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Abstract

Potential energy surface and applications to carbon dioxide-water,
carbon dioxide clathrate hydrate and hydrated HCl system

By Qingfeng Wang

The potential energy surface is important to describe the molec-
ular dynamics and molecular vibrations. In the first part of
this thesis, an ab initio, full-dimensional, potential energy sur-
face for CO2−H2O two-body interaction is presented. A full
potential energy surface of dimer can be obtained by adding po-
tentials for non-interacting monomers. Diffusion Monte Carlo
calculations of the dimer zero-point energy are performed. Vi-
brational self-consistent and virtual-state configuration interac-
tion method are used to characterize the vibrational eigenstates
and energies. These results are in good agreement with exper-
imental results. In addition, the CO2−H2O two-body poten-
tial energy surface is combined with existing water potential to
develop a potential for the CO2 clathrate hydrate. A compu-
tationally efficient local-monomer treatment for this clathrate
hydrate is presented. In the second part of the thesis, the vibra-
tional pre-dissociation of HCl−(H2O)3 cluster is studied. Using
an existing potential energy surface, quasi-classical trajectory
calculations were performed. This unimolecular decomposition
can undergo two different pathways that were all observed by
a large number of trajectory simulations. Information such as
speed distribution, rotational energy distribution and branching
ratio have been be obtained by analyzing final condition of the
trajectories.
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Chapter 1 Introduction

1.1 Introduction

Theoretical chemistry examines the system of interest in the molecular level. Luck-

ily, in principle, the behavior of molecules can be explained exactly under the quantum

mechanics scheme. To be specific, the non-relativistic Schrödinger equation is a good

enough formalism to contain all the useful information relevant to chemistry.

Unfortunately, the major barrier that prevents us from obtaining useful knowledge

of molecular system is the notorious one, i.e., the lack of computational power to

solve the Schrödinger equation accurately for molecules containing even moderate

number of atoms. In order to reduce the computational difficulty of solving the

Schrödinger equation, many approximations have been applied. The most popular

method is a two-step strategy with the aid of Born-Oppenheimer approximation.

It involves first constructing the potential energy surface, and in the second step

obtaining useful information of molecule by evaluating the potential energy surface.

In next two sections, the details of two steps and how are they related to my thesis

will be explained.

1.2 Construction of the potential energy surface

In the first step, Born-Oppenheimer approximation is applied in order to solve the

Schrödinger equation. This approximation takes the advantage of the fact that the

mass of nuclei is much larger than the mass of electrons so that the motion of electrons

can be adapted to the displacement of nuclei almost instantaneously. This is usually a

very good and useful approximation. The computational difficulty has been reduced

since the Schrödinger equation can be solved with fixed nuclei, preventing electrons
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and nuclei moving simultaneously. As a result, one can solve the Schrödinger equation

for different nuclear configurations. What is obtained in this step is called potential

energy surface (PES). PES can be thought of a mathematical function E(R) that

gives energy of the molecular system E with the input of the position of atoms R.

The PES can be constructed in several ways. The first method is to construct the

PES on-the-fly. In principle, the PES can be obtained directly by solving the non-

relativistic Hamiltonian with the Born-Oppenheimer approximation. The accuracy

relies on the level of theory and basis applied. However, using the currently available

computer power, only relatively low-level theory and small basis can be performed

for even small molecular systems. The greatest advantage of this method is that it

usually provides consistent and dependable result. That is to say it can describe the

distorted system far away from its equilibrium configuration with reasonable accuracy

up to the level of chosen theory and basis.

This method is used in Chapter 2 in order to generate a large number of CO2−H2O

configurations that are physically reasonable. Notice the theory used for my 6-atom

system is merely MP2 with basis VDZ.

A more widely used approach in our group for constructing PES is to fit an

analytical PES. There are many different ways of formulating the analytical PES, as

described in Chapter 2. The analytical PES typically used in our group is formulated

as permutationally invariant polynomials with undetermined coefficients. This is also

the PES I used in the rest of this thesis. Then, a large set of energies obtained

from high-level ab initio calculation is used to fit those coefficients in PES. The

fitting routine is a standard one developed in our group over many years. Technical

details will be explained in Chapter 2. The greatest advantages for analytical PES

is the speed of evaluation, which proves to be invaluable in computational-intensive

calculations described in the section.
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1.3 Application of the potential energy surface

In the second step of the procedure, useful information can be extracted by solving

the Schrödinger equation of nuclei using PESs. This can be regarded as the applica-

tion of PESs and also the main focus of this thesis. The application can be roughly

categorized as molecular vibrations and dynamics simulations.

For molecular vibrations, one of the most basic applications is normal mode anal-

ysis, which assumes the potential is harmonic and modes are orthogonal. The result

can be systematically improved using vibrational self-consistent filed (VSCF) and

virtual-state configuration interactions (VCI). VSCF/VCI approach takes into ac-

count for the anharmonicity and mode-coupling. In our group, VSCF/VCI is realized

by the code MULTIMODE, which contains a standard procedure to solve the Watson

Hamiltonian. Diffusion Monte Carlo (DMC), which is used to obtain the exact anhar-

monic ground state energy, can also benefit from the efficient evaluation of PES. The

idea of DMC is if one propagating the time-dependent Schrödinger equation along

imaginary time τ = it, then only the ground state lasts after long enough time.

The motion of molecules described by the time-dependent nuclear Schrödinger

equation can be very expensive to solve. As a good approximation, when quantum

effects are negligible, the motion of nuclei can be described by classical mechanics.

Solving classical mechanics requires the numerical integration where PES is used. A

better description is using quasi-classical trajectory (QCT) calculation. This simply

means restrictions are applied on the initial condition for each atom so that the

internal energy of molecules satisfies the rule of quantum mechanics. The rest of the

propagation still follows the rule of classical mechanics. Details of application of QCT

will be described in Chapter 3.
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1.4 Overview of the thesis

This thesis contains three separate chapters.

Chapter 2 talks about the construction of a highly accurate PES and how to

apply this PES to obtain anharmonic vibrational spectrum. This topic is mainly

based on my published work.1 We report an ab initio, full-dimensional, potential

energy surface (PES) for CO2−H2O, in which two-body interaction energies are fit

using a basis of permutationally invariant polynomials and combined with accurate

potentials for the non-interacting monomers. This approach, which we have termed

“plug and play” is extended here to improve the precision of the 2-body fit in the

long range. This is done by combining two separate fits. One is a fit to 47593 2-body

energies in the region of strong interaction and approaching the long-range and the

second one is a fit to 6244 2-body energies in the long-range. The two fits have a

region of overlap which permits a smooth switch from one to the other. All energies

are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of

the full PES, i.e., stationary points, harmonic frequencies of the global minimum,

etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-

pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy are

performed and a dissociation energy, D0, of 787 cm−1 is obtained using that ZPE,

De and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm−1.

VSCF/VCI MULTIMODE calculations of intramolecular fundamentals are reported

and are in good agreement with available experimental results. Finally, the full dimer

PES is combined with an existing ab initio water potential to develop a potential for

the CO2 hydrate clathrate CO2(H2O)20(5
12 water cage). A full normal-mode analysis

of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of

the fundamentals of CO2.

Chapter 3 is based on a joint experimental and theoretical work in order to un-

derstand the HCl−(H2O)3 vibrational predissociation. My contribution is to provide
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QCT simulations complementing the experiment. As a result, only QCT-relevant con-

tents will be discussed here. The cyclic HCl−(H2O)3 tetramer is the largest observed

neutral HCl−(H2O)n cluster. The vibrational predissociation (VP) of HCl−(H2O)3 is

investigated by theory following the infrared (IR) excitation of the hydrogen-bonded

OH-stretch fundamental. The energetically possible dissociation pathways are HCl

+ (H2O)3 (Pathway 1) and H2O + HCl−(H2O)2 (Pathway 2). Bond dissociation en-

ergies, D0, are calculated to be 2426 ± 23 cm−1 and 2826 ± 19 cm−1 for Pathway 1

and Pathway 2, respectively. Insights into the dissociation mechanism and lifetime

are gained from QCT calculations, which are performed on a previously reported

many-body potential energy surface. It is concluded that the dissociation lifetime is

on the order of 10 ps and that the final trimer products are in their lowest energy

cyclic forms.
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Chapter 2 Construction and application
of PES for CO2−H2O and extension to the
hydrate clathrate

2.1 Introduction

The Force Field (FF) is a generic term that denotes an analytical representation

of a potential describing the interactions of a molecule or a molecular cluster. The

molecule may be as small as a triatomic or as a large as a huge covalently bound

polymer. Molecular cluster is, as the name implies, a collection of molecules bound

by weaker, non-covalent interactions. Typically, FFs for molecular clusters make use

of the rigid-monomer approximation. This leads to a great simplification in the com-

plexity/dimensionality of the FF. In the general case of flexible monomers, the FF is

decomposed as a sum of intramolecular and intermolecular terms. The intramolecu-

lar terms are expressed as bond stretch and bending functions (often harmonic), and

dihedral (torsional) interactions. The intermolecular interactions are expressed as

Lennard-Jones or “exp-6” potentials, augmented by two-body multipole interactions,

see for example “CHARMM”.2 More sophisticated FFs do account for many-body

induced interactions as well, for example the “AMOBEA” water potential.3 These

interactions contain linear and non-linear parameters that are typically determined

empirically, e.g., using known equilibrium structures, vibrational frequencies, ther-

modynamic properties, etc., or by using ab initio electronic energies to obtain the

parameters fit some fitting procedure, a linear/non-linear least square optimization.

