
Distribution Agreement 

 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an 

advanced degree from Emory University, I hereby grant to Emory University and its 

agents the non-exclusive license to achieve, make accessible, and display my thesis or 

dissertation in whole or in part in all forms of media, now or hereafter known, including 

display on the world wide web. I understand that I may select some access restrictions as 

part of the online submission of this thesis or dissertation. I retain all ownership rights to 

the copyright of the thesis or dissertation. I also retain the right to use in future works 

(such as articles or books) all or part of this thesis or dissertation. 

 

 

Signature: 

 

 

                                                            

Ji Lin                                Date 

  



 2

Likelihood Methods for Logistic Regression with 

Missing Data 

 

 

By 

Ji Lin 

Doctor of Philosophy 

Biostatistics 

 

 

 

 

Robert H. Lyles, Ph.D. 

Advisor 

 

 

Eugene Huang, Ph.D. 

Committee Member 

 

 

Kyle Steenland, Ph.D. 

Committee Member 

 

 

Lance Waller, Ph.D. 

Committee Member 

 

 

Accepted: 

 

 

 

Lisa A. Tedesco, Ph.D. 

Dean of the James T. Laney School of Graduate Studies 

 

 

Date 



 3

Likelihood Methods for Logistic Regression with 

Missing Data 

 

 

 

By 

Ji Lin 

B.S., Peking University, 2003 

M.S., University of Texas at Dallas, 2005 

 

 

Advisor: Robert H. Lyles, Ph.D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An abstract of 

A dissertation submitted to the Faculty of the 

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in Biostatistics 

2012 



 4

Abstract 

Likelihood Methods for Logistic Regression with 

Missing Data  

 

By Ji Lin 

 

In biometric research, missing data are often encountered due to many reasons. This 

dissertation explores methods to deal with missing data in statistical analysis of logistic 

regression. The disease status and risk exposure could be subject to missing data 

separately or together. The interest is on identifying the covariate-adjusted association 

between the disease status and the risk exposure, with consideration of the potential 

impact of the missing data. 

The first research topic was focused on providing an intuitive and computationally 

accessible approach when the assumption of missing at random (MAR) was imposed. We 

proposed a weighting method, utilizing an expanded dataset with two approaches to 

estimation in different situations. The first one makes use of a “flipped-around” logistic 

model and behaves similarly to multiple imputation, and the second one iterates like the 

expectation-maximization algorithm but in a simplified fashion. Simulation studies were 

performed to demonstrate the performance of the methods under different scenarios. 

The assumption of MAR is usually imposed in practice but often not testable. It is 

then important to assess how sensitive the results are to the violation of this assumption. 

In the second research topic, a framework of sensitivity analysis was proposed by 

specification of alternative missing data mechanisms. The result from each specified 

scenario is compared to that from MAR so that to assess the magnitude of change of 

parameter estimates relative to deviation from MAR. Examples and simulation results 

suggest that the proposed method succeeds in detecting the direction and magnitude of 

bias in parameter estimates even if the specification of the alternative missing data 

mechanism is not completely correct. 

In the third research topic, we explore the reassessment design, where a second wave 

of sampling is made in an attempt to recover some portion of the missing data in the 

original data collection. We construct a joint likelihood based on the original model of 

interest and a model for the missing data mechanism, with emphasis upon “non-ignorable” 

missingness. The estimation is carried out by numerical maximization of the joint 

likelihood and standard errors are estimated via a close approximation of the Hessian 

matrix. We show how likelihood ratio tests can be used for model selection and how they 

facilitate hypothesis testing for whether missingness is at random, which is an assumption 

that can be suspect in many practical applications. Examples and simulations are 

presented to demonstrate the performance of the proposed method. 
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Chapter 1. INTRODUCTION AND BACKGROUND 

 

1.1. Introduction 

In biometric research, missing data are often encountered due to many reasons, including the 

unavailability of measurements, survey non-response, study subjects failing to report for 

evaluations, respondents refusing to answer certain items on a questionnaire, and loss of data. 

Here I will propose a likelihood based weighting approach that applies appropriate weights 

to the records of a properly constructed expanded data set, which is designed to represent the 

underlying unobserved complete data set. Under the common assumption of missing at random 

(MAR), this approach can produce results that are comparable to existing likelihood based 

methods (e.g. expectation-maximization method), semi-parametric methods (e.g. weighted 

estimating equations), and simulation based methods (e.g. multiple imputation). When the 

assumption of missing at random is questionable based on prior knowledge, this weighting 

approach can be used to construct sensitivity analysis on the violation of the MAR assumption. 

The assumption on the missingness mechanism can be formulated in terms of conditional 

probability of missingness, risk ratio of missingness, and odds ratio of missingness. When 

re-assessment data are available, this approach can be used to incorporate these data and produce 

maximum likelihood estimates. 

 

1.2.  Background 

 

1.2.1. Missing-Data Mechanisms 

When dealing with missing data, a critical issue is to define the mechanism leading to 

missing data. The missing-data mechanism describes the relationship between the occurrence that 

values of certain variables are missing and the values of all the variables, including the underlying 

values that would have been observed. It determines what information is unreachable by the 

researcher, and what information can be potentially recovered via due diligence. The missing-data 
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mechanism was first formalized by Rubin (1976) by introducing random indicators of 

missingness and describing the missing-data mechanism via probability distribution. Little and 

Rubin (1987, 2002) proposed a nice framework for categorizing missing-data mechanisms, 

namely missing completely at random (MCAR), missing at random (MAR) and not missing at 

random (NMAR), the later sometimes referred to as missing not at random (MNAR). Using the 

notation and terminology in Little and Rubin’s classic textbook (2002), define the complete data 

as ( )ijY y= , which denotes an ( )n K×  rectangular data set without missing values, with thi  

row 1( , , )
i i iK

y y y= …  for the subject i . Define the missing-data indicators as j( )iM m= , such 

that 1ijm =  if ijy  is missing and 0ijm =  if ijy  is present. The missing-data mechanism is 

described by the conditional distribution of M  given Y , ( | , )f M Y φ , where φ  denotes 

unknown parameters. Let obsY  denote the observed components and misY  the missing 

components. Then the missing-data mechanism is called missing completely at random (MCAR) 

if missingness does not depend on the values of the data Y , that is, 

 ( | , ) ( | ) for all , .f M Y f M Yφ φ φ=  

If the missing-data mechanism is MCAR, the observed data set is a random subset of the 

complete data set, and in turn, a random subset of the population of interest. Therefore the 

observed data set can be treated as a standalone random sample drawn from the population of 

interest, and inference can be carried out as usual without any problem. 

A less restrictive assumption is missing at random (MAR), when the missingness depends 

only on the components obsY  of Y  that are observed, and not on the components that are 

missing, after controlling for the components obsY  that are observed. That is, 

 obs mis( | , ) ( | , ) for all , .f M Y f M Y Yφ φ φ=  

The mechanism is called not missing at random (NMAR) if the distribution of M  depends on 

the missing values misY . 

With data missing at random but not missing completely at random, inference on the 
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marginal distribution of the variable affected by missing values is not valid. However, regression 

analysis based on complete cases can still produce valid parameter estimates of the regression 

coefficients of the variables under MAR. Multivariate analysis might not be appropriate and 

efficiency might be lost. 

With data NMAR, it is generally not appropriate to conduct any analysis based only on the 

complete cases. However, at least with binary data in logistic regression, analyzing only the 

observed data does not produce biased estimates and tests if missingness is related to treatment 

assignment but not outcome (e.g., because of side effects unrelated to outcome) or outcome but 

not treatment assignment (e.g., those with events are more likely to be missing, but to the same 

degree in both arms). Biased estimates and tests can arise in the more likely scenario that 

missingness is related to both treatment assignment and outcome (Jones 1996, Proschan, 

McMahon, Shih 2001). 

 

1.2.2. Complete-Case Analysis 

As we know, standard statistical methods for regression analysis are designed for rectangular 

data sets, where all variables in the regression model are observed for all of the subjects. 

Therefore, when some variables are not observed for some subjects, the straightforward option is 

to analyze only those subjects that are completely observed for all of the variables. This method, 

known as complete case analysis (CC), which simply excludes records with missing data from 

statistical analysis, is the technique most commonly used when missing values are present. When 

the data are MCAR, CC analysis leads to consistent estimates. Therefore, it generally requires the 

MCAR assumption to apply CC analysis on a data set with missing values, because the CC 

analysis could be inconsistent when the data are not MCAR. However, as has been discussed in 

detail by Little and Rubin (1987, 2002), in some cases, CC analysis can be applied with less 

restrictive conditions, e.g. MAR, and the parameter estimates are still consistent. In regression 

analysis, when the response is subject to missing data, it has been shown that CC analysis 

produces consistent estimates if the missingness in the response is unrelated to the response itself 



 4

(Glynn 1993; Little 1992). When covariates are subject to missing data, Jones (Jones, MP 1996) 

proved theoretically that complete case analysis produces consistent estimates provided that the 

missingness in the covariates is unrelated to the outcome. 

 

Table 1.1  Validity of complete case analysis in logistic regression 

Variable missing Missingness Mechanism Odds Ratio on X  Odds Ratio on C  

Outcome 

| ,ym x c  

(MAR) 
Valid Valid 

|ym y  

(NMAR) 
Valid Valid 

| , ,ym y x c  

(NMAR) 
Not Valid Not Valid* 

Exposure 

| ,
x

m y c  

(MAR) 
Valid Not Valid** 

|
x

m x  

(NMAR) 
Valid Valid 

| , ,
x

m y x c  

(NMAR) 
Not Valid Not Valid* 

*   Assuming the covariates C  and the exposure are not independent 

**  As pointed out by Robins, Rotnitzky and Zhao (1994) 

 

On the other hand, NMAR does not necessarily lead to inconsistent estimates. One example 

is the case-control study in retrospective epidemiology studies. The subjects are included in the 

study with unbalanced screening rate where the group with smaller prevalence will be included 

with higher rate, so that to reach a relative balanced number of subjects in case and control. The 

selection is an analogous process of missingness, and it depends on the underlying value, which 

constitute a NMAR regarding the outcome. However, the estimates of the logistic regression 

parameters obtained from the unbalance-selection data set are still valid in such studies. 
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1.2.3. Maximum Likelihood Method 

The maximum likelihood (ML) approach was proposed to deal with missing data problems 

under the generalized linear model setup by Little and Schluchter (1985), Ibrahim (1990), Lipsitz 

and Ibrahim (1996), Ibrahim and Lipsitz (1996) and Ibrahim, Chen, Lipsitz et al. (2005) by 

constructing the likelihood function of the outcome, the covariates, together with the missingness 

indicator. The joint distribution could be written as the product of a series of conditional 

probabilities, as proposed by Lipsitz and Ibrahim (1996) and Ibrahim, Lipsitz and Chen (1999) 

and summarized by Little and Rubin (2002). Chen, Ibrahim, Shao (2004) put the ML approach 

into a Bayesian framework. The joint distribution of the covariates was modeled, in the monotone 

missing case, as a product of one-dimensional parametric conditional distributions for the 

covariates that have missing values. On the other hand, nonparametric and semi-parametric 

approaches for specifying the covariate distribution have been considered by Chen and Little 

(1999) and Chen (2002, 2004). In application of ML, numerical maximization is usually needed 

to obtain the maximum likelihood estimate (MLE). 

Dempster, Laird and Rubin (1977) proposed a general algorithm to obtain MLEs when 

incomplete data present. A general method for estimation in the presence of missing covariates 

has been proposed by Ibrahim (1990), who used EM via a method of weights to find the MLEs. 

Ibrahim and Lipsitz (1996) applied Ibrahim’s weighting approach with the EM algorithm in 

binomial regression with non-ignorable non-response. Lipsitz, Ibrahim, Chen and Peterson (1999) 

and Lipsitz, Ibrahim, Chen (1999) proposed a likelihood method for estimating parameters in 

generalized linear models with NMAR missing covariates. The EM algorithm was used and a 

closed form of the E step was given in case of categorical covariates and Monte Carlo EM 

algorithm was used in the case of continuous covariates. Horton and Laird (1999) discussed the 

application of EM via the method of weights in detail, with illustrative examples. Although 

commonly cited as a different estimation method, the EM algorithm can be considered as an 

alternative approach that applies maximum likelihood estimation to a general model with 

additional assumptions on the distribution of the variables subject to missingness. Examples were 
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given to show that the distributional form assumed for the unobserved variables may actually 

determine the missing mechanism (Little and Rubin 1987, Kenward 1998). Likelihood methods 

by the EM algorithm usually require complex self-written programs, which prevent it from wide 

application by epidemiologists. 

 

1.2.4. Inverse Propensity Weighting 

The treatment of missing data via a weighting adjustment arises in the survey sampling 

literature. The non-response weight is a factor that multiplies the sampling weight to account for 

the differential sampling probability, as in the Horvitz-Thompson estimator (1952). Rosenbaum 

and Rubin’s (1983) theory of propensity scores (so called “estimated propensity scores” in that 

context) shows that response propensity weighting effectively removes non-response bias when 

non-response is random within subpopulations (David et al. 1983). Little (1988) proposed to 

model the binary non-response indicator on the other variables using either logistic or probit 

regression when the number of variables is relatively large for respondents and non-respondents. 

Little (1986, 1991) compared response propensity weighting with mean imputation within 

subclasses. Flanders and Greenland (1991) and Zhao and Lipsitz (1992) suggested a weighted 

estimator. Wang, Wang, Zhao et al. (1997) proposed semi-parametric modeling of the missing 

probability via kernel smoothing. Zhao and Lipsitz (1992) and Little and David (1983) showed 

how the weighting method can be extended to handle monotone patterns of non-response, such as 

those occurring with attrition from a panel study. 

Although its appropriateness can and should be assessed for a given data set, a second 

logistic regression model for missingness is a convenient and intuitive choice in practice, as has 

been done by Rosenbaum and Rubin (1983, 1984, and 1985), Rosenbaum (1984), and Little 

(1988). Then the predicted response propensities can be derived for respondents and 

non-respondents, and the weights applied to respondents are proportional to the inverse of the 

response rates. Although the logistic regression for missingness on the other variables is 

univariate, analysis this regression is still a nontrivial task if the set of variables is very large. In 
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practice, judicious selection from the available variables, based on a priori knowledge and 

preliminary analysis, may be necessary (Little 1988). Propensity score weighting can lead to 

estimates with large variance, as discussed in Little (1986), where empirical Bayesian methods 

were proposed to smooth the weights. D’Agostino (1998) made a comparative review of several 

ways of using propensity scores to estimate the treatment effect. More reference for IPW can be 

found in Rosenbaum (1987) and Xie and Liu (2005). Successful examples of application of 

propensity weighting can be found in Czajka Hirabayashi, Little, and Rubin (1987), Little and 

Rubin (2002) and Hogan and Lancaster (2004). 

 

1.2.5. Weighted Estimating Equations 

Robins, Rotnitzky and Zhao (1994) proposed a semi-parametric approach using weighted 

estimation equations (WEE), which was then extended by Robins and Ritov (1997) to obtain 

consistent estimates of the regression parameters when either the missing data mechanism or the 

score vector for the missing data given the observed data (or both) can be correctly specified. This 

attractive property against model misspecification is often cited as “double robustness”. More 

discussions on this method can be found in Robins and Rotnitzky (1995, 2001), Rotnitzky, 

Robins, and Scharfstein (1998), Robins, Rotnitzky, and Scharfstein (2000). Lipsitz, Ibrahim and 

Zhao (1999) proposed a WEE method for missing covariate data with close underlying 

connections to the maximum likelihood approach. The proposed WEE has an almost identical 

form to the ML estimating equations. To be more specific, suppose the problem of interest is to 

estimate the regression parameter β  associating a binary outcome Y  and a binary exposure 

X , where X  is subject to missing data for some observations. There are additional covariates 

C  that are completely observed. Then consider a logistic model: 

0 1 2

0 1 2

exp( )
( 1| , ; )

1 exp( )

x
p Y x

x

β β β

β β β

+ + ′
= =

+ + + ′

c
c

c
ββββ , ( 0,1)x =  

An additional logistic model 

0 1

0 1

exp( )
( 1| ; )

1 exp( )
p X

θ θ

θ θ

′
= Θ =

+

+

+ ′

C
C

C
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and a logistic model for the probability of being observed 

0 1 2

0 1 2

( )
( )

1 ( )
i i

exp y

exp y

τ τ τ
π π

τ τ τ

+ + ′
= Τ =

+ + + ′

c

c
 

The density of ( , , | )
i i i i

y x r c  for subject i  is given by 

( , , | ; , , )

( | , ; ) ( | ; ) ( | , , ; )

( | , ; ) ( | ; ) ( | , ; )

i i i i

i i i i i i i i i

i i i i i i i i

p y x r

p y x p x p r y x

p y x p x p r y

Θ Τ

= Θ Τ

= Θ Τ

c

c c c

c c c

ββββ

ββββ

ββββ

 

The main interest is in estimation of ββββ . Then the score functions are given by 

1 1

1 1

log Pr( | , ; )
( ) ( ; , , )

n n
i i i

i i i i

i i

y x
u u y x

= =

∂
= =

∂
∑ ∑

c
c
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Define a set of weighted score functions as follows: 

1 1

2 2

1

3 3

1 | , 1

2 | , 2

3

( , , ) ( , , )

( ) ( , , ) ( , , )

( ) ( )

( ; , , ) 1 [ ( ; , , )]

( ; , ) 1 [ ( ; , )]

( )

i i i

i i i

in

i

i

i

i i

i i i i x y i i i i

i i

i i

i i i x y i i i

i i

i

S S

S S S

S S

r r
u y x E u y x

r r
u x E u x

u

π π

π π

=

Θ Τ Θ Τ   
   Γ = Θ Τ = Θ Τ   
   Τ Τ   

 
+ − 
 

 
= Θ + − Θ 

 

Τ






∑

c

c

c c

c c

β ββ ββ ββ β

β ββ ββ ββ β

β ββ ββ ββ β

1

n

i=




 
 
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 
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 (1.1) 

where ( , , )Γ′ = ′ Θ′ Τ′ββββ . Lipsitz et al. (1999) show that [ ( )] 0E S Γ = , as long as either the missing 

data mechanism 
i

π  or the score vector ( | )
i i

p x c  is correctly specified, but not necessarily both. 

Therefore we obtain a set of WEE by setting (1.1) equal to zero. This approach can be 

implemented via an EM-type algorithm, which provides relatively easy access to investigators. 

 

1.2.6. Multiple Imputation 

Multiple imputation was developed as an improvement upon single imputation. In single 
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imputation, one attempts to construct a dataset that would have been observed if missingness did 

not occur. The missing values are filled in artificially by researchers using a variety of approaches, 

and then standard statistical analysis is applied to the filled-in data set as if it was observed 

without any missing values. Treating the imputed dataset as a truly observed one, single 

imputation is not recommended due to underestimation of variability. Multiple imputation was 

formulated by Rubin to correct upon single imputation (Rubin 1987). Rubin (1996) and Schafer 

(1997) gave comprehensive reviews of multiple imputation in both its fundamental theoretical 

results and practical objectives. The imputation process is repeated multiple times and standard 

statistical analysis is performed on each imputed dataset. The results from each single imputation 

are combined using Rubin’s method to account for the uncertainty that should be built in to 

correct for treating each imputed dataset as if truly observed. The basic idea was first proposed by 

Rubin (1987) and elaborated in his book. Additional discussions of multiple imputation in 

regression analysis can be found in Little and Rubin (1989) and Landerman, Land and Pieper 

(1997).  

A typical multiple imputation inference is performed in three steps: 

1. The missing values are artificially generated m  times to reconstruct m  fully 

observed datasets; 

2. The m  reconstructed datasets are analyzed as complete data separately with any 

standard statistical methods that are designated for complete data analysis; 

3. The results of each of the above analyses are combined using Rubin’s method 

Let β  be a 1k ×  vector of parameters. Suppose that the vector-valued point estimate and 

the covariance matrix for the parameter vector β  from the i th imputed data set are � iβ  and 

�
iW , 1,2, ,i m= … . Then the Rubin’s method concludes that the combined point estimate is 

 �

1

1 m

i

im
β β

=

= ∑  (1.2) 

and the associated covariance matrix is 

 
1

(1 )
m

= + +T W B  (1.3) 
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where 

�

1

1 m

i

im =

= ∑W W  

represents the within-imputation covariance matrix, and 

� �

1

1
( )( )

1

m

i i

im
β β β β

=

= − − ′
−
∑B  

represents the between-imputation covariance matrix. 

Of course, certain requirements must be met for MI to have these desirable properties. First, 

the data must be missing at random (MAR), meaning that the probability of missing data on a 

particular variable can depend on other observed variables, but not on itself after controlling for 

the other observed variables. Second, the model used to generate the imputed values must be 

“correct” in some sense. Third, the model used for the analysis must match up, in some sense, 

with the model used in the imputation. All these conditions have been rigorously described by 

Rubin (1987, 1996). 

 

1.2.7. Predictive Probability Weighting 

Lyles and Lin (2010) proposed a weighting method to conduct sensitivity analysis for 

misclassification in logistic regression. Observed data together with investigator-supplied values 

for sensitivity and specificity parameters were used to produce corresponding positive and 

negative predictive values. These values were used to reconstruct an appropriately defined 

expanded data set with appropriate weights to be used in fitting the model of interest using 

standard statistical software. A close form of the weights was derived to facilitate convenient 

utilization of standard software packages with a weighting option to avoid numerical algorithms. 

The Jackknife method was proposed to incorporate uncertainty in the estimated weights into valid 

standard errors (see next section). A similar idea was also discussed by Fleiss, Levin, and Paik 

(2004), where weighted-type methods were applied via expanded datasets, within the framework 

of random 2 2×  table and then extended to incorporate covariate. 
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1.2.8. Jackknife Resampling Method 

The idea of the Jackknife method was first proposed by Quenoulle (1949) to reduce bias of 

point estimates, and then proposed by Tukey (1958) to provide estimates of standard errors. The 

Jackknife and bootstrap are now widely used in survey sampling and other applications (Efron 

and Tibshirani, 1993). There are underlying relationships between the methods. For the purposes 

of this dissertation, the Jackknife is found to be more stable. 

As a resampling method, the Jackknife estimator is based on dropping a single or a set of 

observations from the sample. Following the same symbols as in Wu (1986), the process of 

Jackknife method is as follows. Suppose β  is a 1k ×  vector of parameters, and let β̂  be its 

estimate obtained from the original sample. Let ( )
ˆ

i
β  be the estimate of β  obtained from the 

resampled data with the i -th observation dropped out. Then, for estimating a function of β , say 

( )gθ β= , define ˆ ˆ( )gθ β= , ( ) ( )
ˆ ˆ( ) ( )

i i
gθ β= , then the pseudo-values are defined as: 

 ( )
ˆ ˆ( 1)

i i
p n nθ θ= − −  

Then the jackknife point estimator of θ  is given by 

 
1

1 n

i
p

n
θ = ∑ɶ , 

and the jackknife variance estimator for θ̂  is given by 

 
1

1
( )( )

( 1)

n

J i iv p p
n n

θ θ= − − ′
−
∑ ɶ ɶ . 

The asymptotic properties of the jackknife method were studied by Miller (1974). 

 

1.2.9. Sensitivity Analysis with Data Missing Not-At-Random 

The concept of sensitivity analysis has a long history. As Little (1982) noted, if the response 

mechanism is non-ignorable, one can eliminate bias only by constructing “a model that correctly 

represents the response mechanism”. Nordhein (1984) studied the prevalence of a genetic 

abnormality with sensitivity analysis by assuming the missing mechanism through the relative 

risk of missing rates. A closed form of the MLE was provided. The method is derived in the case 
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of a 2 2×  table, but extension to higher dimensional contingency tables was provided. In Vach 

and Blettner (1995), the importance of sensitivity analysis is addressed. The work was based on 

an ML framework with a self-written program, and sensitivity analysis is based on the framework 

of specifying relative risks and odds ratios. Non-differential violation of MAR was assumed to 

simplify the specification of the missing mechanism. “Non-differential’ violation here means that 

the dependence of a missing rate on the true value of a covariate does not depend on the outcome 

variable. On the other hand, Molenberghs, Goetghebeur, Lipsitz, and Kenward (1999) pointed out 

that in the contingency table setting, different models on the missing mechanism might give 

different prediction of the unobserved values, even though they all produce the same fit to the 

observed data. Therefore, Molenberghs, Kenward, Goetghebeur (2001) argued that the role of 

such sensitivity analysis is to supplement information obtained from the MAR model. 

In traditional sensitivity analysis, a series of alternatives are specified and treated as known 

and fixed. This aids detection of potential bias in point estimate, but underestimate the variability 

of the estimate by ignoring the uncertainty in the specified alternatives. Monte Carlo sensitivity 

was proposed to corporate this additional variability from a simulation perspective (Lash and 

Fink 2003; Fox, Lash and Greenland 2005). An informative prior is specified to describe the 

probability distribution of the underlying alternatives based on previous knowledge. The estimate 

of the parameter of interest is summarized by the posterior by pooling the estimates from a 

collection of alternatives randomly generated from the prior. 

 

1.2.10. Reassessment Data in Missing Data Problems 

The idea of two stage sampling has been discussed to deal with misclassification problems 

by Breslow and Cain (1988), Flanders and Greenland (1991) and Zhao and Lipsitz (1992). Lyles 

and Allen (2002) explored a similar idea in case-control studies with non-ignorably missing 

exposure status by incorporating supplemental data from a second stage of sampling, termed a 

‘reassessment’ study. This approach involves selecting a subset only among those with missing 

data and applying an intensive effort to obtain the information. Analytic expressions for the odds 
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ratio and relative risk were given by Lyles and Allen (2003) for cross-sectional studies with a 

binary outcome and/or a simple binary exposure subject to missingness. They estimated these 

parameters via a likelihood approach under five different missing data patterns. 
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Chapter 2. A WEIGHTING METHOD FOR LOGISTIC 

REGRESSION WITH DATA 

MISSING-AT-RANDOM 
 

 

2.1. Introduction 

In biometric research, missing data are often encountered due to many reasons, including the 

unavailability of measurements, survey non-response, study subjects failing to report for 

evaluations, respondents refusing to answer certain items on a questionnaire, and loss of data. 

Because standard techniques for regression models are designed for complete data sets, the 

straightforward option is to analyze only those subjects that are completely observed. For instance, 

suppose one is interested in the logistic regression model of a binary outcome variable Y  (e.g., 

lung cancer or not) on the risk exposure X , a binary predictor, controlling for some other factors 

C . Suppose that the predictor X  is subject to missing values and the probability of X  

missing could depend on Y  and/or C , but not on X  itself after conditioning on Y  and C  

( X  is MAR). In this case, a common practice is to perform the complete-case (CC) analysis on 

records ( , , )y x c , for which values of all variables are observed. The usual parameter estimates 

are then still consistent, as discussed by Glynn (1985), Little (1992), and Jones (1996). 

Although the complete case analysis works well in certain situations, this strategy obviously 

causes loss of information. As the fraction of missing data increases, the deletion of all subjects 

with missing values is unnecessarily wasteful and quite inefficient. In addition, complete-case 

analysis violates the intention-to-treat principles currently widespread in biometric research (Nich 

and Carroll 2002; Liu and Gould 2002; Hollis 2002). Finally, by excluding incomplete records 

under MAR, it might result in biased estimates of the regression coefficients for the covariates C  

that are not subject to missing values (Robins, Rotnitzky and Zhao 1994). If the probability of X  

being missing depends on C , by omitting the unit all together, complete-case analysis results in 

NMAR for covariates C . Therefore it is very important to point out a common misunderstanding, 

and emphasize it that if one is interested in multivariable analysis where the parameter estimates 
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of the controlling variables are also of interest, then the CC analysis is generally not 

recommended even if the missing-data mechanism is MAR. This is one of the motivations of the 

proposed method. By augmentation of the missing values and making use of all the available data, 

the parameters of the controlling variables could be estimated consistently. 

It has been an active area of research to develop methods for regression analysis with 

missing data. Methods have been proposed in the past decades, i.e. maximum likelihood 

approaches (ML), the inverse propensity weighting approach (IPW), multiple imputation (MI), 

and so on. Little (1992) gave an exclusive review focused on multivariate normal models, 

whereas Horton and Laird (1999) focused exclusively on ML methods for GLMs with MAR 

categorical covariates. Ibrahim, Chen, Lipsitz et al. (2005) made a comprehensive review for 

these methods for cases with categorical or continuous covariates. As the development of these 

methods is active and becomes fruitful, we do have to note that they are built on certain 

assumptions on the distribution of the variables with missing values and/or the mechanism that 

generates the missing values. Thus they retain information at the cost of sensitivity to model 

specification of their own kind. 

In this chapter, I will review the theoretical background of several proposed methods, 

summarize important issues of their application, and finally propose a novel method in the sense 

of its straightforward implementation in application with standard statistical software. In this 

chapter, I will specifically focus on logistic regression analysis of a binary outcome Y  on the 

exposure X , and a vector of covariates 1( , , )pC C= … ′C . The outcome Y  and the exposure 

X  can be missing for some records, whilst the vector of covariate C  is observed for all records. 

The mechanism inducing missing values is assumed to be independent of the missing values itself 

after conditioning on the other variables (MAR). 

 

2.2. Methods 

Missing data is a common problem in statistical analysis. In this chapter, model building and 

inference are built on a parametric framework throughout. We focus on binary exposure and 
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outcome, but the extension of the proposed method to handle missing values in categorical 

exposure with multiple levels will be discussed. Suppose one is interested in a logistic regression 

model of the outcome on the predictor variable and other covariates, i.e., 

 

logit[Pr( 1| , )]

exp( )
or Pr( 1| , )

1 exp( )

Y X x x

x
Y X x

x

α β γ

α β γ

α β γ

= = = = + + ′

+ + ′
= = = =

+ + + ′

C c c

c
C c

c

 (2.1) 

where Y  is a binary outcome, such as an indicator for disease, and X  is a binary predictor 

variable, representing exposure to a certain risk factor. C  is a vector of adjusting covariates that 

takes any form (continuous or categorical or a mixture of both). In the following discussion, we 

focus on cases where only one variable is subject to missing data, but not both. The method to 

handle multiple missing variables can be extended easily with some additional assumptions as 

discussed later. 

