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Abstract  

 Bee Community Responses in Pine Systems to Future Biofuel Cultivation in Southeastern US. 

By David Gruenewald  

In order to meet projected biofuel demands, pine forests in the Southeastern US are 

anticipated to be a primary supplier for the cellulosic biomass used for biofuel production, yet 

there is little understanding how these expected changes in forest management will affect 

biodiversity in these systems.  Due to their agricultural and ecological importance, bees were 

collected from 40 forest sites across Florida, Georgia, and Alabama.  In this study, I focus on 

measuring the responses of bee communities in the forest management conditions currently in 

practice compared to the future management conditions expected for biofuel production.  

Throughout all models, bee abundance, species richness, and community composition were found 

to be significantly related to the management type and region of sampling while only marginally 

related to flower communities.  This supports previous work that land-use has an impact on bee 

communities.  However, examining the pairwise comparisons of bee abundance and species 

richness across management types suggests that observed differences in management resides in 

the age of the forest rather than changes brought on by biofuel production.  These results suggest 

that while management conditions of forests can impact bee diversity, changes in management 

brought on by biofuel production may not significantly affect bee diversity at the local, short-term 

scale.    
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Bee Community Responses in Pine Systems to Future Biofuel Cultivation 

in Southeastern US.

 

1. Introduction 

Biofuel production is expected to increase globally over the next decade, yet little work 

has been done to assess how increased crop production for biofuels will impact biodiversity.  In 

the US, the 2007 Energy Independence and Security Act, administered by the US Department of 

Energy (DOE), mandates for 136 billion liters of biofuel production by 2022.  Last year, the total 

production of biofuels in the United States was estimated to be 5 billion liters of useable biofuels 

(EIA, 2014), most of which was derived from corn products.  To help meet the high demand for 

biofuel production, advanced biofuels, such as cellulosic biofuels, will be utilized to account for 

over half of the mandated goal (approximately 80 billion liters).  With the increase in cellulosic 

biofuel production (Sissine, 2007), pine biomass in the Southeastern U.S. will be a significant 

contributor for these future objectives (USDA, 2010), despite the current production of cellulosic 

biofuels being small scale and experimental thus far.  The effects of pine expansion for biofuels 

on biodiversity are unknown.  As land use and habitat loss are thought to be the primary driver of 

biodiversity loss worldwide (Sala et al., 2000), it is imperative to understand the extent to which 

increased pine production for biofuel use will affect local biodiversity. 

Pine forests and plantations in the southeastern United States account for 200 million 

acres in the Southeast and are managed in a great diversity of ways.  With such a large region 

affected, any changes in management practices due to biofuels may have profound effects.  

Before European settlement of the Americas, much of the coastal plain of this region existed in 

longleaf pine (Pinus palustris) savannahs, which are now a globally endangered habitat (Lear et 
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al., 2005).  Now, approximately 70% of this evergreen tree cover is owned privately or 

industrially for commercial use in the Southeast.  These managed plantations would almost 

certainly experience dramatic management shifts with the advent of cellulosic biofuel production, 

especially given DOE mandates.  Currently, the majority of harvested wood from the Southeast is 

used for wood fiber and wood products (Walsh et al., 2003).  For the demands of cellulosic 

biofuels, pine harvests would need to be obtained from either designated new pine plantations or 

changing current pine management practices.  At a local scale, such management changes for 

biofuel production are likely to include (1) collection of post-harvest woody residues (which in 

current practice are typically left behind; Allen et al., 2002) and (2) shorter harvest rotations, 

leading to fewer managed stands with large trees and more frequent harvest disturbance; and (3) 

higher density plantings (Jones et al., 2009).  At a landscape scale, biofuel production may lead to 

an increase in the area coverage of pine plantations, with unknown conservation implications.  