Generally this approach does not provide precise fitting. Obtaining RMS fitting er-

ror with tens to hundreds of cm−1 is a typical result for FFs with flexible monomers.

As a result structures and normal mode frequencies differ by few percent relative to
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the ab initio results. Of course, by introducing more linear and non-linear parameters

the fitting can be improved. Nevertheless, this approach has several limitations. One

is the imposition of the models for intra and intermolecular interactions. This is es-

pecially true for intramolecular interaction, where harmonic models are often used. It

is also true for the short-range parts of the intermolecular, which are represented by

exponentials. Second, these FF representations generally do not describe three and

higher-body interactions and they do not describe chemical reactions or isomerization

(there are some exceptions, such as Reaxff4).

In the past decade or so, essentially model-free approaches to the analytical repre-

sentation of potential energy surfaces have been developed and applied to numerous

molecular systems including chemical reactions. These PESs are numerical fits to

tens of thousands of high-level electronic energies. Ours in particular make use of

fitting bases that are invariant with respect to permutations of like atoms. These

general approaches have been reviewed5–8 and the interested reader is directed to

these.

A particular subset of these approaches, suitable for large molecular clusters gov-

erned by non-covalent interactions, has been developed by our group building on

the seminal work of others,9 albeit for rigid monomers. In the general approach for

flexible monomers, the intermolecular interaction is represented by a many-body ex-

pansion; with the important 2 and 3-body fits obtained by the numerical approaches

mentioned above. For example, for flexible water, these representations, which are

high-dimensional, have been determined based on fitting tens of thousands of high-

level electronic energies.10,11 These representations of the water potential are trans-

ferable to other systems such as hydrate clathrates, as we have recently reported

for the hydrate clathrates of H2
12 and CH4.

13,14 In these examples, 2 and 3-body,

full-dimensional potentials were developed for H2-H2O and CH4−H2O and combined

with the water potential and pre-existing high-level monomer potentials to obtain



8

the full PES. We have termed this approach wherein existing monomer potentials are

combined with fitted 2 (and 3-body) potentials “plug and play”.

All of these numerically based approaches produce highly precise fits, i.e., of the

order of 10 to 100 cm−1 RMS fitting error, depending on the total energy span of the

dataset. However, even a 10 cm−1 RMS fitting error would be considered large in

the long-range part of the potential, where the interaction energies are of the order

of tens of wavenumbers or less.

In this chapter, we report a new 2-body potential for CO2−H2O and combine

it with high-level monomer potentials to obtain the full dimer PES. The approach

described in those papers is extended here to greatly improve the precision of the

2-body PES in the long range, in recognition of the comments made above.

The CO2−H2O dimer has been extensively studied both experimentally and theo-

retically, as it is important for understanding the basis of many fundamental reactions

such as photosynthetic conversion from CO2 and H2O to organic molecules. The com-

plex has been proposed to be present in some planetary atmospheres.15 In addition,

the CO2 hydrate clathrate, whose structure will be described later, has been proposed

in the Martian atmosphere,16–19 and also as a possible means to sequester CO2.
20,21

Early experiments on the CO2−H2O complex determined the minimum energy

configuration. This was first reported by Peterson et al., in a molecular-beam-electric

resonance experiment.22 With the determination of rotational constants, hyperfine

spectra and dipole moments, it was shown that the global minimum geometry is of

C2v symmetry (Figure 2.4 (a)). Later, this result was confirmed and supported by

further experiments.23–25

Many ab initio studies of stationary points and energetics of this complex have

been reported over the past 40 years.26–35 The complex is a challenge for theory

because of the weak binding and the floppy nature of the stationary configurations.

After several thorough studies using high-level methods, stationary points have now



9

been well-characterized,34,36 and the early reports of two minima are not correct.

Developing an ab initio-based, full-dimensional, potential energy surface for the

CO2−H2O complex is clearly desirable, albeit a challenge owing to the high dimen-

sionality (12 vibrational degrees of freedom). Several PESs with rigid monomers,

which reduce the dimensionality to 5, have been reported.36,37 The most recent rigid-

monomer PES was reported by Makarewicz in 2010.34 This PES was a fit to roughly

23000 using MP2/aug-cc-pVTZ ( plus bond-centered functions) energies, using a com-

plex analytical expression that included damped long-range electrostatic and disper-

sion interactions. 168 non-linear parameters were optimized to obtain a precise fit.

The reported unweighted RMS fitting error for 22500 configurations up to an en-

ergy of 3500 cm−1 is 11.8 cm−1. This PES is certainly of high quality and can be

used in a number of studies, but the limitation to rigid monomers certainly rules out

applications to IR spectroscopy.

To the best of our knowledge, the only previous ab initio-based PES for flexible

monomers was reported in 2005 by Wilcox and Bauer.32 They used the conventional

FF to represent this potential and it is worthwhile to recall this approach in detail.

For the two intramolecular terms, they used following equations to represent CO2

potential and H2O potential:

ECO2
=

1

2
k1(rC−O1

− 1.16914)2

+
1

2
k1(rC−O2

− 1.16914)2

+
1

2
k12(rO1−O2

− 2.33827)2

+
1

2
kδ(aOCO − π)2

(2.1)
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EH2O
=

1

2
k1(rO−H1

− 0.96876)2

+
1

2
k1(rO−H2

− 0.96876)2

+
1

2
k12(rH1−H2

− 1.52326)2

+
1

2
kδ(aHOH − 1.80917)2,

(2.2)

where k1, k2, k12 and kδ are parameters, rij are 6 intramolecular bond lengths (three

for each monomer) in Å and aOCO and aHOH are bond angles in radians. They

expressed the intermolecular interactions with the form:

Eintermolecular =
n−set∑
i=1

9∑
j=1

C(i, j)(1/rj)
i, (2.3)

where j represents 9 intermolecular atom-atom pairs. Here “n−set” determines the

number of parameters. The best model has a RMS fitting error of 0.34 kcal/mol.

and contains two minima, which are (incorrectly) present in the dataset of 172

G3(MP2)//B3LYP energies. The potential at the T-shaped global minimum is -2.84

and -3.18 kcal/mol for G3(MP2)//B3LYP and the force field, respectively. Another

important limitation of the FF is that it is valid only for separations of the water

oxygen and the carbon atom over the range of 2.0 to 8.0 Å. Thus, it cannot describe

long-range interactions. Finally, given the limited range of energies in the dataset (up

to 10 kcal/mol relative to separated monomers at equilibrium) it is unlikely that this

force field could yield accurate anharmonic vibrational energies. In this context, the

work of Chaban et al. is noteworthy.15 This group reported anharmonic calculations

of the monomer vibrational energies by obtaining electronic energies directly on grids

and thus without recourse to an existing PES. We discuss these calculations in detail

below.

The PES we report is based on fits to tens of thousands CCSD(T)-F12b/aug-cc-

pVTZ 2-body interactions with flexible monomers. We use a fitting basis of permuta-

tionally invariant polynomials in so-called Morse variables. Details of this approach
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have been given elsewhere5,38 and so only a brief review of the essential aspects are

given below. An important feature of the current approach is the use of two fits to

create the final 2-body PES. One is a fit in the strong interaction region and in the

moderate long-range region and the other is a fit for a much longer-range region.

We denote these fits as “fit-SR” and “fit-LR”. These two fits are then combined

using a simple switching function to obtain the final 2-body PES. The 2-body PES

is combined with previous 1-body monomer potential energy surface to obtain the

full potential energy surface for the dimer. In addition, these monomer 1-body and

2-body potentials are combined with an accurate ab initio potential for water to de-

velop a potential for CO2 hydrate clathrates. These PESs are then used in a variety

of anharmonic vibrational calculations.