 

2.2.1. Outcome Missing 

There have been many discussions on the outcome missingness problem in a logistic 

regression analysis. The related problem of missing values in the outcome Y  was prominent in 

the early history of missing data methods, but is less interesting in the following sense: if the 

X s′  are complete and the missing values of Y  are missing at random, then the incomplete 

cases contribute no information to the regression relationship of Y  on the X s′ . In a logistic 

regression model as in (2.1), the contribution of each record is Pr( | , )
i i i i i i

Y y X x= = =C c . 

Define 
i

m  as the missingness indicator for subject i  such that 1
i

m =  if the outcome 
i

Y  is 

missing and 0
i

m =  otherwise. If a record is complete, then its contribution to the likelihood 

funcion is 

Pr( , 0 | , )

Pr( | , )Pr( 0 | , )

i i i i i i i

i i i i i i i i i i i

Y y m X x

Y y X x m X x

= = = =

= = = = = = =

C c

C c C c
 (2.2) 

If the outcome Y  of a record is missing, then the contribution of the record becomes 
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Pr( 1| , )

Pr( 1, 1| , ) Pr( 0, 1| , )

Pr( 1| , ) Pr( 1| , )

Pr( 0 | , )Pr( 1| , )

[Pr( 1| , ) Pr( 0 | , )]

P

i i i

i i i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

m X x

Y m X x Y m X x

Y X x m X x

Y X x m X x

Y X x Y X x

= = =

= = = = = + = = = =

= = = = = = =

+ = = = = = =

= = = = + = = =

×

i iC c

C c C c

C c C c

C c C c

C c C c

r( 1| , )i i i i im X x= = =C c

 (2.3) 

The above equations hold under the assumption of “ignorable” missingness as defined by Rubin 

(1976) and Little and Rubin (2002). Obviously, when Y  is missing, the terms containing the 

parameters of the model of interest are factorized out and take summation to 1, leaving only the 

term containing the parameters of the missingness model. Therefore, the likelihood contribution 

of the records with ( 1| , )
i i i i i

m X x= = =C c  actually does not involve the parameters of the 

model of interest. Thus in a logistic regression model, if the outcome is missing, there is no 

information gained regarding the regression relationship. Therefore, the likelihood function with 

consideration of the missing mechanism is identical to the likelihood function using only 

complete cases with respect to estimating the primary parameters. In conclusion, in logistic 

regression analysis, the estimates of the regression parameters by CC analysis are consistent and 

efficient when the outcome is missing. 

 

2.2.2. Predictor Variable Missing 

The problem of covariates missing at random has been studied extensively. Complete case 

analysis (CC) is commonly used, with which one would again simply ignore the incomplete cases 

and conduct statistical inference as usual with the complete cases. This approach is used blindly 

in many statistical analyses, although it is not fully efficient, and sometimes induces bias.  There 

are many approaches proposed in previous literature targeted at improvements upon the CC 

analysis. In this chapter, the following widely used methods are reviewed: a maximum likelihood 

approach (ML), the inverse propensity weighting (IPW) approach, multiple imputation (MI) and 

weighted estimating equations (WEE). Furthermore, a novel approach is proposed, which can be 

easily implemented with standard statistical software, namely the predictive probability weighting 
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approach (PPW). The performances of these methods will be compared to the CC analysis by 

simulation studies under different settings. 

Consider a simple 2 2×  table where Y  indicates a binary outcome (e.g. hypertensive 

versus normal) and X  indicates a binary predictor indicating a risk exposure (e.g. smoker 

versus nonsmoker). Suppose data are missing on the predictor variable for some observations. 

Such a dataset can be expressed in the following table. 

 

Table 2.1  Data missing at random in a 2 2×  table 

, ,m y xn  
Smoker not missing 

( 1, 0)X m= =  

Nonsmoker not missing 

( 0, 0)X m= =  

Smoking status missing 

( 1)m =  

Hypertensive 

( 1)Y =  
011n  010n  11n

i
 

Normal 

( 0)Y =  
001n  000n  10n

i
 

 

Define m  as the missing indicator that takes value 1 if the value of X  is missing and 0 if 

it is not missing (note that in some literature, R  is used to represent the missing/observed status, 

with 1R =  as observed (response) and 0R =  as missing (non-response)). We are interested in 

statistical inference on the odds ratio or the logarithm transformation of the odds ratio. 

In this case, the assumption of MAR defined by Rubin (1976) can be expressed as 

 Pr( 1| , 1) Pr( 1| , 0) Pr( 1| )m Y y X m Y y X m Y y= = = = = = = = = =  (2.4) 

 or Pr( 1| , 1) Pr( 1| , 0) Pr( 1| )X Y y m X Y y m X Y y= = = = = = = = = =  (2.5) 

The two equations (2.4) and (2.5) are equivalent. With additional covariates C , the MAR 

assumption can be stated as 

,Pr( 1| , , ) Pr( 1| , )

or Pr( 1| , , 1) Pr( 1| , , 0) ( 1| , )

ym Y y X x m Y y Pm

X Y y m X Y y m Pr X Y y

= = = = = = = = =

= = = = = = = = = = = = =

cC c C c

C c C c C c
(2.6) 

In other words, the conditional probability that the variable of interest X  missing, defined as 

,yPm c , does not depend on the value of X  itself after conditioning on Y  and C .  
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2.2.2.1. Complete-Case Analysis 

In complete-case analysis, the subjects with missing data are totally ignored. In case of a 

2 2×  table, as in Table 2.1, the last column with 1m =  is omitted from analysis. The odds ratio 

is directly estimated by 

 � 011 000
CC

010 001

n n
OR

n n

×
=

×
 (2.7) 

Assuming MAR, the above odds ratio estimator is unbiased, and its standard error can be 

estimated via the Delta method in the usual fashion. With or without covariates, if one is only 

interested in inference about the effect of X  on Y , CC analysis can be used as a valid approach, 

although not efficient. When there are covariate(s) C  where C  is a vector of categorical 

covariates, an odds ratio estimate can be easily achieved in the same way as above, stratified for 

each set of values of C . However, we are often interested in estimating a common odds ratio 

across C , especially when there are continuous components in C . To be more specific, with 

binary outcome Y , a binary predictor variable X  and covariate(s) C , one is usually interested 

in fitting a logistic regression model 

logit[Pr( 1| , )] , ( 0,1)Y X x x xα β γ= = = = + + ′ =C c c  (2.8) 

where C  can contain either categorical or continuous variables, or a mixture of both. In such 

cases, if one is interested in making multivariable inference on the data, CC analysis could lead to 

biased estimates for the regression coefficientsγ . In fact, if , 1|( , )Pry xmPm y==c c  truly depends 

on the values of C , i.e. 

 ,y yPm Pm≠c , 

then the missingness is informative regarding C  (NMAR for C ). And as will be discussed in 

the next chapter, if the missingness depends on both the outcome Y  and the covariates C , i.e. if 

,y yPm Pm≠c  and ,yPm Pm≠c c  both hold at the same time, then the CC estimates of the 

regression coefficients of C  would be biased. Thus if multivariable estimation and inference is 

of interest for both X  and C , complete-case analysis may not be appropriate even if the less 

restrictive assumption MAR holds. 
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2.2.2.2. Maximum Likelihood Approach 

In cases of a 2 2×  table like in Table 2.1 where estimating a crude odds ratio is of interest, 

one can construct a logistic regression model as in equation (1), but without any covariates. 

logit[Pr( 1| )]

exp( )
or Pr( 1| )

1 exp( )

Y X x x

x
Y X x

x

α β

α β

α β

= = = +

+
= = =

+ +

, 0,1x =  (2.9) 

Thus we can make statistical inference on the odds ratio through � ˆlog( )OR β= . To construct 

the likelihood function, one could consider the likelihood contribution of each subject. One can 

specify the joint distribution of ( , )Y X  by the conditional probability of Y  given X  and a 

marginal distribution of X . This approach for modeling the joint distribution of Y  and X  has 

been considered for GLMs by Rubin (1976), Little and Schluchter (1985), Ibrahim (1990), Lipsitz 

and Ibrahim (1996), Ibrahim and Lipsitz (1996), Lipsitz, Ibrahim and Zhao (1999), and Ibrahim, 

Chen, Lipsitz et al. (2005). Specifically with no additional covariates C , a subject with X  

observed contributes the term  

Pr( , , 0) Pr( 0 | , )Pr( | )Pr( )

Pr( 0 | ) Pr( | ) Pr( )

i i i i i i i i i i i i i i i i

i i i i i i i i i

Y y X x m m Y y X x Y y X x X x

m Y y Y y X x X x

= = = = = = = = = =

= = = = = =
 (2.10) 

and a subject with X  missing contributes the term 

1

0

1

0

Pr( , 1) Pr( 1| , )Pr( | )Pr( )

Pr( 1| ) Pr( | )Pr( )

i i i i i i i i i i i

x

i i i i i i i

x

Y y m m Y y X x Y y X x X x

m Y y Y y X x X x

=

=

= = = = = = = = =

= = = = = =

∑

∑
 

 (2.11) 

where the second equality of (2.10) and (2.11) holds under the MAR assumption. For ease of 

exposition, suppose that X  is completely observed for the first 
cc

n  cases and missing for the 

remaining 
cc

n n−  cases. Assuming ordering of the index i  to reflect observations of the 

respective types, the likelihood function is proportional to 
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m Y y Y y X x X x

m Y y m Y y

Y y X x X x Y y
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= = +

==

= = = = = = ×

= = = = =

= = = × = = ×
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∏
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i n

x X x
= +
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  (2.12) 

where n  represents the sample size and 
cc

n  represents the number of complete cases. The first 

two terms define the missingness mechanism, namely the missingness model, whilst the 

remaining terms are determined by the logistic regression model of interest, and a sub-model for 

the marginal distribution of X . The latter follows a Bernoulli distribution, with nuisance 

parameter Pr( 1)p X= = . The justification of the likelihood function can be found in (Rubin 

1976). With the setup in this chapter, the likelihood function (2.12) does have a closed form and 

can be factorized and numerically maximized directly. However, if the observed data likelihood 

in (2.10) does not have a closed form and cannot be factorized, approaches such as the EM 

algorithm are generally needed to obtain MLEs from (2.10) (Ibrahim, Chen, Lipsitz et al. 2005). 

A general method for estimation in the presence of missing covariates has been proposed by 

Ibrahim (1990), who used EM via a method of weights to find the MLEs. As a convenient closed 

form of the likelihood function exists under the set-up of this chapter, it is simple and clear to 

fixate on the direct numerical maximization of the closed-form log-likelihood function. 

In addition to the MAR assumption, if we further assume that the parameters of the missing 

model are “distinct” from the parameters of the logistic regression model of interest, we can 

isolate the first two terms and focus on the remaining terms. These two assumptions together are 

referred to as an “ignorable” missing scenario by Rubin (1976). Thus the likelihood function of 

interest becomes 

[ ]
1

01 1

Pr( | )Pr( ) Pr( | )Pr( )
cc

icc

n n

i i i i i i i i i i i i

xi i n

L Y y X x X x Y y X x X x
== = +

 
= = = = = = = 

 
∑∏ ∏  (2.13) 
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The logarithm transformation of the above likelihood function can be easily maximized 

through available numerical routines. We find quasi-Newton routines in SAS/IML program (SAS 

Institute, Cary, NC) quite straightforward and computationally stable. 

In cases where there is a covariate vector C , one can construct a logistic regression model 

as in (2.1): 

 

logit[Pr( 1| , )]

exp( )
or Pr( 1| , )

1 exp( )

Y X x x

x
Y X x

x

α β γ

α β γ

α β γ

= = = = + + ′

+ + ′
= = = =

+ + + ′

C c c

c
C c

c

, ( 0,1)x =  

Thus we can make statistical inference on the common odds ratio through � ˆlog( )OR β= . 

To construct the likelihood function, one would again consider a full likelihood contribution 

for each subject. One useful strategy to model the joint distribution of ( , )X ′ ′C  was proposed by 

Lipsitz and Ibrahim (1996) and Ibrahim, Lipsitz and Chen (1999) and summarized by Little and 

Rubin (2002), where the joint distribution of the covariates was modeled, in the monotone 

missing case, as a product of one-dimensional parametric conditional distributions for the 

covariates that have missing values. Nonparametric and semi-parametric approaches for 

specifying the covariate distribution have been considered by Chen and Little (1999) and Chen 

(2002, 2004). In any case, a subject with  observed contributes the term 

Pr( , , 0 | ) Pr( 0 | , , )

Pr( | , )Pr( | )

Pr( 0 | , )

Pr( | , )Pr( | )

i i i i i i i i i i

i i i i i i
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C c
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, (2.14) 

and a subject with  missing contributes the term 

1

0
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, (2.15) 

where the second equality of (2.14) and (2.15) holds under the MAR assumption. Assuming 

X

X
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ordering of the index i  to reflect observations of the respective types, the likelihood function 

becomes 
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1
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1 1
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,(2.16) 

where n  represents the sample size and 
cc

n  represents the number of complete cases. As before, 

the first two terms define the missing mechanism, whilst the following two terms are determined 

by the logistic regression model of interest, and a sub-model for the marginal distribution of X  

conditional on C . A logistic regression may be a natural choice: 

 0 1logit[Pr( 1| )]X θ= = = + ′C c θ c , (2.17) 

The modeling of the conditional distribution of X  on C  may need other covariates and/or 

higher order terms of the original C . One can use standard procedures of model selection to 

identify a proper form. Again, we can isolate the first two terms. Then we end up with the 

likelihood under ignorability, i.e., 
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C c C c
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, (2.18) 

The parameters in the first probability term ( , , )α β γ  are of main interest, whilst the 

parameters in the second probability term 0 1( , )θ θ  are nuisance parameters, as similarly 

proposed in Lipsitz, Ibrahim and Zhao (1999) and Ibrahim, Chen and Lipsitz (1999). Again, the 

logarithm transformation of the likelihood function can again be maximized through standard 
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statistical software. 

The likelihood function in (2.16) is a joint distribution of the outcome Y  and the exposure 

X . Thus, it is most clearly suitable in a cross-sectional study. It is very common in epidemiologic 

research, however, that data are collected for a case-control study where the cases are subject to 

oversampling to achieve relative balance between cases and controls for small prevalence 

incidences. In such a case-control study, the likelihood function in (2.16) does not describe the 

true joint distribution with cases over sampled. However, as we are only interested in the odds 

ratio between the outcome and the exposure, with similar argument by Prentice and Pyke (1979), 

one can still fit a logistic regression model to the case-control data via the same likelihood 

function with a prospective (random sampling) formulation as in (2.16). Prentice and Pyke 

showed that the odds ratio estimates together with the covariance matrix remained valid in a 

case-control study. Carroll, Wang and Wang (1995) extended this result to applications for dealing 

with measurement error and missing data. They proved theoretically that the estimators of the 

non-intercept parameters are consistent and asymptotically normally distributed in many cases. 

Assuming appropriate model specifications in (2.18), the estimates of the parameters of interest 

for multivariate analysis, β  and γ , are still valid, although the parameter estimates for the 

conditional marginal distribution of X , Pr( | )X C , would be invalid. 

 

2.2.2.3. Inverse Propensity Weighting 

The treatment of missing data via a weighting adjustment arises in the survey sampling 

literature. The non-response weight is used as a factor that multiplies the sampling weight to 

account for the differential sampling probability, as in the Horvitz-Thompson estimator (1952). 

Basically, this method reconstructs the information that would have been observed via weighting 

the complete records with proper weights, the inverse of the propensity of the complete record. 

Little (1988) proposed to model the binary non-response indicator R  on the other variables X  

using either logistic or probit regression when the number of variables is relatively large for 

respondents and non-respondents. Then the predicted response propensities can be derived for 
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respondents and non-respondents, and the weights applied to respondents are proportional to the 

inverse of the response rates. 

To be more specific, under the 2 2×  table setting, each observed subject is weighted by the 

inverse of the probability that it is observed 

,

1 1

Pr( 0 | , ) Pr( 0 | )
y x

m Y y X x Y y
w

m
= =

= = = = =
 

(2.19) 

The second equality holds under the MAR assumption. Thus the weights can be estimated via the 

marginal rates of Table 2.1: 

�
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 (2.20) 

After applying the weights, the odds ratio can be estimated by  

�
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n n
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 (2.21) 

where 
0, ,1 0, ,0 1,*

0, , 0, , , 0, ,

0, ,1 0, ,0

ˆ
y y y

y x y x y x y x

y y

n n n
n n w n

n n

+ +
= × = ×

+
. This is essentially the same as estimating 

the odds ratio from a reconstructed 2 2×  table as in Table 2.2. The standard error estimate can 

be obtained via the Delta method. 

 

Table 2.2  Reconstructed data set by IPW 

*

0, ,y xn  
Smoker not missing 

(X=1, m=0) 

Nonsmoker not missing 

(X=0, m=0) 

Hypertensive 

(Y=1) 

011 010 11
011

011 010

n n n
n

n n

+ +
×

+
 011 010 11

010

011 010

n n n
n

n n

+ +
×

+
 

Normal 

(Y=0) 

001 000 10
001

001 000

n n n
n

n n

+ +
×

+
 001 000 10

000

001 000

n n n
n

n n

+ +
×

+
 

Complete cases are weighted by the inverse propensity to reflect the underlying sample that 

would have been observed if there were no missing values. 
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In cases where there are covariates, if a subject has observation ( , , )y x c , then the probability 

of it being completely observed can be defined as Pr( 0 | , , )m Y y X x= = = =C c . Since we 

assume MAR, the above probability does not depend on the value of X , and thus it reduces to 

,Pr( 0 | , ) 1 Pr( 1| , ) 1 ym Y y m Y y Pm= = = = − = = = = − cC c C c . Following the same rationale of 

the inverse propensity weighting approach as above, the inverse of the above probability 

,

1

1 yPm− c

 is used to weight each of the complete cases. To estimate ,yPm c , we notice that the 

sets ( , , )m Y C
 

are completely observed for all subjects. We can assume a logistic regression 

model for the binary indicator of missingness m  as the outcome, with the disease status Y  and 

covariates C  from that model as predictors (Cox 1970). Then the statistical analysis of this 

model could be conducted with the entire data set where all observations contain complete values. 

The only assumption needed here is the validity of such a logistic model for missingness fitted to 

the set ( , , )m Y C . The logistic regression model for missingness assumed here is a convenient and 

intuitive choice in practice, as has been done by Rosenbaum and Rubin (1983, 1984, and 1985), 

Rosenbaum (1984), and Little (1988): 

, 0 1 2logit[Pr( 1| , )] logit( )ym Y y Pm yψ ψ ψ ′= = = = = + +cC c c  (2.22) 

The model assessment is indeed very important for this logistic model for the potential 

polynomial and interaction terms in Y  and C  (Rosenbaum and Rubin 1983, 1984). Incorrect 

model specification can lead to bias. Our simulation results also reveal the impressive sensitivity 

to model specification. 

With the predicted probability � ,yPm c  from the above model, one can make inference by 

maximizing a weighted likelihood function corresponding to the primary logistic model. 

Therefore, assuming ordering of the index i  to reflect observations of the respective types, we 

are maximizing a weighted log-likelihood 

1

( , , ) ( , , )
ccn

y yx

i

l w lα β γ α β
=

=∑ c c γ

      

(2.23). 



 27

Here, ( , , )yxl α βc γ  is the usual log-likelihood contribution for a ( , , )y x c  set. For simplicity, 

the ( )i  subscripts on the l  and w  terms are suppressed. This practically means that we fit a 

logistic regression model to the complete part of the data set, applying weights 
�

1

1
y

y

w
Pm

=
−

c

c

 

to each complete subject. This can be accomplished through standard statistical software in one 

single step with a weighting option (e.g. using SAS PROC LOGISTIC (SAS Institute, Cary, 

NC)). 

Pros and cons of IPW versus the other approaches will be discussed at the end of this 

chapter.  

Direct estimate of variance is not appropriate because it does not account for the uncertainty 

in propensity scores estimated by the logistic regression (Jones and Chromy 1982 and Little 

1988), which is generally difficult to quantify by a closed-form expression. However, the point 

estimator for the vector of logistic regression parameters remains valid. The variance in the point 

estimate could be evaluated by jackknife or bootstrap methods (see section 1.2.8). 

 

2.2.2.4. Weighted Estimating Equations 

Robins et al. (1994) proposed a class of estimators via weighted estimating equations (WEE). 

With WEE, the contribution to the estimating equation from a complete observation is weighted 

by the inverse of the probability that the observation is complete (propensity). As a method via 

estimating equations, it does not require full specification of the likelihood, therefore, provides 

attractive double robustness against model misspecification. The estimators are consistent if the 

missing data mechanism model, ( | , )m y c , is correctly specified or the score vector of the 

missing data given the observed data, ( | , )x y c , is correctly specified, but not necessarily both. 

Lipsitz et al. (1999) proposed a WEE method for missing data in covariates which can be 

implemented via an EM-type algorithm. To be more specific, under the setting of this chapter, the 

conditional expectation terms of the score functions (1.1) can be written as a summation of 

weighted score functions: 
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Thus, the score vector in (1.1) becomes 
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(2.24) 

with weights Pr( 1| , )
i i i i

w x y= = c . The WEEs are then found by setting ˆ( ) 0WEES Γ = . As shown 

by Lipsitz et al. (1999), the estimating equation for the missing mechanism ( )
i

π Τ  does not 

involve ββββ  or Θ . As a matter of fact, ˆ ˆ
WEEΤ = Τ  is the MLE obtained via ordinary logistic 

regression. Therefore, given the MLE ˆ
i

π  as known, an EM-type algorithm can be applied to 

obtain the estimate of ˆ
WEEβ  and ˆ

WEEΘ . In passing we note here that this implies that the MLE 

ˆ
i

π  is treated as known therefore the variability in it is not taken into account. If we define the 

function 
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where 
( )t

iw  is the conditional probability in (2.24) evaluated at 
( )tΓ . Then the EM-type 

algorithm is as follows: 

1. Obtain initial estimate 
(1)Γ = Γ . At the t th step, we have 

( )tΓ  

2. Calculate 
( ) ( )( )t t

i iw w= Γ  using the current estimate 
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3. Treating 
( )t

iw  as given and fixed, solve 
( )( | ) 0t

S Γ Γ =  to get updated estimate 
( 1)t+Γ  

4. Repeat step 2 and 3 until convergence. Sɺ  

The asymptotic variance has a “sandwich” form (White 1982), 

 

1 1

1 1 1

ˆ( ) [ ( )] [ ( ) ( ) ] [ ( )]
n n n

WEE i i i i

i i i

Var E S E S S E S

− −

= = =

   
Γ = Γ Γ Γ ′ Γ ′   

   
∑ ∑ ∑ɺ ɺ  

where 
( )

( ) i

i

S
S

∂ Γ ′
Γ =

∂Γ
ɺ  (Lipsitz et al. 1999). 

We notice that the double robustness of the WEE is an asymptotic property. Ibrahim, Chen, 

Lipsitz et. al. (2005) noted that in small sample simulations, there were cases where negative 

weights arise, which often lead to no unique solution. Furthermore, there is underlying similarity 

between the WEE and the ML score estimating equations as discussed by Lipsitz, Ibrahim, and 

Zhao (1999). The ML requires correct specification of ( | , )Y X C  and ( | )X C , but does not rely 

on the model assumption of the missing mechanism ( | , )m Y C . The WEE requires either a 

correct specification of ( | )X C  or ( | , )m Y C , but not both. In that sense it is arguably more 

robust than ML in terms of more flexible model assumptions. Therefore, the WEE is more 

promising in reducing bias in certain cases. However, again this double robustness is an 

asymptotic property. It requires large sample size and a relatively high missingness rate. The latter 

is needed to achieve precision in estimating the missing data mechanism. The simulation studies 

by Lipsitz, Ibrahim, and Zhao (1999) suggest a trend of relatively smaller bias using WEE 

compared to ML, but the conclusion is not definitive. 

 

2.2.2.5. Multiple Imputation 

As discussed in Chapter 1, in multiple imputation, the imputation process is repeated 

multiple times and standard statistical analysis is performed on each imputed dataset. The results 

from each single imputation are combined using Rubin’s method to account for the uncertainty 

that should be built in to correct for treating each imputed dataset as if truly observed.  

There are many ways that MI imputes artificial datasets. In the example with a 2 2×  table, 

one can easily impute new datasets using marginal rates of the complete cases. Each imputed 
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dataset is a 2 2×  table, for which many standard statistical methods can be applied. When there 

are covariates C , especially when there are continuous components in C , a natural approach is 

to assume a logistic regression model of X , the predictor variable with missing data, on the 

other covariates C , and the outcome of the model of interest, Y  (Rubin 1976), namely the 

“imputation model”: 

0 1 2logit[Pr( 1| , )]X Y y yτ τ τ ′= = = = + +C c c  (2.25) 

Polynomial and interaction terms may apply here, and standard methods can be applied for model 

selection on those terms. When the missingness is monotonic, and the variable with missing 

values is binary, the standard SAS procedure MI would conduct multiple imputation based on the 

above imputation model. However, we note here in passing that the appropriateness of model 

(2.25) may be called into question in some extreme circumstances. We return to this issue in 

section 2.2.2.6. 

For the logistic model in (2.25), where the outcome X  has missing values, CC analysis is 

equivalent to the ML approach, as has been discussed in section 2.1. Thus one can achieve 

consistent estimates 

0

1

2

ˆ

ˆ ˆ

ˆ

τ

τ τ

τ

 
 

=  
 
 

, with covariance matrix τΣ , by fitting the above model to the 

complete cases. Rubin suggested that a “proper” imputation (Rubin 1987) should first draw 

random values of the imputation parameters from the proper posterior distribution to construct an 

imputation model, and then use it to generate imputed values. Thus an imputed value of X  will 

be generated as follows. 

1. The predicted probability of X  being 1 is generated as 

† † †

† 0 1 2

† † †

0 1 2

exp( )
Pr ( 1| , )

1 exp( )

y
X Y y

y

τ τ τ

τ τ τ

+ + ′
= = = =
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c
C c
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 (2.26) 

where 

†

0

†

1

†

2

ˆ~ ( , )N τ

τ

τ τ

τ

 
 

Σ 
 
 

 is randomly generated from the multivariate normal distribution, 

where ˆ( , )ττ Σ  is the point estimate and variance-covariance matrix by fitting the model 
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(2.25) to the complete cases; 

2. The imputed value of X , †
x , is generated by a Bernoulli random value generator with 

the probability of † 1x =  being 
†Pr ( 1| , )X Y y= = =C c  from step 1. 

Then the imputed value  is used as an observed value, and the record 
†( , , )Y y X x= = =C c  

is filled into the dataset as a complete case and an imputed rectangular data set is obtained. The 

imputation process above is repeated m  times (usually 5m =  is sufficient as suggested by 

Rubin), and m  rectangular data sets are obtained. From here one can use standard statistical 

methods to analyze each of the imputed data sets. Suppose that the point and covariance matrix 

for the parameter vector β ′  from the i th imputed data set are � iβ  and � iW , 1,2, ,i m= … . 

Then the point estimate β  and covariance matrix T  can be obtained via Rubin’s method as in 

equations (1.2) and (1.3). 

In practice, one can use software packages that provide built-in multiple imputation 

procedures. We found that the procedures PROC MI and PROC MIANALYZE in SAS (SAS 

Institute, Cary, NC) are very convenient. The procedure MI would generate m  imputed data sets, 

which are then supplied to standard statistical analytical procedures, such as PROC LOGISTIC, 

stratified by imputation groups 1,2, ,i m= … . Results are obtained for each of the m  

stratifications. Finally the results from all stratifications are supplied to the procedure 

MIANALYZE for the combined result via Rubin’s method. 

 

2.2.2.6. Predictive Probability Weighting 

In this section, I propose a “novel” weighting approach in the sense of its straightforward 

implementation in standard statistical software packages. Most statistical methods and software 

are designed for dealing with complete cases. Although working methods, such as the EM 

algorithm and weighted estimating equations, are developed as general guiding approaches that 

can be customized to deal with specific problems, researchers are generally not prepared to 

develop such applications for each individual problem. However, as many statistical software 

†x
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packages are capable of carrying out weighting on subjects, it may be easier for researchers to 

implement via those widely available software packages by using our proposed weighting 

approach. 

The idea of the proposed predictive probability weighting approach is from a previous work 

by Lyles and Lin (2010) dealing with misclassification problems, as discussed in Chapter 1. An 

expanded, or augmented, data set can be constructed by listing out all possible realizations of the 

missing values and assigning proper weights to each of them. The idea is similar to the inverse 

propensity weighting in the sense that both are trying to restore, via weights based on the 

probability of missingness, the original data set that would have been observed and then feed it to 

an appropriate statistical program that works on rectangular data sets. It is also similar to the 

multiple imputation method, whilst MI intends to impute a simulated value to replace the missing 

value, but the method proposed here intends to enumerate all possible values of the missing value 

and assign each of them a proper weight. When the assumed missingness models line up, the 

weight assigned to each possible value could be viewed as the mean of the conditional probability 

that is used by MI to generate the imputed values. 

We have seen that the IPW approach would put weights on the subjects without missing data 

with appropriate weights. In predictive probability weighting, instead, each subject with missing 

X  would be replaced by two artificial subjects, representing the two possible values of 1X =  

and 0X = . A similar idea of reconstructing the data set and applying appropriate weights via the 

EM algorithm has been proposed for handling missing values in generalized linear models with 

missing covariates from discrete distributions with a finite range by Ibrahim (1990), Lipsitz and 

Ibrahim (1996) and Horton and Laird (1999), and extended to cooperate with continuous 

covariates by Ibrahim, Chen and Lipsitz (1999). A similar weighting approach has also been 

proposed via estimating equations (weighted estimating equations, or WEE) (Lipsitz, Ibrahim and 

Zhao 1999). The EM algorithm approach and the WEE method require both a model for the 

covariates and a model for the missing data mechanism, and thus a specific algorithm (e.g., EM 

algorithm) is required to achieve simultaneous model fitting. In contrast, we propose to weight 
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each likelihood contribution appropriately in order to take advantage of standard statistical 

software. 