While different management types may be more suited for higher yields, it is uncertain if 

the most economic management practices correspond with conservation efforts.  For instance, the 

removal of residues may have negative effects on certain taxa, while forest thinning may have 

positive effects on other taxa.  Additionally, increased pine production may lead to a faster 

turnover of harvesting forests.  This will result in higher levels of landscape heterogeneity, 

potentially benefitting biodiversity levels in the area. 

In terms of biofuel impacts on wildlife, one key group to consider is pollinators.  Beyond 

their ecological significance in maintaining wildflower diversity, native pollinators also support 

local row-crop agriculture in the region (Kremen, 2002).  Native pollinators affected by future 

land use changes for biofuels may impact pollinator-dependent crops such as peanuts and cotton, 

which are major agricultural exports for the Southeast (SUSTA, 2014).  Commercial pine 

practices do not support rich understory vegetation, potentially disturbing native pollinator 

populations.  However, longleaf pine forests have a very open canopy, allowing for an extremely 

diverse understory for flowering plant communities (>1,000 flowering plant species; Winfree, 
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2007).  Many of these wildflowers are likely insect pollinated.  Of the various taxa of pollinators 

in the Southeast, bees are of particular interest due to their global decline and relative high 

diversity in the area. 

Due to the agricultural and ecological importance of bees, we need a better understanding 

of how these future land-use changes may affect bee communities.  Bee communities have not 

been well studied in southeastern pine habitats, either in commercial pine or longleaf pine 

systems.  Some work on pine systems suggests low bee diversity and abundance (Winfree, 2007).  

The direct effects of pine management on wildflower communities make it particularly interesting 

to look at how biofuel management may affect bee communities in the Southeast, as bees are 

highly associated with wildflower communities.  In agriculture, pollination services from native 

bee populations have been shown to help offset the declining populations of commercial bee 

farmers (Kremen, 2002).  Beyond their agricultural and ecological significance, bees are a model 

system to understand biodiversity changes.   Bees are a very useful study group for biodiversity 

surveys given their very high species richness of over 19,000 described species world-wide 

(Ascher & Pickering, 2011).  However, there is ongoing concern about global declines in native 

bee species (Biesmeijer et al., 2006; Potts et al., 2010). Due to the possible regional changes in 

forestry practices, bee communities need to be evaluated across the Southeast. 

For this study, I sampled bees in pine forests under different land management practices 

across Florida, Georgia, and Alabama.  I hypothesize that (1) bee diversity, abundance, and 

community compositions will decrease as the intensity of management increases for local pine 

forestry practices; and (2) a decrease in bee diversity will correlate with a decline in flower 

diversity across management types.  Correlations between bee and flower diversity must exist 

beyond how the land management will directly affect flowering plant communities. 
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2. Methods 

2.1 Site Selection and Sample Cycles 

I sampled bees in pine forests in three regions: southern Georgia, northern Florida, and 

eastern Alabama.  The Georgia sites surrounded the Joseph W. Jones Research Center (Baker 

County), and were sampled during the spring and summer of 2013.  The Alabama and Florida 

sites were sampled in the spring and summer of 2014 and surrounded the town of Greenville, AL 

(Butler County), and the Tall Timbers Research Station (Leon County, FL), respectively.  Within 

each region, 12 to 14 sites were selected based on management condition.  Bees were collected 

from mid-April to late-July for both years. 

Based on potential changes in forest management for biofuels, I first selected sites based 

on the management conditions in practice.  Sampling sites were categorized into 8 distinct 

management conditions (Table 1): (1a) Clearcut with residues; (1b) Clearcut without residues; 

(2a) Thinned – managed; (2b) Unthinned – managed; (3a) Young stand; (3b) Old stand; (4) 