The rest of the chapter is organized as follows. In Section 2.2, computational de-

tails of the ab initio calculations, fitting methods, diffusion Monte Carlo, VSCF/VCI

calculations and the many-body representation of the CO2 hydrate clathrate potential

are given. Results and discussion are given in Section 2.3. These include an analysis

of the PES, harmonic and VSCF/VCI vibrational energies for the dimer, followed by

analyses of the hydrate clathrate calculation including a full normal-mode analysis

and local monomer calculations of the fundamentals of intramolecular modes of the

CO2. Finally, a summary and conclusions are given in Section 2.4.

2.2 Theory and Computational Details

The “plug and play” approach12–14 for CO2−H2O consists in writing the full po-

tential as

VCO2−H2O
= V

(1)
CO2

+ V
(1)
H2O

+ V
(2)
CO2−H2O

(2.4)

where V
(1)
CO2

and V
(1)
H2O

are monomer potentials and V
(2)
CO2−H2O

is the intrinsic two-body

potential. Hereafter, we refer this full potential as the “PES”. The appeal of this

approach is that the monomer potentials are pre-existing ones, which can be chosen
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with a particular application in mind. For the present purpose, which is focused

on vibrational dynamics, we selected monomer potentials that are of spectroscopic

accuracy, when used in essentially exact vibrational calculations. Thus, the one for

H2O is from Partridge and Schwenke39 and the one for CO2 is from Huang et al.40

The objective is to obtain a full-dimensional potential energy surface for the

V
(2)
CO2−H2O

; we will refer to this as the “PES2b”. This is done by fitting a database

of ab initio interaction energies obtained from three electronic structure calculations

at a given nuclear configuration, one for the complex (VCO2−H2O
) and one each for

the non-interacting monomers (V
(1)
CO2

and V
(1)
H2O

). Because this interaction energy goes

to zero as the monomers separate, the final PES2b should faithfully reproduce this

and also be as relatively precise in the long range as in the short range. In order to

meet these requirements, PES2b is a hybrid of two fits, which we denote fit-SR and

fit-LR, and which are joined by a simple switching function. The first fit, as the name

implies, is focused in the short to moderate long range while fit-LR is focused in the

long-range and rigorously goes to zero as monomers separate.

2.2.1 Ab initio electronic energies databases

In order to sample the high-dimensional configuration space of interest, we first

performed “ab initio molecular dynamics” calculations at the MP2/VDZ level of

theory, with initial starting configurations at known stationary points and with initial

kinetic energies ranging from 50 to 3000 cm−1. From these calculations, roughly

21000 widely spread configurations were saved for higher level calculations of energies.

Additional configurations were obtained based on the database of 23050 configurations

used by Makarewicz34 for rigid monomers. Those configurations were generated using

grid method in the CO(water) distance (from 2 to 10 Å) and four angles specifying

the orientation of the two rigid monomers. We used those configurations but with a

small, random, displacement of a monomer bond length (±0.005 Å) or bond angle
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(±3◦) at each. Finally, for the first generation data set, 1000 additional configurations

were added along an approximate least-motion dissociation path and also a similar

internal rotation path starting at the global minimum. In this way, first-generation

database of roughly 45000 configurations was established.

Electronic energies at these configurations were obtained using the CCSD(T)-F12b

theory41,42 as implemented in MOLPRO,43 with an aug-cc-pVTZ basis.44,45 Based in

part on a previous study, of CO2−H2O, where it was shown that the electronic binding

energy using CCSD(T)-F12/VDZ was within 0.05 kcal/mol of the converged result

(with respect to basis size),35 no corrections to possible basis-set superposition errors

were done.

After obtaining an initial fit (see below for details) using this database, unbiased

diffusion Monte Carlo46–48 calculations for the zero-point state of the complex were

performed in order to explore of regions of the fit that might produce unphysical

large negative values, i.e., “holes”. A number of such “holes” were found and in their

vicinity roughly 2000 electronic energies were added to the database. This database

was used to obtain fit-SR (details given below). Finally, for fit-LR, 6244 long-range

configurations were sampled with RCO between 6 Å and 22 Å, where RCO is the

distance between carbon and the oxygen atom of H2O. The database consists of all

(1280) configurations and corresponding ab initio energies in the large database for

fit-SR for RCO is greater than 6 Å, plus 4964 additional configurations for RCO in the

range 6 to 22 Å for various internal configurations of the two monomers and relative

orientations of the monomers.

2.2.2 PES2b fitting

The approach to obtain fit-SR and fit-LR is the usual one we take, that is using a

basis of permutationally invariant polynomials in Morse variables.5 CO2−H2O is of

the form X3Y2Z1 and thus the full symmetric group is of order 3!2! = 12. The Morse
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variables are yij = exp(−rij/λ) where rij is the internuclear distance between atom i

and atom j and λ is a range parameter. For fit-SR λ is the (usual) value of 2.0 au.

For fit-LR, after some optimization, a larger value, λ = 7.0 au, is used.

For fit-SR, the polynomial basis consists of a group of factored primary and

secondary invariant polynomials,5 namely

V (y) =
M∑
α=0

hα(p(y))qb(y), (2.5)

where α is the total polynomial order of each term in the sum, starting from 0 to

maximum order of M . Each order of polynomial itself is a summation of a series

of symmetrized polynomials determined by polynomials ha and secondary invariant

polynomials qb. Moreover, ha is a polynomial of primary invariants p(y). The number

of p(y) is equal to number of Morse variables, which is 15 for this six-atom system.

In the present case, the maximum polynomial order is 6 which results in 5835 lin-

ear coefficients after expansion. The unknown coefficients were obtained using the

standard least-squares method.

As was noted in the review on the above fitting method,5 the above factored

expression does not rigorously separate into non-interacting fragments in the corre-

sponding asymptotic limit. Instead this asymptotic behavior is obeyed numerically

by the fit. The reason for this non-separability and the remedy will become clear be-

low, where we present a second permutationally invariant fitting method for fit-LR.

This method is a modified version of monomial symmetrization (MSA).5,38 In this

approach the potential is represented in basis of symmetrized monomials, namely

V (y) =
M∑
m=0

DlS

[
N∏
i<j

y
lij
ij

]
, (2.6)

where N = 15 is the number of Morse variables and Dl are the linear unknown coef-

ficients. Each monomial is symmetrized by formal operator S based on the relevant

permutation group.5,38 Note, for a given maximum polynomial order the number of
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unknown coefficients in the two approaches is equal, as the two approaches are for-

mally equivalent. The modification mentioned above, is to “purify” the basis so that

the expression rigorously goes to zero as the monomers separate.12 This is done by

eliminating terms in the basis that contain only intramolecular monomer Morse vari-

ables. For the long-range fit to the database of roughy 6000 electronic energies, the

maximum polynomial order is 4, which results in 524 coefficients. The purification

procedure eliminates 103 terms resulting in 419 coefficients finally.

Next to combine fit-SR and fit-LR to generate PES2b, we use a simple, finite-

ranged switching function in the CO distance.10,49–51 Thus,

PES2b = (1− s(RCO))(fit-SR) + s(RCO)(fit-LR), (2.7)

where s is given by

s(RCO) =


0, if RCO < a

10p3 − 15p4 + 6p5, (p =
RCO − a
b− a

) if a ≤ RCO ≤ b

1, if RCO > b

(2.8)

Thus, s is a smooth function that varies from 0 to 1 in the switching region [a, b].

Notice that PES2b will be reduced to fit-SR when RCO < a and fit-LR when RCO > b.

In the present application the switching region is from 5 to 6 Å. This range was

determined empirically by inspecting potential cuts in RCO, as shown below, and

locating a region where the cuts from the two fits overlap well.

2.2.3 Dissociation energy and vibrational analysis of the CO2−H2O
dimer

The rigorous zero-point energy (ZPE) was obtained using the unbiased diffusion

Monte Carlo (DMC) method.46–48 In brief, this method uses a stochastic approach

to solve the Schrödinger equation in imaginary time in Cartesian coordinates. The

long-time solution decays to the zero-point state and thus the method provides a

way of obtaining both the wavefunction and energy of this state. In our application,
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10 DMC trajectories were run for both the complex and the monomers. For each

trajectory 30000 walkers were propagated for 50000 steps, with the last 40000 used

to determine the wavefunction and zero-point energy. The number of potential calls

per trajectory is of the order of 1010, and clearly a PES is essential for this approach.

Even with a PES, the CPU effort for these calculations is of the order a couple of

days on a single node of a workstation. With these rigorous ZPEs, combined with

an accurate electronic dissociation energy, De, a rigorous dissociation energy D0 was

determined.

