
In presenting this dissertation as a partial fulfillment of the requirements
for an advanced degree from Emory University, I agree that the Library
of the University shall make it available for inspection and circulation in
accordance with its regulations governing materials of this type. I agree that
permission to copy from, or to publish, this dissertation may be granted
by the professor under whose direction it was written, or, in his absence,
by the Dean of the Graduate School when such copying or publication is
solely for scholarly purposes and does not involve potential financial gain.
It is understood that any copying from, or publication of, this dissertation
which involves potential financial gain will not be allowed without written
permission.

(Signature)

hankcs
Han He

NOTICE TO BORROWERS

Unpublished dissertations deposited in the Emory University Library must
be used only in accordance with the stipulations prescribed by the author
in the preceding statement.

The author of this dissertation is :

Han He
Department of Mathematics and Computer Science
Emory University
Atlanta, GA 30322

The director of this dissertation is :

Jinho D. Choi
Department of Mathematics and Computer Science
Emory University
Atlanta, GA 30322

Users of this dissertation not regularly enrolled as students at Emory Uni-
versity are required to attest acceptance of the preceding stipulations by
signing below. Libraries borrowing this dissertation for the use of patrons
are required to see that each user records here the information requested.

Name of user Address Date Type of use
(Examination only

or copying)

Computational Structures as Neural Symbolic Representation

by

Han He
Doctor of Philosophy

Computer Science and Informatics

Jinho D. Choi, Ph.D.
Advisor

Fei Liu, Ph.D.
Committee Member

Liang Zhao, Ph.D.
Committee Member

Song Feng, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Computational Structures as Neural Symbolic Representation

by

Han He
M.S., University of Houston-Clear Lake, 2018

Advisor : Jinho D. Choi, Ph.D.

Abstract of
A dissertation submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements of the degree of

Doctor of Philosophy
in Computer Science and Informatics

Department of Mathematics and Computer Science

2023

Abstract

Although end-to-end neural models have been dominating Natural Lan-
guage Processing for both performance and flexibility, critics have recently
drawn attention to their poor generalization and lack of interpretability.
Conversely, symbolic paradigms such as Abstract Meaning Representation
(AMR) are humanly comprehensible but less flexible. In response, we pro-
pose Executable Abstract Meaning Representation (EAMR) as a recon-
ciliation of both paradigms. EAMR is a neural symbolic framework that
frames a task as a program, which interactively gets generated, revised and
executed. In our novel definition, execution is a sequence of transforms
on AMR graphs. Through a hybrid runtime, EAMR learns the automatic
execution of AMR graphs, yet it also allows for the integration of hand-
crafted heuristics, knowledge bases and APIs. EAMR can be used in many
applications such as dialogue understanding and response generation.

Computational Structures as Neural Symbolic Representation

by

Han He
M.S., University of Houston-Clear Lake, 2018

Advisor : Jinho D. Choi, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements of the degree of
Doctor of Philosophy

in Computer Science and Informatics

Department of Mathematics and Computer Science

2023

Acknowledgements

I would like to express my sincere gratitude to my advisor, Prof. Jinho D.
Choi, for his invaluable guidance, support, and encouragement throughout
my dissertation journey. His expertise, patience, and dedication have been
crucial to my success, and I could not have completed this work without
his mentorship. I am also grateful to the Emory NLP lab for providing the
resources and support necessary to complete this dissertation.

I would also like to extend my heartfelt thanks to my committee mem-
bers, Prof. Fei Liu, Prof. Liang Zhao, and Dr. Song Feng, for their insightful
feedback and valuable suggestions that have greatly improved the quality of
this dissertation. Their expertise and guidance have been instrumental in
shaping my research and helping me to achieve my academic goals.

Special thanks go to those Japanese novelists and musicians, whose art-
works motivated and impelled me forward. It was the “Fate” novel series
written by Kinoko Nasu and Gen Urobuchi that helped me get out of the
lowest point in my life. Whenever I encounter a research problem, a famous
quote by the protagonist Emiya (Archer), “What you must imagine is always
that you, yourself, are the strongest”, always comes to mind. On countless
sleepless nights, it was the song “Last Stardust” performed by Aimer that
kept me company as I burned the midnight oil. As the theme song for Emiya,
its lyrics taught me the idea of searching for hope and light in a world that
can often be dark and di�cult to navigate. In my daily research, it was the
“Fate” original soundtrack composed by Yuki Kajiura that helped me to
stay focused on every battle with deadlines. Every time I turn the volume
up to the maximum, her melody fills my body with maximum energy too.

Finally, I would like to thank my family and friends for their unwavering
support, encouragement, and understanding throughout this process. Their
love and encouragement have sustained me through the ups and downs of
this journey, and I could not have completed this work without them.

Thank you all for your contributions to my academic and personal growth.

To Emiya, the hero of justice that leads my way.