Reference stand [longleaf pine]; and (5) Corn [as an alternative resource for biofuels].  These 

categories allow for comparisons between the proposed forestry management for biofuels against 

the current practices for timber production (appropriately grouped in Table 1).  Comparisons 

between these management practices will investigate the potential effects of shorter harvest 

rotations (old stand vs. young stand), higher 

density plantings (thinned vs. unthinned), and 

woody debris collection after normal timber 

harvesting (clearcut with residues vs. clearcut 

without residues).  For Alabama and Florida, 

two sites per region were designated for each 

management condition for a total of 14 sites 

Table 1: Management Conditions for Sites 

 
Plot Type 

Age since 

planting 

1a) Clearcut, residues 0 – 5 years 

1b) Clearcut, no residues 0 – 5 years 

2a) Thinned, managed 12 – 15 years 

2b) Unthinned, managed 12 – 15 years 

3a) Young, managed 8 – 12 years 

3b) Old, managed >15 years 

4) Natural forest (longleaf) >30 years 

5) Corn >1 month 
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each.  For Georgia, only 12 sites were sampled, with at least one site for each management 

condition. 

 Each site was divided into two separate plots; one each in the interior and at the edge of 

the tree stand. Bee communities may utilize resources differently at the edge and interior, for 

instance, since changes in canopy cover may affect wildflower availability.  Each plot was 200m 

x 100m wide, and was surrounded by a minimum of 50m of similar habitat in all directions. The 

edge plots were exactly 50 m from the edge of the tree stand, bordering non-tree land use 

(roadways, pastures, or row-crops).  Interior plots were placed at each site using ArcGIS to 

determine the most central position of forest, with a minimum distance of 1,000 meters from any 

forest edge.  To assure that the sites were spatially independent, all sampling sites were separated 

by at least 2.5 km. 

We ran four sampling “cycles” (repeat samples) at each site for each region during the 

duration of a field season.  A cycle consisted of one complete sampling effort of bees for each site 

(see section 2.2 for more details).  A consecutive cycle would begin only after all sites within the 

region were sampled.  Generally, one complete cycle required about one month of sampling 

effort. 

 

2.2 Bee Collection & Vegetation Surveys 

We sampled bees for a total of four cycles at each site using two methods together: pan 

traps and aerial netting, the two most effective bee sampling methods (Westphal et al., 2008).  

Pan traps are small plastic bowls painted with UV-bright pigments and are filled with a dilute 

solution of water and a detergent to break surface tension.  Bees are attracted to the painted pan 

traps and drown in the water (Kearns & Inouye, 1993; Westphal et al., 2008).  These pan traps 

were set to the appropriate height of nearby vegetation.  We set 15 traps along the middle 100 

meters along a transect in the exact center of each plot, alternating with 5 blue, white, and yellow 
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paints.  For each pan trap effort, trapping arrays were set before dawn and collected at dawn the 

following day. 

We conducted aerial netting for each site along the full 200 meter transect at the interior 

and edge plots of the forest.  Field team members aerial netted any bees found within 2 meters of 

either side of the transect.  We conducted a single 30-minute aerial netting sampling once in each 

plot for each cycle, using a stopwatch, with the time used in handling and processing individual 

specimens excluded. Aerial netting took place between mid-morning and early afternoon, the 

period of maximum bee activity (Westphal et al., 2008).  Specimens caught in nets were 

destructively sampled using individual ethyl acetate kill jars. 

Bee specimens (from both pan traps and aerial netting) were pinned and labeled daily 

after field work was completed.  Bees were then identified to the species level, or lowest possible 

taxonomic category, with interactive keys from DiscoverLife.  Sam Droege, of US Geological 

Survey, assisted with identifications of several particularly challenging groups (e.g., 

Lasioglossum, Megachile, etc.) while also confirming previous identifications. 

Flowering vegetation was recorded during the third and fourth cycle for each field 

season.  All plants currently in bloom growing within 1 meter of either side of a 100 m sampling 

transect were tallied and identified to species, using reference material from conspecifics outside 

the sampling transect when necessary. 