For excited vibrational states, the code MULTIMODE52–56 was used to perform

vibrational self-consistent field (VSCF) and virtual state configuration interaction

(VCI) calculations.56,57 There are 12 vibrational modes of this floppy complex and

an exact treatment of all of these are beyond the current state of the art. Thus,

we restrict attention to the seven intramolecular modes. Even with this reduction,

the potential is 7-dimensional and doing numerical quadratures of matrix elements

in this dimensionality would be very compute intensive. To overcome this problem,

MULTIMODE uses a hierarchical n-mode representation of the potential.52 Based on

many previous calculations, a 4-mode representation (4MR) of the potential should

produce results that are converged to within a few wavenumbers or less. With this

4MR, the maximum quadrature dimensionality is 4; however, there are 7!
4!3!

=35 4-mode

grids. For the basis, a direct-product is used and the single-mode basis consists of an

underlying primitive basis of 12 harmonic-oscillator functions. In the VCI calculation,

the excitation space consists of single, double, triple and quadruple excitations, with

the sum of quanta for these levels of excitations being 12, 11, 10 and 9, respectively.

This resulted a VCI matrix of order 26496, which is readily diagonalized.
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2.2.4 CO2 hydrate clathrate

There is great interest in CO2 hydrate clathrates with a corresponding extensive

literature and it is certainly beyond the scope of this paper to review this literature.

Our purpose here is to illustrate how the new CO2−H2O PES can be used to develop

many-body potential for these clathrates. We do note that there have been several

studies of the dynamics of CO2 in water cages making use of empirical interaction

potentials.58,59 Density functional theory, B3LYP/6- 31G(d), was used to obtain the

optimum and maximum cage occupancy for five different cages.60

The lack of an ab initio-based clathrate model motivates us to construct a many-

body-representation based high quality PES for CO2 hydrate clathrate. Thus, we use

the well-known many-body representation of the potential given by

VCO2@(H2O)n
≈ V

(1)
CO2

+
n∑
i=1

V
(1)
H2O(i)

+
n∑
i=1

V
(2)
CO2−H2O(i) +

n∑
i=1

n∑
j=i+1

V
(2)
H2O(i)−H2O(j)

+
n∑
i=1

n∑
j=i+1

n∑
k=j+1

V
(3)
H2O(i)−H2O(j)−H2O(k)

+ V (higher order water potential terms),

(2.9)

where n is the number of water molecules. For the water potential, we use the

accurate, ab initio MB-pol potential,11 which also uses the Partridge-Schwenke H2O

monomer potential. (We used this many-body representation for the CH4 hydrate

clathrate,14,61 with the ab initio WHBB water potential.62)

The above representation is restricted to 2-body CO2-H2O(i) interactions and we

use the one we are reporting here. In line with numerous previous studies, we expect

the 3-body interaction V
(3)
CO2−H2O(i)−H2O(j) to be much less than the 2-body V

(2)
CO2−H2O(i)

one. However, in a hydrate clathrate there are more 3-body interactions than 2-body

ones, so it is necessary to examine the total interaction in detail. Thus, we calculated

these two potentials at the optimized global minimum geometry of CO2(H2O)20 at
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the MP2/aVTZ level of theory. For this hydrate clathrate, there are 20 V
(2)
CO2−H2O(i)

terms and 190 V
(3)
CO2−H2O(i)−H2O(j) terms, and average potential for each three-body

term is -0.53 cm−1 while average potential for each two-body term is -189.16 cm−1.

As a result, the total 3-body potential is about 2.7% of the total 2-body potential. So

we can safely ignore the 3-body interactions in this study, which focuses on the global

minimum of this hydrate clathrate. Finally, we denote this many-body potential as

PES-CW20, as “C” stands for “Carbon dioxide” and “W” for “Water”.

Two vibrational analyses of CO2@(H2O)20 are done, following a geometry opti-

mization. One is a full normal-mode analysis of the hydrate clathrate and the second

one is a VSCF/VCI local monomer (LMon) analysis of the embedded CO2. In the

LMon approach,62 the motion of flexible CO2 is considered with the full interaction of

the water molecules, which are fixed at their reference configurations at the minimum

of the hydrate clathrate. In this approach, a normal-mode analysis is done for the

embedded CO2; we refer to this as “local normal-mode” analysis. This yields 9 non-

zero frequency modes, five of which are frustrated rotation and translational modes

and 4 are the intramolecular modes. MULTIMODE VSCF/VCI calculations are done

using the 9 local modes and also the 4 intramolecular modes. For both, a 4MR of the

potential is used. For these calculations, each single mode function is represented by

a basis of 9 harmonic-oscillator wave functions. In the VCI calculation, the excita-

tion space again consists of single, double, triple and quadruple excitations, with the

sum of quanta for these levels of excitations being 9, 8, 7 and 6, respectively. The

VCI matrices are of order 24310 and 715 for the 9-mode and 4-mode calculations,

respectively.
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Figure 2.1: Histogram distribution of 2-body energies V2b from the combined datasets
(roughly 53000 energies) for fit-SR and fit-LR. Bin width is 50 cm−1.

2.3 Results and Discussion

2.3.1 PES2b fitting precision

The distribution of 2-body energies is shown in Figure 2.1. As seen, there is a

concentration of energies around 0 cm−1. This comes mostly from the fit-LR database

Also, a majority of energies are negative and this is mainly due to AIMD sampling,

which favors configurations with low potential energy. The cut-off at around -1000

cm−1 is a rough indication of the electronic binding energy of the dimer. The positive

2-body energies are indicative of repulsive interactions, which must be included to

obtain a global 2-body PES.

The RMS fitting error for fit-SR to the full database of roughly 48000 energies is

6.3 cm−1 and the one for fit-LR is 0.40 cm−1. The cumulative RMS with negative

energies is 5.17 cm−1 (34119 configurations) for fit-SR and 0.32 cm−1 (4890 configu-

rations) for fit-LR. This clearly indicates precise fitting, especially for the long-range

fit. Thus, the objective of obtaining a small RMS fitting error for the long-range has

been achieved. In addition, fit-LR goes to zero rigorously as the monomers separate.

We next examine the two fits and direct ab initio calculations for three cuts as
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a function of RCO in Figure 2.2. As seen, and as expected, fit-SR matches the ab

initio energy very well up to about 6 Å while fit-LR is almost identical to ab initio

energies from 6 Å. Also, and of direct relevance to the switch between these two fits,

we see that the two fits are in very good agreement in the range 5 to 6 Å. Thus, the

switching region is 5 to 6 Å.

Figure 2.2: Rigid monomer dissociation cuts starting from the equilibrium structure
along RCO direction. Panel (a)-(c) corresponds to geometries in Figure 2.4 (a)-(c).

The accuracy of the repulsive interaction between CO2 and H2O in the fitted

PES2b is also important to examine. This is done in Figure 2.3 for the indicated

monomer orientation, where good agreement with direct ab initio energies is seen.
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Figure 2.3: Rigid monomer potential cut versus RCO for the indicated repulsive con-
figuration.

2.3.2 Properties of the CO2−H2O PES

Stationary points of the full PES were obtained by applying Newton’s method.

The global minimum and four saddle point geometries are shown in Figure 2.4. We

confirm the earlier finding of Makarewicz34 that there is only one minimum config-

uration, denoted here as i.e., “a”. In “a”, the bond length for water in the complex

is the same as the isolated monomer, the bond angle increases slightly to 105.1◦. In

addition, CO2 is no longer linear in global minimum; instead, the O−−C−−O angle is

178.1◦ with C−−O bond pointing away from H2O. Note, RCO for “a” is 2.7552 Å at

the CCSD(T)/CBS(CP,AV5Z/AV6Z) level of theory;35 the PES value of 2.753 Å is

in good agreement with this benchmark value.

The PES stationary configuration energies are given in Table 2.1, along with

present CCSD(T)-F12b/aVTZ ab initio calculations. The electronic dissociation

energy De of “a” from the MP2/aVTZ PES34 is 1004 cm−1 and the benchmark

CCSD(T)/CBS(CP,AV5Z/AV6Z) value is 1024.8 cm−1.35 Thus, the PES value is

in error by 28 cm−1. The PES saddle point energies “b” to “e” are in excellent
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Table 2.1: Energies of stationary points from indicated sources. Note for the energy
of configuration “a”, the global minimum, is referenced to the isolated monomers and
has the value of -De while all energies of other configurations are referenced to “a”.

a b c d e
CCSD(T)-F12b/aVTZ -1054 297 332 619 877
PES -1053 302 328 616 876
MP2/aVTZ PES34 -1004 291 308 635 828

agreement with directly calculated ones and the corresponding values from the rigid-

monomer MP2/aVTZ-based PES34 are in reasonable agreement with the present

energies.