Contents

1 Introduction 1

2 Background 4

2.1 Literature Review . 4

2.2 Past Research . 6

3 Approach 9

3.1 Definition . 9

3.2 Baselines . 10

3.3 Dialog Context Representation 11

3.4 Step-by-Step Execution . 13

3.5 Edit Oracle . 14

3.6 AMR Oracle . 19

4 Experiments 21

4.1 Dataset . 21

i

4.2 Metric . 22

4.3 Training . 23

4.4 Results . 23

5 Application 26

5.1 Controllable Execution . 26

5.2 Case Study . 28

6 Conclusion 31

Appendix A - Hyper-Parameter Configuration 33

List of Figures

3.1 AMR graphs for a dialogue. Figure3.1a and 3.1c are user

utterances, Figure3.1b and 3.1d are system responses. 10

iii

List of Tables

4.1 Smatch scores of response AMR on DailyDialog. text! text

is our implementation of seq2seq model evaluated on parsed

AMR graphs on generated responses. “stc” and “dyn” means

static and dynamic oracle respectively. 24

5.1 Smatch scores of controllable AMR execution on DailyDialog. 27

5.2 Smatch scores of topic controlled models. 28

A.1 Hyper-parameters settings. 33

iv

1

Chapter 1

Introduction

In the history of artificial intelligence, two rival paradigms have vied for

supremacy. Symbolic paradigm was dominant in the 20th century, while

neural approaches have recently become established as the most impactful

paradigm [14]. Both paradigms have strengths and weaknesses, and they

are complementary to each other. Symbolic approaches explicitly produce

intermediate representations which are language-like and amenable to human

understanding. However, symbolic representations su↵er from the famous

symbol grounding problem [18] since they are handcrafted. In contrast,

neural representations are learned end-to-end which are flexible while lacking

interpretability and robustness. The shortcomings of neural models align with

the strengths of symbolic methods, facilitating a hybrid paradigm called neural-

symbolic which leverages the advantages of both approaches [2, 17, 26, 40, 9].

However, early neural symbolic methods require an expert design of the

2

symbolic language in each specific domain, restricting their coverage.

In this dissertation, we aim at designing a novel neural symbolic “runtime”

of the Abstract Meaning Representation [6], which is a general semantic

framework that represents a sentence as a semantic graph consisting of

concepts and relations. We choose AMR instead of others due to its wide

coverage of semantic phenomenons and domain-agnostic nature. Thanks

to its conceptual and propositional character, AMR is amenable to human

understanding and heuristic rules.

Since AMR is designed to be generic, there is no deterministic execution

rule or path to manipulate its nodes or relations like a program. In response,

we propose the first definition of execution for AMR in Section 3.1, which

depicts the graph transform of AMR depending on language context and

graph topology. Our definition is agnostic of the runtime such that it can be

implemented using either neural, symbolic, or hybrid approaches. Specifically,

we present a symbolic and a neural baseline followed by our neural symbolic

EAMR in Section 3.4. We further propose two novel algorithms to learn

EAMR using sole unlabeled text corpora. The execution of EAMR can be

learned end-to-end in an unsupervised fashion, yet each execution step is

interpretable for humans.

3

Experiments on DailyDialog [30] show that EAMR performs comparably

well with a strong baseline while it demonstrates stronger interpretability.

Our proposed EAMR can be applied in many tasks, especially in settings

that require incorporating external data sources such as knowledge bases or

external APIs. The potential applications of EAMR are discussed in Section 5.

We hope EAMR can promote neural model interpretability research with

computational linguistic structures.

4

Chapter 2

Background

2.1 Literature Review

Neural symbolism made its first debut on synthetic visual questions answering,

where the representational capacity of deep learning and the compositional

linguistic structure of the text are simultaneously exploited to answer syn-

thesized questions paired with images [2, 25, 10]. Later, Gupta et al. [17]

propose to parse open-domain questions as executable programs grounded on

documents. Wolfson et al. [37] introduce a meaning representation for the

decomposition of questions expressed through natural language. Following

the same line, Khot et al. [26] propose to solve decomposed questions using

existing systems. Most recently, BINDER is proposed to map a question

into a programming language whose functions can be either directly exe-

cuted or indirectly solved by prompting a large language model [9]. The

5

representations used in these neural symbolic approaches are domain-specific,

whereas we take the challenge to harness the wide coverage of semantics via

a domain-agnostic representation, AMR.

Our work is also closely related to neural program synthesis, a task employ-

ing neural models to automatically translate natural language descriptions

to a program that satisfies the user intent [16]. Existing works mostly focus

on generating domain-specific codes, such as regular expressions [28], SQL

queries [39, 7], and calendar APIs [3]. Di↵erent from theirs, our studied AMR

is not naturally an executable programming language. Program synthesis

research targets improving the accuracy of parsing natural language into

programming languages while the execution runtime is deterministic. In

our study, the proposed runtime of EAMR can be either deterministic or

non-deterministic, and the later can be learned end-to-end while preserving

the interpretability of a deterministic one.

The last line of related research is AMR extension for cross-sentence

understanding. Initial attempts [31, 13] merge AMR nodes that represent the

same entity, formulating it as an AMR coreference resolution task. Recently,

graph neural networks are applied to coreference-resolved AMR graphs for

dialogue relation extraction and response generation [4]. Beyond coreference

6

resolution, our EAMR supports much broader types of AMR transforms.

2.2 Past Research

Our past research is a journey challenging the limit of neural models for

linguistic structure prediction, such as tagging and parsing. We were the first

to challenge state-of-the-art taggers and parsers using non-finetuned BERT

[11] embeddings on core NLP tasks [19]. Our BERT models outperform

the previously best-performing models by 2% on average (7.5% for the most

significant case) on all tasks and datasets. Once finetuned, BERT was further

found to boost the performance of multilingual enhanced dependency parsing

[20].

Though the accuracy of large pretrained language models (PLMs) is

excellent, their speed is relatively slow. To reduce model complexity, we

presented three works. In the first work, we propose a novel Levi graph

AMR parser [21] by combining tokens, concepts, and labels as one input

to a transformer to learn attention matrices which are used to predict all

elements in AMR graphs. Our Levi graph decoder reduces the number of

decoder parameters by 45% yet gives similar or better performance. In the

second one, we challenge multi-task learning (MTL) by sharing one PLM on

7

5 tasks for faster speed [22]. Surprisingly, our experiments depict that MTL

models underperform ones trained individually. To reveal the mysteries of

MTL, we propose a dynamic pruning method of attention heads to detect

essential heads for each task. Our experiments reveal that all five tasks rely

on almost the same set of attention heads, leading to the interference of

features. Thus, we propose the Stem Cell Hypothesis, likening these talented

attention heads to stem cells, which cannot be fine-tuned for multiple tasks

that are very distinct. Our hypothesis is further validated by a set of novel

probing methods. In the most recent work under review, we challenge seq2seq

models for linguistic structure generation without external decoders. Our best

models perform comparably or better than the state-of-the-art for all tasks,

lighting a promising future for seq2seq models for generating non-sequential

structures.