 

2.3 Data Analyses 

2.3.1 Overview 

I analyzed changes in bee relative abundance, diversity, and community composition 

(response variables) in terms of several explanatory variables: management type of each site, 

region, edge/interior, and blooming plant abundance and richness.  I used generalized linear 

models, including mixed-effects models (GLMs and GLMMs) to analyze bee abundance and 

species richness in response to the explanatory variables.  I then used model selection to identify 
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the most parsimonious yet informative set of models available based on collected data.  To help 

ensure that any observed differences were attributed to the explanatory variables, rather than site 

proximity, I first assessed spatial autocorrelation in all three response variables. I conducted all 

analyses using the R statistical programming language (R Core Team, 2013). 

In terms of the response variables, I first examined bee relative abundance per cycle. 

Since abundance is an additive measure, mixed-effects models were used with negative binomial 

errors (given the discrete response); see section 2.3.3 for more detail. For community 

composition, I used Bray-Curtis pairwise dissimilarity, since my sampling effort was perfectly 

balanced and to maximize the use of abundance data (in contrast to Jaccard dissimilarity, which 

operates using presence-absence data).  I analyzed differences in community composition using 

matrix permutation tests (‘adonis’ function in the ‘vegan’ package for R) (Oksanen et al., 2013).  

In contrast to abundance and community composition, I examined several different 

metrics of bee diversity.  It has been demonstrated that diversity has several components and 

because species richness is a non-additive measure (given species overlap between samples).  

Specifically, I assessed: (1) relative bee species richness per sampling cycle; (2) accumulation of 

species within a site over all sampling cycles; (3) final accumulated richness after all sampling 

cycles; (4) the Shannon-Wiener diversity index, which takes into account both species richness 

and evenness (“SWDI” hereafter; calculated on final accumulated richness after all sampling 

cycles); and (5) the Chao1 species richness estimator, which estimates how many species may be 

in a site given the distribution of rare species (Chao, 1987).  For diversity responses 1 and 2, I 

used mixed-effects models (section 2.3.3) due to repeated measures in a site; responses 3-5 were 

aggregate measures for each site and thus I used linear (responses 4 and 5) or generalized linear 

models (response 3, with quasi-Poisson errors due to its discrete nature) to analyze these 

outcomes.  Residuals were examined for model validation to meet all assumptions of the linear 

models (responses 4 and 5). 
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2.3.2 Spatial autocorrelation 

I used Moran’s I, calculated in the ‘ape’ package for R to test for spatial autocorrelation 

in bee abundance and richness (Paradis et al., 2004). To assess spatial autocorrelation in 

community composition, I used Mantel tests on pairwise Bray-Curtis dissimilarity using the 

‘vegan’ package for R (Oksanen et al., 2013; Faith et al., 1987).  I calculated both Moran’s I and 

the Mantel tests for all three regions combined as well as for each region separately. 

 

2.3.3 Mixed-effects models 

Because within-site subsamples do not represent independent samples for the purposes of 

statistical tests, I used a mixed-effects model approach for those responses that utilized data from 

multiple subsamples within sites. This includes analyses of bee abundance and the first two 

aforementioned metrics of bee diversity (raw species richness per cycle, and species richness 

accumulation by cycle).  For all three of these responses, I specifically ran generalized linear 

mixed-effects models with negative binomial errors, given the discrete nature of the responses, 

which were all overdispersed relative to a straight Poisson distribution.  I used site as a random 

effect to control for repeated measures in all of these analyses, and additionally used region as a 

fixed effect, since it had only three levels (five levels is considered a bare minimum for 

incorporation as a random effect; Bolker et al., 2009).  As opposed to the analysis of a per-cycle 

species richness, the analysis of species richness aggregated by cycle included an interaction 

between each fixed effect and cycle, to see how each fixed effect (e.g. forest management) 

impacted the accumulation of species in that site over time. 

 

2.3.4 Model Selection and Post-Hoc Tests 

I used a model selection approach for the analyses of bee abundance and diversity 

because of the relatively large number of explanatory variables (5) in each analysis, so that I 

could determine the best set of models, balancing parsimony with explanatory power.  I used an 
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Aikake’s Information Criterion (hereafter AIC) model selection approach throughout so that I 

could compare non-nested models (Burnham & Anderson, 2002). I did not take an AIC approach 

with the adonis tests of community composition, because these matrix permutation tests do not 

generate an AIC or other information-criteria based measure.  Instead, I ran a full model (with all 

explanatory variables), as well as a model with just management type, and I report on the 

significance of the different effects. 