(a) C2v (b) Cs (c) C2v

(d) C2v (e) C2v (f)

(g)
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Figure 2.4: (a) to (e) are geometries of saddle points obtained from PES. Selected
bond lengths and angles are shown directly in the figure. (f) and (g) are monomer
global minimum configurations obtained from monomer PESs. Note that our geom-
etry (d) and (e) correspond to geometry (f) and (d) respectively in Makarewicz’s
paper.34

The fixed global minimum-configuration and relaxed monomer dissociation and

internal rotation cuts from the PES are shown in Figure 2.5 and Figure 2.6, respec-

tively. As expected, the fixed-monomer dissociation energy is larger than the relaxed

one, although the difference is small. There is a larger difference between the fixed and

relaxed internal rotation barrier. These barrier heights are in reasonable agreement
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with empirically determined ones 305.36 ± 0.5 cm−1 (fixed) and 285.66 ± 1.4 cm−1

(relaxed).63 It is noteworthy that in the same research the RCO distance was re-

ported 2.83 Å which is 0.08 Å longer than the benchmark distances. Since there is

relatively large discrepancy in bond length between their and our research, it should

not surprise us if there is also some discrepancy in internal rotation barriers.

RCO

Figure 2.5: Relaxed cut and rigid cut comparison for dissociation path. Relaxed cut
converges to 1053 cm−1 while rigid cut converges to 1077 cm−1. Both cuts have the
same global minimum.

The dissociation energy D0 was obtained from De and the following DMC ZPEs:

2534.8 ± 1.1 cm−1 for CO2, 4634.2 ± 1.2 cm−1 for H2O and 7435.8 ± 1.9 cm−1 for

CO2−H2O. Thus, D0 equals 787 cm−1 using a De of 1053 cm−1 and 758 cm−1 using

the benchmark De. Unfortunately, no experimental value has been reported.

Harmonic frequencies of the global minimum obtained from both ab initio CCSD(T)-

F12b/aVTZ calculations and the PES are presented in Table 2.2. Before comparing

these in detail, it should be kept in mind that the full PES is not a fit to CCSD(T)-

F12b/aVTZ, but a composite consisting of a fit of 2-body CCSD(T)-F12b/aVTZ

energies plus previous, spectroscopically accurate monomer potentials. With this in

mind, we note some differences for some of the low frequency intermolecular modes.
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⌧

Figure 2.6: Relaxed cut and rigid cut comparison for internal rotation. Relaxed cut
has peak height 328.0 cm−1 while rigid cut has peak height 378.1 cm−1. Both cuts
have the minimum potential 0 when water plane is in the same plane as CO2 plane
(τ = 0◦) and have the maximum potential when water plane is perpendicular with
CO2 plane (τ = 90◦). τ is the torsion angle formally defined by the angle between
normal vectors of CO2 and H2O plane. In this particular internal rotation cut, τ
happens to be the angle rotating water about C2v axis counterclockwise.
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There is a relatively big discrepancy for νint(1). One possible explanation is that

global minimum geometries used for NMA are not identical for PES and ab initio

calculation. Since low-frequency intramolecular mode is more sensitive to geometric

change than intermolecular modes, NMA calculated for PES and ab initio could also

be different. For the intramolecular modes the PES results are within a few wave

numbers of the ab initio results. Also, the PES results are in very good agreement

with previous CCSD(T)-F12b/VTZ results.35 Note that mode (3) is essentially the

RCO-stretch. The harmonic frequencies of the isolated monomers are given in paren-

theses next to the corresponding frequency in the dimer to indicate how these change

in the dimer. For CO2 the degeneracy of the bend (at 673 cm−1) is lifted in the dimer

and, not surprisingly, the two frequencies, i.e., νb1(CO2) and νb2(CO2), straddle the

isolated CO2 one. With the notable exception of this bending mode, the monomer

harmonic frequencies are only slightly changed upon complexation.

Table 2.2: Harmonic frequencies of CO2−H2O and isolated monomers (in parenthe-
ses) calculated directly using CCSD(T)-F12b/aVTZ theory and labeled “ab initio”
and from the PES. νint(3) and νint(4) correspond to RCO and τ intermolecular dis-
placements, respectively.

Mode Symbol ab initio PES
νint(1) 46 2
νint(2) 75 55
νint(3) 118 116
νint(4) 174 149
νint(5) 178 171
νb1(CO2) 664(673) 664
νb2(CO2) 678(673) 678
νsym(CO2) 1353(1352) 1355
νb(H2O) 1646(1648) 1645
νasym(CO2) 2394(2393) 2400
νsym(H2O) 3835(3835) 3829
νasym(H2O) 3945(3944) 3951

VSCF/VCI fundamental frequencies, calculated from MULTIMODE, are com-

pared with experimental and other theoretical results in Table 2.3. Note, that there

are two entries for the νsym(H2O) with a small, i.e., 3 cm−1, difference in energies. An
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examination of the VCI expansion coefficients reveals some mixing with a combination

state consisting of one quanta of excitation each of the following: the lower-energy

CO2 bend νb1(CO2), the symmetric CO2 stretch and the H2O bend. This state is

close in energy to the νsym(H2O) state and so mixing is not a surprise. (In first or-

der, this mixing requires a 4-mode coupling matrix element.) Overall, the present

results are in very good agreement with experiment, especially the ones using the Ne

matrix. Also, they are substantially closer to experiment than the previous calcu-

lations. This is probably mostly due to the higher level of ab initio theory used in

the present calculations. However, the previous vibrational calculations were done

using second-order perturbation theory corrections to VSCF energies and restricted

to pairwise coupling of modes and so they are not as rigorous as the present ones.

Finally, note that bending modes of CO2 are strongly split and there is virtually no

Fermi resonance affecting the CO2 symmetric stretch.

Mode MULTIMODE MP2/aVTZ15 Ne matrix64 N2 matrix65

νb1(CO2) 660 647 658.7 656.4
νb2(CO2) 676 659 672.2 665.3
νsym(CO2) 1285 1311 Not IR active Not IR active
νb(H2O) 1583 1487 1595.2 1597.0
νasym(CO2) 2348 2366 2348.2, 2348.8 2351.1
νsym(H2O) (3661, 3664) 3550 3664.8 3634.7
νasym(H2O) 3759 3634 3760.3, 3754.5 3727.3

Table 2.3: Comparison of fundamental frequencies of CO2−H2O calculated from
MULTIMODE, previous 2-mode anharmonic calculations and two matrix isolation
experiments.

2.3.3 Application to CO2@(H2O)20

The fully optimized CO2@(H2O)20 geometry is shown in Figure 2.7. The CO2

bond angle is 179.8◦ and both bond lengths are 1.160 Å. These values are very close

to isolated CO2 at equilibrium. The distances between C and the oxygen atoms

in the surrounding water molecules are in the range 3.5-4.0 Å, substantially larger

than this distance at the dimer minimum. So, clearly the equilibrium structure in
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the cage is a trade-off between attractive and repulsive interactions with the water

molecules. Also, the orientation of the CO2 bond axis is essentially perpendicular to

and centered with respect to a pentagonal face.

Figure 2.7: Global minimum of flexible CO2@(H2O)20.

From this minimum we obtained an estimate of the electronic dissociation energy

of 3799 cm−1 for CO2 by using the same geometry for the (H2O)20 as for the global

minimum and for CO2 removed. We also examined the least-motion path of the

CO2 moving out of the cage through the center and perpendicular to the pentagonal

face, with the water molecules held fixed. The barrier obtained is more than 20000

cm−1 and so clearly it would be necessary to open the pentagonal face for the CO2

to escape. In fact, this has been seen for the 512 cage, in recent molecular dynamics

calculations, using an empirical potential.59

Figure 2.8 is a contour plot of the rotational potential for CO2 at the global

minimum position. For simplicity CO2 was set to be linear and the z-axis is the bond
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axis and the two angles θ and φ are the usual polar angles. The figure shows the

barrier is not small so the orientation of CO2 is locked somewhat toward one of the

pentagonal faces. The potential does have quasi-periodicity as there are twelve such

faces (which, however, are not identical).
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Figure 2.8: Contour plot of the CO2 rotational potential (in cm−1) at the global
minimum of CO2@(H2O)20 in the polar angles θ and φ (in degrees). The energy is
referenced to global minimum, where θ and φ are zero.
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dimensional normal-mode analysis. Four high frequency intramolecular vibrations
of CO2 are labeled.
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Table 2.4: 4-mode, 9-mode VSCF/VCI local-monomer vibrational energies and LMon
and full harmonic frequencies (cm−1) of the CO2 monomer in CO2@(H2O)20.