In the same line, we improve the e�ciency of seq2seq models by unleashing

their potential using prompting and constrained decoding [23]. Sequence-

to-Sequence (S2S) models have achieved remarkable success on various text

generation tasks. However, learning complex structures with S2S models

remains challenging as external neural modules and additional lexicons are

often supplemented to predict non-textual outputs. We present a systematic

8

study of S2S modeling using contained decoding on four core tasks: part-

of-speech tagging, named entity recognition, constituency and dependency

parsing, to develop e�cient exploitation methods costing zero extra parame-

ters. In particular, 3 lexically diverse linearization schemas and corresponding

constrained decoding methods are designed and evaluated. Experiments show

that although more lexicalized schemas yield longer output sequences that

require heavier training, their sequences being closer to natural language

makes them easier to learn. Moreover, S2S models using our constrained

decoding outperform other S2S approaches using external resources. Our best

models perform better than or comparably to the state-of-the-art for all 4

tasks, lighting a promise for S2S models to generate non-sequential structures.

These works have established strong taggers and parsers, facilitating our

research on neural symbolic approaches. We developed the first interactive

calendar assistant [24] as the initial attempt which inspires the EAMR idea

in this dissertation.

9

Chapter 3

Approach

The following sections are organized as follows: First, we formally define

the execution of EAMR. Then, we present two baselines to stimulate ideas. At

last, we propose two novel learning algorithms for EAMR to enable end-to-end

training.

3.1 Definition

Execution In a document or a dialogue consisting of n utterances, denote

the i-th utterances and corresponding AMR graph as xi and yi respectively.

The execution is then defined as a process that transforms y<i to yi. E.g.,

transforming Figure 3.1a, 3.1b, and 3.1c to Figure 3.1d in a dialogue setting.

Our definition of AMR execution di↵ers from the execution of any program-

ming language in its non-recursive fashion. Thus, the i-th AMR execution

would require all past AMR graphs as inputs, while the runtime of a pro-

10

DUJ� DUJ�

JHW���

FDUL

DUJ�

QHZ���

DUJ� DUJ�

FRQJUDW���

SRVV FDU\RX

DUJ�

QHZ���

GRPDLQ

ORWWHU\

SUL]H

LW

GRPDLQ

OXFN\

\RX

(a) I got a new car

DUJ� DUJ�

JHW���

FDUL

DUJ�

QHZ���

DUJ� DUJ�

FRQJUDW���

SRVV FDU\RX

DUJ�

QHZ���

GRPDLQ

ORWWHU\

SUL]H

LW

GRPDLQ

OXFN\

\RX

(b) Congrats on
your new car

GRPDLQ

SUL]H

GRPDLQ

ORWWHU\LW

(c) It’s a lottery
prize

GRPDLQ OXFN\\RX

(d) Wow, lucky for
you

Figure 3.1: AMR graphs for a dialogue. Figure3.1a and 3.1c are user utter-
ances, Figure3.1b and 3.1d are system responses.

gramming language would substitute a function with its return value once

it gets evaluated. The non-recursive design is necessary for two reasons.

Firstly, information in all previous sentences could be referred to again and

again. Depending solely on the previous AMR graph is impossible to recall

information from several sentences ago. Secondly, the runtime of AMR could

be non-deterministic as the response depends on factors missing from the

conversation history (e.g., commonsense knowledge, speaker personality),

leading to a non-optimal execution path when given only the last AMR graph.

3.2 Baselines

In this section, we present two baselines of EAMR.

AMR-to-AMR Inspired by the success of language models pretrained to

predict the next token [35, 29], we consider a seq2seq baseline trained with

“language model” objective on a corpus of automatically parsed AMR graphs.

11

This baseline learns end-to-end AMR execution though its prediction lacks

interpretability, which we address in our proposed methods.

Text-to-Text To measure the performance loss caused by using automati-

cally parsed AMR graphs, a vanilla seq2seq baseline is trained to generate the

response conditioned on previous contextual turns. Later, the state-of-the-art

BART-AMR parser [5] trained on AMR 3.0 is employed to parse the generated

responses to AMR graphs for comparison with other models.

3.3 Dialog Context Representation

For a dialogue, multiple training or test instances are created as pairs of context

and response. Each instance usesm consecutive utterances with corresponding

AMR graphs as the dialogue context and the following utterance with its

AMR graph as the response. Given a dialogue context of m utterances and the

corresponding AMR graphs, we create textual and graphical representations

respectively.

Text Representation A special token utt-j is inserted to the front of

the (m� j + 1)-th utterance to indicate the boundary of utterances. We use

descending numbers such that the last utterance is always labeled with utt-1.

12

As the last utterance is usually the most closely related one to the response,

an invariant label is assigned to stabilize the textual presentation regardless

of the number of context utterances.

Graph Representation Similar to the textual representation, the AMR

graph of each utterance is attached to a numbered concept utt-j in de-

scending order. Then, all utt-* concepts are attached to a root node

multi-utterance similar to the way AMR groups multiple sentences snt-*

under a multi-sentences root. An exemplar graph representation of the

first 3 AMR graphs from Figure 3.1 is illustrated below.