For the AIC analyses, after the best set of model was selected, I ran Tukey’s post-hoc 

tests (using the ‘glht’ function in the ‘multcomp’ package; Hothorn et al., 2008) on the 

explanatory variables to determine differences between levels of categorical fixed effects 

remaining in each model.  For example, I was interested to determine which management 

practices differed from one another in terms of bee abundance and diversity. Because p-values are 

likely to be inflated by model selection procedures, I considered the post-hoc tests a means to 

quantify observable differences, but not fully support significance (Burnham & Anderson, 2002). 

 

2.3.5 Community Composition 

To assess how community composition of bees is related to the model, I performed an 

adonis test using the Bray-Curtis dissimilarity index (utilizing the ‘vegan’ package in R; Oksanen 

et al., 2013).  I performed two separate adonis tests, first using the full model with all explanatory 

variables and next only examining management type.  Since adonis does not generate AIC or 

other information criteria measures needed for model selection, I report on the p-values of each 

effect in a full model. 
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3. Results 

3.1 Overview 

A total of 3,912 individual bees from 99 different species were collected for analysis.  In 

2013 in Georgia, 1,882 bees were collected from 61 species.  The Florida region had the highest 

raw species richness with 71 bee species from the 1,399 individuals collected.  Finally, 631 

individuals were collected from Alabama representing 50 species.  The most abundant bee genus 

for all regions was Lasioglossum, comprising roughly 65% of all specimen collected (Table 2).  A 

rank abundance curve is presented in Fig. 1A.  There was high variability in bee abundance and 

species richness between sites, with one site recorded with only one specimen in contrast with the 

476 individuals from our most abundant site.  The average number of bees collected per site was 

97.8 individuals.  The species accumulation curve (Fig. 1B) shows a trend of flattening; however, 

the lack of a plateau in the curve indicates that there are likely additional bee species that were 

not sampled. 

Table 2:  The overall abundance (total counts) by genus for the three sampled regions 
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AL 431 27 1 56 10 19 16 10 3 12 0 20 11 0 0 8 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 631 
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3.2 Spatial autocorrelation 

 For all regions combined, bee abundances and species richness were found to have 

significant spatial autocorrelation (Abundance: Moran’s I = 0.193, p-value = 0.04 ; Richness: 

Moran’s I = 0.251, p-value = 0.02).  I then assessed spatial autocorrelation for each region 

separately.  There was no significant spatial autocorrelation for bee abundances in either Alabama 

or Georgia (Moran’s I [AL] = -0.0769 , p-value = 0.91; Moran’s I [GA] = -0.105, p-value = 

0.87).  However, bee abundance in Florida was still found to have spatial autocorrelation 

(Moran’s I = 0.514, p-value < 0.01).  However, species richness was not found to be spatially 

autocorrelated for any of the three regions (Moran’s I [AL] = 0.260, p-value = 0.19; Moran’s I 

[FL] = -0.064, p-value = 0.95; Moran’s I [GA] = -0.080, p-value = 0.92). 

Similarly, I found significant spatial autocorrelation in community composition, 

measured as Bray-Curtis dissimilarity, when considering all regions together (Mantel r = 0.391, 

p-value < 0.001).  Examining each region separately, community composition no longer 

displayed significant spatial autocorrelation between sites (Mantel r [AL] = 0.034, p-value = 

0.27; Mantel r [FL] = 0.044, p-value = 0.19; Mantel r [GA] = 0.13, p-value = 0.12). 

 

 

Fig. 1 – (A) Rank abundance curve of species for each region; (B) Species Accumulation Curve 

calculated by randomizing each sampling effort (80 plots × 4 cycles = 320) 1,000 times without 

replacement.  Confidence Intervals are shown in yellow. 