Mode 4-Mode 9-Mode LMon NMA Full NMA
frustr-trans - 59 55 30
frustr-trans - 61 59 37
frustr-rot - 71 69 26
frustr-rot - 74 72 85
frustr-trans - 76 73 87
νb1(CO2) 654 656 660 655
νb2(CO2) 657 659 663 655
νsym(CO2) (1292, 1359) (1294, 1363) 1353 1352
νasym(CO2) 2356 2356 2418 2418

We performed a full normal-mode analysis of the CO2@(H2O)20 and a smoothed

density of states is plotted in Figure 2.9. The smoothing was done by replacing each

normal mode frequency (represented say by a stick of constant height) by a Gaussian

curve with full-width half maximum of 10 cm−1. Notice, under such resolution, the

two CO2 bending modes νb1(CO2) and νb2(CO2) are indistinguishable. Further,

these modes are embedded in a similar spectral range of water cage modes suggests

that some coupling of the CO2 bending modes with cage modes is possible. However,

an examination of the normal mode vectors shows this not to be the case. The sym-

metric and asymmetric CO2 stretch modes are clearly isolated. So, this all suggests

that a local monomer treatment of the CO2 intramolecular vibrational modes should

be reasonable. This is verified in Table 2.4, where the local-monomer harmonic fre-

quencies of CO2 are compared with corresponding results from the full normal-mode

analysis. There are larger differences for the bend modes than the stretches, and this

is understandable, based on the preceding discussion of the vibrational density states.

VSCF/VCI vibrational energies using just the four high-frequency intramolecular

modes and all (9) local monomer modes are given in this table as well. As seen, there is

very good agreement between these two set of results, implying little coupling between

5 low-frequency modes and 4 high-frequency modes. Both sets of calculations find

strong mixing between the symmetric stretch with the bend which results in a Fermi-
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diad , analogous to the isolated gas-phase Fermi-diads at 1286 and 1383 cm−1. These

Fermi-diads have been observed in a room temperature Raman spectrum of CO2 in

the larger 51262 hydrate clathrate at roughly 1277 and 1382 cm−1,66 values that are

close to the gas-phase ones. The present calculations show an up-shift of the lower-

energy diad and a down-shift of the higher energy one, relative to these experimental

results, which unfortunately are not directly comparable to the present calculations.

The calculated CO2 asymmetric stretch at 2356 cm−1 is in good agreement with an

experimental value of 2347 cm−1, obtained in IR reflectance spectra of CO2 in the

smaller of two clathrate hydrates.67

Finally, comparing VSCF/VCI calculations for CO2@(H2O)20 shown in Table 2.4

with calculations for CO2−H2O system in Table 2.3, one can find that two bending

modes are much less separated in CO2@(H2O)20. The energy separation is about

14-16 cm−1 for CO2−H2O while it is only about 1-3 cm−1 for CO2@(H2O)20. Also,

the symmetric stretch is not strongly perturbed by the bend in the dimer, where it is

in the hydrate clathrate. The reason for these significant differences is likely because

the CO2−H2O interaction is much stronger in the dimer than in the hydrate clathrate

(recall the differences in the distance) in the two so the perturbation is smaller. In

addition, the anisotropy is much less in CO2@(H2O)20 since CO2 is perturbed roughly

uniformly from all directions. Five non-zero low-frequency modes shows that CO2 is

unable to rotate or translate freely in the water cage. It is noteworthy that in full-

scale normal-mode analysis, these five frustrated rotational and translational modes

plus two bending modes are all coupled significantly with water cage movements so

that the local-monomer model cannot recover them accurately.

2.4 Summary and conclusions

In this chapter, I presented an accurate, full-dimensional, 2-body potential energy

surface for CO2−H2O. This potential energy surface is a hybrid of two fits, denoted



31

fit-SR and fit-LR linked by a switching function. fit-SR is a permutationally invari-

ant fit to 47593 ab initio energies of CCSD(T)-F12b/aVTZ level theory. fit-LR is

also a permutationally invariant fit to 6244 CCSD(T)-F12b/aVTZ electronic ener-

gies, that rigorously goes to zero in the long range and which has an RMS fitting

error of 0.4 cm−1 . This 2-body potential energy surface is combined with previous

spectroscopically accurate potentials for the monomers to produce the final potential

energy surface. The utility of this 2-body potential was demonstrated by using it,

together with a previous water potential, to develop a potential for the small CO2

hydrate clathrate CO2@(H2O)20. Numerous properties of these potentials, including

stationary points, harmonic frequencies, etc., were reported. The rigorous disso-

ciation energy, D0, of the dimer was reported as 787 cm−1 using the 2-body PES

De of 1053 cm−1 and 758 cm−1 using the benchmark De. The latter value is then

the current benchmark number for this important dimer. VSCF/VCI coupled-mode

calculations of vibrational fundamentals were reported for the seven intramolecular

modes of the dimer and the local-normal modes of CO2 in the hydrate clathrate,

using a 4-mode representation of the potential for both sets of calculations. These

were compared, with no scaling or empirical adjustments, with available experimental

results and agreement within a few wavenumbers was seen.

In summary, the new 2-body potential is a major step forward in providing both a

highly accurate and transferable potential that should see many future applications.

2.5 CO2−H2O software package

See supplementary material of the published paper1 for details on downloading

the software to evaluate the 2-body potential energy surface.
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Chapter 3 Vibrational predissociation of
HCl−(H2O)3

3.1 Introduction

Water-hydracid complexes are prototype systems for the study of hydrogen bond

(H-bond) properties and the mechanisms of acid solvation. The unique properties of

water arise from its ability to form H-bonds, which often leads to the stabilization

of intermediates, the shifting of molecular vibrational energies, and the lowering of

activation barriers for reactions.68,69 The ability of water to stabilize ions is also well

known;70 however, a detailed understanding of the dynamics leading to acid ionization

within mixed clusters is uncertain. A bottom-up approach aims to identify trends

in H-bonds dissociation through isolation of small mixed clusters. This starts with

dimers containing one water and one hydrogen halide species, and then sequentially

adding solvent water molecules to compare properties of larger cyclic networks. This

chapter focuses on the vibrational predissociation (VP) of the HCl−(H2O)3 tetramer

(referred to henceforth as HWWW), the largest neutral HCl−(H2O)n cluster ob-

served without ionization to the acid. Addition of one or two water molecules to this

mixed cluster is expected to initiate proton migration to generate a stable solvent ion

pair.71–78 Although the existence and structure of the HWWW tetramer was debated

in the past, the most recent calculations confirm that it is stable and its optimized

geometry is cyclic, as shown in Figure 3.1.71,79–82

An investigation of this mixed cluster is also interesting because there are two

close-lying dissociation channels that can be accessed by excitation of the intramolec-

ular OH-stretch fundamentals, yielding HCl (Pathway 1, Equation 3.1) or H2O (Path-

way 2, Equation 3.2) monomer fragments:
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Figure 3.1: The global minimum configuration of HCl−(H2O)3 . Arrows depict the
vector motion of the O−H stretch mode used for excitation in this study.

HCl−(H2O)3 −−→ HCl + (H2O)3 (3.1)

HCl−(H2O)3 −−→ H2O + HCl−(H2O)2 (3.2)

An open question is whether the final trimer products, (H2O)3 (WWW) and

HCl−(H2O)2 (HWW), have cyclic or open-chair configurations. The cyclic forms of

these trimers are more stable energetically; however, the transition states required for

their formation via VP of the tetramer are tight and thus disfavored by entropy. The

theoretical examination presented here strives to answer this intriguing question.

The investigation of the VP of the HWWW tetramer poses challenges for theory,

requiring an accurate potential energy surface (PES) that describes the complex at

the high energies of dissociation to the two product channels of interest here. (The

need to run thousands of trajectories for roughly 10 picoseconds rules out an ab initio

direct dynamics approach.) Here the PES employed is based on high-level ab initio

many-body components, as described in detail and tested previously by Mancini and

Bowman.81 Structures were optimized and vibrational frequencies were determined
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using different approximations. Previous calculations for dimers and trimers gave

H-bond dissociation energies that were in close agreement with experiments. These

studies are summarized in recent papers and review articles.83–88 In addition, quasi-

classical trajectory calculations performed on these highly-accurate PESs were used

successfully before to determine the VP dynamics and dissociation energies of (H2O)2,

HCl−H2O, (H2O)3 , and (HCl)3.
83,84,86–88

In this chapter, the results of a theoretical study of the predissociation of HWWW

via Pathways 1 and 2 was presented. We report our best theoretical estimates for the

dissociation energies for Pathways 1 and 2, rotational energy distributions for the HCl

and H2O monomer fragments, and fragment speed distributions. Moreover, we gain

deeper insight into the predissociation dynamics by analyzing dissociative trajectories,

obtained by QCT calculations, for the two dissociation pathways. These indicate

that cyclic trimer fragments are formed in the two pathways, and the dissociation

mechanism follows trends congruent with smaller neutral cluster works.

3.2 Theoretical methods and energetics

As noted above, the PES used was a highly accurate many-body potential con-

structed by Mancini and Bowman.81 Accurate dissociation energies for numerous

dissociation pathways, including the high energy breakup to H+W+W+W, were cal-

culated using De values from complete basis set (CBS) calculations and zero-point en-

ergies (ZPE) using an unbiased diffusion Monte Carlo (DMC) method for the HWWW

tetramer and various product fragments.