(a8 / multi-utterance

:utt3 (a4 / get-01

:ARG0 (a6 / a5)

:ARG1 (a3 / car

:ARG1-of (a10 / new-01)))

:utt2 (a1 / congratulate-01

:ARG1 (a12 / you)

:ARG2 (a2 / car

:ARG1-of (a9 / new-01)

:poss a12))

:utt1 (a11 / prize

:mod (a7 / lottery)

:domain (a5 / it)))

13

3.4 Step-by-Step Execution

The runtime of most programming languages would feature step-by-step

execution for debugging purposes. Accordingly, we propose the concept of

execution steps to break down a complex execution into a sequence of small

steps, where each step is more interpretable to humans and some of them can

even be directly guided by heuristics.

Execution Step Given a history of AMR graphs y<i, an execution step

eij at step j is defined as an edit action that modifies yj�1
<i into yj

<i, where

y0
<i = y<i. Each e could be one of the six types: {create, delete, replace}⇥

{node, edge} and a special NOP (no operation) indicating the end of execution.

Once the last edit eik = NOP is predicted, the execution finishes with yi yk
<i.

Specifically, the 6 types of edits are described below.

CreateNode(u, c) A new node with variable name being u and concept

being c is created.

DeleteNode(u) The node with variable name u together with all its in-

coming edges and outgoing edges are deleted.

14

ReplaceNode(u, c) Replace the concept of u with c.

CreateEdge(u, r, v) Create an edge from u to v with the role being r.

DeleteEdge(u, v) Delete the edge from u to v.

ReplaceEdge(u, r, v) Replace the role of the edge from u to v with r.

3.5 Edit Oracle

Intuitively, end-to-end execution is akin to running a program where step-by-

step execution can be analogous to step-wise debugging which could provide

humans with diagnostic of problems regarding the model and the data. Our

step-wise execution can also be related to the rich literature of transition-

based parsing [38, 32], which inspires us to propose the following two learning

algorithms.

Static Oracle A static oracle is an algorithm producing the optimal gold

edit sequence that transforms yj�1 to yj. While prior work has already pro-

posed Graph Edit Distance (GED), a generalization of string edit distance

which corresponds to the minimum cost edit sequence between two attributed

relational graphs [36, 12], it limits the labels of nodes to a predefined vo-

15

cabulary. In AMR, the number of concepts is unbounded which urges us to

propose a new oracle algorithm, Smatch Edit, to approximate the optimal

graph edits. To reduce the computation cost, we would prefer shorter edit

sequences given that the cost of each edit is uniform. Therefore, we seek to

reuse as many nodes and edges as possible by emitting edits according to

the optimal node mapping M that maximizes the Smatch score [8] of the

context graph and response graph. As depicted in Algorithm 1, new nodes

from yj �M are created, unmapped nodes from yj�1 �M are deleted, and

the concepts of each pair of matched nodes are made consistent using the one

from yj if they are di↵erent. Once node edits are applied, two graphs with

identical nodes are obtained. Upon them, edges are compared and edited in

a similar way.

where ReplaceNode(u) replaces the concept of u in yj�1 with its concept in

yj, and ReplaceEdge(u, v) replaces the role of edge (u, v) in y0 with its role

in yj. Though AMR is defined as a connected graph, connectivity is only

a necessary property for linearization. Before linearization, a subroutine is

applied to maintain the graph connectivity by bridging the largest connected

component with other smaller components using an orphan edge.

An example of applying a sequence of edits obtained from Smatch score

16

Algorithm 1: Smatch Edit Oracle

Function Oracle(yj�1, yj):
edits []
M argmax

M 0
Smatch(yj�1, yj)

foreach u 2 yj �M do
append CreateNode(u) to edits

foreach u 2 yj�1 �M do
append DeleteNode(u) to edits

foreach u 2M do
if concepts of u in yj�1 and yj are di↵erent then

append ReplaceNode(u) to edits

y0 apply edits to yj�1

E 0 edges of y0

E edges of yj

foreach (u, r, v) 2 E � E 0 do
append CreateEdge(u, r, v) to edits

foreach (u, r, v) 2 E 0 � E do
append DeleteEdge(u, v) to edits

foreach (u, v) 2 E \ E 0 do
if roles of (u, v) in E and E 0 are di↵erent then

append ReplaceEdge(u, v) to edits
return edits

17

to the AMR graph in Figure 3.1a is illustrated below.

Input: AMR graph for “I got a new car”.

(a2 / get-01

:ARG0 (a3 / I)

:ARG1 (a1 / car

:ARG1-of (a4 / new-01)))

Step 1: NodeDeletion(a3)

(a2 / get-01

:ARG1 (a1 / car

:ARG1-of (a4 / new-01)))

Step 2: NodeReplacement(a2, congratulate-01)

(a2 / congratulate-01

:ARG1 (a1 / car

:ARG1-of (a4 / new-01)))

Step 3: NodeInsertion(b4, you)

(a2 / congratulate-01

:ARG1 (a1 / car

:ARG1-of (a4 / new-01))

:orphan (b4 / you))

18

Step 4: EdgeReplacement(a2, :ARG2, a1)

(a2 / congratulate-01

:ARG2 (a1 / car

:ARG1-of (a4 / new-01))

:orphan (b4 / you))

Step 5: EdgeInsertion(a2, :ARG1, b4)

(a2 / congratulate-01

:ARG2 (a1 / car

:ARG1-of (a4 / new-01))

:ARG1 (b4 / you))

Step 6: EdgeInsertion(a1, :poss, b4)

(a2 / congratulate-01

:ARG2 (a1 / car

:ARG1-of (a4 / new-01)

:poss b4)

:ARG1 (b4 / you))

Dynamic Oracle Similar to its spirit in dependency parsing [15], a dynamic

oracle in EAMR provides a set of optimal edits for every intermediate graph

configuration yj
<i at execution step j. Di↵erent from the oracles in dependency

19

parsing, Smatch Edit guarantees that all configurations can lead to the gold

graph including configurations that deviate from the optimal oracle. In

such cases, the dynamic oracle will run Smatch Edit again from the given

configuration to generate a new edit sequence as a remedy such that the

model is less sensitive to error propagation. To provide teaching signals, the

model is trained in a predict-then-train loop, where the model is trained on

edit sequences that are constantly and dynamically updated by Smatch Edit

using the predicted graphs after each step or each epoch.