 

A B 

Number of samples 

 

Species Rank 
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 Because sampling sites were clustered within regions, the pairwise distances between 

sites across regions were orders of magnitude greater than distances between sites within the 

same region.  The spatial autocorrelation observed with abundance, richness, and community 

composition all appear to be driven by regional variation rather than local variation.  When 

considering regions separately, the only test to show significant spatial dependence was bee 

abundance in Florida.  Because I performed three separate tests for autocorrelation for the three 

regions, the odds of finding at least one spurious significant result is nearly 50%.  Therefore, for 

subsequent analyses, I assumed that sites were spatially independent samples. 

 

3.3  Bee Abundances and Species Richness 

 Based on AIC values calculated for each possible combination of explanatory variables, 

bee abundance and richness was strongly related to region and management type (Table 3) out of 

a total of 30 possible models.  With 8 possible models containing both management and region as 

a fixed effect, all 8 models ranked the highest in model selection compared to all other possible 

combinations (Table 3).  This was true for relative abundances, raw species richness, and 

aggregated species richness.  A major increase in AIC (and thus a less useful model) was 

observed if management was not included as a fixed effect and an even larger increase in AIC 

was observed if region was removed as a fixed effect (Table 3).  This same trend occurred for all 

GLMMs.  When considering sampling efforts throughout time, flower richness and flower 

abundance was marginally related to relative abundance, species richness, and aggregated species 

richness.  Overall, whether the plot was located near the edge or interior of the site was minimally 

related to abundance and richness. 

 Pooling the species richness across all cycles, along with Shannon-Weiner Diversity 

Index (SWDI) and Chao1 Estimator, presented similar results.  Due to the nature of linear 

models, the residuals of SWDI and Chao1 Estimator models were inspected and met all linear 

model assumptions.  Management and region were consistently found to explain the most 
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variance in diversity between sites.  Flower abundance became a stronger explanatory variable for 

these diversity responses, but still to a lesser degree than management and region.  Edge and 

interior remained a less suitable explanatory variable to the highest ranked models (Table 4). 

 

3.4  Management Condition Effects 

 Because management condition is of key concern to this study and it continuously 

appeared in the highest ranked models for all diversity metrics, Tukey’s HSD was used to make 

pairwise comparisons to help quantify where differences in management type reside (Fig. 2).  

While all pairwise comparisons were considered, differences between current and future biofuel 

Table 3. Example of AIC model selection for relative abundance.  All fixed effect within each model are 

marked with “●”.  
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logLik    AIC   dLogLik    dAIC df weight 

1 ● ●    -1015.0  2054.1    29.9     0.0 12 0.326  

2 ● ●   ● -1014.6  2055.2    30.4     1.1 13 0.184  

3 ● ● ●   -1014.9  2055.8    30.1     1.7 13 0.138  

4 ● ●  ●  -1015.0  2056.1    29.9     2.0 13 0.121  

5 ● ● ●  ● -1014.5  2056.9    30.5     2.8 14 0.079  

6 ● ●  ● ● -1014.6  2057.1    30.4     3.0 14 0.071  

7 ● ● ● ●  -1014.9  2057.8    30.1     3.7 14 0.051  

8 ● ● ● ● ● -1014.4  2058.8    30.6     4.7 15 0.030  

9  ●   ● -1032.7  2077.3    12.3    23.2 6  <0.001 

10  ●  ● ● -1032.1  2078.2    12.9    24.1 7  <0.001 

… … … … … …  

30 ●  ● ● ● -1038.4  2102.8     6.6    48.7 13 <0.001 
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management practices (e.g. clearcut with residues vs. clearcut without residues) are of most 

importance for biofuel expansion. 

 

 

 

 

Table 4. Summary of explanatory variables found in selected best models for each response variable.  The 

components of the highest ranked model (according to AIC) are marked with “●”, while the second ranked 

model is marked with “○”. 