To be more specific, in the 2 2×  case, the two artificial subjects are weighted by their own 

observable probability 

 
Pr( 1| , 1)

Pr( 0 | , 1)

X Y y m

X Y y m

= = =


= = =
 (2.27) 

Under the assumption of MAR, we know that 

 Pr( | , 1) Pr( | , 0)X x Y y m X x Y y m= = = = = = = , (2.28) 

so that the probability can be estimated based on the complete cases of the dataset without 

inducing any bias. Then each of the two “observations” for subjects with missing X  is weighted 

by the estimated probability 

 

�

�

0, ,1

0, ,1 0, ,0

0, ,0

0, ,1 0, ,0

( 1| , 0)

ˆ1 ( 0 | , 0)

ˆ
y

y

y

y y

y

y y

n
Pr X Y y m

n n

n
w Pr X Y y m

n n

w


= = = = =
+


 − = = = = =
 +

 (2.29) 

The reconstructed data set has the following structure: 

 

Table 2.3  Reconstructed data set by PPW 

, ,m y xn  
Smoker 

( 1, 0)X m= =  

Nonsmoker 

( 0, 0)X m= =  

Smoking status missing ( 1)m =  

Reconstructed with 
1X =  

Reconstructed with 

0X =  

Hypertensive 

(Y=1) 
  

011
11

011 010

n
n

n n
×

+
i

 010
11

011 010

n
n

n n
×

+
i

 

Normal 

(Y=0) 
  

001
10

001 000

n
n

n n
×

+
i

 000
10

001 000

n
n

n n
×

+
i

 

Note: Cases with missing values are stratified and weighted by the corresponding predictive 

probabilities to reflect the underlying sample that would have been observed if there were no 

missing values. 

 

After combining the augmented cells and the originally observed cells that have common 

X  values, the above table becomes identical to Table 2.2. For example, if we combine the 2 cells 

011n 010n

001n 000n
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with ( 1, 1)Y X= = , the number of cell counts would be 

011 011 010 11
011 11 011

011 010 011 010

n n n n
n n n

n n n n

+ +
+ × = ×

+ +
 (2.30) 

Thus, by comparing the cell counts of Table 2.2 and Table 2.3, it is clear that in the case of a 

2 2×  table, the inverse propensity weighting and the predictive probability weighting approaches 

are identical. More generally, we can easily show that the weighted log-likelihood based on the 

predictive probability weighting method is identical to that of the inverse propensity weighting if 

there are categorical covariates C  by constructing 2 2×  tables for each set of values of C . To 

be more specific, if the covariate C  contains only categorical components, we can stratify the 

observed data set by C  and obtain a 2 2×  table such as that in Table 2.1 for each of the strata. 

Then IPW can be used to reconstruct a new data set as in Table 2.2 and PPW can be used to 

reconstruct a new data set as in Table 2.3. Then each pair of the new data sets reconstructed by 

IPW and PPW are identical for each of the strata; therefore, the overall odds ratio estimates, as a 

weighted average of the stratified odds ratio estimates, would be identical between the IPW and 

the PPW methods. 

Now consider the case where the covariate C  contains one or more continuous components. 

If we have a subject ( , 1, )y m = c , for which the value of X  is missing, and X  is a binary 

variable, then the above observation can only be made as a consequence of two possible instances, 

an instance of ( , 1, )y x = c  or an instance of ( , 0, )y x = c , with probabilities 1, Pr( 1| , )yw x y= =c c  

and 0, 1,1y yw w= −c c  respectively, and we have 0, 1, 1y yw w+ =c c . The probabilities of each 

possible instance can be used as weights, which sum to one for all possible instances. To be more 

specific, each complete record ( , , )y x c  is kept as is, and assigned weight 1 ( , , , 1)y x wt =c . 

Each incomplete record with the value of X  missing ( , 1, )y m = c  is replaced by two records 

1,( , 1, , )yy x wt w= = cc  and 0,( , 0, , )yy x wt w= = cc  in the expanded data set. Practically, we are 

maximizing a weighted log-likelihood 

, 1, 1, , 0, 1,

1

( , , ) { ( , , ) (1 )[ ( , , ) ( , , )( )1 ]}
n

i yx i y X y y X y

i

l I l I l w l wα β γ α β γ α β γ α β γ= =
=

= + − + −∑ c c c c c  (2.31) 
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where 1
i

I =  if the case is completely observed; yxl c  is the log-likelihood contribution of a 

complete record ( , , )y x c ; and , ,y X xl = c  is the log-likelihood contribution of a reconstructed 

record ( , , )y x c , 0,1x = , and 1, yw c  and 0, yw c  are weights as defined above. The ( )i  

subscripts on the yxl c , 1, yw c  and 0, yw c terms are suppressed for simplicity. 

With this idea in mind, one can use a variety of methods to estimate the proper weights to be 

used. Two methods are proposed here. The first one is to assume a “flipped-around” logistic 

regression model with X  as the outcome, and all the other variables ( , )Y C  as predictors. The 

idea is similar to multiple imputation (2.25), and thus it shares similar properties as MI. Another 

method is through an iterative procedure, which is similar to an EM algorithm, but differs in 

implementation due to its nature as a pseudo-likelihood type of approach. The first method is 

more intuitive and offers the advantage of simple accessibility, therefore, is suggested in general 

cases. However, as the simulation study shows, in some extreme cases, it might suffer from 

confliction between the flipped-around model and the original model; therefore, the second 

method is recommended in these cases. 

The proposed methods provide advantages over the IPW when C  has continuous 

components. By applying weights only to complete cases and removing all incomplete cases, 

IPW might lose information regarding C , whereas the proposed predictive probability weighting 

can preserve this part of the information and achieve better results. A simulation study will 

demonstrate this advantage of the proposed approach. The proposed methods provide advantages 

over the MI in the sense that MI is a simulation based method, which produces slight different 

result each time. The proposed iterative method also provides an alternative to MI when the 

validity of the imputation model (2.25) is questionable. 

Due to the fact that the weights in the proposed method are constructed with predicted 

probabilities, the variability in the predictions should be considered in a proper estimation of 

standard error. Resampling based methods like bootstrap (Efron and Tibshirani 1993) or jackknife 

(Hinkley 1983) are recommended to properly account for such variability, and we recommend 
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jackknife over bootstrapping due to less numerical problems. For each leave-one-out sample from 

the original observed data, the point estimate is obtained by either of the following two methods. 

The final jackknife point estimate and standard error are calculated as discussed in Section 1.2.8. 

 

2.2.2.6.1. “Flipped-Around” Regression Modeling 

The first approach to predict the appropriate weight is simple and very intuitive. Assume a 

logistic regression model as in (2.25), and restated here 

0 1 2logit[Pr( 1| , )]X Y y yτ τ τ ′= = = = + +C c c , 

with the incomplete predictor variable X  as the dependent variable and the outcome Y  and 

the rest of the covariates as independent variables. One can fit this logistic regression model using 

only the complete cases. That is, for the logistic model above where the outcome  has MAR 

missing values, the CC analysis is equivalent to the ML approach, as has been discussed in 

section 2.1. Thus one can achieve ML estimates 

0

1

2

ˆ

ˆ ˆ

ˆ

τ

τ τ

τ

 
 

=  
 
 

 together with covariance matrix  

by fitting the above model (2.25) to the complete cases. Nevertheless, under the MAR assumption, 

it is known that 

Pr( 1| , , 1) Pr( 1| , , 0) Pr( 1| , )X Y y m X Y y m X Y y= = = = = = = = = = = = =C c C c C c  (2.32) 

Thus the parameter estimates from the above model can be directly used to predict the probability 

�Pr( 1| , , 1)X Y y m= = = =C c . Here, I redefine this logistic regression model as 

 
* * *logit[Pr( 1| , ))]X y yα β γ= = + + ′c c  (2.33) 

where 
* * *( , , )α β γ  are distinct from the original model parameters ( , , )α β γ . Possible 

interaction and polynomial terms of Y  and C  can be included if necessary to approximate a 

saturated model (Breslow and Powers, 1978). 

Then with each incomplete case ( , 1, )y m = c , one can replace it by the two possible records 

( , 1, )y X = c  and ( , 0, )y X = c , and assign weights 1w  and 0w  respectively, where 

X

τΣ
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�
1 ( 1| , )w Pr X y= = c  and �

0 ( 0 | , )w Pr X y= = c  can be easily estimated by the above model. 

This approach makes a similar assumption of a “flipped-around” logistic regression model of 

X  on Y  and C  as MI does, suggesting that the two would share similar properties. The 

flipped-around logistic regression model is intuitive and simple. However in extreme situations, 

this assumption may conflict with the logistic regression model of Y  on X  and C  in (2.1). 

Intuitively, the odds ratio relating Y  to X  can be estimated in both ways, i.e., 

 � *ˆ ˆlog( )OR β β= = . (2.34) 

This will be true or nearly so under moderate circumstances, but could fall apart in extreme 

situations when there are continuous components in C , and the regression parameters and the 

variances of C  are large in magnitude. A logistic model of a binary outcome Y  on predictors 

X  and C , where X  is a binary predictor, does not directly imply a valid flipped-around 

logistic model of X  on Y  and C , unless polynomial terms are added into model (2.33) 

properly to approximate a saturated model. With continuous covariate C , the flipped-around 

logistic regression model fitting is not trivial. As it was discussed by Breslow and Powers (1978) 

and Prentice and Pyke (1979), the equivalence of the association relationship between the 

outcome and the exposure estimated by the retrospective and prospective models can only be 

approximated by further covariate adjustment. The polynomial terms of the continuous covariates 

need to be added into the linear term to approximate a saturated model so that the equivalence 

could be reached. However, when the covariates are “sufficiently continuous”, it is neither 

feasible nor desirable to reach such saturated model. Therefore, the incompatibility of the 

“flipped-around” model and the original model with sufficiently continuous covariates induces 

the drawback of those methods based upon these two models. As a matter of fact, empirical 

studies show that if C  has relatively large variance and/or a large regression coefficient γ , then 

the estimates β̂  and 
*β̂  can be quite different (Masalovich, 2010). In such a case, the above 

equation (2.34) does not hold. As a result, the predicted probability estimated using model (2.33) 

deviates away from the true probability, which results in inaccurate predicted weights, and in turn 
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results in biased estimates in ˆ ˆ( , )β γ . Simulation studies were conducted to demonstrate this 

finding. 

Furthermore, we also notice the tactic of relying on model (2.33) in this way would only 

allow estimation of β  via 
*β  in an ideal case, while the estimate of α  and γ  is not 

available. This makes a multivariate analysis on ( , , )α β γ  not directly available if that is of 

interest. 

In passing we notice that one may consider the alternative to estimating the odds ratio 

relating Y  to X  via the model as in (2.33). In this way one can translate the exposure MAR 

problem into an outcome MAR problem, and make use of the result found in Section 2.2.1. 

However, the tactic of relying on this “flipped-around” model would only allow one to estimate 

the odds ratio relating Y  to X , but not the other covariates. 

As pointed out above, the MI method makes similar assumptions as in the flipped-around 

modeling for PPW based on model (2.25). Thus, the MI could result in biased estimates as well, 

as we will show in the simulation study. Therefore, the following method is proposed as an 

alternative over the PPW and MI approaches in certain circumstances when they might fall apart 

due to inadequacy in model (2.33). 

 

2.2.2.6.2. Iterative Predictive Probability Weighting Method 

Following the same idea of assigning a proper weight to each possible instance that would 

have been observed if there was no missingness, there is another way to predict the values of the 

weights. In the above method, we assume a flipped-around logistic regression model with X  as 

the dependent variable to make the prediction. Alternatively, one can use Bayes’ rule in 

conjunction with the assumed model (2.1) and rewrite the conditional probability of X  given 

the rest of the variables in the following way. 

 
1

0

Pr( | 1, ) Pr( 1| )
Pr( 1| , )

Pr( | , )Pr( | )
x

Y y X X
X Y y

Y y X x X x
=

= = = = =
= = = =

= = = = =∑

C c C c
C c

C c C c

 (2.35) 
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Ibrahim (1990) proposed a similar weighting approach using the predictive probability when 

implementing the E-step of an EM algorithm. The difference is that, assuming a marginal 

distribution of the vector of predictors, denoted as ( , )X C  here, Ibrahim dealt with the joint 

distribution of ( , , )Y X C  directly, resulting in the necessity to correctly model the whole joint 

distribution. This approach was applied to an example (Ibrahim 1990) with only dichotomized 

covariates so that a saturated model could be applied in modeling the joint distribution. Note, 

however, that if there are continuous variables present, fitting a saturated model will become 

complicated. In addition to this difficulty, the numerical maximization needed in the application 

of Ibrahim’s method presents an obstacle to general application. Lipsitz, Ibrahim, Chen and 

Peterson (1999) proposed a similar idea with the EM algorithm through weights for generalized 

linear models with NMAR missing covariates. This method can be easily transformed to deal 

with a MAR covariate, as in the setting of this chapter. However, additional computational 

complexity in the EM algorithm is caused by simultaneous maximization of the likelihood 

functions of more than one model, although only one model is of interest. 

Because we are only interested with the model ( | , )Y X C  rather than the model ( | )X C , a 

pseudo-likelihood (Gong and Samaniego, 1981) type of approach is proposed here, where the 

nuisance parameters involved in modeling ( | )X C  will be pre-estimated and the MLE’s are 

plugged into the likelihood directly. Let us now assume a sub-logistic regression model of X  on 

the rest of the covariates C : 

 0 1logit[Pr( 1| )]X θ θ ′= = = +C c c  (2.36) 

If the missingness of X  is MAR and depends on Y  and C  but not their interaction, then 

the estimate 0 1
ˆ ˆ( , )θ θ ′ ′  by CC is unbiased. Therefore the probability Pr( 1| )X = =C c  can be 

predicted by fitting model (2.36) directly to the complete cases. With the resulting predictive 

probability, together with the main model of interest (2.1), one can show with Bayes’ rule that
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Pr( | 1, ) Pr( 1| )
Pr( 1| , )

Pr( | 1, )Pr( 1| ) Pr( | 0, )(1 Pr( 1| ))

1

1 Pr( 1| ) (1 )
1

Pr( 1| ) 1

y

Y y X X
X Y y

Y y X X Y y X X

X e e

X e

β α β γ

α γ

′

′

− + +

+

= = × =
= = = =

= = = + = = − =

=
− = +

+ ×
= +

c

c

c c
C c

c c c c

c

c

(2.37) 

This equation (Masalovich 2010) can be used to achieve prediction of the probability 

Pr( 1| , )X Y y= = =C c  as long as Pr( 1| )X = C  is correctly predicted with model (2.36) as 

discussed above. Furthermore, the prediction of the probability  can be 

made in more general cases. For example, as discussed by Lipsitz, Ibrahim and Zhao (1999) 

under the WEE setting, one can adopt a non-parametric model for  as long as it 

can model the conditional probability correctly. Then the predicted conditional probability 

�Pr( 1| )X = C  can be plugged in directly to (2.37) and the rest of the procedures follow the same 

approach previously proposed for the PPW method. 

To estimate the above probability, we need estimates of the parameters ˆˆ ˆ( , , )α β γ  and 

0 1
ˆ ˆ( , )θ θ ′

. In the EM algorithm proposed by Ibrahim (1990), a numerical maximization procedure 

is needed to get simultaneous estimates for the above two sets of parameters. Thus, no standard 

statistical software package is available for ready implementation. Users need to write their own 

program for each specific problem and worry about iteration convergence, etc. As proposed here, 

the latter set of parameters can be estimated through fitting the sub- logistic regression model 

(2.36) on the complete cases, leaving only the parameters of interest for the main model (2.1) to 

be estimated. Thus, standard statistical software packages with a weighting option can be utilized 

to carry out the maximization step. The whole process still requires iteration, but compared to the 

EM approach, it eliminates the numerical algorithms needed both in the E-step and the M-step. 

Thus, it becomes much more user-friendly in real application. The difference between the 

proposed PPW method via iteration and the Ibrahim’s ML method via EM algorithm is 

summarized in Table 2.4. 

One can begin with the complete-case estimates of the parameters of interest by fitting 

Pr( 1| , )X Y y= = =C c

Pr( 1| )X = C
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model (2.1) to the complete cases, obtaining, say, 
0 0 0ˆˆ ˆ( , , )α β γ  as a reasonable starting point. 

Then we can calculate initial weights as follows: 

 

�

�

�

0 0 0 0

0 0

0
0

1 ˆ ˆˆ ˆ

ˆ ˆ

0 0

0 1

1
( 1| , )

1 ( 1| ) (1
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P )
1

1(

r

P 1| )

1

r

y
w X y

X e e

eX

w w

β α β γ

α γ

− + + ′

+ ′

= = =
− = +

+
+=

= −

c

c

c
c

c

 

(2.38) 

Using these weights, one can fit a weighted logistic regression model with the reconstructed 

dataset, and maximize the weighted log-likelihood in (2.31) via standard software to get a new set 

of parameter estimates 
1 1 1ˆˆ ˆ( , , )α β γ . Then, one can update the predicted weights via equations 
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�

�

(( 1) ( 1) ( 1)

( 1 (

)
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1

)

1 ˆ ˆˆ

( )
( )

(

ˆ
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− + ′
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= = =
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c
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 (2.39) 

and fit the weighted logistic regression model again to obtain an updated set of parameter 

estimates 
( ) ( ) ( )ˆˆ ˆ( , , )t t tα β γ . Based on a preset convergence criterion, the estimates 

( ) ( ) ( )ˆˆ ˆ( , , )t t tα β γ  

stabilize to the final estimate as t  increases. Formally, the estimate from this approach, namely 

ˆˆ ˆ( , , )α β γ , maximizes the following weighted likelihood function, 

, 1, 1 , 0, 0

1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) { ( , , ) (1 )[ ( , , ) ( , , ]) }
n

i yx i y X y X

i

l I l I l w l wα β γ α β γ α β γ α β γ= =
=

= + − +∑ c c c

 

 (2.40) 

where 
�

�

1 ˆ ˆˆ ˆ

ˆ ˆ

1

1 ( 1| ) (1 )
1

1( 1|

Pr

Pr )

y
w

X e e

eX

β α β γ

α γ

− + ′
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+
=

− = +
+ ×

+=

c

c

c

c

 and 0 11w w= −  

To sum up, the proposed iterative process for predictive value weighting contains the 

following steps: 

1. Fit a sub- logistic regression model of X  on C  to obtain . Use  to 

calculate the predicted probability �Pr( 1| )X = =C c  for each of the incomplete cases. 

2. Fit a logistic regression model as in (2.8) to the complete cases to get a set of starting 

0 1
ˆ ˆ( , )θ θ ′

0 1
ˆ ˆ( , )θ θ ′
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values , and calculate the starting value of the weights 
0

1w  and 
0

0w  via 

(2.38)  

3. Maximize the weighted log-likelihood function (2.31) via standard software, and get a 

new set of parameter estimates 
( ) ( ) ( )ˆˆ ˆ( , , )t t tα β γ . Update the weights via (2.39)  

4. Repeat step 3 until convergence criterion is met 

Simulation results show that this iterative process converges very quickly, and no 

non-convergence cases have been observed so far under the setup described. 

 

Table 2.4  Comparison of the iterative PPW and Ibrahim’s ML approach via EM algorithm 

Step EM algorithm by Ibrahim (1990) Proposed PPW via iteration 

0  Get the MLE 0 1
ˆ ˆ( , )θ θ  with CC 

1 Supply initial values 
(0) (0) (0) (0) (0)

0 1( , , , , )α β γ θ θ  

Supply initial values 
(0) (0) (0)( , , )α β θ  

2 Calculate the proper weight by (2.35) 

with 
( ) ( ) ( ) ( ) ( )

0 1( , , , , )i i i i iα β γ θ θ , and get the 

weighted log-likelihood function of the 

joint distribution function of 

0 1( , | ; , , , , )f Y X C α β γ θ θ  

Calculate the proper weight by (2.35) 

with 
( ) ( ) ( )

0 1
ˆ ˆ( , , , , )i i iα β γ θ θ , and get the 

weighted log-likelihood function of 

( | , ; , , )f Y X C α β γ  

3 Use numerical algorithms to obtain the 

simultaneous MLE 
( 1) ( 1) ( 1) ( 1) ( 1)

0 1( , , , , )i i i i iα β γ θ θ+ + + + +
 

Use standard statistical software to 

obtain the MLE 
( 1) ( 1) ( 1)( , , )i i iα β γ+ + +

 

4 Repeat step 2 (E-step) and 3 (M-step) 

until convergence 

Repeat step 2 (E-step) and 3 (M-step) 

until convergence 

 

 

2.2.3. More Than One Variable Missing 

Now suppose that more than one variable is subject to incomplete values. For simplicity, 

suppose at most two variables can be missing at the same time. 

First, suppose the outcome Y  and the binary exposure X  can be missing at the same time. 

In this case, it can be readily shown that records with outcome Y  missing contribute no 

information to the regression relationship between the outcome and the exposure. Therefore, if 

one is interested in estimation of the regression coefficients, one can simply omit the records with 

0 0 0ˆˆ ˆ( , , )α β γ
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the outcome missing, leaving only the complete records and the records with only X  missing. 

Let ym  and 
x

m  be missingness indicators for Y  and X . This can be further illustrated by 

the following derivation of the likelihood contribution of such observations. Consider a record 

with Y  missing and X  observed. The likelihood contribution is as follows: 

Pr( 1, 0, | )

Pr( 1| 0, , ) Pr( 0 | , ) Pr( | )

Pr( 1| , ))Pr( 0 | )Pr( | )

i i

i i i

i i

y x i i i i

y x i i i i x i i i i i i i i

y i i i i x i i i i i i

m m X x

m m X x m X x X x

m X x m X x

= = = =

= = = = = = = = = =

= = = = = = = =

C c

C c C c C c

C c C c C c

 (2.41) 

For a record with both Y  and X  missing, we have 

Pr( 1, 1| )

Pr( 1| )Pr( 1| )

i i

i i

y x i i

y i i x i i

m m

m m

= = =

= = = = =

C c

C c C c

  

(2.42) 

The above equations hold because of the assumptions of MAR for both Y  and X  and 

independence between missingness indicators. They show that the contribution of these records 

cannot be factorized into stand-alone terms regarding the regression relationship between Y  and 

( , )X C . Therefore, these records contribute no information regarding the regression relationship 

of Y  on X  and C . Conclusively, if the outcome and the exposure can be missing at the same 

time, one can simply omit the records with the outcome missing. Then the question turns out to be 

the case where only the exposure X  is missing at random. From here, one can adopt the 

proposed method (PPW), or any other methods that deal with MAR exposure problems. 

Now, suppose there are two binary exposure variables, 1X  and 2X , and both are subject to 

missing values but that Y  and C  are fully observed. Assume that missingness indicators are 

independent, i.e. 

1 2 1 2
( , | , ) ( | , ) ( | , )X X X Xp m m Y p m Y p m Y= ×C C C . 

Then the proposed PPW method via “flipped-around” model can be extended as follows. A 

record with both 1X  and 2X  observed is kept as is. A record with only 1X  missing, 

2( , , , )Y X Ci , is replaced with two artificial records 1 2( , 1, , )Y X X= C  and 1 2( , 0, , )Y X X= C , 

with weights 
21xw  and 

20xw  respectively, where 
21 1 2Pr( 1| , , )xw X Y X= = C  and 
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2 20 11x xw w= − . A record with only 2X  missing, 1( , , , )Y X Ci , can be replaced similarly. A record 

with both 1X  and 2X  missing, ( , , , )Y Ci i , is replaced with four artificial records, representing 

the four possibilities of the combinations of values of 1X  and 2X , with weights 11w , 10w , 

01w  and 00w , where 

11 1 2Pr( 1, 1| , )w X X Y= = = C , 

10 1 2Pr( 1, 0 | , )w X X Y= = = C , 

01 1 2Pr( 0, 1| , )w X X Y= = = C , and 

00 1 2Pr( 0, 0 | , )w X X Y= = = C . 

The weights 
21xw , 

20xw  and 
11xw , 

1 0xw  could be readily predicted via logistic regression 

models on the corresponding “complete cases” as MAR outcome cases. For the weights 11w , 

10w , 01w  and 00w , assuming the independence between missingness indicators, there are two 

ways to factorize them.  

1 2 1 1 2 2 1 1 2 2 2 2Pr( , | , ) Pr( | , , )Pr( | , )x xw X x X x Y X x X x Y X x Y= = = = = = =C C C  

or 
1 2 1 1 2 2 2 2 1 1 1 1Pr( , | , ) Pr( | , , )Pr( | , )x xw X x X x Y X x X x Y X x Y= = = = = = =C C C  

Depending on one’s preference about the true underlying model, either of the two ways of 

factorization can be applied. Then each of the conditional probabilities can be predicted by fitting 

a logistic regression model on the corresponding “complete cases”. The missing values in these 

model fittings occur in the outcomes, and are MAR. Therefore the parameter estimates from the 

CC analysis are consistent, as has been discussed in section 2.2.1. 

 

2.3. Simulation Results 

Simulation studies were performed to compare the performances of the discussed methods, 

namely the CC analysis, ML, IPW, WEE, PPW and MI. 500 simulations were conducted to 

evaluate the point estimates and the coverage rate of the 95% confidence intervals. In each 

simulation, 300 subjects were generated. First, covariate C  was generated from a random 

Bernoulli distribution to compare the performance of the methods in the categorical covariate 
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case. Then covariate C  was generated from a Normal distribution to compare the performance 

of the methods in the continuous covariate case. The exposure X  was then generated from a 

logistic model as in (2.17) to induce correlation between X  and C . Then the outcome Y  was 

generated from a logistic model as in (2.1). To induce missing data, a random binary indicator m  

was generated following the model (2.22), and the observation of X  was set to be missing for a 

subject if 1m = , so that the probability that X  is missing for a subject depends on the values of 

the outcome Y  and the covariate C , but not on the value of X  itself given Y  and C  

(MAR). 

Within the continuous covariate case, three sets of simulation studies were conducted to 

examine the three questions of interest discussed above. 

1. The “flipped-around” logistic model might not be compatible with the original logistic 

model when there are continuous covariates (see discussion in Section 2.2.2.6.1). This 

might impact the performance of the classic multiple imputation method and the 

proposed predictive probability weighting method via “flipped-around” regression 

modeling. 

2. The IPW method only retains, and applies appropriate weights to the complete cases. 

When there are continuous covariates, the information regarding these continuous 

covariates in the incomplete cases is lost, which might result in poor performance of IPW, 

especially when the missing rate is high (see discussion in 2.2.2.3). 

3. The semi-parametric method WEE provides potential advantages in terms of robustness 

against model misspecification (see discussion in Section 2.2.2.4). The proposed PPW 

methods provide advantage in terms of simple implementation with standard software. 

Therefore it is of interest to assess how robust the PPW method is compared to the WEE.  

 

2.3.1. With Categorical Covariate C  

In cases where the covariate C  contains only categorical components, the complete case 

analysis gives a valid estimate for the odds ratio of interest with respect to X . However, as 
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discussed in Section 2.2.2.1, the parameter estimates by CC analysis regarding covariate C  are 

invalid. The other methods discussed in Section 2.2 provide improvements upon the result from 

CC analysis, especially in that they are capable to provide valid estimates to the parameters 

related to covariate C . In this simulation we only compare the point and standard error estimates, 

although the variance-covariance matrix can be achieved by standard multivariable Jackknife 

methods for IPW and PPW. 

Assume C  is a random binary variable, with probability 0.5 being one and 0.5 being zero. 

Suppose  is correlated with C  through a logistic model with intercept zero and coefficient 

one. The true coefficients under model (2.1) were selected as follows: 

. A missingness indicator m  was generated from a logistic model 

(2.22) involving only Y  and C , which resulted in a MAR case. 500 data sets were generated. 

Under the setup of the MAR case, it results in a 22.3% missing rate overall, with 36.4% with 

0Y =  and 15.7% with 1Y = . Point estimates, standard deviations, mean estimated standard 

errors and 95% confidence interval coverage rates were compared in the following table. 

In a case with only categorical covariates, Table 2.5 shows that CC analysis can provide an 

acceptable estimate regarding the effect of exposure , which is MAR. However, the estimate 

of γ  is quite biased due to the fact that the association between  and C  produces a 

NMAR case regarding the covariate C . Therefore, even in a MAR case, the CC analysis is not 

appropriate if one is interested in a multivariable analysis. Compared to the CC analysis, all the 

other methods make satisfying improvement on the estimates of all the parameters. The PPW 

based on flipped-around logistic model produced almost identical result to that by the IPW, due to 

the fact that in case of all categorical variables, these two methods are essentially identical, as 

discussed in section 2.2.5. 

  

X

1, 1.5,and 2α β γ= = = −

X

X
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Table 2.5  Comparison of the methods when the covariate is categorical 

 α  β  γ  

True Values 1 1.5 -2 

CC 

1.85 

(0.41) 

[0.37] 

{36.0%} 

1.55 

(0.40) 

[0.40] 

{96.2%} 

-2.70 

(0.49) 

[0.47] 

{73.4%} 

ML 

1.02 

(0.25) 

[0.25] 

{96.0%} 

1.55 

(0.40) 

[0.40] 

{96.0%} 

-2.07 

(0.37) 

[0.36] 

{94.6%} 

PPW 

(Flipped Logistic Model Based) 

1.00 

(0.24) 

[0.25] 

{96.6%} 

1.51 

(0.38) 

[0.42] 

{97.4%} 

-2.01 

(0.35) 

[0.37] 

{97.0%} 

PPW 

(Iteration Based) 

1.00 

(0.25) 

[0.26] 

{96.4%} 

1.46 

(0.38) 

[0.42] 

{97.0%} 

-1.98 

(0.35) 

[0.37] 

{96.4%} 

IPW 

1.00 

(0.25) 

[0.26] 

{96.8%} 

1.50 

(0.42) 

[0.47] 

{95.8%} 

-2.01 

(0.37) 

[0.40] 

{96.4%} 

MI 

1.03 

(0.25) 

[0.25] 

{96.2%} 

1.55 

(0.40) 

[0.41] 

{96.6%} 

-2.07 

(0.36) 

[0.36] 

{94.8%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates. 