3.6 AMR Oracle

As our early experiments show poor results for edit prediction, we further

propose an extension to the edit-based oracles to directly predict edited AMR

graphs. The extension is straightforward: given an edit sequence obtained

from either static or dynamic oracle, a sequence of edited AMR graphs can be

derived by sequentially applying the edit sequence to the initial AMR graph.

Instead of teaching a model to predict the edit sequence, we can alternatively

train a model to predict a later graph given an earlier graph in the sequence.

For prediction, an initial context graph is fed in and the generated AMR

graph is then fed back as inputs for several iterations till the number of itera-

20

tions exceeded a predefined number, or the output graph stops transforming.

Due to the costly computation, we implement AMR oracle with 2 iterations

at most.

21

Chapter 4

Experiments

Thanks to our generic definition, EAMR can be applied to a wide range of

cross-sentence text understanding and generation tasks. In this initial study,

we mainly consider dialogue response generation as it is close to the next

AMR graph generation in EAMR.

4.1 Dataset

We experiment on the DailyDialog benchmark [30] comprised of conversations

about our daily life. Specifically, we perform the dialogue response generation

task which aims at generating a system response given the dialogue history.

We parse each utterance to a silver AMR graph using the state-of-the-

art parser [5] which scored 84.3 on the AMR 3.0 benchmark [27]. For a

long utterance consisting of multiple sentences, we individually parse each

sentence and merge them later using multi-sentence and snt-* nodes since

22

we observed a significant performance drop on long inputs and the parser is

limited to a maximum of 1024 input tokens.

We set the context window size to 7 turns since the average number of

turns in DailyDialog is 8. This number is also shown to be e↵ective in training

the chatbot Meena on public domain social media conversations [1].

4.2 Metric

Conventionally, BLEU is used as an automatic evaluation metric for dialogue

response generation. However, EAMR cannot be directly evaluated using

BLEU because node mapping is required to compare two AMR graphs.

We tried to employ the state-of-the-art AMR2Text model which scored 49

BLEU [5] to generate responses given our model predictions, but the final

performance was largely degraded by error propagation of that model. As

an alternative, we propose to evaluate EAMR using Smatch, a metric for

semantic feature structures, on predicted AMR graphs and the target AMR

graphs.

23

4.3 Training

We use the seq2seq model as the backbone implementation as it is flexible

for new concept generation which the latest Graph Edit Networks [34] is

not capable of. Specifically, we finetune the large version of pretrained

AMR-BART [5] on several combinations of inputs (text representation, graph

representation) and outputs (edits or AMR graphs). Special tokens, including

multi-utterance, orphan etc., are added to the BART vocabulary and get

learned from scratch.

Models equipped with static oracles are trained for 33 epochs using learning

rate 1e-5 and a copy of weights at the 30th epoch is saved as the initial weight

for the dynamic oracle models. Following that, we train dynamic oracle

models for 3 additional epochs using a smaller learning rate 5e-6 in a predict-

then-train loop as described in Section 3.4. Each finetuning epoch takes 1

hour on an NVIDIA RTX A6000 GPU while generating intermediate AMR

graphs on the training data takes 7 hours.

4.4 Results

As shown in Table 4.1, our experimental results are grouped into 3 blocks.

In the first block, we use only one representation per model. Compared

24

Model Smatch

text! text [4] 34.8

text! amr 31.8
amr! amr 30.5
amr! edit 16.1

amr + text
stc�! amr 31.5

amr + text
dyn��! amr 32.6

amr + text
stc�! amr + text 30.8

amr + text
dyn��! amr + text 31.4

Table 4.1: Smatch scores of response AMR on DailyDialog. text ! text
is our implementation of seq2seq model evaluated on parsed AMR graphs
on generated responses. “stc” and “dyn” means static and dynamic oracle
respectively.

to text ! text, using parsed silver AMR graphs as the source of teaching

signals (text! amr) hurts the Smatch score by 3 points. Substituting the

input text to silver AMR again degrades the Smatch score by another 1.3

points, suggesting that it is challenging to exploit noisy data for learning

AMR execution and inspiring us to exploit more features. Unfortunately,

amr ! edit does not perform well, which might be due to the following

2 reasons. Firstly, the intermediate graph after each edit is not explicitly

encoded, causing the model to lose track of the current configuration in a

long execution sequence. Secondly, the variable names used in edit sequences

originate from linearized AMR graphs, and they might not fit well into the

25

context of edits.

In the second block, we experiment with both the text representation and

the graph representation described in Section 3.3. Specifically, we use pairs of

special tokens, <s> and <AMR>, to mark the boundary between utterances and

the AMR graph. Compared to amr! amr, adding the text representation

of dialogue context (amr + text
stc�! amr) gains 1.0 Smatch improvement,

though it still performs 0.3 lower than text! amr. It agrees with the finding

that learning from noisy data is challenging. Equipped with dynamic oracle,

amr + text
dyn��! amr outperforms its static oracle equivalent by 1.1 points,

showing the e↵ectiveness of dynamic oracle on graph level. Similar findings

are made in the iterative tagging system designed for Grammatical Error

Correction [33].

