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Abstract 

 

A high-resolution metabolomics analysis of the association between perfluoroalkyl substances 

(PFASs), body composition and related metabolic outcomes in an Atlanta cohort 

 

By Katherine M. Krasnodemski 

 

 

Objective: To determine the association between plasma levels of perfluoroalkyl substances 

(PFASs), measured by high resolution metabolomics, body composition and related metabolic 

outcomes at the baseline visit in the Emory-Georgia Tech Predictive Health Institute’s Center for 

Health Discovery and Well Being (CHDWB) cohort. 

 

Methods: We performed a cross-sectional study on 179 adults who were enrolled in the CHDWB 

cohort who had baseline plasma high-resolution metabolomics data available.  Multiple linear 

regression models were used to assess the association between plasma PFASs, body 

composition, and related metabolic outcomes.  

 

Results: Males had significantly higher PFAS intensities compared to women.  Age, race, 

income, and education were not significantly associated with PFAS intensity. Visceral adipose 

tissue mass was positively associated with plasma PFASs, but the relationship was no longer 

statistically significant after adjusting for sex.  No significant associations were present between 

intensities of PFASs and other cardiometabolic outcomes (insulin resistance, fasting glucose, 

fasting insulin, triglycerides, cholesterol [total, HDL, and LDL], measures of oxidative stress, or 

proinflammatory cytokines).  

 

Discussion: In this study, we found no significant associations between PFAS intensity, body 

composition, and related metabolic outcomes.  Larger, longitudinal studies should be conducted 

in order to determine the true relationship between PFAS exposure, body composition, and 

related metabolic outcomes. 
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Introduction 

There has been a marked increase in the global prevalence of both obesity and type II 

diabetes mellitus (T2DM) over the past three decades (Eckel et al., 2011).  As obesity and T2DM 

are complex diseases, using the overly simplistic view of “calories in versus calories out” to 

address these important public health issues has not been successful.  Addressing the global 

epidemic of obesity and associated T2DM by identifying new modifiable risk factors and 

mechanisms of effects is imperative.  

Environmental endocrine disrupting chemicals (EDCs) that alter metabolic programming 

and adipose tissue (AT) differentiation and expansion may increase the risk of obesity and 

metabolic disease (Blumberg, Iguchi, & Odermatt, 2011; Heindel et al., 2017; Janesick & 

Blumberg, 2011; Thayer, Heindel, Bucher, & Gallo, 2012).  Animal studies indicate that a broad 

spectrum of persistent organic pollutants (POPs) and other EDCs accumulate in adipose tissue, 

disrupt metabolic systems, and have obesogenic and diabetogenic effects (Blumberg et al., 2011; 

Hines et al., 2009; Thayer et al., 2012).  Recent literature has shown that exposure to certain 

EDCs during critical stages of development predisposes the individual to weight gain and obesity 

through a variety of mechanisms that act during lineage specification, differentiation, and 

maintenance of adipocytes (Janesick & Blumberg, 2011).  EDCs also have the ability to alter 

gene expression by modulating developmental signaling pathways and promoting epigenetic 

changes that produce stably inherited changes in gene expression (Janesick & Blumberg, 2011).  

POPs are organic compounds that are resistant to environmental degradation through 

chemical, biological, and photolytic processes.  They are capable of long-range transport, 

bioaccumulation in human and animal tissue, and biomagnification in food chains, and may have 

significant impacts on both human health and the environment.  A recent comprehensive review 
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about the link between POPs, obesity, and diabetes concluded that human evidence on POPs and 

obesity remains insufficient, but evidence on POPs and T2DM is much stronger (Lee, Porta, 

Jacobs, & Vandenberg, 2014). 