 

2.3.2. With Continuous Covariates C  

Now let us consider the case when there are continuous components in covariate C . The 

true coefficients under model (2.1) were selected as follows: 1, 2,and 1α β γ= = = − . C  is 

generated from a normal distribution (0,1)N , then  is generated from a logistic model as 

(2.36), with 0 0θ =  and 1 2θ = . A missingness indicator m  was generated from a logistic 

model (2.22) involving only Y  and C . Under the setup of the MAR case, it results in a 24.5% 

X
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missing rate overall, with 47.5% with 0Y =  and 20.1% 1Y = . 

Under this moderate condition where the magnitude of variation and the regression 

coefficient of C  were not very large, all the methods performed well except CC analysis (Table 

2.6). The suggestion is that under moderate conditions, the proposed methods and the current 

widely used methods can all improve the inference upon the complete case analysis.  

 

Table 2.6  Comparison of the methods when the covariate is continuous 

 α  β  γ  

Model Setup 1 2 -1 

CC 

1.90 

(0.38) 

[0.37] 

{27.4%} 

2.06 

(0.79) 

[0.69] 

{92.7%} 

-1.55 

(0.40) 

[0.37] 

{71.5%} 

ML 

1.03 

(0.26) 

[0.26] 

{95.6%} 

2.06 

(0.68) 

[0.63] 

{93.6%} 

-1.03 

(0.29) 

[0.28] 

{94.4%} 

PPW 

(Flipped Logistic Model Based) 

1.01 

(0.25) 

[0.27] 

{96.9%} 

1.98 

(0.65) 

[0.66] 

{95.6%} 

-1.00 

(0.28) 

[0.28] 

{94.8%} 

PPW 

(Iteration Based) 

1.01 

(0.26) 

[0.27] 

{96.8%} 

1.94 

(0.65) 

[0.66] 

{95.5%} 

-0.98 

(0.28) 

[0.29] 

{94.3%} 

IPW 

0.98 

(0.61) 

[0.38] 

{97.2%} 

2.04 

(0.98) 

[0.86] 

{96.0%} 

-1.01 

(0.60) 

[0.45] 

{92.6} 

MI 

1.05 

(0.27) 

[0.27] 

{96.1%} 

2.01 

(0.69) 

[0.65] 

{94.2%} 

-1.01 

(0.29) 

[0.28] 

{94.3%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates 

 

In passing we also notice that the IPW lacks efficiency compared to the other methods, due 
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to restricting analysis to only those subjects with all values observed (see section 2.3.2.3 for 

details). 

 

2.3.2.1. The Problem of the “Flipped-Around” Model Assumption 

We are aware of the potential incompatibility of the “flipped-around” model and the original 

model (e.g., Breslow and Powers 1978). It is of interest to see how the flipped-around logistic 

model could fail in some circumstances. The true coefficients under model (2.1) were selected as 

follows: 1, 2,and 2α β γ= = = − , with relatively large coefficient for C . C  is then generated 

from a normal distribution 
2(0,2 )N , with relatively large variance. Missing data were introduced 

similarly as before, resulting in a 33.1% overall missing rate, with 38.7% with 0Y =  and 30.7% 

with 1Y = . 

As discussed in section 2.2.2.5.1, the first version of the proposed method suffers from the 

assumption of a “flipped-around” logistic regression model of the exposure on the outcome and 

the other covariates (equation (2.25)). With continuous covariate C , fitting the flipped-around 

logistic regression model is not trivial. The polynomial terms of the continuous covariates need to 

be added into the linear term to approximate a saturated model. However, when the covariates are 

“sufficiently continuous”, it is neither feasible nor desirable to reach such a saturated model. 

Under the setup of this simulation, the flipped-around logistic regression model without 

additional covariate adjustment could not provide a valid estimate to the conditional probability 

modeled by (2.25). The proposed PPW via a “flipped-around” model and the MI with 

“flipped-around” imputation model both result in biased estimates. Therefore, no matter if the 

probability is used to randomly generate an artificial instance for X  as in MI, or to properly 

weight each possible instance of X  as in PPW, bias is induced (Table 2.7). ML and PPW based 

on iteration are recommended in this case. They are based on an additional logistic regression 

model of the exposure on the rest of the covariates, but not on the outcome. Therefore, the 

paradox between the flipped-around model and the original model in logistic regression can be 

avoided. 
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Table 2.7  Comparison of the PPW and MI methods when the “flipped-around” logistic 

regression model is not appropriate 

 α  β  γ  

Model Setup 1 2 -2 

CC 

1.55 

(0.55) 

[0.52] 

{86.6%} 

2.25 

(1.01) 

[0.85] 

{93.2%} 

-2.71 

(0.57) 

[0.49] 

{83.2%} 

ML 

1.00 

(0.38) 

[0.36] 

{94.0%} 

2.16 

(0.84) 

[0.76] 

{94.0%} 

-2.11 

(0.35) 

[0.33] 

{96.0%} 

PPW 

(Flipped Logistic Model Based) 

1.04 

(0.35) 

[0.37] 

{96.4%} 

1.78 

(0.67) 

[0.69] 

{93.6%}** 

-1.92 

(0.27) 

[0.29] 

{94.4%} 

PPW 

(Iteration Based) 

0.97 

(0.36) 

[0.38] 

{95.6%} 

2.04 

(0.80) 

[0.80] 

{95.8%} 

-2.01 

(0.32) 

[0.35] 

{96.2%} 

MI 

1.08 

(0.37) 

[0.37] 

{95.2%} 

1.86 

(0.71) 

[0.75] 

{95.2%}** 

-1.99 

(0.28) 

[0.41] 

{96.6%} 

*   Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. 

Values in brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval 

coverage rates 

**  Though the overall coverage rate of the 95% confidence interval for parameter β  looks reasonable, the 

confidence intervals actually lean to the left by a great deal. The un-coverage rate for the PPW (flipped-around 

logistic model) is 5.2% for the upper side and 1.2% for the lower side, due to the biased point estimate; and for the 

MI 3.8% for the upper side and 1% for the lower side. 

 

2.3.2.2. The Problem of IPW When the Missing Rate Increases 

By eliminating the whole records with missing values, the IPW method loses information 

regarding the variables without missing values. This can result in reduced precision, or even 

biased estimates. As the missing rate increases, this problem becomes more and more critical. A 

simulation study was conducted to demonstrate the drawback of the IPW. Here, the true 

coefficients under model (2.8) were selected as follows: 1, 2,and 2α β γ= = = − . C  is 
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generated from a normal distribution 
2(0,2 )N . The missing indicator was generated from a 

logistic model (2.22) based on the outcome Y  and covariate C . A set of values was chosen for 

the intercept to adjust the overall missing rates so that it increased from 10% to 50% by 10%, and 

one set of simulation was conducted under each level of missing rates. As summarized in the 

following tables (Table 2.8-Table 2.12), the estimate by IPW works fine when the missing rate is 

low, but becomes biased as the missing rate increases. When the overall missing rate reaches 

about 50%, the estimate by IPW becomes dramatically biased. Extreme estimates were obtained 

in some simulations because one subject in the complete case sub-data set could be assigned a 

weight as high as around 15, as observed in the simulation, while the complete case sub-data set 

contains only about 150 subjects. This subject then becomes an influential point and therefore 

disturbs the inference significantly. The result should no longer be trusted. Some modified 

versions of the IPW method have been proposed recently. One naïve approach is to simply 

truncate the weights when they are extremely large. Bodnar et al. (2004) and Cao et al. (2009) 

proposed alternative ways to construct the weights for better stability in extreme cases. 
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Table 2.8  Comparison of PPW and IPW as the missing rate increases: missing rate=10.9% 

    

True Values 1 2 -2 

CC 

1.09 

(0.37) 

[0.34] 

{93.6%} 

2.12 

(0.60) 

[0.59] 

{96.4%} 

-2.26 

(0.36) 

[0.32] 

{92.0%} 

ML 

1.03 

(0.34) 

[0.32] 

{94.8%} 

2.07 

(0.58) 

[0.57] 

{95.4%} 

-2.07 

(0.29) 

[0.28] 

{94.6%} 

PPW 

(Flipped Logistic Model Based) 

1.05 

(0.34) 

[0.33] 

{95.4%} 

2.00 

(0.55) 

[0.57] 

{95.8%} 

-2.04 

(0.28) 

[0.28] 

{95.2%} 

PPW 

(Iteration Based) 

1.03 

(0.34) 

[0.33] 

{95.2%} 

2.07 

(0.58) 

[0.60] 

{96.6%} 

-2.07 

(0.29) 

[0.30] 

{95.4%} 

IPW 

1.03 

(0.36) 

[0.35] 

{95.2%} 

2.11 

(0.61) 

[0.64] 

{97.2%} 

-2.11 

(0.35) 

[0.36] 

{95.6%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates 

 

 

  

α β γ
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Table 2.9  Comparison of PPW and IPW as the missing rate increases: missing rate=20.4% 

    

True Values 1 2 -2 

CC 

1.12 

(0.36) 

[0.36] 

{96.2%} 

2.11 

(0.65) 

[0.64] 

{97.0%} 

-2.32 

(0.38) 

[0.36] 

{94.4%} 

ML 

1.00 

(0.32) 

[0.33] 

{96.0%} 

2.10 

(0.63) 

[0.62] 

{96.4%} 

-2.06 

(0.28) 

[0.29] 

{96.6%} 

PPW 

(Flipped Logistic Model Based) 

1.04 

(0.31) 

[0.34] 

{97.0%} 

1.95 

(0.57) 

[0.59] 

{96.0%} 

-2.00 

(0.25) 

[0.27] 

{97.4%} 

PPW 

(Iteration Based) 

1.00 

(0.32) 

[0.34] 

{96.4%} 

2.09 

(0.63) 

[0.65] 

{96.6%} 

-2.06 

(0.28) 

[0.30] 

{97.2%} 

IPW 

1.01 

(0.34) 

[0.37] 

{97.4%} 

2.16 

(0.70) 

[0.72] 

{97.0%} 

-2.12 

(0.43) 

[0.42] 

{96.8%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates 

  

α β γ
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Table 2.10  Comparison of PPW and IPW as the missing rate increases: missing rate=30.3% 

    

True Values 1 2 -2 

CC 

1.25 

(0.42) 

[0.41] 

{93.8%} 

2.11 

(0.74) 

[0.74] 

{95.4%} 

-2.45 

(0.49) 

[0.44] 

{91.6%} 

ML 

1.01 

(0.35) 

[0.35] 

{96.0%} 

2.12 

(0.75) 

[0.70] 

{94.4%} 

-2.08 

(0.33) 

[0.31] 

{93.6%} 

PPW 

(Flipped Logistic Model Based) 

1.07 

(0.35) 

[0.35] 

{97.8%} 

1.88 

(0.65) 

[0.65] 

{95.0%} 

-1.98 

(0.28) 

[0.28] 

{93.6%} 

PPW 

(Iteration Based) 

1.01 

(0.35) 

[0.36] 

{96.6%} 

2.10 

(0.74) 

[0.75] 

{95.2%} 

-2.07 

(0.33) 

[0.33] 

{95.6%} 

IPW 

1.04 

(0.40) 

[0.42] 

{96.4%} 

2.23 

(0.88) 

[0.89] 

{98.2%} 

-2.22 

(0.52) 

[0.54] 

{98.0%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates 

  

α β γ
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Table 2.11  Comparison of PPW and IPW as the missing rate increases: missing rate=39.6% 

    

True Values 1 2 -2 

CC 

1.40 

(0.56) 

[0.50] 

{90.8%} 

2.20 

(1.00) 

[0.93] 

{97.0%} 

-2.61 

(0.66) 

[0.56] 

{95.2%} 

ML 

0.99 

(0.39) 

[0.37] 

{94.6%} 

2.18 

(0.88) 

[0.83] 

{95.0%} 

-2.11 

(0.38) 

[0.34] 

{95.4%} 

PPW 

(Flipped Logistic Model Based) 

1.09 

(0.38) 

[0.39] 

{96.8%} 

1.82 

(0.75) 

[0.76] 

{95.8%} 

-1.96 

(0.29) 

[0.29] 

{95.4%} 

PPW 

(Iteration Based) 

0.99 

(0.39) 

[0.40] 

{95.2%} 

2.14 

(0.87) 

[0.89] 

{96.0%} 

-2.10 

(0.37) 

[0.38] 

{97.2%} 

IPW 

1.06 

(0.52) 

[0.54] 

{96.4%} 

2.38 

(1.13) 

[1.26] 

{98.6%} 

-2.38 

(0.68) 

[0.76] 

{97.8%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates 

 

  

α β γ
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Table 2.12  Comparison of PPW and IPW as the missing rate increases: missing rate=49.9% 

    

True Values 1 2 -2 

CC 

1.75 

(1.36) 

[1.29] 

{94.4%} 

2.46 

(1.99) 

[1.98] 

{95.2%} 

-3.10 

(1.82) 

[0.98] 

{97.6%} 

ML 

1.03 

(0.46) 

[0.43] 

{95.8%} 

2.19 

(1.12) 

[1.04] 

{92.2%} 

-2.14 

(0.46) 

[0.40] 

{93.0%} 

PPW 

(Flipped Logistic Model Based) 

1.15 

(0.41) 

[0.45] 

{98.1%} 

1.75 

(0.87) 

[0.98] 

{95.7%} 

-1.94 

(0.31) 

[0.32] 

{92.8%} 

PPW 

(Iteration Based) 

1.04 

(0.46) 

[0.51] 

{97.2%} 

2.11 

(1.09) 

[1.17] 

{95.8%} 

-2.11 

(0.44) 

[0.44] 

{95.4%} 

IPW** 

3.91 

(30.72) 

[23.81] 

{98.0%} 

5.75 

(32.35) 

[41.16] 

{99.0%} 

-7.10 

(46.29) 

[47.81] 

{98.8%} 

*  Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values 

in brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates 

** The dramatic large standard deviation was caused by some extreme values. The minimum values of  were 

recorded as (-1.81, -16.26, -695.24) and maximum values of them are recorded as (497.95, 379.89, -0.86) 

 

 

 

 

 

 

 

 

α β γ
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The following Table 2.13 gives an explicit side by side comparison across the different levels 

of missing rates by putting the point estimates and standard deviation (in brackets [ ]) of all five 

batches together. 

 

Table 2.13  Summary of the PPW and IPW results as the missing rate increases 

 
Overall Missing 

Rate 
   

True Values  1 2 -2 

CC 

10.9% 

20.4% 

30.3% 

39.6% 

49.9% 

1.09 [0.34] 

1.12 [0.36] 

1.25 [0.41] 

1.40 [0.50] 

1.75 [1.29] 

2.12 [0.59] 

2.11 [0.64] 

2.11 [0.74] 

2.20 [0.93] 

2.46 [1.98] 

-2.26 [0.32] 

-2.32 [0.36] 

-2.45 [0.44] 

-2.61 [0.56] 

-3.10 [0.98] 

ML 

10.9% 

20.4% 

30.3% 

39.6% 

49.9% 

1.03 [0.32] 

1.00 [0.33] 

1.01 [0.35] 

0.99 [0.37] 

1.03 [0.43] 

2.07 [0.57] 

2.10 [0.62] 

2.12 [0.70] 

2.18 [0.83] 

2.19 [1.04] 

-2.07 [0.28] 

-2.06 [0.29] 

-2.08 [0.31] 

-2.11 [0.34] 

-2.14 [0.40] 

PPW 

(Flipped Logistic 

Model Based) 

10.9% 

20.4% 

30.3% 

39.6% 

49.9% 

1.05 [0.33] 

1.04 [0.34] 

1.07 [0.35] 

1.09 [0.39] 

1.15 [0.45] 

2.00 [0.57] 

1.95 [0.59] 

1.88 [0.65] 

1.82 [0.76] 

1.75 [0.98] 

-2.04 [0.28] 

-2.00 [0.27] 

-1.98 [0.28] 

-1.96 [0.29] 

-1.94 [0.32] 

PPW 

(Iteration Based) 

10.9% 

20.4% 

30.3% 

39.6% 

49.9% 

1.03 [0.33] 

1.00 [0.34] 

1.01 [0.36] 

0.99 [0.40] 

1.04 [0.51] 

2.07 [0.60] 

2.09 [0.65] 

2.10 [0.75] 

2.14 [0.89] 

2.11 [1.17] 

-2.07 [0.30] 

-2.06 [0.30] 

-2.07 [0.33] 

-2.10 [0.38] 

-2.11 [0.44] 

IPW 

10.9% 

20.4% 

30.3% 

39.6% 

49.9% 

1.03 [0.35] 

1.01 [0.37] 

1.04 [0.42] 

1.06 [0.54] 

3.91 [23.81] 

2.11 [0.64] 

2.16 [0.72] 

2.23 [0.89] 

2.38 [1.26] 

5.75 [41.16] 

-2.11 [0.36] 

-2.12 [0.42] 

-2.22 [0.54] 

-2.38 [0.76] 

-7.10 [47.81] 

Numbers in each cell reflect mean [mean estimated standard errors] based on 1,000 simulations with sample size of 

500. 

As missing rate gets larger, IPW becomes more instable 
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Methods have been proposed to deal with large weights such as weight truncation, where a 

maximum weight is specified. Sensitivity analysis on the choice of maximum weight should be 

performed. Instead of using logistic regression in the missingness model, Kang and Schafer (2007) 

suggest using robit regression (Liu 2004), which is more robust to outliers, therefore less likely to 

produce very large weights. Cao et al. (2009) propose an enhanced logistic regression model that 

contains ordinary logistic regression as a special case. 

 

2.3.2.3. Double Robustness of Weighted Estimating Equations 

As a semi-parametric method, WEE has its advantage of robustness against misspecification 

of the models: the model for the missingness indicator, ( | Observed data)p m  as in (2.22) , and 

the model of the exposure rate, ( | Observed data)p x  as in (2.17). In WEE, only one of the two 

models needs to be correctly specified. In contrast, the IPW method would rely on the first model 

assumption and the ML, MI and iterative weighting methods would rely on the second model 

assumption. 

Lipsitz et al. (1999) conducted simulation studies to assess the asymptotic bias in estimating 

β  using the parametric likelihood based method and the semi-parametric WEE method. In their 

simulation study, they assumed that the above two models, ( | Observed data)p m  and 

( | Observed data)p x , took the form of a linear logistic model in the data generation model. In the 

data analysis, they omitted certain regression terms used in the analysis model to deviate away 

from the underlying true model. In such a way they assessed how the misspecification made an 

impact on estimating β . They found that the relative bias tends to be smaller using WEE than 

that using likelihood based method with the same misspecification of the corresponding model. 

However, their conclusion is not definitive, due to the broad range of configurations of model 

misspecification. 

Here, simulation studies were conducted to assess the robustness of these methods from a 

slightly different angle. As an extension to earlier studies, we induced misspecification by letting 

the functional form of the analysis model deviate away from the data generation model, therefore 
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the functional form of the model assumption is no longer correctly specified. We examined the 

simulation results in search of any degradation of the methods under wrong model assumption. 

Firstly, the model of generating the missingness indicator was set to be non-logistic. To be 

more specific, the probability of missingness, 1m = , took the form of a convex step function on 

the linear term of the observed data , 0 1 2y cψ ψ ψ+ + , instead of the logit function as in (2.22). In 

the data analysis model, a logistic model was assumed blindly. 

 
2

0 1 2 3 12logit(Pr( 1| , ))m y c y c c ycψ ψ ψ ψ ψ= = + + + +  

Figure 2.1 shows how the true step function is compared to the fitted logistic regression. The 

X-axis represents the value of the linear term 0 1 2y cψ ψ ψ+ +
, and the Y-axis represents the 

true/predictive probability of 1m = . The result in Table 2.14 shows that this misspecification of 

the missingness model did not result in significant failure of the IPW method. This infers that, 

although the IPW method requires the assumption of the missingness model (the linear logistic 

regression model), there may still be relatively robustness against misspecification of the 

missingness model under regular conditions. 

 

Figure 2.1  Discrepancy of the missingness model in simulation and in analysis. Noticeable 

discrepancy is found between the true probabilities used in simulation (round dots) and the 

predicted propensity values used in analysis (crosses) 
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Table 2.14  Robustness of IPW when the missingness model ( | , )m Y C  is mis-specified 

    

True Values 1 2 -1 

IPW 

-1.05 

(0.25) 

[0.27] 

{96.5%} 

2.07 

(0.42) 

[0.45] 

{98.0%} 

-1.13 

(0.12) 

[0.13] 

{90.5%} 

WEE 

-1.02 

(0.23) 

[0.24] 

{96.0%} 

2.02 

(0.40) 

[0.41] 

{97.5%} 

-1.01 

(0.10) 

[0.11] 

{98.5%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates. 

Missingness model was mis-specified in analysis, resulting noticeable bias in parameter estimate of C  

 

Secondly, the model of the exposure given the observed data was set to be non-logistic. To 

be more specific, the probability 1X =  took the form of a convex step function on the linear 

term of the observed data , 0 1cθ θ+ , instead of the logit function as in (2.17). However, in the 

analysis model, we still used the linear term logistic model blindly when fitting the regression 

model of X  on C . That is to say, the conditional probability of X  given C  is predicted by 

the model 

2

0 1 2logit[Pr( 1| )]X C c c cθ θ θ= = = + +  

This resulted in misspecification of the sub-logistic model, and the parameter estimates of 

the sub-logistic model were invalid. Figure 2.2 shows how the true quadratic function term is 

compared to the fitted linear function term in the logistic regression model. The X-axis represents 

the value of C , and the Y-axis represents the predicted probability of 1X = . However, as we 

can see in Table 2.15, the parameter estimates of the main model still appear reasonable. 
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Figure 2.2  Discrepancy of the exposure model in simulation and in analysis. Noticeable 

discrepancy is found between the true probabilities used in simulation (round dots) and the 

predicted probabilities used in PPW (crosses) 

 

Table 2.15  Robustness of PPW when the exposure model ( | )X C  is mis-specified 

    

True Values 1 2 -1 

ML 

-1.00 

(0.29) 

[0.28] 

{93.2%} 

2.00 

(0.37) 

[0.36] 

{95.8%} 

-0.96 

(0.16) 

[0.17] 

{95.4%} 

PPW 

(Iteration Based) 

-0.98 

(0.29) 

[0.28] 

{94.4%} 

1.95 

(0.36) 

[0.37] 

{95.0%} 

-0.94 

(0.15) 

[0.17] 

{94.6%} 

WEE 

-1.01 

(0.29) 

[0.29] 

{94.2%} 

2.01 

(0.37) 

[0.38] 

{96.8%} 

-0.99 

(0.16) 

[0.18] 

{96.8%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates. 

Missingness model was mis-specified in analysis, resulting noticeable bias in parameter estimate of C  
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Lastly, both of the models for the missingness indicator, ( | , )m Y C , and for the exposure 

given observed data, ( | )X C , were set up in breach of the logistic model. As we can see in Table 

2.16, the results for all methods still appear reasonable. Therefore, some misspecification of the 

model assumption was quite tolerable in this simulation experiment, and all methods showed 

good robustness against model misspecification. 

 

Table 2.16  Robustness of PPW and IPW when both models ( | )X C  and ( | , )m Y C  are 

mis-specified 

    

Model Setup 1 2 -1 

ML 

-0.97 

(0.27) 

[0.28] 

{96.2%} 

1.99 

(0.34) 

[0.35] 

{95.6%} 

-1.04 

(0.17) 

[0.17] 

{95.4%} 

PPW 

(Iteration Based) 

-0.92 

(0.25) 

[0.27] 

{95.2%} 

1.92 

(0.32) 

[0.35] 

{94.8%} 

-1.03 

(0.17) 

[0.17] 

{96.8%} 

WEE 

-0.96 

(0.27) 

[0.29] 

{96.8%} 

1.95 

(0.33) 

[0.36] 

{96.0%} 

-1.02 

(0.17) 

[0.17] 

{97.0%} 

IPW 

-0.98 

(0.28) 

[0.30] 

{97.4%} 

1.99 

(0.35) 

[0.38] 

{96.4%} 

-1.07 

(0.18) 

[0.18] 

{97.4%} 

Numbers in each cell reflect mean (standard deviation) based on 1,000 simulations with sample size of 500. Values in 

brackets [ ] are mean estimated standard errors; values in braces { } are 95% confidence interval coverage rates. 

 

 

2.4. Discussions 

 

2.4.1. Comparison of the Methods 

Although the complete case analysis works well in certain situations, this strategy can 
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obviously cause loss of information. As the fraction of missing data increases, the deletion of all 

subjects with missing data can be unnecessarily wasteful and quite inefficient. In addition, the 

complete case method violates intention to treat principles currently widespread in biometric 

research (Nich and Carroll 2002; Liu and Gould 2002; Hollis 2002). Finally, by excluding entire 

incomplete records, it might result in biased estimates of the regression coefficients for the 

covariates C  that are not subject to missing values. When the regression coefficients 

corresponding to the covariates C  are of interest, complete-case analysis is not appropriate even 

if the less restrictive MAR assumption holds. 

ML is a safe approach if one can correctly specify the likelihood function explicitly. 

However, if the observed data likelihood in (2.10) does not have a closed form and cannot be 

factorized, approaches such as the EM algorithm are generally needed to obtain MLEs from (2.10) 

(Ibrahim, Chen, Lipsitz et al. 2005). A general method for estimation in the presence of missing 

covariates has been proposed by Ibrahim (1990), who used EM via a method of weights to find 

the MLEs. Although commonly cited as a different estimation method, the EM algorithm can be 

considered as an alternative approach that applies maximum likelihood estimation to a general 

model with additional assumptions on the marginal distribution of the variables subject to 

missingness. As was pointed out by Little (1988), ideally the analyst should formulate a statistical 

model for the survey variables under study and the missing-data mechanism and then estimate 

parameters from the incomplete data by methods such as ML without attempting to fill in the 

missing values. (Little 1982, Little and Rubin 1987). However, in practice, this may place 

excessive demands on the analyst interested in the subject matter rather than in specialized 

statistical methodology. Methods such as the EM algorithm (Dempster, Laird and Rubin 1977) 

were developed for fitting simultaneous equation models, but few investigators (e.g. 

epidemiologists) are likely to devote the energy to develop customized algorithms for their 

missing-data problems. 

Multiple imputation is an appealing approach and standard statistical software packages are 

available. However, there is not a universal routine to regulate how the imputation model is 
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defined. As it was shown in the simulations here, if one uses the flipped-around logistic model for 

imputation, problems may occur in extreme cases when the covariates are “sufficiently 

continuous”. Therefore in cases when the imputation model is not appropriate, ML or the iterative 

PPW approach recommended. Furthermore, as an approach based on simulation, MI yields 

different results each time it is applied, which usually presents difficulty in interpretation and 

communication. 

Propensity score weighting can lead to estimates with large variance, as discussed in Little 

(1986). Little (1986) proposed smoothing the weights using empirical Bayesian methods. Robins, 

Rotnitzky and Zhao (1994) showed that in case that the propensity score model is correct, the 

IPW approach gives a consistent estimator. However, as the fraction of missing data increases, the 

accuracy of IPW can decrease significantly. 

Under the setting of this chapter, the WEE approach requires specification of a logistic 

model for the missing mechanism or a sub-logistic model for the exposure X  given other 

covariates C , but not necessarily both. The likelihood type methods (ML via numerical 

maximization and the EM algorithm) require specification of the sub-logistic model. Therefore, 

besides correctly specifying the main regression model of interest, both approaches need to 

correctly specify an additional logistic regression model. The WEE method is a little more robust 

in the sense that it offers two additional regression models to be specified, and only one of them 

needs to be correct. Actually, in the simulation studies summarized in Table 2.14-Table 2.16 and 

the results given by Lipsitz et al. (1999), all approaches appeared quite robust against model 

misspecification under the settings investigated. 

Based on one’s belief of the underlying mechanism of how the data were generated and how 

the missing values were generated, different methods make different model assumptions. When 

the assumptions of the methods are correct, the methods should yield valid results. When the 

assumptions of the methods are incorrect, bias might be induced. How the methods perform in 

terms of the relative bias in estimation is an important question when the assumptions of the 

methods are incorrect. However, it is hard to make a definitive assessment of the performance of 
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different methods when their assumptions are incorrect, due to the wide range of configurations 

of model misspecification. Table 2.17 summarizes the model assumptions made by the different 

methods studied here. 

 

Table 2.17  Summary of the model assumptions of different methods 

 ( | , )m X C  ( | )X C  ( | , )X Y C  

ML No Yes No 

IPW Yes No No 

WEE (Robins 1994, 1995)* Yes  Yes 

WEE (Lipsitz et al. 1999)* Yes Yes  

MI No No Yes 

PPW w/ “flipped-around” model No No Yes 

PPW via iteration No Yes No 

*  Only one of the two models needs to be correctly specified to get consistent estimate (Double robustness). 

 

 

2.4.2. Connection between the IPW and the “Flipped-Around” Model 

There is an inherent analog between the IPW and MI methods and the PPW approach based 

on the flipped-around logistic model. A nice discussion can be found in (Little 1988). When the 

value of a missing variable is imputed, it is equivalent that the corresponding observation with the 

observed value the same as the imputed value to be replaced by a weighted sample weighted by 1 

plus the number of times it appears in the imputation. When there are other covariates C , the 

matching is not exact on C . In this case, some coarsening of the C  information results from 

replacing the incomplete records by complete records. If the effects of this coarsening are 

negligible, then estimates from the three methods are the same. Possible effects that can cause 

non-negligible coarsening include large variation or abnormal distribution of the continuous 

components of C .  
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Chapter 3. SENSITIVITY ANALYSIS FOR DATA NOT 

MISSING AT RANDOM IN LOGISTIC 

REGRESSION 
 

 

3.1. Introduction 

Missing values in exposure data are a widespread obstacle in statistical applications in 

epidemiology. Commonly, the missing at random assumption is made by investigators to ease 

analysis, which excludes the potential association between the occurrence of missing values and 

the underlying unobserved values. Investigators can be released from the hook of missing values 

by making the MAR assumption, and are then able to make use of well-developed methods 

discussed in the previous chapter, such as the likelihood based method, multiple imputation and 

the inverse propensity weighting method. However, this assumption is generally not testable 

against its alternative, Not-Missing-At-Random (NMAR), and quite often is questionable based 

on intuition or experience. For many types of data collection procedures, the assumption is 

obviously violated; for example, when subjects are asked about their daily alcohol consumption, 

missing rates might increase with the daily dose; when collecting data from hospital records, a 

given treatment is usually well documented, but it is hard to find sufficient information that a 

treatment is definitely not given; when asking subjects about previous diseases (especially 

childhood diseases) a suffered disease will be remembered well, but it might not be recalled that a 

disease is certainly absent. 