In the last block, we further experiment with response generation in a

multi-task learning setting. However, the performance of neither static nor

dynamic oracle gets further improved by the text outputs, which might be

due to the left-to-right order of generation. Since the noisy AMR graphs

are generated first, the later text generation might be misled which in turn

negatively impacts the AMR graph generation.

26

Chapter 5

Application

In previous sections, we have shown the e↵ectiveness of dynamic oracle in

AMR execution. However, how far one execution step proceeds is determined

by the model which is still not controllable and not interpretable. In this

section, we experiment with human control over the execution steps.

5.1 Controllable Execution

Specifically, we break down the execution into 2 stages: concept summarization

and relation generation. Concept summarization is a process of filtering useful

concepts from the dialogue context that might be talked about in the later

response utterance. Once concepts are filtered, the execution moves on to

the next stage which connects concepts with semantic relations.

We implement controllable execution by splitting the edit sequences ob-

tained from Smatch Edit into 2 stages, which we call concept summarization

27

and relation generation respectively. The first stage contains CreateNode,

DeleteNode and ReplaceNode while the second stage contains CreateEdge,

DeleteEdge and ReplaceEdge. We call AMR graphs after applying the edits

from the summarization stage “concept pool”. A seq2seq model with static

oracle is trained to transform the initial graph into the concept pool, then

into the ultimate response graph in a pipeline fashion. A dynamic oracle

model instead predicts a concept pool and then transforms it into the ulti-

mate response graph. The design of a summarization stage is similar to the

summary graph proposed by Liu et al. [31]. However, our concept pool is not

as a complete AMR graph as theirs because it contains less typology and its

structure could also evolve in the later generation stage.

The results of amr + text ! amr models on DailyDialog are listed in

Table 5.1.

Controllable Model Smatch

amr + text
stc�! amr 28.2

amr + text
dyn��! amr 32.0

Table 5.1: Smatch scores of controllable AMR execution on DailyDialog.

The controllable amr + text
stc�! amr model performs poorly compared

to its uncontrollable variant in Table 4.1, which could be attributed to the

28

error propagation between the 2 execution stages. However, the performance

drop of controllable amr + text
dyn��! amr is less significant, confirming that

dynamic oracle is e↵ective in mitigating error propagation.

5.2 Case Study

Using the controllable amr + text
dyn��! amr model and its outputs from the

last section, we present an application scenario where we can control the

response generation given a topic keyword or concept. Assuming the topic of

the response is given, and it is identical to the root node of the response AMR

graph, we replace the root of the “concept pool” with it before performing

the relation generation stage. In a control group, we directly replace the roots

of the final AMR graphs after relation generation. The results are listed in

Table 5.2.

Topic Control Stage Smatch

no control 32.0

after generation 34.3
after summarization 34.6

Table 5.2: Smatch scores of topic controlled models.

Using “gold” root concepts after summarization outperforms using them

after the whole generation by 0.3 points, suggesting that the controllable

29

amr+text
dyn��! amr model can adjust some concepts and relations accordingly

given the new root. An example of this scenario is illustrated below.

Input: AMR graph for “I got a new car”, “Congrats on your new car”

and “It’s a lottery prize”.

(a8 / multi-utterance

:utt3 (a4 / get-01

:ARG0 (a6 / a5)

:ARG1 (a3 / car

:ARG1-of (a10 / new-01)))

:utt2 (a1 / congratulate-01

:ARG1 (a12 / you)

:ARG2 (a2 / car

:ARG1-of (a9 / new-01)

:poss a12))

:utt1 (a11 / prize

:mod (a7 / lottery)

:domain (a5 / it)))

Concept Pool:

(a3 / good-02

:orphan (a4 / really)

:orphan (a5 / it)

:orphan (a6 /

request-confirmation-91))

Replaced Concept Pool:

30

(a3 / lucky

:orphan (a4 / really)

:orphan (a5 / it)

:orphan (a6 /

request-confirmation-91))

Output: You’re really lucky, aren’t you?

(a3 / lucky

:degree (a4 / really)

:ARG1 (a5 / you)

:ARG1-of (a6 /

request-confirmation-91))

31

Chapter 6

Conclusion

In this dissertation, we propose EAMR, a neural symbolic AMR framework

with excessive interpretability. EAMR features a novel Smatch Edit oracle

which can be used both statically and dynamically. The dynamic oracle

variant of EAMR can be further made controllable using two execution stages:

summarize and then generate. EAMR can be readily applied on controllable

text summarization and task oriented dialog system through extending the

AMR graph with hierarchies of domain related nodes that carry information

of keywords and API functions. We hope EAMR can be the starting point

for exciting further research of neural symbolic AMR.

The major limitations of EMAR are three folds. Firstly, its interpretability

is limited to atomic operations, i.e., node and edge operations. However,

the way of human reasoning are more structural which typically requires

sub-graph operations as a whole. Secondly, the inference speed of seq2seq

32

models are slow, which in turn hinders further application of dynamic oracles.

Lastly, the AMR graph is agnostic of certain aspects that are crucial for

dialogue response generation, such as verb tense and text style.

In the future, we would like to explore a more e↵ective way of encoding

AMR graphs and performing graph-to-graph transduction. EAMR will be-

come more attractive if its performance and interpretability can be better

balanced.

33

Appendix A

Hyper-Parameter Configuration

The hyper-parameters used in our models are described in Table A.1.

BART

name bart-large
encoder layers 12
decoder layers 12
dropout 0.25
Adam Optimizer

lr 1e-5
✏ 1e-8
epochs 33
warm up 0
Generation

length penalty 1
max length 1024
beams 1

Table A.1: Hyper-parameters settings.