In 2001, the Stockholm Convention on Persistent Organic Pollutants identified 12 initial 

POPs including alderin, chlordane, dichlorodiphenyltrichloroethane (DDT), dieldrin, endrin, 

heptachlor, hexachlorobenzene (HCB), mirex, toxaphene, polychlorinated biphenyls (PCBs), 

polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) 

(Stockholm Convention, 2001).  They recently identified 16 new POPs in June 2017 including: 

α- and β-hexachlorocyclohexane, chlordecone, decabromodiphenyl ether, hexabromobiphenyl, 

hexabromocyclododecane, hexabromodiphenyl ether, heptabromodiphenyl ether, 

hexachlorobutadiene, lindane, pentachlorobenzene, pentachlorophenol & its salts and esters, 

perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride, 

polychlorinated naphthalenes, short-chain chlorinated paraffins, technical endosulfan and its 

related isomers, tetrabromodiphenyl ether and pentabromobiphenyl ether (Stockholm 

Convention, 2017).   

Perfluoroalkyl substances (PFASs), such as PFOS, perfluorooctanoic acid (PFOA), 

perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS), were newly listed 

as POPs in 2017 even though they have been produced since the 1950s.  PFASs are used in many 

industrial and manufacturing applications including production of nonstick cookware, waterproof 

and breathable textiles, and protective coatings for paper, food packing materials, and carpets 

(Corsini, Luebke, Germolec, & DeWitt, 2014).  Unlike other POPs which accumulate in adipose 

tissue, the target tissue of PFASs is the liver, where they bind to proteins such as albumin (Han, 

Snow, Kemper, & Jepson, 2003; P. D. Jones, Hu, De Coen, Newsted, & Giesy, 2003).  PFASs 
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are persistent in the environment and have substantial bioaccumulation and biomagnifying 

properties.  Potential routes of exposure to PFASs include ingestion (food and contaminated 

drinking water), dermal contact (textiles, carpeting) and inhalation of indoor dust.  Known serum 

half-lives of PFASs in humans range from 3.5 to 8.5 years, indicating bioaccumulation in the 

body (EPA, 2009; Olsen et al., 2007).  As they are detected in the serum of almost every person 

in the United States, PFASs are an important public health issue (Kato, Wong, Jia, Kuklenyik, & 

Calafat, 2011). 

Although humans are highly and widely exposed to these PFASs daily, their metabolic 

effects on humans are not well understood.  Experimental animal studies have found that PFASs 

activate peroxisome proliferator-activated receptors (PPARs) (Rosen et al., 2008; Wolf, Schmid, 

Lau, & Abbott, 2012), which regulate energy homeostasis, lipid and glucose metabolism, and 

adipocyte differentiation and function (Berger & Moller, 2002).  Some cross-sectional studies 

involving adults from the National Health and Nutrition Examination Survey (NHANES) 

support observations from animal studies, and showed that increased serum PFOA and PFOS 

levels were associated with metabolic outcomes such as increased fasting glucose (Liu, Wen, 

Chu, & Lin, 2018), increased insulin, and insulin resistance (assessed using the homeostatic 

model assessment for insulin resistance [HOMA-IR]) (Lin, Chen, Lin, & Lin, 2009).  

The detrimental metabolic effects of obesity are predominantly driven by the 

accumulation of visceral adipose tissue (VAT), which is adipose tissue that accumulates within 

the abdominal cavity and surrounds internal organs, including the liver.  VAT is more 

metabolically active than subcutaneous adipose tissue (SAT), and invokes changes to 

metabolism and other cellular processes, such as increased oxidative stress and inflammatory 

biomarkers (Kershaw & Flier, 2004).  Detailed analysis of the linkage between PFASs and VAT 



4 
 

is warranted given the widespread negative health effects associated with both.  In vitro or in 

vivo studies looking at obesogenic effects of PFASs are scarce and inconsistencies exist in the 

studies that are available (de Cock & van de Bor, 2014).  Whether PFASs interfere with body 

weight regulation in humans is largely unknown.  Recent literature suggests that prenatal 

exposure to PFASs may be associated with increased adiposity among children (Braun et al., 

2016; Mora et al., 2016).  Another recent study found that in women who are undergoing diet-

induced weight loss trials, higher baseline PFAS concentrations were associated with greater 

weight regain (G. Liu et al., 2018).  

