adap-

tation performance compared to other variants.
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(a) Pre-train loss on PPMI (b) Test ACC (%) on HIV-fMRI

(c) Pre-train time (secs) on PPMI

Figure 8.2: In-depth comparison among the four variants and the full model. The
x-axis is epochs.

• Figure 8.2(c) reveals that the more sophisticated the sampling considerations

result in greater computational complexity for mutual information evaluation,

leading to longer runtime for each pre-training epoch. However, the total time

consumptions are all on the same scale.

8.4 Analysis of ROI Alignment (RQ4)

To further validate the variance-based virtual ROI sorting, this experiment selects

the top 2 virtual ROIs with the highest sample variances for each atlas template (i.e.,

dataset) and backtrack to locate their corresponding projected ROIs. The results are

illustrated in Figure 8.3, which shows a 3D brain surface visualization highlighting

the original ROIs. From this, one can draw two main conclusions:
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(a) PPMI mapping (b) BP mapping

(c) HIV mapping

Figure 8.3: The virtual ROI mapping across the three investigated datasets. Over-
lapping regions are highlighted with colored boxes. In particular, the annotation use
gold-colored boxes for the PPMI and BP atlases; blue-colored boxes for the BP and
HIV atlases; and purple-colored boxes for the PPMI and HIV atlases.

• There exists multiple regional overlaps between pairs of two atlas templates,

reflecting some working effectiveness of our proposed solution as well as con-

firming the feasibility of converting between atlas templates.

• It is relatively harder to find regions that overlap across all three atlas tem-

plates which shows a limitation of the proposed unsupervised ROI alignment

scheme, suggesting a need to modify against the current heuristic that considers

beyond mere variance measures which may inspire further study and research

opportunity.
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Chapter 9

Conclusions and Future Directions

This work focuses on data efficient learning on small-sized brain network datasets

through leveraging meta learning techniques, self-supervised contrastive pre-training

objectives, and brain network oriented design considerations. The experiments have

demonstrated the effectiveness of the proposed framework in the application of brain

network based disease predictions. This work is also the first to discover the inher-

ent challenges in learning on small-sized brain network datasets and formulate this

problem into a data-efficient learning objective, where the goal to find a generalizable

model initialization that achieves efficient adaption on target tasks. To this end, the

proposed framework leverages transfer learning and, more importantly, meta-learning

strategies to serve as backbone frameworks for model pre-training. In addition, the

framework also features a novel two-level contrastive sampling strategies to enable

unsupervised model pre-training. Considering the special properties of brain net-

works from traditional graphical data, the framework proposes an automated atlas

transformation design and variance-based sorting to help address the incompatibility

challenge of cross-dataset brain network ROI template dimensions. Besides, the pro-

posed framework also introduces an adaptive task reweighing algorithm that helps

resolve biased learning issues in the conventional meta-training pipeline. Extensive ex-
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perimentation demonstrated the effectiveness of proposed methodologies. It is worth

noting that the proposed framework is naturally generic and can be easily scaled to

other types of neuroimaging datasets. The training pipeline can also be generalized

to any parameterized model that is optimized on any customizable objectives and

data sampling strategies.

However, Learning on brain network data is still prescribed to various challenges.

First, most brain networks are expressed by multiple views and modalities, in which

to achieve a comprehensive feature extraction, would require GNN models to capture

complex inter-relations within graph modalities. Simply applying multi-facet meta-

learning and separately optimizing on individual views fail to consider the intricacies

of some shared and complementary knowledge underneath the multi-view datasets.

Second, the target performance on supervised disease classification still suffers from

relatively high data variance under the k-fold evaluation scheme. This suggests that,

assuming given a balanced dataset, the current GNN models are sensitive to batch ef-

fects, which would require additional handling of data noise and further development

of GNN models that achieve good out-of-distribution performance. For future investi-

gation, my research will primarily focus on addressing the aforementioned challenges

by performing theoretical and empirical analyses on GNN architectures for brain net-

work learning. To tackle the data scarcity issue, exploration of data augmentation and

synthetic generation techniques [26, 101] are also advised to expand available training

samples with artificially constructed, domain- and distribution-aware data instances.

Since the raw neuroimaging signals are represented in time-series, it is also worth

investigating methods of learning over time-series data and dynamic structures which

can further reduce the cost of data collection by removing the need to pre-process

these signals into brain networks which are known to be time consuming.
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Appendix A

Autoencoder Structure Analysis

A.1 Bridging Reconstruction Minimization and Vari-

ance Maximization

In this section, we briefly discuss how the reconstruction minimizing objective in one-

layer AE can be cast to a variance-maximizing objective in PCA. Assume given a

data matrix X ∈ Rn×d, its covariance matrix Σ = X⊤X ∈ Rn×n, and a single-layer

AE projection matrix W ∈ Rd×m with parameters randomly initialized from the

continuous uniform distribution U(0, 1), the reconstruction objective is:

1

n
∥X−XWW⊤∥2 =

1

n
tr((X−XWW⊤)