Table 3.1 lists benchmark dissociation enegies for relevant products. H-bond

dissociation energies were calculated using De value of complete basis set (CBS),

and ZPE values using the unweighted diffusion Monte Carlo (DMC) method for

HCl−(H2O)3 and various product fragments. The CBS calculations were performed

at the CCSD(T)/aVTZ/aVQZ level of theory with L3 extrapolation for the corre-
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lation energy and Karton-Martin extrapolation for the Hartree-Fock energy, using

MOLPRO 2010. The DMC caclulations were performed using 4000 walkers and a

step size of 2.5 imaginary time units. Those trajectories were first equilibrated for

2000 steps and then propagated for at least 24000 steps. The uncertainties were mea-

sured by first block averaging the trajectories in sections of 4000 time steps, and then

computing the standard deviation of the block averages. The excitation energy in the

QCT calculations is 3550 cm−1, which means that only Pathways 1 (2426 ± 23) and

2 (2826 ± 19 cm−1) are feasible.

Fragments De, cm−1 D0, cm−1

(H2O)3 + (HCl) 3008 2426 ± 23
(H2O)2(HCl) + (H2O) 3634 2826 ± 19
(H2O)2 + (H2O)(HCl) 4866 3794 ± 18
(H2O)(HCl) + (H2O) + (H2O) 6623 4907 ± 18
(H2O)2 + (H2O) + (HCl) 6802 5174 ± 17
(H2O) + (H2O) + (H2O) + (HCl) 8559 6287 ± 17

Table 3.1: Summary of benchmark dissociation energies

The VP dynamics reported here are based on QCT calculations very similar to

those reported previously,83,84 so we only describe them briefly. The trajectories were

initiated at the global minimum configuration of HWWW, depicted in Figure 3.1,

and assignment of harmonic ZPE for each mode followed by exciting the mode of

interest. From the normal mode analysis (NMA) using the PES (see Table 3.2), one

of the O−H stretch modes, depicted in Figure 3.1, whose frequency is only 20 cm−1

higher than the experimental energy, was the mode excited in this study.

After the total vibrational energy was assigned, an ensemble of trajectories was

generated by randomly distributing the normal mode displacement and momentum

for each mode. The following is the classical trajectory setup procedure.89 Then

the normal coordinates and momenta were transformed into Cartesian counterparts.

During the transformation, small spurious angular momentum was generated and then

removed so that the total angular momentum was zero. The removal of rotational
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Mode Frequency, cm−1 Mode Frequency, cm−1 Mode Frequency, cm−1

1 30 10 304 19 1667
2 61 11 379 20 1683
3 136 12 412 21 2376
4 170 13 499 22 3570
5 182 14 636 23 3660
6 218 15 713 24 3749
7 225 16 743 25 3889
8 252 17 908 26 3896
9 287 18 1655 27 3914

Table 3.2: The table shows vibrational normal modes generated using the PES. The
vibrational levels are heavily coupled, and it is not easy to assign clear motion to each
one. The density of states is higher than in the trimer or dimer, and it is expected that
relaxation between modes occurs much faster. Mode 22 at 3570 cm−1 is the mode
chosen for excitation, and it is predominantly an H-bonded OH-stretch vibration,
which has a large oscillator strength (See Figure 3.1).

energy resulted in a loss of total energy, so the iteration was corrected by a scaling

step to increase harmonic displacement and momenta to compensate for the energy

loss. Finally, the total energy was the sum of the anharmonic ZPE (17683 cm−1),

calculated using DMC, and the excitation energy used in the experiment (3550 cm−1),

21233 cm−1. Trajectories were then propagated using a velocity-Verlet algorithm with

a step size of 0.06 fs and terminated when any individual bond length exceeded 16 Å.

The total energy of the trajectories was roughly seven times larger than the PES De

for either pathway, leading to relatively prompt dissociation (see below); however, as

expected, many trajectories resulted in products with less energy than the ZPE, as

discussed in more detail below.

Final product channels were categorized by the distance between the monomers.

The HWWW complex dissociates classically into numerous products, of which only

those in Pathways 1 and 2 are rigorously open when considering ZPE of the fragments

(Table 3.1). Thus, distances between all possible fragments were monitored and

the products of a dissociated trajectory were identified based on the condition that

the shortest intermolecular distance between one monomer and other fragments was
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greater than 6.5 Å. Overall, 48885 trajectories were run, of which 15242 dissociated to

Pathway 1 and 19838 to Pathway 2, with no consideration of ZPE of the fragments.

We return to this branching ratio in the next section. The average termination time

for both channels was approximately 7 ps. Note that the remaining configurations

belong to other dissociation products are discarded because these channels have D0

values higher than the excitation energy (see Table 3.1), making them rigorously

energetically forbidden. As a result, it is safe to say that the HCl fragment comes

only from Pathway 1, and the water fragment only from Pathway 2.

The analysis of the fragments’ internal energies was done in the standard way.89

Specifically, for each trajectory corresponding to Pathway 1 the magnitude of the

classical angular momentum of HCl (in atomic units), j, was obtained. From this,

J was obtained from |j|2 = J(J + 1) and rounded to the nearest integer. The same

procedure was applied to obtain J for the H2O product following Pathway 2. Then,

the angular momenta were removed so that the remaining energy was the vibrational

energy, and the difference with the total internal energy was the rotational energy.

In this way, the vibrational and rotational energies of the fragments were obtained.

The center-of-mass translational energy, Et, was calculated directly using Et = 1
2
mv2,

wherem is the reduced mass of the two fragments and v is the relative speed. Standard

histogram binning was done for the HCl and H2O rotations. For the H2O fragments,

the corresponding J was obtained similarly as for HCl, and then JKa,Kc states were

determined by binning QCT rotational energies to the corresponding experimental

rotational energies. As noted above, most of the fragments were formed with energy

less than the ZPE. Thus several standard constraints were applied by comparing the

calculated vibrational energy to the DMC-calculated ZPE of the fragments. The “soft

ZPE constraint” requires

Evib(HCl−(H2O)2) + Evib(H2O) > ZPE(HCl−(H2O)2) + ZPE(H2O) (3.3)
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in Pathway 2 or

Evib((H2O)3 ) + Evib(HCl) > ZPE((H2O)3 ) + ZPE(HCl) (3.4)

in Pathway 1, while the “hard ZPE constraint” requires each fragment to have a

vibrational energy greater than the ZPE of the fragment. Lastly, we consider a “hard

ZPE on monomer” or “monomer only ZPE”, which requires only the dissociated

water or HCl to satisfy the ZPE condition. Ideally, the hard ZPE constraint should

be applied; however, this is problematic in the present case, because it results in the

rejection of such a large number of trajectories that final conditions such as rotational

distributions are statistically highly uncertain.

3.3 Results and discussion

3.3.1 Fragment Speed Distributions

Figure 3.2 and Figure 3.3 shows calculated speed distributions of the HCl fragment

in J = 4 and J = 6 computed by using the ZPE constraints described in the main

text. The number of trajectories for different ZPE constraints of J = 4 and J = 6

are presented in Table 3.3.

No Constraint HCl-only ZPE Soft ZPE Hard ZPE
J = 4 2465 601 2381 345
J = 6 1536 405 1422 171

Table 3.3: Number of collected trajectories using different ZPE constraints for Path-
way 1.

When using soft ZPE constraints, a significant number of trajectories are collected,

while using hard ZPE constraint filters out a large portion of all trajectories, providing

poor statistics. For J = 4, the cutoff speed of the soft ZPE constraint is 670 m/s,

while for the hard ZPE constraint it is 605 m/s. For J = 6, the corresponding soft

and hard ZPE cutoffs are 601 and 581 m/s. As expected, the cutoff speed for J = 6

is lower than for J = 4.
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Figure 3.2: Theoretical speed distributions for the HCl monomers in rotational level
J = 4 following Pathway 1.

200 400 600 800
Speed (m/s)

0

20

40

60

80

100

Th
eo
ry
 (C

ou
nt
)

No Constraint
HCl only ZPE
Soft ZPE
Hard ZPE

Figure 3.3: Theoretical speed distributions for the HCl monomers in rotational level
J = 6 following Pathway 1.
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Peak Position (m/s) Average Speed (m/s) Average Et (cm−1)
J = 4 260 303 364
J = 6 210 297 250

Table 3.4: Theoretical values (soft ZPE) for approximate peak positions, average
speed of the HCl fragment and average translational energy Et for Pathway 1.
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Figure 3.4: Comparison between calculated rotational populations for the HCl
monomer following dissociation of HWWW with indicated constraints. The discrete
rotational energy data points for each constraint in the calculations are connected by
a line for visual guidance. The populations are normalized to J = 3.