The primary goal of this investigation was to determine if there is an association between 

plasma levels of PFOS, PFNA, and PFHxS, measured by high-resolution metabolomics, and 

VAT mass at the baseline visit in the Emory-Georgia Tech Predictive Health Institute’s Center 

for Health Discovery and Well Being (CHDWB) cohort.  We also aimed to determine the 

relationship between baseline plasma levels of these PFASs and concomitantly measured SAT 

mass, total body fat mass, indexes of glucose tolerance and insulin sensitivity (fasting blood 

glucose, fasting insulin, HOMA-IR), plasma proinflammatory markers (interleukin [IL]-6, IL-8, 

and TNF-α, c-reactive protein [CRP]), and measures of oxidative stress (glutathione [GSH], 

glutathione disulfide [GSSG] and cysteine [CyS]/CySS aminothiol redox biomarkers).  

We hypothesized that higher levels of plasma PFASs would be correlated with higher 

VAT mass, given its proximity to the liver.  We further hypothesized that higher plasma PFASs 

would be associated with increased SAT mass, higher insulin resistance, higher fasting glucose, 

higher plasma concentrations of pro-inflammatory cytokines, and greater oxidative stress. 

 

 



5 
 

Methods 

Study Design, Data Collection and Protocol 

This was a cross-sectional study of 179 adults who were enrolled in the Emory-Georgia 

Tech Predictive Health Institute’s CHDWB cohort (Brigham, 2010) and who had baseline 

plasma high-resolution metabolomics data available.  Participants for the CHDWB cohort were 

recruited between January 2008 and February 2013 and included male or female employees aged 

18 and older with an absence of hospitalizations in the previous year (except for accidents).  

Exclusion criteria for the cohort comprised of the following: hospitalization for acute or chronic 

disease within the previous year; history of severe psychosocial disorder within the previous 

year; addition of new prescription medications to treat a chronic condition within the previous 

year (with the exception of changes in antihypertensive or antidiabetic agents); history of 

substance/drug abuse or alcoholism within the previous year; current active malignant neoplasm; 

history of malignancy other than localized basal cell cancer of skin during the previous 5 years; 

uncontrolled or poorly controlled autoimmune, cardiovascular, endocrine, gastrointestinal, 

haematologic, infectious, inflammatory, musculoskeletal, neurologic, psychiatric or respiratory 

disease; and any acute illness (such as viral infection) in the previous 12 weeks before baseline 

visits.  The study was approved by the Emory University Institutional Review Board, and all 

participants provided informed consent.  

Testing and data collection was performed over two baseline visits, each within three 

weeks of the other.  The first visit occurred after the participant fasted overnight, and included 

blood draws and questionnaires regarding demographic information, health history and current 

status, tobacco use, and medication and supplement use.  Body composition testing was 

performed on either the 1st or 2nd visit and assessed by dual energy X-ray densitometry (DEXA, 
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GE Lunar Densitometry iDXA, GE Healthcare, Waukesha, WI).  Blood pressure was measured 

with an automated machine (Omron, Kyoto, Japan).  Blood was collected in 

ethylenediaminetetraacetic acid (EDTA)-containing tubes (BD Vacutainer®, Franklin Lakes, NJ, 

USA), centrifuged at 1300 RCF for 10 min, and plasma was stored at −80°C until analysis. 

Serum fasting glucose, fasting insulin, and high-sensitivity CRP was measured commercially 

(Quest Diagnostics Nichols Valencia, Valencia, CA).  Serum IL-6, IL-8 and TNF-α were 

measured using a Fluorokine® MultiAnalyte Profiling multiplex kit (R&D Systems, 

Minneapolis, MN) with a Bioplex analyzer (Bio-Rad, Hercules, CA).  Serum GSH, GSSG, Cys, 

and CySS were measured by high performance liquid chromatography, as previously described 

(D. P. Jones & Liang, 2009), as indicators of oxidative stress and redox balance.  

 

High-Resolution Metabolomics 

Blood samples were analyzed in triplicate with high-performance liquid chromatography 

coupled to ultra-high-resolution mass spectrometry (LC-MS; LTQ–Velos Orbitrap, Thermo 

Scientific, San Diego, CA, USA) using C18 chromatography and electrospray ionization in 

negative ion mode.  Samples were treated with acetonitrile (2:1, v/v), an internal standard 

mixture was added, and the samples were centrifuged at 4°C, using established procedures 

(Frediani et al., 2014; D. P. Jones & Liang, 2009).  Each batch of 20 samples was preceded and 

followed by analysis of pooled reference samples to support quality control and quality 

assurance.  