Bibliography

[1] Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah

Fiedel, Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Ne-

made, Yifeng Lu, et al. Towards a human-like open-domain chatbot.

arXiv preprint arXiv:2001.09977, 2020.

[2] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein.

Neural module networks. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 39–48, 2016. doi:

10.1109/CVPR.2016.12.

[3] Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman,

Jean Crawford, Kate Crim, Jordan DeLoach, Leah Dorner, Jason Eisner,

Hao Fang, Alan Guo, David Hall, Kristin Hayes, Kellie Hill, Diana Ho,

Wendy Iwaszuk, Smriti Jha, Dan Klein, Jayant Krishnamurthy, Theo

Lanman, Percy Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-

34

35

Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij Petters, Brent Read,

Dan Roth, Subhro Roy, Jesse Rusak, Beth Short, Div Slomin, Ben Sny-

der, Stephon Striplin, Yu Su, Zachary Tellman, Sam Thomson, Andrei

Vorobev, Izabela Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang, and

Alexander Zotov. Task-Oriented Dialogue as Dataflow Synthesis. Trans-

actions of the Association for Computational Linguistics, 8:556–571, 09

2020. ISSN 2307-387X. URL https://doi.org/10.1162/tacl a 00333.

[4] Xuefeng Bai, Yulong Chen, Linfeng Song, and Yue Zhang. Semantic

representation for dialogue modeling. In Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume

1: Long Papers), pages 4430–4445, Online, August 2021. Association for

Computational Linguistics. doi: 10.18653/v1/2021.acl-long.342. URL

https://aclanthology.org/2021.acl-long.342.

[5] Xuefeng Bai, Yulong Chen, and Yue Zhang. Graph pre-training for

AMR parsing and generation. In Proceedings of the 60th Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 6001–6015, Dublin, Ireland, May 2022. Association for

36

Computational Linguistics. doi: 10.18653/v1/2022.acl-long.415. URL

https://aclanthology.org/2022.acl-long.415.

[6] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Grif-

fitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer,

and Nathan Schneider. Abstract Meaning Representation for sem-

banking. In Proceedings of the 7th Linguistic Annotation Work-

shop and Interoperability with Discourse, pages 178–186, Sofia, Bul-

garia, August 2013. Association for Computational Linguistics. URL

https://aclanthology.org/W13-2322.

[7] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Se-

mantic parsing on Freebase from question-answer pairs. In Pro-

ceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 1533–1544, Seattle, Washington, USA,

October 2013. Association for Computational Linguistics. URL

https://aclanthology.org/D13-1160.

[8] Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic

feature structures. In Proceedings of the 51st Annual Meeting of the

37

Association for Computational Linguistics (Volume 2: Short Papers),

pages 748–752, 2013.

[9] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni,

Yushi Hu, Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke

Zettlemoyer, Noah A. Smith, and Tao Yu. Binding language models in

symbolic languages. ArXiv, abs/2210.02875, 2022.

[10] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv

Batra. Neural modular control for embodied question answering. In

Conference on Robot Learning, pages 53–62. PMLR, 2018.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language

understanding. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL

https://www.aclweb.org/anthology/N19-1423.

[12] Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen,

38

and Horst Bunke. Approximation of graph edit distance based

on hausdor↵ matching. Pattern Recognition, 48(2):331–343, 2015.

ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2014.07.015. URL

https://www.sciencedirect.com/science/article/pii/S003132031400274X.

[13] Qiankun Fu, Linfeng Song, Wenyu Du, and Yue Zhang. End-to-end

AMR coreference resolution. In Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th Inter-

national Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pages 4204–4214, Online, August 2021. Association for

Computational Linguistics. doi: 10.18653/v1/2021.acl-long.324. URL

https://aclanthology.org/2021.acl-long.324.

[14] Marta Garnelo and Murray Shanahan. Reconciling deep learning with

symbolic artificial intelligence: representing objects and relations. Cur-

rent Opinion in Behavioral Sciences, 29:17–23, 2019.

[15] Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager depen-

dency parsing. In Proceedings of COLING 2012, pages 959–976, Mumbai,

India, December 2012. The COLING 2012 Organizing Committee. URL

https://aclanthology.org/C12-1059.

39

[16] Sumit Gulwani, Alex Polozov, and Rishabh Singh. Pro-

gram Synthesis, volume 4. NOW, August 2017. URL

https://www.microsoft.com/en-us/research/publication/program-synthesis/.

[17] Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Matt Gard-

ner. Neural module networks for reasoning over text. In International

Conference on Learning Representations (ICLR), 2020.

[18] Stevan Harnad. The symbol grounding problem. Physica

D: Nonlinear Phenomena, 42(1):335–346, 1990. ISSN 0167-

2789. doi: https://doi.org/10.1016/0167-2789(90)90087-6. URL

https://www.sciencedirect.com/science/article/pii/0167278990900876.

[19] Han He and Jinho Choi. Establishing strong baselines for the new decade:

Sequence tagging, syntactic and semantic parsing with bert, 2020. URL

https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438.

[20] Han He and Jinho D. Choi. Adaptation of multilingual transformer

encoder for robust enhanced Universal Dependency parsing. In Pro-

ceedings of the 16th International Conference on Parsing Technologies

and the IWPT 2020 Shared Task on Parsing into Enhanced Univer-

sal Dependencies, pages 181–191, Online, July 2020. Association for

40

Computational Linguistics. doi: 10.18653/v1/2020.iwpt-1.19. URL

https://aclanthology.org/2020.iwpt-1.19.