Much has been discussed regarding statistical analysis in case of NMAR. Likelihood based 

methods are proposed using EM algorithm to explore the data allowing NMAR, without specific 

direct assumptions on the missing data mechanism. More discussions can be found in Ibrahim 

and Lipsitz (1996), Lipsitz, Ibrahim, Chen and Peterson (1999) and Lipsitz, Ibrahim, Chen (1999). 

However, these methods are actually based on specific assumptions regarding the probability 

distributions of the variables subject to missing values. The probability distributional form 

assumed for the unobserved variables actually has strong implications on the underlying missing 



 67

data mechanism (Little and Rubin 1987, Kenward 1998). Therefore, these methods should be 

used with caution. Application of these methods in NMAR cases blindly without checking 

assumptions on the missing data mechanism could induce bias. 

The concept of sensitivity analysis has been used for years. As Little (1982) stated, if the 

response mechanism is non-ignorable, one can eliminate bias only by constructing “a model that 

correctly represents the response mechanism”. Nordhein (1984) conducted a study on the 

prevalence of a genetic abnormality with sensitivity analysis by assuming the missing mechanism 

through the relative risk of missing rates. Vach and Blettner (1995) addressed the importance of 

sensitivity analysis, and proposed a framework of conducting sensitivity analysis with 

specification of alternative missing data mechanisms via the odds ratio of missing rates. The EM 

algorithm or numerical maximization was used for estimation. Molenberghs, Goetghebeur, 

Lipsitz, and Kenward (1999) pointed out that in contingency table settings, different models of 

the missing mechanism might give different prediction of the unobserved values, even though 

they all produce the same fit to the observed data. Therefore, Molenberghs, Kenward, and 

Goetghebeur (2001) argued that the role of such sensitivity analysis is to supplement information 

obtained from the MAR model. Besides the methods discussed above, Bayesian methods have 

been used in missing data problems, such as Ibrahim, Chen and Lipsitz (2002), Chen, Ibrahim, 

and Shao (2004), Huang, Chen and Ibrahim (2005). 

Here, a framework to specify alternative missing mechanisms is proposed to facilitate 

sensitivity analysis of epidemiology studies with missing data using standard statistical software. 

To handle a questionable MAR assumption, results under a series of plausible NMAR 

assumptions are compared with that under the MAR assumption, such that the sensitivity to 

violations of the MAR assumption can be assessed. Investigators can perform analysis under the 

MAR assumption as usual, but are strongly encouraged to perform sensitivity analysis to assess 

the impact of potential departures from MAR. The proposed framework provides a simple 

approach to such sensitivity analysis by assigning proper weights to the subjects of an expanded 

data set that is designed to represent the underlying unobserved data set if all values were 
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observed. The expanded data set and the weights can then be supplied to any standard statistical 

software packages that accommodate a weighting option (e.g. SAS PROC LOGISTIC), which, as 

a motivation of this research, could facilitate an accessible routine for epidemiologists in standard 

research. Closed form formulae for the weights are given, and examples are provided to illustrate 

the procedures using standard software packages. A framework for such a sensitivity analysis is 

presented, where different options are provided to examine the violation of MAR in different 

configurations. The relationship among the different configurations of the missing data 

mechanism is illustrated. In this chapter I focus on the special case of logistic regression models 

with one or more binary exposure variables subject to missing data, while the remaining 

covariates are complete. 

 

3.2. Methods 

 

3.2.1. The No-Covariate Case: Basic Sensitivity Analysis 

Consider a simple 2 2×  table where Y  indicates a binary outcome (e.g. hypertensive 

versus normal) and X  indicates a binary predictor indicating a risk exposure (e.g. smoker 

versus nonsmoker). Such a dataset can be expressed in the following table. 

 

Table 3.1  Data missing at random in a 2 2×  table 

, ,m y xn  Smoker not missing 

( 1, 0)X m= =  

Nonsmoker not missing 

( 0, 0)X m= =  

Smoking status missing 

( 1)m =  

Hypertensive 

( 1)Y =  
011n  010n  11n

i
 

Normal 

( 0)Y =  
001n  000n  10n

i
 

 

Define m  as the missingness indicator that takes value 1 if the value of X  is missing and 

0 if it is not missing (note that in some literature, R  is used to represent the missing/observed 

status, with 1R =  as observed (response) and 0R =  as missing (non-response)). In this case, 
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the assumption of MAR defined by Rubin (1976) can be expressed as (2.4) or (2.5). 

Suppose one is interested in making inference on the odds ratio 

 1 1

0 0

/ (1 )
, where Pr( 1| )

/ (1 )
yOR X Y y

π π
π

π π

−
= = = =

−
 

However, the data observed do not support the direct inference of the above yπ . Based on the 

above data one can only make inference on 

 
* Pr( 1| 0, )y X m Y yπ = = = =

 
(3.1) 

without making further assumptions. A simple maximum likelihood estimate can be expressed by 

the cell counts as  

 

0 1*

0 1 0 0

ˆ
y

y

y y

n

n n
π =

+  
(3.2) 

The methods that are based on the MAR assumption have been introduced in the previous 

chapter. Here, to conduct sensitivity analysis on yπ , one needs to make assumptions on the 

missing data mechanism and explore the impact it makes on the estimation of the odds ratio. A 

sensitivity analysis to examine potential effects of missingness on the statistical inference can be 

constructed based on a set of assumptions about the underlying missing data mechanism 

 Pr( 1| , )yxPm m Y y X x= = = = , where 0,1y =  and 0,1x =  

The missing rate is indexed by both Y  and X  to represent the “differential” NMAR 

missing mechanism, which allows the occurrence of missing values to depend on both the 

outcome and the exposure itself. The methodology proposed by Vach and Blettner (1995) 

accommodates differential NMAR, but their discussions and examples were mainly focused on 

non-differential NMAR, i.e., 

Pr( 1| , ) Pr( 1| )m Y y X x m X x= = = = = = . 

Although the non-differential violation of MAR is a helpful simplifying assumption, it is 

unlikely to be true in practice (Carpenter, Kenward and White 2007). Such an assumption can be 

maintained in prospective studies, but the retrospective character of case-control studies makes it 
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highly questionable. Furthermore, the problem of NMAR in logistic regression is not well 

manifested in the non-differential NMAR case. As was discussed in the previous chapters, the 

estimate of the odds ratio associating the exposure and outcome would not be impacted if the 

missing rate of the exposure depends on itself, but not on the outcome. That is to say, a biased 

estimate of the odds ratio will only be induced with ‘differential’ missingness (Jones 1996, 

Proschan, McMahon, Shih 2001). As a result, without special considerations, it is necessary to 

assume a non-differential missing data mechanism in logistic regression if MAR is in doubt. 

For a data set with the layout as in Table 3.1, an intuitive approach is to reconstruct an 

artificial data set that represents the underlying complete data set that would have been observed. 

In the setting of this dissertation, the exposure status of those subjects with X  missing can only 

take two values, 1 or 0. Therefore an expanded data set can be constructed by replacing each of 

the subjects ( , )Y y= i  with X  missing by the two possible realizations ( , 1)Y y X= =  and 

( , 0)Y y X= = . A weight can be assigned to each of the two possible realizations, defined by the 

conditional probability of the occurrence the realization, given the observed information: 

Pr( 1| 1, )yw X m Y y= = = =  

Therefore an expanded data set can be constructed as in Table 3.2. This data set can be 

readily supplied to standard statistical software packages with a weighting option for analysis. In 

the remainder of this section, a framework is proposed for how the weights are formulated in 

sensitivity analysis. 
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Table 3.2  The constructed expanded data set with appropriate weights 

Observation Status of 

X  
Observation 

Number of 

subjects 
Weight 

X  observed ( 1, 1)Y X= =  
011n  1 

X  observed ( 1, 0)Y X= =  
010n  1 

X  observed ( 0, 1)Y X= =  
001n  1 

X  observed ( 0, 0)Y X= =  
000n  1 

X  missing ( 1, 1)Y X= =  
11n
i
 1 Pr( 1| 1, 1)Xw m Y= = = =  

X  missing ( 1, 0)Y X= =  
11n
i
 11 w−  

X  missing ( 0, 1)Y X= =  
10n
i
 0 Pr( 1| 1, 0)Xw m Y= = = =  

X  missing ( 0, 0)Y X= =  
10n
i
 01 w−  

 

The unobservable underlying exposure probability can be written as 

*

Pr( 1, 1| ) Pr( 0, 1| )

Pr( 1| 1, )Pr( 1| )

Pr( 1| 0, )Pr( 0 | )

(1 )

y

y y y y

m X Y y m X Y y

X m Y y m Y y

X m Y y m Y y

w M M

π

π

= = = = + = = =

= = = = = =

+ = = = = =

= + −
 

(3.3) 

which cannot be directly estimated from the data set. The observable exposure probability can be 

written as 

*

1

Pr( 1| 0, )

Pr( 1, 0 | )

Pr( 0 | )

(1 )

1

y

y y

y

X m Y y

X m Y y

m Y y

Pm

M

π

π

= = = =

= = =
=

= =

−
=

−

  (3.4) 

which can be directly estimated from the data set by 
0 1*

0 1 0 0

ˆ
y

y

y y

n

n n
π =

+
. In the above 2 equations, 
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an overall missing rate Pr( 1| )yM m Y y= = =  is defined to describe the overall missing 

probability given Y , and can be readily estimated based on the data as in Table 3.1: 

1

0 1 0 0 1

ˆ y

y

y y y

n
M

n n n
=

+ +

i

i

 

Intuitively, this overall missing rate yM  should be a weighted average of 1yPm  and 0yPm , 

given by 

1 0

Pr( 1, 1| ) Pr( 0, 1| )

(1 )

y

y y y y

M X m Y y X m Y y

Pm Pmπ π

= = = = + = = =

= + −
 (3.5) 

We note that with a specified missing data mechanism yxPm , the overall missing rate yM  

depends only on yπ  from the underlying complete data set. Plugging (3.5) into (3.4) we have 

*

0

*

1 0 1

(1 )

1 ( )

y y

y

y y y y

Pm

Pm Pm Pm

π
π

π

−
=

− − −
  (3.6) 

In passing we note that, with the assumed values of missing rates specified based on one’s 

experience, equation (3.6) gives a direct way to conduct sensitivity analysis in the no-covariate 

case, where *

yπ  can be directly estimated by the cell counts in Table 3.1 and the yxPm  can be 

specified. 

An important relationship between the missing rates of exposure and non-exposure, implied 

by the observed overall missing rate, should be noted. By plugging (3.6) into (3.5), we get 

*

0 1 1 0

*

1 1 0

(1 ) ( )

1 ( )

y y y y y

y

y y y y

Pm Pm Pm Pm
M

Pm Pm Pm

π

π

− + −
=

− + −
  (3.7) 

yM  and *

yπ  in (3.7) are two conditional probabilities only related to the observed data. Thus 

maximum likelihood estimates of these parameters obtained from the observed data are unbiased 

without need of additional information regarding the missing data mechanism. If we plug the 

MLE of them into (3.7), it yields an equation with only 1yPm  and 0yPm  as unknowns. 
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*

0 1 1 0

*

1 1 0

ˆ(1 ) ( )
ˆ

ˆ1 ( )

y y y y y

y

y y y y

Pm Pm Pm Pm
M

Pm Pm Pm

π

π

− + −
=

− + −
 (3.8) 

Without any additional data, the missing mechanism 1 0( , )y yPm Pm  cannot be completely 

identified. All plausible paired values of 1 0( , )y yPm Pm  that satisfy equation (3.8) are possible. It 

can be easily shown from equation (3.8) that, if one assumes 1 0y yPm Pm=  (or 1
ˆ

y y
Pm M= ), i.e., 

a MAR missing data mechanism, then it automatically implies that 1 0
ˆ

y y y
Pm Pm M= = . 

In sensitivity analysis, although there is no information regarding the yxPm , one should be 

restricted to specify values of the pair 1 0( , )y yPm Pm  that satisfy equation (3.8). 

Plugging (3.6) and (3.4) into (3.3), we obtain 

*

1 0

*

0 1 1 0

(1 )

(1 ) ( )

y y y

y

y y y y y

Pm Pm
w

Pm Pm Pm Pm

π

π

−
=

− + −
 (3.9) 

This gives the weights to be used to reconstruct the expanded data set as introduced above, where 

*

yπ  can be estimated from the cell counts, and 1 0( , )y yPm Pm  should be specified by the 

investigator according to (3.7). 

There are three ways to proceed from here with sensitivity analysis from different 

configuration angles. Investigators can choose the one that fits best based on their belief and 

experience with the potential missing data mechanism. 

 

3.2.1.1. Direct Specification of the Missing Rate 

If the maximum likelihood estimates of both yM  and *

yπ  are plugged into (3.8), it gives a 

form of determinate relationship between 1yPm  and 0yPm . By assuming any value for 1yPm , 

the value of 0yPm  would be fully determined by the following transformation of (3.8) after 

plugging in the MLE of yM  and *

yπ . 



 74

* *

1 1 1

0 * *

1

ˆ ˆ ˆˆ ˆ

ˆˆ ˆ1

y y y y y y y y

y

y y y y

M Pm M Pm Pm M
Pm

Pm M

π π

π π

− − +
=

− − +
 (3.10) 

If we use the above expression (3.10) to replace the 0yPm  in (3.9), the defined weight as 

the conditional probability of the occurrence of exposure can be rewritten as  

*

1

1

(1 )

(1 )

y y y

y

y y

Pm M
w

Pm M

π −
=

−
 

 (3.11) 

By replacing yM  and *

yπ  with their estimated values, the weights to be used become 

dependent only on 1yPm . Therefore if one has previous experience with the missing rates 1yPm , 

the configuration of the alternative missing data mechanism can be specified using (3.11) as the 

weights. As it has been pointed out, if one assumes 1 0y yPm Pm=  (or 1
ˆ

y y
Pm M= ), i.e., a MAR 

missing data mechanism, then it automatically implies that 1 0
ˆ

y y y
Pm Pm M= = . We also notice 

that, by assuming MAR, the form of weight in (3.11) becomes *ˆ
y yw π= , which is just the weight 

we used under the assumption of MAR in the previous chapter. If any previous study or 

experience indicates that the missing rate is higher for subjects with positive exposure (NMAR), 

then one can specify the missing data mechanism as 1 0y yPm Pm>  (or 1y yPm M> ). It then 

automatically implies that 1 0
ˆ

y y y
Pm M Pm> >  by equation (3.8). Thus the estimate of yM  from 

the observed data can provide a good benchmark for one to specify the missing data mechanism 

via 1yPm  and 0yPm . This saves researchers from the trouble of making too many assumptions 

and avoids the possibility where the assumed values of 1yPm  and 0yPm  are not compatible 

with the observed data. 

 

3.2.1.2. Specification of the Risk Ratio of the Missing Rates 

If there is previous experience or knowledge on the risk ratio of the missing rates 

(missingness risk ratio, or MRR) 
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1

0

y

y

y

Pm
MRR

Pm
= , (3.12) 

then one can also conduct sensitivity analysis by specifying yMRR . By (3.10) (3.11) and (3.12), 

we can get a quadratic equation regarding yw : 

 
2 0y yaw bw c+ + = , 

where 

*

* 2

(1 )(1 )

(1 )( (1 )(1 ) 1 )

(1 )

y y y

y y y y y y

y y y

a M M MRR

b MM M MRR M RR

RRMc M

π

π

 = − −


= − − − − + −
 = − −

 (3.13) 

If one specifies 1yMRR = , then there exists a single root *

y yw π= , which turns out to be the 

weight used under MAR in the previous chapter. If previous knowledge or experience suggests 

that 1yMRR ≠ , then after some simple algebra, one can find that only one root of the quadratic 

equation, 

 
2 4

2
y

b b ac
w

a

− + −
= , (3.14) 

could fall within the reasonable range [0,1], under reasonable restrictions to the parameters 

involved in the quadratic function coefficients. 

 

3.2.1.3. Specification of the Odds Ratio of the Missing Rates 

When the variation of the missing rate becomes large, relative risks are not appropriate (Vach 

& Bletter 1995). In such cases, odds ratio of the missingness can be used to specify the alternative 

missing data mechanism. If there is previous experience or knowledge on the odds ratio of the 

missing rates (missingness odds ratio, or MOR) 

 
1 1

0 0

/ (1 )

/ (1 )

y y

y

y y

Pm Pm
MOR

Pm Pm

−
=

−
 (3.15) 

then one can also conduct the sensitivity analysis by specifying yMOR . By (3.10) (3.11) and 
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(3.15), we can get a quadratic equation regarding yw : 

 2 0y yaw bw c+ + = , 

The quadratic coefficient turns out to be zero, therefore it reduces to a linear term equation with 

solution 

 

*

* * * *

(1 )

1

y y y

y

y y y y y y y y y

M MOR
w

M M MOR M MOR

π

π π π π

−
=

− − + + −
 (3.16) 

If one specifies 1yMOR = , then it implies that *

y yw π= , which turns out to be the weight 

used in the MAR case. If previous knowledge or experience suggests that 1yMOR ≠ , then one 

can specify the alternative missing data mechanism via yMOR  and conduct sensitivity analysis 

using the weighting method. 

 

3.2.2. The Covariate Case 

When other covariates C  are present, the above result can be easily generalized. Due to the 

complexity of multiple missing covariates, we assume that only X  is exposed to missingness, 

while ( , )Y C  shall be completely observed. To fully specify the missing data mechanism, we 

allow the missingness probability to depend on the outcome Y  and covariates C , as well as the 

actual status of exposure X . Then the conditional probability 

Pr( 1| , )y xPm m Y y X x= = = = =c C c,,,,  defines the missing data mechanism, but cannot be directly 

estimated from the observed data. 

Similarly to the previous section, one can reconstruct an expanded data set (or augmented 

data set) that represents the underlying complete data set that would have been observed. To be 

more specific, each complete record ( , , )y x c  is kept as is, and assigned weight 1 ( , , , 1)y x wt =c . 

The exposure status of those subjects with X  missing can only take two values, 1 or 0. 

Therefore an expanded data set can be constructed with each of the subjects 

( 1, , ,  is missing)m Y y X= = C  replaced by the two possible realizations ( 1, , , 1)m Y y X= = =C  

and ( 1, , , 0)m Y y X= = =C . A weight yw c  is assigned to the first realization, and a weight 
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1 yw− c  is assigned to the second, where 

 Pr( 1| 1, , )yw X m Y y= = = = =c C c . 

Then the expanded data set with the weights can be supplied to any standard statistical software. 

Practically, one is maximizing a weighted log-likelihood function 

, 1, , 0,

1

( , , ) { ( , , ) (1 )[ ( , , ) ( , , )(1 )]}
n

i yx i y X y X y

i

y
l I l I l w l wα β γ α β γ α β γ α β γ= =

=

= + − + −∑ c c c c c  

where 1
i

I =  if the case is completely observed; yxl c  is the log-likelihood contribution of a 

complete record ( , , )y x c ; and , ,y X xl = c  is the log-likelihood contribution of a reconstructed 

record ( , , )y X x= c , 0,1x = , and yw c  is the weight defined above. The reconstructed expanded 

data set together with the corresponding weights are indicated in Table 3.3. 

 

Table 3.3  The structure of the constructed expanded data set with appropriate weights 

Observation Status 

of X  

Observed 

data 

 Reconstructe

d data 
Weight 

Observed ( , , )y x c   ( , , )y x c  1 

Missing ( , , )y ci  




 

( , 1, )y x = c  Pr( 1| 1, , )y x m yw = = =c c  

( , 0, )y x = c  1 yw− c  

 

The equations in section 1 can be generalized as follows. The observable exposure rate from 

the complete cases is 

 

*
Pr( 1| 0, , )

Pr( 1, 0 | , )

Pr( 0 | , )

Pr( 0 | , , 1)Pr( 1| , )

Pr( 0 | , )

(1 )

1

y

y y

y

X m y

X m y

m y

m y X X y

m y

Pm

M

π

π

= = =

= =
=

=

= = =
=

=

−
=

−

c

c c

c

c

c

c

c c

c
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which can be directly estimated from the data set. As X  is a binary variable, intuitively, we can 

fit a logistic model to the complete cases as in (2.33). 

* * *logit[Pr( 1| , ))]X y yα β γ= = + + ′c c
 

(3.17) 

Then *

yπ c  can be easily estimated as 

* 1 * * * 1ˆˆ ˆˆ [1 exp ( )]
y

yπ α β γ− −= + + + ′c c . 

Define the exposure rate of interest as 

 

*

Pr( 1| , )

Pr( 1, 1| , ) Pr( 0, 1| , )

Pr( 1| 1, , )Pr( 1| , )

Pr( 1| 0, , ) Pr( 0 | , )

(1 )

y

y y y y

X y

m X y m X y

X m y m y

X m y m y

w M M

π

π

= =

= = = + = =

= = = =

+ = = =

= + −

c

c c c c

c

c c

c c

c c

, 

which cannot be directly estimated from the data set.  

In the above 2 equations, an overall missing rate Pr( 1| , )yM m Y y= = = =c C c  is defined to 

describe the overall missing probability given Y and C , and can be readily estimated from the 

data via another logistic model 

,

0 1 2 12

logit( ) logit[Pr( 1| , )]yM m y

y yψ ψ ψ ψ

= =

= + + ′ + ′

c c

c c
 

 

(3.18) 

Intuitively, this overall missing rate yM c  should be a weighted average of 1yPm c  and 

0yPm c , given by 

1 0

Pr( 1, 1| , ) Pr( 0, 1| , )

Pr( 1| , , 1)Pr( 1| , ) Pr( 1| , , 0) Pr( 0 | , )

(1 )

y

y y y y

M X m y X m y

m y X X y m y X X y

Pm Pmπ π

= = = + = =

= = = = + = = =

= + −

c

c c c c

c c

c c c c  

where 1 Pr( 1| , , 1)yPm m y X= = =c c  and 0 Pr( 1| , , 0)yPm m y X= = =c c . Then we have 

*

0

*

1 0 1

(1 )

1 ( )

y y

y

y y y y

Pm

Pm Pm Pm

π
π

π

−
=

− − −

c c

c

c c c c

 

Then we can get an important relationship that reveals how the overall missing rate is determined 
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by the underlying missing data mechanism. 

*

0 1 1 0

*

1 1 0

(1 ) ( )

1 ( )

y y y y y

y

y y y y

Pm Pm Pm Pm
M

Pm Pm Pm

π

π

− + −
=

− + −

c c c c c

c

c c c c

 (3.19) 

All plausible paired values of 1 0( , )y yPm Pmc c  that satisfy (3.19) are possible. Without 

additional information, the actual conditional probability that defines the missing mechanism 

cannot be fully identified. We can write the weights that are to be assigned to reconstruct the data 

set as follows, 

*

1 0

*

0 1 1 0

(1 )

(1 ) ( )

y y y

y

y y y y y

Pm Pm
w

Pm Pm Pm Pm

π

π

−
=

− + −

c c c

c

c c c c c

, 

where *

yπ c  can be estimated from the cell counts, and 1 0( , )y yPm Pmc c  should be specified by 

the investigator. Similar to the no covariate case, there are three ways to specify the alternative 

missing mechanism. 

 

3.2.2.1. Direct Specification of the Missing Rate  

If the maximum likelihood estimates of both yM c  and *

yπ c  are plugged into above 

equation, it gives a form of determinate relationship between 1yPm c  and 0yPm c . By assuming 

any value for 1yPm c , the value of 0yPm c  would be fully determined by the following 

transformation after plugging in the estimated values of yM c  and *

yπ c . 

* *

* *

1 1 1

0

1

ˆ ˆ ˆˆ ˆ

ˆ1 ˆ ˆ

y y y

y

y y y y y

y y y y

Pm Pm Pm
P

M M M

M
m

Pm

π π

π π

− − +
=

− − +

c c c c c c c c

c

c c c c  (3.20)

 

If one assumes 1 0y yPm Pm=c c  (or 1
ˆ

y y
Pm M=

c c ), ie. a MAR missing data mechanism, then 

it automatically implies that 1 0
ˆ

y y y
Pm Pm M= =

c c c . In passing we note that we can also write 

down the relationship between the conditional probability of missingness and the missingness 

odds ratio. It turns out that 1yPm c  is the roots of a quadratic equation of * , ,y yM MORπ c c .  
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 2

1 1 0y yaPm bPm c+ + =c c  

where 

 

* * * *

* * * *

1

1 2

y y y y y y y y y y y

y y y y y y y y y y y

y y

a M MOR M M MOR M MOR

b M M MOR M MOR M MOR

c M MOR

π π π π

π π π π

 = − − + + + −


= − + + − − − +
 =

c c c c c c c c c c c

c c c c c c c c c c c

c c

  

There are two roots 

1 * * * *

1

1

or 1

y y

y

y y y y y y y y y y y

y

M MOR
Pm

M MOR M M MOR M MOR

Pm

π π π π
=

− − + + + −

=

c c

c

c c c c c c c c c c c

c

 (3.21) 

Only the first root is reasonable. Therefore, given the MLE of *ˆ
yπ c  and ˆ

y
M

c , the conditional 

probabilities of missing has a one-to-one functional form of the missingness odds ratio yMOR c . 

In other words, given the observable *ˆ
yπ c  and ˆ

y
M

c  from the observed data set, the missing data 

mechanism cannot be determined, without additional information. All missing data mechanisms 

1 0( , )y yPm Pmc c  
that satisfy (3.19) are possible. After specification of the missingness odds ratio 

yMOR c , the missing data mechanism becomes determined as in (3.21) and (3.20). 

Similarly to the result in section 3.2.1, if one specifies the missing probability 1yPm c , then 

the weights can be calculated through the following equation 

 

*

1

1

ˆ(1 )

(1 )

ˆ

ˆ
y y

y

y y

y
P

P

M

M

m
w

m

π −
=

−

c c c

c

c c .

 (3.22) 

We also notice that, by assuming MAR, the form of weight in (3.22) becomes *ˆ
y yw π=c c , 

which is quite intuitive and the same as  that used by other methods (for instance, multiple 

imputation) under the MAR assumption. If any previous study or experience indicates that the 

missing rate is higher when the exposure status is positive (NMAR), then one can assume 

1 0y yPm Pm>c c  (or 1
ˆ

y y
Pm M>

c c ), and it automatically implies that 1 0
ˆ

y y y
Pm M Pm> >

c c c  by 

equation (3.7). Thus the estimate of yM c  from the available data can provide a good benchmark 
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for one to make assumptions about the values of 1yPm c  and 0yPm c . This saves researchers from 

the trouble of making too many assumptions and avoids the possibility that the assumed values of 

1yPm c  and 0yPm c  are not compatible with the observed data.  

 

3.2.2.2. Specification of the Risk Ratio of the Missing Rates 

It is possible that there is previous experience or knowledge on the risk ratio of the missing 

rates (missingness risk ratio, or MRR), 

 
1

0

y

y

y

Pm
MRR

Pm
=

c

c

c

. (3.23) 

Then one can conduct sensitivity analysis by specifying yMRR c . By (3.10) (3.11) and (3.12), we 

can get a quadratic equation regarding yw c : 

 2 0y yaw bw c+ + =c c , 

where 

*

* 2

(1 )(1 )

(1 )( (1 )(1 ) 1 )

(1 )

y y y

y y y y y y

y y y

a

M

M

M M MRR

b M M MRR M RR

c RR M

π

π

 = − −


= − − − − + −
 = − −

c c c

c c c c c c

c c c

 

If one specifies 1yMRR =c , then there exists a single root *

y yw π=c c . If previous knowledge 

or experience suggests that 1yMRR ≠c , then after some simple algebra, one can find that only 

one root of the quadratic equation, 

 

2 4

2
y

b b ac
w

a

− + −
=c

, (3.24) 

could fall within the feasible range [0, 1], under reasonable restrictions to the parameters involved 

in the quadratic equation coefficients. 
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3.2.2.3. Specification of the Odds Ratio of the Missing Rates 

If there is previous experience or knowledge on the odds ratio of the missing rates 

(missingness odds ratio, or MOR) 

1 1

0 0

/ (1 )

/ (1 )

y y

y

y y

Pm Pm
MOR

Pm Pm

−
=

−

c c

c

c c

, 

then the weights can be calculated through the following equation 

 

*

* * * *

(1 )

1

y y y

y

y y y y y y y y y

M MOR
w

M M MOR M MOR

π

π π π π

−
=

− − + + −

c c c

c

c c c c c c c c c

 (3.25) 

Again, if one specifies 1yMOR =c , then it implies *

y yw π=c c , which turns out to be the 

weight used in the MAR case.  

The parameters used in the calculation of weights include the complete case exposure 

probability *

yπ c , the overall missing probability yM c , and the specified yPm c  or yMRR c  or 

yMOR c . With covariate C , the MLE of *

yπ c can be readily obtained assuming a logistic model of  

X  on Y  and C  with the complete cases; whilst the MLE of yM c  can be readily reached by 

fitting a logistic model of the missing indicator m  on Y  and C  with all the observed data. 

Then with the MLE’s and the specified values, the weights can be calculated and standard 

statistical software packages can be used to carry out the rest of the analysis as usual. 

 

3.2.3. Standard Error Estimation 

Due to the fact that the weights in the proposed method are constructed with estimated 

probabilities, their sampling variability should be considered in a proper estimation of standard 

error. Resampling-based methods like the bootstrap (Efron and Tibshirani 1993) or jackknife 

(Hinkley 1983) are recommended to properly account for such variability, and we recommend the 

jackknife over bootstrapping due to a lower propensity for numerical problems (e.g., see Lyles 

and Lin, 2010). For each leave-one-out sample from the original observed data, we re-calculate 

the weights and re-fit the weighted logistic regression using standard software. The jackknife 
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standard error is calculated based on the re-fitted estimate as in equation (1.3). 