3.3.2 Fragment Rotational Energy Distributions

Figure 3.4 shows the relative rotational state populations plotted as a function

of rotational energy along with calculated rotational energy distributions. The hard

and soft ZPE constraints both show that the rotational energy cut-offs correspond to

J = 10 in the HCl monomer fragment.

The calculated rotational energy distributions for the water fragment following

Pathway 2 are shown in Figure 3.5. A total of 1058 trajectories with a hard ZPE

constraint and 14223 with a soft ZPE constraint produced rotational energy maxima

of 760 cm−1 and 1011 cm−1, respectively. With the theoretically calculated D0, the
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Figure 3.5: Water monomer rotational energy distributions for Pathway 2 calculated
using the indicated constraints.

expected rotational cut-off should be 724 cm−1 by conservation of energy. The cut-off

of rotational energy under both soft and hard ZPE obeys this theoretical upper limit

with the closest match coming from the hard ZPE constraint.

3.3.3 Dissociative Trajectories and Lifetimes

Examination of dissociative trajectories can shed light on mechanisms; snapshots

from two representative trajectories are shown in Figure 3.6 and Figure 3.7. As

stated above, the calculated dissociation energies for both pathways correspond to

cyclic trimer fragments. Indeed, it is evident from Figure 3.6 and 3.7 that just prior

to dissociation, the polyatomic fragments form cyclic structures, sometimes with the

monomer fragment still attached to the trimer ring by a hydrogen bond. In fact, the

product water trimer ring breaks and reform many times during the dissociation until

the monomer (HCl or H2O) eventually separates, and there are many intermediate

structures seen in each trajectory. No low-energy open-chain stable trimer fragments

were found in the calculations, and we conclude that the VP products are a monomer
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(1) 0 ps

(2) 0.4 ps

(3) 0.9 ps

(4) 2.5 ps

(5) 3.2 ps

(6) 4.9 ps

Figure 3.6: Trajectory snapshots of Pathway 1 for J = 4 (∼ 6 ps)

and a cyclic fragment. The fragments may evolve via intermediates that have the

monomer H-bonded to the cyclic trimer, as seen for example in the HCl trajectory in

Figure 3.6. The multiple break-up and formation of H-bonds appear to be a common

motif in the VP of small clusters, which has been seen in trajectories of VP of (H2O)2,

(H2O)3 and (HCl)3.
83,86–88

The vibrational predissociation lifetimes for the HWWW tetramer are significantly

shorter than that of smaller cluster systems. Both pathways show lifetimes of about

7 ps, compared to the water trimer (84% dissociated at 10.5 ps) and the water dimer

(84% dissociated at 25 ps).83,86 Based solely on cluster size, the trend is that larger

clusters have shorter dissociation lifetimes. This trend may be explained partly by

the time it takes for the initial OH-stretch excitation to couple to low-energy inter-

molecular vibrational levels of the cluster. For example, the lifetime of the HCl trimer

is much longer than that of the H2O trimer, because of the existence of a bending
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(1) 0 ps

(2) 1.2 ps

(3) 3.0 ps

(4) 4.0 ps

(5) 5.0 ps

(6) 5.6 ps

Figure 3.7: Trajectory snapshots of Pathway 2 for JKa,Kc = 22,1 (∼ 7 ps).
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mode in the water monomer, which facilitates coupling to the intermolecular modes

in the latter.83,87,88 The lifetime of > 1 ns for the HCl trimer is indeed correlated with

the persistence of its coupled HCl stretch modes.88 In the present work, the excited

H-bonded OH-stretch of the tetramer is likely to couple more efficiently to the in-

termolecular modes than in the water trimer because of the higher density of states

of intermolecular modes in the tetramer. Also, the nominal OH-stretch vibration

has contributions from other motions, which may facilitate coupling. Therefore, it is

reasonable that the lifetimes of larger clusters become shorter, though at some point

the statistical nature of the predissociation process will cause the rates to decrease

with cluster size. In large clusters, we expect that energy disposition would be more

statistical-like, although because of the relatively large energy separation between

the rotational levels of the HCl monomer, some deviations from statistical behavior

would not be surprising. Overall, however, the VP of HWWW is typical of that of

neutral clusters, exhibiting no sign of impending ionization.

The branching ratio for the two pathways can be obtained from the QCT calcula-

tions; however, the results are very sensitive to the ZPE constraint used, as expected.

With no ZPE constraint, the branching ratio for Pathway 1 to 2 is 0.77 to 1, with

the soft ZPE constraint it is 0.99 to 1 and with the hard ZPE constraints it is 1.76

to 1. With the hard ZPE constraints and using the calculated values of D0 for the

two pathways, the excess energy for Pathway 1 is 1124 cm−1 (3550-2426 cm−1) and

for Pathway 2 it is 724 cm−1 (3550-2826 cm−1) – a difference of roughly 400 cm−1.

However, for the PES the difference is 500 cm−1, owing to the differences in the PES

De and the CBS values. In any case, the difference in energy certainly favors Pathway

1 over Pathway 2. However, without the ZPE constraint Pathway 2 is slightly favored

even though the difference in electronic energies is even larger, namely 600 cm−1 from

the CBS values and 700 cm−1 from the PES values. Naively, there are three ways

to eliminate a water monomer and only one way to eliminate HCl, which would lead
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to a branching ratio of 0.33 to 1 if the two channels were isoenergetic. This ratio is

not observed, even without any ZPE constraint, suggesting that the branching ratio

is not a simple statistical one.

3.4 Summary and conclusions

The VP of cyclic HWWW, the largest HCl−(H2O)n cluster that is not ionized,

has been investigated by theory. The cluster was excited in the H-bonded OH stretch

fundamental and HCl and H2O have been identified as the products of Pathways 1 and

2, respectively. Calculations show that these pathways terminate in the corresponding

cyclic products, WWW and HWW, and their D0 values are 2426 ± 23 cm−1 and 2826

± 19 cm−1, respectively.

Trajectory calculations show that the dissociation lifetime is considerable and

during each trajectory, terminating in either HCl or H2O monomer fragments, H-

bonds are broken and reformed many times, until the monomer detaches completely,

leaving a cyclic trimer as the cofragment. Such behavior is typical in the VP of

other small clusters of HCl and/or H2O, where the rate limiting step is often the

initial coupling of the excited OH or HCl stretch vibration to other intramolecular

and intermolecular vibrations of the cluster, followed by energy randomization in the

excited cluster and finally dissociation.

Except for the branching ratios of Pathways 1 and 2, which are calculated to be

non-statistical, energy partitioning in the other degrees of freedom appear statistical-

like, as it is typical of clusters with a high density of vibrational states. Overall, the

VP of the HWWW is typical of that of other neutral clusters of comparable size, and

does not show evidence of impending ionization.
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Chapter 4 Summary

In this thesis, I presented applications of potential energy surfaces by examining

three different molecular systems.

In Chapter 2, an accurate, full-dimensional, 2-body potential energy surface for

CO2−H2O is constructed. This 2-body PES, combined with previously existing

monomer PESs, gives an accurate description for flexible CO2−H2O system. This

PES provides an efficient model to evaluate the properties of the dimer. For example,

the benchmark D0 is evaluated to be 758 cm−1 by running DMC with PES and using

the existing benchmark De. In addition, by performing VSCF/VCI coupled-mode

calculations, vibrational fundamentals for CO2−H2O were reported and they match

well with spectrum data, which is another testimony of the usefulness of an accurate

and efficient PES.

The power of this 2-body PES can be greatly enhanced by adding more many-

body interactions. As shown in the Chapter 2, this PES can be used to simulate

small CO2 hydrate clathrate CO2@(H2O)20 by including water potential. As a result,

some important properties such as De or fundamentals are obtained thanks to the

efficiency of PES.

However, as for the CO2 hydrate clathrate system, there is still much to be

done. In order to be more accurate to describe CO2 hydrate clathrate system,

CO2−H2O−H2O 3-body interaction may be important to include in certain circum-

stances. In addition, it is still an open question how to evaluate so many interactions

of CO2 hydrate clathrate efficiently without too much sacrifice of accuracy.

In Chapter 3, a QCT study of cyclic HCl−(H2O)3 is presented, using an existing

PES. The large number of trajectories required by QCT calculation can be finished by

taking advantage of the efficiency of PES. The PES helps calculate many important
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properties related to VP, such as dissociation energy and branching ratio. However,

it is acknowledged that this analytical PES can be less accurate and even with unpre-

dictable extreme behaviors if the geometry of molecule is away from equilibrium. It

remains an important and interesting question how PES can overcome such instability

in the future.
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