[21] Han He and Jinho D. Choi. Levi graph AMR parser using heterogeneous

attention. In Proceedings of the 17th International Conference on Parsing

Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced

Universal Dependencies (IWPT 2021), pages 50–57, Online, August 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.iwpt-

1.5. URL https://aclanthology.org/2021.iwpt-1.5.

[22] Han He and Jinho D. Choi. The stem cell hypothesis: Dilemma behind

multi-task learning with transformer encoders. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing, pages

5555–5577, Online and Punta Cana, Dominican Republic, November 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-

main.451. URL https://aclanthology.org/2021.emnlp-main.451.

[23] Han He and Jinho D. Choi. Unleashing the true potential of sequence-to-

sequence models for sequence tagging and structure parsing. Transactions

of the Association for Computational Linguistics, 2023.

[24] Han He, Song Feng, Daniele Bonadiman, Yi Zhang, and Saab Mansour.

41

Dfee: Interactive dataflow execution and evaluation kit. In Proceedings

of the AAAI Conference on Artificial Intelligence, 2023.

[25] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Kate Saenko. Learning to reason: End-to-end module networks for visual

question answering. In Proceedings of the IEEE international conference

on computer vision, pages 804–813, 2017.

[26] Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter Clark, and Ashish

Sabharwal. Text modular networks: Learning to decompose tasks in the

language of existing models. In Proceedings of the 2021 Conference of the

North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, pages 1264–1279, Online, June 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-

main.99. URL https://aclanthology.org/2021.naacl-main.99.

[27] Kevin Knight, Lauren Baranescu, Claire Bonial, Madalina Georgescu,

Kira Gri�tt, Ulf Hermjakob, Daniel Marcu, Martha Palmer, and Nathan

Schneifer. Abstract meaning representation (amr) annotation release 1.0.

Web download, 2014.

[28] Nate Kushman and Regina Barzilay. Using semantic unification to

42

generate regular expressions from natural language. North American

Chapter of the Association for Computational Linguistics (NAACL),

2013.

[29] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-

delrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettle-

moyer. BART: Denoising sequence-to-sequence pre-training for nat-

ural language generation, translation, and comprehension. In Pro-

ceedings of the 58th Annual Meeting of the Association for Compu-

tational Linguistics, pages 7871–7880, Online, July 2020. Association for

Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL

https://www.aclweb.org/anthology/2020.acl-main.703.

[30] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu.

DailyDialog: A manually labelled multi-turn dialogue dataset. In Proceed-

ings of the Eighth International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 986–995, Taipei, Taiwan,

November 2017. Asian Federation of Natural Language Processing. URL

https://aclanthology.org/I17-1099.

[31] Fei Liu, Je↵rey Flanigan, Sam Thomson, Norman Sadeh, and Noah A.

43

Smith. Toward abstractive summarization using semantic representa-

tions. In Proceedings of the 2015 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 1077–1086, Denver, Colorado, May–June 2015.

Association for Computational Linguistics. doi: 10.3115/v1/N15-1114.

URL https://aclanthology.org/N15-1114.

[32] Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiǧit, and Svetoslav

Marinov. Labeled pseudo-projective dependency parsing with support

vector machines. In Proceedings of the Tenth Conference on Compu-

tational Natural Language Learning (CoNLL-X), pages 221–225, New

York City, June 2006. Association for Computational Linguistics. URL

https://aclanthology.org/W06-2933.

[33] Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem Chernodub, and

Oleksandr Skurzhanskyi. GECToR – grammatical error correction:

Tag, not rewrite. In Proceedings of the Fifteenth Workshop on In-

novative Use of NLP for Building Educational Applications, pages

163–170, Seattle, WA, USA → Online, July 2020. Association for

Computational Linguistics. doi: 10.18653/v1/2020.bea-1.16. URL

44

https://aclanthology.org/2020.bea-1.16.

[34] Benjamin Paaßen, Daniele Grattarola, Daniele Zambon, Cesare Alippi,

and Barbara Hammer. Graph edit networks. In Shakir Mohamed, Katja

Hofmann, Alice Oh, Naila Murray, and Ivan Titov, editors, Proceedings of

the Ninth International Conference on Learning Representations (ICLR

2021), 2021. URL https://openreview.net/forum?id=dlEJsyHGeaL.

[35] Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan

Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Ex-

ploring the limits of transfer learning with a unified text-to-text trans-

former. Journal of Machine Learning Research, 21(140):1–67, 2020. URL

http://jmlr.org/papers/v21/20-074.html.

[36] Alberto Sanfeliu and King-Sun Fu. A distance measure between at-

tributed relational graphs for pattern recognition. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-13(3):353–362, 1983. doi:

10.1109/TSMC.1983.6313167.

[37] Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav

Goldberg, Daniel Deutch, and Jonathan Berant. Break it down:

A question understanding benchmark. Transactions of the As-

45

sociation for Computational Linguistics, 8:183–198, 2020. URL

https://aclanthology.org/2020.tacl-1.13.

[38] Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis

with support vector machines. In Proceedings of the Eighth International

Conference on Parsing Technologies, pages 195–206, Nancy, France, April

2003. URL https://aclanthology.org/W03-3023.

[39] John M Zelle and Raymond J Mooney. Learning to parse database

queries using inductive logic programming. In Proceedings of the national

conference on artificial intelligence, pages 1050–1055, 1996.

[40] Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-

symbolic models for logical queries on knowledge graphs. In Kamalika

Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,

and Sivan Sabato, editors, Proceedings of the 39th International Con-

ference on Machine Learning, volume 162 of Proceedings of Machine

Learning Research, pages 27454–27478. PMLR, 17–23 Jul 2022. URL

https://proceedings.mlr.press/v162/zhu22c.html.