 

3.3. Examples 

 

3.3.1. No Covariate Case 

Lyles and Allen (2002) used an artificially augmented data set as an illustration of their 

proposed maximum likelihood method, based on an example from Rosner (1995). Data from 

13,465 women in a breast cancer study are presented in Table 3.4. The disease status (Cancer 

positive or not) and the risk exposure (dichotomized age of first birth: 30≥ or 30< ) were 

recorded in a 2 2×  table. Suppose hypothetically that there were 300 additional cases and 2,500 

additional controls for whom the risk exposure was missing. 

 

Table 3.4  Data from a case-control study of the association between breast cancer and age at 

first birth* 

Age at first birth 

(years) 

Disease status 

Case (
† 1D = ) Control ( 0D = ) Total 

†30( 1)E≥ =  683 1,498 2,181 

30( 0)E< =  2,537 8,747 11,284 

Total 3,220 10,245 13,465 

*Source: MacMahon et al. (1970). From Fundamentals of Biostatistics, 4th edition, by B. Rosner © 1995. Reprinted 

with permission of Brooks/Cole an imprint of the Wadsworth Group, a division of Thomson Learning. Fax 800 

730-2215. 

† D , disease status; E , exposure status. 

 

With the hypothetical additional cases and controls with missing exposure status, it suggests 

that the missingness probabilities for cases and controls are 0.085 and 0.196, respectively, or 

1 0
ˆ ˆ0.085, 0.196M M= = . If one assumes that the exposure is missing at random, then, using the 

observed cells in Table 3.4, one can obtain that 
*

1
ˆ 683 / 3,220 0.212π = =  (standard error (SE), 



 84

0.0072) and 
*

0
ˆ 1,498 /10,245 0.146π = =  (SE, 0.0035). The complete-case analysis gives an 

estimate of the odds ratio �
*

1.57OR = , with a 95 percent confidence interval of (1.42, 1.74). In 

contrast, there might be evidence suggesting a NMAR missing data mechanism. Suppose that if a 

subject has breast cancer ( 1)D =  and her age at first birth is greater than 30 ( 1)E = , then the 

probability is 0.105 that her exposure status is missing; whilst if a subject does not have breast 

cancer ( 0)D =  and her age at first birth is greater than 30 ( 1)E = , then the probability is 0.315 

that the exposure status is missing. That is to say that 11 010.105, 0.315Pm Pm= = . Apparently, 

the missingness probabilities depend on the true value of the exposure, as well as the outcome, 

which is a differential NMAR missing data mechanism. To get estimates under this NMAR 

assumption, one can reconstruct an expanded data set as in Table 3.2. Using the formula (3.11), 

one can get 1 00.266, 0.276w w= = . Then any standard statistical software package can be used to 

perform analysis on the data set with weights as in Table 3.2. Here with PROC LOGISTIC in 

SAS, we obtain that the estimate of the odds ratio is 1.34, with a 95 percent confidence interval of 

[1.21, 1.48]. 

If there is no direct information on the missingness probability, but the risk ratio of the 

missingness probabilities is available, then one can specify the missingness risk ratio. Suppose 

that the MRR for cases is 1.31, and the MRR for controls is 1.83. One can reconstruct an 

expanded data set as in Table 3.2. Then by the formulas (3.13) and (3.14), one can also obtain the 

weights 1 00.266, 0.276w w= = . 

If there is information on the odds ratio of the missingness probabilities, then one can specify 

the missingness odds ratio. Suppose that the MOR for cases is 1.35, and the MRR for controls is 

2.21. One can reconstruct an expanded data set as in Table 3.2. Then by the formulas (3.16) one 

can obtain the weights 1 00.266,  and 0.276w w= = . 

In the application of the three different configurations of the alternative missing data 

mechanism, the values of the corresponding parameters were set so that they represent the same 
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magnitude of deviation from MAR; therefore they result in the same value of weights. 

If it is of interest to conduct analysis on the sensitivity of the odds ratio estimate to the 

violation of MAR, one can make a series of possible alternative NMAR assumptions and 

compare the results under these assumptions against that under MAR. Assuming a differential 

missing mechanism, it allows that the missingness rates of exposure can deviate from MAR 

differently in cases and controls. First we set the missing data mechanism of cases to be MAR, 

and let the missing data mechanism of controls to deviate away from MAR. This can assess the 

sensitivity to violation of MAR for the controls. That is, for 1Y = , keep the missing probability 

of X  at the overall missing rate, which implies MAR for the subjects with 1Y = . The missing 

mechanism for 1Y =  is specified by 11 0.085Pm =  or 1 1MRR =  or 1log( ) 0MOR = . The 

sensitivity of violation to MAR for subjects with 0Y =  is assessed. The result is shown in Table 

3.5. We can also implement the same idea the other way around to assess the sensitivity to 

violation of MAR for the cases. That is, for 0Y = , keep the missing probability of X  at the 

overall missing rate, which implies MAR for the subjects with 0Y = . The missing mechanism 

for 0Y =  is specified by 01 0.196Pm =  or 0 1MRR =  or 0log( ) 0MOR = . The sensitivity of 

violation to MAR for subjects with 1Y =  is assessed. The result is shown in Table 3.6. The point 

estimate and the 95% confidence interval were displayed in Figure 3.1. 
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Table 3.5  Sensitivity analysis of MAR assumption for the Controls 

01Pm  0MRR  0log( )MOR  
Estimated Odds Ratio 

[95% Confidence Interval] 

0.0052 0.023 -4 
2.01 

[1.82, 2.22] 

0.014 0.063 -3 
1.99 

[1.80, 2.20] 

0.036 0.167 -2 
1.94 

[1.75, 2.14] 

0.090 0.425 -1 
1.81 

[1.64, 2.01] 

0.196 1 0 
1.57 

[1.42, 1.74] 

0.346 2.12 1 
1.23 

[1.11, 1.36] 

0.482 4.13 2 
0.92 

[0.82, 1.02] 

0.564 9.32 3 
0.73 

[0.66, 0.81] 

0.601 22.37 4 
0.64 

[0.58, 0.72] 

*   Numbers in each cell reflect mean and 95% confidence interval in [ ]. 

**  Missing data in Cases were assumed MAR. Alternative missing data mechanisms were specified for the 

Control group to assess sensitivity to violation of MAR. 

*** The missingness probability 01Pm , missingness risk ratio 0MRR  and log-missingness odds ratio 0log( )MOR
 

in each row are mutually determined as discussed in Section 3.2.1. These three columns are displayed here to 

demonstrate how the three ways of specification of alternative missing data mechanisms are unified when the 

overall missing rate 0M̂  is estimated from available data. 
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Table 3.6  Sensitivity analysis of MAR assumption for the Cases 

11Pm  1MRR  1log( )MOR  
Estimated Odds Ratio 

[95% Confidence Interval] 

0.0021 0.020 -4 
1.41 

[1.28, 1.56] 

0.0058 0.055 -3 
1.42 

[1.28, 1.57] 

0.015 0.148 -2 
1.43 

[1.30, 1.59] 

0.038 0.392 -1 
1.48 

[1.33, 1.63] 

0.085 1 0 
1.57 

[1.42, 1.74] 

0.156 2.45 1 
1.74 

[1.57, 1.93] 

0.226 5.95 2 
1.95 

[1.76, 2.17] 

0.270 14.93 3 
2.11 

[1.90, 2.35] 

0.291 39.01 4 
2.20 

[1.97, 2.45] 

*    Numbers in each cell reflect mean and 95% confidence interval in [ ]. 

**   Missing data in Controls were assumed MAR. Alternative missing data mechanisms were specified for the Cases 

to assess sensitivity to violation of MAR. 

*** The missingness probability 11Pm , missingness risk ratio 1MRR  and log-missingness odds ratio 1log( )MOR
 

in 

each row are mutually determined as discussed in Section 3.2.1. These three columns are displayed here to 

demonstrate how the three ways of specification of alternative missing data mechanisms are unified when the 

overall missing rate 1M̂  is estimated from available data. 

 

In Figure 3.1, it is apparent that the violation of MAR of the controls makes more impact on 

the estimation of the odds ratio. The estimated odds ratio and its 95% confidence interval are 

above 1, inferring that it is statistically significant that a subject with positive risk exposure (first 

birth age greater than 30) would be more likely to have breast cancer. However, if the missing 
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data mechanism works in such a way that subjects in the control group with positive risk 

exposure are more likely to have missing values in their exposure status, then the above 

statistically significant conclusion could become insignificant. It might even become statistically 

significant in the opposite direction if the magnitude of the deviation from MAR as described 

above is strong enough. However, the deviation from MAR for the cases does not make as much 

impact. Reasons for the more sensitivity in the controls include, but are not limited to, the larger 

number of subjects and higher missing rate in that group, which leave more room for the impact 

of the missing data mechanism on the estimation. Therefore, the sensitivity analysis here raised 

an important alert for investigator to closely examine the missingness or the exclusion criteria of 

the control group. 

 

     Set cases to be MAR: 1 1MOR =            Set controls to be MAR: 0 1MOR =  

   Assess sensitivity for controls                Assess sensitivity for cases 

 
Figure 3.1  Point estimate of odds ratio with 95% confidence interval for a series of 

combinations of alternative missing data mechanisms as in Table 3.5 and Table 3.6 

 

A contour plot in Figure 3.2 was drawn to make further investigation on the sensitivity to 

violation of MAR. In the right lower corner beyond the blue line (corresponds to � 1OR = ), the 

specified missing data mechanism in that area would change the direction of the estimation. For 

instance, if it is MAR for the cases, and the missing data mechanism for the controls is NMAR 
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with 0log( ) 1.69MOR =
 

or higher, then the estimated OR becomes less than 1. This corresponds 

to ( 11 10 0.085Pm Pm= = , 01 000.45, 0.13Pm Pm≥ ≤ ) and ( 1 1MRR = , 0 3.45MRR ≥ ). 

We know that under the MAR assumption, the complete-case analysis gives an estimate of 

the odds ratio �
*

1.57OR = , with a 95 percent confidence interval of (1.42, 1.74). Therefore, we 

conclude that when assuming MAR there is a significant positive association between the 

occurrence of breast cancer and late first birth at level 0.05. It is of interest to investigate the 

impact of the possible NMAR on the conclusion of the statistical inference. Therefore, all the 

missingness scenarios resulting the lower 95 percent confidence limit equal or less than 1 was 

drawn in Figure 3.3. The paired values of 1 0{log( ),log( )}MOR MOR  within the right lower 

shaded corner of the curve will result in a 95 percent confidence interval containing 1. Therefore, 

it leads to failure of rejection of the null hypothesis in the hypothesis testing on the association 

between the occurrence of breast cancer and late first birth at level 0.05. If there is suspicion that 

the missing data mechanism might be within that area, then one should be cautious when making 

the conclusion that there is a significant positive association between the occurrence of breast 

cancer and late first birth. To be more specific, this area includes, but not limited to, all the 

settings on the line for 1 0{log( ) 0,log( ) 1.36}MOR MOR= ≥ . This corresponds to 

( 11 10 0.085Pm Pm= = , 01 000.40, 0.15Pm Pm≥ ≤ ) and ( 1 1MRR = , 0 2.74MRR ≥ ). 
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Figure 3.2  Contour plot of estimated odds ratio (labeled in each line) by a variety of 

combinations of 0MOR  and 1MOR  demonstrates the sensitivity to violation of MAR. The line 

crossing the original point (0, 0) represents all the scenarios resulting estimated OR being 1.57, 

which is the same as assuming MAR. 

 

Figure 3.3  The shaded area represents all scenarios resulting failure to reject 0H : OR=1 
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3.3.2. Covariate Case 

The National Alzheimer’s Coordinating Center (NACC) collected uniform data sets from 

approximately thirty Alzheimer’s Disease Centers (ADCs) that covered information on patients’ 

demographics, results of clinical testing and assessment, medical and family history, and 

diagnoses. Steenland et al. (2010) conducted a cross-sectional analysis of the data set via 

polytomous logistic regression (generalized logits model) to determine which variables were most 

important in diagnoses of Normal, Mild Cognitive Impairment (MCI) or Alzheimer’s Disease 

(AD). Subjects with cognitive impairment but not MCI were excluded, resulting 8,495 subjects in 

their analysis. Missing values were found in many variables. Complete case analysis was 

performed, and then multiple imputation under the missing at random assumption was also 

conducted to address the missing data problem. 

In this example, an illustrative data set based on the above study was used to demonstrate the 

application of the proposed method on sensitivity analysis. We recommend assuming that only 

one variable is subject to NMAR at a time, and the other variables are missing at random, because 

it could help to pinpoint the source of impact compared to allowing multiple variables NMAR 

simultaneously. For instance, we were interested in sensitivity analysis on the variable Wechsler 

Adult Intelligence Scale (WAIS), for which the overall missing rate was 11.55%. The variable 

WAIS took values of positive integers, with higher values indicating a better cognitive ability; 

therefore it was dichotomized for illustration as an indicator of whether the subject’s WAIS value 

was above or below its corresponding norm. For simplicity of illustration, we assumed that all the 

other variables were completely observed. The missing values in the other variables were imputed 

using imputation method under the MAR assumption (PROC MI, SAS Institute), and treated as 

known. The result in this example is only for demonstration of the proposed method, without 

intention of making any inferences on the original study by Steenland et al (2010). 

 There were 8,495 subjects in the illustrative data set, with variable WAIS subject to missing 

values in 981 subjects, leaving 7,514 complete cases. Table 3.7 summarizes the prevalence of 

missing values of the illustrative data set. In Table 3.7, we observe much higher missing rate in 
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the AD group, whilst the missing rates are close in the Normal and MCI groups. One important 

reason for missing values in WAIS is due to severe impairment of the subject’s recognition, which 

results in failure to finish the test. Such failure is recorded as missing values, but actually infers 

low WAIS score. Therefore the missing data mechanism is suspiciously NMAR. 

 

Table 3.7  Summary of the prevalence of missing values in the National Alzheimer’s 

Coordinating Center data (Steenland et al., 2010) 

Cognitive impairment levels No. of subjects WAIS missing Missing % 

Normal 4241 400 9.43 

MCI 2198 203 9.24 

AD 2056 378 18.39 

Total 8495 981 11.55 

 

The original study result was presented in Table 5 in Steenland et al. (2010) where multiple 

imputation was used to address the missing data problem under the assumption of MAR. In this 

example, the same polytomous logistic regression model was considered to compare the result for 

demonstration. However, to apply the proposed method, the predictor variable WAIS was 

dichotomized based on a standard norm such that 1X =  if WAIS is higher than norm (less 

severe disease status), 0X =  otherwise. Missing values in other variables are assumed MAR, 

and imputed. With the diagnosis result as the nominal outcome at three levels (Normal, MCI and 

AD), the polytomous logistic regression, taking MCI as the reference group, can be written as 

follows, 

 
1 1 1

2 2 2

log[Pr(AD) / Pr(MCI)]

log[Pr(Normal) / Pr(MCI)]

x

x

α β γ

α β γ

= + + ′


= + + ′

c

c
 

where c  represents 17 other controlling covariates. Naïve analysis using only the complete 

cases were performed (Table 3.8). 
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Table 3.8  Summary of the complete case analysis on the National Alzheimer’s Coordinating 

Center data 

Variable 

MCI versus normal AD versus MCI 

OR  2

χ  p-value OR  2

χ  p-value 

Clinician-reported decline 19.23 585.00 <0.0001 5.55 21.77 <0.0001 

CDR sum of boxes (per unit) 2.17 65.83 <0.0001 2.45 286.79 <0.0001 

Consensus versus single-clinician 

diagnosis 
3.27 100.91 <0.0001 0.67 9.12 0.003 

MMSE (per unit) 0.85 31.26 <0.0001 0.85 56.99 <0.0001 

Logical memory delayed (per unit) 0.93 38.32 <0.0001 0.94 14.63 0.0001 

Category Fluency Test (per unit) 0.95 53.42 <0.0001 0.96 16.82 <0.0001 

Education (per year of schooling) 1.09 28.97 <0.0001 1.07 15.64 <0.0001 

Hachinski Ischemia score (per unit) 0.97 0.56 0.45 0.76 40.83 <0.0001 

Boston Naming Test (per unit) 0.93 25.25 <0.0001 0.96 12.25 0.0005 

Trail Making Test B (per 10 units) 1.01 40.03 <0.0001 
1.00

5 
27.91 <0.0001 

Age (per year) 0.99 4.73 0.03 0.98 8.02 0.005 

Race (white vs. black/Hispanic) 1.30 4.01 0.05 1.98 17.02 <0.0001 

First-degree relative demented 1.14 1.88 0.17 1.53 13.73 0.0002 

Trail Making Test A (per 10 units) 0.991 9.15 0.003 
0.99

7 
1.89 0.17 

Depression 0.69 5.87 0.02 0.71 5.21 0.02 

FAQ (per 5 units) 1.02 0.60 0.44 1.03 5.46 0.02 

Geriatric Depression Scale (per 

unit) 
0.99 0.36 0.55 0.98 2.80 0.09 

WAIS (above norm vs. not) 0.74 4.46 0.03 1.06 0.15 0.69 

7,514 subjects included. Missing values in variables other than WAIS were filled in by simple imputation assuming 

MAR.  
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The result from the CC analysis indicated that subjects with below-norm WAIS were more 

likely to be diagnosed as MCI (vs. Normal), and the association is statistically significant; whilst 

subjects with above-norm WAIS are slightly more likely to be diagnosed as AD (vs. MCI), and 

the association is not statistically significant. With the observation of the sizable missing values in 

the AD subjects, we were interested in exploring the impact of the missing data on the above 

statistical inference. 

One potential reason for missing values to be recorded for WAIS is that the subject is 

severely cognitive impaired, thus not able to finish the test. Therefore it is suspected that the 

occurrence of missingness of WAIS is associated with low WAIS values, which results in NMAR. 

This is especially of concern for the subjects in AD group, whose average WAIS tends to be lower. 

We conducted sensitivity analysis on the missing values in WAIS in AD subjects. The missing 

data mechanism was specified in three different ways, namely the directly specification of the 

missing rates, specification of the missingness relative risk, and specification of the missingness 

odds ratio. In specification of the missingness odds ratio, compared to the examples in Vach and 

Blettner (1995), we allowed “differential” NMAR, so that subjects with diagnoses of Normal and 

MCI were assumed to be MAR, whilst only subjects with diagnosis of AD might be NMAR in 

such a way that subjects with below-norm WAIS were more likely to incur missing values. For 

simplicity, we also assumed that the missing data mechanism would not depend on the other 

controlling variables, such as demographics and etc. With the diagnostic result considered as a 

nominal variable (represented by dummy variables ADI  and NormalI ), the estimable exposure 

rate by complete cases, as modeled by (3.17) can be written as 

 
*

0 1 AD 2 Normal 3logit( )y I Iπ φ φ φ φ= + + + ′c c . 

The overall missing rate as modeled by (3.18) can be written as, 

 0 1 AD 2 Normal 3logit( )
y

M I Iψ ψ ψ ψ= + + + ′c c . 

The magnitude of the deviation from MAR was increased at different levels, and the 

estimated odds ratio and relative statistics at each level are summarized in Table 3.9. Apparently, 
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the differential NMAR could make dramatic change on the estimated OR for AD vs. MCI. 

However, the chi-square test for the OR is not significant even when the logarithm missingness 

ratio takes extreme value as -2.0. Therefore the association between the diagnosis (AD vs. MCI) 

and WAIS testing is not significant even under extreme differential NMAR condition. 

As discussed above, the missing values in AD subjects are more likely to be associated with 

lower WAIS. From the missing data pattern in Table 3.7, if we assume that the around 9% missing 

rate in the Normal and MCI groups represents some background MAR or MCAR due to data 

collection, it is intuitive to speculate that the surplus proportion of missing values beyond the 

background is caused by failure to finish the test. Taking the average missing rate in the Normal 

and MCI groups, 9.36%, to induce MAR subjects in the AD group, it results in 91 subjects had 

above norm WAIS while 82 for below norm. We assume that the surplus 205 subjects were 

actually all below norm WAIS. In this way, the odds ratio of missingness for the AD is 0.286.  

 

Table 3.9  Sensitivity analysis of violation to MAR in AD group, assuming MAR for Normal 

and MCI groups 

Missing odds ratio (log(OR)) 

for AD subjects 

WAIS above norm vs. not 

MCI versus normal AD versus MCI 

OR  2

χ  p -value OR  2

χ  p -value 

1 (0) 0.74 4.64 0.03 1.04 0.06 0.80 

0.82 (-0.2) 0.74 4.65 0.03 1.01 0.01 0.92 

0.67 (-0.4) 0.74 4.66 0.03 0.99 0.0032 0.95 

0.55 (-0.6) 0.74 4.68 0.03 0.97 0.048 0.83 

0.45 (-0.8) 0.73 4.70 0.03 0.95 0.15 0.70 

0.37 (-1) 0.73 4.72 0.03 0.92 0.31 0.58 

0.29 (-1.251) 0.73 4.74 0.03 0.90 0.59 0.44 

0.22 (-1.5) 0.73 4.78 0.03 0.87 0.97 0.33 

0.14 (-2.0) 0.73 4.86 0.03 0.82 2.00 0.16 
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3.3.3. Monte Carlo Sensitivity Analysis 

In previous examples, the missing data mechanism was specified by investigator and 

assumed fixed. Previous literature suggested considering additional variability due to uncertainty 

about these parameters in traditional sensitivity analysis on misclassification (Fox, Lash and 

Greenland, 2005; Chu, Wang, Cole and Greenland, 2006; Orsini et al. 2008; and Gustafson, Le, 

Saskin 2001). The same idea was borrowed here to facilitate a Monte Carlo sensitivity analysis to 

consider additional variability in specification of the missing data mechanism. This is 

implemented by specifying a underlying density for the parameters define the missing data 

mechanism and applying imputation-like or Bayesian methods. 

We use again the Alzheimer disease example for illustration. As discussed in Section 3.3.2, 

we observe a much higher missing rate in the AD group (Table 3.7), whilst the missing rates are 

close in the Normal and MCI groups. We know that one important reason for missing values in 

WAIS is due to severe impairment of the subject’s recognition, which results in failure to finish 

the test. Such failure is recorded as missing values, but actually infers low WAIS score. Therefore 

the missing data mechanism is suspiciously NMAR, and analysis based on MAR assumption 

would induce bias. We know that missing values in a data set can come from different sources 

and form a fixture of MCAR, MAR and NMAR. Based on the knowledge and previous 

experience from epidemiology studies, it is reasonable that the shared missingness pattern 

(missing rate at about 9.36% on average) in the Normal and MCI groups is assumed to be MAR, 

and represents some background rate of missing values recorded due to unrelated reasons. 

Furthermore, it is also arguable that in the higher missing rate in AD group, the surplus of missing 

values beyond this MAR background are from the NMAR source where failure of finishing the 

test was recorded as missing. 

The total number of subjects with missing WAIS in AD group is 378. We allocate them to the 

two categories of WAIS level based on the above argument. This results in a missing data 

mechanism as described in Table 3.10. The estimated missing odds ratio is 0.286
AD

MOR = , 

which yields estimated logarithm transformed missing odds ratio log( )
AD

MOR  to be -1.251 , 
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with standard error 0.130. 

 

Table 3.10  Reallocated Contingency Table for AD Group 

  WAIS is Missing 
Total 

  No Yes 

WAIS 

Equal or below norm 795 287 1,082 

Above norm 883 91 974 

378 subjects with WAIS missing were reallocated. This table represents the case where these 378 

subjects are reallocated in such a way that missingness beyond the MAR background missingness is all 

among the low WAIS group (worse disease status). 

 

Suppose that we wish to summarize uncertainty about the specification of 
AD

MOR  by 

assuming that log( )
AD

MOR  derive from a normal distribution with mean -1.251 and standard 

deviation 0.130. We assume MAR for Normal and MCI groups, therefore the missing data 

mechanism is ignorable for these two groups, and we do not need to impose a random distribution 

on their missing odds ratios. We produce one point estimate for the odds ratio, together with an 

interval estimate that simultaneously takes account of the variability in the original data and the 

postulated systematic variability of the missing data mechanism. We accomplished this as follows. 

First, we independently selected 100 values of log( )
AD

MOR  randomly from the assumed normal 

distribution. For each value, we computed the estimated logarithm OR for AD vs. MCI and MCI 

vs. Normal groups, via the proposed weighting method, together with its jackknife standard error. 

We then generated 100 random draws from a normal distribution with mean and standard 

deviation matching that estimated logarithm OR, and its associated standard error. Therefore we 

obtained the OR distribution for each fixed specification of missing data mechanism. Repeating 

this process for each log( )
AD

MOR
 

and pooling the results produced a histogram of 100×100 

OR values, which is depicted Figure 3.4. The 2.5
th
, 50

th
, and 97.5

th
 percentiles of this distribution 

are 0.680, 0.895, and 1.186, respectively, which produces a median OR estimate of 0.895, with 

approximate 95% confidence limits of (0.680, 1.186). These may be contrasted with the 
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traditional sensitivity analysis at log( ) 1.251
AD

MOR = − , which produces OR estimate of AD 

versus MCI of 0.896 (0.679, 1.184). 

Another reasonable prior distribution for log( )
AD

MOR  is a triangular distribution with peak 

at -1.251 (Table 3.10), minimum at -6.061 (reallocate all but one subject with missing value to 

low WAIS group) and maximum at 0 (Figure 3.5). In this case, we assume that the missingness in 

AD group happens at least MAR as that in Normal and MCI groups, but can deviate away from 

MAR in the direction toward more missing values for low WAIS subjects up to the extreme case 

where all but one missing value are from low WAIS. 

 

 

Estimated OR for AD vs. MCI 

Figure 3.4  Histogram of posterior odds ratio AD vs. MCI with empirical kernel smoothing with 

prior of log( )
AD

MOR  from normal distribution 
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Figure 3.5  Histogram of triangular prior distribution of log( )
AD

MOR  with peak at -1.251 

minimum at -6.061 and maximum at 0 

Suppose that we wish to summarize uncertainty about the specification of 
AD

MOR  by 

assuming that log( )
AD

MOR  derive from such a triangular distribution. Again, we assume MAR 

for Normal and MCI groups, therefore the missing data mechanism is ignorable for these two 

groups, and we do not need to impose a random distribution on their missing odds ratios. This 

time, we independently selected 1000 values of log( )
AD

MOR  randomly from the assumed 

triangular distribution. Repeating the processes described as above and we obtained a histogram 

of 1000×100 OR values, which is depicted Figure 3.6. The 2.5
th
, 50

th
, and 97.5

th
 percentiles of 

this distribution are 0.548, 0.790, and 1.141, respectively, which produces a median OR estimate 

of 0.790, with approximate 95% confidence limits of (0.548, 1.141). These may be contrasted 

with the traditional sensitivity analysis at log( ) 1.254
AD

MOR = − , which produces OR estimate of 

AD versus MCI of 0.896 (0.679, 1.184). 
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Estimated OR for AD vs. MCI 

Figure 3.6  Histogram of posterior odds ratio AD vs. MCI with empirical kernel smoothing with 

prior of log( )
AD

MOR  from triangular distribution 

 

3.4. Simulations 

The rationale of sensitivity analysis is that quite often in reality, there is no information 

available to make inference on the underlying missing data mechanism. Therefore it is not the 

purpose of sensitivity analysis to discover or correct any bias or improve efficiency, but rather to 

assess how much stake we put on the assumption of MAR in our statistical inference. Therefore 

simulation studies were conducted here to assess the ability of the proposed method to capture the 

underlying deviation from MAR. We generate a random binomial variable 1C  from Bin(10, 0.4), 

and a random normal variable 2C  from N(3,1). Then a binary variable X  was generated by a 

logistic model from these two to induce possible correlation between the predictors. A binary 

outcome variable Y  was generated by a logistic model with the above three predictors 

 1 2 1 1 2 2logit[Pr( 1| , , )]y x c c x c cα β γ γ= = + + + . 

Missingness was induced by generating an missing indicator from a logistic model 
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 1 2 0 1 2 3 1 4 2 12logit[Pr( 1| , , , )]m y x c c y x c c yxψ ψ ψ ψ ψ ψ= = + + + + + . 

Therefore the probability of X  missing is dependent on its underlying value and the 

outcome and their interaction. This induces a NMAR case, and the result of complete case 

analysis would be biased. Sensitivity analysis was conducted by specification of alternative 

missing data mechanism through the missingness odds ratio. From the form of the model by 

which the missingness was generated, the true underlying missingness odds ratio is 

 2 12logit( )yMOR yψ ψ= +  (3.26) 

and 2 120.5, 1.0ψ ψ= = − . In specification of the alternative missing data mechanism, suppose we 

have no information on the values of 2ψ  and 12ψ , but we suspect that the missing values are 

differentially NMAR. To examine the sensitivity of the parameter estimates to the violation of 

MAR, we specify a series of alternative missing data mechanisms through the missingness odds 

ratio by specifying paired values to 2 12( , )ψ ψ . The result in each setting is shown in Table 3.11. 