Raw data files were extracted using apLCMS (Yu, Park, Johnson, & Jones, 2009) with 

modifications by xMSanalyzer (Uppal et al., 2013).  A feature table was generated that contained 

m/z (mass-to-charge ratio) features, where a feature is defined by its m/z, retention time and ion 
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intensity.  Prior to data analysis, m/z features were batch-corrected using ComBat (Johnson, Li, 

& Rabinovic, 2007) and filtered to remove those with coefficient of variation (CV) ≥ 100% and 

>10% non-detected values.  To identify potential PFASs in the dataset, analyte identification was 

confirmed by matching precursor m/z to authentic reference standards.  

 

Statistical Analyses 

Descriptive statistics were performed among all subjects and by sex.  Normality of all 

dependent variables was assed and log transformation was performed on variables that visibly 

deviated from a normal distribution before further analyses were completed.  Intensities were 

similar across age, race, BMI, household income, and number of years of education.  Therefore, 

we only adjusted for sex in our linear regression analyses for the primary and secondary 

endpoints.  Multiple linear regression analyses were performed to investigate the relationship 

between plasma PFAS intensities (independent variable) and VAT mass (primary dependent 

variable), adjusting for sex.  Additional analyses included plasma PFAS intensities and the 

following secondary dependent variables: SAT mass, total body fat mass, fasting blood glucose, 

fasting insulin, HOMA-IR [calculated using the updated HOMA model (Levy, Matthews, & 

Hermans, 1998)], plasma IL-6, IL-8, and TNF-α, CRP, GSH, GSSG, CyS/CySS.   

We assessed PFAS intensity as a continuous and dichotomous variable (where 0=0.0 

intensity, 1=intensity greater than 0).  Fasting blood glucose, fasting insulin, HOMA-IR, total 

cholesterol, HDL cholesterol, and LDL cholesterol were assessed as both continuous and 

categorical variables.  Cut-off values were determined using World Health Organization 

standards for BMI, values from Gayoso-Diz et al. (2013) for HOMA-IR, and guidelines from the 

National Cholesterol Education Program Adult Treatment Panel III for fasting glucose, fasting 
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insulin, and total, HDL, and LDL cholesterol.  P < 0.05 was considered statistically significant.  

All analyses were performed using SAS (version 9.4, SAS Institute, Cary, NC). 

 

Results 

Subject Characteristics 

Baseline demographic and clinical characteristics are detailed in Table 1.  We included a 

total of 179 participants (115 women, 64 men; 37 [20.67%] under the age of 40; 137 [76.6%] 

Caucasian) in our analysis.  Mean age at the baseline CHDWB visit was 49.5 years (+/- 10.23).  

Over 95% of participants were nonsmokers.  Education ranged from high school (8th grade) to 

six years of post-graduate school, but most participants reported four years of college (24%) or 

two years of graduate school (15%).  The majority of our participants reported an average annual 

household income between $100,000-150,000.  

For the metabolic outcomes, 41% of individuals in this cohort had a normal BMI (18-

24.9 kg/m2), 89% had normal fasting glucose (<100 mg/dL), 78% had normal fasting insulin (<8 

uIU/mL), 80% had normal HOMA-IR (<1.8 mass units) (Table 2). For cholesterol, 54% had 

normal total cholesterol (<200 mg/dL), 91% had high HDL cholesterol, and 58% had optimal 

LDL cholesterol (Table 2).   

 

HRM Results 

Over 10,800 features were detected in the CHDWB dataset.  We detected three PFASs in 

the cohort including PFOS, PFNA, and PFHxS.  Non-zero intensity values for PFOS, PFNA, and 

PFHxS were detected in 95%, 66%, and 80% of participants, respectively.  PFAS intensities are 

shown in Figure 1A-C.  
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Results from the linear regression models showed that intensities of PFASs significantly 

differed by sex for PFOS (p=0.05) and PFHxS (p<0.001) (Table 3, Figure 2).  Intensities were 

similar across age, race, BMI, household income, and number of years of education.  Therefore, 

we only adjusted for sex in our linear regression analyses for the primary and secondary 

endpoints. 