· (X−XWW⊤)⊤)

=
1

n
tr((X−XWW⊤)

· (X⊤ −WW⊤X⊤))

=
1

n
[tr(XX⊤)− tr(XWW⊤X⊤)

− tr(XWW⊤X⊤)

+ tr(XWW⊤WW⊤X⊤)]
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=
1

n
[c1 − 2 · tr(XWW⊤X⊤)

+ tr(X̂X̂⊤)]

=
1

n
[c1 − 2 · tr(XWW⊤X⊤) + c2]

= c3 − c4 · tr(W⊤X⊤XW)

= c3 − c4 · tr(W⊤ΣW)

Notice that c1, c2, c3, c4 are non-negative scalar constants that do not influence the

overall optimization trajectory. Hence, alternatively, the optimal AE projection also

maximizes the sample variance tr(W⊤ΣW), achieving an identical end goal of PCA

transform. Specifically, according to PCA, variance maximization is realized by con-

structing the projection W to contain the set of orthonormal eigenvectors of Σ that

gives the largest eigenvalues [35]. That is, there is an orthogonality constraint on W.

Minimizing the MSE reconstruction also results in an orthogonal W:

1

M
∥X−XWW⊤∥2 = 0⇒WW⊤ = I

Therefore, the optimal AE projection W is also capturing a set of variance-maximizing

orthogonal vectors. Note that the AE optimized W is theoretically equivalent to the

eigendecomposition of Σ if and only if the reconstruction loss is 0. Therefore, in

practice, the AE is, at best, an approximate solution to variance maximization.

A.2 Variance-based Sorting Procedure

Following the discussion in A.1, assuming a perfect optimization, the linear one-

layer AE behaves similarly to PCA, and there is an equivalence relation between

their respective objective functions. Notice that in PCA, the eigenvalue of the co-

variance matrix Σ signifies the intensity of data variation along the direction of its
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corresponding eigenvector, which is essentially a column entry of the transformation

matrix. Then intuitively, given an optimized AE projection W, we can examine, for

each column of W, its representativeness (i.e., data variance) of the data covariance

with a scalar estimate (i.e., an eigenvalue-like scoring). Inspired by the properties of

eigendecomposition, we can approximate these estimates by measuring the distance

of W w.r.t to the product of linearly transforming W through Σ by a scaling factor

of λ. More specifically, we want to solve for λ such that Σw = λw for every col-

umn vector w ∈W. Under the PCA perspective, λ contains the variance estimate

for each column-wise individual projection of W. To this end, we detail the sorting

procedure in Algorithm 4.

Algorithm 4 Overview procedure for variance-based sorting

Input: Original feature matrix X ∈ RM×M ; AE optimized projection matrix W ∈
RM×D

Initialize: Scalar vector λ ∈ RD; Small positive float ϵ
Output: Sorted AE projection matrix W̃
1: Normalize the feature matrix: Xn ← X/∥X∥
2: Compute data covariance matrix: Σ← Xn

⊤Xn

3: Solve for λ such that |ΣW −W ⊙ diag(λ)| ⩽ ϵ
4: Sort column vectors w ∈W according to (sorted) decreasing order of λ to obtain

W̃
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Appendix B

Additional Experiments

B.1 Performance with GAT and GIN

Table B.1: Disease prediction performance of our framework using GAT and GIN.
The best performer is highlighted in bold.

Method
BP-fMRI BP-DTI HIV-fMRI HIV-DTI

ACC AUC ACC AUC ACC AUC ACC AUC

Ours w/ GCN 68.84±8.26 68.45±8.96 66.57±7.67 68.31±9.39 77.80±9.76 77.22±8.74 67.51±8.67 67.74±8.59

Ours w/ GAT 66.96±9.71 69.68±9.61 64.23±10.47 63.76±10.49 74.93±10.35 75.78±11.12 65.84±9.74 66.51±12.07

Ours w/ GIN 66.30±8.77 68.92±9.37 64.48±9.83 66.44±8.58 75.96±9.56 77.63±10.10 67.36±9.26 65.95±11.76

Table B.1 reports the downstream performance of the proposed full framework using

GAT and GIN as backbone encoders. In general, the two encoders deliver inferior

performance compared to GCN, which suggests that complex GNN convolutions (e.g.,

GAT and GIN) might not be as effective as they seem when learning on bran network

datasets.

B.2 Additional Ablation Studies on DTI

Figure B.1 presents the ablation studies on the DTI view following the same setup

as discussed in Section 8.2. One can draw similar conclusions from the DTI-based
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Figure B.1: Additional ablation comparisons on DTI views. The top two subfigures
refer to contrastive sampling considerations and the bottom two subfigures refer to
atlas mapping regularizers. The y-axis refers to the numeric values of evaluated
metrics (in %). This Appendix benchmarks results on the DTI modality of the BP
and HIV dataset.

analysis where each constituent component of the two-level sampling consideration as

well as the atlas mapping mechanism has proven positive contribution and significance

towards the overall performance and robustness.
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