We can see that the estimate for β  is sensitive to the missing data mechanism. When the 

missing data mechanism is correctly specified, the point estimate displays minimal bias. The 

average Jackknife standard error is very close to the empirical standard deviation of the point 

estimate, and yields satisfying CI coverage. In sensitivity analysis, even though we could not 

correctly specify the underlying unknown missing data mechanism, we could still see how the 

parameter estimates change according to different deviation from MAR. When the specified 

missing data mechanism gets close to the true underlying one 2 120, 1.0ψ ψ= = − , the parameter 

estimate gets pretty close to the designated values. 
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Table 3.11  Summary of simulation study with a random binomial and a random normal 

covariate 

Coefficients 
X  

1β =  
1C  

1 0.5γ =  

2C  

2 0.3γ = −  

Complete Case Analysis 

1.20 

(0.24) 

[0.24] 

{86.8%} 

0.50 

(0.09) 

[0.09] 

{95.2%} 

-0.30 

(0.12) 

[0.12] 

{94.4%} 

With True Missing Data Mechanism 

2 120.5, 1.0ψ ψ= = −  

1.00 

(0.24) 

[0.25] 

{95.6%} 

0.50 

(0.08) 

[0.08] 

{95.2%} 

-0.30 

(0.11) 

[0.11] 

{95.2%} 

2 120, 0.5ψ ψ= =  

1.30 

(0.24) 

[0.24] 

{77.8%} 

0.50 

(0.08) 

[0.08] 

{95.4%} 

-0.28 

(0.11) 

[0.11] 

{95.4%} 

2 120, 0ψ ψ= =  (MAR) 

1.21 

(0.24) 

[0.25] 

{86.0%} 

0.50 

(0.08) 

[0.08] 

{95.4%} 

-0.29 

(0.11) 

[0.11] 

{95.2%} 

2 120, 0.5ψ ψ= = −  

1.10 

(0.24) 

[0.25] 

{93.4%} 

0.49 

(0.08) 

[0.08] 

{95.2%} 

-0.30 

(0.11) 

[0.11] 

{95.2%} 

2 120, 1.0ψ ψ= = −  

0.99 

(0.24) 

[0.24] 

{95.4%} 

0.49 

(0.08) 

[0.08] 

{95.4%} 

-0.31 

(0.11) 

[0.11] 

{95.0%} 

2 120, 1.5ψ ψ= = −  

0.87 

(0.24) 

[0.24] 

{92.6%} 

0.49 

(0.08) 

[0.08] 

{95.2%} 

-0.32 

(0.11) 

[0.11] 

{95.6%} 

Numbers in each cell reflect mean (standard deviation) based on 500 simulated data sets. 

Values in brackets [] are mean estimated standard errors; values in braces {} are 95 per cent 

confidence interval coverage rates. 
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3.5. Discussions 

 

3.5.1. Connection Between the Three Ways to Specify Alternative Missing 

Mechanism 

The proposed method provides a framework to specify alternative missing data mechanism 

in sensitivity analysis. The mutually deterministic relationship between common ways of 

specification is demonstrated, therefore different means to sensitivity analysis are unified. In 

section 3.2, three options are illustrated for investigators to choose from, based on what 

information is at available, to specify the alternative missing data mechanisms. Alternative 

missing data mechanisms can be specified through the missingness probability, the missingness 

risk ratio and the missingness odds ratio. The weights to be used can be calculated directly from 

the closed form as given. On the other hand, given the observable exposure rate *

yπ c  and the 

overall missingness probability yM c , the missingness probabilities 1 0,( )y yPmPm c c , the 

missingness risk ratio yMRR c  and the missingness odds ratio yMOR c  are mutually determined. 

It was pointed out by Vach and Bletter (1995), specification of the risk ratio is not appropriate 

when the missing probability becomes large. However, with the observation of the relationship 

among these three, there is equal preference in choosing any of them as long as it fits with the 

information at hand on the missing data mechanism. 

 

3.5.2. Extensions 

An advantage of the proposed method is that extensions to more complex scenarios are 

conceptually straightforward. Suppose the outcome is a categorical variable, then the models used 

in prediction of the weights, (3.17) and (3.18), can still be used directly. As shown in the second 

example, the method can be easily extended to polytomous logistic regression with nominal 

outcomes. For other types of outcome, one can just specify a canonical link function, and 

consider the generalized linear model 
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1( ) ( )E Y g xµ α β γ−= = + + ′c
 

and work with the corresponding likelihood to construct a weighted log-likelihood.  

The proposed method can also be extended to conduct sensitivity analysis with categorical 

exposure. Suppose the exposure can take k  distinct values, then the record ( , , )y ci  can be 

replaced by k  records 1( , , ), ,( , , )
k

y x y x…c c , with weights , 1, ,y iw i k= …c , where 

* *

*

* **
1

21

1 1

1 1

i i

i i

j

j

y x y x

y i y i

y x y x y i y i

y i kk
y y x

y y j y jy j
jy j y x

Pm Pm

Pm Pm MOR
w

M Pm
MOR

M Pm

π π
π

π ππ
==

× ×
− − ×

= = =

+
− −

∑∑

c c

c c

c c c c

c

c c

c c cc

c c

, 

Pr( | , )y i iX x yπ = =c c  is the exposure rate of the i -th distinct value, and 

1 1

/ (1

/ ( )

)

1

j jy x y x

y j

y x y x

Pm Pm
MOR

Pm Pm

−
=

−

c c

c

c c

 is the missingness odds ratio of the j -th distinct value. 
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Chapter 4. JOINT MODEL FOR LOGISTIC REGRESSION 

WITH MISSING DATA AND REASSESSMENT 

DESIGN 
 

 

4.1. Introduction 

Common approaches for dealing with missing data are based on the missing at random 

(MAR) assumption. When the MAR assumption is questionable, the parameter estimates from 

these approaches might be badly biased. Sensitivity analysis has been discussed by Vach and 

Blettner (1995) and in Chapter 3 to assess the severity of the impact of NMAR via artificial 

specification of the missing data mechanism artificially. When only responses are missing and 

covariates are completely observed, the problem is easier. Chambers and Welsh (1993) discussed 

non-ignorable non-response for log-linear models and obtained expressions for the likelihood 

function based on the observed data. However, in the presence of covariates, obtaining a 

manageable and computable expression for the likelihood based on the observed data is highly 

unlikely, and thus the EM algorithm proves to be a very powerful and necessary tool for this 

problem. Likelihood-based methods were proposed by imposing a distributional assumption on 

the missing data mechanism and modeling the joint likelihood (Baker and Laird 1988; Ibrahim 

and Lipsitz 1999).  

An alternative to the sensitivity analysis and likelihood based methods based on 

distributional assumptions is to obtain direct information on the missing records. It has been 

proposed that a second wave of data collection (reassessment) is performed on a portion of the 

subjects with missing values in the original data set in the study design, and that an extra effort 

may be made to recover information for those individuals. For example, reassessment is made by 

telephone or interview when the initial survey is by mail (Hansen and Hurwitz 1946); or 

reassessment may involve a cash incentive to convert nonparticipants to participation (Crwaford, 

Johnson, and Laird 1993); or when participants fail to respond to a mailed survey then 

information may be collected at a later examination (Glyn, Laird, and Rubin 1986).  
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Lyles and Allen (2003) proposed an inference scheme when reassessment data (section 

1.2.10) is available in statistical analysis of a 2 2×  table. Likelihood functions were derived 

under different scenarios of missing data mechanisms, and estimation was achieved by numerical 

routines in SAS IML. Unlike the case-control (or cohort) study in which exposure is assessed 

subsequent to determining disease status (or vice versa), in the cross-sectional design both 

exposure and disease status may well be subject to missing values. The missingness of exposure 

may depend on disease or exposure status or both, and likewise for the missingness of disease 

information. Further, missingness of exposure and disease may be associated. In this chapter, this 

method is generalized to incorporate covariates, which can be categorical or continuous or a 

mixture of both. A logistic regression model is considered to describe the association between the 

disease and the exposure, with control of the covariates. The information from the reassessment 

data could be incorporated into analysis to aid identification of the missing data mechanism. 

Estimation is achieved by joint modeling of the logistic regression model of interest and the 

missing data mechanism. Maximization of the joint log-likelihood function and evaluation the 

associated Hessian can be obtained via a built-in Quasi-Newton optimization routine in SAS IML. 

Simulation studies are conducted to assess the performance of the proposed method, and to 

provide a guideline for designing appropriate reassessment schemes in practice. 

 

4.2. Methods 

 

4.2.1. Outcome or Exposure Missing in Logistic Regression with Reassessment 

Data 

We consider a reassessment mechanism which randomly selects a portion of the subjects 

with missing exposure X  values to be enrolled in a second wave of sampling. We will assume 

that missing data are recovered for those subjects selected. We let 
i

R  be the indicator for 

whether the missing value of a subject is reassessed or not. For a subject with X  missing, let 

Ri
p  be the conditional probability of being selected for reassessment. The reassessment 
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mechanism can be described by the following conditional probability. 

 
0    if 0,  i.e., the exposure is observed

Pr( 1| , , , )
if 1,  i.e., the exposure is missing

i

i i i i i

Ri i

m
R y x m

p m

=
= = 

=
c

 

(4.1) 

The reassessment indicator is allowed to be dependent on the outcome Y  and controlling 

covariates C , but given these, it is assumed independent of the variable X  which is subject to 

missing values, i.e., we assume Pr( 1| , )
Ri i i i

p R y= = c . This assumption can be termed as 

“reassessment at random”, analogous to the terminology “missing at random”. Similarly, if the 

conditional probability of being reassessed is not dependent on any variable, i.e. Pr( 1)
Ri i

p R= = , 

it is termed as “reassessment completely at random”. We will focus on reassessment at random 

and consider reassessment completely at random as a special case. If the reassessment indicator is 

dependent on X  given the outcome Y  and controlling covariates C , it becomes 

“reassessment not at random”, and is not discussed here. 

We consider a logistic model as in (2.1). We have 3 types of possible observations. 

Specifically, a subject with  observed contributes the term 

( , , 0, 0 | ) Pr( 0 | , , 0) Pr( 0 | , , )

( | , ) ( | )

1 Pr( 0 | , )

( | , ) | )

,

,

(

i i i i i i i i i i i

i i i

i i i

i i i

p y x m R R y x m m y x

p y x p x

m y

p y x p x

x

= = = = = × = ×

= × = ×

i i i

i i

i

i i

c c c

c c

c

c c

, 

A subject with X  missing originally, but reassessed and found to have 
i i

X x= , contributes the 

term 

( , , 1, 1| ) Pr( 1| , , , 1) Pr( 1| , , )

( | , ) ( | )

Pr( 1| , , )

( | , ) ( | )

i i i i i i i i i i i i i i

i i i i i

Ri i i i i

i i i i i

p y x m R R y x m m y x

y x p x

p m y x

y x p

p

p x

= = = = = × = ×

= × = ×

c c c

c c

c

c c

 

A subject with X  missing originally, but not reassessed, contributes the term 

X
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[

]

1

0

( , 1, 0 | ) Pr( 0 | , , 1) Pr( , 1| )

(1 ) Pr( 1| , , )

( | , ) ( | )

i i i i i i i i i i i i

Ri i i i i

x

i i i

p y m R R y m Y y m

p m y X x

p y x p x

=

= = = = = × = =

= − × = = ×∑

c c c

c

c c

 

The conditional probability of missingness can be modeled by a logistic model, e.g., as 

follows 

0 1 2 3 12 23 13 123logit[Pr( 1| , , , )]m y x y x yx x y yxφ φ φ φ φ φ φ φ= = + + + ′ + + ′ + ′ + ′c c c c cφφφφ  (4.2) 

The conditional probability Pr( | , )Y y x= c  is the main model of interest, which can be modeled 

as in (2.1) and as restated here:  

0 1 2logit[Pr( 1| , )]Y x xβ β β= = + + ′c c ,  (4.3) 

The conditional probability of exposure rate given other covariates is modeled by a sub-logistic 

model as in (2.17), e.g., 

0 1logit[Pr( 1| )]X θ θ= = = + ′C c c   (4.4) 

Therefore, assuming ordering of the index i  to reflect observations of the respective types, 

the log-likelihood is 

missing

1

1

1

1

1

( , , ) ( , , ; , , , | )

log[ ( , , 0, 0 | )]

log[ ( , , 1, 1| )]

log[ ( , 1, 0 | )]

log[Pr( 0 | , , ; )] log[

cc

cc R

cc

cc R

cc R

cc

n

i i i i i

i

n

i i i i i

i

n n

i i i i i

i n

n n n

i i i i

i n n

n

i i i i

i

l l y x m R

p y x m R

p y x m R

p y m R

m y x p

φ β θ φ β θ

φ

=

=

+

= +

+ +

= + +

=

=

= = =

+ = =

+ = =

= = +

∑

∑

∑

∑

∑

c

c

c

c

c

missing

1

1

1 0

( | , ; )] log[ ( | ; )]

log( ) log[Pr( 1| , , ; )] log[ ( | , ; )] log[ ( | ; )]

log(1 ) log Pr( 1| , , ; ) ( | , ; ) (

cc R

cc

cc R

cc R

i i i i i

n n

Ri i i i i i i i i i

i n

n n n

Ri i i i i i i i i

i n n x

y x p x

p m y x p y x p x

p m y X x p y X x p X x

β θ

φ β θ

φ β

+

= +

+ +

= + + =

+

+ + = + +

+ − + = = = =

∑

∑ ∑

c c

c c c

c c | ; )
i

θ
 
 
 

c

 

(4.5) 

where 
cc

n  is the number of subjects with exposure observed, 
R

n  is the number of subjects with 

exposure originally missing but recovered by reassessment, missingn  is the number of subjects 

with exposure originally missing and not selected for reassessment, and we have 
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missingcc Rn n n n+ + = . The terms containing 
Ri

p  are factorized separately in (4.5) under the 

assumption of “reassessment at random”. Following the analogous argument to the “ignorable” 

missingness, if the reassessment is at random and the parameters τ  involved in modeling  

Pr( 1| , ),
Ri i i i

p R y τ= = c  are distinct from the set of parameters ( , , )φ β θ , then the terms 

1

log( )
cc R

cc

n n

R

i n

p
+

= +

∑  and 
1

log(1 )
cc R

n

R

i n n

p
= + +

−∑  can be omitted in the maximization of the log-likelihood 

with regard to ( , , )φ β θ . Therefore, we can bypass modeling the reassessment mechanism under 

the reassessment at random assumption. The log-likelihood simplifies to 

{ }

{ }

1

1

1

1

0

( , , ) ( ; , , , | )

log[Pr( 0 | , , ; )] log[ ( | , ; )] log[ ( | ; )]

log[Pr( 1| , , ; )] log[ ( | , ; )] log[ ( | ; )]

log Pr( 1| , ,

cc

cc R

cc

n

i i i i i

i

n

i i i i i i i i i

i

n n

i i i i i i i i i

i n

i i i

x

l l y x m R

m y x p y x p x

m y x p y x p x

m y X x

φ β θ γ

φ β θ

φ β θ

=

=

+

= +

=

=

∝ = + +

+ = + +

+ = =

∑

∑

∑

∑

c

c c c

c c c

c
1

; ) ( | , ; ) ( | ; )
cc R

n

i i i i i i

i n n

p y X x p X xφ β θ
= + +

  
= =  

  
∑ c c

 

(4.6) 

Similarly with outcome Y  (and not X ) subject to missing values originally and recovered 

by reassessment, the log-likelihood can be derived as 

{ }

{ }

1

1

1

1

0

( , , ) ( ; , , , | )

log[Pr( 0 | , , ; )] log[ ( | , ; )] log[ ( | ; )]

log[Pr( 1| , , ; )] log[ ( | , ; )] log[ ( | ; )]

log Pr( 1| , ,

cc

cc R

cc

n

i i i i i

i

n

i i i i i i i i i

i

n n

i i i i i i i i i

i n

i i i

y

l l y x m R

m y x p y x p x

m y x p y x p x

m Y y x

φ β θ γ

φ β θ

φ β θ

=

=

+

= +

=

=

∝ = + +

+ = + +

+ = =

∑

∑

∑

∑

c

c c c

c c c

c
1

; ) ( | , ; ) ( | ; )
cc R

n

i i i i i i

i n n

p Y y x p xφ β θ
= + +

   
=  

   
∑ c c

(4.7) 

where 
i

m  is the missingness indicator for disease status, 
i

R  is the reassessment indicator, 

Pr( 1| , ),
Ri i i i

p R x τ= = c  is the reassessment rate independent of Y  given X  and C , 
cc

n  is 

the number of subjects with disease status observed, 
R

n  is the number of subjects with disease 
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status originally missing but recovered by reassessment, missingn  is the number of subjects with 

disease status originally missing and not selected for reassessment, and we have 

missingcc Rn n n n+ + = . 

 

4.2.2. Outcome and Exposure Missing in Logistic Regression with Reassessment 

Data 

Suppose both the disease status and exposure is subject to missing values, and reassessment 

is conducted on both. This is a direct extension of “Case 5” considered by Lyles and Allen (2003). 

We allow the missing data mechanism to be dependent on the outcome, the exposure and other 

covariates. In addition, the missingness of exposure and disease status are also allowed to vary 

interactively. The reassessment subjects are assumed to be randomly chosen within subjects with 

missing values independent of the value of Y  and X . Let 
iDm  be the missingness indicator 

for disease, and 
iEm  for exposure. Let 

iDR  be the reassessment indicator for disease, and 
iER  

for exposure. If all the values are observed, the complete data distribution for a subject i  is 

given by 

( , , , , , | ) ( | , , , , , ) ( | , , , , )

( | , , , ) ( | , , )

( | , ) ( | )

( | , ) ( | )

( | , , , ) | ,

(

,

( , )

i i i i i i i i i i i

i i i

i i i i

i i i

i i D E D E i D i i i D E E E i i i D E

D i i i E E i i i

i i i i i

D i D E i E

D i i i E E i i i

i

p y x m m R R p R y x m m R p R y x m m

p m y x m p m y x

p y x p x

p R m p R m

p m y x m p m y x

p y

=

×

×

=

×

×

c c c

c c

c c

c c

c c

| , ) ( | )
i i i i

x p xc c
 

(4.8) 

Or equivalently, 

( , , , , , | ) ( | , , , , , ) ( | , , , , )

( | , , , ) ( | , , )

( | , ) ( | )

( | ) ( | )

( | , , , )

,

( | , , )

(

,

i i i i i i i i i i i

i i i

i i i i

i i i

i i D E D E i D i i i D E E E i i i D E

E i i i D D i i i

i i i i i

D i D E i E

E i i i D D i i i

i

p y x m m R R p R y x m m R p R y x m m

p m y x m p m y x

p y x p x

p R m p R m

p m y x m p m y x

p y

=

×

×

=

×

×

c c c

c c

c c

c c

c c

| , ) ( | )
i i i i

x p xc c
 

(4.9) 

The second equality of both equations holds because of the design of the reassessment 
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mechanism by which subjects are selected at random given their missingness. To be more specific, 

we assume that the conditional probability of being reassessed is not dependent on the underlying 

value of Y  or X  given the other variables C . This assumption is an extension of the 

“reassessment at random” in section 4.3.1. 

The two ways of factorization of the joint density represent different mechanisms for how 

the missingness of exposure and disease interact with each other. If all the covariates are 

categorical, it might be possible to consider a saturated model for the joint distribution of the two 

missingness indicators, and the two factorizations will be equivalent. In practice where there are 

continuous covariates, one can choose either one of them and try to approximate the saturated 

model by additional polynomial terms and careful model selection. We show in simulation studies 

that in common circumstances, the two factorizations appear to be approximately equivalent. 

Adopting the first factorization of the joint density, we denote the conditional probabilities of 

the missingness as follows: 

, , , Pr( 1| , , , 1)
E

D

y x m D EPm m y x m= = =c c , 

, , ,
Pr( 1| , , , 0)

E

D

D Ey x m
Pm m y x m= = =

c
c , and 

, , Pr( 1| , , )E

y x c EPm m y x= = c . 

The reassessment mechanism can be described by the following conditional probabilities. 

 

0    if 0,  i.e., the disease is observed
Pr( 1| , )

if 1,  i.e., the disease is missing

0    if 0,  i.e., the exposure is observed
Pr( 1| , )

if 1,  i.e., the exposure i

Di

Di i Di D

Ri Di

Ei

Ei i Ei E

Ri Ei

m
R m

p m

m
R m

p m

=
= = 

=

=
= =

=

c

c
s missing





 (4.10) 

With missing values and the reassessment mechanism as we define above, we can categorize 

the subjects based on different missingness and reassessment patterns. There are in total nine 

possible categories that a subject could fall within. For instance, a subject with both Y  and X  

observed contributes the term 

, ,, , ,

( , , 0, 0, 0, 0 | ) Pr( 0 | , 0)Pr( 0 | , 0)

Pr( 0 | , , , 0)Pr( 0 | , , )

( | , ) ( | )

1 1 (1 )(1 )

( | , ) ( | )

i i i i i i i i

i i i

i i iE

i i D E D E i D i D E i E

D i i i E E i i i

i i i i i

D E

y xy x c m

i i i i i

p y x m m R R R m R m

m y x m m y x

p y x p x

Pm Pm

p y x p x

= = = = = = = = =

× = = =

×

= × × − −

×

c

c c c

c c

c c

c c
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The likelihood contribution for a subject in each of the nine categories is summarized in 

Table 4.1. They correspond to the 25 types of observation described in Table II in Lyles and Allen 

(2003) if we enumerate the values of Y  and X  in each category. The log-likelihood can be 

constructed by looking up the likelihood contribution of each subject from Table 4.1.

 

  

Table 4.1  Likelihood contribution of a subject in each of the nine categories 

Observation 

Categories 
Likelihood Contribution 

Y  and X  

both observed 
, ,, , ,

(1 ) (1 ) ( | , ) ( | )
E

D E

y xy x c m
Pm Pm p y x p x− × − ×c c c  

Y  observed 

X  missing, reassessed , , , , ,(1 ) ( | , ) ( | )
E

E D E

R y x c m y xp Pm Pm p y x p x× − × ×c c c  

Y  observed 

X  missing not reassessed 

1

, ,, , ,
0

(1 ) [(1 ) ( | , ) ( | )]
E

E D E

R y xy x c m
x

p Pm Pm p y x p x
=

− × − × ×∑ c
c c  

Y  missing, reassessed 

X  observed 
, ,, , ,

(1 ) ( | , ) ( | )
E

D D E

R y xy x c m
p Pm Pm p y x p x× × − ×c c c  

Y missing not reassessed 

X  observed 

1

, ,, , ,
0

(1 ) [ (1 ) ( | , ) ( | )]
E

D D E

R y xy x c m
y

p Pm Pm p y x p x
=

− × × − ×∑ c c c  

Y , X  both missing 

 both reassessed 
, , , , , ( | , ) ( | )

E

D E D E

R R y x c m y xp p Pm Pm p y x p x× × × ×c c c  

Y , X  both missing 

Y  reassessed, X  not 

1

, , , , ,

0

(1 ) [ ( | , ) ( | )]
E

D E D E

R R y x c m y x

x

p p Pm Pm p y x p x
=

× − × × ×∑ c
c c  

Y , X  both missing 

X  reassessed, Y  not 

1

, , , , ,

0

(1 ) [ ( | , ) ( | )]
E

D E D E

R R y x c m y x

y

p p Pm Pm p y x p x
=

− × × × ×∑ c c c  

Y , X  both missing 

both not reassessed 

1 1

, , , , ,

0 0

(1 ) (1 ) [ ( | , ) ( | )]
E

D E D E

R R y x c m y x

y x

p p Pm Pm p y x p x
= =

− × − × × ×∑∑ c c c

 

 

The conditional probabilities Pr( 1| , , )Y x β= c  and Pr( 1| , )X θ= c  are modeled as in (4.3) 

and (4.4). The terms containing 
D

R
p  and 

E

R
p  are factorized separately in Table 4.1 under the 

assumption of “reassessment at random”. Again as in section 4.3.1, if the reassessment is at 
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random and the parameters Dτ  and Eτ  involved in modeling  Pr ,( 1| )D D

R D
p R τ= = c  and 

P ),r( 1|E E

ER
p R τ= = c are distinct from the set of parameters ( , , )φ β θ , then the terms containing 

D

R
p  and 

E

R
p  can be omitted in the maximization of the log-likelihood with respect to ( , , )φ β θ . 

Therefore, we can bypass modeling the reassessment mechanism under the above assumption. On 

the other hand, from a study design perspective, the models for 
D

R
p  and 

E

R
p  should be chosen 

with careful consideration of efficiency. The two conditional probabilities that define the missing 

data mechanism can be modeled by a pair of logistic regression models 

0 1 2 3 4

0 1 2 3

logit[Pr( 1| , , , )] (additional terms)

logit[Pr( 1| , , )] (additional ter )

+

ms

D D D D D

D E E

E EE E

E

m y x m y x m

m y x y x

φ φ φ φ φ

φ φ φ φ

 = = + + + ′ +


= = + + + ′ +

c c

c c
 

(4.11) 

Alternatively, the missingness model for the other representation can be defined similarly: 

0 1 2 3 4

0 1 2 3

logit[Pr( 1| , , , )] (additional terms)

logit[Pr( 1| , , )] (additional terms)

E E E E E

E D

DD D

D

E

D

m y x m y x m

m y x y x

φ φ φ φ φ

φ φ φ φ

 = = + + + ′ + +


= = + + + ′ +

c c

c c
 

(4.12) 

where the “additional terms” refers to interaction terms involving some or all of the predictors 

and higher order terms of continuous covariate C  when they are needed. The model selection 

regarding which terms to be included is discussed in Section 4.2.4. 

 

4.2.3. Estimation 

Statistical inference can be conducted via joint modeling the model of interest and the model 

of the missing data mechanism. We have found maximization of the joint log-likelihood function 

to be feasible using a built-in Quasi-Newton routine available in SAS IML. Regarding estimation 

of the variance-covariance matrix in conjunction with the log-likelihood, one could analytically 

derive the observed information matrix; however, a very close approximation to it can be 

obtained as the Hessian matrix of the maximized log-likelihood usually provided by numerical 

maximization procedures. Taking advantage of such available computational tools helps to 

enhance the accessibility of the methods for practical use. 

As discussed in Section 4.2.1 and 4.2.2, the model for reassessment is omitted from 
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maximization of the likelihood under “reassessment at random” assumption. On the other hand, 

from a study design perspective, the values chosen for 
D

R
p  and 

E

R
p  clearly have effect on 

efficiency of the estimation. 

 

4.2.4. Model Selection and Testing Not-Missing-At-Random 

The model selection is important on determining which terms to include in the main model 

(4.3) and the missingness model (4.2), (4.11) or (4.12). With missing data in practice, the main 

effects model is not an adequate approximation to the missing data mechanism. The form of the 

missingness model can actually make dramatic impact on the inference of the main model. 

Furthermore, the missing data mechanism is usually not ‘testable’ for MCAR or MAR against 

NMAR, although such a hypothesis is of important interest in most statistical analysis facing 

missing data. Without reassessment data, one has to rely on untestable parametric assumptions of 

the missing data mechanism, which makes the statistical inference vulnerable to bias. Ibrahim, 

Lipsitz and Chen (1999) proposed a likelihood based method via EM algorithm, which provides a 

way to conduct sensitivity analysis on the possibility of NMAR via hypothesis testing. It can be 

viewed as an approximation to a true missing data mechanism that we cannot test. 

With the reassessment design when missing data are expected, it becomes feasible now to 

conduct model selection and hypothesis testing on NMAR with the proposed method. We can use 

a step-up approach in constructing the suitable model by initially including only the main effects, 

and then additional terms can be added sequentially. We can then use the likelihood ratio or 

Akaike information criterion (AIC) to evaluate the fit of each model. This is shown below by 

means of simulation and example. 

 

4.3. Simulations 

Simulation studies were conducted to assess the performance of the proposed method. The 

parameter estimates and 95% confidence interval coverage rate were compared to that of the CC 

analysis, multiple imputation under MAR assumption. Performance of the likelihood ratio test 
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was assessed. Data were generated under MAR to examine the type I error of the proposed 

method, and then under NMAR to examine the power. A set of simulations were conducted to 

verify the consistence of the two factorizations (4.11) and (4.12) of the missingness model when 

both outcome and exposure are subject to missing values. 

 

4.3.1. Comparison of Methods with NMAR X  

When the binary exposure is subject to missing values, simulation studies were conducted to 

assess the point estimate and the associated standard errors. A random covariate was first 

generated from (0,1)N . Then exposure was generated from a logistic model as in (4.4). The 

disease status was then generated by model (4.3). Missing values were produced by a missingness 

indicator that follows model (4.2), where up to three way interactions involving X  were 

considered. The interaction terms involving both Y  and X  are necessary to induce bias into 

parameter estimates, as discussed in Chapter 2. The reassessment indicator were generated by a 

logistic model with Y  and C  as the predictors. The underlying true exposure was then 

recovered if the indicator was TRUE. 

The overall missing rate is 23.4%. For the set of subjects with missing X , the overall 

reassessment rate is 32.5%. 1000 simulations were performed, each with sample size 1000. The 

result is summarized in Table 4.2. The CC analysis produced biased estimates for the coefficients 

related to both X  and C  due to NMAR. MI based on the complete cases produced similar 

result to that by the CC analysis. MI based on the combined set of complete cases and reassessed 

cases reduced the bias and improved the efficiency upon the previous two methods thanks to the 

additional information recovered from the reassessed cases, but the bias in the point estimates is 

still noticeable. When the proposed method was applied under the MAR assumption by forcing 

the coefficients in (4.2) related to X  to be zero, i.e. 2 12 23 123 0φ φ φ φ= = = = , the result is very 

close to that from MI using the combined data set. In this case the proposed method reduced to 

common likelihood method under MAR. Finally, with a general model for the missing data 

mechanism as in (4.2), the bias of the point estimates diminished to minimal; the mean standard 
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error approached to the empirical standard deviation; and the coverage rate of the 95% confidence 

interval come close to its designated value. We also confirmed with this simulation that under the 

“reassessment at random” assumption, we can omit modeling the reassessment model, as in (4.6). 

 

Table 4.2  Comparison of methods with X  not missing-at-random 

 
Intercept 

0 

X  
1 

C  

-0.5 

Full Information Data 

-0.002 

(0.103) 

[0.102] 

{95.0%} 

1.010 

(0.166) 

[0.161] 

{94.6%} 

-0.504 

(0.046) 

[0.045] 

{95.3%} 

CC Analysis 

-0.213 

(0.121) 

[0.117] 

{54.6%} 

1.204 

(0.194) 

[0.189] 

{80.8%} 

-0.571 

(0.054) 

[0.054] 

{76.1%} 

MI 

(CC) 

-0.073 

(0.114) 

[0.111] 

{89.8%} 

1.204 

(0.195) 

[0.189] 

{82.1%} 

-0.528 

(0.049) 

[0.048] 

{91.4%} 

MI 

(CC + Reassessed Cases) 

-0.051 

(0.109) 

[0.107] 

{91.5%} 

1.143 

(0.182) 

[0.178] 

{87.3%} 

-0.520 

(0.048) 

[0.047] 

{93.0%} 

Joint Modeling 

Under MAR 

-0.051 

(0.109) 

[0.106] 

{91.4%} 

1.143 

(0.182) 

[0.177] 

{86.7%} 

-0.520 

(0.048) 

[0.047] 

{92.8%} 

Joint Modeling 

NMAR, w/o model R 

-0.003 

(0.116) 

[0.113] 

{95.4%} 

1.013 

(0.204) 

[0.194] 

{94.1%} 

-0.505 

(0.048) 

[0.047] 

{94.0%} 

Joint Modeling 

NMAR, w/ model R 

-0.003 

(0.116) 

[0.113] 

{95.4%} 

1.013 

(0.204) 

[0.195] 

{94.1%} 

-0.505 

(0.048) 

[0.047] 

{94.0%} 

Numbers in each cell reflect mean (standard deviation) based on 500 simulated data sets. Values in brackets [] are 

mean estimated standard errors; values in braces {} are 95 per cent confidence interval coverage rates. 
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In the joint model under MAR, the missingness model was specified as  

0 1 3 13logit[Pr( 1| , , , )]m y x y yccφ φ φ φ= = + + +c φφφφ .
 