  Explanatory Variables 

Response Variable: Model Type Management Region Edge/Interior 

Flower 

Abundance 

Flower 

Richness 

Relative Abundance GLMM ●○ ●○   ○ 

Raw Species Richness GLMM ●○ ●○   ● 

Aggregated Species 

Richness 

GLMM ●○ ●○   ○ 

Pooled Species 

Richness 

GLM ●○ ●○  ●○ ○ 

SWDI LM ●○ ●○ ○ ●○  

Chao1 Estimator LM ● ●○   ○ 
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Fig. 2 – Bee diversity responses to different management types.  Differences between 

management types are marked with letters to denote like groups. 
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3.5 Community Composition 

Adonis tests using Bray-Curtis dissimilarity index on the full model show management and 

region significantly contribute to community composition (Table 5).  None of the other tested 

variables show significant effects on community composition.  Performing an adonis test with 

management as the sole explanatory factor supports that management type is affecting bee 

community compositions (R
2
 = 0.228, p-value = 0.006).  Community compositions based on bee 

tribes across management types can be found in Fig. 3. 

 

Table 5. Adonis results for full model of community simmilarity 

              Df SumsOfSqs   MeanSqs  F.Model       R2 Pr(>F)     

mgmt         11 0.0619246 0.0056295  2.83447 0.227985  0.001 *** 

region        2 0.0768456 0.0384228 19.34593 0.282918  0.001 *** 

edg.int       1 0.0017684 0.0017684  0.89038 0.006511  0.427     

flower.rich   1 0.0035647 0.0035647  1.79485 0.013124  0.092 .   

flower.abund  1 0.0023905 0.0023905  1.20362 0.008801  0.263     

Residuals    63 0.1251238 0.0019861          0.460661            

Total        79 0.2716176                    1.000000     

 

 

 

 

 

 

 

 

 



17 
 

 

 

  

no.resid residue
s 

young old corn referenc
e 

unthin thin 

Management Type 

Community Compositions by Management 
P

ro
p

o
rt

io
n

 

Fig. 3 – Community composition of bee tribes across different management types.  

For the sake of visibility, this figure uses bee tribes, the taxonomic level between 

genus and subfamily, rather than species (17 tribes vs. 99 species).  All analyses on 

community composition utilized species data for a more refined comparison. 
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4. Discussion 

Bee abundance, richness, and community composition are all affected by both forest 

management and region in the Southeastern US.  With model selection for all of the response 

variables, management and region were consistently found to be explanatory variables in the 

highest ranked models.  Flower richness and abundance were found to contribute to bee diversity 

and composition, but to a lesser degree than either region or management.  The effect of interior 

versus edge sampling was not found to significantly contribute to bee diversity or composition. 

The consistency of the results across the three regions (Georgia, Alabama, and Florida) gives us 

additional confidence in our findings as a reliable foundation for management decisions. 

These results support previous work showing that bee diversity can be significantly 

impacted by land use (Sutherland et al., 2006; Winfree et al., 2009).  While there has not been 

direct work in this region, land-use intensity has been found to affect bee abundance and richness 

in other areas (Klein et al., 2002).  Management and anthropogenic disturbances have generally 

affected bee abundance and bee richness negatively, yet these effects on bee populations are of 

little magnitude if disturbance intensity is moderate (Winfree et al., 2009).  Management type 

may have shown significant effects in this pine system.  However, the management intensity is 

not always the main driver for changes in bee diversity.  Certain management types were 

consistently observed to have significant differences in all response variables, such as clearcuts 

compared to corn.  However, some differences attributed to management appear to be dependent 

on the diversity response considered, as the diversity index selected may influence the measured 

response of a system (Nagendra, 2002; Bock et al., 2007). 

Most pairwise differences observed between management conditions were related to the 

age since planting, rather than direct differences in management practice (Fig. 2).  Throughout all 

models, both types of clearcut sites were found to have significantly higher species abundance 

and richness.  Previous studies have suggested a relatively low bee diversity and abundance 
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within pine systems (Winfree, 2007), so clearcut sites (with the least amount of forest cover 

compared to other sampled sites) may be expected to have higher bee diversity and abundance. 