 

Primary Endpoint Results 

Visceral fat mass was positively associated with PFOS (p=0.02) and PFHxS (p=0.04) 

(Table 4).  However, after controlling for sex, these associations were no longer statistically 

significant.  SAT mass was negatively associated with PFNA and PFHxS before adjusting for 

sex (p=0.02); however, the association was not significant after adjustment (p=0.25) (Table 4). 

 

Secondary Endpoint Results 

Intensities of PFASs were not significantly associated with fasting insulin, fasting 

glucose, HOMA-IR, total cholesterol, HDL cholesterol, or LDL cholesterol (Supplementary 

Table 1).  PFASs were also not associated with higher body composition measurements 

(Supplementary Table 2).  Likewise, there were no significant relationships between PFASs and 

the proinflammatory markers or the oxidative stress measurements (Supplementary Tables 3 and 

4).  Even when assessing PFAS as a dichotomous variable, no statistically significant 

associations were present (Supplementary Table 5). 
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Discussion 

As other POPs have been shown to correlate with adiposity and metabolic derangements, 

we hypothesized that higher levels of PFASs would be associated with increased VAT and SAT 

mass.  Additionally, we hypothesized that higher levels of PFASs would be associated with 

metabolic outcomes such as increased insulin resistance, hyperglycemia, higher plasma 

concentrations of pro-inflammatory cytokines, and greater oxidative stress.  However, in this 

study, PFASs were not significantly, independently associated with adiposity or other 

biochemical measures of metabolic health.  

This study used untargeted metabolomic data to look at the relationship between 

exposure to PFASs, body composition, and related metabolic outcomes in an Atlanta cohort.  We 

detected three out of the four prospective PFASs (PFOS, PFNA and PFHxS).  While PFOA was 

expected to be present in this population, it was not detected.  It is possible that this PFAS is 

present at levels below the limit of detection in this population.  

VAT mass was positively associated with PFOS and PFHxS (Table 4).  However, after 

controlling for sex, these associations were no longer statistically significant.  There are sex 

differences in VAT and SAT storage in the body, with men generally having greater VAT than 

women (Demerath et al., 2007).  There are a limited number of studies that have looked at the 

relationship between blood levels of PFASs and VAT mass.  Recent literature suggests that 

prenatal exposure to PFASs could be associated with increases in adiposity among children 

(Braun et al., 2016; Mora et al., 2016).  Another recently published study looked at gender and 

obesity-stratified models to explore the relationship between PFASs and lipids and found that 

obesity modifies the cross-sectional associations of PFASs with lipid concentrations (Jain & 
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Ducatman, 2019).  Their findings suggested that higher levels of long chain PFASs were 

associated with greater susceptibility to elevated total cholesterol and LDL cholesterol in obese 

participants.  Current evidence linking PFASs with higher fat mass is scarce and more research 

must be done to identify the true relationship between blood levels of PFASs and body 

composition. 

There were no significant findings when we evaluated the relationship between PFAS 

intensity and metabolic outcomes.  This cohort consisted of relatively healthy, actively working, 

primarily Caucasian individuals; thus, our results could be subject to selection bias.  PFAS 

intensity in this study may not be representative of the entire Atlanta population, but could be for 

the Emory-Georgia Tech community.  For the metabolic outcomes in Table 2, we found that 

41% of individuals in this cohort had a normal weight BMI, 89% had normal fasting glucose, 

78% had normal fasting insulin, and 80% had normal HOMA-IR.  For cholesterol, 54% had 

normal total cholesterol, 91% had high HDL cholesterol, and 58% had optimal LDL cholesterol 

levels.  Given that the cohort consisted of relatively healthy individuals, this could explain the 

lack of any significant findings. 