In the joint model under NMAR, the missingness model was specified as 

0 1 2 3 12 23 13 123logit[Pr( 1| , , , )]m y x y x yx xc yc yxccφ φ φ φ φ φ φ φ= = + + + + + + +c φφφφ ,
 

which is the same as the data generating model. The difference between the likelihood functions 

at the maximum were used to construct a likelihood ratio test at level 0.05 for MAR, i.e., 

0 2 12 23 123: 0H φ φ φ φ= = = = . With 1000 sample size, the rejection rate is 26.0%, i.e., with the 

effect size of NMAR at the setup of this simulation, the power is around 26.0%. The estimates 

and standard errors for the parameters in the missingness model are displayed in Table 4.3. The 

mean estimate and standard error were used to construct a Wald test for significance of each 

effect. It appears that the missingness model as set up is NMAR, but not strongly deviated away 

from MAR. Therefore the likelihood ratio test on MAR versus NMAR yield relatively low power 

and the Wald test also failed on rejecting 0H  on average. 

 

Table 4.3  Parameter estimates of the missingness model 

Effect True Value Mean Estimate Mean Std. Err. Wald 
2χ  P-Value 

Intercept -2.00 -2.10 0.39 29.04 <0.0001 

Y 1.00 1.09 0.45 5.89 0.015 

X 1.00 1.06 0.62 2.89 0.089 

C 0.20 0.20 0.20 0.98 0.321 

Y*X -1.00 -1.07 0.70 2.34 0.126 

X*C -0.10 -0.10 0.25 0.15 0.695 

Y*C 0.15 0.15 0.23 0.44 0.509 

Y*X*C 0.05 0.05 0.29 0.03 0.855 
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Table 4.4  Comparison of methods with X  not missing-at-random at greater magnitude 

 
Intercept 

0 

X  
1 

C  

-0.5 

Full Information Data 

0.001 

(0.105) 

[0.102] 

{94.3%} 

1.003 

(0.170) 

[0.161] 

{94.1%} 

-0.502 

(0.046) 

[0.045] 

{94.9%} 

CC Analysis 

-0.083 

(0.111) 

[0.108] 

{86.7%} 

1.354 

(0.190) 

[0.182] 

{51.6%} 

-0.489 

(0.050) 

[0.050] 

{94.5%} 

MI 

(CC) 

-0.117 

(0.106) 

[0.103] 

{79.9%} 

1.350 

(0.190) 

[0.182] 

{52.6%} 

-0.541 

(0.048) 

[0.047] 

{87.2%} 

MI 

(CC + Reassessed Cases) 

-0.081 

(0.105) 

[0.103] 

{86.2%} 

1.239 

(0.183) 

[0.175] 

{71.2%} 

-0.528 

(0.047) 

[0.046] 

{91.3%} 

Joint Modeling 

Under MAR 

-0.081 

(0.105) 

[0.103] 

{86.3%} 

1.238 

(0.182) 

[0.174] 

{71.2%} 

-0.528 

(0.047) 

[0.046] 

{91.4%} 

Joint Modeling 

NMAR, w/o model R 

0.005 

(0.113) 

[0.109] 

{91.3%} 

0.998 

(0.197) 

[0.187] 

{91.8%} 

-0.500 

(0.047) 

[0.046] 

{93.7%} 

Joint Modeling 

NMAR, w/ model R 

0.005 

(0.113) 

[0.109] 

{91.3%} 

0.998 

(0.197) 

[0.187] 

{91.8%} 

-0.500 

(0.047) 

[0.046] 

{93.7%} 

Numbers in each cell reflect mean (standard deviation) based on 500 simulated data sets. Values in brackets [] are 

mean estimated standard errors; values in braces {} are 95 per cent confidence interval coverage rates. 

 

In a second simulation, the values of are chosen so that the magnitude of deviation from 

MAR is larger. As expected, the CC analysis and other methods assuming MAR produce more 

bias, whilst the proposed method can dramatically reduce the bias to minimal (Table 4.4). The 

difference between the likelihood functions at the maximum were used to construct a likelihood 
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ratio test at level 0.05 for MAR, i.e., 0 2 12 23 123: 0H φ φ φ φ= = = = . With 1000 sample size, the 

rejection rate is 67.2%, i.e., with the effect size of NMAR at the setup of this simulation, the 

power is around 67.2%. 

 

4.3.2. Comparison of Methods with MAR X  

Simulation studies were conducted to assess the point estimate and the associated standard 

errors when X  is MAR. The full information data without any missing values were generated 

as described in Section 4.3.1. Missing values were produced by a missingness indicator that 

follows model (4.2) with 2 12 23 123 0φ φ φ φ= = = = . The reassessment indicator were generated by a 

logistic model with Y  and C  as the predictors. The underlying true exposure was then 

recovered if the indicator was TRUE. The result was summarized in Table 4.5. 

The overall missing rate is 20.7%, with sample size 1000. For the set of subjects with 

missing X , the overall reassessment rate is 36.7%. 1000 simulations were performed. As the 

data were generated under MAR, CC analysis and other methods based on MAR assumption all 

produced minimal bias in estimate of coefficient of X , whilst CC analysis produced biased 

estimate for coefficient of C . This is due to the induced NMAR for C  because of the 

correlation between X  and C  as discussed in Chapter 2. The empirical efficiency of MI based 

on complete cases is the same as that of the CC analysis, which means that when X  is MAR, 

MI on complete cases does not help in gaining additional efficiency as also discussed in Chapter 

2. MI and the proposed joint modeling method based on the combined data with complete cases 

and reassessed cases managed to gain efficiency thanks to the additional information. The joint 

modeling method lost some efficiency after the NMAR was taken into consideration. 
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Table 4.5  Comparison of method under MAR 

 
Intercept 

0 

X  
1 

C  

-0.5 

Full Information Data 

-0.002 

(0.105) 

[0.102] 

{95.2%} 

1.011 

(0.161) 

[0.161] 

{95.1%} 

-0.505 

(0.045) 

[0.045] 

{95.1%} 

CC Analysis 

-0.219 

(0.121) 

[0.117] 

{53.5%} 

1.009 

(0.185) 

[0.183] 

{94.4%} 

-0.580 

(0.054) 

[0.053] 

{69.7%} 

MI 

(CC) 

-0.001 

(0.116) 

[0.112] 

{93.6%} 

1.009 

(0.186) 

[0.183] 

{94.4%} 

-0.504 

(0.047) 

[0.047] 

{94.9%} 

MI 

(CC + Reassessed Cases) 

-0.003 

(0.110) 

[0.107] 

{95.1%} 

1.011 

(0.171) 

[0.174] 

{95.2%} 

-0.505 

(0.046) 

[0.046] 

{95.0%} 

Joint Modeling 

Under MAR 

-0.003 

(0.110) 

[0.107] 

{94.8%} 

1.011 

(0.170) 

[0.173] 

{95.5%} 

-0.505 

(0.046) 

[0.046] 

{94.9%} 

Joint Modeling 

NMAR, w/o model R 

0.000 

(0.115) 

[0.112] 

{94.7%} 

1.004 

(0.182) 

[0.188] 

{95.2%} 

-0.503 

(0.047) 

[0.047] 

{94.6%} 

Joint Modeling 

NMAR, w/ model R 

0.000 

(0.115) 

[0.112] 

{94.8%} 

1.004 

(0.183) 

[0.188] 

{95.2%} 

-0.503 

(0.047) 

[0.047] 

{94.6%} 

Numbers in each cell reflect mean (standard deviation) based on 500 simulated data sets. Values in brackets [] are 

mean estimated standard errors; values in braces {} are 95 per cent confidence interval coverage rates. 

 

The difference between the likelihood functions at the maximum were used to construct a 

likelihood ratio test at level 0.05 for MAR, i.e., 0 2 12 23 123: 0H φ φ φ φ= = = = . With 1000 sample 

size, the rejection rate is now 5.0%, i.e., with the MAR at the setup of this simulation, the type I 

error is around 5.0%, which is as designated. 



 121 

4.3.3. Both Outcome and Exposure NMAR with Reassessment 

We conducted simulation studies to examine the performance of the proposed method when 

both outcome and exposure are subject to missing values and are both reassessed as designed. In 

this case, it is interesting to examine whether the two ways of factorization of the joint 

missingness model (4.11) and (4.12) yield the same results. 

In the first set of simulation, the continuous covariate C  was generated from a normal 

distribution. The missingness indicator was generated by model (4.11) without interaction and 

higher order terms. The overall missing rate is 21.6% for Y , and 17.7% for X . The 

reassessment rate is 11.6% for Y  and 7.9% for X . In the model fitting, both (4.11) and (4.12) 

were applied, but without interaction and higher order terms. The parameter estimates of the main 

model are summarized in Table 4.6. 

In Table 4.6, we see that when the underlying missing data mechanism is (4.11) without 

interaction and higher order terms, the joint modeling via (4.11) and (4.12) yield very close 

results. Therefore, in this case, the investigator can choose either form to construct the likelihood 

to the best of their knowledge or experience. 
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Table 4.6  Parameter estimates of the main model when both outcome and exposure could be 

NMAR and reassessed 

 
Intercept 

0 

X  
1 

C  

-0.5 

Full Information Data 

-0.004 

(0.092) 

[0.094] 

{95.7%} 

1.010 

(0.144) 

[0.144] 

{94.3%} 

-0.503 

(0.074) 

[0.073] 

{95.3%} 

CC Analysis 

-0.212 

(0.113) 

[0.113] 

{54.2%} 

1.360 

(0.181) 

[0.178] 

{47.8%} 

-0.512 

(0.091) 

[0.090] 

{94.5%} 

Multiple Imputation 

-0.215 

(0.109) 

[0.110] 

{51.8%} 

1.359 

(0.183) 

[0.179] 

{49.6%} 

-0.523 

(0.087) 

[0.086] 

{93.5} 

Joint Modeling 

(4.11) 

-0.015 

(0.172) 

[0.177] 

{94.7%} 

1.037 

(0.297) 

[0.302] 

{93.2%} 

-0.501 

(0.088) 

[0.088] 

{95.0%} 

Joint Modeling 

(4.12) 

-0.011 

(0.174) 

[0.178] 

{94.6%} 

1.028 

(0.295) 

[0.304] 

{93.0%} 

-0.499 

(0.088) 

[0.088] 

{95.0%} 

Numbers in each cell reflect mean (standard deviation) based on 500 simulated data sets. Values in brackets [] are 

mean estimated standard errors; values in braces {} are 95 per cent confidence interval coverage rates. 

 

4.4. Example 

Higher pre-pregnancy body mass index (BMI) is associated with increased risk of neural 

tube defects (NTDs) and possibly other negative birth outcomes in the offspring. The mechanism 

for this association remains uncertain. Lower maternal folate level has been implicated in the 

etiology of NTDs in general. Therefore, it is of interest to investigate the association of BMI with 

folate level (Mojtabai 2004). This example examines the association of BMI with folate level in 

adult women using data from a cross-sectional survey of the U.S. population (National Health and 

Nutrition Examination Survey (NHANES), 1999–2008), after the 1998 U.S. folate fortification 

program of cereal products. Better understanding of the association of BMI and folate distribution 
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and metabolism has important public health implications. The study tests the hypothesis that 

higher BMI is associated with lower serum levels of folate after controlling for age and 

race/ethnicity. 

Of the 51,623 participants in NHANES 1999-2008, 11,834 were non-pregnant women aged 

20 and above, with the serum folate level available. Age and race/ethnicity information were 

complete. Subject’s BMI was obtained by questionnaire and also by body examination. In this 

example, we consider the BMI obtained by questionnaire as the first wave of sampling, and the 

missing BMI values were then recovered by the record in the body examination as the 

reassessment measure. This results in an overall missing rate of 10.4% in the first wave of 

sampling (1,226 subjects), and among these with missing values, 37.7% were reassessed by body 

examination (462 subjects). 

The association of BMI with serum folate was assessed by logistic regression model in 

which dichotomized serum folate was the dependent variable of interest and BMI was the 

independent variable of interest. The analyses controlled for the effect of age, race/ethnicity. BMI 

were categorized into two categories: less than 30 
2kg/m  and equal to and above 30 

2kg/m . 

Serum folate level were dichotomized by the 75
th
 percentile (19.7 ng/mL) of the target 

population. 

The NHANES 1999-2008 used a stratified multistage probability sampling design to survey 

U.S. household civilian populations. The complex sampling design of both NHANES samples 

requires the use of weights and specific design elements to make the samples representative of the 

U.S. population and to derive correct standard errors for estimates. However, for simplicity of 

demonstration of the proposed method, we do not use the weights in this example. 

We performed complete case analysis, multiple imputation under the MAR assumption and 

the proposed likelihood method. The complete case analysis and the multiple imputation method 

were implemented as introduced in Chapter 2. The likelihood method was implement as 

introduced in Section 4.3.1 with the missing data mechanism modeled in three ways. First the 

missing data mechanism was set as MAR by setting the regression coefficients related to X  to 
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zero in (4.2). 

0 1 3logit[Pr( 1| , , , )]m y x yφ φ φ= = + + ′c cφφφφ
 

(4.2ꞌ) 

Secondly, the missing data mechanism was allowed to be dependent on BMI (i.e., NMAR) 

but only the interaction between serum folate and BMI was considered. 

0 1 2 3 12logit[Pr( 1| , , , )]m y x y x yxφ φ φ φ φ= = + + + ′ +c cφφφφ  (4.2ꞌꞌ) 

Lastly, the missing data mechanism was allowed to be dependent on BMI (i.e., NMAR) and 

up to three way interactions involving BMI were allowed. 

0 1 2 3 12 23 123logit[Pr( 1| , , , )]m y x y x yx x yxφ φ φ φ φ φ φ= = + + + ′ + + ′ + ′c c c cφφφφ
 
(4.2) 

The values of the likelihood functions at MLE were recorded for each model, therefore a 

likelihood ratio test was formulated to test the hypothesis that the missing data mechanism is 

MAR, and how complex the missing data mechanism needs to be modeled. The parameter 

estimates of the main model (4.3) are summarized in Table 4.7. 

The likelihood ratio test on (4.2ꞌꞌ) versus (4.2ꞌ) yields 
2 29.26χ =  with degree of freedom 

equal to two (p<0.0001); whilst the likelihood ratio test on (4.2) versus (4.2ꞌ) yields 
2 134.29χ =  

with degree of freedom equal to seven (p<0.0001). The likelihood ratio tests are significant, 

indicating that the missingness is not at random. The estimates of the regression coefficients in 

the missingness model in (4.2) were summarized in Table 4.8. We conclude that the missing data 

mechanism in this study appears to be dependent on the missing values. Consideration of NMAR 

is needed. However, it is also interesting to notice that the joint modeling does not yield 

meaningfully different estimated odds ratio regarding BMI in Table 4.6 unless a relatively 

comprehensive missingness model with up to three way interactions was considered. It is then 

interesting to check whether all the three way interactions are needed. If we fit a simpler 

three-way interaction model by omitting the insignificant terms in Table 4.8, we can conduct a 

likelihood ratio test to compare the simpler and comprehensive models, which yields a 

Chi-squared test statistic 48.48 with degree of freedom of three (p<0.0001). Therefore, we 

recommend keeping all these terms in the missingness model, although some are not significant 
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in Wald test. 

 

Table 4.7  The Parameter Estimates by Different Methods 

 BMI Age Race 

CC Analysis 

-0.404 

(0.052) 

[0.67] 

{p<0.0001} 

0.033 

(0.001) 

[1.03] 

{p<0.0001} 

0.701 

(0.050) 

[2.02] 

{p<0.0001} 

CC + Reassessed Cases 

-0.379 

(0.051) 

[0.68] 

{<0.0001} 

0.033 

(0.001) 

[1.03] 

{<0.0001} 

0.696 

(0.049) 

[2.01] 

{<0.0001} 

MI 

(CC) 

-0.409 

(0.053) 

[0.66] 

{<0.0001} 

0.026 

(0.001) 

[1.03] 

{<0.0001} 

0.639 

(0.047) 

[1.89] 

{<0.0001} 

MI 

(CC + Reassessed Cases) 

-0.392 

(0.050) 

[0.68] 

{<0.0001} 

0.026 

(0.001) 

[1.03] 

{<0.0001} 

0.643 

(0.047) 

[1.90] 

{<0.0001} 

Joint Modeling 

MAR (4.2ꞌ) 

-0.394 

(0.079) 

[0.67] 

{<0.0001} 

0.025 

(0.001) 

[1.03] 

{<0.0001} 

0.652 

(0.047) 

[1.92] 

{<0.0001} 

Joint Modeling 

NMAR (4.2ꞌꞌ) 

-0.395 

(0.052) 

[0.67] 

{<0.0001} 

0.025 

(0.001) 

[1.03] 

{<0.0001} 

0.635 

(0.047) 

[1.89] 

{<0.0001} 

Joint Modeling 

NMAR (4.2) 

-0.549 

(0.053) 

[0.577] 

{<0.0001} 

0.026 

(0.001) 

[1.03] 

{<0.0001} 

0.636 

(0.047) 

[1.89] 

{<0.0001} 

Dichotomized serum folate level was considered as the dependent variable in a logistic regression, with BMI, age 

and race/ethnicity as the independent variables. The overall missing rate is 10.4%, and reassessment rate 37.7%. The 

values in each cell represent the estimated logarithm odds ratio, standard error in (), odds ratio in [], and p-value in 

{}. 
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Table 4.8  Parameter Estimates of the Missingness Model 

Effect Estimate Std. Error Chi-Square P-value 

Intercept -3.953 0.207 365.06 <0.0001 

Serum Folate (SF) -0.860 0.173 24.70 <0.0001 

BMI -0.850 0.388 4.785 0.0287 

Age 0.035 0.004 82.16 <0.0001 

Race -1.000 0.143 48.81 <0.0001 

BMI*SF 1.105 0.853 1.68 0.195 

BMI*Age 0.017 0.007 5.90 0.0152 

BMI*Race -0.920 0.504 3.333 0.0679 

BMI*SF*Age -0.008 0.013 0.357 0.550 

BMI*SF*Race -1.624 0.333 23.80 <0.0001 

BMI*Age*Race 0.035 0.007 23.95 <0.0001 

 

As an illustration, we are interested to see whether the missing data could make more impact 

if the overall missing rate is larger. We artificially induce additional missing values based on the 

missing data mechanism estimated from the joint modeling (Table 4.8). To achieve a higher 

overall missing rate, we adjusted the intercept term, but keep the other estimated regression 

coefficients as in Table 4.8. Therefore the overall missing mechanism is only inflated by a 

constant but the association structure with the related effects remains unchanged. The 

reassessment rate is targeted at 37.7% on the induced missing subjects. In the data set with 

artificially induced missing values, the missing rate is 25.1%, and the reassessment rate is 37.3%. 

We repeated the analyses and the results are summarized in Table 4.9. The results by CC analysis 

and MI based on complete cases now deviated away noticeably from that by the analysis on the 

combined data with complete and reassessed cases. The result from later also deviated noticeably 

from that by the joint modeling with consideration of NMAR, even if the simplest (4.2ꞌꞌ) model 

was considered. Therefore, the impact of NMAR on the parameter estimate emerges when the 
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overall missing rate is large. The result from using (4.2) remains close to that in the original data 

set, which means that we were able to replicate the correct missing data mechanism in the 

original data and also to make correction upon it with the proposed method. 

 

Table 4.9  Parameter Estimates by Different Methods 

 BMI Age Race 

CC Analysis 

-0.176 

(0.056) 

[0.84] 

{0.0016} 

0.040 

(0.001) 

[1.04] 

{<0.0001} 

0.655 

(0.054) 

[1.93] 

{<0.0001} 

CC + Reassessed Cases 

-0.269 

(0.052) 

[0.76] 

{<0.0001} 

0.036 

(0.001) 

[1.04] 

{<0.0001} 

0.679 

(0.051) 

[1.97] 

{<0.0001} 

MI 

(CC) 

-0.204 

(0.054) 

[0.82] 

{<0.0001} 

0.025 

(0.001) 

[1.03] 

{<0.0001} 

0.657 

(0.048) 

[1.93] 

{<0.0001} 

MI 

(CC + Reassessed Cases) 

-0.289 

(0.054) 

[0.75] 

{<0.0001} 

0.025 

(0.001) 

[1.03] 

{<0.0001} 

0.649 

(0.047) 

[1.91] 

{<0.0001} 

Joint Modeling 

MAR (4.2ꞌ) 

-0.300 

(0.052) 

[0.74] 

{<0.0001} 

0.026 

(0.001) 

[1.03] 

{<0.0001} 

0.653 

(0.047) 

[1.92] 

{<0.0001} 

Joint Modeling 

NMAR (4.2ꞌꞌ) 

-0.369 

(0.056) 

[0.69] 

{<0.0001} 

0.026 

(0.001) 

[1.03] 

{<0.0001} 

0.659 

(0.048) 

[1.93] 

{<0.0001} 

Joint Modeling 

NMAR (4.2) 

-0.498 

(0.055) 

[0.61] 

{<0.0001} 

0.026 

(0.001) 

[1.03] 

{<0.0001} 

0.643 

(0.047) 

[1.90] 

{<0.0001} 

The values in each cell represent the estimated logarithm odds ratio, standard error in (), odds ratio in [], and p-value 

in {}. 
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The likelihood ratio test on (4.2ꞌꞌ) versus (4.2ꞌ) yields 
2 44.69χ =  with degree of freedom 

equal to two (p<0.0001); whilst the likelihood ratio test on (4.2) versus (4.2ꞌ) yields 
2 236.14χ =  

with degree of freedom equal to seven (p<0.0001). We conclude that the missing data mechanism 

in this study appears to be dependent on the missing values. Consideration of NMAR is needed. 

The likelihood ratio test results in a higher 
2χ , thus we are able to pick up more evidence in 

rejecting that the missing data in this example is MAR. 

 

4.5. Discussion 

Statistical inference is highly dependent on the assumption of the missing data mechanism. 

Common approaches are based on MAR blindly, or with sensitivity analysis, but none could give 

definitive conclusions, nor valid hypothesis testing on the validity of the assumption. With 

reassessment data, it is feasible to perform such hypothesis tests. The proposed method makes it 

possible to test NMAR via a likelihood ratio test based on the data. In the simulation studies in 

Section 4.3.1 and 4.3.2, we see that the likelihood ratio test for NMAR provides valid empirical 

type I error at the designated level, and the power of the test increases as the magnitude of 

NMAR gets larger, with the other factors fixed. The power of the proposed test is dependent of 

the magnitude of NMAR, sample size, missing rate and reassessment rate. However, it is hard to 

quantify the magnitude of deviation from MAR, therefore we cannot draw a quantitative 

conclusion on the power of this test, nor can we give a closed form for power/sample size 

calculation. On the other hand, it is not clear how to characterize the set of all estimable 

parameters for this class of models given a certain choice of covariates. This issue of estimatility 

arises often in non-ignorable response models as pointed out by Baker and Laird (1988). The 

likelihood ratio test proposed here serves as a valid tool for model selection. 

The reassessment scheme in study design proposed here is important. As pointed out by Glyn, 

Laird, and Rubin 1993, none of the approaches mentioned in Section 4.1 can be relied on to 

obtain information from a completely random sample of nonparticipants, and nonresponse to 
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reassessment is often high. Nevertheless, the proposed method allows certain dependence of the 

non-response to reassessment on observable variables. As long as the nonresponse is independent 

on the underlying value after conditioning on the other variables, namely “Reassessment at 

Random”, incorporating these follow-up data into estimates will lead to reduced bias. 

As it has been pointed out by Lyles and Allen (2003), the type of reassessment that we 

discuss is focused on studies in which missing data occur naturally, compared to the two-stage 

designs proposed in other previous literature (Breslow and Cain 1988; Flanders and Greenland 

1991; Zhao and Lipsitz 1992). Therefore, it is only the distribution of reassessment given 

missingness that is under the control of the investigator. 
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Chapter 5. SUMMARY AND FUTURE RESEARCH 
 

5.1. Summary 

This dissertation explores methods to deal with missing data in statistical analysis of logistic 

regression. The disease status (outcome) and risk exposure (predictor of interest, a binary 

indicator) could be subject to missing data separately or together. The research question of 

interest is to identify the association between the disease status and the risk exposure, with best 

available consideration of the potential impact of the missing data on the estimation. 

The first research topic was focused on providing a better accessible approach to 

investigators if the assumption of missing at random was imposed. This assumption is extensively 

used in practice, and many methods have been proposed in this case. However, due to lack of 

available statistical software, many are not easily accessible to investigators. We explore the 

impact of missing data in disease status and/or risk exposure. We found that the subjects with 

disease status missing contribute no information to the association of interest. Omitting these 

subjects from analysis induces no bias or loss of efficiency. When the risk exposure is missing for 

some subjects, we proposed a weighting method which constructs a weighted log-likelihood 

using the conditional distribution of the subject-to-missing-data variable given the observed data. 

Two estimation approaches were proposed, each of which has its advantage and drawback. The 

first approach makes use of a “flipped-around” logistic model with risk exposure as the outcome 

and disease status as the predictor of interest, controlled for other variables. This approach is easy 

to implement with standard statistical software, and shares common properties with multiple 

imputation. However, due to the conflict of the “flipped-around” model with the original model 

when the controlling covariates are “sufficiently continuous”, this approach, as well as multiple 

imputation, can induce bias in parameter estimates. The second approach rewrites the weight by 

Bayes rule into a function, the variables of which are parameters from the original model and a 

sub-logistic model with risk exposure as the outcome and controlling covariates as the predictors. 

The expectation-maximization (EM) algorithm was used for parameter estimation. The 

parameters in the sub-logistic model were estimated prior to the EM algorithm therefore the 
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M-step was simplified. The conditional expectation in the E-step was written as a weighted 

log-likelihood with closed form, thus the E-step was also simplified. This second approach 

avoided the problem of the “flipped-around” model, therefore is recommended when the first 

approach and multiple imputation are not appropriate. However, it requires investigators to code 

an iterative program. 

The first topic is based on the assumption of missing at random, which is subjectively 

imposed based on previous knowledge and experience and often not testable. If the assumption 

fails apart, the above methods produce biased parameter estimates. It is then important to assess 

how sensitive the results are to the violation of the assumption of missing at random. In the 

second topic, we proposed a framework of sensitivity analysis for such purpose. Alternative 

missing data mechanisms are specified, and the result from each specified scenario is compared 

to that from MAR to assess the bias of parameter estimates induced at each level of deviation 

from MAR. The specification of alternative missing data mechanism can be made through three 

ways, namely conditional probabilities of being missing, the missingness risk ratio and the 

missingness odds ratio. These three terms are not mutually deterministic in general, but we found 

a relationship by making use of the overall missing rate as a tie among them. The overall missing 

rate can be consistently estimated with the at-hand data set without dealing with missing data 

problem. Therefore it provides a useful means to guiding the specification of alternative missing 

data mechanism and avoids unrealistic specifications. Simulation results show that the proposed 

method succeeds in detecting the direction and magnitude of bias in parameter estimates even if 

the specification of the alternative missing data mechanism is not completely correct. 

The first two topics are based on a common study design where when missing data occur, no 

attempts are made to collect additional information and statistical methods are aimed to make best 

use of available data. The assumption of missing at random becomes the key but is vulnerable 

sometimes and untestable in general. In the third research topic, we explore the reassessment 

design, where a second wave of sampling is made in attempt to recover a small portion of the 

missing data in the original wave. We construct a joint model of the original model of interest and 
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the model of missing data mechanism, where the second one allows for non-ignorable 

missingness. The estimation is carried out by numerical maximization of the joint likelihood and 

the standard errors are estimated via a close approximation by the Hessian matrix. We 

demonstrate that when the reassessment is at random, the model of reassessment can be omitting 

from the likelihood without harming the estimation. We recommend likelihood ratio test be used 

for model selection. By this means, it can be used to facilitate hypothesis testing on the 

assumption of missing at random, which is of great concern in many practical applications. 

 

5.2. Future Research 

The first possible extension is to generalize the sensitivity analysis to allow for multiple 

variables subject to missing data. In practice, it is likely that multiple variables are missing and 

the occurrences of missing data between variables are mutually dependent. The specification of 

alternative missing data mechanisms can be generalized for such need. 

The reassessment study design proposed here assumes perfect response in the reassessment 

sample. However, it may not be realistic in practice. The proposed method could be extended to 

accommodate certain missingness in the reassessment sample. The current study design method 

also assumes that there is no misclassification in the first wave of sampling. Considering that the 

first wave of sample is usually conducted in a much larger scale with less expensive sampling 

instruments, data from the first wave are likely to be exposed to 

mis-classification/mis-measurement. In these studies, reassessment data might be obtained for the 

non-missing subjects as well. For example, in the NHANES data in Chapter 4, the same subject 

with BMI obtained by questionnaire might also be invited for physical body examination. In this 

case, the reassessment data also serves as a golden standard for the target measure and can be 

used for correction of mis-classification/mis-measurement. The proposed method can be extended 

to accommodate such needs. 

All the topics focus on binary risk exposure, but the methodology proposed here is not 

limited to so. It is interesting to generalize the closed form of weights proposed here to 
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accommodate categorical risk exposure, but application on continuous risk exposure might be 

difficult because of the complexity in integration and may require numerical integration 

algorithms. 
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