There were occasional differences in bee diversity observed between younger and older pine 

stands, yet this was largely dependent on the type of diversity response tested. Finally, there were 

rarely differences in bee diversity between the managed pine stands and the unmanaged, 

reference stands.  This rejects our initial hypothesis that increasing the intensity of management 

in pine systems will decrease bee diversity.  While management type did affect bee diversity, the 

intensity of the management did not seem to indicate any directionality. 

Pairwise comparisons of the management types that we examined suggest that future 

biofuel cultivation in southern pine plantations may not have a direct impact on bee abundances 

or richness at the local scale, relative to current forestry practices (Fig. 2). Throughout all models, 

there were no differences between the three management contrasts we examined (two types each 

of clearcuts, thinning practices, and stand age/rotation time).  All observed differences in 

management conditions resided between these groups rather than within.  Comparing the current 

management practices to the future management practices for biofuel production (residue 

harvesting, thinning, and shorter rotations), these findings suggest that bee communities will not 

be affected at the local scale by management changes due to biofuels.  However, changes to 

management conditions across all pine plantations, or the designation of additional land to pine 

systems for biofuels, may alter landscape heterogeneity and thus possibly affect bee diversity 

(Benton et al., 2003; Bennett & Ford, 1997).  At the same time, it should be noted that corn sites, 

the current main source of biomass for biofuels and bioethanol (EIA, 2014), consistently 

contained the lowest bee diversity. Thus, a switch to pine-based biofuel feedstocks, relative to 

corn-based, may have positive impacts on bee communities, at least at local scales and over short 

time periods. 

Flower abundance and flower richness had a smaller effect than management and region 

throughout all models.  Flower abundance and richness did not have a large contribution to bee 
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diversity across management types, despite previous work suggesting the high association of bee 

diversity with wildflower diversity (Potts et al., 2003; Cariveau et al., 2013).  Variation in bee 

diversity explained by wildflower diversity may be overshadowed by the effects of management 

and region within these models. This is particularly the case because we saw no consistent 

relationship between management type and blooming plant diversity and abundance. 

Furthermore, only two cycles of wildflower sampling per site may have been insufficient to 

adequately represent local flowering communities.  This could be highlighted by the temporal 

variability often observed in plant-pollinator communities (Ebeling et al., 2008). 

Beyond the differences on bee abundance and species richness, management type was 

found to also significantly impact the bee community composition.  The bee tribe Halictini 

(Halictus, Lasioglossum, etc.) accounted for the majority of specimens collected throughout all 

sites except the thinned and unthinned management condition.  For these two management 

conditions, the bee tribe Augochlorini (Augochlorella, Augochloropsis) was found to represent 

the majority.  Land use has been shown to affect community compositions for both bees and 

flowering plants in grassland systems (Batary et al., 2010), yet these results do not indicate a 

potential driver for community shifts.  These results suggest that community compositions 

rebound back to a Halictini dominant system with increased years since planting after the 

thinning process.  

A deeper understanding of the impacts of biofuel cultivation on bees could be supported 

by further investigations into landscape features and spatial scaling. This work focused on local-

scale impacts, but landscape-level factors (such as landscape heterogeneity) could be important 

drivers of change in bee communities (Brosi, 2009; Kennedy et al., 2013). For example, 

increasing the extent of pine plantation cover at landscape scales may decrease, or increase, bee 

diversity and abundance. Future work should include explicit consideration of the spatial scale of 

such different landscape patterns, as this can be a key factor in shaping biological communities 

(Levin, 1992; Chase & Leibold, 2002). Another consideration is inclusion of additional land use / 
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land cover types, such as pastures, which would be particularly helpful for assessing the effects of 

alternative land uses (and conversion from different land use types to pine forests). This would be 

particularly helpful in informing future models on the responses of bee communities to potential 

future area increases for pine plantations (Potts et al., 2010). 
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