Males had a higher PFAS intensities than females for all three chemicals.  This is 

consistent with previous knowledge and studies (ATSDR, 2018; Calafat et al., 2007; Kato et al., 

2011).  Potential explanations could be due to gender differences in occupation, diet (fast food 

intake), and use of PFAS-containing products (waterproof textiles).  However, this has not been 

studied to date and should be investigated further.  It has also been suggested that women may 

have lower PFAS concentrations in blood due to PFAS loss through menstruation, childbirth, 

and breastfeeding (ATSDR, 2018). 
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Limitations of the study include using a cross-sectional study design, which prevents us 

from making any causal claims about our findings, and the relatively small sample size 

compared to studies using large national databases like NHANES. 

In conclusion, this study did not find significant relationships between PFAS and 

adiposity or cardiometabolic risk factors, after accounting for sex differences.  Inconsistencies 

exist in the current literature regarding the health effects of PFAS exposure which may be due to 

differences in study design, population demographics, or PFAS concentration distributions.  

More robust, longitudinal studies should be conducted to identify potential health effects of 

PFAS exposure.  
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Figures and Tables 
 

Table 1. Participant Demographics 

Characteristic Participants No. (%) 

Overall 179 

Sex  

Male 64 (35.8) 

Female 115 (64.2) 

Race/Ethnicity  

Caucasian 137 (76.6) 

Other 42 (23.4) 

Smoking Status  

Non-smokers  171 (95.5) 

Smokers 8 (4.5) 

Age (yrs)  

<40 37 (20.67) 

40-44 19 (10.61) 

45-50 27 (15.08) 

50-54 33 (18.44) 

55-60 34 (18.99) 

60-64 19 (10.61) 

>65 10 (5.59) 

Education 

High School 6 (3.35) 

College/University 69 (38.55) 

Graduate School 69 (38.55) 

Post-graduate School 35 (19.55) 

Average Annual Household Income 

Not listed 10 (5.62) 

$0 to $25,000 1 (0.56) 

$25,000 to $50,000 15 (8.43) 

$50,000 to $75,000 22 (12.36) 

$75,000 to $100,000 22 (12.36) 

$100,000 to $150,000 43 (24.16) 

$150,000 to $200,000 19 (10.67) 

$200,000 to $250,000 12 (6.74) 

$250,000 to $300,000 5 (2.81) 

Above $300,000 29 (16.29) 
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Table 2. Participant Metabolic Results 

BMI Classification (kg/m2)    

Normal (18.5-24.9) 73 (40.78) 

Overweight (25.0-29.9) 64 (35.75) 

Obese (≥30.0) 42 (23.46) 

Fasting Blood Glucose (mg/dL) 

Normal (<100) 160 (89.39) 

Above normal (≥100) 19 (10.61) 

Fasting Insulin (uIU/mL) 

Normal (<8) 139 (77.65) 

Above normal (≥8) 40 (22.35) 

HOMA-IR (mass units) 

Normal (<1.8) 141 (78.77) 

Above normal (≥1.8) 38 (21.23) 

Total Cholesterol (mg/dL) 

Normal (<200) 98 (54.75) 

Above normal (≥200) 81 (42.25) 

HDL Cholesterol (mg/dL) 

Low (<40) 10 (9.26) 

High (≥60) 98 (90.74) 

LDL Cholesterol (mg/dL) 

Optimal (<100) 75 (58.33) 

Above optimal (≥100) 105 (41.67) 

Cut-off values were determined using World Health Organization standards for BMI, values from 

Gayoso-Diz et al. (2013) for HOMA-IR, and guidelines from the National Cholesterol Education Program 

Adult Treatment Panel III for fasting glucose, fasting insulin, and total, HDL, and LDL cholesterol. 

 

Table 3. Linear Regression Results for Sex 

PFAS Parameter Estimate Standard Error P-value 

PFOS -0.02 0.008 0.04* 

PFNA -0.01 0.006 0.06 

PFHxS -0.03 0.006 <0.0001* 

*Indicates a statistically significant result 
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Table 4. Linear Regression Results for Visceral and Subcutaneous Adipose Tissue 

PFAS Parameter 

Estimate 

Standard 

Error 

P-

value 

Adjusted 

Parameter 

Estimate  

Standard 

Error 

Adjusted  

P-value 

VISCERAL ADIPOSE TISSUE MASS 

PFOS 0.083 0.032 0.02* 0.043 0.029 0.14 

PFNA 0.041 0.023 0.14 0.014 0.021 0.49 

PFHxS 0.064 0.026 0.04* -0.014 0.026 0.60 

LOG SUBCUTANEOUS ADIPOSE TISSUE MASS 

PFOS 0.125 0.006 0.51 0.009 0.006 0.19 

PFNA -0.004 0.004 0.98 0.001 0.004 0.78 

PFHxS -0.373 0.005 0.02* -0.006 0.005 0.25 

*Indicates a statistically significant result 

 

 

Figure 1A-C. Individual ion intensities for PFOS (A), PFNA (B), and PFHxS (C). 
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Figure 2. Average lnPFAS intensity by sex. Average lnPFAS intensity for males is depicted in 

blue while average lnPFAS intensity for females is depicted in grey. Error bars are representative 

of standard deviation. *Represents a statistically significant result. 
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Supplementary Information  

Supplementary Table 1. Linear Regression Results for PFASs vs. Measures of Insulin Resistance 

PFAS Parameter 

Estimate 

P-Value Adjusted 

Parameter 

Estimate 

Adjusted  

P-Value 

LOG FASTING GLUCOSE 

PFOS 0.004 0.11 0.003 0.20 

PFNA -0.003 0.15 -0.003 0.07 

PFHxS 0.0001 0.95 -0.002 0.34 

LOG FASTING INSULIN 

PFOS 0.010 0.44 0.008 0.52 

PFNA 0.009 0.29 0.008 0.35 

PFHxS 0.005 0.64 0.001 0.91 

LOG HOMA-IR 

PFOS 0.013 0.30 0.001 0.40 

PFNA 0.006 0.49 0.005 0.61 

PFHxS 0.005 0.65 -0.0009 0.94 

LOG TOTAL CHOLESTEROL 

PFOS 0.316 0.64 0.374 0.59 

PFNA -0.764 0.11 -0.745 0.13 

PFHxS -0.497 0.37 -0.459 0.45 

LOG TRIGLYCERIDES 

PFOS 0.0120 0.13 0.009 0.26 

PFNA 0.0007 0.90 -0.001 0.80 

PFHxS 0.005 0.48 -0.003 0.69 

HDL 

PFOS -0.164 0.60 0.111 0.71 

PFNA -0.281 0.18 -0.152 0.45 

PFHxS -0.265 0.28 0.221 0.38 

LDL 

PFOS 0.154 0.79 0.064 0.91 

PFNA -0.491 0.23 -0.561 0.17 

PFHxS -0.307 0.52 -0.598 0.25 

*Indicates a statistically significant result 
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Supplementary Table 2. Linear Regression Results for PFASs vs. Body Composition  

PFAS Parameter 

Estimate 

P-Value Adjusted 

Parameter 

Estimate 

Adjusted  

P-Value 

LOG TOTAL BODY FAT (KG) 

PFOS 0.125 0.51 0.009 0.19 

PFNA -0.004 0.98 0.001 0.78 

PFHxS -0.373 0.02* -0.007 0.25 

PERCENT REGION FAT 

PFOS 0.023 0.87 0.175 0.15 

PFNA -0.073 0.46 0.024 0.78 

PFHxS -0.400 0.0005* -0.090 0.40 

ANDROID REGION FAT 

PFOS 0.193 0.33 0.267 0.18 

PFNA 0.066 0.64 0.112 0.42 

PFHxS -0.223 0.17 -0.088 0.62 

ANDROID COMPOSITION FAT 

PFOS 0.013 0.09 0.011 0.16 

PFNA 0.003 0.52 0.002 0.70 

PFHxS -0.0007 0.91 -0.006 0.36 

GYNOID REGION FAT 

PFOS -0.146 0.40 0.131 0.20 

PFNA -0.176 0.15 0.005 0.95 

PFHxS -0.598 <0.0001* 0.002 0.98 

GYNOID COMPOSITION FAT 

PFOS 0.00004 0.10 0.005 0.29 

PFNA -0.003 0.42 0.0002 0.96 

PFHxS -0.013 0.004* -0.002 0.58 

LEAN FAT 

PFOS 0.568 0.14 0.019 0.95 

PFNA 0.345 0.21 -0.017 0.93 

PFHxS 1.065 0.0008* -0.163 0.51 

LOG COMPOSITION FAT 

PFOS 0.00604 0.34 0.008 0.22 

PFNA -0.0002 0.97 0.0009 0.84 

PFHxS -0.008 0.13 -0.005 0.36 

*Indicates a statistically significant result 
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Supplementary Table 3. Linear Regression Results for PFASs vs. Proinflammatory Cytokines 

PFAS Parameter 

Estimate 

P-Value Adjusted 

Parameter 

Estimate 

Adjusted  

P-Value 

LOG CRP 

PFOS 0.014 0.25 0.019 0.12 

PFNA 0.009 0.27 0.013 0.14 

PFHxS -0.018 0.07 -0.009 0.39 

LOF TNF-A 

PFOS -0.010 0.55 -0.011 0.51 

PFNA -0.015 0.19 -0.016 0.17 

PFHxS -0.011 0.40 -0.016 0.27 

LOG IL-8 

PFOS 0.010 0.24 0.011 0.23 

PFNA 0.000002 0.10 0.00008 0.99 

PFHxS -0.005 0.43 -0.006 0.43 

LOG IL-6 

PFOS -0.005 0.52 -0.005 0.57 

PFNA 0.001 0.83 0.001 0.80 

PFHxS -0.004 0.58 0.003 0.68 

*Indicates a statistically significant result 
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Supplementary Table 4. Linear Regression Results for PFASs vs. Oxidative Stress 

PFAS Parameter 

Estimate 

P-Value Adjusted 

Parameter 

Estimate 

Adjusted  

P-Value 

CYS 

PFOS 0.037 0.31 0.055 0.13 

PFNA -0.027 0.27 -0.021 0.38 

PFHxS 0.005 0.86 0.038 0.21 

CYSS 

PFOS -0.162 0.62 -0.133 0.69 

PFNA -0.392 0.07 -0.390 0.08 

PFHxS 0.220 0.39 0.321 0.25 

GSH 

PFOS -0.005 0.64 -0.003 0.78 

PFNA -0.011 0.10 -0.011 0.12 

PFHxS -0.010 0.21 -0.008 0.37 

GSSG 

PFOS -0.001 0.02* -0.001 0.02 

PFNA -0.0001 0.79 -0.0001 0.75 

PFHxS -0.0005 0.30 -0.0007 0.17 

*Indicates a statistically significant result 
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Supplementary Table 5. Linear Regression Results for PFAS as a Dichotomous Variable (where 

0=0.0 intensity, 1=intensity greater than 0)  

PFAS Parameter 

Estimate 

P-Value Adjusted 

Parameter 

Estimate 

Adjusted  

P-Value 

VAT MASS 

PFOS 0.938 0.11 0.610 0.25 

PFNA 0.365 0.22 0.140 0.60 

PFHxS 0.497 0.17 -0.264 0.44 

LOG SAT MASS 

PFOS 0.080 0.486 0.117 0.29 

PFNA -0.016 0.786 0.0087 0.88 

PFHxS -0.171 0.013* -0.101 0.14 

LOG FASTING GLUCOSE 

PFOS 0.066 0.17 0.055 0.24 

PFNA -0.038 0.12 -0.045 0.06 

PFHxS -0.008 0.78 -0.035 0.24 

LOG FASTING INSULIN 

PFOS 0.155 0.49 0.136 0.55 

PFNA 0.109 0.34 0.097 0.40 

PFHxS 0.045 0.74 0.002 0.99 

LOG HOMA-IR 

PFOS 0.220 0.37 0.191 0.43 

PFNA 0.072 0.56 0.052 0.68 

PFHxS 0.037 0.80 -0.033 0.83 

LOG TOTAL BODY FAT  

PFOS 0.119 0.35 0.133 0.26 

PFNA -0.00066 0.10 0.0136 0.82 

PFHxS -0.136 0.06 -0.104 0.18 

*Indicates a statistically significant result 

 


